
Machine Learning for Efficient Neighbor Selection in
Unstructured P2P Networks

Robert Beverly
MIT CSAIL

rbeverly@csail.mit.edu

Mike Afergan
Akamai/MIT

afergan@alum.mit.edu

ABSTRACT
Self-reorganization offers the promise of improved perfor-
mance, scalability and resilience in Peer-to-Peer (P2P) over-
lays. In practice however, the benefit of reorganization is
often lower than the cost incurred in probing and adapting
the overlay. We employ machine learning feature selection
in a novel manner: to reduce communication cost thereby
providing the basis of an efficient neighbor selection scheme
for P2P overlays. In addition, our method enables nodes to
locate and attach to peers that are likely to answer future

queries with no a priori knowledge of the queries.

We evaluate our neighbor classifier against live data from
the Gnutella unstructured P2P network. We find Support
Vector Machines with forward fitting predict suitable neigh-
bors for future queries with over 90% accuracy while requir-
ing minimal (<2% of the features) knowledge of the peer’s
files or type. By providing a means to effectively and ef-
ficiently select neighbors in a self-reorganizing overlay, this
work serves as a step forward in bringing such architectures
to real-world fruition.

1. INTRODUCTION
Simple unstructured Peer-to-Peer (P2P) networks are both
popular and widely deployed [8, 10]. Nodes issue queries
that propagate through the overlay and receive answers from
peers able to satisfy the query. Because unstructured net-
works allow nodes to interconnect organically with minimal
constraints, they are well-suited to self-reorganization. For
example, prior research investigates reorganization for im-
proved query recall, efficiency and speed, as well as increased
system scalability and resilience [1, 2, 3, 11, 13].

In practice however, the benefit of reorganization is often
lower than the cost in a classic exploration versus exploita-
tion paradox. A critical question prior research does not
address is how nodes within a self-reorganizing P2P system
can determine the suitability of another node, and hence
whether or not to connect, in real-time. Nodes must classify
potential peers as good or poor attachment points both effec-
tively (with high success) and efficiently (with few queries).

Given an omniscient oracle able to determine a node’s fu-
ture queries and the fraction of those queries matched by
other nodes, neighbor selection is readily realizable. Natu-
rally, nodes do not have access to such an oracle. This work
seeks to understand how to emulate, in a distributed fashion
with minimum communication cost, the functionality of an

online oracle as a component of a self-reorganizing network.
In particular, nodes within a self-reorganizing network face
two primary challenges: minimizing load induced on other
network participants and locating neighbors that are likely
to answer future queries.

We abstract these challenges into a distributed, uncoordi-
nated, per-node machine learning classification task. Based
on minimal queries, nodes predict whether or not to con-
nect to a peer. A key insight of this work is that minimizing
the induced load on other nodes maps to a feature selection
problem. We wish to build an effective classification model
by finding a small set of highly discriminatory queries.

Our analysis uses live Gnutella data to understand the ef-
ficacy and parameterization of machine learning techniques
for neighbor selection. We determine the accuracy, precision
and recall performance of Support Vector Machines (SVMs)
[14] and empirically find a training size with high prediction
performance. We then experiment with forward fitting and
mutual information feature selection algorithms as a means
of finding queries with high discrimination power. The ma-
jor contributions of our research are:

1. Novel application of machine learning to the neighbor
selection problem in self-reorganizing networks.

2. Correct neighbor prediction with over 90% accuracy
while requiring minimal queries (<2% of features). Our
technique efficiently chooses neighbors that success-
fully answer not only current, but also future queries.

Consequently, we hope this paper serves as a step forward
for research in the space of self-reorganizing overlays by pro-
viding a scalable means of neighbor selection.

2. RELATED WORK
Unstructured overlays can adapt, grow organically and re-
organize dynamically. Earlier work [9] recognized that, if
locality exists, preferentially connecting peers with similar
interests together in unstructured P2P networks can min-
imize query flooding. The work of Sripanidkulchai, et. al
[11] relies on the presence of interest-based locality to cre-
ate “shortcuts.” Each peer builds a shortcut list of nodes
that answered previous queries. To find content, a peer first
queries the nodes on its shortcut list and, only if unsuc-
cessful, floods the query. These systems present promising
reorganization methods within unstructured P2P networks,
but do not address the neighbor selection task.

1

In the domain of structured overlays, Tang, et. al propose
pSearch [13] as a means to semantically organize nodes.
Within their semantically organized network, search pro-
ceeds using traditional information retrieval methods that
return results based on document similarity, not just key-
words. Several pieces of work [4, 6] examine neighbor se-
lection within structured overlays, particularly the impact
of routing geometry and the ability to choose neighbors in
different structured overlays for resilience and proximity.

In many respects, our problem is most akin to text cat-
egorization and we draw upon the rich literature of prior
work espousing machine learning theory. One of the earlier
works in application of SVMs to text categorization is from
Joachims [7]. Yang and Liu examine several text categoriza-
tion methods against standard new corpora, including SVMs
and Näıve Bayes [15]. Our results similarly find SVMs out-
performing Näıve Bayes for our application; we omit Näıve
Bayes results in this paper. Finally, as in Yang’s compar-
ative study [16], forward fitting also outperforms mutual
information feature selection on our dataset.

3. NEIGHBOR SELECTION
Finding peer nodes in unstructured P2P networks is accom-
plished in a variety of ways. For instance in Gnutella-like
overlays, bootstrap nodes maintain pointers into the net-
work while every node advertises the addresses of its neigh-
bors. However, it is not obvious how a node can, in real-
time, determine whether or not to connect to another node.
Exploring other nodes incurs cost and presents a paradox:
the only way to learn about another node is to issue queries,

but issuing queries makes a node less desirable and the sys-

tem less scalable.

A key insight of our research is that efficient neighbor se-
lection maps to machine learning feature selection. We ask:
“for a node i, does there exist an efficient method, i.e. a
small set of key features, by which i can optimize its choice
of neighbors?” While feature selection is traditionally used
in machine learning problems to reduce the computational
complexity of performing classification, we use it in a novel
way. Specifically, we use feature selection to minimize the

number of queries, which equates to network traffic and in-
duced query load.

In this section, we concretely describe the neighbor selection
problem in the context of self-reorganizing P2P systems. We
start by giving details of our dataset. We then formulate the
problem and data as a machine learning task.

3.1 Live P2P Datasets
We experiment on real, live Gnutella datasets from two in-
dependent sources: our own measurement of 1,500 nodes1

and a public, published repository of approximately 4,500
nodes from Goh, et al. [5]. Both datasets include times-
tamped queries and files offered across all nodes. The col-
lection methodology is similar for both datasets. A cap-
ture program establishes itself as a Gnutella UltraPeer and
promiscuously gathers queries and file lists from all leaf node
connections.

1Publicly available from:
http://ana.csail.mit.edu/rbeverly/gnutella/

While our datasets focus on Gnutella, we believe that they
are sufficiently representative of general P2P usage (in par-
ticular, the Gnutella network is estimated to contain approx-
imately 3.5M users [10]). Detailed inspection of the datasets
reveals a wide range of searches and content including music,
videos, programs, images, etc of all sizes and type. While
other popular P2P file sharing networks exist, it is reason-
able to believe that most general-purpose networks will see
comparable usage patterns. Many additional motivations
for using Gnutella as a reference P2P network, including
size, scope and growth, are given in [12].

We tokenize queries and file names in data by eliminating: i)
non-alphanumerics; ii) stop-words: “it, she, of, mpeg, mp3,”
etc.; and iii) single character tokens. The resulting tokens
are produced by separating on white-space. We assume tok-
enization in the remainder of this work. Let N be the set of
all nodes and n = |N |. Let qi and f i represent the tokenized
queries and file store of node i respectively. We represent
the set of all unique tokens across the queries and files as
Q =

S

qi and F =
S

f i.

Encouragingly, our experiments yield similar results using
either dataset, lending additional credence to our methodol-
ogy. Due to space constraints however, the results presented
in this paper are limited to the Goh dataset.

3.2 Representing the Dataset
To qualitatively compare peers, we introduce the notion of
a utility function. Given qi and f i for every node i, we can
evaluate whether a potential neighbor has positive utility,
i.e. nodes are individual, selfish utility maximizers. Utility
may be a function of many variables including induced query
load, query success rate, etc. However, we are primarily
interested not in the specific mechanics of a utility-based
self-reorganizing network, but rather the neighbor selection
task. Therefore, in this work, we define ui(j), node i’s utility
in connecting to node j, simply as the number of successful
queries from i matched by j. A single query from i matches
a single file held by j if and only if all of the query tokens
are present in that file2.

We represent the dataset with the two matrices in Figure 1,
an adjacency and word token matrix:

• Adjacency Matrix Y: An n-x-n pair-wise connectivity
matrix where Yi,j = sign (ui(j)). Because our dataset
includes all queries and files of every node, our omni-
scient simulator definitively knows how many queries
of each node are matched by every other peer. Thus,
Yi,j = +1 indicates that node i wants to connect to
node j.

• File Store Matrix X: Using all file store tokens, F , we
assign each token a unique index k. The word token
boolean matrix indicates the presence or absence of a
given file token for every node in the system. Xi,j =
1 ⇐⇒ Fj ∈ f i.

2We also used more sophisticated decreasing marginal util-
ity functions that consider both query matches and induced
system load along with an ǫ-equilibrium analysis for non-
strict utility maximizers, but omit results here.

2

i

N
od

e
i

. . .

. . .

Node j

. . .

. . .

0 00

Token Index

(a) Adjacency Matrix (b) File Store Matrix

N
od

e
i

kx
1
x xx1 2 3

y = sign(u (j))i,j

Figure 1: (a) The binary n-x-n adjacency matrix
indicates whether node i wishes to connect to node
j based on utility ui(j). (b) We assign a unique index
k to all file store tokens and form a boolean per-node
word token presence matrix X.

X

. . .

. . .

y
0 1 01
x x x

N
od

e j

1 2 k

Figure 2: Representing the single node i: The i’th
row of the adjacency matrix (fig 1a) is the first col-
umn (shaded) and represents node i’s connection
preferences (class labels). To this the file store to-
ken matrix (X) is horizontally concatenated.

From the adjacency and file store matrices we create a per-
node matrix, [Y(i, :)T ,X], as shown in Figure 2. Note that
we compute the adjacency and file store token matrices ex-
plicitly only in order to evaluate the performance of our
neighbor selection algorithm; our scheme does not require
complete knowledge of all files and queries in the network.
Rather, we employ the omniscient oracle only to evaluate
the performance of our neighbor prediction algorithm.

3.3 Formulating the Learning Task
Given the hypothetical off-line (oracle) representation of a
node’s state as depicted in Figure 2, we now turn to the
problem of classification. Note that the problem we face
is slightly non-standard – we have a separate classification
problem for each node. That is, the features that are optimal
can, and likely will, be different from node to node. In
addition, the optimal features need not match the node’s
queries. For instance, while a node may issue queries for
“lord of the rings,” the single best selective feature might
be “elves.” This example provides some basic intuition of
how our system finds peers that are capable of answering
future queries. By connecting to peers using “elves” as a
selection criterion, a future query for “the two towers” is
likely to succeed given interest-based locality.

Figure 3 shows how the conjoined matrices as shown in Fig-
ure 2 are split and used as input to machine learning algo-

feature select

1
-1

0 0
1 1 1

0 01
1

...

...

-1

...

...

y

?

T
E

ST

T
R

A
IN

x 31 2x x
1

xk

1

0

?
?
?

θ1θ2 θd

PREDICT

Xy

Figure 3: The machine learning task: from ran-
domly selected training samples, find the best model
and features (θ ⊂ X̂) to minimize training error.
With this small set (d ≪ k) of features, predict
neighbor suitability (y class label).

rithms. Some number of nodes, significantly fewer than the
total number of nodes n, are selected at random to serve as
training samples. The learner is given the word token fea-
tures present for each training node (X̂ a row subset of X)
along with the corresponding classification labels (y). For
our neighbor selection task, the label is a binary decision
variable, y ∈ {±1} where y = +1 indicates a good connec-
tion and y = −1 a poor connection. We consider the size
and complexion of the training data in the next Section. Us-
ing the training data, the learner develops a model that uses
a small number of features θ ∈ X̂ in order to predict future
connection decisions. We evaluate the efficacy of this model
against the test data, i.e. whether the model correctly pre-
dicts the unknown y connection labels in the test set. Thus,
in the testing phase, the input to the classifier is the small
number features (θ1, · · · , θd) where d ≪ k, without either
the labels (y) or the full word tokens (x1, · · · , xk).

Notice that the features we train and test on do not include
any queries Q from our dataset. Only the y labels depend on
the queries. Thus, successful connection predictions imply
the ability to predict queries yet to be asked.3

We find that some nodes in the dataset have queries that
are matched by very few other nodes. Therefore, a predic-
tion model that deterministically predicts not to connect
will yield a high accuracy – and thus a misleading result.
Consider a node whose query is matched by only 1 of 500
other nodes. A classifier that always predicts not to connect
gives an accuracy of 499/500 = 99.8%. To better assess our
neighbor selection scheme without bias or skewing the re-
sults, we randomly select 50 nodes that have at least 20%
positive labels, i.e. a non-trivial number of suitable poten-
tial peers. In this way, we choose to evaluate the nodes that
are most difficult to accurately perform predictions with
and thereby stress our approach.

3Additionally, our prediction accuracy implies correlation
between a single node’s file store and queries, a result we
analyze in detail in [2].

3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

T
es

t C
la

ss
ifi

ca
tio

n
P

er
ce

nt
ag

e

Training Size (Samples)

Accuracy
Precision

Recall

Figure 4: SVM Neighbor prediction: classification
performance versus number of training samples

These nodes include k = 37, 000 unique file store tokens. We
provide both average and variance measures across these
nodes from our dataset. Thus, we wish to show that our
scheme is viable for the vast majority of all nodes.

We note that incorrect predictions in our scheme are not
fatal. In the overlays we consider, a node that attaches to
a peer who in fact provides no utility can simply disconnect
that peer. Therefore, while the statistical methods we em-
ploy provide only probabilistic measures of accuracy, they
are well-suited to the neighbor selection task.

3.4 Methodology Summary
Our evaluation methodology simulates the following algo-
rithm on nodes from our dataset and measures prediction
accuracy. For a node i ∈ N in the system that wishes to
optimize its connection topology:

1. Randomly select T ⊂ N other peers as trainers, where
|T | ≪ |N |

2. Receive file tokens xt from each t ∈ T

3. Determine utility of each training peer yt = sign (ui(t))

4. Let X =
S

xt and k = |X|

5. Find features θ1, · · · , θd ⊂ X, where d ≪ k, which
best predict ŷt = yt∀t ∈ T

6. Issue θ to test set M ∈ N − T , predict whether to
connect to each peer j ∈M

4. SUPPORT VECTOR MACHINES
We obtain the best neighbor selection prediction results us-
ing SVMs. SVM classifiers [14] find an optimal separating
hyperplane that maximizes the margin between two classes
of data points. The hyperplane separator is orthogonal to
the shortest line between the convex hulls of the two classes.
Because this separator is defined only on the basis of the
closest points on the convex hull, SVMs generalize well to
unseen data. Additional data points do not affect the final
solution unless they redefine the margin. While the separa-
tor may be linear in some higher-dimensional feature space,
it need not be linear in the input space. Determining the
separating hyperplane for the data in some high dimensional
space is performed via constrained optimization.

SVMs are a natural selection for neighbor selection since
the problem is separable, we may need to consider high-
dimensional data, and the underlying distribution of the
data points and independence are not fully understood. We
use the MySVM package for our experiments [7].

To reduce possible dependence on the choice of training set,
all results we present are the average of five independent ex-
periments. We randomly permute the order of the dataset
so that, after splitting, the training and test samples are dif-
ferent between experiments. In this way, we ensure general-
ity, a critical measure of learning effectiveness. We evaluate
model performance on the basis of classification accuracy,
precision and recall.

Accuracy is simply the ratio of correctly classified test sam-
ples to total samples. Precision measures the number of
positive predictions that were truly positive. Finally, recall

gives a metric of how many positive samples were predicted
positive. All three measures are important in assessing per-
formance; for instance, a model may have high accuracy, but
poor recall as mentioned in the previous section when nodes
have few suitable peers in the entire system.

4.1 Number of Training Points
An important first consideration is the sensitivity of the
model to the number of training points (step 1 in §3.4).
In Figure 4 we plot the test accuracy, precision and recall
versus the number of training points.

Test error decreases significantly in the range [10,70]. Test
error is minimized around 150 points, after which a small
amount of over-fitting is present. Beyond 100 training points,
accuracy, precision and recall all remain fairly stable. Be-
cause we are interested in obtaining the best combination of
the three performance metrics while minimizing the num-
ber of training points, we select 100 training points for the
remainder of our experiments.

4.2 Feature Selection
In order to find a small number of highly discriminative fea-
tures (step 5 in §3.4), we turn to feature selection methods
[16]. Recall that we use feature selection in a novel manner,
not to reduce the computation complexity of classification,
but rather to minimize communication cost for neighbor se-
lection in the network. The first feature selection method
we consider is mutual information (MI). Mutual information
attempts to use combinations of feature probabilities to as-
sess how much information each feature, i.e. word token,
contains about the classification. MI evaluates the mutual
information score I(θi; y) for each feature θi ∈ X̂ and se-
quentially picks the highest scoring features independently
of the classifier. The MI score is in the range [0, 1] and will
be zero if the feature is completely independent of the label
or one if they are deterministically related.

I(θi; y) =
X

θi∈{0,1}

X

y∈{±1}

P̂ (θi, y)log
2

P̂ (θi, y)

P̂ (y)P̂ (θi)
(1)

Secondly, we use greedy forward fitting (FF) feature selec-
tion. Forward fitting feature selection simply finds, in suc-
cession, the next single feature that minimizes training error.
Therefore, training error decreases monotonically with the

4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of Features

FF
MI

RND

(a) Neighbor Prediction Accuracy

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t P
re

ci
si

on

Number of Features

FF
MI

RND

(b) Neighbor Prediction Precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t R
ec

al
l

Number of Features

FF
MI

RND

(c) Neighbor Prediction Recall

Figure 5: Neighbor selection prediction performance for three different feature selection algorithms: Mutual
Information (MI), Forward Fitting (FF), and Random (RND) with an SVM model. The points represent
average performance across nodes in our dataset, while the error bars show the standard deviation.

number of features. For an error function V (f(θ), ·), find the
next feature θi from the remaining features not previously
selected in X1, . . . , Xi−1. Thus, we evaluate each potential
feature i for the fixed set of i − 1 features. We use SVM
accuracy as the error function f(·), although forward fitting
can be used with any model and error function. Formally:

θi ← argmin
j

V (f(X̂, xj),y)∀xj /∈ X1, . . . , Xi−1 (2)

Forward fitting is computationally expensive because it re-
quires computing a combinatorial number of possible feature
combinations. Mutual information is much faster, but does
not always find the optimal features. A weakness of MI is
that it may choose two features that are themselves closely
dependent and thus the second feature provides little addi-
tional classification power. In contrast, forward fitting will
continually seek the next best performing feature without
this potential dependence.

4.3 Prediction Results
Figure 5 summarizes the most meaningful results from our
feature selection and SVM experiments (step 6 in §3.4). The
experiment is run five times for each configuration and the
average numbers are presented in the graph along with the
standard deviation error range. We include random feature
selection as a baseline measure. The primary observations
from these graphs are:

• We are able to make accurate predictions with as few

as 5 features. This is a surprisingly good result. Re-
call that we are handicapped from the fact that a) we
consider only the file features not the query features,
even though the queries are what generated the re-
sults; and b) there are 37,000 single-word features and
thus a massive number of multi-word combinations.

• Forward-fitting performs better than mutual informa-

tion. In particular, we see that even with one feature,
FF has a lower test error than MI.

• The random feature selector performs poorly. While we
expect randomly chosen features to perform the worst,
it provides validation of our results and methodology

and proved to be a surprisingly useful benchmark in
practice when building our system.

5. DISCUSSION
Here we examine the larger conclusions that can be drawn
from our findings:

While our input space is of high dimension, it can be ef-

fectively summarized with very few parameters. The sum-
marization aspect of our problem inspired us to consider an
SVM approach. Forward fitting reveals that a small number
of features effectively correlates to accurate predictions. Our
findings are in stark contrast to the standard motivation for
SVMs in text classification problems where the inputs are
independent and the primary motivation for SVMs is to re-
duce the computational complexity.

SVMs allow us to accurately model the problem with little or

no underlying understanding of the inputs. While we have
a general understanding of the data, we face the challenge
that we do not totally understand the relationship between
the features and moreover the nature of these relationships
vary from node to node. Nodes in a real system face this
same challenge. Therefore SVMs, which make no underlying
assumptions regarding the data, are particularly well-suited
for our problem.

For our problem, forward fitting outperforms mutual infor-

mation. The literature is mixed on the relative merit of
mutual information and forward fitting. In our problem, we
were interested in seeing if, as enough features were added
via MI, the combination of features could outperform FF,
where features are selected in a greedy fashion. Empirically
this was not the case.

One reason FF performs well is the high degree of correla-
tion between features in the dataset. For example, if a user
has songs by “Britney Spears” both “Britney” and “Spears”
may be descriptive features. However, simple MI will not
take into account that once it adds “Britney”, adding “Spears”
will not improve prediction performance. In future work, we
plan to investigate the ability to remove correlated features

5

found via MI by computing feature-to-feature MI. Conversely,
forward fitting will likely only add one of these terms, mov-
ing on to a more descriptive second term. The danger of
forward fitting of course is over-fitting but we do not ob-
serve over-fitting in practice.

For our problem, SVMs do not suffer significantly from over-

fitting. As witnessed by varying the number of training
points, SVMs are robust against over-fitting. While some
over-fitting is present in our empirical results with forward
fitting, in the context of our particular problem it has lit-
tle impact. In particular, we are attempting to minimize
the number of features with as little impact on prediction
performance as possible. Therefore, the fact that too many
features leads to worse classification performance is not as
problematic as it may be for other problems.

Our neighbor selection algorithm is computationally practi-

cal. Nodes can use the SVM prediction we describe in a com-
pletely decentralized fashion. While forward fitting gives the
highest accuracy, it requires training many SVMs. Nodes
with limited computational power can use MI to achieve
comparable accuracy. In future work, we may consider FF
over multiple features at once. While this method of forward
fitting may be more expensive computationally, it could run
as a background process on a user’s desktop (say overnight)
and thus not be prohibitively expensive in practice.

Our neighbor selection algorithm is practical in real net-

works. While we simulate and model the operation of nodes
using machine learning algorithms to predict suitable neigh-
bors, our scheme is viable in practice. P2P systems, and
Gnutella in particular, utilize a system of caches which store
IP addresses of nodes in the overlay thereby allowing new
clients to locate potential peers. Our experiments show that
randomly selecting ≃ 100 peers on which to train suffices to
build an effective classifier. Because we randomly permute
the set of training nodes in each experiment, the density of
“good neighbors” in 100 peers is sufficiently high for accu-
rate future predictions.

Efficient neighbor selection is a general problem. While we
focus only on P2P overlays, minimizing the communication
overhead via feature selection methods such as those in our
algorithm may generalize to tasks in other networks or ap-
plications.

6. CONCLUSIONS
In this work, we examined efficient neighbor selection in self-
reorganizing P2P networks. While self-reorganizing overlays
offer the potential for improved performance, scalability and
resilience, their practicality has thus far been limited by a
node’s ability to efficiently determine neighbor suitability.
We address this problem by formulating neighbor selection
into a machine learning classification problem. Using a large
dataset collected from the live Gnutella network, we exam-
ined the efficacy of Support Vector Machine classifiers to
predict good peers. A key insight of our work was that
nodes can use feature selection methods in conjunction with
these classifiers into order to reduce the communication cost
inherent in neighbor selection. Using forward fitting feature
selection, we successfully predicted suitable neighbor nodes
with over 90% accuracy using only 2% of features.

By addressing the efficiency of neighbor selection in the
formation of self-reorganizing networks, we hope our work
serves as a step forward in bringing self-reorganizing archi-
tectures to real-world fruition.

Acknowledgments
We thank Steve Bauer, Bis Bose, Dave Clark, Peyman Fer-
atin, Simson Garfinkel, Karen Sollins and our reviewers for
invaluable feedback. Rob Beverly was supported in part by
Cisco Systems and NSF Award CCF-0122419.

7. REFERENCES
[1] A. Asvanund, S. Bagla, M. Kapadia, R. Krishnan, M. D.

Smith, and R. Telang. Intelligent club management in
peer-to-peer networks. In Proceedings of First Workshop on
Economics of P2P, 2003.

[2] R. Beverly. Reorganization in Network Regions for
Optimality and Fairness. Master’s thesis, MIT, Aug. 2004.

[3] Y. Chawathe, N. Lanham, S. Ratnasamy, S. Shenker, and
L. Breslau. Making gnutella-like P2P systems scalable. In
Proceedings of ACM SIGCOMM, 2003.

[4] B.-G. Chun, B. Y. Zhao, and J. D. Kubiatowicz. Impact of
neighbor selection on performance and resilience of
structured P2P networks. In Proceedings of IPTPS, Feb.
2005.

[5] S. T. Goh, P. Kalnis, S. Bakiras, and K.-L. Tan. Real
datasets for file-sharing peer-to-peer systems. In
Proceedings of 10th International Conference of Database
Systems for Advanced Applications, 2005.

[6] K. P. Gummadi, R. Gummadi, S. D. Gribble,
S. Ratnasamy, S. Shenker, and I. Stoica. The impact of
DHT routing geometry on resilience and proximity. In
Proceedings of ACM SIGCOMM, 2003.

[7] T. Joachims. Making large-scale SVM learning practical. In
B. Schlkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods - Support Vector Learning. MIT Press,
1999.

[8] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy.
Transport layer identification of P2P traffic. In Proceedings
of ACM Sigcomm Internet Measurement Conference, Oct.
2004.

[9] P. Keleher, B. Bhattacharjee, and B. Silaghi. Are
virtualized overlay networks too much of a good thing? In
Proceedings of the 1st International Workshop on
Peer-to-Peer Systems, Mar. 2002.

[10] A. H. Rasti, D. Stutzbach, and R. Rejaie. On the long-term
evolution of the two-tier gnutella overlay. In IEEE Golbal
Internet, 2006.

[11] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in
peer-to-peer systems. In Proceedings of INFOCOM, 2003.

[12] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing
unstructured overlay topologies in modern P2P file-sharing
systems. In Proceedings of ACM Sigcomm Internet
Measurement Conference, Oct. 2005.

[13] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer
information retrieval using self-organizing semantic overlay
networks. In Proceedings of ACM SIGCOMM, 2003.

[14] V. N. Vapnik. The nature of statistical learning theory.
Springer Verlag, 1995.

[15] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proceedings of SIGIR-99, 22nd
ACM International Conference on Research and
Development in Information Retrieval, pages 42–49, 1999.

[16] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proceedings of
ICML-97, 14th International Conference on Machine
Learning, pages 412–420, 1997.

6

