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What is the Motivation?

Program proof is important, but there’s more to do.
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Any statement ”P is True” is incomplete:

It must be read as ”, under Q - my model of the world”.

Goal: Development outcomes: program, proof and model.
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Any statement ”P is True” is incomplete:

It must be read as ”, under Q - my model of the world”.

Goal: Development outcomes: program, proof and model.

Our approach is a language framework: Lyrebird.
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Formal Hardware Model

Machine Monad

MSR

Machine Refinement

Simulator
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Simulator

Formal Model

Lyrebird model

Lyrebird is a framework built around a modelling language.

Tools are included to generate simulators and formal models.
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Errata

Testing

The Model Should be Progressively Refined:

Even the manufacturer doesn’t have a complete model,

they publish errata when they find mistakes.

Goal: Updating the model should be easy.
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Observations

To a program, the world is the machine.

Building machine models is hard, often boring work.

It’s easy to get started, and cover the part that’s well behaved.

Handling the rest, and getting it right takes a lot longer.

It’s also mind-numbingly, soul-destroyingly dull.

So only model those parts that we actually need.
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Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1
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Example

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

Most code is like the above, and it’s easy to understand;

The challenge here is how to express that formally.

Goal: Easy things should be straightforward.
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Example

90% is not too bad and moreover it’s been done.

We should focus on the 10%, the hard parts.
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Example

90% is not too bad and moreover it’s been done.

We should focus on the 10%, the hard parts.

So what is a hard part?

Let’s have another look at that example. . .
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Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1
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Another look at the example:
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Wait a minute, what was that address? Didn’t we just overwrite this instruction?
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Example

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

Which of these is the right answer?
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Example

It depends . . . on the CPU, the cache, and the state.

This isn’t hypothetical;

We need to write code to memory and then run it

. . . and we need to make sure we do it right.

In a formal model, this is a corner case and it’s abstracted.

Sometimes, however, you’ve got to get your hands dirty.

Goal: Hard things should be possible.
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Formal Hardware Model

Simulator

Invariants

Inconsistencies

Verification uncovers what the machine should do.

These models are too abstract.

Programming uncovers what the machine does.

These models are too informal.

We must combine this knowledge rigorously.
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How to Build Models
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Formal Hardware Model

Simulator

Invariants

Inconsistencies

Close the loop

Iterative refinement

Work Iteratively:

Start with a simple model and only add details as required.

When verification uncovers a requirement, update the model.

When programming discovers a behaviour, update the model.
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How to Build Models
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This workflow requires a common language.

Our solution is Lyrebird
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Lyrebird

Memory

VSR

CPU

RAM

R
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d

A simple model of a CPU connected to RAM.
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Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

  Memory.Read[[PC, Instr]];

  decode_execute VSR;

}

instruction ADD {

  execute { Ra <- Rb + Rc; }

}

instruction LDR {

  execute { Memory.Read[[Rb,Ra]]; }

}

Memory
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Modules are written in Lyrebird.
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The cycle specifies asynchronous behaviour.
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Modules export instructions.
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module vsr;

cycle {

  Memory.Read[[PC, Instr]];

  decode_execute VSR;

}
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  execute { Ra <- Rb + Rc; }

}

instruction LDR {
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All behaviour is built from register transfers.

NICTA Copyright c© 2010 From Imagination to Impact 22



Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

  Memory.Read[[PC, Instr]];

  decode_execute VSR;

}

instruction ADD {

  execute { Ra <- Rb + Rc; }

}

instruction LDR {

  execute { Memory.Read[[Rb,Ra]]; }

}
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Modules are linked by interfaces.

NICTA Copyright c© 2010 From Imagination to Impact 23



Lyrebird

Memory

VSR

CPU

RAM

module vsr;

cycle {

  Memory.Read[[PC, Instr]];

  decode_execute VSR;

}

instruction ADD {

  execute { Ra <- Rb + Rc; }

}

instruction LDR {
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}

Memory

a
d
d
r

d
a
t
a

R
e
a
d

Interfaces define transactions.
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module vsr;

cycle {

  Memory.Read[[PC, Instr]];

  decode_execute VSR;

}

instruction ADD {

  execute { Ra <- Rb + Rc; }

}

instruction LDR {

  execute { Memory.Read[[Rb,Ra]]; }

}
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Transactions access the datapath.
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Lyrebird
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Interfaces and modules allow different implementations.
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Lyrebird
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module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

  register int<32> entry;

  vpn= va[29:14];

  Memory.Read[[vpn zext 30,entry]];

  pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

  register int<30> pa;

  %Walk(addr, pa);

  Memory.Read(pa, data);

}
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module mmu; cycle {}

macro Walk(int<30> va, int<30> &pa) {

  register int<32> entry;

  vpn= va[29:14];

  Memory.Read[[vpn zext 30,entry]];

  pa<- entry[29:14] ++ va[13:0];

}

transaction CPU.Read {

  register int<30> pa;

  %Walk(addr, pa);

  Memory.Read[[pa, data]];

}
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Lyrebird can also be used to model devices.
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Register types have explicit width.
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Type-checked macros minimize duplication.
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Transactions are implemented by modules.
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Lyrebird

ARMv6 Model:

We have an ARMv6 user-level integer instruction model.

Floating-point and vector operations are excluded.

The complete model is approximately 1600 lines.

We used it to validate the seL4 Haskell prototype.
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Lyrebird
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Simulator

Simulation:

Register transfer is easy to simulate.

The simulator is portable and fast — 10MIPS for ARMv6 user.

The output is a single C module;

It is easily incorporated into larger simulations.
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Formal Hardware Model

Generated Models:

An Isabelle model is generated by a tool.

We co-generate code and proofs for kernel objects.

We should be able to do the same for device structures.
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Lyrebird
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ARMv6

Rapid Modelling and Early Simulation:

We ran real user code against the Haskell seL4 model.

We found bugs in both the machine model and the kernel.

We tested the model against the implementation;

We fixed things before we tried to prove them.

NICTA Copyright c© 2010 From Imagination to Impact 34



Project Status

Goals:

➜ Development outcomes: program, proof and model.

➜ Updating the model should be easy.

➜ Easy things should be straightforward.

➜ Hard things should be possible.
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Project Status

Goals:

➜ Development outcomes: program, proof and model.

Yes - The model is generated automatically.

➜ Updating the model should be easy.

Yes - Recompile for a new formal model.

➜ Easy things should be straightforward.

Yes - User-level ARMv6 in 1600 lines.

➜ Hard things should be possible.

Maybe - Work is ongoing.
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Future Work

Semantics:

Model generation is not ideal, the generator is trusted.

A statement’s meaning should be intrinsic.

Building a semantics early will force discipline.

Underspecification:

Behaviour is often undefined or non-deterministic.

Should be modelled by underspecification and assertions.
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Future Work

The Abstract Model Stack:

We should end up with a very detailed model of the machine.

We’d rather reason about a simple, abstract machine.

We’ll build the simpler model in layers.

Validation:

Any model must be extensively validated against hardware.

It must also be consistent with existing models e.g. Fox et. al.

Many models exist in different formalisms, this is a challenge.
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QUESTIONS?
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