
Correctness Proofs for Device
Drivers in Embedded Systems

Jianjun Duan, John Regehr

School of Computing

University of Utah

Oct. 7, 2010

1

2

Embedded systems

3

processor core memory

Cambridge
ARM model

Fox (2003)

4

processor core memory

device

environment

5

device

Layered proof

6

application

driver driver

device device

• application correctness
• automation and scalability

memory-
mapped
access

• functional correctness
 of device drivers
• reasoning about timing
• not much automation

API

Our work

• Abstract device model to be plugged into an
instruction set architecture model

• A realistic serial port (UART) model

• Strong properties including timing constraints

• Full correctness proof for a UART driver

• Implementation based on ARM v6 model in HOL4

7

driver

Related work

8

device

• Alkassar et al. (2007, 2008),
 Monniaux (2007)

• Difficult to reason about
 timing property

System with devices

9

processor
memory

arbitrator

device device device

memory

address/data

processor clock

device clock

10

Device model

• Set of memory-mapped device registers : 𝑎𝑑𝑑𝑟 ⟶ 𝑏𝑜𝑜𝑙

• Read effect : (𝑎𝑑𝑑𝑟 ∗ 𝜏) ⟶ 𝑤𝑜𝑟𝑑 ∗ 𝑏𝑜𝑜𝑙 ∗ 𝜏

• Write effect : (𝑎𝑑𝑑𝑟 ∗ 𝑤𝑜𝑟𝑑 ∗ 𝜏) ⟶ 𝑏𝑜𝑜𝑙 ∗ 𝜏

• Autonomous transition : 𝜏 ⟶ 𝜏

• Device state must be well-formed : 𝜏 ⟶ 𝑏𝑜𝑜𝑙

undefined

processor + memory
 state

devices state

data

addr

transit

read + transit

write + transit

Parallel state transition
instruction
 cycle

11

UART input stream

12

A B C D E

receive buffer input stream

no char
available

UART input stream

13

receive buffer input stream

B C D E A
char
available

A B C D E no char
available

UART input stream

14

A C D E

receive buffer input stream

buffer
overrun

B

B C D E A
char
available

A B C D E no char
available

read char

receive a char

15

no char
available

undefined

read char

char
available

receive no char

receive a char

buffer
overrun

UART receive state machine

Can the driver avoid buffer overrun?

16

• LPC2129 is based on
 ARM7TDMI-S
• 306 page manual
• 12 pages for UART0

LPC2129 UART0 model

17

• Functional model at character level

• Side effect and undefined behavior of memory-mapped
access of registers

• Speed of UART relative to the processor

 allows timing properties to be expressed

• Buffer size = 1

• No interrupt support

Modeling UART speed

18

frequency
divider

Processor core speed UART speed

<getchW>:

ldr r2, uart0rbr

ldrb r3, [r2, #20]

tst r3, #1

beq <getchW>

ldrb r0, [r2]

mov pc, lr

19

<putch>:

ldr r2, uart0rbr

ldrb r3, [r2, #20]

tst r3, #32

beq <putch>

and r0, r0, #225

strb r0, [r2]

mov pc, lr

<getch>:

ldr r2, uart0rbr

ldrb r3, [r2, #20]

tst r3, #1

ldrneb r3, [r2]

mvn r0, #0

andne r0, r3, #255

mov pc, lr

Compiled from open-source C code

Receive a string using getchW

UART speed divider > 9 + d

 20

getchW

call getchW

8

d

1

inside one
UART cycle

busy waiting

overhead

Correctness of getchW

● UART speed divider > 9 + d

● Pre: pc points to getchW, receive buffer accessible, no
char available

● Post: getchW returns, reads the first char from the input
queue, no receive action for d + 1 cycles

● Invariant: no buffer overrun, safety property is observed

21

Correctness of getch and putch

● putch appends the character to the string already
sent out in the output queue.

● getch reads a character from the input queue or
returns an error code.

● Safety invariant: UART configuration is not
changed, memory safety is observed, no
undefined behavior

22

Proof method

• Busy waiting until char is
available (not a static
point)

• Loop exit (char
available)

• Copy receive buffer and
return

<getchW>:

ldr r2, uart0rbr

ldrb r3, [r2, #20]

tst r3, #1

beq <getchW>

ldrb r0, [r2]

mov pc, lr

23

Layered proof

24

application

driver driver

device device

• application correctness
• automation and scalability

Interrupts
DMA

• functional correctness
 of device drivers
• reasoning about timing
• not much automation

API

Contributions

● A framework for proving correctness of device
drivers in embedded systems

● A realistic UART model to work with the ARM
model in HOL4

● Full correctness of character level receive and
send functions in a realistic UART driver, including
timing constraints

25

