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Abstract

Energy efficiency in cloud computing is becoming more
and more important for IT operators of data centers. Sev-
eral effort to use low power machines in the data center
level has been explored. Also, data processing frame-
works such as MapReduce and Hadoop are frequently
used to process data intensive jobs. However, there have
not been an extensive study on the impact of low power
computers on such data processing frameworks. Actu-
ally, development of low power computers is demanding
the architectural paradigm shift for cloud applications.
In this paper, we evaluate Apache Hadoop on low power
machines and study the feasibility of them in cloud sys-
tems. We also propose AnSwer (Augmentation and Sub-
stitution), an energy saving method to reduce energy con-
sumption by introducing low power machines. In An-
Swer, augmentation and substitution complement each
other to prevent data loss and to improve overall power
consumption.

1 Introduction

Recent advances in cloud computing is driving the heavy
use of world-wide data centers in various ways. A great
deal of services, (Infrastructure as a Service, Platform
as a Service, Software as a Service, Data Storage as a
Service) are emerging by the advance of cloud comput-
ing techniques. A large number of companies have been
already benefited by delegating the operation of IT ser-
vices to the cloud service providers. Along with this
progress, energy efficiency is becoming more and more
important for future computing environment. The cost
of operating data center computers is rapidly increasing.
Environmental Protection Agent (EPA) recently reported
that 1.5% of the total US energy use in 2006 was used to
power data centers, and this is expected to nearly double
by 2010 [1]. Hamilton reported that the data centers of
Amazon.com are facing highly increased power demand

and this accounts for 59% of the total budget with three
year amortizations [15], and also insisted that power dis-
tribution is already fairly efficient. Therefore, we should
keep our attention on reducing the power delivered to
the servers, which accounts for 59% of the total power
supply. There are also environmental concerns which is
yielding the regulations for environment protection. For
example, at the recent UN climate summit, it is widely
expected that industrialized nations will agree on a more
comprehensive, actionable climate agreement to succeed
the Kyoto Protocol.

The opportunity is here that there are still much room
to reduce the power consumption of data center in many
ways. Another report states that it can be expected that
savings of the order of 20% can be achieved in server
and network energy consumption with respect to current
levels [2]. Much effort has been done to improve the en-
ergy efficiency of the cloud computing [6, 8, 25]. As one
of such effort, Barroso et al. have proposed the concept
of energy proportional computing [7]. They analyzed
the Google’s commodity servers and observed that the
traditional servers lack the energy proportional property,
which means the servers consume significant amount of
power even if the servers are in idle state. They also in-
dicate that for modern distributed systems, the aggregate
cost/performance ratio of an entire system is much more
important [5]. Due to this, we advocate the powering
down techniques to view the global cloud system as an
energy proportional computing system.

Among other cloud applications, we focus on the
data processing frameworks. Data processing frame-
works such as MapReduce [11], Pig [22], and Sec-
tor/Sphere [13,14] are instances of the most widely used
applications in cloud computing systems. The frame-
works are especially optimized for the data intensive ap-
plications. To minimize the damage incurred by the sig-
nificant amount of data transfer, they place each comput-
ing task as closely to the node which occupy the input file
as possible. This property significantly reduces the data
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transfer overhead, which consequently greatly improves
the overall running time. To support this, those systems
use user level file systems such as Hadoop File System
(HDFS), Google File System (GFS) [12] and Sphere.
They usually do not distinguish the data node with com-
pute node, where the data node is also a part of compu-
tation nodes. This becomes a problem when considering
suspending1 servers, which may cause temporal data un-
availability. There are two conflicts that makes it hard to
power down servers for data processing frameworks.

• Data locality

As we have noted, the data processing frameworks
usually treat the data node and the compute node
in the same manner. Therefore, we cannot ignore
the data placement policy when we suspend partial
servers.

• Performance

If we suspend partial servers, we might experience
performance problems in data processing frame-
works. This is because the suspended servers are
not only used for the distribute storage, but also
needed for the data processing.

Fig. 1 shows the problem definition. Suppose that
when the data center falls short of power supply, oper-
ators decide to turn off several servers. If they turn off
the server4 and server5 of Fig. 1, then two blocks (gray
and half white half zigzag) will be temporarily unavail-
able. Also, in the system’s viewpoint, the powering down
two servers inevitably leads to the degraded performance
even if they are willing to sacrifice performance for the
improved power efficiency. We augment existing servers
with low power computers.

There have been a couple of solutions which consider
the redundancy to address this problem. To address this
short-fall in Hadoop’s data-layout strategy, Leverich et
al. proposed a new invariant for during block replica-
tion: at least one replica of a data-block must be stored
in a subset of nodes we refer to as a covering subset [17].
They used the covering subset to prevent data loss in case
of suspending partial servers. In this way, they provided
the ability to reduce power consumption. Harnik et al.
address this by introducing the full coverage set [16].
They did not consider the data processing frameworks,
but focus on the data placement policy of generic dis-
tributed file systems. The problems of these solutions
is threefold. First, suspending servers reduces the num-
ber of active servers, which inevitably damages the pro-
cessing power of the cluster. Since one of objectives of
previous work is to maximize the nodes which are con-
sidered safe to be turned off, there will be a significant
performance degradation of the whole system. Second,

server1 server2 server3 server4 server5

server power down

Figure 1: Some chunks becomes unavailable when par-
tial servers are suspended

they still use high end or at least commodity computer
systems to replace or augment servers which are sus-
pended for a given time period. Along with the first prob-
lem, we cannot put many servers in place of suspended
servers since they also require much power. We over-
come this by introducing low power servers instead of
existing servers. Since their power consumption is much
smaller than that of servers, we can put a relatively large
number of low power computers in place of servers. This
can greatly enhance the availability and reliability of data
because the number of decreased servers is smaller than
that of when using existing high end servers. Finally,
the primary concern of those solutions is to avoid poten-
tial data unavailability for distributed storage systems.
However, for data processing frameworks, not only the
replicas that are going to completely disappear, but also
the replicas which are partially lost are important since
the data processing frameworks use those replica map
information to schedule the compute tasks. If the distri-
bution of replicas is biased towards the servers, the low
power servers will have to acquire the data from remove
locations to process each compute task. Our solution ad-
dresses these problems and lies between two extremes,
in essence, we use both of these techniques to comple-
ment each other. We propose AnSwer (Augmentation
and Substitution), which is a rack-based augmentation
method to complement the power eating servers. Similar
to our work, recent studies have shown that employing
low-power, low-cost machines for data centers is a good
solution to improving the energy efficiency [15, 19]. In
this paper, we answer the following questions for the data
processing frameworks.

• Feasibility of low power computers instead of com-
modity servers

We study the feasibility of augmenting the high per-
formance servers with the low-power, and low-cost
machines for running data processing frameworks.
We show the per-server performance of 4 types of
machines for running sort, and other benchmark
tools with Apache Hadoop [4].
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• Architectural shift by integrating energy efficient
machines with traditional servers

The current data centers are already full of a large
number of servers or commodity computers. If
data centers are willing to exploit low power ma-
chines for economical, and environmental motiva-
tions, how can those energy efficient servers can be
integrated with the existing servers?

This paper is organized as follows. Section 2 presents
techniques related to cloud and energy efficiency solu-
tions. Section 3 shows several proof that low power com-
puters perform well enough to partially replace the exist-
ing high end servers in running data processing frame-
works. Section 4 proposes our scheme and Section 6
concludes our work.

2 Related Work

There have been many studies on the improvement of
the energy efficiency for storage systems [10, 18, 21, 23,
27–31]. Most of them deal with the energy efficiency of
RAID storage systems. Among them, Diverted Accesses
is the first effort to exploit redundancy to conserve energy
in storage systems [24]. Exploiting redundancy is a nice
technique to inactivate idle servers in storage systems. It
segregate the storage system into two sets, original and
redundant copies, respectively. Our approach is similar
to their work in that we leverage the inherent redundancy
policy of data processing frameworks to conserve sys-
tem’s overall energy.

Harnik et al. [16] propose a method that obtains full
coverage without modifying the data placement func-
tions of existing storage systems by introducing auxil-
iary nodes. Their primary contribution is that they do not
modify the data placement policy of the existing storage
systems. However, their primary concern is the problem
of data unavailability for the generic distributed storage
systems. Hadoop has been studied by many researchers
in terms of performance, reliability, and availability. Re-
cently, considering energy efficiency in Hadoop is being
actively explored. Leverich et al. [17] introduce an ad-
ditional invariant for the Hadoop’s data placement pol-
icy. They use Hadoop’s global knowledge to place data
blocks in one of fixed servers, which is called the cov-
ering subset. In this way, they prevent the temporal data
loss caused by the suspended servers. Their solution is to
use other power consuming devices to reduce the over-
all power. Chen et al. [9] present an analytical frame-
work for software energy efficiency, including efficiency
of systems such as MapReduce. They experimentally an-
alyzed the Hadoop’s energy consumption in many cases.
They also provide a quantitative model to provision the
servers depending on the current power drain.

Several effort to use low power machines in the data
center level has been explored. Hamilton et al. have pro-
posed an Athlon-based sled server design, called the Co-
operative Expendable Micro-Slice Servers (CEMS) [15].
Each server consists of dual core AMD processor, and
Mini-ITX board. In addition, Each sled has six servers,
six disks and a single shared power supply. They show
a reasonable performance considering the power con-
sumption and total cost of ownership (TCO). Lim et
al. also analyze the performance of low power com-
puters with Internet application workloads and propose
a new server architecture with low power computers for
warehouse-computing environments. There are ARM
CPU based servers that are running Web servers as well.
LinuxArmOrg [20] is such a project which built server
blade systems of Marvell MV87100. By contrast, there
have been quantitative analysis on the microarchitectural
study of small cores [26]. They prototyped a search
system with Atom-based multicore machines and ana-
lyzed the such behaviors as power consumption and mi-
croarchitectural activity. FAWN(a Fast Array of Wimpy
Nodes) [3] is a cluster of cost-effective components, such
ad low-power, efficient embedded CPUs and the flash
storage.

Finally, Ranganathan has studied a large number of re-
searches regarding energy efficiency and proposed sev-
eral approaches [25] for future research. Two direc-
tives inspired our approach. First, we spend somebody
else’s power to energy efficiency at the expense of the
low power machines. Second, we spend power to save
power. We substitute part of the servers with low power
machines.

3 Feasibility of Low Power Machines for
Data Processing Frameworks

3.1 Server Measurements
Our primary concern is to augment high performance or
commodity systems with low-power machines for data
processing frameworks. Therefore, we have to consider
whether utilizing low power computers performs effi-
ciently enough to augment existing high end servers.
We quantitatively analyze the performance of Hadoop
jobs under various computing power environments. We
have set up four distinctive classes of computers, two
for server environments, and two for low power com-
puting environments. First two classes represent high-
end server and commodity server environment, and last
two low power computer environment respectively. The
servers which are used in our evaluation are shown in Ta-
ble 1. Svr1 and Svr2 are typical server machines whereas
Low1 and Low2 are small machines whose dimensions
are only 215x210x55mm and 101x115x27mm respec-
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Table 1: Server specifications

Name CPU Cores Memory
CPU
TDP

Measured
Power Con-
sumption

Cost Remarks

Svr1 Intel Xeon X5450
3.00 GHz 2 x 4 16 GB DDR2 120 W Peak/360 W,

Idle/228 W $3,200 prepackaged
server

Svr2 Intel Core2 Quad
Q9550 2.83 GHz 4 8 GB DDR2 95 W Peak/125 W,

Idle/69 W $1200

Low1 Intel Atom 330
1.60 GHz 2 2 GB DDR2 8 W Peak/33 W,

Idle/25 W $390 Zotac ION
motherboard

Low2 Intel Atom Z530
1.60 GHz 1 1 GB DDR2 2 W Peak/12 W,

Idle/7 W $360 fitPC2

tively. We can take advantage of these low power ma-
chines in terms of not only power consumption but also
space savings. To quantify the performance and fairly
compare the result regarding the power consumption, we
first measure the power consumed at each server. For
accurate measurement, we directly measured the power
consumption by inserting measuring toolkit between the
power supply unit and the power socket. The last col-
umn of Table 1 shows the power consumption when each
server is at idle/peak load. Svr1 consumes more than
200 W even if it is just sitting around. Since Svr1 is
equipped with two quad-core processor, the power con-
sumption of CPU accounts for more than two thirds of
the overall power consumption. It is even bigger than the
power consumed by Svr2 at peak load. Low power nodes
spend negligible amount of powers during idle time as
expected. It is intriguing that the power consumption of
Low2 is similar to the power consumed when the Svr2
has just plugged in without powering on. This num-
bers show that low power machines spend extremely low
power at any time.

3.2 MapReduce Performance

To measure the performance of Hadoop at various com-
puting environments, we ran Apache Hadoop [4] jobs on
each server class. We selected two workloads, sort and
gridmix, which are both present in the source code tree
of Hadoop. TeraSort (sort) is one of the most famous
benchmarks which is used to measure the performance
of distributed systems. We generated 100,000,000 ran-
dom key/value pairs (which amounts to approximately
10 GB). The sort consists of 150 map tasks and 1 reduce
task. gridmix is an open set of applications for bench-
marking and other cluster related evaluation. The cur-
rent application set of gridmix has been critical in the
recent performance enhancements in Hadoop. There are
six applications in gridmix, most of them are I/O exten-

sive jobs. For gridmix benchmark, we synthetically gen-
erated 2 GB of input files. Also, we used all the included
workloads of gridmix, such as streamSort, javaSort, web-
dataScan, combiner, monsterQuery and webdataSort, for
all kinds of size classes - Small (3 map tasks and 1-
15 reduce tasks), Medium (30 map tasks and 7-170 re-
duce tasks) and Large (100 map tasks and 70-370 reduce
tasks). For both of the benchmark, to study the perfor-
mance of each server alone, we executed Hadoop jobs on
a single server and measured the running time. For both
of the benchmarks, the maximum number of concurrent
map/reduce tasks on each server are set equal to the num-
ber of cores it has. For instance, Svr1 can concurrently
run 8 map/reduce tasks (totally 16 tasks) at maximum.
In case of hyper-threading-enabled processors, such as
Low1 and Low2, we regard each thread as a single core.
Therefore, Low1 and Low2 can concurrently 4/4 and 2/2
map/reduce tasks at maximum, respectively. In this way,
servers can use most of their resources efficiently.

Table 2 summarizes the normalized running time and
performance/Watt for each server class. One big differ-
ence between sort and gridmix is that gridmix has multi-
ple concurrent jobs which are to be executed at the same
time. For sort benchmark, we submitted only one job
for each setting. Therefore, gridmix represents the sit-
uation where a lot of job requests are issued in a short
time. As you can see, for all the cases, Svr1 performs the
best of all, though the difference between Svr1 and Svr2
is very small. As expected, Low1 and Low2 exhibit two
or three times increased running time. However, if we
consider power consumption, we can see interesting re-
sults. To compute the Perf/Watt, we used the power con-
sumption measured in the previous section (we use the
two thirds of the range between power of idle and peak
to consider the utilization), and computed Perf/Watt, the
running time divided by the power consumed. Although
the low power machines increased the running time sig-
nificantly, they are very power-efficient. For instance,
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Table 2: Comparison of standalone performance. The
values of this table are normalized to the Svr1’s perfor-
mance.

sort gridmix

running
time

Perf/Watt
running
time

Perf/Watt

Svr1 1 1 1 1
Svr2 1.1 3.3 1.1 3.2
Low1 2.5 25.5 1.4 14.1
Low2 3.7 113.3 2.1 65.9

Table 3: Performance contribution of each server class.
The values of this table are normalized to the Svr1’s per-
formance.

gridmix with small
running time Perf/Watt

Svr1 1 1
Svr2 1.1 3.4
Low1 1.3 18.2
Low2 1.3 40.6

Low2’s Perf/Watt is 113 times better than that of high
end Svr1 for sorting application. Since the sorting gen-
erates only one reduce task, this improvement may come
from the under utilization of Svr1. So we checked the
Perf/Watt in running gridmix application. Although the
number is decreased from 113 to 65, Low2 still shows
significant performance per unit power consumption.

We also measured the impact of each server class
on Hadoop by evaluating gridmix benchmark with three
fixed servers. The specifications of the three fixed servers
are the same as Svr2. For all the experiments, we con-
structed four nodes, where three of them were fixed as
noted. Fixing these three machines, we conducted exper-
iments with varying server class. We used the same input
data as we used in the previous experiment. The size of
input is 2 GB and we selected several workloads. We
used part of the gridmix applications, monsterQueries
and webdataSort. All the workloads were set to use
Small, which amounts to 3-10 map tasks and 5-70 reduce
tasks. The number of total jobs was 17. Since the jobs
are executed in parallel, the system is highly utilized with
concurrent map/reduce tasks. We have shown the results
in Table 3. The table says that the difference of run-
ning time is not significant and low power computers use
power more effectively than the high end servers. When
the cluster had Low1 or Low2 machine, its performance
is degraded compared to that of homogeneous Svr1’s by
30%. We consider that the power save mode is intended
for the light usage pattern, so the increased running time

can be compensated by reduced cost through low QoS
levels. With this result, we can also indirectly show that
replacing high end servers with low power computers
does not incur significant performance degradation.

With this quantitative analysis, we summarize the re-
sults as follows. First, using low power computers is still
effective for data processing frameworks. Second, re-
placing part of the high end servers with low power does
not incur severe performance degradation.

4 Low Power Servers for Data Processing
Frameworks

As we have noted in Section 2, suspending partial servers
leads to inevitable data loss and performance degradation
if we do not carefully handle data blocks. We categorize
two kinds of existing solutions for this problem and use
them for the data processing frameworks.

prePSM prePSM uses a pre-configured node set to pro-
actively prepare for the system-wide power save
mode.

postPSM postPSM is a reactive solution where the sys-
tem adjusts the configuration after the system is in-
tended for the power save mode.

prePSM is well suited for the short-term and dynamic
services because in prePSM, the pre-configured node set
enables the system to be responsive to the server config-
uration change. Even if the system enters the power save
mode, prePSM produces a small amount of data trans-
fer since it pro-actively replicates data blocks. However,
prePSM might suffer from the energy waste induced by
the augmenting servers when the target system is a long-
running service. On the other hand, postPSM is opti-
mized for the long-running services due to the fact that
it uses the extra servers only when necessary. However,
postPSM may spend significant network bandwidth and
time to enter the power save mode. Therefore, we pro-
vide a hybrid solution to this problem by mixing these
two solutions.

4.1 Augmentation and Substitution (An-
Swer)

We use a rack-based solution as Hadoop is a completely
rack-based framework. The current implementation of
Hadoop is highly specialized for the rack-based clusters.
Both of the scheduling and the replica placement pol-
icy utilizes the rack-based cluster environment to protect
the data even if a whole rack is failed. Along with that,
we pre-configure low power nodes within a local rack.
The advantage of using rack-based solution is as follows.
First property is reliability. As Hadoop places replicas in
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at least two different racks, our rack-based solution can
provide the reliability in the same manner. A rack of low
power servers can be regarded as a separate rack for re-
liability. Therefore, replicas of suspended servers can be
safely placed at the remote rack of low power servers.
Second property is the administrative effort. The nodes
added during the power save mode are interim nodes and
therefore, they should be easily maintained by adminis-
trators. Based on the quantitative analysis of low power
computers for data processing frameworks, AnSwer uses
two auxiliary techniques, augmentation and substitution
with low power computers. Augmentation minimizes the
data transfer caused when auxiliary nodes replace the ex-
isting servers. Substitution reduces the impact on data
processing performance by replacing high end servers
with low power nodes.

4.1.1 Augmentation

The need for augmentation is to minimize the data trans-
fer caused by the data blocks residing at the nodes to
be suspended. We augment the existing servers with
pre-configured low power nodes to store file blocks at
the time of block allocation. We use the invariant on
Hadoop’s data placement policy. We augment the system
with rack-based low power computers. Since Hadoop
version 0.21, they provide user-specified block allocation
policy, which can easily be implemented with a single
Java class.

4.1.2 Substitution

Previous studies do not consider the compensation for
the performance degradation caused by the suspended
servers. Therefore, Augmentation alone is not sufficient
to effectively and efficiently exploit the low power com-
puters. We mitigate this by substituting high end servers
with low power machines with a specified ratio. As we
have noted in Section 3, the replacement does not incur
severe performance degradation. Therefore, we replace
the existing high end servers with low power computers
by a given ratio,

α =
the number of replaced high end servers

the number replacing low power computers
.

For instance, if α = 1, then the high end servers are
replaced with the same number of low power computers.
If α = 2, then two high end servers will be replaced with
one low power computers.

4.2 Energy Proportionality

Table 4 shows the notations used in the following sec-
tions. We first consider the power consumption. The net
power reduction is as follows,

Table 4: Model
PS(x)

Power saved with x high-end servers pow-
ered down

PI(x)
Power increased with x low power com-
puters powered up

NPS(x)
Net power saved. Equals to PS(x) −
PI(x)

Q(s) # of tasks per unit time for server class s

Phe, Plp
power consumption of a high end and low
power computers, respectively

α substitution ratio

PS(x) = x× Phe

PI(x) =
x

α
× Plp

NPS(x) = PS(x)− PI(x) =
x

α
× (αPhe − Plp)

For a given α, NPS(x), the net power saved, is pro-
portional to the number of replaced servers.

Second, we explore the AnSwer’s impact on perfor-
mance. The performance diminished and increased by
suspending the high end servers and adding low power
servers is calculated as follows.
Pdim(x) = x×Q(high)

Pinc(x) =
x

α
×Q(low),

where Q(high) and Q(low) denote the number of
tasks per unit time for high end and low power com-
puter respectively. Also, Pdim(x) is usually greater than
Pinc(x). The performance loss when replacing existing
servers with low power servers is as follows.

Ploss = Pdim(x)− Pinc(x) = xQ(high)−
x
α
Q(low)

Suppose that we are using energy-proportional com-
puting. Then,
Q(low) = βPlp, Q(high) = βPhe.
If we rewrite the performance loss, we can get,

Ploss = xβPhe −
x

α
βPlp =

βx

α
(αPhe − Plp) =

βNPS(x)
We can conclude that the performance loss is propor-

tional to the net power saved, which means the system
has the property of energy proportionality.

5 Discussion

In this section, we discuss the practical problems when
we actually suspend partial servers. As noted, these
problems are not considered in the existing papers. We
think that there are two specific problems, i) which nodes
to choose and ii) where to migrate lost replicas
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5.1 Node Selection

In order for the power save mode of data processing
frameworks to work properly, one of the most impor-
tant tasks is to reasonably decide which nodes to sus-
pend. The following factors are primary obstacles that
tackle the power save mode in data processing frame-
works. First, there is neither a general metric to dis-
tinguish the energy efficiency of various servers nor ac-
curate power measuring units. Defining the amount of
work that is done by a server considering the power con-
sumption is a tough job because there are a large num-
ber of parameters to consider. Server capability such
as CPU and memory could be one of such parameters.
However, even if the system consists of homogeneous
servers, the server’s energy efficiency still depends on a
variety of parameters, such as what workload as used,
what kind of tasks (map/reduce) was used, etc. Second,
the amount of data to be migrated heavily depends on
the node selection method. A possible solution is to con-
sider the performance and the energy efficiency simulta-
neously. First, we can profile the power usage of each
server with a suite of workloads, I/O intensive and CPU
intensive may be good candidates. We can draw a power
usage curve of each server class and use this power dis-
tribution for power measurement. On the other hand,
for performance, we can select considerably slow nodes
as candidates. This method has two implications. It is
well known that few slow nodes could damage the over-
all performance severely [9]. Suspending these servers
can induce positive effects on the system’s overall per-
formance. Also, the word “slow nodes” self-explains the
energy inefficiency of such nodes. Therefore, those are
good candidates to suspend. In Hadoop’s context, these
nodes are ones that mostly incurs speculative executions.

5.2 Replica Reconciliation

Replica reconciliation is a crucial procedure which in-
curs actual data transfer and consumes much time. A
naive approach is to restore all the replicas that is going
to be lost during the power save mode. For example, sup-
pose that the administrator decides to suspend 10% of the
cluster and each server has 10 GB chunks on average. A
naive approach will produce data transfer of 10 GB times
the number of nodes to suspend totally. Therefore, if we
process the replica reconciliation aggressively, the pro-
cess of suspending partial servers may lead to significant
bulk data transfer in a short period. By contrast, if we mi-
grate chunks way too much carefully, the time to reach
the stable power save mode may be too long. The cur-
rent implementation of HDFS’s fault tolerance works in
such a limited way. When the namenode detects a failure
of a datanode, the namenode acquires the list of chunks

that were replicated by the dead datanode and initiates
the replication process. In this procedure, the amount of
replica is limited by the predefined parameter and conse-
quently consumes much time to reconciliate all the repli-
cas. A possible solution is to migrate partial replicas, not
complete replica set. We can temporarily adjust the repli-
cation factor of each chunk during power save mode. The
bottom line is that it is strongly recommended to balance
this tradeoff.

6 Conclusion and Future Work

Energy efficiency in cloud computing is becoming more
and more important for IT operators of data centers and
several effort to use low power machines in the data cen-
ter level has been explored. We consider the problems
that arise when we suspend existing servers, In this pa-
per, we evaluate Apache Hadoop on low power machines
and study the feasibility. We also propose AnSwer (Aug-
mentation and Substitution), an energy saving method to
reduce energy consumption by introducing low power
machines. As our future work, we will implement An-
Swer in Hadoop and experimentally study AnSwer in
depth to quantify the impact on performance and power
savings. Furthermore, we will use other benchmark tools
to study the behavior of data processing frameworks in
various ways.
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[6] BARROSO, L., AND HÖLZLE, U. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan & Claypool, 2009.
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