
Patterns (and Anti-Patterns) for
Developing Machine Learning Systems

Gordon Rios
(gparker@gmail.com)

Zvents, Inc.
Hypertable.org

Patterns and Anti-Patterns

•  Strategic, tactical, and operational
•  Anti-Patterns – seems obvious but is

 actually questionable or a “bad” idea

•  References: Design Patterns (Gamma, et al.) and Pattern
 Oriented Software Architecture (Buschmann, et al.)

Trapped in the Maze

•  ML projects are
complex and disruptive

•  Ownership distributed
across organization or
missing completely

•  Political factors can
create a maze of dead
ends and hidden pitfalls

•  Familiarity with ML is
sparse at best

Applications

A Simple Context

Users

Content ML
 System

ML
 System

ML
 System

ML
 System

Operational Data
(systems and production)

Metrics &
 Reporting

“Stuck” on top of the Pyramid

Level of effort:

1.  Data processing
systems at the base

2.  Feature engineering
in the middle

3.  Models stuck at the
top and dependent on
all the rest …

Applications

Basic Components the ML System

ML System

Data

Processing

Feature
 Extraction

Production
 Scoring

Model
 Development

Thin Line (of Functionality)

•  Navigate safely through the negative
metaphors

•  Encounter potential issues early enough in
the process to manage or solve

•  Keep each piece of work manageable and
explainable

•  Caution: if your thin ML system is “good
enough” organization may lose interest in
more advanced solution (80/20)

Workflow

•  Data and operations are messy – mix of relational
 database, logs, map-reduce, distributed
 databases, etc.

•  Think and plan in terms of workflows and be
 aware that job scheduling is hidden complexity
 for map-reduce

•  Use tools such as cascading (see
 http://www.cascading.org)

•  Related: Pipeline

Legacy

•  An older model or early approach needs to
 be replaced but has entrenched support

•  Use as an input to new approach
 (presumably based on ML)

•  Can be technically challenging but
 frequently can be converted to an input in
 conjunction with Pipeline

•  Related: Chop Shop, Tiers, Shadow
•  Advanced: Champion/Challenger

•  Legacy system is an input to critical
 processes and operations

•  Develop new system and run in parallel to
 test output or regularly audit

•  Can be used as sort of Champion
/Challenger-lite in conjunction with
 Internal Feedback

•  Also apply to upgrades to input pipeline
 components

Shadow

Chop Shop

•  Legacy system represents significant
 investment of resources

•  Often rule based and capture valuable
 domain features

•  Isolate features and measure computing
 costs

•  Use selected features in new models or
 process

•  Related: Legacy, Adversarial

Internal Feedback

•  Need a low risk way to test new models
 with live users

•  Use your own product internally
•  Give internal users a way to turn on new

 models, use the product, and give
 feedback

•  Also use to develop training data
•  Related: Bathwater, Follow The Crowd

Follow The Crowd

•  Insufficient training or validation data for
 nobody to help

•  Amazon’s Mechanical Turk too low level
•  Use a service such as Dolores Labs founded

 by machine learning researchers
•  Labeling costs down to $0.05/label (source:

 http://doloreslabs.com)
•  Related: Internal Feedback, Bathwater

Bathwater

•  “Don’t throw the baby out with the
 bathwater …”

•  Subjective tasks can lead to “ML doesn’t
 work” blanket rejection

•  Isolate system elements that may be too
 subjective for ML and use human
 judgments

•  Follow the Crowd (Crowd Sourcing)
•  Related: Internal Feedback, Tiers

Pipeline

•  A mix of computing and
 human processing steps
 need to be applied in a
 sequence

•  Organize as a pipeline and
 monitor the workflow

•  Individual cases can be teed
 off from the flow for
 different processing, etc.

•  Related: Workflow,
 Handshake

Handshake or “Hand Buzzer”

•  Your system depends on inputs
 delivered outside of the normal
 release process

•  Create a “handshake”
 normalization process

•  Release handshake process as
 software associated with input
 and version

•  Regularly check for significant
 changes and send ALERTS

Replay

•  Need a way to test models on operational
 data

•  Invest in a batch test framework
•  Example: web search replay query logs and

 look at changes in rank of clicked
 documents

•  Example: recommender systems
•  Example: messaging inbox replay

Tiers

•  Processing or scoring elements have widely
 varying costs

•  Often feature inputs or processing steps
 have orders of magnitude variation in
 computing cost or editorial costs

•  Build models for each tier and only pass
 cases on to next tier if necessary

•  Related: Thin Line, Pipeline

Long Goodbye

•  Some decision classes have
 unacceptable risk or “loss”

•  Isolate the high risk classes but
 don’t remove from system
 entirely

•  Example: quarantine or Bulk mail folders in
 email to keep false positives safe
•  Delay rather than “reject” -- send uncertain
 cases to more costly processing steps rather
 than reject

Honey Trap

•  New data streams are available for
 testing classifiers but data is
 unlabeled

•  Isolate streams that are likely to be of
 one class or another

•  Example: dead domains become almost
 entirely dominated by spam traffic

•  (TN) Use to collect examples from
 examples with unknown labels like click
 fraud

Tar Pit

•  System needs to identify bad entities but
 cost to register new ones is cheap

•  Don’t reject, delete, or notify bad actors
•  Slows down adversary’s evolution
•  Example: slow down email messaging for low

 reputation IP addresses
•  Related: Honey Trap, Adversarial

Example: Honey Trap + Tar Pit?

Giveaway

•  Need low risk
 testing or new
 data

•  Give away the
 service to non
-customers

•  Give away a
 related service
 (Google Analytics)

•  Related: Honey
 Trap

Adversarial

•  Adversaries are virulent and aggressive
 (email spam)

•  Use regularization methods judiciously
•  Parsimony can help make your adversaries’

 lives easier
•  Test regularized and non-regularized

 models using Honey Trap
•  (TN) Score by selecting from a set of

 models at random (mixed strategy?!)

Anti-Pattern Sampler

•  Golden Sets (operational)
(+) Calibration
(-) Validation

•  80/20 (tactical)
(+) Design simplification
(-) “Good enough” can lose market share long term

•  Executive Support (strategic)
(+) Resources
(-) Expectations
(-) Metric choices

Discussion

•  Strategic
–  Thin Line
–  Legacy
–  Workflow
–  Bathwater
–  Giveaway
–  Contest (not presented)

•  Operational
–  Honey Trap
–  Tar Pit
–  Handshake
–  Follow The Crowd

•  Tactical
–  Pipeline
–  Tiers
–  Replay
–  Handshake
–  Long Goodbye
–  Shadow
–  Chop Shop
–  Adversarial

•  Anti-Patterns
–  Golden Sets (operational)
–  80/20 (tactical)
–  Executive Support (strategic)

