Improving Spam Detection Based on Structural Similarity

Jussara Almeida

Luiz Henrique Gomes, Fernando Castro, Rodrigo Almeida, Luis Bettencourt, Virgílio Almeida

> Federal University of Minas Gerais – Brazil Los Alamos National Laboratory – US

Motivation e Goals

- Volume of spam traffic is increasing at very fast rate
 - 83% of all incoming e-mails in 2005
- Current detection techniques are not fully successful
 - Spammers escape by frequently changing e-mail characteristics traditionally used for detection/filtering
 - E-mail content, sender domain, sender IP address
 - False positives: high "cost" to end-users
- Our goals:
 - Improve spam detection by reducing the number of false

Key Question

What are the e-mail characteristics that are most costly to change from the point of view of the spammer?

Fundamentals of our Algorithm

- Exploit structural relationships between senders and recipients: sender/recipient contact list
- Assumption: contact lists change less frequently than other characteristics
 - Set of recipients targeted by a sender tends to remain stable for longer periods than e-mail content, sender domain or IP address
- Senders / recipients are clustered based on similarity of their contact lists
- Historical information on spam activity from/to a

Proposed Architecture

Representing Users and Clusters

Vectorial representation of an e-mail sender:

$$\vec{s}_i[n] = \begin{cases} 1, & \text{if } s_i \text{ sent at least one e-mail to } r_n \\ 0, & \text{otherwise} \end{cases}$$

Representing Users and Clusters

Vectorial representation of an e-mail sender:

$$\vec{s_i}[n] = \begin{cases} 1, & \text{if } s_i \text{ sent at least one e-mail to } r_n \\ 0, & \text{otherwise} \end{cases}$$

Vectorial representation of a sender cluster:

$$\overrightarrow{SC_i} = \sum_{s_i \in SC_i} \overrightarrow{s_i}$$

• Similarity between a sender and a sender cluster:

$$sim(\overrightarrow{sc_{i}}, \overrightarrow{s_{i}}) = \begin{cases} \cos(\overrightarrow{sc_{i}} - \overrightarrow{s_{i}}, \overrightarrow{s_{i}}), & if \ \overrightarrow{s_{i}} \in \overrightarrow{sc_{i}} \\ \cos(\overrightarrow{sc_{i}}, \overrightarrow{s_{i}}), & otherwise \end{cases}$$

Similar representations for recipients

Spam?

 $P_{\rm S}(\odot,\odot,\odot) = 0.8$ $P_{R}((\blacksquare),(\blacksquare,\blacksquare,\blacksquare,\blacksquare)) = 0.5$

Key Ideas

Classify the e-mail as spam if the point (P_S, P_R) falls in the blue area

Classify the e-mail as legitimate if the point (P_S, P_R) falls in the green area

Compute a Spam Rank

Spam Rank Computation:

The Spam Rank vector is: $V_{SR}(e-mail) = (P_S, P_R) = (0.8, 0.5)$ The Spam Rank (SR) is the norm of the projection of V_{SR} over diagonal

If SR > _ : classify e-mail as spam

If SR < 1-_: classify it as legitimate

Otherwise, use classification reported by auxiliary algorithm

Preliminary Evaluation

- Eight-day SMTP log of incoming e-mails to UFMG
 - 321K e-mails, 8.3 GB of data
 - 23K distinct sender domain names
 - 34K distinct recipients
- E-mails originally classified by Spam Assassin
 - 154K spams, 0.8 GB
- In our experiments:
 - Auxiliary algorithm = Spam Assassin
 - Sender = sender domain name

Selecting the Similarity Threshold $\boldsymbol{\tau}$

• Number of sender/recipient clusters is roughly stable for $\tau \ge 0.5 \Rightarrow$ use $\tau = 0.5$ in experiments

Effectiveness of Spam Rank

- Clusters with high P_s / P_R send/receive large # of spams
 - There are sender/recipients clusters that are predominantly spam/legitimate clusters

E-mail Classification

- Higher $_ \rightarrow$ smaller # of e-mails can be classified
- For fixed _, we are able to classify more legitimate e-mails than spams

Accuracy of our Classification

τ = 0.5 , _ = 0.85:

Classification			
Auxiliary	Our Algorithm	% e-mails	our Algorithm
Spam	Legitimate	0.27% (879 emails)	60%
Spam	Spam	15% (48,277 emails)	99.99%
Legitimate	Spam	0.11% (352 emails)	????

- Our algorithm avoids filtering 528 legitimate e-mails in 8 days
- It moves 352 e-mails originally classified as legitimate to the spam category (unable to verify correctness)

Conclusions and Future Work

- New e-mail classification algorithm that exploits structural similarities of senders and recipients
 - Clustering senders/recipients based on contact lists
- Using historical information of each cluster can improve accuracy of existing detection algorithms
 - Reduction of a non-negligible number of false positives caused by Spam Assassin
- Future Work
 - Several extensions to our algorithm:
 - Take traffic between sender/recipient into account
 - Consider spam probability of a sender-recipient pair