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Abstract information can also be used to verify the results of sci-

. . . entific workflows through re-execution. Other applica-
Provenance information enable the analysis of larggjong of provenance information include pre-publication

s_c_ale many-task computations often specn‘|ed_ as SCleMksyview of results; learning research practices and proto-
tific Workflo_vvs. They allow for one to determine how cols; and support for taking over someone else’s work.
each resgltm_g data set was derived from other_data sets) allow the exchange of retrospective provenance in-
and applications. In this work, we survey queries Usetts mation between provenance management systems, the
for explorllng provenance information about many-taskoIoen Provenance Model (OPM) [10] was proposed.
_comp_L_Jtatl_ons. We pregent a §et 9f pa_tterns that can be In this work, we survey queries used for exploring
|o_Ient|f|ed n the_se queries, which |s_be|ng used as a babrovenance information about many-task computations.
sis for the design and implementation of & provenanceye present a set of patterns that can be identified in these
management system for many-task scientific computag eries, which is being used as a basis for the design
tions, integrated to _th(_e Swift parallel scripting system. | ;4 implementation of a provenance management sys-
hgs adata model similar to the Open Provenance Modetgy, ¢ many-task scientific computations, integrated to
with extensions that enrich core structural provenancey, . gift [14] parallel scripting system. It extracts prove

data, represented as consumption and production relg,nce information from log files generated by Swift af-
tionships between applications and data sets, with infora, the execution of parallel scripts that specify many-

mation about the runtime behavior of each applicationy,qy scientific computations, and stores it in a relational
and domain-specific mfo.rmgtlon such as the scientificy tapase. Instead of proposing an ad-hoc query language
parameters used by applications. for provenance, our approach leverages the robustness of
relational database management systems, with the imple-
1 Introduction mentation of functions and stored procedures that sim-
plify query design. In the subsequent sections we present
Scientific computations can often be specified and auProvenance query patterns commonly found in many-
tomated as workflows [16] [5] that comprise many datatask SC|ent_|f|c computations, and describe how they are
sets and applications. Manual analysis of the results of §UPPOrted in our provenance management system.
large scale many-task scientific computation is generally
unfeasible. This involves, for instance, checking inputs? Provenance Query Patterns
and outputs of each component application of the work-
flow, verifying if jobs failed on remote computational re- Provenance management systems can gather consump-
sources, and checking all processes that contributed tion and production relationships between data sets and
the creation of a particular data set. Many of these acprocesses, hierarchical relationships between data sets,
tivities can be done automatically by querying prove-versioning information about scientific workflows (ex-
nance information, since it describes how these scienpressed in Swift as parallel scripts) and their component
tific workflows were designed and sometimes how theyapplications, runtime information about external appli-
evolved [7] prospective provenangeand they were ex- cations invoked from within a scientific workflow, and
ecuted (etrospective provenangeRetrospective prove- allow for the users to enrich their provenance records
nance describes, for instance, the input and output relawith annotations about provenance entities. To ex-
tionships between data sets and processes. Provenarmere all this information, a provenance management



system should provide a usable and useful query interparent data set (when it is a member of a structure or
face. In this section we survey patterns for queryingof an array). A data set may have as attributes a value,
provenance in scientific computations, which is an im-when it is an in-memory variable; or a filename, when it
portant step in determining solutions to issues such ass a file.
indexing strategies, database partitioning, and query ab- Process Can take data sets as input, perform some
stractions. Our survey is based on the queries proposesbmputation, and produce data sets as output. In Swift,
for the first three international Provenance Challengeprocesses can be given by invocations of external appli-
[1]; on provenance queries found in the academic lit-cations, and internal procedures, built-in functions, and
erature; and on provenance queries designed in collalperators; each process is defined in the context of a sci-
oration with Swift’s scientific users. The First Prove- entific workflow, specified in a Swift parallel script.
nance Challenge (PC1), which focused on demonstrat- Application invocationA type of process that is given
ing provenance system features, and the Second Provgy an invocation of a component applications of a sci-
nance Challenge (PC2), which focused on interoperabilentific workflow. In Swift, it is given by an invocation
ity, share the same queries. The Third Provenance Chajo an external application called from a Swift parallel
lenge (PC3) focused on the use of OPM to exchange datgcript. These external applications are listed in an ap-
between provenance systems. In our experience in PGglication catalog along with the computational resources
[8], we observed that performing provenance queries irwhere they can be executed.
plain SQL is often cumbersome, due to the extensive use Application execution Are given by execution at-
of relational joins, for instance, that are not easy for atempts of an external application. Each invocation of an
domain scientist to master and write. external application triggers one or more execution at-
Our current provenance management system protaempts, where a particular computational resource will
type is integrated into Swift [15] [14], a parallel scripgin  be selected to actually execute the application.
system that supports the specification, and execution of Script run Refers to the execution (successful or un-
large-scale many-task computations on parallel and dissuccessful) of a many-task scientific computation, which
tributed systems. It is a successor of the Virtual Datais specified in a Swift parallel script. A set of runs of the
System (VDS) [6]. In Swift, scientific workflows are same Swift parallel script can be referred to asam-
specified using SwiftScript, a high-level language thatpaign
supports constructs such as conditional branching, loops, Annotation A name-value pair associated with either
data types, mapping of in-memory data structures to ina data set, process, or script run. This is generally used
disk data, and compound procedures. Procedures thgs gather context-specific information about the entities
are independent of each other are executed in parallebf the provenance data model.
The data model we propose for provenance of many-task The production and consumption relationships be-
scientific Computations is a refinement of the one USEdween processes and data sets define a |ineage graph
during the Third Provenance Challenge [8]. It is sim-that can be traversed to determine ancestors or descen-
ilar to OPM [10] having entities that correspond to its dants of a particular entity. A process dependency and
notions of artifact, process, and artifact usage (either bea data dependency graph can be derived from this lin-
ing consumed or produced by a process). These are augage graph by transitivity. The provenance model pre-
mented with entities used to represent scientific worksented in this work is an evolution of the one used by
flows, and to allow for entity annotations. These annota-swift during the Third Provenance Challenge [8], which
tions have the purpose of collecting variable informationywas shown to be similar to the Open Provenance Model
about entities, such as versioning and scientific parameropmM) [10]. Process has the same meaning as in OPM,
ters. This data model also takes into account characterigowever our model distinguishes different types of pro-
tics of parallel and distributed computing environments,cesses, such as external applications, and internal func-
where processes compete for execution slots, or are n@bns and operators. Since distributed systems are sub-
even able to execute due to failures. The following enti-ject to failures, each external application invocation may
ties are part of this data model: have one or more execution attempts. Each of these at-
Data set Corresponds to OPM'’s artifacts. Data settempts is captured by our model. Runtime information
types can be atomic or composite. Atomic types aresuch as CPU and memory usage can be captured for each
given by primitive types, such as integers and strings, oapplication execution. Data sets correspondto OPM’s ar-
mappedypes. Mapped types are used for declaring andifacts and can be given by files, in-memory values or a
accessing data that is stored in files. Composite typesollection of other data sets. Currently there are no entity
are given by structures and arrays. Containment relationsets that would correspond to OPM'’s agents, however
ships define a hierarchy where each data set may hawge plan to extend the current model to capture which
child data sets (when it is a structure or an array), or auser credentials were used to submit tasks to computa-



tional resources. There are tools in the current imple-
mentation that can export the provenance database into a
provenance graph in OPM format, which enables better
interoperability with other provenance systems that also

special case of the EA pattern. In Swift, one can op-
tionally monitor and record resource usage statistics
such as memory allocation and the amount of data
read or written to the file system by an application

support OPM. execution.
In the context of many-task scientific computations,
provenance queries can be application-independent, ®
where the user is usually interested in information that
is present in every run of a Swift script, such as pro-
duction and consumption relationships between data sets
and processes, and data set containment relationships.
We identified the following patterns for application-

independent provenance queries:

Entity Attribute(EA). Queries for attributes of an en-  Rryn comparisonéRCp). These queries compare mul-
tity of the data model. Some of these queries may also bgple script runs with respect to some attribute (scientific
application-specific, as with theriable entity set, that oy runtime, for instance) to analyze how it varied across
stores values of atomic in-memory data sets that can bgyem. One might one to know what was the range of
given by some scientific parameter of an application.  versijons of a particular application, or which protein was

One-step RelationshigR). Queries for entities in- modeled in a bioinformatics workflow, across multiple
volved in a relationship of the data model, such as datacript runs.
set consumption and production, or data set containment. Run correlation§RCr). Given by queries for correlat-

Multiple-step RelationshigR*). Queries for entities ing attributes from multiple script runs. One can, for in-
involved in the transitive closure of a relationship of the stance, correlate the resulting accuracy of some compu-
data model, e.g. for data set lineage and for data set conational model run (science-level performance) with the
tainment hierarchy. duration of its execution (resource-level performance).

Lineage Graph MatchingLGM). Queries for deter- Campaign-level summari¢€LS). These queries ag-
mining similarity between lineage graphs. It can in- gregate data from aampaign Some examples of this
clude a combination of EA, R, and*Rjueries, along pattern pattern would be querying for average computa-
with graph similarity algorithms to verify, for instance, tional model accuracy, or for total number of computa-
common subgraphs, and graph difference. These proliional tasks in a campaign.
lems are known to have high computational complexity Table 1 describes which patterns are present in each
in general. query proposed in the Provenance Challenge series. One

One can observe that each application-independeman observe that some patterns, such as LGM and RCr,
guery pattern is a generalization of the preceding oneare present in only a few queries of the Provenance
Application-independent queries can be used to describ€hallenges. However some useful queries can be de-
the structure of production and consumption provenancsigned exploring these patterns. Users of our prove-
relationships. However, to understand and analyze theance management system, from different scientific do-
results of a computational experiment, a scientist of-mains, were frequently interested in queries that present
ten needs information that goes beyond structural proveapplication-specific patterns, in particular for correla-
nance. Some query patterns depends more on which sptiens between scientific-level and resource-level perfor-
cific scientific computation was executed, since they in-mance attributes. The Open Protein Simulator (OOPS)
volve queries about inherent attributes of a scientific ap{9] is a protein structure prediction application. Itis dse
plication, such as values for input and output scientificin conjunction with pre-processing and post-processing
parameters: applications in a high-level workflow that is described in

Run summaryRS). Given by application specific at- figure 1. The doLoopRound workflow activity is a com-
tributes of a script run or of the entities it contains (all pound procedure, described in figure 2. Annotations are
its processes and their respective input/output data setgjathered by an application-specific script executed after
Two special cases of this pattern are frequently found: an OOPS run, and stored in the provenance database.

Scientists were interested to know, for instance, what the
e Run resource-level performan¢BRP). Given by correlation betweeroot mean square distan¢BMSD),
information about the runtime behavior of the ap- which measures how similar the modeled protein is to the
plication executions of the script run. Some of this actual one, and the number of simulation (loopModel)
information is available as attributes of theocess ~ steps was for a given protein. This type of query, which
entity, therefore this pattern can be considered gresents the RCr pattern, can help the scientist to esti-

Run science-level performand®SP). Given by
queries for input and output scientific parameters.
These are gathered either as entity attributes, when
given by scientific parameters that are eventually
stored in in-memory variables during a script run;
or as annotations, when this is information is not
directly visible to Swift.



Table 1: Provenance query patterns found in the Provenamake@ge series.

Patter PC1/PC2 PC3 PC3 (Optional Queries)
1[2[3]4]5][6]7][8]9]1[2]|3]5]|1[2][3]4]5[6]7]8]9][10[11]12]13][14[15
EA XA XX XXX XX XX XXX XX XXX X[ X]|X][X]|X|X]|X|X]|X]|X
R X | x| x XX | X[ x| x| x|x]|x]|x XX XXX XXX X|[X]|X]|X]|x]|X
R* X | x| % X | X X | X | X | x X X X | X X | X | x| X
LGM X X
RS X | X | % X | x| x| x|x x| X X | X | x| x|x
RCp XX | X | x| X X X[ x| x|x]|x X
RCr X

mate the required number of simulation steps for achievserecr
ing the desired accuracy. This is useful since extra simuEROM ancestors(’dataset:20100618-0402-ia0bqb73:72000045°) ;
lation steps are usually computationally expensive. The ancestor

following query returns the desired answer for the pro- oxocute:pain, 1oops-20100618-0402-qhmdugad : 451006

tein TR567: dataset:20100618-0402-ia0bqb73: 72000039

SELECT run_id, r.value as nSim, t.value as rmsd

FROM ;;K;rja;;n_by_param’proteiﬂld’> as r The EA, R and RS query patterns are well supported
compare_run_by_paran(’nSim’) as s USING (run_id) using native SQL. Support for LGM queries is being de-
INNER JOIN veloped in our current work.

compare_run_by_annot(’rmsd’) as t USING (run_id)
WHERE r.value=’TR567’ and run.id LIKE ’psim.loops%’;

run_id | nSim | rmsd 3 Implementation Overview
im.1 -20100604-2215-cdifsnb3 | 256 | 3.33123 . . . . .
5212.12252-20100613-0125-;;;‘;35 | 512 | 0.76274 In this section, we briefly describe describe our ongo-
psim.loops-20100616-1612-h6qdgdja | 1024 | 0.68426 ing work for designing and implementing a provenance

management system for many-task scientific computa-
Where compare_run_by_param and tions, integrated to the Swift parallel scripting system.
compare_run_by_annot are functions that abstract The provenance information it manages is extracted on a

the RCp pattern. They compare how the value of aP€' script run basis from log files generated by Swift.

parameter and the value associated to an annotation kél;his information is stored in.a relational database us-
varies across different runs respectively. The composil’d @ database schema that implements our data model
tion of these functions allows for the design of queriesand contains abstractions implemented as functions and

that present the RCr pattern. Queries of tHepRttern stored procedures for some of the patterns presented that
are supported by the SQL functiancestors, thatuses &€ harder to express with relational database queries,

Common Table Expressions to define a recursive querySuch as the Rand RCr queries.
Relational database management systems are well

CREATE OR REPLACE FUNCTION ancestors(varchar) known for their robustness and scalability, however some
RETURNS SETOF varchar AS $$ . . .
WITH RECURSIVE anc(ancestor,descendant) AS of their shortcomings for managing provenance are the
(¢ use of fixed schemas, and weak support for recursive
SELECT parent AS ancestor, child AS descendant . . N .
FROM  prov_graph queries. Despite using a fixed schema, our data model
UN‘I“OIERE child=$1 allows for name-value pair annotations for each prove-
SELECT prov_graph.parent AS ancestor, nance entity, which gives it some flexibility to store in-
. an°~descendanthAS descendant formation not explicitly defined in the schema. The
WHERE :Eifazz:;fiigmv_gmph.child SQL:1999 standard introduced native constructs for per-
) forming recursive queries, which only recently were im-

SELECT ancestor FROM anc

$$ LANGUAGE SQL; plemented in major relational database systems. Or-

donez [12] proposed recursive query optimizations that

Whereprov_graph is a database view that defines the can enable transitive closure computation in linear time
edges of the provenance graphs stored in the databassomplexity on binary trees, and quadratic time complex-
An invocation of this procedure returns: ity on sparse graphs. We leverage the constructs intro-



modelln nSim modelResults
L . | i .

v . . y ~ .
LoopPrepare » modelData » doLoopRound »  modelOut » loopModelAnalysis

Figure 1: OOPS workflow.

modelOut[0]
» loopModel

modelOut[1]
1 » loopModel

( modelData ' modelOut(] |

modelOut[nSim-1]
» loopModel

Figure 2: doLoopRound compound procedure.

duced for recursive queries by implementing a functionand therefore keeps track of how workflow specifications
that abstract queries matching thé pattern. Relation- evolve, in addition to derivation relationships between
ship transitive closures, which are required byfRttern  data and processes. vtPQL [13] is a language for query-
gueries, are well supported by graph-based data modelg)g provenance information in Vistrails. The query sys-
however many interesting queries require aggregation ofem is augmented by useful constructs in the context of
entity attributes. These aggregations can be costly iprovenance and workflows, such as functions for prove-
graph-based data models since retrieving entity attributenance graph traversal. The underlying data models used
require graph traversals, whereas in the relational datéor storage include both XML, for storing workflow evo-
model they are straightforward. lution information, and relational databases, for storing
Annotations can be gathered by writing application-execution information. Anand et al. [2] advocate the
specific annotation extraction scripts that are automatirepresentation of provenance information as fine-grained
cally run before each application execution. We did someelationships over nested collections of data. For this pur
experiments using annotations to store domain-specifipose they present a provenance model that also supports
parameters contained in data sets that were opaque toultiple invocations of the same process. This model al-
Swift, and with application versioning using annotationslows for multiple processes operating on the same nested
to store version of component applications that are availdata collection. They present a Query Language for
able through SVN repositories. Provenance (QLP) that is independent from the under-
lying data model used for storage, independent of work-
flow management system, and closed under query com-
4 Related Work position. QLP operators for querying lineage act as fil-
_ ters over lineage relations, returning a subset of them.
The Virtual Data System (VDS) [6] [17] [4] defines & | jneage queries can be combined with queries over data
data provenance model, to represent information abouyctures. PASS’ Path Query Language (PQL) [11] uses
virtual data objects and the functional procedures thag query language that has a graph-oriented query model.
were used to produce them. A relational databasghepotko et al. [3] present RDFProv, a provenance man-
schema is used to record relationships between dataseé@emem system that is based on semantic web tech-

and procedures. Name-value pairs are used t0 annotaffiques and that uses relational databases to store prove-
the various entities of the model with application spe-nance data.

cific information. One problem with this model is the use

of different data models, relational and semi-structured, With respect to these related works, Swift's current
to query provenance information, which makes it dif- provenance management system enables gathering addi-
ficult to compose them into more complex queries.tional runtime details that are important in the context of
The Vistrails [7] workflow management system sup- parallel and distributed systems. The use of annotations
ports exploratory computational scientific experiments,enriches provenance information with domain-specific



information. Using functions and stored procedures in [5]
the relational data model that abstract the query patterns
presented and explore information from these different
domains allows for the design of useful queries that can 6
be more difficult to express in other systems.

5 Concluding Remarks -
This work presents a survey about provenance query pat-
terns for many-task scientific computations. The identi-
fication of these patterns is important for supporting the g
design and implementation of provenance management
systems with respect to the choice of appropriate data
models, storage strategies, and query interfaces. Our curfd]
rent implementation gathers provenance about processes
and data sets manipulated by Swift during a script run.
The initial implementation of our provenance manage-
ment system in the relational data model used functions
and stored procedures to abstract each query pattern and
their respective joins to allow easier query design. We are
currently designing a provenance query language similar
to SQL that further simplifies query design by avoiding
; i : . -~ [11]

some of SQL’s restrictions, such as static typing, while
maintaining useful features such as aggregations.

Once provenance management systems become ma-
ture, useful and usable, it is likely that large scale dis-{12]
tributed computing infrastructures, such as the Teragrid,
will start deploying provenance stores to support their[13]
users. This will likely raise issues about data integra-
tion and scalability in provenance management systems,
which are some of the problems we plan to investigate irh4]
our future work.
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