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Abstract— Networks of various kinds often experience anoma-
lous behaviour. Examples include attacks or large data transfers
in IP networks, presence of intruders in distributed video
surveillance systems, and an automobile accident or an untimely
congestion in a road network. Machine learning techniques
enable the development of anomaly detection algorithms that
are non-parametric, adaptive to changes in the characteristics
of normal behaviour in the relevant network, and portable
across applications. In this paper we use two different datasets,
pictures of a highway in Quebec taken by a network of webcams
and IP traffic statistics from the Abilene network, as examples
in demonstrating the applicability of two machine learning
algorithms to network anomaly detection. We investigate the
use of the block-based One-Class Neighbour Machine and the
recursive Kernel-based Online Anomaly Detection algorithms.

I. I NTRODUCTION

A network anomaly is a sudden and short-lived deviation
from the normal operation of the network. Some anomalies are
deliberately caused by intruders with malicious intent such
as a denial-of-service attack in an IP network, while others
may be purely an accident such as an overpass falling in a
busy road network. Quick detection is needed to initiate a
timely response, such as deploying an ambulance after a road
accident, or raising an alarm if a surveillance network detects
an intruder.

Network monitoring devices collect data at high rates.
Designing an effective anomaly detection system consequently
involves extracting relevant information from a voluminous
amount of noisy, high-dimensional data. It is also important
to design distributed algorithms as networks operate under
bandwidth and power constraints and communication costs
must be minimised.

Different anomalies exhibit themselves in network statistics
in different manners, so developing general models of normal
network behaviour and of anomalies is difficult. Model-based
algorithms are also not portable across applications, and even
subtle changes in the nature of network traffic or the monitored
physical phenomena can render the model inappropriate. Non-
parametric, learning algorithms based on machine learning
principles are therefore desirable as they can learn the nature
of normal measurements and autonomously adapt to variations
in the structure of “normality”.

A. Related Work and Contribution

Most methods of network anomaly detection are based on
network traffic models. Brutlag uses as an extension of the
Holt-Winters forecasting algorithm, which supports incremen-
tal model updating via exponential smoothing [1]. Hajji uses a
Gaussian mixture model, and develops an algorithm based on
a stochastic approximation of the Expectation-Maximization
(EM) algorithm to obtain estimates of the model parameters
[2]. Yamanishi et al. also assume a hierarchical structure of
Gaussian mixtures in developing the “SmartSifter” tool, but
uses different algorithms for updating the model parameters
[3]. They use a variant of the Laplace law in the discrete
domain, and a modified version of the incremental EM algo-
rithm in the continuous domain. They test their algorithm to
detect network intrusion on the standard ACM KDD Cup 1999
dataset. Lakhina et al. apply Principal Component Analysis
(PCA) to separate IP network data into disjoint “normal”
and “anomalous” subspaces, and signal an anomaly when
the magnitude of the projection onto the anomalous subspace
exceeds a threshold [4]–[6]. Huang et al. build on Lakhina’s
centralised PCA method of anomaly detection from [6], and
develop a framework where local PCA analysis and stochastic
matrix perturbation theory is used to develop an adaptive,
distributed protocol [7].

Researchers have recently begun to use machine learning
techniques to detect outliers in datasets from a variety of
fields. Gardener et al. use a One-Class Support Vector Machine
(OCSVM) to detect anomalies in EEG data from epilepsy
patients [8]. Barbará et al. have proposed an algorithm to
detect outliers in noisy datasets where no information is
available regarding ground truth, based on a Transductive
Confidence Machine (TCM) [9]. Transduction is an alternative
to induction, in that instead of using all the data points
to induce a model, one is able to use a small subset of
them to estimate unknown properties of test points. Ma and
Perkins present an algorithm using support vector regression to
perform online anomaly detection on timeseries data in [10].
Ihler et al. present an adaptive anomaly detection algorithm
that is based on a Markov-modulated Poisson process model,
and use Markov Chain Monte Carlo methods in a Bayesian
approach to learn the model parameters [11].

An example of a machine learning approach to network
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anomaly detection is the time-based inductive learning ma-
chine (TIM) of Teng et al. [12]. Their algorithm constructs a
set of rules based upon usage patterns. An anomaly is signalled
when the premise of a rule occurs but the conclusion does not
follow. Singliar and Hauskrecht use a support vector machine
to detect anomalies in road traffic [13]. They use statistics
collected by a sophisticated network of sensors including
microwave loops and lasers, and design a detector for road
traffic incidents.

Our objective in this paper is to show the applicability
and need for learning algorithms in detecting anomalous
behaviour in a distributed set of network measurements. From
the wide variety of machine learning techniques available,we
choose the One Class Neighbor Machine (OCNM) proposed
by Muñoz and Moguerza in [14], and the recursive Kernel-
based Online Anomaly Detection (KOAD) algorithm that we
developed in [15]. We present our case via two examples: se-
quences of images from Transports Quebec’s camera network,
and IP timeseries data from the Abilene backbone network.
We demonstrate that both algorithms are effective in detecting
anomalies and motivate the development of more advanced,
fully adaptive and fully distributed, learning algorithms.

B. Organization of Paper

The rest of this paper is organized as follows. Section
II defines the problem we address. Section III describes
the Transports Quebec and Abilene datasets and Section IV
reviews the OCNM and KOAD algorithms. Section V presents
our results and Section VI summarises our conclusions and
discusses the need for distributed, learning algorithms for
network anomaly detection.

II. PROBLEM STATEMENT

The anomaly detection problem can be formulated as fol-
lows. A continuous stream of data pointsx ∈ R

k constitutes a
collection of measurements{xt}

T
t=1 governed by a probability

distributionP . Although measurements correspond to certain
physical events in the event spaceS, the mappingf : S → R

k

between them may not be known. We assume thatS can
be divided into two subspaces corresponding to normal and
anomalous physical conditions. In many practical situations
it is of interest to infer the membership of an event in
a particular subspace using the corresponding measurement.
As the probability distributionP governing measurements is
unknown, some mechanism should facilitate learning its vol-
umetric representation from the collection{xt}

T
t=1. A general

approach to the aforementioned problem of learning such a
representation consists of constructing a Minimum Volume
Set (MVS) with probability massβ ∈ (0, 1) with respect to
distributionP for a volume measureξ [16]:

G∗

β = arg min{ξ(G) : P (G) ≥ β, G measurable}. (1)

For a recent review of practical methods for estimatingG∗

β ,
see [17]. Online estimation of minimum volume sets satisfying
(1) allows the identification of high-density data regions where
the mass ofP is concentrated. Data points lying outside these

regions and corresponding physical events are then declared
anomalous.

Real multidimensional data exhibit distributions which are
highly sparse. Moreover, distributions of raw data may lack
invariance with respect to generating events. That is, physical
events pertaining to the same region inS may generate mea-
surements in completely different regions ofR

k. Therefore,
it is often desirable to reduce the dimensionality of raw data
via some feature extraction mechanismg : R

k → R
l where

l < k, that is robust to sparsity and variance induced by the
transitionf : S → R

k. We then construct a minimum volume
set from the features and not from the raw data.

III. D ATA

We use two different datasets to advocate the applicability
of machine learning algorithms to network anomaly detection.

1) Transports Quebec dataset:Transports Quebec main-
tains a set of webcams over its major roads [18]. These
cameras record still images every five minutes. We collected
images recorded by6 cameras over a period of four days (Sep.
30 to Oct. 03, 2006) on Quebec’s Autoroute 20. Each 5-minute
interval constitutes atimestep.

Anomaly detection in a sequence of images relies mainly on
the extraction of appropriate information from the sequence.
There are two fundamental reasons for this. First, the large
dimensionality inherent to image processing leads to dramatic
increase in implementation costs. Second, large variationin
operating conditions such as brightness and contrast (which
are subject to the time of day and weather conditions) and
colour content in the images (which is subject to season), can
cause abrupt and undesirable changes in the raw data.

We decided to use the discrete wavelet transform (DWT)
to process the images. The DWT is known for its ability to
extract spatially localised frequency information. We perform
the two-dimensional DWT on every image and average the
energy of transformation coefficients within each subband to
achieve approximate shift invariance of the feature extractor.
We expect that the appearance of a novel image in the
sequence will manifest itself as a sudden change in the power
in the frequency content of the vector of subband intensities.
At each timestep, we construct awavelet feature vectorfrom
each image obtained by each camera node.

2) Abilene dataset:The Abilene backbone network in the
US contains11 core routers. Abackbone flowconsists of
packets entering the Abilene network at one particular core
router and exiting at another. The data constitute a timeseries
of the entropiesof the 4 main packet header fields (source IP
address, destination IP address, source port number and desti-
nation port number) in each of11×11 = 121 backbone flows
pertaining to each timestep. The entropy for each backbone
flow, at each timestep, for each header field, is computed after
constructing an empirical histogram of the relevant headerfield
distribution for that backbone flow during that timestep. The
four component entropies are finally concatenated to obtainan
entropy timeseries of the121 backbone flows. Physical anoma-
lous phenomena cause changes in the distributions of packets
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belonging to the responsible backbone flow, and Lakhina et
al. showed in [6] that these changes are best captured by
changes in the entropies. The duration of a timestep is again
five minutes, and the length of the Abilene timeseries is2016
timesteps pertaining to one week (Dec. 15 to 21, 2003).

IV. A NOMALY DETECTION

A. One-Class Neighbor Machine (OCNM)

The OCNM algorithm proposed by Muñoz and Moguerza
provides an elegant means for estimating minimum volume
sets [14]. It assumes a sample setS comprising T , F -
dimensional data points,{xt}

T
t=1. The algorithm requires the

choice of a sparsity measure, denoted byg. Example choices
of a sparsity measure are thek-th nearest neighbour Euclidean
distance and the average of the firstk nearest-neighbour
distances. The OCNM algorithm sorts the values of theg

measure for the set of pointsS, and subsequently identifies
those points that lie inside the minimum volume set (MVS)
with the smallest sparsity measureg, up to a specified fraction
µ of the number of points inS.

If the k-th nearest neighbour distance function is used as the
sparsity measure, the OCNM algorithm involves calculating
the distance from every pointxt to everyother point in the
sample set. As each point isF -dimensional and there areT
timesteps, the complexity isO(T 2F ).

B. Kernel-based Online Anomaly Detection (KOAD)

Consider a set of multivariate measurements{xt}
T
t=1. In an

appropriately chosen feature spaceF with an associated kernel
function k(xi,xj), the features corresponding to the normal
traffic measurements shouldcluster. Then it should be possible
to describe the region of normality using a relatively small
dictionary of approximately linearly independent elements
{φ(x̃j)}

M
j=1 [19]. Here{x̃j}

M
j=1 represent those{xt}

T
t=1 that

are entered into the dictionary and we expect the size of
the dictionary (M ) to be much less thanT , leading to
computational and storage savings. Feature vectorφ(xt) is
said to beapproximatelylinearly dependent on{φ(x̃j)}

M
j=1

with approximation thresholdν, if the projection errorδt

satisfies the following criterion:

δt = min
a

∥

∥

∥

∥

∥

∥

M
∑

j=1

ajφ(x̃j) − φ(xt)

∥

∥

∥

∥

∥

∥

2

< ν. (2)

wherea = {aj}
M
j=1 is the optimal coefficient vector.

The Kernel-based Online Anomaly Detection (KOAD) algo-
rithm operates at each timestept on a measurement vectorxt.
It begins by evaluating the errorδt in projecting the arriving
xt onto the current dictionary (in the feature domain). This
error measureδt is then compared with two thresholdsν1 and
ν2, whereν1 < ν2. If δt < ν1, we infer thatxt is sufficiently
linearly dependent on the dictionary, and represents normal
traffic. If δt > ν2, we conclude thatxt is far away from the
realm of normal behaviour, and immediately raise a “Red1”
alarm to signal an anomaly.

If δt > ν1, we infer thatxt is sufficiently linearly in-
dependent from the dictionary to be considered an unusual
event. It may indeed be an anomaly, or it may represent an
expansion or migration of the space of normality. In this case,
we do the following: raise an “Orange” alarm, keep track of
the contribution of the relevant input vectorxt in explaining
subsequent arrivals forℓ timesteps, and then make a firm
decision on it.

At timestept + ℓ, we re-evaluate the errorδ in projecting
xt onto dictionaryDt+ℓ corresponding to timestept+ ℓ. Note
that the dictionary may have changed between timestepst and
t+ℓ, and the value ofδ at this re-evaluation may consequently
be different from theδt at timestept. If the value ofδ after
the re-evaluation is found to be less thanν1, we lower the
orange alarm and keep the dictionary unchanged.

If the value ofδ is found instead to be greater thanν1 after
the re-evaluation at timestept + ℓ, we perform a secondary
“usefulness” test to resolve the orange alarm. The usefulness
of xt is assessed by observing the kernel values ofxt with
xi, i = t + 1, . . . , t + ℓ. If a kernel value is high (greater
than a thresholdd), then φ(xt) is deemed close toφ(xi).
If a significant number of the kernel values are high, then
xt cannot be considered anomalous; normal traffic has just
migrated into a new portion of the feature space andxt should
be entered into the dictionary. Contrarily if almost all kernel
values are small, thenxt is a reasonably isolated event, and
should be heralded as an anomaly. We evaluate:

[

t+ℓ
∑

i=t+1

I(k(xt,xi) > d)

]

> ǫℓ, (3)

whereI is the indicator function andǫ ∈ (0, 1) is a selected
constant. In this manner, by employing the secondary “useful-
ness test”, we are able to distinguish between an arrival that
is an anomaly, from one that is a result of a change in the
region of normality. If (3) evaluates true, then we lower the
relevant orange alarm to green (no anomaly) and addxt to
the dictionary. If (3) evaluates false, we elevate the relevant
orange alarm to a “Red2” alarm.

The KOAD algorithm also deletes obsolete elements from
the dictionary as the region of normality expands or migrates,
thereby maintaining a small dictionary. In addition, it in-
corporates exponential forgetting so that the impact of past
observations is gradually reduced.

Assuming a dictionary containingm elements, the computa-
tional complexity of the KOAD algorithm isO(m2) for every
standard timestep, andO(m3) on the rare occasions when
an element removal occurs. The KOAD complexity is thus
independent of time, making the algorithm naturally suited
to online applications. Our experiments have shown that high
sparsity levels are achieved in practice, and the dictionary size
does not grow indefinitely. See [15] for details regarding the
KOAD algorithm.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5 (f) Camera 6

Fig. 1. Pictures from the Transports Quebec camera network corresponding to timestept = 368. Congestion is evident in all the images at this timestep.
Both OCNM and KOAD flagged this timestep as anomalous for mostrepresentative parameter settings, when run in a distributed fashion in each of the6
nodes.

C. Monitoring Architecture

We propose two monitoring architectures: a distributed
approach and a centralised approach. In the distributed archi-
tecture, the detection algorithms are locally run at each node.
After each timestep, each node makes a local decision regard-
ing the presence or absence of an anomaly at that timestep,
and transmits abinary result to the Central Monitoring Unit
(CMU). The CMU then makes a decision on the location of
an anomaly in time and space, if at leastn of the c nodes
individually signalled an anomaly. The idea behind thisn-
out-of-c detection scheme is that in many applications, such
as in a road network,bona fideanomalies such as an untimely
traffic congestion are simultaneously evident to multiple nodes.
Individual flags are likely to be caused by comparably less
important and independent events such as a single camera
malfunctioning.

In the centralised architecture, all measurements are com-
municated to the Central Monitoring Unit. The CMU then
runs the detection algorithm. The centralised approach is often
desirable and necessary to detect anomalies that exhibit them-
selves through distributed changes in the global measurement
vector. The works of Lakhina et al. have shown that traffic
volume distributions in large backbone IP networks exhibita
covariance structure, and detecting a break in this structure
enables one to unearth a wide range of anomalies [4]–[6].

V. EXPERIMENTAL RESULTS

A. Transports Quebec Data Analysis

In this section, we study the effectiveness of OCNM and
KOAD in detecting unusual events in Quebec’s road net-
work. We apply OCNM and KOAD to image sequences

from Transports Quebec webcam network. This is an example
application of the distributed monitoring architecture described
in Section IV-C. Our data consists of a series of444 timesteps
corresponding to daylight hours during the Sep. 30 to Oct. 03,
2006 period. We use the averaged energy of DWT coefficients
(see Section III-.1) from6 subbands from each of the6
cameras (nodes). In our application withc = 6 cameras, we
usedn = 3 as the central decision rule.

We present illustrative images from the6-camera network
corresponding to a traffic congestion in Fig. 1. Given the
normal flow of traffic during the length of our dataset, short
periods of congestion constitute an example of a road network
anomaly. This timestep was flagged in all6 nodes by both
OCNM and KOAD as anomalous, for most representative
algorithm parameter settings.

Fig. 2(top panel) shows the results of wavelet analysis of
the image sequence from one camera. We selected one of the
six cameras for preliminary assessment of feature extraction
quality. It can be seen that the high-frequency components of
the feature vector show the expected variation in the vicinity
of traffic jams. Abrupt changes to the position of a camera
generate sudden spikes in the feature vector components. Fig.
2 (middle panel) shows the distance measures obtained using
the OCNM algorithm withk set to50 and usingµ = 0.90
to signal the10% outliers. Fig. 2(bottom panel) shows the
variations in KOAD projection errorδt. We ran the KOAD
algorithm here with the thresholdsν1 = 0.25 andν2 = 0.50,
a Gaussian kernel having standard deviation0.01, and default
settings for all other parameters (see [15]) which includesthe
orange alarm being resolved after20 timesteps (i.e.ℓ = 20).
We begin our analysis of Fig. 2 att = 51 with the previous
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MVS threshold. Bottom panel: KOAD projection errorδt with dashed line
indicating lower thresholdν1. Transports Quebec dataset, Camera6.

timesteps constituting the training period in this application.
Fig. 3 presents the receiver operating characteristics (ROC)

curves showing the variation in the probability of detection
(PD) with the probability of false alarms (PFA), for the
OCNM and KOAD algorithms applied to the Transports
Quebec dataset. In our experiments, we used OCNM with the
nearest-neighbour parameterk set to50, and varyingµ from
0.50 to 0.95 to signal between50% and5% outliers. We ran
KOAD with the thresholds set toν1 = 0.00001, ν2 = 0.05,
and using a Gaussian kernel where the standard deviation of
the kernel function is varied between0.002 and 0.020. The
other KOAD parameters are retained at their default values
(see [15]), with an orange alarm resolved after20 timesteps
(i.e. ℓ = 20).

Although our experiments were performed on a limited
data set, this result provides a preliminary assessment of
the anomaly detection algorithms based on wavelet feature
extraction mechanism and machine learning data clustering
approaches. It can be clearly seen from Fig. 3 that the KOAD
detector outperforms the OCNM detector.

B. Abilene Network Data Analysis

In this subsection we present the results of applying OCNM
and KOAD to the Abilene dataset. Here we want to also
detect those anomalies that cause sudden changes in the
overall distribution of traffic over the network, as opposed
to affecting a single link, during a particular timestep. Thus
in this application we implement the centralised architecture
proposed in Section IV-C. For discussions on the wide range of
anomalies seen in IP networks, refer to the works of Lakhina
et al. [4]–[6]. Here we also compare our results with those
obtained by Lakhina et al. using the PCA subspace method of
anomaly detection.
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Fig. 3. ROC curves showing variation in probability of detection (PD) with
probability of false alarms (PF A) for distributed anomaly detection based on
wavelet feature extraction. Solid line shows KOAD while dashed line shows
OCNM data clustering. Transports Quebec dataset.

Fig. 4(a) shows the variations inδt obtained using the
KOAD algorithm with ν1 = 0.01, ν2 = 0.02, a Gaussian
kernel of standard deviation0.6, and default settings for all
other parameters (see [15]). We start our analysis att =
301, with the previous timesteps disregarded as constitute
the training period in this application. Fig. 4(b) shows the
magnitude of the energy in the residual components using the
PCA subspace method of anomaly detection [6]. We used10
principle components for the normal subspace, in accordance
with [6]. Fig. 4(c) shows the distance measures obtained using
OCNM with k = 50, together with the threshold indicating the
95% minimum volume set. The spike positions in Figs. 4(a-c)
indicate the anomalies signalled by KOAD, PCA and OCNM,
respectively. Fig. 4(d) isolates for comparison the positions of
the anomalies detected by each individual algorithm.

It is evident from Fig. 4(c) that the OCNMk-th nearest
neighbour distance metric experiences an upward trend during
the one-week period. This phenomenon was observed for
values ofk that ranged from10 to 200. Although the positions
of the spikes (with respect to the immediate surrounding
timesteps) in Fig. 4(c) largely correspond with those in Fig.
4(a-b), we see that most of the outliers signalled by OCNM
lie in the latter part of the plot.

The increasing distance metric suggests that the space of
normal traffic expands over the recorded time period. The
KOAD algorithm is best able to detect anomalies in such
a situation, as the dictionary in this algorithm isdynamic,
with obsolete elements being removed and new, more relevant
elements added as necessary. Indeed, we noticed in our exper-
iments with this particular dataset that the dictionary members
change significantly over the reported period.

Fig. 4(c) also argues the need for a sequential or block-
based version of OCNM where outliers may be incrementally
reported after every timestep or block of timesteps. When we
ran OCNM on the first1000 data points only, it flagged the
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same anomalies as KOAD.

VI. CONCLUSION

Our preliminary results of the application of machine
learning techniques to network anomaly detection indicate
their potential and highlight the areas where improvement is
required. The non-stationary nature of the network measure-
ments, be they network traffic metrics or recordings of physical
phenomena, makes it imperative that the algorithms be able to
adapt over time. To make the algorithms portable to different
applications and robust to diverse operating environments,
all parameters must be learned and autonomously set from
arriving data. The algorithms must be capable of running
in real-time despite being presented with large volumes of
high-dimensional, noisy, distributed data. This means that the
methods must perform sequential (recursive) calculationswith
the complexity at each timestep being independent of time.
The computations must be distributed amongst the nodes in
the network, and communication, which consumes network
resources and introduces undesirable latency in detection, must
be minimised.

The KOAD algorithm satisfies some of these requirements,
being recursive in nature and adapting to changing data
streams. However, in its current form it does not learn ap-
propriate parameter settings, exhibits sensitivity to threshold
choices, and has no natural distributed form. The distributed
architecture we have described in this paper is a sub-optimal
system. Our current and future research focuses on rectifying
these deficiencies in the KOAD approach and exploring other
promising learning-based alternatives to the network anomaly
detection challenge.
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