
Towards proving security
in the presence of large
untrusted components

June Andronick
David Greenaway
Kevin Elphinstone

NICTA Copyright 2010 From imagination to impact

Computers and Trust

2

NICTA Copyright 2010 From imagination to impact

Computers and Trust

2

NICTA Copyright 2010 From imagination to impact

Computers and Trust

3

NICTA Copyright 2010 From imagination to impact

Computers and Trust

3

NICTA Copyright 2010 From imagination to impact

Computers and Trust

3

NICTA Copyright 2010 From imagination to impact

Computers and Trust

• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort

4

• A typical smartphone consists of
over 10 million lines of code

NICTA Copyright 2010 From imagination to impact

Computers and Trust

• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort

4

• A typical smartphone consists of
over 10 million lines of code

NICTA Copyright 2010 From imagination to impact

Computers and Trust

• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort

4

• A typical smartphone consists of
over 10 million lines of code

NICTA Copyright 2010 From imagination to impact

Computers and Trust

• Advances in formal methods techniques
give us hope

• The seL4 microkernel is one such example:
around 10 thousand lines of code formally proven

– approximately 25 person years of effort

How can we provide any formal assurance to
real-world systems of such size?

4

NICTA Copyright 2010 From imagination to impact

Our Vision

• Provide full system guarantees for
targeted properties

• Isolate the software parts that are not
critical to the target property

– And then prove that nothing more needs to be
said about it

• Formally prove that the remaining parts
satisfy the target property

5

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

1 2 3 4

Classified Networks

D

User Terminal

6

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

1 2 3 4

Classified Networks

D

User Terminal

6

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

C

SAC
Control

SAC

1 2 3 4

Classified Networks

D

User Terminal

7

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

• Data from one classified
network must not reach
another

• Assumptions:
– User terminal will not

leak data
– Only verify overt

communication channels
– All networks are otherwise

malicious

8

C

SAC
Control

SAC

1 2 3 4

Classified Networks

D

User Terminal

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

TCP/IP
Stack

20,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

Network
Address

Translation

10,000 LoC

TCP/IP
Stack

20,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

Network
Address

Translation

10,000 LoC

Web Server

5000 LoC

TCP/IP
Stack

20,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

Network
Address

Translation

10,000 LoC

Web Server

5000 LoC

SSL Support

25,000 LoC

TCP/IP
Stack

20,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

SAC

Gigabit
Network Card

Drivers

10,000 LoC

DHCP

3000 LoC

Network
Address

Translation

10,000 LoC

Web Server

5000 LoC

SSL Support

25,000 LoC

TCP/IP
Stack

20,000 LoC

9

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

10

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

10

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

10

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

10

X

NICTA Copyright 2010 From imagination to impact

Case Study: Secure Access Controller

• Verification of all code in the system is infeasible

• Instead, split up code into components
– Trusted / untrusted components
– Only give components access to resources they need
– Principle of least privilege

• To do this, we need some mechanism to
enforce this split

11

NICTA Copyright 2010 From imagination to impact

seL4 Microkernel

• Small operating system kernel
– Threads
– Address Spaces
– Communication primitives

• Capability based
– All system resources require a cap to be accessed
– Provides access control, allowing threads to be isolated

by using an appropriate cap distribution

• Proven functionally correct
– seL4’s C code shown to correctly implement its specification

• Assumes correctness of hardware, compiler, initialisation code,
assembly paths

12

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

13

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

14

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

14

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

15

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

16

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

17

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

18

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

19

NICTA Copyright 2010 From imagination to impact

SAC Security Architecture

20

NICTA Copyright 2010 From imagination to impact

SAC Prototype

21

NICTA Copyright 2010 From imagination to impact

SAC Prototype

22

• Router
– Virtualised Linux
– Routing Code / NAT

• SAC Controller
– Virtualised Linux
– mini-httpd / OpenSSL

• Timer
– Hand-written C

• Router Manager
– Hand-written C

• seL4 Kernel
– Hand-written C

NICTA Copyright 2010 From imagination to impact

SAC Prototype

23

10,000,000 LoC}
10,000,000 LoC}
300 LoC

1500 LoC}
8300 LoC}

• Router
– Virtualised Linux
– Routing Code / NAT

• SAC Controller
– Virtualised Linux
– mini-httpd / OpenSSL

• Timer
– Hand-written C

• Router Manager
– Hand-written C

• seL4 Kernel
– Hand-written C

}

• Router
– Virtualised Linux
– Routing Code / NAT

• SAC Controller
– Virtualised Linux
– mini-httpd / OpenSSL

• Timer
– Hand-written C

• Router Manager
– Hand-written C

• seL4 Kernel
– Hand-written C

NICTA Copyright 2010 From imagination to impact

SAC Prototype

24

10,000,000 LoC}
10,000,000 LoC}

1500 LoC}
8300 LoC}

~20,000,000
lines of code

~10,000
lines of code

300 LoC}

NICTA Copyright 2010 From imagination to impact

Full System Verification

25

• Merely reducing the amount of code isn’t sufficient
to provide any security guarantee

• Our goal is to provide a formal guarantee

• How can we achieve this?

Hardware

NICTA Copyright 2010 From imagination to impact

Full System Verification

26

Hardware

seL4 kernel

Hardware

NICTA Copyright 2010 From imagination to impact

Full System Verification

27

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

NICTA Copyright 2010 From imagination to impact

Full System Verification

28

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

Formal Cap

Distribution

NICTA Copyright 2010 From imagination to impact

Full System Verification

29

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

Formal Cap

Distribution

Security

Architecture

NICTA Copyright 2010 From imagination to impact

Full System Verification

30

Security
Architecture

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

NICTA Copyright 2010 From imagination to impact

Full System Verification

31

Trusted
Component
Behaviour

Security
Architecture

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

NICTA Copyright 2010 From imagination to impact

Full System Verification

32

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Hardware

seL4 kernel

Hardware

seL4 kernel

Hardware

Components

seL4 kernel

Hardware

Components

Component Code

Trusted Component

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

Full System Verification

33

Formal
Security
Property

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

34

Formal
Security
Property

RM_id -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)

SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)

TIMER_id -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None
NIC_A_id -> Some ({}, not_contaminated)

NIC_B_id -> Some ({}, contaminated)

NIC_C_id -> Some ({}, not_contaminated)

NIC_D_id -> Some ({}, not_contaminated)

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

34

Formal
Security
Property

RM_id -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)

SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)

TIMER_id -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None
NIC_A_id -> Some ({}, not_contaminated)

NIC_B_id -> Some ({}, contaminated)

NIC_C_id -> Some ({}, not_contaminated)

NIC_D_id -> Some ({}, not_contaminated)

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

34

Formal
Security
Property

RM_id -> Some ({rw_to_NIC_A, rw_to_NIC_B, ...}, not_contaminated)

SAC_C_id -> Some ({rw_to_NIC_C, w_to_RM, ...}, not_contaminated)

TIMER_id -> Some ({w_to_SAC_C, w_to_RM, ...}, not_contaminated)

ROUTER_id -> None
NIC_A_id -> Some ({}, not_contaminated)

NIC_B_id -> Some ({}, contaminated)

NIC_C_id -> Some ({}, not_contaminated)

NIC_D_id -> Some ({}, not_contaminated)

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

35

Formal
Security
Property

RM_prg ≡
 [(* 00: Wait for command, delete Router. *)
 SysOp (SysRead cap_R_to_SAC_C),
 SysOp (SysRemoveAll cap_C_to_R),
 SysOp (SysDelete cap_C_to_R),
 SysOp (SysWriteZero cap_RW_to_NIC_D).
 ...
 (* 09: Non-deterministic “goto” *)
 Jump [0, 10, 19],

 (* 10: Setup Router between NIC-A and NIC-D *)
 SysOp (SysCreate cap_C_to_R),
 SysOp (SysNormalWrite cap_RWGC_to_R),
 ...
]

UNTRUSTED_prg ≡ [AnyLeg
alOperation]

write_operation source target ss ≡

 (case (ss target) of
 Some target_entity ⇒

 ss(target " target_entity(

 contaminated :=

 is_contaminated ss target

 ∨ is_contaminated ss source)

 | _ ⇒ ss)

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

36

Formal
Security
Property

step state e (SysRead c) =

 write_operation (entity c) e state

legal s e (SysRead cap) =
 (is_entity s e
 ∧ is_entity s (entity cap)
 ∧ cap ∈ entity_caps_in_state s e
 ∧ Read ∈ rights cap)

What operations do user
system calls perform?

When is a system call allowed
by the kernel?

What effect do
system calls have?

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

37

Formal
Security
Property

NICTA Copyright 2010 From imagination to impact

High Level System Model

38

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Formal
Security
Property

NICTA Copyright 2010 From imagination to impact

High Level System Model

39

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Formal
Security
Property

NICTA Copyright 2010 From imagination to impact

High Level System Model

40

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Formal
Security
Property

NICTA Copyright 2010 From imagination to impact

High Level System Model

41

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Formal
Security
Property

NICTA Copyright 2010 From imagination to impact

High Level System Model

42

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

Formal
Security
Property

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

43

Formal
Security
Property

theorem sac_is_secure:

 (SAC-startup "* ss) ⇒ ¬ is_contaminated (sac-entity-ss) NicA

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

43

Formal
Security
Property

theorem sac_is_secure:

 (SAC-startup "* ss) ⇒ ¬ is_contaminated (sac-entity-ss) NicA

Trusted
Component
Behaviour

Security
Architecture

Kernel
Security
Model

NICTA Copyright 2010 From imagination to impact

High Level System Model

43

Formal
Security
Property

theorem sac_is_secure:

 (SAC-startup "* ss) ⇒ ¬ is_contaminated (sac-entity-ss) NicA

seL4 kernel

Hardware

Components

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

NICTA Copyright 2010 From imagination to impact

Progress

44

seL4 kernel

Hardware

Components

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

NICTA Copyright 2010 From imagination to impact

Progress

45

seL4 kernel

Hardware

Components

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

NICTA Copyright 2010 From imagination to impact

Progress

46

seL4 kernel

Hardware

Components

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

NICTA Copyright 2010 From imagination to impact

Progress

47

seL4 kernel

Hardware

Components

Formal Cap

Distribution

Formal Cap

Distribution

Security

Architecture

Trusted

Component

Behaviour

Kernel

Security

Model

Formal

Security

Property

NICTA Copyright 2010 From imagination to impact

Progress

48

NICTA Copyright 2010 From imagination to impact

Conclusion

49

• Full system verification of modern systems infeasible
– But verification of specific, targeted properties feasible

• Presented a framework for proving security
– Break code into components, avoid needing to

trust the bulk of our functionality
– Formally verify components capable of violating desired

property

• Built SAC as a case-study
– Uses seL4 microkernel as a secure foundation
– Showed a model of the system is secure

• Ongoing work is to join security model with
existing seL4 proof

Thank You

