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• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort
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Computers and Trust

• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort

How can we provide any formal assurance to
real-world systems of such size?
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Our Vision

• Provide full system guarantees for
targeted properties

• Isolate the software parts that are not
critical to the target property

– And then prove that nothing more needs to be
said about it

• Formally prove that the remaining parts
satisfy the target property
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Case Study: Secure Access Controller

• Data from one classified
network must not reach 
another

• Assumptions:
– User terminal will not

leak data
– Only verify overt

communication channels
– All networks are otherwise

malicious
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Case Study: Secure Access Controller

• Verification of all code in the system is infeasible

• Instead, split up code into components
– Trusted / untrusted components
– Only give components access to resources they need
– Principle of least privilege

• To do this, we need some mechanism to
enforce this split
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seL4 Microkernel

• Small operating system kernel
– Threads
– Address Spaces
– Communication primitives

• Capability based
– All system resources require a cap to be accessed
– Provides access control, allowing threads to be isolated

by using an appropriate cap distribution

• Proven functionally correct
– seL4’s C code shown to correctly implement its specification

• Assumes correctness of hardware, compiler, initialisation code,
assembly paths
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• Router
– Virtualised Linux
– Routing Code / NAT

• SAC Controller
– Virtualised Linux
– mini-httpd / OpenSSL

• Timer
– Hand-written C

• Router Manager
– Hand-written C

• seL4 Kernel
– Hand-written C
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• Merely reducing the amount of code isn’t sufficient
to provide any security guarantee

• Our goal is to provide a formal guarantee

• How can we achieve this?



Hardware
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RM_id     -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)

SAC_C_id  -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)

TIMER_id  -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None
NIC_A_id  -> Some ({}, not_contaminated)

NIC_B_id  -> Some ({}, contaminated)

NIC_C_id  -> Some ({}, not_contaminated)

NIC_D_id  -> Some ({}, not_contaminated)
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RM_prg ≡
  [ (* 00: Wait for command, delete Router. *)
    SysOp (SysRead cap_R_to_SAC_C),
    SysOp (SysRemoveAll cap_C_to_R),
    SysOp (SysDelete cap_C_to_R),
    SysOp (SysWriteZero cap_RW_to_NIC_D).
    ...
    (* 09: Non-deterministic “goto” *)
    Jump [0, 10, 19],

    (* 10: Setup Router between NIC-A and NIC-D *)
    SysOp (SysCreate cap_C_to_R),
    SysOp (SysNormalWrite cap_RWGC_to_R),
    ...
  ]

UNTRUSTED_prg ≡ [ AnyLeg
alOperation ]



write_operation source target ss ≡

  (case (ss target) of
    Some target_entity ⇒

      ss(target " target_entity(

        contaminated :=

            is_contaminated ss target

          ∨ is_contaminated ss source)

  | _ ⇒ ss)
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step state e (SysRead c) =

  write_operation (entity c) e state

legal s e (SysRead cap) =
  (is_entity s e
     ∧ is_entity s (entity cap)
     ∧ cap ∈ entity_caps_in_state s e
     ∧ Read ∈ rights cap)

What operations do user
system calls perform?

When is a system call allowed
by the kernel?

What effect do
system calls have?
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  (SAC-startup "* ss) ⇒ ¬ is_contaminated (sac-entity-ss) NicA 
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• Full system verification of modern systems infeasible
– But verification of specific, targeted properties feasible

• Presented a framework for proving security
– Break code into components, avoid needing to

trust the bulk of our functionality
– Formally verify components capable of violating desired

property

• Built SAC as a case-study
– Uses seL4 microkernel as a secure foundation
– Showed a model of the system is secure

• Ongoing work is to join security model with
existing seL4 proof
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