Correctness Proofs for Device
Drivers in Embedded Systems

Jianjun Duan, John Regehr
School of Computing
University of Utah
Oct. 7, 2010

Embedded systems

=
{/‘/' i |
door/window protection
smoke and heat sensors®

oo '
T
/ personal emergency
’nx-
motion detectors

carbon monoxide detectors*

keychain touchpad
~ S
walter sensors* freere sensors*

“optional upgrades

Pulse Generator

Pacing Leads

Left Atrium

Left Ventricle

Right Atrium

Right Ventricle

Wheel Sensors

Control Module

Modulator Unit

Wheel Sensors Gear Piilser

= Replace brake fluid every 45,000 miles

Brake Disc

processor core ” memory

Cambridge
ARM model

Fox (2003)

=
ON-CHIP VOLTAGE gt RS PR PR AN
REGULATOR

(] DCourL
RESET_ POWER ON RESET
X — 3 RESET ¢ WATCHDOG TIMER C:: BROWN OUT
HOSC (R[] 32 MHz ﬁ;. SLEEP TIMER
e
xosc an [CRYSTAL OSC T C:: |

268 kHz CALIBRATION ﬁ POWER MGT. CONTROLLER

| CRYSTAL OS5C

Le25T1

———) sk

==

SRAM
8051 CPU

CORE MEMORY

ARBITRATOR 3 PR
L KB FLASH
oy, S—
e

Al A]
IRQ Y > FLASH CTRL
CTRL v A
il —> AES ‘“”
;I_
= ENCRYPTION - e j>
o K & | | |
'E = DECRYPTION CSMA/CA STROBE PROCESSOR
_) L Iy
o = | W
b — |R.ADIDDAT.F||.INTERFL:E
g < h :::) ‘:j
A0 1l L L1z g
DEMODULATOR é
| & MODULATOR £—
AGe H
— USART D (:::]
g
- USART 1 (:: s
'™
5 TIMER 1 (16-bit) (::: G i =
[
= =
TIMER 2 ‘::: wi
(IEEE 802.15.4 MAC TIMER) oz
w
=
— 3 TIMER 3 (8-bit) - i3
VSN TIMER 4 (8-bit) c:;\}
DIGITAL
@ ~isoG

B VixED

processor core (EEEEE)| memory

device device

environment

Layered proof

application correctness
automation and scalability

functional correctness |
of device drivers
reasoning about timing
not much automation y

application

__I___I___ AP

driver

driver

memory-
mapped
access

Our work

. Abstract device model to be plugged into an
instruction set architecture model

. A realistic serial port (UART) model
. Strong properties including timing constraints
. Full correctness proof for a UART driver

. Implementation based on ARM v6 model in HOL4

Related work

e Alkassar et al. (2007, 2008),
Monniaux (2007)

driver device e Difficult to reason about
timing property

System with devices

processor clock

JU L
memor
processor _ y memory
arbitrator
address/data
device device device

L T L

device clock

Device model

Set of memory-mapped device registers : addr — bool
Read effect : (addr * 1) — (word * bool * T)
Write effect : (addr * word * 1) — (bool * T)
Autonomous transition: T — T

Device state must be well-formed : T — bool

10

Parallel state transition

instruction processor + memory devices state

cycle state

— data, addr

N

undefined

read + transit

transit

write + transit

11

UART Input stream

receive buffer input stream
<€
no char A B C D E
available

12

UART Input stream

receive buffer input stream
<€
no char A B C ‘ D E
available
char A B | C ‘ D | E
available

UART Input stream

receive buffer p input stream
no char A B C ‘ D E
available
char A B | C ‘ D | E
available

buffer | c‘ D | E
overrun

UART receive state machine

receive no char
' no char ')
. undefined
available
read char

receive a char
char receive a char buffer
available overrun

Can the driver avoid buffer overrun?

read char

15

Prilps Semicontucton Prelminay User Manual

ARM-based Microcontroller LPC2119/2129/2194/2292/2294

REGISTER DESCRIPTION

Table 74: UARTO Register Map

Name | Description | BIT7 | BIT6 | BIT5| BIT4| BIT3 | BIT2| BIT1 | BITO Aeeet‘l Address

Value*
Recewver
WRBR| Buffer Ms8 READ DATA ss | ro | ur |®E000C00Y
gt defined] DLAB=0
Transmit
UOTHR| Hoiding | Mss WRITE DATA tss [wo | na °’§€2§C=°:°
Register
e B
MR x 3 £z S 0x€000c004]
WIER | Enabie 0 0 0 0 o |x | ok | RW I o |"5lasa0
Register §oz iz gz
w w w
voir | "MemuptD § oo Enatied| 0 o | wrs | r2| wrt | IR0 | RO | oxo1 |oxEc00C008)
Regster
FIFO 23 123 | o
UOFCR Control Rx Tngger Reserved - w w“ - wo 0 OE00OC008Y
Regster X e |E5
Line Control =2 |53 75 E Word Length
UOLCR| 2 iater 3 33 gé ﬁéi Eg 253 Sed RW | 0 [0xE000C00G
Line Status Rx
UOLSR FiFo | TemT| ™Rre| B | FE | PE | 0 | DR | RO | oxe0 Joxeooocoid]
Regiter Error
voscr| ScatchPadl o se | Rw | o Joxeooacoig
Register
Dwisor Latch OxE000C000)
UoDLL ik Ms8 s | rRw | oxo1 |95 50055
Dewvisar Latch OxEQOOC 004
uopLm| Ve Ms8 tse | rw | o 9508

“Reset Value refers to the data stored in used bits only. It does nat inchude reserved bits content.

UARTO contains ten 8-bit registers as shown in Table 74. The Divisor Latch Access Bit (DLAB) is contained in UOLCR7 and
enables access 1o the Divisor Latches.

UARTO Receiver Buffer Register (UORBR - 0xE000C000 when DLAB =0, Read Only)

The UORBR is the top byte of the UARTO Rx FIFO. The top byte ofthe Rx FIFO contain s the oldest character received and can
be read via he bus inerface. The LSB (bit 0) represents the “oldest recenved data bit. |f the character received s less than 8
bits, the unused MSBs are padded with 2eroes.

The Dwvisor Latch Access Bit (DLAB) in UOLCR must be 2ero in order to access the UORBR. The UORBR is always Read Only.

UARTO 141 May 03, 2004

LPC2129 is based on
ARM7TDMI-S

306 page manual
12 pages for UARTO

16

LPC2129 UARTO model

Functional model at character level

Side effect and undefined behavior of memory-mapped
access of registers

. Speed of UART relative to the processor
allows timing properties to be expressed
Buffer size = 1

No interrupt support

17

Modeling UART speed

Processor core speed UART speed

Lo freeesy /. 1

divider

18

<getchW>:

ldr r2, uartOrbr
ldrb r3, [r2, #20]
tst r3, #1

beq <getchW>
ldrb rO, [r2]

mov pc, Ir

<getch>:

|dr r2, uartOrbr
ldrb 3, [r2, #20]
tst r3, #1
ldrneb r3, [r2]
mvn r0O, #0
andne rO, r3, #255

mov pc, Ir

<putch>:

|dr
ldrb
tst
beq
and

strb

r2, uartOrbr
r3, [r2, #20]
r3, #32
<putch>
rO, rO, #225
r0, [r2]

mov pc, Ir

Compiled from open-source C code

19

Receive a string using getchW

busy waiting

_ inside one
d UART cycle

overhead

call getchW

UART speed divider >9 +d

20

Correctness of getchW

UART speed divider >9 +d

Pre: pc points to getchW, receive buffer accessible, no
char available

Post: getchW returns, reads the first char from the input
queue, no receive action for d + 1 cycles

Invariant: no buffer overrun, safety property is observed

21

Correctness of getch and putch

. putch appends the character to the string already
sent out in the output queue.

. getch reads a character from the input queue or
returns an error code.

. Safety invariant: UART configuration is not
changed, memory safety is observed, no
undefined behavior

22

Proof method

Busy waiting until char is
available (not a static
point)

Loop exit (char
available)

Copy receive buffer and
return

<getchW>:

ldr r2, uartOrbr
ldrb r3, [r2, #20]
tst r3, #1
beq <getchW>
ldrb r0, [r2]

mov pc, Ir

23

Layered proof

application correctness
automation and scalability

o4

functional correctness
of device drivers
reasoning about timing]
not much automation)

application

__I___I___ AP

-
L]
a

driver driver

<.

Interrupts
DMA

24

Contributions

. A framework for proving correctness of device
drivers in embedded systems

. A realistic UART model to work with the ARM
model in HOL4

. Full correctness of character level receive and
send functions in a realistic UART driver, including
timing constraints

25

