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Abstract— In this paper, we study the scanning activities
towards a large campus network using a month-long netflow
traffic trace. Based on the novel notion of “gray” IP space
(namely, collection of IP addresses within our campus network
that are not assigned to any “active” host during a certain
period of time), we identify and extract potential outside scanners
and their associated activities. We then apply data mining and
machine learning techniques to analyze the scanning patterns of
these scanners and classify them into a few groups (e.g., focused
hitters, random address scanners, and blockwise scanners). The
goal is to infer the scanning strategies of the scanners so as
to provide some assessment of the potential harmfulness of
these scanning activities – for example, whether the observed
scanning activities are simply part of background radiation of
global random scanning or more focused scanning targeted at
our campus network. This is an on-going work; we report some
preliminary, yet promising results obtained so far.

I. I NTRODUCTION

Cyber attackers often resort to scanning for reconnaissance
– looking for certain services or hosts with certain vulnera-
bilities to attack or compromise – and for spreading malware
such as worms, viruses or spams. From the perspective of a
campusor enterprise network, while many scanning activities
observed on such a network may simply reflect the “back-
ground radiation” [1]–[3] of various Internet-scale random
scanning activities, remnants of past worm/virus outbreaks,
or other malware activities on theglobal Internet at large,
some could be results of moretargeted reconnaissance or
stealthy attack activities aimed specifically at the said cam-
pus/enterprise network. The latter is particularly worrisome
and warrants closer scrutiny. In either case, monitoring and
analyzing scanning activities is a crucial component in network
intrusion and prevention, both to protect individual networks
against malicious outside attacks and to mitigate and stop
global outbreaks of worms, viruses and other malware in their
early stages. An important goal of the analysis of scanning
activities is to infer and uncover the scanning strategies and
intentions of cyber attacks, the knowledge of which can guide
us devise more effective monitoring, detection and defense
mechanisms against cyber attacks. This, clearly, is a daunting
task, given the very limited information we have regarding the
observed scanning activities.

This paper constitutes a modest step towards this chal-
lenging goal. We apply data mining and machine learning
techniques to identify and classify various scanning activities
observed on our campus network, and explore a number
of features to characterize and infer scanning patterns and
strategies of outside scanners that might reveal some useful

clues about the “intentions” of the scanners. In particular,
we are interested in answering the following question: are
observed scanning activities likely mere remnants of some
global “background radiation,” or reflections of malicious
actions that include our own network as part of more specific
targets?

To address this question, we propose a novel technique,
IP gray space analysis, based on the notion of “gray” IP
addresses. Intuitively, gray IP addresses are those withina
(campus/enterprise) network that are not assigned to any
live host for the entire duration of a given time period,
say, a particular day, the collection of which is referred to
as the IPgray spaceof the network. By definition, any
incoming traffic towards gray IP addresses is “unwanted,” and
thereby potentially “suspicious.” Because gray IP addresses
are in general randomly distributed within a network, it is
extremely hard for an outside scanner to predict and thus
avoid them. We use this key observation to develop several
heuristics (see Section II) for identifying outside scanners
that engage in “sustained” scanning activities. We then ap-
ply data mining/machine learning techniques to study their
scanning behaviors. In Section III we classify scanners into
three categories,focused hitters, random address scanners
and blockwise scanners, by analyzing their address selection
strategies. In Section IV we explore several features to further
investigate the observed scanning patterns (or “footprints”) of
scanners, and attempt to infer whether the observed scanning
activities are merely part of global “background radiation” or
reflections of actions that likely target more specifically at our
own network. The ultimate (and perhaps unattainable) goal
is to infer the plausible “intentions” of scanners and assess
the potential harmfulness of their actions. As part of on-going
research towards this goal, we report some preliminary, yet
promising results.

II. I DENTIFYING SCANNERS VIA GRAY SPACE ANALYSIS

In this section, we first introduce the novel notion ofgray
IP addresses, and present a simple heuristic to extract grayIP
addresses – collectively referred to as the (IP)gray space(of a
given network) – from our month-long netflow traces captured
from our campus network. Then, we describe an algorithm for
identifying potential scanning traffic by analyzing the activities
on the IP gray space.
A. Extracting the IP Gray Space

We first present a formal definition of agray IP address.
Let I denote the collection of all IP addresses of a network



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Day of the month (Feburary 2006)

P
er

ce
nt

ag
e 

of
 IP

 g
ra

y 
sp

ac
e

Class B network 1
Class B network 2
Class B network 3

(a) Size of gray space over one month (b) Gray address distribution

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Time (hours)

P
er

ce
nt

ag
e 

of
 IP

 g
ra

y 
sp

ac
e 

to
uc

he
d

(c) Speed of gray space being touched

Fig. 1. IP gray space properties.

under consideration,t0 the starting time of a time period of
interest, andT the length of the period. We say that an (inside)
IP addressg ∈ I is a gray (or inactive) address over the time
period [t0, t0 + T ] if and only if no traffic originating from
g is observed during[t0 − τ, t0 + T + τ ] for some fixedτ1.
We useG to denote the collection of all gray IP addresses
within the time period, i.e., the IPgray spaceof the network
during the time period[t0, t0 + T ]. The complementary set,
A = I −G, is referred to as theactive space. In other words,
for anya ∈ A, there is traffic originating froma at some time
during [t0 − τ, t0 + T + τ ]; thus a is likely assigned to an
active host during the time period. In this study, we setT to
be 24 hours,t0 the zeroth hour of a day, andτ one hour.

We apply the heuristic above to the netflow data collected
at the border router of the University of Minnesota campus
network during Feb. 2006. The data set includes all bi-
directional traffic flows between inside hosts and outside hosts
during the entire month.

Our campus network owns three class B (/16) IP address
blocks, with a total3×216 = 196608 IP addresses. We found
that each day in Feb. 2006, over 70% of the addresses are
gray (“inactive”) over the entire day. Fig. 1(a) depicts the
percentage of gray IP addresses each day for the entire month
of Feb. 2006. To illustrate how the gray IP addresses are dis-
tributed among the IP address blocks of the campus network,
Fig. 1(b) illustrates the distribution of gray IP addressesin the
256 “class C” (/24) address sub-blocks within one of the class
B (/16) address blocks. The x-axis represents each class C sub-
block, while y-axis represents each host in a corresponding
sub-block. A point on the graph stands for an active host
on 2/6/2006. All the blank space belongs to IP gray space.
(The gray IP address distribution looks similar also for the
other two class B address blocks of our campus network.)
We observe that the gray IP addresses spread over the entire
class B address block, and they are unevenly distributed among
different /24 address sub-blocks: although quite a number
of /24 address sub-blocks are entirely gray, overall thegray
percentage(i.e., the percentage of gray IP addresses in a /24

1In this definition, to be conservative, we require that thereis also no traffic
originating fromg for a period ofτ before and after the time period of interest
to provide additional assurance thatg is indeed unlikely to be assigned to any
host over the said time period.

address sub-block) varies across the address sub-blocks, with
a few having a gray percentage below 10%.

Although the size of the IP gray space constitutes over 70%
of the total IP address space of the campus network, the IP
gray space does vary from day to day: some gray IP addresses
become active from one day to another, while others change
from active to gray. About 57% of the IP addresses stayed
gray in the entire one month of Feb. 2006. Furthermore, we
observe that despite the fact that gray IP addresses do not
generate any traffic to an outside host throughout an entire
day, they invariably receive traffic from outside hosts. In fact,
we observe that typically within a few hours from the start
(zeroth hour) of a day, all gray IP addresses are “touched”
by at least one outside host! Fig. 1(c) shows the percentage
of gray IP addresses touched by at least one outside host as
time goes by on Feb. 06, 2006 – in less than four hours all
gray IP addresses are touched by an outside host. Moreover,
on 2/6/2006, nearly 360K outside hosts touch at least one gray
IP address inside our campus network!

B. Identifying Scanners and their Scanning Activities

Given the extracted IP gray space, we apply atwo-step
process to identify potential scanners and their associated
scanning activities. The ideas behind this two-step process
are as follows. Intuitively, without any knowledge of the IP
gray space of a network, an outside scanner that generates
sufficient scanning traffic would inevitably touch one or more
gray IP addresses. Hence we consider any incoming flow that
touches any gray IP address (referred to as agray flow) as
potentially suspicious and the outside host generating such a
gray flow as a potential scanner. Among them, we narrow
down to those withsustained suspicious activities–those that
generate enough traffic towards our campus network, of which
a considerable portion touching the IP gray space–and look for
whether certain ports (either destination or source ports)are
usedrepeatedlyin those suspicious activities from an outside
host. These ports, referred to asdominant scanning ports
(DSPs), represent the likely services or exploits (i.e., ports
with vulnerabilities) that the outside host is interested in and
is thus scanning for. Using these DSPs, we can then separate
the scanning activities of the said outside host from other (if
any) traffic from the same host: this is done by excluding any
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incoming flow from the outside host that does not use any of
the DSPs as the corresponding source/destination ports. The
details of the two-step process are given below.

In this study, we regard outside hosts that generate at least
100 incoming flows over a day, 10% of which are gray
flows as those with sustained suspicious activities2. We use
the notationOs to denote the collection of these hosts. (For
example, for the day of 2/6/2006|Os| = 7468.) For each
outside hosth ∈ Os, let GF (h) denote the collection of gray
flows generated byh. The destination ports (dstPrt in short)
used by gray flows inGF (h) induce an empirical distribution:
for each dstPrt i, pi := mi/m where mi is the number
of gray flows in GF (h) with dstPrt i, and m is the total
number of gray flows inGF (h), m = |GF (h)|. We apply an
information theoretical metric,Relative Uncertainty(RU) [4],
which provides a measure of variety, uniformity or randomness
of a distribution, to determine and identify dominant scanning
(destination) ports (if they exist). Using the above notations,
RU(dstPrt) is given by

RU(dstPrt) :=

−
∑

i∈dstPrt

pi log pi

log m
∈ [0, 1], (1)

whereRU(dstPrt) close to 0 suggests one or a fewdstPrt’s
dominate in the gray flows of an outside hosth; while
RU(dstPrt) close to 1 signifies that there is no dominant
dstPrt’s. Similarly, we can define the relative uncertainty,
RU(srcPrt), for the source port (srcPrt) distribution of
GF (h).

To illustrate howRU(srcPrt) and RU(dstPrt) can be
used to determine the existence of DSP’s in the gray flows
of an outside host, we use the flow data of 2/6/2006. Fig.2(a)
shows a 3-D plot withRU(srcPrt) andRU(dstPrt) in the x-
y plane, and the z-axis showing the number of hosts inOs with
a given RU pair(x, y). We see that nearly 99% of all hosts in
Os have either dominant scanningdestinationor sourceports
(with eitherRU(dstPrt) or RU(srcPrt) ≤ 0.3). Algorithm 2
presents a heuristic procedure for extracting DSP’s from either
the destination or source port distributionPprt of hosth ∈ Os.
The algorithm starts with an emptyDSP set. It iteratively
finds the port with the current highest probability, adds the
port into DSP and removes all the flows associated with it
from GF (h). The algorithm terminates until either the number
of the remainingGF (h) is less than 10 orRU(prt) in GF (h)
is greater thanβ0 (we chooseβ0 = 0.7). In other words,
the algorithm stops when there are not enough flows left
or the ports in the rest of the flows are nearly uniformly
distributed. Fig.2(b)(c) show the top 20 DSP source ports
and destination ports extracted using this algorithm and their
frequency, which include ICMP scanning (port 0) and well-
known exploit (UDP/TCP) ports such as 137, 139, 445, 1025,

2Clearly these numbers are somewhat arbitrary. Our analysisshows that
a small portion of outside hosts generate a large portion of gray flows. For
example, on 2/6/2006, although only 2% of the outside hosts generate more
than 100 flows, of which 10% touching the IP gray space, they contribute to
98% of the total gray flows.

1026, 1434 as well as a few popular service ports such as 25,
80, 443.

Algorithm 1 Identifying dominant scanning ports
1: Parameters:GF (h); β = β0;
2: Initialization: DSP := ∅;
3: compute pro. dist.Pprt andθ := RU(prt) from GF (h);
4: while θ ≤ β and |GF (h)| >= 10 do
5: find prti with highestPprti

;
6: DSP := DSP ∪ prti;
7: remove flows associate withprti from GF (h);
8: removePprti

from Pprt;
9: computeθ := RU(prt) from GF (h);
10: end while

Given the source or destination DSP’s identified using the
gray flows of an outside host, in the second step, we use
them to separate incoming flows touching the active space
(i.e., incoming active flows) from the same host that are
likely involved in the same scanning activities from other
incoming active flows of the host. The intuition here is that
since an outside attacker does not know which IP addresses
of a network are gray or active, the scanning flows he or
she generates using the DSP’s may also touch portion of the
active space. For eachh ∈ Os, we consider any incoming
active flow fromh with any of the dominant scanning source
or destination ports as part of the scanning activities of the
outside scanner. Forh ∈ Os, we useSF (h) to denote the
set of the scanning flows ofh, which include both theactive
and gray flows of h that use the ports in its DSP’s. We use
OF (h) to denote the remainingactive (only!) flows of h –
referred to asother flowsof h. We define the scanning flow
ratio of h as γs = |SF (h)|/(|SF (h)| + |OF (h)|), which
indicates how dominant the scanning flows are in the outside
host’s interaction with the network in question. Fig.2(d) plots
the cumulative distribution ofγs for all 7468 hosts inOs

using the flow data of 2/6/2006. For nearly 80% hosts inOs,
γs = 1, suggesting that these hosts have no other meaningful
interaction with hosts inside our campus networkexcept for
generating scanning traffic touching both the gray and active
IP addresses of the network. The remaining 1166 hosts have
a varying mixture of scanning flows and other flows.

III. C LASSIFYING SCANNERS

With the heuristic in the previous section, we extract totally
111,179 distinct scanners in one month (around 7000 every-
day). In this section, we investigate their scanning behaviors
in detail. Based on different address selection strategies, we
classify the outside scanners intofocused hitters, random
address scannersandblockwise scannersas described below.

A. Focused Hitters vs. Random Scanners

An outside scanner could be scanning hosts inside our
campus network randomly, searching for certain services or
vulnerabilities; or he/she could be interested in a group of
specific hosts (e.g., web or email servers) that were obtained
through other information (e.g., DNS, URLs), and probe them
for their aliveness or open ports. To distinguish these two
types of scanning activities, we look at the distribution ofthe
targets (i.e., inside hosts) touched by the scanning trafficin
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SF (h) for each outside scannerh. For this, we measure the
relative uncertainty(RU) of the dstIP’s of flows in SF (h),
RU(dstIP ), defined analogously using Eq.(1).

Fig. 3 shows the distribution ofRU(dstIP ) in SF (h),
where we see that a large majority of outside scanners have
RU(dstIP ) >= 0.8 (6650 out of 7468), namely, they ran-
domly touch each target once or a few times. We refer to them
as random scanners. For the remaining hosts (818), we find
that most of these scanners repeatedly probe a small number
(typically fewer than 20) of inside hosts, seemingly to test
whether they are alive. We call these scannersfocused hitters.
From the DNS records, we find that many of thegray IP
addresses touched by these focused hitters have hostnames
indicating that they were email servers, web servers, etc.,but
for whatever reasons, were out of service on 2/6/2006. More
in-depth investigation of these focused hitters (e.g., viathe
reverse DNS lookup and public spammer database queries)
reveals that most of these scanners are email spammers prob-
ing for email servers, while others are web crawlers and p2p
hosts. A detailed study of the focused hitters can be found in
[5].

B. Random Address Scanners vs. Blockwise Scanners

For the remainder of this paper, we focus our attention
on random scanners, analyzing their scanning strategies and
attempting to infer their intentions, in particular, whether
observed scanning activities are merely reflections of “back-
ground radiation,” or something more sinister that target more
specifically at our campus network. As a first step, in this
subsection, we analyze theaddress selection strategiesusing
the “footprints” of the random scanners. In particular, we
are interested in determining how an outside scanner selects
addresses inside our network for scanning.

We define thegray ratio of a network (e.g., the UMN
network) as the total number of its gray addresses divided
by the total number of its active addresses (over a given time
period, say, a day). Given the random distribution of the gray
IP addresses within our campus network, if an outside scanner
randomly chooses addresses to scan, theexpected observed
gray ratio of the addresses appearing in the scanning sequence
(or “footprints”) is likely to be approximately the gray ratio
of the entire UMN network, which is 2.83 on 2/6/2006.

Fig. 4 shows the total number of active hosts vs. gray
hosts touched by each scanner on 2/6/2006. We see that while
most of the points are close to the liney = 2.83x, there

exist a number of “outliers”, suggesting that in addition to
purely random address selection, some other address selec-
tion strategies are also used. As will be shown below, we
can separate random scanners primarily into two categories:
random addressscanners who select addresses randomly from
a target address space (e.g., a class B address space of the
UMN network as is used in this paper), andblockwisescanners
who first select sub-blocks or subnets (say, between /32 and
/16) within a target address space, and then either randomly
or sequentially access addresses in each sub-block. In the
followings we present a formal method for separating these
types of random scanners. The basic idea is that if a random
scanner chooses addresses randomly from the entire target
space, then these addresses must also appear randomly selected
from any subspaceof the target space. We apply this idea to
separate blockwise scanners from random address scanners.

Consider a target address space (say, a /16 class B address
within the UMN network) withN addresses. For a fixed block
size s, where16 ≤ s ≤ 32, let Ms denote the number of
/s address blocks (or/s subnets) of the target space (given
a class B target space ands = 24, there areMs = 256
sub-blocks of /24). Denote an observed scanning sequence
of a scanner asa1, a2, · · · , an. For i = 1, . . . , n − 1, define
f(ai, ai+1) = 0 if ai andai+1 belong to the same/s block,1
otherwise. Then theobserved average block difference(w.r.t.

s) of the scanning sequence isDs =
n−1
∑

i=1

f(ai,ai+1)
n−1 . Note

that if a random scanner selects addresses randomly from the
entire target address space, then for anys, 16 ≤ s ≤ 32,
the probability that two consecutive addressesai andai+1 in
the scanning sequence belong to the same/s address block is
1/Ms. Hence theexpectedaverage block difference ofrandom
addressscanners isE[Dras

s ] = 1 − 1/Ms = (Ms − 1)/Ms.
Hence, for arandom addressscanner, regardless of the block
sizes, the difference betweenDs (the observed average block
difference) andE[Dras

s ] should likely be small. Therefore
we define theblock difference deviation(BDD) as follows
and use it to separate random address scanners and blockwise
scanners:

BDD =

32
∑

s=16

√

(Ds − E[Dras
s ])2

16
.

Fig. 5 shows the distribution of BDD’s of random scanners
on 2/6/2006, which is stronglybi-modaland clearly separates
the random address scanners and blockwise scanners. From
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the figure, we can classify random scanners withBDD ≤
0.7 as random address scanners, and those withBDD > 0.7
as blockwise scanners. Replotting the gray ratio (numbers of
active vs. gray hosts) for the random address scanners again
as in Fig. 4 shows that we have an almost perfect fit with the
line y = 2.83x, with nearly all outliers removed. Due to space
limitation, the figure is not shown here.

IV. I NFERRING “H ARMFULNESS” OF SCANNERS

In this section, we try to infer whether an observed scanning
activity is likely a mere reflection of “background radiation”,
or plausibly targets more specifically our campus network. We
explore a number of features to help us address this question,
and use them to indirectly assess the potential “harmfulness”
of the scanning activities. This is still on-going research, here
we report some preliminary yet promising results.

TABLE I

NO. OF /16 NETWORKS ACCESSED BY DIFFERENT TYPES OF SCANNERS

Total #B=1 #B=2 #B=3
Random address scanner 1378 518 30 830

Blockwise scanner 4672 4033 492 147

Since the UMN campus network consists of threeseparate
class B address blocks (128.101/16, 134.84/16, 160.94/16),
we treat them as if they were three separate “telescopes” or
vantage points for monitoring the global Internet activities.
Intuitively, if a scanner performs sustained scanning activities
targeting the global Internet (instead of the UMN network),
we are more likely to observe them at more than one vantage
point. Furthermore, for the random address scanners targeting
the global Internet, the time lapse (i.e., interarrival time)
between two consecutive observed scans (from the same
scanner) would in general be relatively large, reflecting the
speed of scanners. For blockwise scanners that target the
global Internet, the time lapse between two consecutive visits
of different address sub-blocks would be relatively large.In
other words, the scanning sequence of a blockwise scanner can
be separated into distinctphases, each touching one address
sub-block, with relatively large time gaps between them.

Table I shows the number of class B subnets touched by
different types of scanners on 2/6/2006. We see that a pre-
dominant majority of blockwise scanners touch only one class
B subnet, while more than half of random address scanners
touch all 3 of them. Fig. 6 shows the distribution of the average

TABLE II

NO. OF /16 NETWORKS ACCESSED BY DIFFERENT TYPES OF SCANNERS

Total #B=1 #B=2 #B=3
Single-phase scanners 1367 1364 3 0
Multi-phase scanners 3305 2669 489 147

interarrival time for random address scanners and blockwise
scanners. Almost all the random address scanners have an
average interarrival time greater than 1 second, whereas only
20% of the blockwise scanners have an average interarrival
time greater than 1 second. For blockwise scanners, we further
check whether their scanning sequences can be separated into
distinct subsequences orphases, with relatively large time
gaps between them. For this, we model (each phase of) a
scanning sequence as a Poisson process with its interarrival
time represented by an exponential random variableX , where
P (X > t) = e−λt, and λ represents the scanning speed.
To determine and separate the phases, we do a hypothesis
test on the interarrvial timeX by choosing a thresholdT
s.t. P (X > T ) < α, where α = 0.01. If X > T , then
the chance ofX being a normal interarrival time is below
1%. In other words, there is a statistically large gap between
two consecutive scans, and thus we regard them as separation
of two distinct scanning phases. (To eliminate possible false
positives, we also ensure that those two scans belong to
two different address sub-blocks.) Table II shows the total
number of class B subnets touched bysingle-phasevs. multi-
phaseblockwise scanners. Almost all the scanners who access
more than one class B networks are multi-phase scanners.
Examining the distribution of the average time lapse between
phases of multi-phase scanners (Fig. 6), we see that majority
of them have an averageinter-phase time lapseof more than
1 second, consistent with that of random address scanners.

Combining the above observations, we find that observed
scanning activities of random address scanners are likely
reflections of background radiation. This conclusion is also
borne out by the port information: nearly all ports used
are known exploit ports such as slammer (UDP port 1434)
or Dabber worm (TCP port 9898). Among the blockwise
scanners, the multi-phase blockwise scanners are also likely
reflections of background radiation, and again a large majority
of the ports used contain known exploits. On the other hand,
single-phase blockwise scanners almost always touch only one
class B subnet, and are plausibly targeting only our network.
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TABLE III

FEATURE DISTRIBUTIONS OF SCANNERS ON NON-BLOCKED PORTS

Total Responses Other Flows Overlapping Targets Re-visits (2/7/2006) Re-visits (2/8/2006)
Random address scanners 239 35 (14.6%) 92 (38.5%) 41 (17.2%) 126 (52.7%) 102 (42.7%)

Single-phase blockwise scanners 10 6 (60%) 7 (70%) 6 (60%) 1 (10%) 0 (0%)
Multi-phase blockwise scanners 96 46 (47.9%) 58 (60.4%) 50 (52.1%) 32 (33.3%) 32 (33.3%)

To further assess the plausible intentions and potential harm-
fulness of outside scanners, we consider several additional
features that go beyond the analysis of the “footprints” of
the scanners. These features include i) the existence of likely
responseselicited by scanning flows, ii) (potential)follow-up
activities as measured by both the existence ofother flows
(to active IP addresses) in addition to the scanning flows
from an outside scanner and the existence ofoverlapping
targets between the scanning flows and other flows of the
scanner, and iii)re-visitsof outside scanners in other days. For
these features, we consider only observed scanning activities
on ports that are not blockedby our campus network. Our
campus network blocks 74 ports that solely corresponding
to reported worms and other exploits, which in fact include
a majority of scanning activities observed. In other words,
scanning activities on these blocked ports will not elicit any
response from any inside (live) host, and nor will any follow-
up activity ensue as a result. There are totally 345 random
scanners with sustained scanning activities on non-blocked
ports that are observed on 2/6/2006. We hence attempt to
infer and assess the potential harmfulness of these scanning
activities. To measure the responses, we define a response to
a TCP scan as an outgoing flow (from an active inside IP
address) that matches the TCP scan, and contains at least 3
packets with the average packet size greater than 48 (we want
to filter pure RST responses); while we define a response to
a UDP scan as an outgoing flow matching the UDP scan.

Among the 345 random scanners on non-blocked ports, 239
of them are random address scanners, 106 are blockwise scan-
ners, of which 96 are multi-phase blockwise scanners, and 10
being single-phase scanners. Table III tabulates the existence
of responses, existence of other flows, existence of overlapping
targets (of scanning and other flows), and the number of
the scanners observed again (i.e., revisits) on 2/7/2006 and
2/8/2006 among the three types of random scanners. We see
that random scanners on non-blocked ports are less likely to
elicit responses, and they are also less likely to generate other
flows (possibly “follow-up” activities) with overlapping targets
than blockwise scanners. The latter are more likely to elicit
responses, since they scan more extensively within one address
sub-block, thus more likely to touch a live host. Likewise, they
are more likely to generate other traffic to the same (live) hosts
for possible “follow-up” activities. Hence, blockwise scanners
appear to be more dangerous, thus warrant further scrutiny.In
particular, the single-phase blockwise scanners seem to target
specifically our campus network, with the highest likelihood
of eliciting responses and generating follow-up activities with
overlapping targets. In addition, random address scannersand
multi-phase blockwise scanners tend to revisit our campus
networks again during subsequent days scanning on the same

or different ports, possibly due to the fact that these scanning
hosts are infected with malware or part of botnets that perform
repeated global scanning activities. Only one single-phase
blockwise scanner was observed again on 2/7/2006 scanning
different port, and none on 2/8/2006.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we studied the scanning activities towards
a large campus network using a month-long netflow data,
with the goal to infer the scanning strategies and “intentions”
of scanners and thereby assess the “harmfulness” of their
actions. Towards this goal, we introduced the notion of IP
gray space, and developed a novel technique–IP gray space
analysis–to identify potential scanners and study their scan-
ning behaviors. In particular, we applied data mining/machine
learning to analyze the scanning patterns of scanners and
classify them into three categories: focused hitters, random
address scanners, and blockwise scanners. We also explored
several features to further investigate the observed scanning
patterns (or “footprints”) of scanners, and attempted to infer
whether the observed scanning activities are merely part of
global “background radiation” or are reflections of actionsthat
are likely targeted more specifically at our own network. Our
preliminary (yet promising) results suggest that 1) analysis
of observed scanning behaviors can potentially reveal the
plausible “intentions” of scanners; 2) scanning activities tar-
geted perhaps more specifically at our own network are likely
more harmful and thus warrant closer scrutiny. As part of our
on-going research, we are exploring additional features and
applying more sophisticated machine learning techniques to
perform cross-feature correlation analyses, develop rule-based
predictive models (see, e.g. [6]) for classifying scanners, and
conduct more in-depth and long-term follow-up investigations
of scanning and other related activities.
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