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Abstract

This paper proposes a generalized framework to build
large, complex systems where security guarantees can
be given for the overall system’s implementation. The
work builds on the formally proven correct seL.4 micro-
kernel and on its fine-grained access control. This access
control mechanism allows large untrusted components to
be isolated in a way that prevents them from violating a
defined security property, leaving only the trusted com-
ponents to be formally verified. The first steps of the
approach are illustrated by the formalisation of a multi-
level secure access device and a proof in Isabelle/HOL
that information cannot flow from one back-end network
to another.

1 Introduction

Advances in machine-assisted theorem proving, and for-
mal methods techniques in general, have pushed the lim-
its of software verification to the point where it is pos-
sible to prove properties of real-world applications. The
recently verified seL4 microkernel is one such example.
Its 7500 lines of C code were formally proved to cor-
rectly implement a high-level abstract specification of its
behaviour [7].

Formally verifying programs with sizes approaching
10000 lines of code is a significant improvement in what
formal methods was previously able to verify with rea-
sonable effort. However, 10000 lines of code is still
a significant limit on the application of formal meth-
ods to the verification of contemporary software systems.
Modern software systems, beyond very simple embed-
ded systems, frequently consist of millions of lines of
code. Thus the challenge remains as to how formal as-
surance can be given to real-world software systems of
such size.

This paper presents our vision for how specifically tar-
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geted properties can be provably assured in very large
and complex software systems. Our vision comes from
the observation [1] that not all software in a large sys-
tem necessarily contributes to a property of interest. For
example, a game installed on a smartphone contributes
nothing to the ability to make reliable phone calls. If one
can assure the game is isolated from the phone call soft-
ware, one can focus verification effort on the phone call
software to assure reliability of calls.

The vision is to develop methodologies and tools that
enable developers to systematically (i) isolate the soft-
ware parts that are not critical to a targeted property, and
prove that nothing more needs to be verified about them
for the specific property; and (ii) formally prove that the
remaining critical parts satisfy the targeted property. The
key aspect of the vision is the system-level specification
of the property of interest, and the incorporation of all
critical code in an overall proof, including the kernel.
A challenge will be to keep the security-critical parts or
trusted computing base (TCB) as small and simple as
possible to ensure that its verification remains tractable.

Our vision builds on, and is enabled by, the formal
verification of the seL4 microkernel. Microkernel-based
systems already componentise software into smaller, iso-
lated, components for security, safety, or reliability.
Sel4’s verification will eventually enable provable isola-
tion guarantees by providing correct kernel mechanisms
for managing the hardware platform’s memory protec-
tion mechanisms.

The remainder of the paper presents our first steps to-
wards realising our vision for large, secure systems on
seL4. We use a concrete case study of a secure access
controller (SAC) as a representative example of a large
complex system with a specific property requirement.
Section 2 describes the SAC in more detail. Section 3
briefly overviews seL.4, and presents a SAC design (and
rationale) that is architected to minimise the TCB. Sec-
tion 4 describes how to formally verify security prop-
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Figure 1: The SAC routes between a user’s terminal and
1 of n classified networks.

erties on that architecture such that the properties still
hold at the implementation level, and includes the for-
malisation of the information flow property targeted for
the SAC and its proof using Isabelle/HOL. Finally, Sec-
tion 5 looks at related work, while Section 6 concludes.

2 Case study overview

To illustrate some of the difficulties present in verifying
large systems, we introduce a case study of a simple SAC
device. In this scenario, a single user requires access to
several independent networks of different security clas-
sifications. The user has a simple terminal connected to
a network interface of the SAC. The SAC has additional
network interfaces allowing it to be connected to each of
the classified networks. The user only needs to access
one network at a time, and selects the network through a
web interface provided by the SAC on a control network
interface. This setup is depicted in Figure 1.

The goal of the SAC is to route TCP/IP packets be-
tween the user’s terminal and the currently selected net-
work without allowing the information to be seen or ma-
nipulated by the other networks. The SAC must ensure
that all data from one network is isolated from each of the
other networks. While we assume that the user’s termi-
nal is trusted to not leak previously received information
back to another network, we otherwise assume that all
networks connected to the SAC are malicious and will
collude.

Concrete applications of such a device can be found in
the defence sector, where users frequently need to deal
with data of several classifications, each of which is iso-
lated on its own network. The traditional approach of
having one terminal per classification level for each user,
while clearly obeying the security requirements, is rather
unwieldy.

While the requirements of the SAC are quite simple,
it already presents several challenges to full system ver-
ification. In particular, the SAC requires code for (i) gi-
gabit network card drivers; (ii) a secure web server; (iii)
a TCP/IP stack for the web server; and (iv) IP routing
code. Any one of these components would individually

consist of tens of thousands of lines of non-trivial code
that would give even the most seasoned verification en-
gineer pause. Complicating matters further, each of the
classified networks needs to both read and write data to
the user’s terminal at some point in time. Traditional data
diodes or any security design that relies on statically par-
titioning resources would be incapable of providing the
required functionality of the SAC. Despite these compli-
cations, our goal is to provide the required functionality
while having a full system assurance that the data from
the networks will remain isolated.

3 Designing for the Vision

For our case study, our property of interest is an access-
control-based security property. Verifying such a prop-
erty for the large body of code needed to implement the
functionality required by the SAC is far beyond the abil-
ities of current verification methods.

To overcome this we split the code of a large system
into two classes: frusted code, implementing security-
critical functionality, and untrusted code which we as-
sume is malicious, avoiding the need to reason about its
precise implementation. For such a split to be possi-
ble, we need some mechanism that allows such untrusted
code to be securely isolated.

Our work uses the seL.4 microkernel to provide such
isolation. Sel4 is a small operating system kernel of
the L4 family designed to be a secure, safe, and re-
liable foundation for a wide variety of application do-
mains [11]. Its C implementation has been formally
proved to match its functional specification [7], making
it a key foundation of our goal for full system assur-
ance. As a microkernel, it provides a minimal number of
services to applications: abstractions for virtual address
spaces, threads and inter-process communication (IPC).

Sel4 uses a capability-based access-control model.
All memory, devices, and microkernel-provided services
require an associated capability (access right) to utilise
them [3]. The set of capabilities a component possesses
determines what a component can directly access. SeL.4
enforces this access control using the hardware’s mem-
ory management unit (MMU). Additionally, seL.4 allows
device drivers to be isolated by using the /O MMU
functionality present on recent x86 processors. The I/O
MMU allows the kernel to control what areas of physi-
cal memory each hardware device can access via direct
memory access (DMA), preventing malicious hardware
devices (or, more specifically, malicious software con-
trolling such hardware devices) from bypassing seL4’s
access control mechanisms.

The access control mechanism of seL.4 allows systems
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Figure 2: High-level component breakdown of the SAC
design. The router manager is the only trusted compo-
nent in the system, as no other component has simulta-
neous access to both NIC-A and NIC-B.

to be broken into smaller independent components, each
with its own set of access rights. This split of com-
ponents forms the system’s high-level security architec-
ture. The set of capabilities we provide to each com-
ponent forms the system’s capability distribution which
precisely defines overt communication amongst compo-
nents and hardware, and thus can be used as the basis
of a security analysis of the system. Covert communica-
tion channels, such as timing channels, would have to be
analysed by other means.

Components that do not possess any capabilities that
may be used to violate the system’s security policy need
not be trusted, and can be implemented without requiring
verification. Components that do have sufficient capabil-
ities to violate the system security policy become part of
the TCB (along with the selL4 kernel itself), and require
verification. For example, in our SAC case study, any
component that possesses a capability to a network card
connected to a classified network while simultaneously
having access to information from another classified net-
work would need to be trusted, and hence verified.

In our experience, designing a secure system is an it-
erative process: (i) a high-level security architecture is
proposed, coarsely breaking the system down into com-
ponents; (ii) a capability distribution is determined by
applying the principle of least privilege for the design
[10]; and (iii) this capability distribution is analysed to
determine which components have sufficient rights to vi-
olate the desired security policy (hence becoming part of
the system’s TCB). The resulting design may be further
refined via re-iterating to reduce the size of the TCB, and
thus ease verification effort.

We return to the case study to illustrate how this de-
sign process applies to the SAC. For simplicity of expla-
nation, we assume that the SAC only needs to multiplex
two classified networks, NIC-A and NIC-B. The user’s
terminal is connected to NIC-D, while the SAC is con-
trolled through a web interface provided on NIC-C.

To avoid trusting (and thus verifying) large bodies of
code such as network stacks, we architect the system
with an untrusted router component. This component
is given access to NIC-D and either NIC-A or NIC-B,
and is responsible for routing between the two networks.
The component has two additional parts: read-only ac-
cess to its own initialisation code and additional read-
write memory required by it at run-time.

A second trusted component, the router manager, pos-
sesses capabilities to all three of NIC-A, NIC-B and NIC-
D. When the SAC needs to switch between networks, the
router manager first deletes any running router compo-
nent, clears the router’s read-write memory, and sanitises
the hardware registers and buffers of NIC-D (to prevent
any residual information from inadvertently being stored
in it). Such sanitisation requires a detailed knowledge
of the the network card hardware (to ensure that all po-
tential storage channels are cleared), but is expected to
be significantly simpler than an implementation of a full
driver for the card. The router manager will then recreate
the router, grant it access to its read-only code and read-
write memory, and grant it access to NIC-D and either
NIC-A or NIC-B as required. This allows the router to
switch between NIC-A and NIC-B without being capable
of leaking data between the two.

A third untrusted component, the SAC controller, pro-
vides a web interface to the control network on NIC-C.
The router manager is given a read-only communication
channel to the SAC controller, which is used to instruct
the router manager to restart the router with rights to the
other classified network.

Finally, to avoid components sharing the system’s tim-
ing hardware (thus creating a communications channel
between them), a fourth untrusted timer server com-
ponent is granted access to the system clock and pro-
vided with a write-only communication channel to each
of the other components. It broadcasts a regular timer
tick to the other components, allowing each to internally
track time, required by modern network card drivers and
TCP/IP implementations.

This design, shown in Figure 2, only requires the
router manager to ever have access to both NIC-A and
NIC-B simultaneously. While this means that the router
manager component becomes part of the system’s TCB,
it allows us to leave all other components in the system
untrusted, significantly easing the burden of verification.

Our implementation of this design uses GNU/Linux
to implement the router and SAC controller components.
The SAC controller’s webserver is implemented using
‘mini_httpd’, while the Linux kernel itself provides
functionality for routing, the TCP/IP networking stack
and drivers for the network cards. The Linux kernel
alone consists of millions of lines of code, much of which



would become part of the TCB if used directly. By utilis-
ing the access control features of seL.4 and designing the
system to isolate this functionality, we were able to re-
duce the run-time TCB of the SAC to just the router man-
ager (approximately 1500 lines of code) and the selL4
kernel (approximately 7500 lines of code), just under
9000 lines in total.

4 Formal verification of security properties

While the previous section described informally how a
secure system such as the SAC might be designed to re-
duce the size of its TCB, this alone does not provide any
guarantees about our desired security property. This sec-
tion describes a process that allows us to formally prove
that the final system implementation obeys the property,
and describes our progress on this vision by describing
the first few steps of the proof on our SAC case study.

As in selL4’s correctness proof, we focus on verifica-
tion of the initialized C code, assuming the correctness of
hardware, compiler, assembly and booter (the two latest
being on-going work).

This verification approach is illustrated in Figure 3.
Once a system has been broken into components with an
initial capability distribution defined (labelled @ in the
figure) and trusted components in the system have been
identified (labelled @ in the figure), we must then:

1. Prove that this partition is sound. That is, we must
prove that untrusted components are incapable of
violating the targeted security property of the sys-
tem. This is done by describing the behaviour of
trusted components (labelled @ in the figure), and
modelling untrusted components as capable of car-
rying out any series of actions authorised by the set
of capabilities they possess. If, under these assump-
tions, a proof of security succeeds, nothing further
needs to be proven about the untrusted components.

2. Prove that the code of the run-time TCB (i.e.,
the trusted components and underlying kernel) cor-
rectly implements the security model used for the
proof. This involves taking the simple model used
to perform the proof in step 1, and then refining
it (possibly via several increasingly more precise
models), down to the final system’s implementation.

The second step involves three tasks, most of them be-
ing on-going or future work. First, we need to prove
that the kernel implementation refines its security model.
Building on seL.4’s proof of correctness reduces this task
to proving that the high-level specification the kernel im-
plements refines the security model. This is on-going

work. The second task is to prove that the trusted compo-
nents’ implementations refine their formal behavior. This
has not been done for the SAC system but our experience
from the kernel verification and the framework built for
such refinement give us confidence that this task is fea-
sible. The last task consists in proving that the initial
capability distribution in the system implementation sat-
isfies the abstract security architecture. We have defined
a capability distribution language, called capDL [8], with
a formal semantics that aims to be used to automatically
and formally link a user-defined capability distribution
description of the system to both an initial implementa-
tion state and an abstract security architecture.

The remainder of this section describes the first step of
the two listed above in detail, illustrating them with our
SAC case study.

4.1 Notation

We briefly introduce the notation used for the remain-
der of this paper. Our meta-language Isabelle/HOL con-
forms for the most part with normal mathematical nota-
tion.

The space of total functions is denoted by =. Type
variables are written ‘a, 'b, etc. The notation ¢ :: 7
means that HOL term ¢ has HOL type 7. The option type
datatype ‘a option = None | Some 'a adjoins a new element
None to a type ‘a. Function update is written f(x := y)
where f :: '/a = 'b,x :: ‘aand y :: 'b and f(x — y) stands
for f (x := Some y).

Isabelle supports tuples with named components. For
instance, we write record point = x :: nat, y :: nat for the
type point with two components of type nat. If p is a
point, a possible value for p is notated (x=5,y=2|). The
term x p stands for the x-component of p. Updating p
from a current value (x=>5,y=2|), with the update notation
p(x:=4|), gives (x=4,y=2|. Finally, the keyword types
introduces a type abbreviation.

4.2 Underlying access control model

From a security point of view, the operations provided
by the kernel can be reduced to seven possible opera-
tions: read, write, create, delete, remove, grant, revoke
and four corresponding access rights: read (r), write (w),
create (c) and grant (g). The seL4 kernel supports more
operations, but purely from the security perspective, each
of them can be reduced to a sequence of these seven. For
instance an IPC receive can be reduced to a read, while
an IPC send can be reduced to a write.

The first five operations allow a component to read or
write from another component, to create a new compo-
nent, to delete an existing component, or to remove an
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Figure 3: Full-system verification approach for seL4-based system

existing capability. All of these operations require the
acting component to hold the correct capability to the
target entity. The last two operations, grant and revoke,
enable a component to delegate one of its capabilities to
another component or to withdraw one or more capabili-
ties from other components. Whereas the grant operation
requires an explicit capability for authorisation as above,
the revoke operation is authorised implicitly. Each com-
ponent may revoke any capability it has created and all
copies it has granted as long as it still holds the original
capability. The kernel internally tracks this create/grant
relationship in an internal book-keeping mechanism, and
authorises revoke and delete operations accordingly.

In the following, we define the state space the applica-
tion level entities will operate in, together with the tran-
sitions on this state space that the seL.4 kernel allows.

4.2.1 State Space Model

Our model is largely inspired by seL4’s security model
developed in previous work [4, 5, 2]. In this previous
work, all the kernel objects (active and inactive) are mod-
elled as entities, and the state space only stores the ca-
pabilities each entity in the system has access to. In
other words, it abstracts away from all application-local
or kernel-internal storage, and instead concentrates on
how capabilities—and therefore access to information—
are distributed throughout the system. The only exten-
sion made here is regarding storage: for certain security
properties we may need to track additional state.

For instance, in our case study, the property we are in-
terested in for the SAC is the absence of explicit informa-
tion flow, i.e., confidential data being explicitly read by
an external entity. For simplicity, we only aim to prove
that there is no information flow from NIC-A to NIC-B
(the property being symmetric). The confidential data
is therefore the data coming from NIC-A and the exter-
nal entity that should not obtain any information from

this confidential data is NIC-B. The approach taken is to
tag the data coming from NIC-A as confidential. This
means that we give any entity with storage (memory and
network cards) a flag denoting whether it could possibly
contain data from NIC-A. Entities that have this flag set
are called contaminated. In their initial state, no entity,
other than NIC-A, is contaminated. Each time an entity
reads from a contaminated entity, it too becomes con-
taminated. Likewise, if a contaminated entity performs a
write operation to another entity, the target becomes con-
taminated. The goal then is to prove that the whole SAC
can never reach a state where NIC-B is contaminated.

Entities are therefore represented by the set of capabil-
ities they hold and their “contamination status”:

record entity =
caps :: cap set
contam :: bool

Each capability contains a reference to an entity it
grants rights to, and the set of access rights it provides:

datatype right = Read | Write | Grant | Create

record cap =
entity :: entity-id
rights :: right set

Both the capability set and each entity’s contamination
state can dynamically change. The state of the system
at a given point is a function from entity identifiers to
entities. We model the fact that not all entity identifiers
are mapped to entities by using the option type:
datatype entity-id =

SacController | NicA | NicB | NicC | NicD

| RouterManager | Router | RouterMem | RouterCode
| Timer | TimerChip | UnknownEntity nat.

types state = entity-id = entity option

Note that the entity’s contamination status can be gen-



eralised to other kinds of storage information required by
a label-based security property.

4.2.2 System operations

The possible basic transitions on this state space are de-
scribed by the kernel operations available to components.

We do not model the revoke operation in its general
case here, but instead represent it by the specific se-
quence of remove operations that eventually take place.
The operations’ formalization is the following:

datatype sys-op =
SysRead cap | SysWrite cap bool
| SysCreate cap | SysGrant cap cap
| SysDelete cap | SysRemoveSet cap (cap set)

All of the operations take a capability pointing to the
targeted entity. In the case of SysRead c for instance, the
entity performing the operation is reading from the en-
tity referred to by the capability c¢. The operation will
only be allowed by the kernel if the capability ¢ is held
by the entity performing the operation and includes at
least the read right. SysGrant also takes the capability
to be granted and SysWrite takes a boolean flag which
is true if the write operation is a flush operation, remov-
ing an entity’s contamination flag. Such an operation is
required to model the router manager’s sanitisation of
NIC-D when the network is being switched. The final
operation SysRemoveSet removes a set of capabilities.

The authorisation check for all the system operations
is summarised in the function legal s e sysop defining the
conditions for entity e to perform operation sysop in state
s. For instance:
legal s e (SysRead c) =

(is-entity s e A is-entity s (entity ¢) A

¢ € entity-caps-in-state s e \ Read € rights c)
where is-entity ensures that entity e is defined in s and
entity-caps-in-state retrieves the capabilities held by e.

4.2.3 State transitions

We now look at how the state changes for each operation.
This is modelled by the function step s e sysop defining
the resulting state after the entity e has performed opera-
tion sysop on state s. For instance, we model both reads
and writes as a write-operation (with the direction of the
write switched for reads):

step s e (SysWrite ¢ b) = write-operation e (entity ¢) b s

step s e (SysRead ¢) = write-operation (entity c) e False s

where write-operation is defined as follows:

write-operation source target is-flush ss =

(case ss target of
Some target-entity =
ss(target — target-entity(| contam :=
((is-contam ss target \ is-contam ss source)
A —is-flush))))
| - = s5)

The other operations are defined similarly and are used
to define step. A legal-step is defined as a step of the
system that only takes place if it is legal. If the operation
can not be performed (because the thread attempting the
operation doensn’t have an appropriate capability, for in-
stance), the operation silently fails and the system state
remains unchanged:

legal-step s e-id sysop =

if legal s e-id sysop then (step s e-id sysop) else s

This model, for simplicity, does not allow threads to
determine if an operation failed; trusted threads need
to ensure that they have the correct resources before at-
tempting any security-critical operation.

4.3 Component-level model

So far we have described the states and transitions of
the underlying kernel which the components will run on.
This model is used to describe the components’ behav-
ior as sequences of instructions, where each instruction
is a step modifying the global state of the system. As ex-
plained earlier, we model only the trusted components’
behavior. No restriction at all is placed on the untrusted
components, and they will be correctly implemented by
any concrete program code. Their behaviour is only con-
strained by the authority they are given via capabilities.
In our case study this means that the router instance,
when it has received the capabilities to its network cards,
will be able to attempt any behaviour, but the kernel will
only allow access to the two network cards (NIC-A and
NIC-D, say) it possesses capabilities to at this point. If
we can show that the system is secure with this uncon-
strained behaviour, it will also be secure with any specific
implementation of the router components.

While the specification of untrusted components is
simple, the specification of trusted components requires
more care. We rely on specific behaviour of the trusted
component for the security of the overall system. In our
case study, we rely on the router manager to execute spe-
cific operations in a specific order, such as creating the
router instance, granting capabilities, revoking capabili-
ties, flushing the network cards, etc.

We model the program of such trusted entities as a list
of instructions, each of which either performs a kernel
operation (SysOp) or changes the program counter of the
entity (Jump). To avoid needing to reason about imple-
mentation details of trusted entities, flow control (such
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as ‘if’ and ‘case’ statements) is modelled by non-
deterministic choice, which itself is modelled by hav-
ing the Jump instruction accept a list of targets. Un-
trusted entities may perform any operation they wish, so
are modelled with a program consisting of an AnyOp in-
struction, representing any legal kernel operation:

datatype instruction =
SysOp sys-op
| Jump nat list
| AnyOp
types program = entity-id = instruction list

To model the behavior of the whole system, we need
to represent the fact that entities run concurrently. We
model this behaviour by considering all possible inter-
leavings of instructions between entities. For this, we
keep track of a program counter for each component in
an additional program counter state:

record sys-state =
sys-entity-st :: state
sys-pc-st :: entity-id = nat

One execution step of the whole system consists of non-
deterministically choosing any existing active entity and
running its current instruction (specified by its program
counter). This models the seL.4 kernel scheduler. If the
current instruction is AnyOp, then we pick any arbitrary
operation that is legal in the current state for this entity
and execute it. We thus get a safe over-approximation of
all possible execution traces of the system.

To model a single step of a particular entity e-id, we
look at the instruction at that entity’s program counter.
If it is a SysOp or AnyOp operation, it is executed us-
ing legal-step producing a new state of the system. If
the instruction is a Jump operation, the model non-
deterministically updates the current entity’s program
counter to one of the values in the list loffset. In both
cases, the model requires that the entity performing the
instruction exists and that the entity’s program counter is
within the bounds of its program:

inductive
entity-operation :: entity-id = sys-state = sys-state = bool
where
entitySysOp:
[ ss = ( sys-entity-st = s, sys-pc-st = pc |);
is-entity s e-id; pc e-id = e-pc;
sys-program e-id = e-prog; e-pc < length e-prog;
e-prog ! e-pc = SysOp oper \ e-prog | e-pc = AnyOp;
s' = legal-step s e-id oper;
new-pc = (e-pc + 1) mod (length e-prog);
ss’ = (|sys-entity-st=s’ sys-pc-st=pc(e-id:=new-pc)|)]
= entity-operation e-id ss ss’
| entityJump:
[ ... (* as above )

Figure 4: SAC initial state (partial)

e-prog | e-pc = Jump loffset;

new-pc € set loffset;

ss’ = (sys-entity-st=s,sys-pc-st=pc(e-id:=new-pc)))]
= entity-operation e-id ss ss’

A single execution step of the whole system is then
modelled by the relation ss — ss’ which is true if ss’ is
a possible resulting system state after executing the cur-
rent instruction of any existing active entity in the system
state ss. An execution ss —* ss’is then defined as a se-
quence of execution steps.

We have now defined execution and implicitly with the
relation above all possible execution traces of the system.

Instantiation to a given system. This formalisation
of seL4-based systems’ behavior can be instantiated to
a specific componentised system like the SAC. This is
done by defining the initial capability distribution for this
system and the program of each of its trusted compo-
nents. For instance, the initial state for the SAC system
(partially illustrated in Figure 4) is modelled as:

SAC-startup= (|sys-entity-st=SAC-init-state, sys-pc-st=Ax. 0|)
where SAC-init-state defines the initial capability set for
each component, together with their contamination status
(of which all components other than NIC-A are initially
uncontaminated). For instance, the router manager’s ini-
tial state looks like:

RMO = (| caps = { cap-RW-to-NIC-A, ...}, contam = False |)

where we take the convention that the name of each cap
is of the form: cap-<rights>-to-<target-entity>, as in:

cap-RW-t0-NIC-A = (| entity=NicA, rights = {Read, Write} |)

Each trusted component’s behaviour is modelled as a
sequence of instructions. For instance, the router man-
ager in our case study will be formalized as follows.

RM-prg =
[(x 00: Wait for command, delete router manager. *)
SysOp (SysRead cap-R-to-SAC-C),
SysOp (SysRemoveAll cap-C-to-R),
SysOp (SysDelete cap-C-to-R),
SysOp (SysWriteZero cap-RW-to-NIC-D),



Jump [0, 10, 19],

(* 10: Setup router between NIC—A and NIC—D. x)
SysOp (SysCreate cap-C-to-R),

SysOp (SysNormalWrite cap-RWGC-to-R),

SysOp (SysGrant cap-RWGC-to-R cap-RW-10-NIC-A),
SysOp (SysGrant cap-RWGC-to-R cap-RW-to-NIC-D),
SysOp (SysGrant cap-RWGC-to-R cap-R-to-R-code),

]

The sys-program function that associates a program to
each component (used entity-operation) is defined as:
sys-program eid =

if (eid = RouterManager) then RM-prg

else if (eid € untrusted-entities) then [AnyOp] else ||
where untrusted-entities for the SAC consist of SacCon-
troller, Router, Timer and where the inactive entities
(such as the network cards) are associated with empty
programs.

4.4 Security property proof

With the model described, we can now formally state
the security property we are targeting for our SAC case
study. The property we are interested in is the absence of
explicit information flow. As explained earlier, we model
the fact that NIC-B cannot read information from NIC-A
in a given state as NIC-B not being contaminated. In par-
ticular, we state that in any state that the SAC can reach
starting from its initial state, NIC-B is not contaminated
with data from NIC-A:

lemma sacSecurity: | SAC-startup —* ss' | =
- is-contaminated (sac-entity-st ss") NicB

The proof relies on showing an invariant always holds
on the state of the SAC. The invariant insists that: (i)
Only NIC-A, the router (and associated components) and
NIC-D ever become contaminated; (if) The capabilities
held by each component is limited to a small, secure set;
(iii) The router doesn’t have capabilities to both NIC-A
and NIC-B at the same time; (iv) The router doesn’t have
a capability to NIC-B while any component it can access
is contaminated; (v) The capabilities held by the router
manager at every point of time is sufficient to allow it
perform its job of deleting the router and sanitising NIC-
D; (vi) All entities other than the router always exist; and
finally (vii) That certain conditions about the state of the
router hold when the router manager’s program counter
is at particular values.

The last invariant is the most intricate, and is required
to show that the system remains in a well-known state
while the router manager is mid-way through deleting
or creating the router instance. For instance, when the
router manager’s program counter points to an instruc-
tion granting the router access to NIC-B, we must know

that the router is in an uncontaminated state, which can
only be established because the router manager earlier
deleted the router, and hasn’t provided it with any caps
to NIC-A since.

The final security property follows directly from the
invariant, which states that NIC-B will always be uncon-
taminated.

5 Related Work

The idea of using system architectures to ensure security
by construction, relying on basic kernel mechanisms to
separate trusted from untrusted code is widely explored
in the MILS (multiple independent levels of security and
safety) space [1]. In the context of formal analyses of
capability-based software, Spiessens [12] developed the
formal language Scoll to model the behaviour of trusted
components, together with a model-checker for that lan-
guage to check capability-based software.

Murray [9] builds on Spiessens’ concepts, but uses a
CSP, for which model-checking tools already exist. Its
main contribution is to extend the kind of properties that
can be expressed to also include noninterference style in-
formation flow properties (under the assumption that the
capability system that the software is running on does not
expose covert channels between unconnected objects)
and liveness properties under fairness assumptions.

Both Spiessens’ and Murray’s work explicitly prove
that it is safe to take multiple entities and model them
as a single entity that possesses the union of their capa-
bilities and exhibits the union of their behaviours. This
idea is also part of our vision, with the addition of a
capability abstraction (the capability distribution in Fig-
ure 3 to reason about typed capabilities upon kernel ob-
jects, whereas at the security architecture level, the sim-
ple model of read, write, create, grant capabilities be-
tween components is used). However, the proof that it is
safe to aggregate entities in this way is part of our future
work.

To the best of our knowledge, our work is the first
to use interactive theorem proving rather than model-
checking to verify capability based systems by modelling
trusted components’ behaviour. We also modelled the
SAC using the SPIN model checker [6] for comparison.
Although the proof effort was reduced from around six
weeks (by an inexperienced Isabelle/HOL user) to less
than one day, our model quickly reached a size that was
beyond the abilities of SPIN to verify in a reasonable
amount of time and memory. In particular, we could
only verify our final system design by making simpli-
fying assumptions in the SPIN model. The other main
benefit of using a theorem prover is being provided with



a framework to prove the refinement between the security
architecture and trusted components’ behaviour, and the
system implementation. Assuring label-based security
properties about the actual implementation of real-world
system is the real added value of the framework we pro-
pose. Investigating how interactive theorem proving and
model checking can be combined in a way that gives the
flexibility of the former with the ease-of-use of the latter
is part of our future work.

6 Conclusion

In this paper we have presented our vision of how large
software systems consisting of millions of lines of code
can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access
control guarantees provided by the verified seL4 micro-
kernel and using it to isolate components such that their
implementation need not be reasoned about.

We have demonstrated in our SAC case study how
careful design and componentisation of a large system
can be used to reduce the run-time TCB from millions
of lines of code to just under 9000. Additionally, we
have modelled the design of the SAC and shown that the
modelled system fulfills its security goal of isolating data
between different networks.

What still remains is connecting the model used to
prove security of the system with the actual implemen-
tation. In particular, we must still show that (i) the C im-
plementation of trusted components in the SAC refine the
behaviour modelled in the security proof; and (ii) that the
kernel operations in the security proof correctly model
the actual behaviour of the se[.4 kernel. The verification
success of the selL4 kernel, with its C code shown to im-
plement its functional specification, gives us confidence
that both of these tasks are feasible. Carrying out this
verification effort forms part of our ongoing work.
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