
Analyzing Cooperative Containment of Fast Scanning Worms

Jayanthkumar Kannan, Lakshminarayanan Subramanian, Ion Stoica, and Randy H. Katz
Computer Science Division, University of California, Berkeley

{kjk, lakme, istoica, randy}@cs.berkeley.edu

Abstract

Fast scanning worms, that can infect nearly the entire
vulnerable population in order of minutes, are among the
most serious threats to the Internet today. In this work,
we investigate the efficacy of cooperation among Inter-
net firewalls in containing such worms. We first propose
a model for firewall-level cooperation and then study the
containment in our model of cooperation using analysis
and simulation. Our results suggest that, with moder-
ate overhead, cooperation among Internet firewalls can
provide 95% containment under 10% deployment while
being resilient to 100-1000 malicious firewalls.

1 Introduction

Scanning worms that probe IP addresses to find vulner-
able hosts are the most common worms today. Several
recent worms, such as Slammer, Witty, CodeRed, and
Blaster, fall in this category. Slammer, one of the fastest
scanning worms seen so far, took less than 10 minutes to
infect 90% of the Internet’s vulnerable population [1].
Scanning worms that are more carefully designed us-
ing techniques discussed in [2] can accomplish infection
even faster. This threat is further acerbated by the possi-
bility of worms that exploit unknown vulnerabilities. It
is clear that automatic mechanisms are required to de-
fend against these worms. Unfortunately, many existing
defenses, like patching and address blacklisting, hold out
little hope in containing novel fast worms [3].

An emerging approach that offers hope in contain-
ing such worms is a decentralized solution in which
firewalls in various access networks exchange informa-
tion amongst themselves to defend against worm attacks.
Such a scheme may be easier to deploy compared to end-
host based schemes [4–6], schemes that may require sup-
port from core routers [7, 8], or schemes that place the
burden of analysis on a centralized infrastructure [9, 10].
Recent work [11–14] suggests that such cooperation may

contain fast worms, but an understanding of its efficacy
and limitations on robustness is still lacking.

In this paper, we aim to fill this void by modeling co-
operation in a abstract fashion, and then studying the
containment in this model. In our model, the partici-
pants in the cooperative are Internet firewalls, each pro-
tecting an access network. Each firewall employs local
detection to detect infection within its network. Once it
detects an infection, it notifies other firewalls of the on-
going worm infection. We consider two forms of such
notifications: implicit and explicit signaling. Firewalls
that receive these signals are alerted to the worm attack
and can then filter their incoming traffic based on these
signals. Signaling between firewalls is the essence of co-
operation, and our model of signaling captures and ex-
tends the salient features of existing schemes for coop-
eration. Moreover, this model integrates various known
techniques for local detection [11, 15, 16] and filtering
[4, 5, 17] into a framework for cooperation.

Our analytical results based on this model are as fol-
lows. First, we show that local detection and filtering
without any signaling can contain scanning worms un-
der certain regimes. Second, we characterize the de-
pendence of the containment provided by cooperation
on various worm and cooperation parameters. Our re-
sults indicate that the containment offered by coopera-
tion drops linearly with the scan rate of the worm and
the average time taken by the firewall to detect infection,
and drops quadratically with the size of the vulnerable
population. Third, our analysis quantifies the trade-off
between the containment offered by cooperation and ro-
bustness to malicious participants. Our numerical results
suggest that, even against the most virulent worm seen so
far, cooperation among Internet firewalls can offer over
95% containment under 10% deployment while being re-
silient to about 100-1000 malicious firewalls.

Although we primarily study Internet-level coopera-
tion among firewalls to contain scanning worms, our ana-
lytical approach can be applied to other scenarios as well:

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 17

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association18

to enterprise-level or Internet-level cooperation, to host-
level or firewall-level cooperation, and to a limited ex-
tent for analyzing sophisticated worms like hit-list based
worms. The downside of our analytical approach how-
ever is that there are inherent limitations in any tractable
model amenable to analysis. Such a model, by necessity,
cannot include all “real-life” details. Our model includes
the main factors characterizing a worm attack and we use
simulations to incorporate the effect of other factors in
our results.

2 Modeling Cooperation

We consider the Internet to consist of N access networks
that are connected to their ISPs through an access link.
Each network is monitored by a firewall which analyzes
traffic on its access link and exchanges information with
other firewalls to contain worms. We focus on contain-
ment of fast random scanning worms in this work. Such
worms perform a local topological scan followed by a
global uniform random scan: an infected host first in-
fects all hosts in its network and then probes external IP
addresses uniformly at random to find more vulnerable
hosts. Note that, in our model, a firewall cannot prevent
infection from spreading within its network, since it may
not even see local topological scans.

The main goal of cooperation is to maximize the con-
tainment metric C, defined as the fraction of vulnera-
ble networks that escape infection during a worm at-
tack. Other desirable features of a cooperative con-
tainment scheme include resistance to malicious partici-
pants, effectiveness under partial deployment, and scala-
bility (e.g., bandwidth overhead). We now describe our
model of cooperation.

2.1 Framework for Cooperation

The main purpose of this framework is to define the de-
sign space of cooperation schemes in a simple manner
suitable for analysis. Some points in this space corre-
spond to existing schemes [11–13, 18, 19].

We begin by making two assumptions, which we will
remove later: (a) all firewalls operate according to our
protocol (b) all firewalls in the Internet participate in our
cooperative. Firewalls participating in the cooperative
perform three functions: local detection, propagation,
and filtering.

Local Detection: A firewall uses local detection to de-
termine whether its own network is infected by analyzing
outgoing traffic. There are two advantages in analyzing
outgoing traffic as opposed to analyzing incoming traf-
fic. A firewall can maintain characteristics of its outgoing
traffic using per-host state, unlike incoming traffic which

can be noisy due to background Internet traffic. Also,
a decision made using incoming traffic can potentially
be influenced by external malicious hosts sending traf-
fic to the firewall’s network. However, analyzing outgo-
ing traffic cannot aid a firewall in protecting its own net-
work, since the characteristics of outgoing traffic change
only after its network is infected. We use the term “de-
tected firewall” to denote a firewall whose local detection
scheme identifies infection within its network.

One can use existing techniques [5,11,15,20] for local
detection. These techniques identify infection by analyz-
ing various characteristics of outgoing traffic, e.g., num-
ber of unique destination addresses, connection failure
rate, and packet payload.

Propagation: A detected firewall proceeds to notify
other firewalls of its infection. These notifications in-
clude filters for identifying malicious packets. On re-
ceiving these notifications, these firewalls are said to be
“alerted” to the attack. There are two forms of such no-
tifications: implicit and explicit.

Implicit Signaling: A detected firewall sends implicit
signals by marking all suspicious outgoing packets. Sus-
picious packets are identified using filters inferred by the
filtering mechanism. Marking can be done by using bits
in packet headers or by encapsulating suspicious pack-
ets within special headers. This marking serves two pur-
poses. First, it informs the destination firewall that the
packet is possibly malicious. The destination firewall can
simply drop such packets or it can process them in a spe-
cial manner (e.g., send it to a hardened end-host for anal-
ysis). Thus, the decision to drop/process is delegated to
the destination. Second, the destination firewall is noti-
fied that the source network is infected. This enables the
destination firewall to install filters before its own net-
work gets infected: this is the essence of cooperation.

Explicit Signaling: A detected firewall sends explicit
notifications of its infection to other participating fire-
walls at some fixed rate E. We only consider schemes
where signals are sent to randomly chosen participating
firewalls. This naive method can easily be improved by,
say, a publish-subscribe based system; however the secu-
rity properties of such systems are harder to characterize.

In both types of signaling, note that a firewall can re-
port only of its own infection; it cannot implicate other
firewalls. This rules out setup attacks in which malicious
firewalls make false accusations. We use a challenge-
response protocol to verify that the originator of a signal
is the infected firewall itself. Such a protocol also elimi-
nates spoofing attacks by malicious end-hosts.

Filtering: We refer to a firewall that has been alerted
by a signal as an alerted firewall. Such a firewall in-
stalls filters and drops malicious incoming traffic match-
ing these filters. These filters are gathered from the sig-

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 19

nals it receives. Filtering is also used by a detected fire-
wall during implicit signaling: only outgoing packets
identified as malicious by the filter are marked.

A very simple filter could be based on port num-
bers: any traffic on alerted ports is dropped. More
sophisticated filters can be inferred using known tech-
niques, such as Autograph [17] which deduces signatures
from packet payloads, and Vigilante [5], TaintCheck
[4], which infer signatures by host-based mechanisms to
track the flow of network data in a program.

To summarize, in our scheme, every firewall is in one
of the following four states: normal, alerted, infected,
and detected. Our model can also be extended to the
case when multiple worms may be propagating. The fil-
tering mechanism would infer filters for each propagat-
ing worm, and firewalls can maintain state and perform
propagation on a per-worm basis.

2.2 Security

We now discuss the security of our model against ma-
licious firewalls and evasive worms. First, in a cooper-
ative framework, it is important to distinguish between
a global Internet-wide attack and an infection localized
to a small set of networks. Thus, if a small number
of firewalls report that they have been infected, even if
they are being truthful, this attack could simply be a lo-
calized one. Thus, a fundamental necessity in the co-
operative framework is that a firewall should enter the
alerted stage and install filters only if it receives signals
from T distinct firewalls. Second, it is also necessary to
defend against firewalls attempting to trigger false pos-
itives/negatives. Since the alerted state is entered only
upon receiving T signals, our scheme can resist up to T
malicious firewalls that trigger a false alarm. This design
choice is also fundamental since it may be impossible to
detect whether a notification sent by a firewall is a false
alarm (e.g., if a firewall originates traffic as if its own
network had been infected). False negatives occur when
a firewall deliberately/otherwise fails to report of its in-
fection. We have also devised schemes to defend against
such attacks [21], although we do not discuss them here.

Finally, cooperation should also be resilient to sophis-
ticated worms that attempt to evade propagation (worms
that evade local detection and filtering are beyond our
scope). A worm could use pre-generated hit-lists [2] to
ensure that most of its probes are successful, and also al-
ter its scanning pattern over time to thwart propagation.
In the limit, a worm could simply stop scanning after its
firewall has entered the detected stage, since beyond this
point, all its scans will be marked and cannot infect any
new hosts. In this case, implicit signaling is completely
ineffective. Explicit signaling will however continue to

perform well. We consider such a worm in Section 4.2.

2.3 Partial Deployment

Under partial deployment, the main limitation of our
model is that it is not possible to prevent undeployed
networks from getting infected eventually, since infected
hosts in undeployed networks can always infect other un-
deployed networks. This limitation cannot be overcome
without support from core routers. We therefore choose
our metric for the partial deployment case as the contain-
ment among the deployed firewalls. As a baseline solu-
tion, our existing scheme for propagation works in this
case as well. Only deployed firewalls perform detection
and propagation: undeployed firewalls do not engage in
local detection, propagation, or filtering. We also im-
proved on this scheme using a technique called rerouting
discussed in [21]; we omit details due to lack of space.

2.4 Discussion

There are three salient features in our model of coop-
eration. First, in our model, signals can be verified us-
ing a challenge-response mechanism. This makes the
security properties of our model much easier to charac-
terize as compared to existing work [13, 14]. Second,
our model incorporates both forms of signaling, implicit
and explicit, whereas existing work has dealt mainly with
explicit signaling. There are trade-offs associated with
both approaches; implicit signaling has lesser overhead
and may be simpler to implement, but explicit signal-
ing is necessary to contain smart worms. Finally, our
model integrates the various techniques proposed for lo-
cal detection and filtering in a framework for coopera-
tion. Decoupling the various mechanisms used in coop-
erative containment also aids analysis, as will be seen in
the following section.

3 Analyzing Cooperation

In this section, we analyze the containment metric C (the
fraction of vulnerable networks that escape infection) of
our cooperative model under three cases: all firewalls are
deployed and operate according to the protocol (Section
3.2, 3.3,3.4), all firewalls are deployed but some of them
may be malicious (Section 3.5), and finally under partial
deployment (Section 3.6).

3.1 Worm and Network Model

We now introduce the assumptions and the parameters
used in our analysis (parameter names are in bold type).
In our worm model, an infected host first infects all vul-
nerable hosts in its own network in zero time, and then

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association20

proceeds to probe external addresses. The scanning rate
of a fast worm is limited by access bandwidth, and hence
we use the scanning rate “s” of a single infected network
in our analysis. The probability of a successful probe
“p” is the number of vulnerable hosts divided by the size
of the IP address space. We denote the total number of
vulnerable networks as “N”. We use the homogeneous
cluster model, used for modeling Slammer victims in [1].
This assumes that the vulnerable hosts are uniformly dis-
tributed among all vulnerable networks.

For purposes of analysis, we assume that the time
taken for an infected firewall to detect its infection is an
exponential variable with mean “td”. This assumption
is certainly not true for all local detection schemes, but
considerably simplifies the analysis. Thus, our model in-
cludes several simplifications, such as the uniform distri-
bution of vulnerable hosts. In the following results, the
environment used for simulation exactly matches the one
used in analysis, and thus, the simulation only serves as
a validation for the analysis. We also simulated environ-
ments with non-uniform host distributions and network
delays, and obtained similar results (not presented here
for lack of space).

3.2 Effectiveness of Detection and Filtering

First, we analyze a simplified variant of our scheme with-
out any propagation under complete deployment. Thus,
there is no sharing of information between firewalls. In
this variant, a firewall performs only local detection and
filtering (once a firewall enters the detected stage, outgo-
ing scans are marked and cannot infect any more hosts).
Thus, the defense against a worm attack is that an in-
fected host can effectively probe only until its firewall
does not detect infection. The following lemma shows
that such a simplified scheme is surprisingly effective un-
der some conditions. We define λ as the expected value
of the number of successful infections by an infected net-
work before its firewall detects infection. λ can be writ-
ten in terms of our parameters as λ = sptd. We now
state the following lemma without proof (for all proofs,
see our technical report [21]).

Lemma 1 If (λ < 1), then as N → ∞, the containment
metric C → 1. Further, if I0 denotes the number of
infected firewalls at time t = 0, for any N , C ≥ 1 −

I0
(1−λ)N .

Interestingly, the above lemma holds irrespective of
the scanning strategy employed by the worm. The con-
dition λ < 1 can be enforced by deploying firewalls at as
fine a granularity as necessary. This can be used to con-
trol the effective scanning rate s and thus the parameter
λ. Earlier worms like Blaster had low scan rates leading
to low values of λ, and could have been controlled by

simple detection and filtering even if the firewalls were
deployed at the level of class B networks. Recent worms
like Slammer used much higher scan rates and require
very fine grain deployment to enforce λ < 1.

Surprisingly, even if λ > 1, detection and filtering
still provide some containment against a random scan-
ning worm, although the effectiveness degrades rapidly
with λ. The reason this occurs is that as the infection pro-
ceeds, it takes longer for a random scanning worm to find
uninfected hosts, and thus the local detection schemes
have a greater chance of throttling the infection.

Lemma 2 If (λ > 1), assuming I0 ¿ N , C ≥ 1 −
mink:k>1(

(kλ−1)(k+1)
kλ(k−1) − 2∗log(kλ)

(k−1)λ) against a random
scanning worm (k is a variational parameter used in
minimization).

Our analytical results based on the above lemma indi-
cate that detection and filtering provide about 40% con-
tainment at λ = 1.5 and about 20% at λ = 2.0. We show
later that λ = 2.0 corresponds to the one of the most
virulent worms seen so far.

3.3 Effectiveness of Implicit Signaling

In this section, we analyze the containment metric when
implicit signaling is used along with detection and filter-
ing under complete deployment. Denote the total number
of deployed firewalls as n. We model the infection pro-
cess as follows. At time t, denote by ni(t) the number of
infected firewalls, by nd(t) the number of detected fire-
walls, and by na(t) the number of alerted firewalls (the
remaining firewalls are in the “normal” state). Note that
ni(t) represents all infected firewalls, so ni(t) − nd(t)
is the number of infected firewalls that have not yet de-
tected infection. A simple differential equation model for
implicit signaling is as follows:

d

dt
(ni) = (ni − nd) × s × (n − ni − na)

N
(1)

d

dt
(nd) =

ni − nd

td
(2)

d

dt
(na) = nd × s × (n − ni − na)

N
(3)

The first and third equations count the number of suc-
cessful scans and alerts per unit time respectively. The
second equation is based on the assumption of an ex-
ponential distribution for detection: the probability that
an infected and undetected network identifies infection
during time dt is equal to dt/td. We could not solve
these equations exactly, so we present a closed-form up-
per bound:

Lemma 3 For λ > 1 and I0 ¿ N , with implicit signal-

ing, C ≥ 1− (log(N))tdσ2)
s (1

tdσ +1) where σ = (λ−1)/td
and λ = pstd.

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 21

By substituting for σ in the region λ > 1, the above
lemma suggests that the containment metric decreases
linearly with td and s and drops quadratically with p.

3.4 Effectiveness of Explicit Signaling

In the case of explicit signaling at rate E along with im-
plicit signaling, the containment metric can be obtained
by simply substituting s = s + E in the denominator of

Lemma 3 to obtain C ≥ 1 − log(N)tdσ2

s+E (1
tdσ + 1). No-

tice that the containment metric varies with the rate of
explicit signaling as 1/(1 + E/s).

3.5 Effectiveness under Threshold T

In this case, a firewall enters the alerted state after re-
ceiving alerts from T distinct firewalls. Our differen-
tial equation model in Section 3.3 can be extended to
model this case by adding (T + 1) differential equa-
tions to track the number of firewalls that have received
0, 1, . . . , (T − 1), T alerts. This approach is however
cumbersome even for low values of T . However, the
lower bound on containment metric for the implicit sig-
naling case (Lemma 3) can be applied to obtain:

Lemma 4 For λ > 1 and I0 ¿ N , the contain-
ment metric C obtained by implicit signaling is at

least 1 − (log(N)+(T−1)log(log(N)))tdσ2)
(s+E) (1

tdσ + 1) where

σ = λ−1
td

.
The main implication of this result is that the contain-

ment drops linearly with the threshold T . This quantifies
the trade-off between the robustness of cooperation and
the containment C.

3.6 Effectiveness under Partial Deploy-
ment

The differential equation model in Section 3.3 can be
suitably modified by introducing a differential equation
for the number of infected undeployed firewalls at time t.
Unfortunately, we could not obtain a closed-form analyt-
ical bound (as in the complete deployment case). We nu-
merically solve our differential equation model to evalu-
ate cooperation under partial deployment.

4 Numerical Solutions

We now evaluate the containment offered by cooperation
against worms of varying virulence and how this contain-
ment depends on the various mechanisms used in coop-
eration. Our results are obtained by two means: (a) nu-
merical integration of the differential equation model (b)
discrete-time event simulation to validate the analytical

method (marked “Sim” in our plots). The number of ini-
tial infected networks is set to 10 by default, and the sim-
ulation is run until all the networks are infected/alerted.

4.1 Default Parameters

In the following results, the default parameters are as fol-
lows. We used p = 0.0005 corresponding to a vulnerable
population of about 2 million, twice that of Blaster, one
of the most wide-spread worms. We set the scanning rate
s as 20000 (the average scan rate of Slammer [1], one
of the fastest worms so far). Thus, these settings corre-
spond to one of the most virulent worms seen yet. The
number of firewalls N was set to 100000 based on the
number of observed BGP prefixes (obtained from route-
views.org). Thus, every network has an address space
of 215 and about 20 vulnerable hosts. Under these set-
tings, the worm takes 0.6 seconds to infect 99% of all
vulnerable hosts, assuming no network congestion. We
set td = 0.2s in our analysis and use implicit signaling
for propagation. By default, we assume all networks are
deployed. Note that λ = 2 under these settings, so as per
Lemma 2, signaling is necessary for containment under
these settings.

4.2 Varying Worm Virulence

We present results corresponding to three axes of worm
virulence in order to evaluate the performance of coop-
eration against known worms and worms of the future.

Number of Vulnerable Hosts: The size of the vulner-
able population is a key parameter of worm virulence,
and we plotted the containment metric against this pa-
rameter in Figure 1(a). The number of vulnerable net-
works was kept constant, and the vulnerable population
size was varied between 2 and 20 million hosts (corre-
sponding to p = 0.0005 − 0.005). As suggested by the
analysis, there is roughly a quadratic drop in C with p.

Scanning Rate: Figure 1(b) plots the containment
metric against the worm scanning rate, since the prop-
agation time of the worm is also influenced by this rate.
The containment metric exhibits a slow linear drop with
scanning rate of the worm. Since implicit signals are pig-
gybacked on worm scans, faster the worm scanning rate,
greater the effective signaling rate as well.

Number of Initial Seeds: Our analytical bounds as-
sume that the set of hosts used to seed the infection is
a small subset of the vulnerable population. This as-
sumption may not be true if botnets (networks consist-
ing of already infected zombie hosts) are used to seed a
worm attack, given that botnets of up to 50000 hosts have
been discovered. At one extreme, if all these hosts are in
different networks, our results indicate 48.63% contain-
ment. At the other extreme, either all hosts within a net-

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association22

0.94

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10 12 14 16 18

C
on

ta
in

m
en

t

Size of Vulnerable Hosts (in millions)

Containment
Containment(Sim)

(a)

0.95
0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

0 1 2 3 4 5 6 7 8 9 10

C
on

ta
in

m
en

t

Rate of explicit signalling (x 1000 per sec)

Containment
Containment(Sim)

(d)

0.995

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

20000 25000 30000 35000 40000

C
on

ta
in

m
en

t

Scanning rate (per sec)

Containment
Containment(Sim)

(b)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

100 200 300 400 500 600 700 800 9001000

C
on

ta
in

m
en

t

Threshold (T)

Containment(Sim)

(e)

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
on

ta
in

m
en

t

Time to Detection

Containment
Containment(Sim)

(c)

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

ta
in

m
en

t

Fraction of deployment

Containment
Containment(Sim)

(f)

Figure 1: (a) Containment Vs. Size of vulnerable population (b) Containment Vs. Scanning Rate (c) Containment Vs. Time to
detection (d) Containment Vs. Rate of Explicit Signaling (e) Containment Vs. Threshold T (f) Containment Vs. Deployment

work belong to the botnet or none of them do. In our
settings, each network has 20 vulnerable hosts, which
means that 2500 networks are under attacker control. In
this case, cooperation provides 96.88% containment.

4.3 Varying Cooperation Parameters

This section presents results illustrating the impact of de-
tection time td, signaling parameters (explicit signaling
rate E and threshold T), and level of deployment, on
containment.

Local Detection: Figure 1(c) illustrates the sensitiv-
ity of cooperation to local detection. As suggested by
the analysis in the previous section, the dependence is
roughly linear. Though the worm propagates in about
0.6s, even with time to detection td as high as 0.5s, co-
operation performs very well. This might appear sur-
prising, but note that 0.5s seconds is the mean time to
detection, and with a finite probability, detection occurs
before 0.5s.

Rate of Explicit Signaling: The rate of explicit sig-
naling corresponds to the overhead of cooperation, and
we plotted containment metric obtained through explicit
signaling for varying rates E (100-10000) in Figure 1(d).
In obtaining this plot, only explicit signaling is used. The
containment metric improves with the ratio E although
the variation is very low.

Threshold T : Since the security of the scheme is de-
termined by the threshold T (number of alerts required to
transition to the alerted state), in Figure 1(e), we varied
the threshold T from 100 to 1000 firewalls (0.1% to 1.0%

of the total number of firewalls). Since the differential
equation model is cumbersome for threshold T À 1, we
show only the results obtained through simulation. The
containment drops by as much as 30%, and clearly T is
the most sensitive of all the parameters we have consid-
ered so far. This means that in our model, cooperation
is resilient to a small fraction of malicious firewalls, but
cannot deal with large scale collusion (for example, when
the worm infects firewalls).

Level of Deployment: Figure 1(f) shows the contain-
ment obtained under various levels of deployment. Co-
operation continues to perform well even at deployment
levels as low as 10%. The reason is that as soon as a cer-
tain fraction of deployed firewalls are infected, the prop-
agation of alerts outpaces the worm scan rate.

5 Related Work

We classify related work into three main categories. The
first includes works that analyze traffic at an end-host or
a single observation point to detect worm attacks, e.g.,
Vigilante [5], Throttling [15], TaintCheck [4], Threshold
random walks [16, 20], Honeypot-based architectures.
Any of these proposals can serve as a local detection
scheme in our model (in a firewall or host-based coop-
erative). In general, host-based mechanisms can detect a
wider class of worms, but involve a heavy deployment
cost. The second category relies on inferring and de-
ploying filters to contain worms e.g., Autograph [17],
Dynamic Quarantine [7]. Filter placement within the In-
ternet core is necessary for most of these schemes. In

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 23

contrast, existing mechanisms for inferring filters can be
used as filtering mechanisms in our model to achieve
good containment without modifying core routers. The
final category relates to proposed architectures for worm
containment involving multiple vantage points. Archi-
tectures, such as [9], perform distributed data collec-
tion followed by centralized analysis. Decentralized de-
signs include Hard Perimeters [11], Weaver et al [12],
Domino [18]. In [11,12], data collection and analysis are
performed by firewalls, while [18] splits these function-
alities between satellites and an axis overlay. All partici-
pants are implicitly trusted in these proposals. Our model
accomodates malicious participants by using simple ver-
ification along with a thresholding mechanism. Nojiri
et al [13] handles malicious participants, but unlike our
model, assumes the existence of apriori trust relation-
ships among firewalls. Anagnostakis et al [14] proposes
a signaling protocol very similar to our explicit signaling,
but their focus is more on multiple propagating worms as
against fast worms. Finally, Staniford et al [22] proposes
an analytical model for worm containment, which how-
ever does not study cooperative containment.

6 Conclusion

In this work, we have discussed a framework for model-
ing cooperation in order to conduct a preliminary anal-
ysis of its efficacy, resilience and deployability. This
framework is intended to be as general as possible, and
to capture and extend the notion of cooperation proposed
in recent work. The advantage of analyzing a general
framework is that our results can be applied to cooper-
ation in a wide-variety of scenarios: at the enterprise-
level or Internet-level, at the host-level or firewall-level,
and also to a limited extent for analyzing sophisticated
worms like hit-list based worms. Our analysis can be
used to decide if cooperation is necessary, and if so, can
help tune local detection and signaling.

In an Internet-level cooperative of firewalls, our results
indicate that cooperation can indeed be an effective so-
lution to containing fast uniform scanning worms, and
may also be effective against more sophisticated worms
of the future. Cooperation can be made resilient to a
small number of malicious participants (100-1000), and
even at low levels of deployment (about 10%), effective
containment can be achieved. As part of future work, we
are working on hybrid protocols that use implicit signal-
ing in the early stages of a worm, and switch to explicit
signaling beyond a threshold.

References

[1] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Preliminary
results using scaledown to explore worm dynamics,” in Proc.

ACM CCS WORM, Oct 2004.

[2] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How to
Own the Internet in Your Spare Time,” in Proc. USENIX Security,
Aug 2002.

[3] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan
Savage, “Internet quarantine: Requirements for containing self-
propagating code,” in Proc. INFOCOM, Apr 2003.

[4] James Newsome and Dawn Song, “Dynamic taint analysis for
Automatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software,” in Proc. NDSS, Feb 2005.

[5] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Colleen Shannon, and Jeffery Brown, “Can we contain Internet
worms?,” in Proc. HOTNETS, Nov 2004.

[6] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmut-
ter, “Detecting intrusions using system calls: Alternative data
models,” in IEEE Symposium on Security and Privacy, May
1999.

[7] Cynthia Wong, Chenxi Wang, Dawn Song, Stan Bielski, and Gre-
gory R. Ganger, “Dynamic Quarantine of Internet Worms,” in
Proc. DSN, Jun 2004.

[8] V. Berk, G. Bakos, and R. Morris, “Designing a framework for
active worm detection on global networks,” in IEEE Intl Work-
shop on Information Assurance, Mar 2003.

[9] Nicholas Weaver, Vern Paxson, and Stuart Staniford, “Worm-
holes and a Honeyfarm: Automatically Detecting Novel Worms,”
in DIMACS Large Scale Attacks Workshop, Sep 2003.

[10] J. Wu, S. Vangala, L. Gao, , and K. Kwiat, “An Effective Archi-
tecture and Algorithm for Detecting Worms with Various Scan
Techniques,” in Proc. NDSS, Feb 2004.

[11] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern Paxson,
“Worms vs Perimeters: The Case for HardLANs,” in Proc. Hot
Interconnects, Aug 2004.

[12] Nicholas Weaver, Stuart Staniford, and Vern Paxson, “Very Fast
Containment of Scanning Worms,” in Proc. USENIX Security,
Aug 2004.

[13] D. Nojiri, J. Rowe, and K. Levitt, “Cooperative Response Strate-
gies for Large Scale Attack Mitigation,” in Proc. DISCEX, Apr
2003.

[14] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.
Keromytis, and D. Li, “A Cooperative Immunization System for
an Untrusting Internet,” in Proc. ICON, Oct 2003.

[15] J. Twycross and M. M. Williamson, “Implementing and testing a
virus throttle,” in Proc. USENIX Security, Aug 2003.

[16] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakr-
ishnan, “Fast portscan detection using sequential hypothesis test-
ing,” in Proc. IEEE Security and Privacy, May 2004.

[17] H. A. Kim and B. Karp, “Autograph: Toward automated, dis-
tributed worm signature detection,” in Proc. Usenix Security, Aug
2004.

[18] Vinod Yegneswaran, Paul Barford, and Somesh Jha, “Global
Intrusion Detection in the Domino Overlay System,” in Proc.
NDSS, Feb 2004.

[19] C. G. Senthilkumar and K. Levitt, “Hierarchically Controlled
Co-operative Response Strategies for Internet Scale Attacks,” in
Proc. DSN, June 2003.

[20] Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger, “Very
Fast Containment of Scanning Worms,” in Proc. RAID, Sep 2004.

[21] Jayanthkumar Kannan, Lakshminarayanan Subramanian, Ion
Stoica, Scott Shenker, and Randy Katz, “Cooperative contain-
ment of fast scanning worms,” Tech. Rep. CSD-04-1359, UC
Berkeley, Nov 2004.

[22] S. Staniford, “Containment of scanning worms in enterprise net-
works,” Journal of Computer Security, 2005 (to appear).

