
An Internet Protocol Address Clustering Algorithm

Robert Beverly
MIT CSAIL

rbeverly@csail.mit.edu

Karen Sollins
MIT CSAIL

sollins@csail.mit.edu

ABSTRACT
We pose partitioning ab-bit Internet Protocol (IP) address
space as a supervised learning task. Given (IP, property)
labeled training data, we develop an IP-specific clustering
algorithm that provides accurate predictions for unknown ad-
dresses inO(b) run time. Our method offers a natural means
to penalize model complexity, limit memory consumption,
and is amenable to a non-stationary environment. Against
a live Internet latency data set, the algorithm outperforms
IP-näıve learning methods and is fast in practice. Finally,
we show the model’s ability to detect structural and temporal
changes, a crucial step in learning amid Internet dynamics.

1. INTRODUCTION
Learning has emerged as an important tool in Internet sys-

tem and application design, particularly amid increasing

strain on the architecture. For instance, learning is used

to great effect in filtering e-mail [12], mitigating attacks [1],

improving performance [9], etc. This work considers the

common task of clustering Internet Protocol (IP) addresses.

With a network oracle, learning is unnecessary and predic-

tions of e.g. path performance or botnet membership, are

perfect. Unfortunately, the size of the Internet precludes

complete information. Yet the Internet’s physical, logical

and administrative boundaries [5, 7] provide structure which

learning can leverage. For instance, sequentially addressed

nodes are likely to share congestion, latency and policy char-

acteristics, a hypothesis we examine in §2.

A natural source of Internet structure is Border Gateway

Protocol (BGP) routing data [11]. Krishnamurthy and Wang

suggest using BGP to form clusters of topologically close

hosts thereby allowing a web server to intelligently replicate

content for heavy-hitting clusters [8]. However, BGP data is

often unavailable, incomplete or at the wrong granularity to

achieve reasonable inference. Service providers routinely ad-

vertise a large routing aggregate, yet internally demultiplex

addresses to administratively and geographically disparate

locations. Rather than using BGP, we focus on an agent’s

ability to infer network structure from available data.

Previous work suggests that learning network structure is ef-

fective in forming predictions in the presence of incomplete

information [4]. An open question, however, is how to prop-

erly accommodate the Internet’s frequent structural and dy-

namic changes. For instance, Internet routing and physi-

cal topology events change the underlying environment on

large-time scales while congestion induces short-term vari-

ance. Many learning algorithms are not amenable to on-line

operation in order to handle such dynamics. Similarly, few

learning methods are Internet centric, i.e. they do not incor-

porate domain-specific knowledge.

We develop a supervised address clustering algorithm that

imposes a partitioning over a b-bit IP address space. Given

training data that is sparse relative to the size of the 2b

space, we form clusters such that addresses within a clus-

ter share a property (e.g. latency, botnet membership, etc.)

with a statistical guarantee of being drawn from a Gaus-

sian distribution with a common mean. The resulting model

provides the basis for accurate predictions, in O(b) time, on

addresses for which the agent is oblivious.

IP address clustering is applicable to a variety of prob-

lems including service selection, routing, security, resource

scheduling, network tomography, etc. Our hope is that this

building block serves to advance the practical application of

learning to network tasks.

2. THE PROBLEM
This section describes the learning task, introduces network-

specific terminology and motivates IP clustering by finding

extant structural locality in a live Internet experiment.

Let Z = (x1, y1) . . . (xn, yn) be training data where each xi

is an IP address and yi is a corresponding real or discrete-

valued property, for instance latency or security reputation.

The problem is to determine a model f : X → Y where f

minimizes the prediction error on newly observed IP values.

Beyond this basic formulation, the non-stationary nature

of network problems presents a challenging environment for

machine learning. A learned model may produce poor pre-

dictions due to either structural changes or dynamic condi-

tions. A structural change might include a new link which

1

influences some destinations, while congestion dynamics might

temporarily influence predictions.

In the trivial case, an algorithm can remodel the world by

purging old information and explicitly retraining. Complete

relearning is typically expensive and unnecessary when only

a portion of the underlying environment has changed. Fur-

ther, even if a portion of the learned model is stale and pro-

viding inaccurate results, forgetting stale training data may

lead to even worse performance. We desire an algorithm

where the underlying model is easy to update on a contin-

ual basis and maintains acceptable performance during up-

dates. As shown in §3, these Internet dynamics influences

our selection of data structures.

2.1 Terminology
IPv4 addresses are 32-bit unsigned integers, frequently rep-

resented as four “dotted-quad” octets (A.B.C.D). IP routing

and address assignment uses the notion of a prefix. The

bit-wise AND between a prefix p and a netmask m denotes

the network portion of the address (m effectively masks the

“don’t care” bits). We employ the common notation p/m

as containing the set of b-bit IP addresses inclusive of:

p/m := [p, p + 2b−m − 1] (1)

For IPv4 b = 32, thus p/m contains 232−m addresses. For ex-

ample, the prefix 2190476544/24 (130.144.5.0/24) includes

28 address from 130.144.5.0 to 130.144.5.255.

We use latency as a per-IP property of interest to ground our

discussion and experiments. One-way latency between two

nodes is the time to deliver a message, i.e. the sum of delivery

and propagation delay. Round trip time (RTT) latency is

the time for a node to deliver a message and receive a reply.

2.2 Secondary Network Structure
To motivate IP address clustering, and demonstrate that

learning is feasible, we first examine our initial hypothesis:

sufficient secondary network structure exists upon which to

learn. We focus on network latency as the property of inter-

est, however other network properties are likely to provide

similar structural basis, e.g. hop count, etc.

Let distance d be the numerical difference between two ad-

dresses: d(a1, a2) = |a1 − a2|. To understand the correla-

tion between RTT and d, we perform active measurement to

gather live data from Internet address pairs. For a distance

d, we find a random pair of hosts, (a1, a2), which are alive,

measurable and separated by d. We then measure the RTT

from a fixed measurement node to a1 and a2 over five trials.

We gather approximately 30,000 data points. Figure 1 shows

the relationship between address pair distance and their

RTT latency difference. Additionally, we include a rnd dis-

tance that represents randomly chosen address pairs, irre-

spective of their distance apart. Two random addresses have

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 2 4 6 8 10 12 14 16 18 20 22 24 25 26 rnd

%
 R

TT
 D

is
ag

re
em

en
t

log2(Pair Distance)

Figure 1: Relationship between d-distant hosts and

their RTT latency from a fixed measurement point.

less than a 10% chance of agreeing within 10% of each other.

In contrast, adjacent addresses (d = 20) have a greater than

80% probability of similar latencies within 20%. The av-

erage disagreement between nodes within the same class C

(d = 28) is less than 15%, whereas nodes in different /8

prefixes disagree by 50% or more.

3. CLUSTERING ALGORITHM
3.1 Overview
Our algorithm takes as input a network prefix (p/m) and

n training points (Z) where xi are distributed within the

prefix. The initial input is typically the entire IP address

space (0.0.0.0/0) and all training points.

Define split s as inducing 2s partitions, pj , on p/m. Then

for j = 0, . . . , 2s − 1:

pj = p + j232−(m+s)/(m + s) (2)

Let xi ∈ pj iff the address of xi falls within prefix pj (Eq.

1). The general form of the algorithm is:

1. Compute mean of data point values: µ = 1
n

P

yi

2. Add the input prefix and associated mean to a radix

tree (§3.2): R← R + (p/m, µ)

3. Split the input prefix to create potential partitions

(Eq. 2): Let ps,j be the j’th partition of split s.

4. Let N contain yk for all xk ∈ ps,j , let M be yi for

xi /∈ ps,j . Over each split granularity (s), evaluate the

t-statistic for each potential partition j (§3.3):

ts,j = ttest(N, M).

5. Find the partitioning that minimizes the t-test:

(ŝ, ĵ) = argmin
s,j

ts,j

6. Recurse on the maximal partition(s) induced by (ŝ, ĵ)

while the t-statistic is less than thresh (§3.5).

Before refining, we draw attention to several properties of

the algorithm that are especially important in dynamic en-

vironments:

2

• Complexity: A natural means to penalize complexity. In-

tuitively, clusters representing very specific prefixes, e.g. /30’s,

are likely over-fitting. Rather than tuning traditional ma-

chine learning algorithms indirectly, limiting the minimum

prefix size corresponds directly to network generality.

• Memory: A natural means to bound memory. Because

the tree structure provides longest-match lookups, the algo-

rithm can sacrifice accuracy for lower memory utilization by

bounding tree depth or width.

• Change Detection: Allows for direct analysis on tree nodes.

Analysis on these individual nodes can determine if part of

the underlying network has changed.

• On-Line Learning: When relearning stale information, the

longest match nature of the tree implies that once informa-

tion is discarded, in-progress predictions will use the next

available longest match which is likely to be more accurate

than an unguided prediction.

• Active Learning: Real training data is likely to produce an

unbalanced tree, naturally suggesting active learning. While

guided learning decouples training from testing, sparse or

poorly performing portions of the tree are easy to identify.

3.2 Cluster Data Structure
A radix, or Patricia [10], tree is a compressed tree that stores

strings. Unlike normal trees, radix tree edges may be labeled

with multiple characters thereby providing an efficient data

structure for storing strings that share common prefixes.

Radix trees support lookup, insert, delete and find predeces-

sor operations in O(b) time where b is the maximum length

of all strings in the set. By using a binary alphabet, strings

of b = 32 bits and nexthops as values, radix trees support IP

routing table longest match lookup, an approach suggested

by [13] and others. We adopt radix trees to store our algo-

rithm’s inferred structure model and provide predictions.

3.3 Evaluating Potential Partitions
Student’s t-test [6] is a popular test to determine the statisti-

cal significance in the difference between two sample means.

We use the t-test in our algorithm to evaluate potential par-

titions of the address space at different split granularity. The

t-test is useful in many practical situations where the pop-

ulation variance is unknown and the sample size too small

to estimate the population variance.

3.4 Network Boundaries
Note that by Eq. 1, the number of addresses within any pre-

fix (p/m) is always a power of two. Additionally, a prefix im-

plies a contiguous group of addresses under common admin-

istration. A näıve algorithm may assume that two contigu-

ous (d = 1) addresses, a1 = 318767103 and a2 = 318767104,

are under common control. However, by taking prefixes and

76.105.0.0 76.105.255.255

AS33651 AS7725 AS33490

Figure 2: True allocation of 76.105.0.0/16. Maximal

valid prefix splits ensure generality.

Table 1: Examples of maximal IP prefix division

128.61.0.0 →

128.61.255.255

128.61.0.0 →

128.61.4.1

16.0.0.0 →

40.127.255.255

128.61.0.0/16 128.61.0.0/22 16.0.0.0/4

128.61.4.0/31 32.0.0.0/5

40.0.0.0/9

address allocation into account, an educated observer no-

tices that: a1 (18.255.255.255) and a2 (19.0.0.0) can only be

under common control if they belong to the large aggregate

18.0.0.0/7. A third address a3 = 18.255.255.155, separated

by d(a1, a3) = 100, is further from a1, but more likely to

belong with a1 than is a2.

We incorporate this domain-specific knowledge in our algo-

rithm by inducing splits on power of two boundaries and

ensuring maximal prefix splits.

3.5 Maximal Prefix Splits
Assume the t-test procedure identifies a “good” partitioning.

The partition defines two chunks (not necessarily contigu-

ous), each of which contains data points with statistically

different characteristics. We ensure that each chunk is valid

within the constraints in which networks are allocated.

Definition 1. For b-bit IP routing prefixes p/m; p ∈ {0, 1}b

m ∈ [0, b] is valid iff p = p &
`

2b − 2b−m
´

.

If a chunk of address space is not valid for a particular par-

tition, it must be split. We therefore introduce the notion

of maximal valid prefixes to ensure generality.

Consider the prefix 76.105.0.0/16 in Figure 2. Say the algo-

rithm determines that the first quarter of this space (shaded)

has a property statistically different from the rest (unshaded).

The unshaded three-quarters of addresses from 76.105.64.0

to 76.105.255.255 is not valid. The space could be divided

into three equally sized 214 valid prefixes. However, this

näıve choice is wrong; in actuality the prefix is split into

three different autonomous systems (AS). The IP address

registries list 76.105.0.0/18 as being in Sacramento, CA,

76.105.64.0/18 as Atlanta, GA and 76.105.128.0/17 in Ore-

gon. Using maximally sized prefixes captures the true hier-

archy as well as possible given sparse data.

We develop an algorithm to ensure maximal valid prefixes

along with proofs of correctness in [3], but omit details here

3

for clarity and space conservation. The intuition is to deter-

mine the largest power of two chunk that could potentially

fit into the address space. If a valid starting position for that

chunk exists, it recurses on the remaining sections. Other-

wise, it divides the maximum chunk into two valid pieces.

Table 1 gives three example divisions.

3.6 Full Algorithm
Using the radix tree data structure, t-test to evaluate poten-

tial partitions and notion of maximal prefixes, we give the

complete algorithm. Our formulation is based on a divisive

approach; agglomerative techniques that build partitions up

are a potential subject for further work. Algorithm 1 takes

a prefix p/m along with the data samples for that prefix:

Z = (x,y)∀xi ∈ p/m. The threshold defines a cutoff for the

t-test significance and is notably the only parameter.

Algorithm 1 split(p/m, Z, thresh):

R, an IP prefix table

b← 32−m

µ← mean(x)

R← R + (p/m, µ)

5: for i← 1 to 32−m do

for j ← 0 to 2i − 1 do

pj ← p + j2b+i/(m− i)

for x ∈ X do

if xip ∈ pj then

10: N ← N + xip

else

M ←M + xip

ti,j ← ttest(N, M)

tbest, ibest, jbest ← argmin
i,j

ti,j

15: if tbest < thresh then

last← p + 2b − 1

start← p + (jbest)2
b+ibest

end← start + 2b+ibest − 1

P ← start/(m− ibest)

20: if start = p then

P ← P+ divide(end + 1, last)

else if end = last then

P ← P+ divide(p, start− 1)

else

25: P ← P+ divide(end + 1, last)

P ← P+ divide(p, start− 1)

for pd/md ∈ P do

Zd ← (xi, yi)∀xi ∈ pd/md

split(pd/md, Zd, thresh)

30: return R

The algorithm computes the mean µ of the y input and

adds an entry to radix table R containing p/m pointing to

µ (lines 1-4). In lines 5-12, we create partitions pj at a

granularity of si as described in Eq. 2. For each pi,j , line

13 evaluates the t-test between points within and without

the partition. Thus, for s3, we divide p/m into eighths and

evaluate each partition against the remaining seven. We

121ms

0/1

 0.0.0.0/1

0/2

0.0.0.0/2

40ms

 64.0.0.0/2

217ms

0.0.0.0/3

105ms

 32.0.0.0/3

Figure 3: Example radix tree cluster representation

determine the lowest t-test value tbest corresponding to split

ibest and partition jbest.

If no partition produces a split with t-test less than a thresh-

old, we terminate that branch of splitting. Otherwise, lines

16-25 divide the best partition into maximal valid prefixes

(§3.5), each of which is placed into the set P . Finally, the

algorithm recurses on each prefix in P .

The output after training is a radix tree which defines clus-

ters. Subsequent predictions are made by performing longest

prefix matching on the tree. For example, Figure 3 shows

the tree structure produced by our clustering on input Z =

(18.26.0.25, 215.0), (18.192.1.34, 205.0), (60.1.2.3, 100.0),

(60.99.2.4, 110.0), (69.4.5.6, 45.0), (70.4.5.6, 39.0).

4. HANDLING NETWORK DYNAMICS
An important feature of the algorithm is its ability to accom-

modate network dynamics. However, first the system must

detect changes in a principled manner. Each node of the

radix tree naturally represents a part of the network struc-

ture, e.g. Figure 3. Therefore, we may run traditional change

point detection [2] methods on the prediction error of data

points classified by a particular tree node. If the portion of

the network associated with a node exhibits structural or

dynamic changes, evidenced as a change in prediction error

mean or variance respectively, we may associate a cost with

retraining. For instance, pruning a node close to the root of

the tree represents a large cost which must be balanced by

the magnitude of predictions errors produced by that node.

When considering structural changes, we are concerned with

a change in the mean error resulting from the prediction pro-

cess. Assume that predictions produce errors from a Gaus-

sian distribution N(µ0, σ0). As we cannot assume, a priori,

knowledge of how the processes’ parameters will change, we

turn to the well-known generalized likelihood ratio (GLR)

test. The GLR test statistic, gk can be shown to detect a

statistical change from µ0 (mean before change). Unfortu-

nately, GLR is typically used in a context where µ0 is well-

known, e.g. manufacturing processes. Figure 4(a) shows gk

4

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

g k

Time-Ordered Samples (Change 4000)

GLR
wma(GLR)

(a) gk and WMA(gk) of prediction errors

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

g k

Time-Ordered Samples (Change 4000)

d/dx GLR
normalized d’/dx GLR

WMA(normalized d’/dx GLR)

(b) d
dt

gk(t) and d2

dt2
gk(t)

-10

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

g k

Time-Ordered Samples (Change 4000)

GLR(GLR)
Change Point

(c) Impulse triggered change detection

Figure 4: Modified GLR to accommodate learning drift; synthetic change injected beginning at point 4000.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 100 1000 10000 100000

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (m

s)

Training Size

Figure 5: Latency regression performance

as a function of ordered prediction errors produced from our

algorithm on real Internet data. Beginning at the 4000th

prediction, we create a synthetic change by adding 50ms to

the mean of every data point (thereby ensuring a 50ms error

for an otherwise perfect prediction). We use a weighted mov-

ing average to smooth the function. The change is clearly

evident. Yet gk drifts even under no change since µ0 is esti-

mated from training data error which is necessarily less than

the test error.

To contend with this GLR drift effect, we take the derivative

of gk with respect to sample time to produce the step func-

tion in Figure 4(b). To impulse trigger a change, we take

the second derivative as depicted in Figure 4(c). Additional

details of our change inference procedure are given in [3].

5. RESULTS
We evaluate our clustering algorithm on both real and syn-

thetic input data under several scenarios in [3]; this section

summarizes select results from live Internet experiments.

Our live data consists of latency measurements to random

Internet hosts (equivalent to the random pairs in §2.2). To

reduce dependence on the choice of training set and ensure

generality, all results are the average of five independent

trials where the order of the data is randomly permuted.

Figure 5 depicts the mean prediction error and standard

deviation as a function of training size for our IP cluster-

ing algorithm. With as few as 1000 training points, our

regression yields an average error of less than 40ms with

tight bounds – a surprisingly powerful result given the size

of the input training data relative to the allocated Internet

address space. Our error improves to approximately 24ms

using more than 10,000 training samples to build the model.

To place these results in context, consider a fixed-size lookup

table as a baseline näıve algorithm. With a 2p-entry table,

each training address a/p updates the latency measure cor-

responding to the a’th row. Unfortunately, even a 224-entry

table performs 5-10ms worse on average than our cluster-

ing scheme. More problematic is this table requires more

memory than is practical in applications such as a router’s

fast forwarding path. In contrast, the tree data structure

requires ∼ 130kB of memory with 10,000 training points.

A natural extension of the lookup table is a “nearest neigh-

bor scheme:” predict the latency corresponding to the nu-

merically closest IP address in the training set. Again, this

algorithm performs well, but is only within 5-7ms of the

performance obtained by clustering and has a higher error

variance. Further, such näıve algorithms do not afford many

of the benefits in §3.1.

Finally, we consider performance under dynamic network

conditions. To evaluate our algorithm’s ability to handle

a changing environment, we formulate the induced change

point game of Figure 6. Within our real data set, we artifi-

cially create a mean change that simulates a routing event

or change in the physical topology. We create this change

only for data points that lie within a randomly selected pre-

fix. The game is then to determine the algorithm’s ability

to detect the change for which we know the ground truth.

The shaded portion of the figure indicates the true change

within the IPv4 address space while the unshaded portion

represents the algorithm’s prediction of where, and if, a

change occurred. We take the fraction of overlap to indi-

cate the false negatives, false positives and true positives

5

2
32

Inferred Change

TN TP FP TN

0

Real Change

FN

Figure 6: Change detection: overlap between the

real and inferred change provide true/false negatives

(tn/fn), and true/false positives (tp/fp).

with remaining space comprising the true negatives.

Figure 7 shows the performance of our change detection

technique in relation to the size of the artificial change. For

example, a network change of /2 represents one-quarter of

the entire 32-bit IP address space. Again, for each network

size we randomly permute our data set, artificially induce

the change and measure detection performance. For reason-

ably large changes, the detection performs quite well, with

the recall and precision falling off past changes smaller than

/8. Accuracy is high across the range of changes, implying

that relearning changed portions of the space is worthwhile.

Through manual investigation of the change detection re-

sults, we find that the limiting factor in detecting smaller

changes is currently the sparsity of our data set. Further, as

we select a completely random prefix, we may have no a pri-

ori basis for making a change decision. In realistic scenarios,

the algorithm is likely to have existing data points within

the region of a change. We conjecture that larger data sets,

in effect modeling a more complete view of the network, will

yield significantly improved results for small changes.

6. FUTURE WORK
Our algorithm attempts to find appropriate partitions by us-

ing a sequential t-test. We have informally analyzed the sta-

bility of the algorithm with respect to the choice of optimal

partition, but wish to apply a principled approach similar to

random forests. In this way, we plan to form multiple radix

trees using the training data sampled with replacement. We

then may obtain predictions using a weighted combination

of tree lookups for greater generality.

While we demonstrate the algorithm’s ability to detect changed

portions of the network, further work is needed in determin-

ing the tradeoff between pruning stale data and the cost of

retraining. Properly balancing this tradeoff requires a better

notion of utility and further understanding the time-scale of

Internet changes. Our initial work on modeling network dy-

namics by inducing increased variability shows promise in

detecting short-term congestion events. Additional work is

needed to analyze the time-scale over which such variance

change detection methods are viable.

Thus far, we examine synthetic dynamics on real data such

that we are able to verify our algorithm’s performance against

a ground truth. In the future, we wish to also infer real

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

P
er

ce
nt

Size of network change (/x)

Accuracy
Precision

Recall

Figure 7: Change detection performance as a func-

tion of changed network size.

Internet changes and dynamics on a continuously sampled

data set. Finally, our algorithm suggests at many interest-

ing methods of performing active learning, for instance by

examining poorly performing or sparse portions of the tree,

which we plan to investigate going forward.

Acknowledgments
We thank Steven Bauer, Bruce Davie, David Clark, Tommi

Jaakkola and our reviewers for valuable insights.

7. REFERENCES
[1] J. M. Agosta, C. Diuk, J. Chandrashekar, and C. Livadas.

An adaptive anomaly detector for worm detection. In
Proceedings of USENIX SysML Workshop, Apr. 2007.

[2] M. Basseville and I. Nikiforov. Detection of abrupt changes:

theory and application. Prentice Hall, 1993.

[3] R. Beverly. Statistical Learning in Network Architecture.
PhD thesis, MIT, June 2008.

[4] R. Beverly, K. Sollins, and A. Berger. SVM learning of IP
address structure for latency prediction. In SIGCOMM

Workshop on Mining Network Data, Sept. 2006.

[5] V. Fuller and T. Li. Classless Inter-domain Routing
(CIDR): The Internet Address Assignment and Aggregation
Plan. RFC 4632 (Best Current Practice), Aug. 2006.

[6] W. S. Gosset. The probable error of a mean. Biometrika,
6(1), 1908.

[7] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, and
J. Postel. Internet Registry IP Allocation Guidelines. RFC
2050 (Best Current Practice), Nov. 1996.

[8] B. Krishnamurthy and J. Wang. On network-aware
clustering of web clients. In ACM SIGCOMM, 2000.

[9] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iPlane: An information plane for distributed services. In
Proceedings of USENIX OSDI, Nov. 2006.

[10] D. R. Morrison. PATRICIA - Practical Algorithm To
Retrieve Information Coded in Alphanumeric. J. ACM,
15(4):514–534, 1968.

[11] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). RFC 4271, Jan. 2006.

[12] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A
bayesian approach to filtering junk e-mail. In AAAI

Workshop on Learning for Text Categorization, July 1998.

[13] K. Sklower. A tree-based routing table for berkeley UNIX.
In Proceedings of USENIX Technical Conference, 1991.

6

