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Layered proof  
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Our work 

• Abstract device model to be plugged into an 
instruction set architecture model 

• A realistic serial port (UART) model 

• Strong properties including timing constraints 

• Full correctness proof for a UART driver 

• Implementation based on ARM v6 model in HOL4 
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device 

• Alkassar et al. (2007, 2008), 
     Monniaux (2007)  
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Device model 
 

• Set of memory-mapped device registers :  𝑎𝑑𝑑𝑟 ⟶ 𝑏𝑜𝑜𝑙  

• Read effect :  (𝑎𝑑𝑑𝑟 ∗  𝜏)  ⟶ 𝑤𝑜𝑟𝑑 ∗ 𝑏𝑜𝑜𝑙 ∗  𝜏  

• Write effect :  (𝑎𝑑𝑑𝑟 ∗  𝑤𝑜𝑟𝑑 ∗  𝜏)  ⟶ 𝑏𝑜𝑜𝑙 ∗  𝜏   

• Autonomous transition :  𝜏 ⟶ 𝜏 

• Device state must be well-formed :  𝜏 ⟶  𝑏𝑜𝑜𝑙 
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UART input stream 
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UART input stream 
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• LPC2129 is based on  
    ARM7TDMI-S  
• 306 page manual 
• 12 pages for UART0 



LPC2129 UART0 model 
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• Functional model at character level 

• Side effect and undefined behavior of memory-mapped 
access of registers 

• Speed of UART relative to the processor 

          allows timing properties to be expressed 

• Buffer size = 1 

• No interrupt support 

 



Modeling UART speed 
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<getchW>: 

ldr     r2,  uart0rbr 

ldrb   r3,  [r2, #20] 

tst      r3,  #1 

beq    <getchW> 

ldrb    r0,   [r2] 

mov    pc,  lr 
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<putch>: 

ldr     r2, uart0rbr 

ldrb   r3, [r2, #20] 

tst      r3, #32 

beq    <putch> 

and    r0, r0, #225 

strb    r0, [r2] 

mov    pc, lr 
 

<getch>: 

ldr        r2, uart0rbr 

ldrb      r3, [r2, #20] 

tst         r3, #1 

ldrneb  r3, [r2] 

mvn      r0, #0 

andne   r0, r3, #255 

mov      pc, lr 
 

Compiled from open-source C code 



Receive a string using getchW 

UART speed  divider > 9 + d  
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Correctness of getchW 

● UART speed  divider > 9 + d 

● Pre: pc points to getchW, receive buffer accessible, no 
char available 

● Post: getchW returns,  reads the first char from the input 
queue, no receive action for d + 1 cycles 

● Invariant: no buffer overrun, safety property is observed 
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Correctness of getch and putch  

● putch appends the character to the string already 
sent out in the output queue.  

● getch reads a character from the input queue or 
returns an error code.  

● Safety invariant: UART configuration is not 
changed, memory safety is observed, no 
undefined behavior 
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Proof method 

• Busy waiting until char is 
available (not a static 
point) 

• Loop exit (char 
available) 

• Copy receive buffer and 
return         

<getchW>: 

ldr     r2,  uart0rbr 

ldrb   r3,  [r2, #20] 

tst      r3,  #1 

beq   <getchW> 

ldrb   r0,   [r2] 

mov   pc,  lr 
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Layered proof  
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Contributions 

● A framework for proving correctness of device 
drivers in embedded systems 

● A realistic UART model to work with the ARM 
model in HOL4 

● Full correctness of character level receive and 
send functions in a realistic UART driver, including 
timing constraints 
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