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Abstract

We develop a machine-learned similarity metric for

Windows failure reports using telemetry data gathered

from clients describing the failures. The key feature is a

tuned callstack edit distance with learned costs for seven

fundamental edits based on callstack frames. We present

results of a failure similarity classifier based on this and

other features. We also describe how the model can be

deployed to conduct a global search for similar failures

across a failure database.

1 Introduction

The Windows Error Reporting system is a source of

telemetry on user failures. When a process crashes or

hangs and the user agrees to report the error, an error

handler uploads a small chunk of metadata describing

the crash. These reports are then placed into one of a

large number of different failures, the most frequent of

which are assigned to developers for review.

A common problem is duplication among these re-

ports. Two reports can share the same root cause but

be different in an insignificant way that causes them to

be treated as separate failures. This can lead to dupli-

cation of effort when bugs are assigned round-robin to

developers. It can also lead to misprioritization since the

failure frequencies do not reflect the frequencies of the

underlying issues.

Our paper proposes a similar-failure search engine to

help rectify this. Given a failure, the goal of the en-

gine is to find similar failures across a large global set.

The primary use case is to allow a developer to check if

a substantially similar failure was already resolved. A

secondary use case is to provide diagnostic aid. For in-

stance, consider a single bug that has led to a multitude

of reports that are different, but share common attributes.

Examining similar reports can highlight these attributes,

providing clues about the underlying failure.

The search engine can draw on a variety of metadata

available in the failure reports. Among other authors

who have investigated user telemetry (see Brodie et al.

(2005b), Brodie et al. (2005a) and Modani et al. (2007)),

the offending callstack is the most popular source of

identifying information about the failure. A popular

approach is to treat the callstack as a string and apply

string-matching techniques. This is employed by Brodie

et al. (2005a) and Modani et al. (2007), who examine

several heuristics for string matching, such as alignment,

subsequences, prefix matching and edit distance. These

string similarity measures are found to correlate highly

with failure similarity.

Our work is novel in three respects. Foremost, rather

than relying exclusively on ad-hoc heuristics, we employ

machine learning to weight several heuristics in a tuned

similarity measure. Second, we introduce new granu-

larity in the callstack edit distance measure, allowing it

to assign different edit penalties based on the properties

of callstack frames, with these penalties learned from

the data. Third, our similarity model is general enough

to incorporate non-callstack features such as the process

name, crash type and exception code of the failure.

The driver of our failure search engine is a similarity

classifier, which provides a probabilistic similarity met-

ric for failure pairs. To make our classifier mimic the de-

veloper’s sense of “similarity,” we take labels from bug

resolution records in which developers sometimes mark

failures as duplicates. Our data are discussed in Section

2. Our similarity classifier model, its features and op-

timization are presented in Section 3, along with details

on how to employ the classifier in a global similar-failure

search engine. Section 4 presents our fitted models and

compares their performance.

2 Data

Our data are failure reports to the Windows Error Re-

porting system. Each failure has a set of descriptive at-

tributes collected from the client, which are described

in Section 2.1. To learn a similarity classifier, we need

a training set comprised of labeled examples of failure

pairs. Our approach, described in Section 2.2, employs

duplicate failure designations made by developers in bug

resolution reports.



2.1 Windows Error Reporting Data

Our global data set contains over one million failures

collected over a 90-day period beginning April 1, 2008.

In each report, a client-side process gathers the follow-

ing metadata about the failure:

• Type of failure: a crash, hang or deadlock. Approx-

imately 80% are crashes, 17% hangs and 3% dead-

locks.

• Name of the process that launched the offending

stack.

• Exception code. For crashes only, this is a four-byte

code such as “0xc0000005.” For hangs and dead-

locks, which do not have exception codes, code

“0xcfffffff” serves as a placeholder.

• Offending callstack: The ordered sequence of

frames on the offending thread’s stack at the time

of the failure. Each frame has a module (file) name,

function name and an offset representing a pointer

to memory. Table 1 shows a sample callstack.

Module Function Offset

kernel32 ByteCallback 0x3

kernel32 WideCharExpand 0x2

kernel32 MultiByteToWideChar 0x9

A3DHF8Q --- 0x3820523

A3DHF8Q --- 0x3723952

A3DHF8Q --- 0x3945323

kernel32 ProcUserText 0x4

user32 TextDecode 0x4096

user32 ReadDialog 0x4096

user32 OpenDialog 0x4096

ntdll RtlThreadStart 0x0

ntdll RtlInitThreadThunk 0x0

Table 1: Example of a callstack. Each row represents a

frame. The three columns show each frame’s module,

function and offset.

We shall frequently discuss frame groups: consec-

utive groups of frames in a callstack with the same

module. In Table 1, there are five frame groups: one

each for the frames associated with modules A3DHF8Q,

user32 and ntdll, and two for kernel32.

2.2 Training Set

To learn a similarity classifier, each observation in our

training set must be a pair of failures tagged as either

similar or dissimilar. We extract similar-pair examples

from 327 bug resolution reports in which a developer

marked one failure as a duplicate of another.

Obtaining examples of dissimilarity is less straightfor-

ward since developers do not explicitly label failure pairs

as different. Instead, we construct pseudo-labelled data

from failure pairs that are examined but not resolved

as duplicates. One complication is that pairs of non-

duplicates are not guaranteed to be dissimilar. For in-

stance, a developer may mark several similar failures as

unreproducible rather than marking them as duplicates

of each other. However, a developer who has already

marked several duplicates of a parent failure F is likely

to continue the practice. Later failures that he does not

mark as duplicates are, with reasonable confidence, dis-

similar from F .

Our entire strategy is diagrammed in Figure 1. Con-

sider Developer X’s resolution records. We first build a

set of similar pairs using his duplicate resolutions. We

next build a set of dissimilar pairs by combining his du-

plicates with his non-duplicates. Both sets can be large,

so we pull one pair at random from each set. We thus

obtain two rows for our training set, one for the similar

pair and one for a dissimilar pair. This provides a total of

327 similar pairs and 327 dissimilar pairs in our training

set.

Figure 1: Flow chart illustrating how labeled pairs are

extracted from developer bug reports, using hypothetical

failures reviewed by “Developer X.”

3 Modeling

This section describes our failure similarity classifier.

Section 3.1 introduces its features, and Section 3.2

presents the logistic probability model we employ for

classification. We use maximum likelihood to estimate

the parameters; our two-stage optimization scheme is

discussed in Section 3.3. Finally, Section 3.4 describes

how to deploy the fitted classifier in a fast global failure

search engine.



3.1 Features

To fit our training set, features must be defined over pairs

of failures rather than single failures. We aim to con-

struct one feature from each attribute, quantifying how a

pair differs in that attribute. Our complete set of features

is summarized in Table 2. The foremost is an edit dis-

tance measure of callstack similarity, discussed in Sec-

tion 3.1.1. The other three are binary equivalence in-

dicators, discussed in Section 3.1.2 for the categorical

attributes.

Parameters

Attribute Feature Linear Nonlinear

Event type 1{ET1 = ET2} βET —

Process name 1{PN1 = PN2} βPN —

Exception code 1{EC1 = EC2} βEC —

Call stack ED(CS1, CS2) βCS γ

Table 2: Summary of features used in the model, the

failure attributes to which they correspond and the as-

sociated parameters in our probability model for failure

similarity.

3.1.1 Callstack

In tracking down failures related to a bug, developers

often focus on a set of callstack frames that illuminate

the bug. In general, the more frames two callstacks

share, the more likely the parent failures are to be simi-

lar. We seek to incorporate this sense of similarity into

our model.

Since a callstack is comprised of a sequence of

frames, a natural measure of callstack similarity is Lev-

enshtein edit distance, which measures similarity of two

strings by the minimum number of fundamental edits –

letter insertions, deletions or substitutions – required to

transform one into the other (Levenshtein (1966)). It is

typically also normalized by the maximum of the two

strings’ length (e.g., Marzal and Vidal (1993)) so that it

falls between 0 and 1. The simplest way to adapt this for

callstacks is to treat each unique combination of mod-

ule, function and offset as a distinct letter. Each call-

stack is a “string” made up of such “letters,” allowing

pairs of callstacks to be compared with Levenshtein dis-

tance. As shown in Figure 2, low callstack edit distance

is highly predictive of failure similarity. Other authors,

such as Modani et al. (2007) and Brodie et al. (2005a),

have noted similar trends.

We next employ two adaptations of edit distance to

improve its discriminative ability for callstacks. First,

while standard Levenshtein distance equally penalizes

the three fundamental edits, we seek to learn these penal-

ties from the data. Ristad and Yianilos (1998) achieve

this in the string comparison domain, learning the penal-
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Figure 2: Predictivity of the the edit distance feature on

failure similarity.

ties based on a set of paired strings with labels. Our ap-

proach is similar, learning callstack edit penalties using

failure pair labels.

Second, we introduce new fundamental edits to cap-

ture frame-level callstack differences. For instance, per-

haps inserting a new frame group should be penalized

more than inserting a new frame into an existing frame

group. To capture this, we introduce the seven edits

listed in Table 3. We penalize two types of insertions,

those that begin a new frame group and those that add

to an existing frame group. Likewise, we penalize dele-

tions that close out a frame group separately from those

that leave it in place. We also penalize substitutions sep-

arately based on the first point of difference between the

frames at hand – the module, function or offset.

Param. Fundamental Edit

γInsSame Frame inserted in existing frame group

γInsNew New frame group inserted

γDelSame Frame deleted; other frames in group re-

main

γDelLast Last frame in frame group deleted

γSubMod Frame substitution with differing modules

γSubFunc Frame substitution with same modules, but

differing functions

γSubOffset Frame substitution with same functions,

but differing offsets

Table 3: Notation and descriptions of callstack edit dis-

tance penalty parameters.

Computing edit distance with specialized penalty pa-

rameters involves a straightforward parameterization of

the edit costs in the canonical dynamic programming so-

lution. Because some callstacks are up to 1,000 frames,

we implemented Gusfield (1997)’s method, which uses

O(min(m, n)) memory, where m and n are the call-

stack sizes.



3.1.2 Categorical

We next consider the three categorical attributes: failure

type (crash, hang or deadlock), process name (one of 57

string values), exception code (one of six numeric val-

ues). We define one feature for each of these attributes,

a binary indicator representing whether the failure pair

in question shares the same value. For instance, a pair

of failures both having process name “wmplayer.exe”

would receive a 1 in the “equivalence of process names”

feature. We construct three such equivalence features.

The plots in Figure 3 show how these features influence

failure similarity. For all three, attribute equivalence

leads to a significantly greater probability of similarity.

Different Event Types

Same Event Types

Different Process Names

Same Process Names

Different Exception Codes

Same Exception Codes

Failure Similarity by Feature Values

Probability of Failure Similarity
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Figure 3: Predictivity of the binary features based on

categorical failure attributes.

One might note that our binary equivalence features

do not take into account the individual values taken

on by the failure pair. For instance, a pair of failures

with process names “wmplayer.exe” and “WinMail.exe”

is treated the same as a pair with “svchost.exe” and

“Zune.exe.” This assumption simplifies modeling be-

cause it limits the combinatorial explosion of features

over attribute values. It simplifies prediction because it

does not require a strategy for dealing with previously

unseen values, which is a major benefit because all three

attributes have the Zipfian property that their cardinality

forever grows as more failures are observed.

3.2 Model

Our machine learning approach is statistical: we model

the probability that two failures are equal based on a

parameterized combination of features, and then apply

maximum likelihood to estimate these parameters. We

define a linear logistic probability model incorporating

the four features in Table 2:

P (Sim|β, γ,X) = g−1(α (1)

+ βET1{ET1 = ET2}

+ βPN1{PN1 = PN2}

+ βEC1{EC1 = EC2}

+ βCSEditDistance(CS1, CS2; γ))

Here g−1(x) = ex

1+ex , the inverse logit function also

used in logistic regression. In this framework, the pa-

rameters β linearly impact the similarity probability on

the logit scale. This is in contrast to the parameters γ

governing the relative penalties of the fundamental edit

types in Table 3, which impact similarity in a nonlinear

fashion.

The most general model we fit incorporates all seven

edit penalties and all four linear parameters. But to en-

sure our model’s robustness, we also test whether a sim-

pler model would suffice. To this end, we apply the

deviance test (see McCullagh and Nelder (1989)) to a

nested set of model specifications that progressively re-

duce the parameter space. We define four nested layers,

shown below, so as to isolate each penalty’s significance.

1. The full model, fitting all seven edit distance pa-

rameters. For βCS to be identified, we must impose

the constraint that 1

7

∑
i γi = 1, leaving only six

degrees of freedom for the penalty parameters. To-

gether with the four linear parameters and the off-

set, the full model has a total of 11 fitted parame-

ters.

2. A reduced model with a single insertion penalty

and a single deletion penalty; i.e., γInsSame =
γInsNew and γDelSame = γDelLast. This eliminates

two parameters. Comparing this to Model 1 will

reveal the gain from fitting separate insertion and

deletion penalties based on whether a frame group

is added or deleted.

3. A further reduced model with a single substitution

penalty; i.e., γSubMod = γSubFunc = γSubOffset.

This eliminates two more parameters. Comparing

this to Model 2 will reveal the gain from fitting sep-

arate substitution penalties.

4. A baseline model with untuned edit distance; i.e.,

γi = 1 ∀ i. This leaves no fitted penalty parame-

ters. Comparison to Model 3 will reveal the gain

from allowing separate insertion, deletion and sub-

stitution penalties.

3.3 Optimization

The model’s log likelihood is

LL(β, γ;Y) =
n∑

i=1

pYi

i (1 − p)1−Yi

pi = P (Sim|β, γ,X),

We seek the maximum likelihood estimates,

(β̂, γ̂) = arg max
β,γ

LL(β, γ)

Direct numerical optimization is expensive because

each likelihood evaluation requires recomputing all

training edit distances for the input γ. To mitigate this



cost, observe from the form of (1) that for fixed γ, the

optimizing β are logistic regression estimates, which

can be found cheaply. This motivates a two-stage op-

timization routine based on profile likelihood:

1. Optimize to find γ̂ = arg maxγ LL(β̂(γ), γ).

2. Plug in γ̂ to find β̂ = β̂(γ̂).

The first step maximizes the profile likelihood over

γ. This still requires numerical optimization, but with

far fewer function evaluations since the optimization is

over γ alone. We recommend the simplex algorithm of

Nelder and Mead (1965) for two reasons. First, the edit

distance function is rough in γ since changing penal-

ties affects the minimum edit path. This makes gradient-

based optimizers unsuitable, whereas Nelder-Mead does

not employ the gradient. Second, we require a box

constraint to ensure that all penalties are positive and

have unit mean. This is easily accomplished in Nelder-

Mead using boundary penalties (see Lange (2001)). To

evaluate β̂(γ), one can use any pre-packaged logistic

regression algorithm (e.g., iteratively reweighted least

squares).

3.4 Fast Global Search

Recall that the system’s ultimate goal is to act as a search

engine: to take a failure as input and return a list of

similar failures from the global collection. Prediction

runtime is dominated by the edit distance computation,

which on a dual-core AMD64 machine takes an average

1 ms per callstack pair. Since repeating this for two mil-

lion failures is prohibitively expensive, our system em-

ploys an initial search to limit the edit distance computa-

tion to failures that plausibly could be similar – defined

as those whose callstacks share a sequence of three con-

secutive frames with the input failure. This is more rudi-

mentary than other “fast similarity search” methods (see

Gusfield (1997) for a summary or Bocek et al. (2008)

for a recent example), which rely on terminating the

edit distance computation after reaching a threshold dis-

tance. However, our search has the advantage of being

easily implemented in a SQL database system, which

can quickly query for callstacks sharing a sequence of

frames. The number of common frames required can

be tweaked so that the initial search returns a suitably

small number of candidates; ours typically returns under

3,000. We then apply the fitted model to the remaining

candidates, sorting them in the output by probability of

similarity.

4 Results

The estimated coefficients for all four models appear

in Table 4. The full model is by far the best predic-

tor, with the gain from M1 to M2 strongly significant

(p ≈ 0.003). There is also a steep cascade of likelihoods

Model Estimates

Param. M1 M2 M3 M4

α 3.45 5.04 2.99 2.89

βET 1.36 1.46 2.43 2.23

βPN 1.18 1.19 3.56 3.30

βEC 2.14 1.82 2.19 1.71

βCS -6.99 -6.57 -7.21 -6.74

γInsSame 0.72
1.22 0.94

1.00

γInsNew 1.48

γDelSame 0.56
1.13 0.94

γDelLast 1.54

γSubMod 2.44 1.89

1.17γSubFunc 0.25 0.40

γSubOffset 0.00 0.00

LL -149.6 -155.6 -191.0 -197.5

Table 4: Estimated coefficients for the four nested mod-

els, from the full model (M1) to the baseline model

(M4).

through all the nested models, meaning that all param-

eters are strongly significant. The biggest gain comes

from M3 to M2, when the substitution penalty is bro-

ken out by module, function and offset. This suggests

that this separation is the key ingredient incorporated by

our edit distance. Comparing the relative values of the

weights in the full models leads to several supplemen-

tary conclusions:

• Insertions adding a new frame group (γInsNew) and

deletions removing a frame group (γDelLast) are

penalized approximately twice as heavily as those

not affecting the frame group structure (γInsSame,

γDelSame).

• Module substitutions (γSubMod) are penalized far

more severely than any other edit. Function-only

substitutions (γSubFunc) are cheap, and offset-only

substitutions (γSubOffset) are free.

• As a whole, callstack edit distance is much more

influential (βCS = −6.99) than the other features.

This holds up across all models considered. (Note

that comparing weights is valid because all features

are on the same [0, 1] scale.)

4.1 Prediction

We compute precision-recall curves for our models us-

ing 10-fold cross-validation. For each of 10 equally-

sized test sets, we re-estimate each model using all but

the test set, applying them to produce held-out similarity

probabilities for the test set. Repeating this over all 10

folds yields a held-out score for every pair from all four

models.

We benchmark our methods against two simple

heuristics suggested by Brodie et al. (2005a) and Modani

et al. (2007):



• Pure edit distance (ED): Pairs are ranked solely

by callstack edit distance with no penalty weights,

so that each failure pair’s score is given by 1 −
ED(CS1, CS2;1).

• Prefix similarity (PS): Pairs are ranked by the num-

ber of consecutive frames, starting from the bottom,

shared by both failures’ callstacks.

The curves are overlaid in Figure 4. All models far

outperform the baseline heuristics. Internally, they stack

up as suggested by the log-likelihood, with Models 1 and

2 the clear winners. From Model 2 to Model 3, when the

substitution penalties are stratified, is the biggest point

of improvement. Models 3 and 4 show poorer precision

for most levels of recall. Among their false positives are

callstack pairs with similar module patterns, but slightly

different function names and offsets. Most of these are

Windows functions with similar outcomes but somewhat

different names. This confirms that stratification of the

substitution penalty is a key component of the model.

Recall is the primary metric of interest in our appli-

cation because it governs the number of similar failures

the search engine can provide for a given failure. Mod-

els 1 and 2 both are both able to identify about 80% of

the similar failure pairs with greater than 95% precision,

whereas Models 3 and 4 can only identify about half of

similar failure pairs with this accuracy.
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models.

5 Conclusion

We have trained a similarity metric, a classifier that pre-

dicts the probability that two failure reports are “similar”

under a developer’s notion of the term. The model’s key

feature is callstack edit distance with tuned edit penal-

ties based on callstack frames. The tuned edit distance

primarily penalizes module differences between the two

failures’ callstacks. We have shown the model to per-

form with greater than 90% precision on a 50% baseline

for broad levels of recall. Finally, we have outlined a

strategy for performing a fast similarity search to scan a

global collection of failure reports.
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