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Abstract

Provenance information enable the analysis of large
scale many-task computations often specified as scien-
tific workflows. They allow for one to determine how
each resulting data set was derived from other data sets
and applications. In this work, we survey queries used
for exploring provenance information about many-task
computations. We present a set of patterns that can be
identified in these queries, which is being used as a ba-
sis for the design and implementation of a provenance
management system for many-task scientific computa-
tions, integrated to the Swift parallel scripting system. It
has a data model similar to the Open Provenance Model,
with extensions that enrich core structural provenance
data, represented as consumption and production rela-
tionships between applications and data sets, with infor-
mation about the runtime behavior of each application,
and domain-specific information such as the scientific
parameters used by applications.

1 Introduction

Scientific computations can often be specified and au-
tomated as workflows [16] [5] that comprise many data
sets and applications. Manual analysis of the results of a
large scale many-task scientific computation is generally
unfeasible. This involves, for instance, checking inputs
and outputs of each component application of the work-
flow, verifying if jobs failed on remote computational re-
sources, and checking all processes that contributed to
the creation of a particular data set. Many of these ac-
tivities can be done automatically by querying prove-
nance information, since it describes how these scien-
tific workflows were designed and sometimes how they
evolved [7] (prospective provenance), and they were ex-
ecuted (retrospective provenance). Retrospective prove-
nance describes, for instance, the input and output rela-
tionships between data sets and processes. Provenance

information can also be used to verify the results of sci-
entific workflows through re-execution. Other applica-
tions of provenance information include pre-publication
review of results; learning research practices and proto-
cols; and support for taking over someone else’s work.
To allow the exchange of retrospective provenance in-
formation between provenance management systems, the
Open Provenance Model (OPM) [10] was proposed.

In this work, we survey queries used for exploring
provenance information about many-task computations.
We present a set of patterns that can be identified in these
queries, which is being used as a basis for the design
and implementation of a provenance management sys-
tem for many-task scientific computations, integrated to
the Swift [14] parallel scripting system. It extracts prove-
nance information from log files generated by Swift af-
ter the execution of parallel scripts that specify many-
task scientific computations, and stores it in a relational
database. Instead of proposing an ad-hoc query language
for provenance, our approach leverages the robustness of
relational database management systems, with the imple-
mentation of functions and stored procedures that sim-
plify query design. In the subsequent sections we present
provenance query patterns commonly found in many-
task scientific computations, and describe how they are
supported in our provenance management system.

2 Provenance Query Patterns

Provenance management systems can gather consump-
tion and production relationships between data sets and
processes, hierarchical relationships between data sets,
versioning information about scientific workflows (ex-
pressed in Swift as parallel scripts) and their component
applications, runtime information about external appli-
cations invoked from within a scientific workflow, and
allow for the users to enrich their provenance records
with annotations about provenance entities. To ex-
plore all this information, a provenance management
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system should provide a usable and useful query inter-
face. In this section we survey patterns for querying
provenance in scientific computations, which is an im-
portant step in determining solutions to issues such as
indexing strategies, database partitioning, and query ab-
stractions. Our survey is based on the queries proposed
for the first three international Provenance Challenges
[1]; on provenance queries found in the academic lit-
erature; and on provenance queries designed in collab-
oration with Swift’s scientific users. The First Prove-
nance Challenge (PC1), which focused on demonstrat-
ing provenance system features, and the Second Prove-
nance Challenge (PC2), which focused on interoperabil-
ity, share the same queries. The Third Provenance Chal-
lenge (PC3) focused on the use of OPM to exchange data
between provenance systems. In our experience in PC3
[8], we observed that performing provenance queries in
plain SQL is often cumbersome, due to the extensive use
of relational joins, for instance, that are not easy for a
domain scientist to master and write.

Our current provenance management system proto-
type is integrated into Swift [15] [14], a parallel scripting
system that supports the specification, and execution of
large-scale many-task computations on parallel and dis-
tributed systems. It is a successor of the Virtual Data
System (VDS) [6]. In Swift, scientific workflows are
specified using SwiftScript, a high-level language that
supports constructs such as conditional branching, loops,
data types, mapping of in-memory data structures to in-
disk data, and compound procedures. Procedures that
are independent of each other are executed in parallel.
The data model we propose for provenance of many-task
scientific computations is a refinement of the one used
during the Third Provenance Challenge [8]. It is sim-
ilar to OPM [10] having entities that correspond to its
notions of artifact, process, and artifact usage (either be-
ing consumed or produced by a process). These are aug-
mented with entities used to represent scientific work-
flows, and to allow for entity annotations. These annota-
tions have the purpose of collecting variable information
about entities, such as versioning and scientific parame-
ters. This data model also takes into account characteris-
tics of parallel and distributed computing environments,
where processes compete for execution slots, or are not
even able to execute due to failures. The following enti-
ties are part of this data model:

Data set. Corresponds to OPM’s artifacts. Data set
types can be atomic or composite. Atomic types are
given by primitive types, such as integers and strings, or
mappedtypes. Mapped types are used for declaring and
accessing data that is stored in files. Composite types
are given by structures and arrays. Containment relation-
ships define a hierarchy where each data set may have
child data sets (when it is a structure or an array), or a

parent data set (when it is a member of a structure or
of an array). A data set may have as attributes a value,
when it is an in-memory variable; or a filename, when it
is a file.

Process. Can take data sets as input, perform some
computation, and produce data sets as output. In Swift,
processes can be given by invocations of external appli-
cations, and internal procedures, built-in functions, and
operators; each process is defined in the context of a sci-
entific workflow, specified in a Swift parallel script.

Application invocation. A type of process that is given
by an invocation of a component applications of a sci-
entific workflow. In Swift, it is given by an invocation
to an external application called from a Swift parallel
script. These external applications are listed in an ap-
plication catalog along with the computational resources
where they can be executed.

Application execution. Are given by execution at-
tempts of an external application. Each invocation of an
external application triggers one or more execution at-
tempts, where a particular computational resource will
be selected to actually execute the application.

Script run. Refers to the execution (successful or un-
successful) of a many-task scientific computation, which
is specified in a Swift parallel script. A set of runs of the
same Swift parallel script can be referred to as acam-
paign.

Annotation. A name-value pair associated with either
a data set, process, or script run. This is generally used
to gather context-specific information about the entities
of the provenance data model.

The production and consumption relationships be-
tween processes and data sets define a lineage graph
that can be traversed to determine ancestors or descen-
dants of a particular entity. A process dependency and
a data dependency graph can be derived from this lin-
eage graph by transitivity. The provenance model pre-
sented in this work is an evolution of the one used by
Swift during the Third Provenance Challenge [8], which
was shown to be similar to the Open Provenance Model
(OPM) [10]. Process has the same meaning as in OPM,
however our model distinguishes different types of pro-
cesses, such as external applications, and internal func-
tions and operators. Since distributed systems are sub-
ject to failures, each external application invocation may
have one or more execution attempts. Each of these at-
tempts is captured by our model. Runtime information
such as CPU and memory usage can be captured for each
application execution. Data sets correspond to OPM’s ar-
tifacts and can be given by files, in-memory values or a
collection of other data sets. Currently there are no entity
sets that would correspond to OPM’s agents, however
we plan to extend the current model to capture which
user credentials were used to submit tasks to computa-
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tional resources. There are tools in the current imple-
mentation that can export the provenance database into a
provenance graph in OPM format, which enables better
interoperability with other provenance systems that also
support OPM.

In the context of many-task scientific computations,
provenance queries can be application-independent,
where the user is usually interested in information that
is present in every run of a Swift script, such as pro-
duction and consumption relationships between data sets
and processes, and data set containment relationships.
We identified the following patterns for application-
independent provenance queries:

Entity Attribute(EA). Queries for attributes of an en-
tity of the data model. Some of these queries may also be
application-specific, as with thevariable entity set, that
stores values of atomic in-memory data sets that can be
given by some scientific parameter of an application.

One-step Relationship(R). Queries for entities in-
volved in a relationship of the data model, such as data
set consumption and production, or data set containment.

Multiple-step Relationship(R∗). Queries for entities
involved in the transitive closure of a relationship of the
data model, e.g. for data set lineage and for data set con-
tainment hierarchy.

Lineage Graph Matching(LGM). Queries for deter-
mining similarity between lineage graphs. It can in-
clude a combination of EA, R, and R∗ queries, along
with graph similarity algorithms to verify, for instance,
common subgraphs, and graph difference. These prob-
lems are known to have high computational complexity
in general.

One can observe that each application-independent
query pattern is a generalization of the preceding one.
Application-independent queries can be used to describe
the structure of production and consumption provenance
relationships. However, to understand and analyze the
results of a computational experiment, a scientist of-
ten needs information that goes beyond structural prove-
nance. Some query patterns depends more on which spe-
cific scientific computation was executed, since they in-
volve queries about inherent attributes of a scientific ap-
plication, such as values for input and output scientific
parameters:

Run summary(RS). Given by application specific at-
tributes of a script run or of the entities it contains (all
its processes and their respective input/output data sets).
Two special cases of this pattern are frequently found:

• Run resource-level performance(RRP). Given by
information about the runtime behavior of the ap-
plication executions of the script run. Some of this
information is available as attributes of theprocess
entity, therefore this pattern can be considered a

special case of the EA pattern. In Swift, one can op-
tionally monitor and record resource usage statistics
such as memory allocation and the amount of data
read or written to the file system by an application
execution.

• Run science-level performance(RSP). Given by
queries for input and output scientific parameters.
These are gathered either as entity attributes, when
given by scientific parameters that are eventually
stored in in-memory variables during a script run;
or as annotations, when this is information is not
directly visible to Swift.

Run comparisons(RCp). These queries compare mul-
tiple script runs with respect to some attribute (scientific
or runtime, for instance) to analyze how it varied across
them. One might one to know what was the range of
versions of a particular application, or which protein was
modeled in a bioinformatics workflow, across multiple
script runs.

Run correlations(RCr). Given by queries for correlat-
ing attributes from multiple script runs. One can, for in-
stance, correlate the resulting accuracy of some compu-
tational model run (science-level performance) with the
duration of its execution (resource-level performance).

Campaign-level summaries(CLS). These queries ag-
gregate data from acampaign. Some examples of this
pattern pattern would be querying for average computa-
tional model accuracy, or for total number of computa-
tional tasks in a campaign.

Table 1 describes which patterns are present in each
query proposed in the Provenance Challenge series. One
can observe that some patterns, such as LGM and RCr,
are present in only a few queries of the Provenance
Challenges. However some useful queries can be de-
signed exploring these patterns. Users of our prove-
nance management system, from different scientific do-
mains, were frequently interested in queries that present
application-specific patterns, in particular for correla-
tions between scientific-level and resource-level perfor-
mance attributes. The Open Protein Simulator (OOPS)
[9] is a protein structure prediction application. It is used
in conjunction with pre-processing and post-processing
applications in a high-level workflow that is described in
figure 1. The doLoopRound workflow activity is a com-
pound procedure, described in figure 2. Annotations are
gathered by an application-specific script executed after
an OOPS run, and stored in the provenance database.
Scientists were interested to know, for instance, what the
correlation betweenroot mean square distance(RMSD),
which measures how similar the modeled protein is to the
actual one, and the number of simulation (loopModel)
steps was for a given protein. This type of query, which
presents the RCr pattern, can help the scientist to esti-
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Table 1: Provenance query patterns found in the Provenance Challenge series.

Pattern
PC1/PC2 PC3 PC3 (Optional Queries)

1 2 3 4 5 6 7 8 9 1 2 3 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EA × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

R × × × × × × × × × × × × × × × × × × × × × × × × × ×

R∗
× × × × × × × × × × × × × × × × ×

LGM × ×

RS × × × × × × × × × × × × × × ×

RCp × × × × × × × × × × × ×

RCr ×

mate the required number of simulation steps for achiev-
ing the desired accuracy. This is useful since extra simu-
lation steps are usually computationally expensive. The
following query returns the desired answer for the pro-
tein TR567:

SELECT run_id, r.value as nSim, t.value as rmsd
FROM compare_run_by_param(’proteinId’) as r

INNER JOIN

compare_run_by_param(’nSim’) as s USING (run_id)
INNER JOIN

compare_run_by_annot(’rmsd’) as t USING (run_id)
WHERE r.value=’TR567’ and run.id LIKE ’psim.loops%’;

run_id | nSim | rmsd
-----------------------------------+------+---------

psim.loops-20100604-2215-cdifsnb3 | 256 | 3.33123
psim.loops-20100613-0125-keyyyc35 | 512 | 0.76274

psim.loops-20100616-1512-h6q4g4ja | 1024 | 0.68426
...

Where compare run by param and
compare run by annot are functions that abstract
the RCp pattern. They compare how the value of a
parameter and the value associated to an annotation key
varies across different runs respectively. The composi-
tion of these functions allows for the design of queries
that present the RCr pattern. Queries of the R∗ pattern
are supported by the SQL functionancestors, that uses
Common Table Expressions to define a recursive query.

CREATE OR REPLACE FUNCTION ancestors(varchar)
RETURNS SETOF varchar AS $$

WITH RECURSIVE anc(ancestor,descendant) AS
(

SELECT parent AS ancestor, child AS descendant

FROM prov_graph
WHERE child=$1

UNION
SELECT prov_graph.parent AS ancestor,

anc.descendant AS descendant

FROM anc, prov_graph
WHERE anc.ancestor=prov_graph.child

)
SELECT ancestor FROM anc

$$ LANGUAGE SQL;

Whereprov graph is a database view that defines the
edges of the provenance graphs stored in the database.
An invocation of this procedure returns:

SELECT *
FROM ancestors(’dataset:20100618-0402-ia0bqb73:72000045’);

ancestor
--------------------------------------------------

execute:psim.loops-20100618-0402-qhm9ugg4:451006
dataset:20100618-0402-ia0bqb73:72000039

...

The EA, R and RS query patterns are well supported
using native SQL. Support for LGM queries is being de-
veloped in our current work.

3 Implementation Overview

In this section, we briefly describe describe our ongo-
ing work for designing and implementing a provenance
management system for many-task scientific computa-
tions, integrated to the Swift parallel scripting system.
The provenance information it manages is extracted on a
per script run basis from log files generated by Swift.
This information is stored in a relational database us-
ing a database schema that implements our data model
and contains abstractions implemented as functions and
stored procedures for some of the patterns presented that
are harder to express with relational database queries,
such as the R∗ and RCr queries.

Relational database management systems are well
known for their robustness and scalability, however some
of their shortcomings for managing provenance are the
use of fixed schemas, and weak support for recursive
queries. Despite using a fixed schema, our data model
allows for name-value pair annotations for each prove-
nance entity, which gives it some flexibility to store in-
formation not explicitly defined in the schema. The
SQL:1999 standard introduced native constructs for per-
forming recursive queries, which only recently were im-
plemented in major relational database systems. Or-
donez [12] proposed recursive query optimizations that
can enable transitive closure computation in linear time
complexity on binary trees, and quadratic time complex-
ity on sparse graphs. We leverage the constructs intro-
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Figure 1: OOPS workflow.

Figure 2: doLoopRound compound procedure.

duced for recursive queries by implementing a function
that abstract queries matching the R∗ pattern. Relation-
ship transitive closures, which are required by R∗ pattern
queries, are well supported by graph-based data models,
however many interesting queries require aggregation of
entity attributes. These aggregations can be costly in
graph-based data models since retrieving entity attributes
require graph traversals, whereas in the relational data
model they are straightforward.

Annotations can be gathered by writing application-
specific annotation extraction scripts that are automati-
cally run before each application execution. We did some
experiments using annotations to store domain-specific
parameters contained in data sets that were opaque to
Swift, and with application versioning using annotations
to store version of component applications that are avail-
able through SVN repositories.

4 Related Work

The Virtual Data System (VDS) [6] [17] [4] defines a
data provenance model, to represent information about
virtual data objects and the functional procedures that
were used to produce them. A relational database
schema is used to record relationships between datasets
and procedures. Name-value pairs are used to annotate
the various entities of the model with application spe-
cific information. One problem with this model is the use
of different data models, relational and semi-structured,
to query provenance information, which makes it dif-
ficult to compose them into more complex queries.
The Vistrails [7] workflow management system sup-
ports exploratory computational scientific experiments,

and therefore keeps track of how workflow specifications
evolve, in addition to derivation relationships between
data and processes. vtPQL [13] is a language for query-
ing provenance information in Vistrails. The query sys-
tem is augmented by useful constructs in the context of
provenance and workflows, such as functions for prove-
nance graph traversal. The underlying data models used
for storage include both XML, for storing workflow evo-
lution information, and relational databases, for storing
execution information. Anand et al. [2] advocate the
representation of provenance information as fine-grained
relationships over nested collections of data. For this pur-
pose they present a provenance model that also supports
multiple invocations of the same process. This model al-
lows for multiple processes operating on the same nested
data collection. They present a Query Language for
Provenance (QLP) that is independent from the under-
lying data model used for storage, independent of work-
flow management system, and closed under query com-
position. QLP operators for querying lineage act as fil-
ters over lineage relations, returning a subset of them.
Lineage queries can be combined with queries over data
structures. PASS’ Path Query Language (PQL) [11] uses
a query language that has a graph-oriented query model.
Chebotko et al. [3] present RDFProv, a provenance man-
agement system that is based on semantic web tech-
niques and that uses relational databases to store prove-
nance data.

With respect to these related works, Swift’s current
provenance management system enables gathering addi-
tional runtime details that are important in the context of
parallel and distributed systems. The use of annotations
enriches provenance information with domain-specific
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information. Using functions and stored procedures in
the relational data model that abstract the query patterns
presented and explore information from these different
domains allows for the design of useful queries that can
be more difficult to express in other systems.

5 Concluding Remarks

This work presents a survey about provenance query pat-
terns for many-task scientific computations. The identi-
fication of these patterns is important for supporting the
design and implementation of provenance management
systems with respect to the choice of appropriate data
models, storage strategies, and query interfaces. Our cur-
rent implementation gathers provenance about processes
and data sets manipulated by Swift during a script run.
The initial implementation of our provenance manage-
ment system in the relational data model used functions
and stored procedures to abstract each query pattern and
their respective joins to allow easier query design. We are
currently designing a provenance query language similar
to SQL that further simplifies query design by avoiding
some of SQL’s restrictions, such as static typing, while
maintaining useful features such as aggregations.

Once provenance management systems become ma-
ture, useful and usable, it is likely that large scale dis-
tributed computing infrastructures, such as the Teragrid,
will start deploying provenance stores to support their
users. This will likely raise issues about data integra-
tion and scalability in provenance management systems,
which are some of the problems we plan to investigate in
our future work.
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