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Motivation e Goals
• Volume of spam traffic is increasing at very fast rate

– 83% of all incoming e-mails in 2005

• Current detection techniques are not fully successful

– Spammers escape by frequently changing e-mail
characteristics traditionally used for detection/filtering

• E-mail content, sender domain, sender IP address

– False positives:  high “cost”  to end-users

• Our goals:

– Improve spam detection by reducing the number of false
positives

– Propose and evaluate new e-mail classification algorithm



Key Question

  What are the e-mail characteristics
that are most costly to change from
the point of view of the spammer?



Fundamentals of our Algorithm
• Exploit structural relationships between senders and

recipients:  sender/recipient contact list

• Assumption: contact lists change less frequently than
other characteristics

– Set of recipients targeted by a sender tends to remain
stable for longer periods than e-mail content, sender
domain or IP address

• Senders / recipients  are clustered based on similarity
of their contact lists

• Historical information on spam activity from/to a
cluster is used to improve accuracy of classification
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Representing Users and Clusters
• Vectorial representation of an e-mail sender:
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Representing Users and Clusters
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• Vectorial representation of an e-mail sender:

• Vectorial representation of a sender cluster:
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• Similarity between  a sender and a  sender cluster:
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Similar representations for recipients



Our Algorithm
Senders Clusters

Sender
sim = 0.5

sim = 0.1
sim = 0.0

sim = 0.8

Find similarity between  sender
and each sender cluster

Add sender to cluster that is most
similar to it as long as similarity > τ

Find the probability of cluster sending spam
(auxiliary classification of this e-mail and

previous e-mails sent by cluster)

PS(   ,   ,   ) = 0.8

Repeat process with the recipients
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PS(   ,   ,   ) = 0.8
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Key Ideas

Classify the e-mail as spam
 if the  point (PS, PR) falls in the

blue area

Classify the e-mail as legitimate
if the  point (PS, PR) falls in

the green area

Compute a Spam Rank
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The Spam Rank vector is:

    VSR(e-mail) = (PS , PR ) = (0.8, 0.5)

0.5

0.8

VSR

The Spam Rank (SR) is the norm of

the projection of VSR over diagonal

Spam Rank Computation:

SR
If SR > _ : classify e-mail as spam

_

If SR < 1-_: classify it as legitimate

Otherwise, use classification
reported by auxiliary algorithm

1-_

Our Algorithm
PS(   ,   ,   ) = 0.8
PR((   ),(   ,   ,   ,   )) = 0.5



Preliminary Evaluation
• Eight-day SMTP log of incoming e-mails to UFMG

– 321K e-mails, 8.3 GB of data

– 23K distinct sender domain names

– 34K distinct recipients

• E-mails originally classified by Spam Assassin
– 154K spams, 0.8 GB

• In our experiments:
– Auxiliary algorithm = Spam Assassin

– Sender = sender domain name

– Recipient = recipient user name



Selecting the Similarity
Threshold τ

• Number of sender/recipient clusters is roughly stable
    for τ ≥ 0.5 ⇒ use τ = 0.5 in experiments
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Effectiveness of Spam Rank
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• Clusters with high PS / PR send/receive large # of spams
– There are sender/recipients clusters that are

predominantly spam/legitimate clusters

Fraction of spams:

τ = 0.5



E-mail Classification

• Higher  _   smaller # of e-mails can be classified
• For fixed  _, we are able to classify more  legitimate e-mails
  than spams

Legitimate Spam
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Accuracy of our Classification

• Our algorithm avoids filtering 528 legitimate e-mails in 8 days
•  It moves 352 e-mails originally classified as legitimate
   to the spam category (unable to verify correctness)

 τ = 0.5 , _ = 0.85:

15% (48,277 emails)

0.27% (879 emails)

% e-mails
Accuracy  of
our Algorithm

Classification
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Our
Algorithm

99.99%Spam

60%Spam

Auxiliary

0.11% (352 emails)Spam ????Legitimate



Conclusions and Future Work
• New e-mail classification algorithm that exploits

structural similarities of senders and recipients
– Clustering senders/recipients based on contact lists

• Using historical information of each cluster can improve
accuracy of existing detection algorithms
– Reduction of a non-negligible number of false positives

caused by Spam Assassin

• Future Work
– Several extensions to our algorithm:

• Take traffic between sender/recipient into account
• Consider spam probability of a sender-recipient pair

– Further evaluation with logs covering longer period
• Study evolution of contact lists and clusters


