
LYREBIRD
David Cock

davec@cse.unsw.edu.auLL
y
re

b
ir

d

λ

What is the Motivation?

Program proof is important, but there’s more to do.

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Program proof is important, but there’s more to do.

Code

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Program proof is important, but there’s more to do.

CodeProof

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Program proof is important, but there’s more to do.

CodeProof

Model

Any statement ”P is True” is incomplete:

It must be read as ”, under Q - my model of the world”.

Goal: Development outcomes: program, proof and model.

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Program proof is important, but there’s more to do.

Code

seL4

Proof

ModelLL
y
re

b
ir

d

λ

Any statement ”P is True” is incomplete:

It must be read as ”, under Q - my model of the world”.

Goal: Development outcomes: program, proof and model.

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Program proof is important, but there’s more to do.

Code

seL4

Proof

ModelLL
y
re

b
ir

d

λ

Any statement ”P is True” is incomplete:

It must be read as ”, under Q - my model of the world”.

Goal: Development outcomes: program, proof and model.

Our approach is a language framework: Lyrebird.

NICTA Copyright c© 2010 From Imagination to Impact 2

What is the Motivation?

Code

seL4

Proof

M
o
d
e
l

L

Lyrebird

λ

NICTA Copyright c© 2010 From Imagination to Impact 3

What is the Motivation?

Abstract

Haskell

C

Proof

M
o
d
e
l

L

Lyrebird

λ

NICTA Copyright c© 2010 From Imagination to Impact 4

What is the Motivation?

Abstract

Haskell

C

1st Refinement

2nd Refinement

M
o
d
e
l

L

Lyrebird

λ

NICTA Copyright c© 2010 From Imagination to Impact 5

What is the Motivation?

Abstract

Haskell

C

1st Refinement

2nd Refinement

M
a
c
h
in
e
 M

o
n
a
d

M
S
R

?

"The World"

M
o
d
e
l

L

Lyrebird

λ

NICTA Copyright c© 2010 From Imagination to Impact 6

What is the Motivation?

LL
y
re

b
ir

d

λ

Formal Hardware Model

Machine Monad

MSR

Machine Refinement

Simulator

NICTA Copyright c© 2010 From Imagination to Impact 7

What is the Motivation?

LL
y
re

b
ir

d

λ

Simulator

Formal Model

Lyrebird model

Lyrebird is a framework built around a modelling language.

Tools are included to generate simulators and formal models.

NICTA Copyright c© 2010 From Imagination to Impact 8

Observations

LL
y
re

b
ir

d

λ

Errata

Testing

The Model Should be Progressively Refined:

Even the manufacturer doesn’t have a complete model,

they publish errata when they find mistakes.

Goal: Updating the model should be easy.

NICTA Copyright c© 2010 From Imagination to Impact 9

Observations

To a program, the world is the machine.

Building machine models is hard, often boring work.

It’s easy to get started, and cover the part that’s well behaved.

Handling the rest, and getting it right takes a lot longer.

It’s also mind-numbingly, soul-destroyingly dull.

So only model those parts that we actually need.

NICTA Copyright c© 2010 From Imagination to Impact 10

Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 11

Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 11

Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 11

Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

NICTA Copyright c© 2010 From Imagination to Impact 11

Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

Most code is like the above, and it’s easy to understand;

The challenge here is how to express that formally.

Goal: Easy things should be straightforward.

NICTA Copyright c© 2010 From Imagination to Impact 11

Example

90% is not too bad and moreover it’s been done.

We should focus on the 10%, the hard parts.

NICTA Copyright c© 2010 From Imagination to Impact 12

Example

90% is not too bad and moreover it’s been done.

We should focus on the 10%, the hard parts.

So what is a hard part?

NICTA Copyright c© 2010 From Imagination to Impact 12

Example

90% is not too bad and moreover it’s been done.

We should focus on the 10%, the hard parts.

So what is a hard part?

Let’s have another look at that example. . .

NICTA Copyright c© 2010 From Imagination to Impact 12

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

Which of these is the right answer?

NICTA Copyright c© 2010 From Imagination to Impact 13

Example

It depends . . . on the CPU, the cache, and the state.

This isn’t hypothetical;

We need to write code to memory and then run it

. . . and we need to make sure we do it right.

In a formal model, this is a corner case and it’s abstracted.

Sometimes, however, you’ve got to get your hands dirty.

Goal: Hard things should be possible.

NICTA Copyright c© 2010 From Imagination to Impact 14

How to Build Models

LL
y
re

b
ir

d

λ

Formal Hardware Model

Simulator

Invariants

Inconsistencies

Verification uncovers what the machine should do.

These models are too abstract.

Programming uncovers what the machine does.

These models are too informal.

We must combine this knowledge rigorously.

NICTA Copyright c© 2010 From Imagination to Impact 15

How to Build Models

LL
y
re

b
ir

d

λ

Formal Hardware Model

Simulator

Invariants

Inconsistencies

Close the loop

Iterative refinement

Work Iteratively:

Start with a simple model and only add details as required.

When verification uncovers a requirement, update the model.

When programming discovers a behaviour, update the model.

NICTA Copyright c© 2010 From Imagination to Impact 16

How to Build Models

LL
y
re

b
ir

d

λ

This workflow requires a common language.

Our solution is Lyrebird

NICTA Copyright c© 2010 From Imagination to Impact 17

Lyrebird

Memory

VSR

CPU

RAM

R
e
a
d

A simple model of a CPU connected to RAM.

NICTA Copyright c© 2010 From Imagination to Impact 18

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Modules are written in Lyrebird.

NICTA Copyright c© 2010 From Imagination to Impact 19

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

The cycle specifies asynchronous behaviour.

NICTA Copyright c© 2010 From Imagination to Impact 20

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Modules export instructions.

NICTA Copyright c© 2010 From Imagination to Impact 21

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

All behaviour is built from register transfers.

NICTA Copyright c© 2010 From Imagination to Impact 22

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Modules are linked by interfaces.

NICTA Copyright c© 2010 From Imagination to Impact 23

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Interfaces define transactions.

NICTA Copyright c© 2010 From Imagination to Impact 24

Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

 Memory.Read[[PC, Instr]];

 decode_execute VSR;

}

instruction ADD {

 execute { Ra <- Rb + Rc; }

}

instruction LDR {

 execute { Memory.Read[[Rb,Ra]]; }

}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Transactions access the datapath.

NICTA Copyright c© 2010 From Imagination to Impact 25

Lyrebird

Memory

VSR

CPU

RAM

Memory

CPU

MMU

R
e
a
d

Interfaces and modules allow different implementations.

NICTA Copyright c© 2010 From Imagination to Impact 26

Lyrebird

Memory

VSR

CPU

RAM

Memory

CPU

MMU

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read(pa, data);

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read[[pa, data]];

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

R
e
a
d

Lyrebird can also be used to model devices.

NICTA Copyright c© 2010 From Imagination to Impact 27

Lyrebird

Memory

VSR

CPU

RAM

Memory

CPU

MMU

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read(pa, data);

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read[[pa, data]];

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

R
e
a
d

Register types have explicit width.

NICTA Copyright c© 2010 From Imagination to Impact 28

Lyrebird

Memory

VSR

CPU

RAM

Memory

CPU

MMU

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read(pa, data);

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read[[pa, data]];

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

R
e
a
d

Type-checked macros minimize duplication.

NICTA Copyright c© 2010 From Imagination to Impact 29

Lyrebird

Memory

VSR

CPU

RAM

Memory

CPU

MMU

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read(pa, data);

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

 register int<32> entry;

 vpn= va[29:14];

 Memory.Read[[vpn zext 30,entry]];

 pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

 register int<30> pa;

 %Walk(addr, pa);

 Memory.Read[[pa, data]];

}

Memory

a
d
d
r

d
a
t
a

CPU

a
d
d
r

d
a
t
a

R
e
a
d

Transactions are implemented by modules.

NICTA Copyright c© 2010 From Imagination to Impact 30

Lyrebird

ARMv6 Model:

We have an ARMv6 user-level integer instruction model.

Floating-point and vector operations are excluded.

The complete model is approximately 1600 lines.

We used it to validate the seL4 Haskell prototype.

NICTA Copyright c© 2010 From Imagination to Impact 31

Lyrebird

LL
y
re

b
ir

d

λ

Simulator

Simulation:

Register transfer is easy to simulate.

The simulator is portable and fast — 10MIPS for ARMv6 user.

The output is a single C module;

It is easily incorporated into larger simulations.

NICTA Copyright c© 2010 From Imagination to Impact 32

Lyrebird

LL
y
re

b
ir

d

λ

Formal Hardware Model

Generated Models:

An Isabelle model is generated by a tool.

We co-generate code and proofs for kernel objects.

We should be able to do the same for device structures.

NICTA Copyright c© 2010 From Imagination to Impact 33

Lyrebird

Abstract

Haskell

C

M
a
c
h
in
e
 M

o
n
a
d

M
S
R

S
im

u
la
to
r

U
s
e
r C

o
d
e

LL
y
re

b
ir

d

λ

ARMv6

Rapid Modelling and Early Simulation:

We ran real user code against the Haskell seL4 model.

We found bugs in both the machine model and the kernel.

We tested the model against the implementation;

We fixed things before we tried to prove them.

NICTA Copyright c© 2010 From Imagination to Impact 34

Project Status

Goals:

➜ Development outcomes: program, proof and model.

➜ Updating the model should be easy.

➜ Easy things should be straightforward.

➜ Hard things should be possible.

NICTA Copyright c© 2010 From Imagination to Impact 35

Project Status

Goals:

➜ Development outcomes: program, proof and model.

Yes - The model is generated automatically.

➜ Updating the model should be easy.

➜ Easy things should be straightforward.

➜ Hard things should be possible.

NICTA Copyright c© 2010 From Imagination to Impact 35

Project Status

Goals:

➜ Development outcomes: program, proof and model.

Yes - The model is generated automatically.

➜ Updating the model should be easy.

Yes - Recompile for a new formal model.

➜ Easy things should be straightforward.

➜ Hard things should be possible.

NICTA Copyright c© 2010 From Imagination to Impact 35

Project Status

Goals:

➜ Development outcomes: program, proof and model.

Yes - The model is generated automatically.

➜ Updating the model should be easy.

Yes - Recompile for a new formal model.

➜ Easy things should be straightforward.

Yes - User-level ARMv6 in 1600 lines.

➜ Hard things should be possible.

NICTA Copyright c© 2010 From Imagination to Impact 35

Project Status

Goals:

➜ Development outcomes: program, proof and model.

Yes - The model is generated automatically.

➜ Updating the model should be easy.

Yes - Recompile for a new formal model.

➜ Easy things should be straightforward.

Yes - User-level ARMv6 in 1600 lines.

➜ Hard things should be possible.

Maybe - Work is ongoing.

NICTA Copyright c© 2010 From Imagination to Impact 35

Future Work

Semantics:

Model generation is not ideal, the generator is trusted.

A statement’s meaning should be intrinsic.

Building a semantics early will force discipline.

Underspecification:

Behaviour is often undefined or non-deterministic.

Should be modelled by underspecification and assertions.

NICTA Copyright c© 2010 From Imagination to Impact 36

Future Work

The Abstract Model Stack:

We should end up with a very detailed model of the machine.

We’d rather reason about a simple, abstract machine.

We’ll build the simpler model in layers.

Validation:

Any model must be extensively validated against hardware.

It must also be consistent with existing models e.g. Fox et. al.

Many models exist in different formalisms, this is a challenge.

NICTA Copyright c© 2010 From Imagination to Impact 37

QUESTIONS?

NICTA Copyright c© 2010 From Imagination to Impact 38

