
SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 77

HoneySpam: Honeypots fighting spam at the source
Mauro Andreolini Alessandro Bulgarelli Michele Colajanni Francesca Mazzoni

Dip. Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Modena, Italy, 41100
{andreolini.mauro, bulgarelli.alessandro, colajanni, mazzoni.francesca}@unimo.it

http://weblab.ing.unimo.it/people/

Abstract
In this paper, we present the design and implementa-
tion of HoneySpam, a fully operating framework that
is based on honeypot technologies and is able to ad-
dress the most common malicious spammer activities.
The idea is that of limiting unwanted traffic by fight-
ing spamming at the sources rather than at the receivers,
as it is done by the large majority of present propos-
als and products. The features of HoneySpam include
slowdown of the e-mail harvesting process, poisoning of
e-mail databases through apparently working addresses,
increased spammer traceability through the use of fake
open proxies and open relays.

1 Introduction
Internet has become the preferred architecture for the
most popular user-oriented services. As any popular
resource, the Internet-based services are subject to an
increasing level of malicious actions which may have
bad consequences for both the users and the services
providers. In this paper, we focus on the amount of un-
wanted traffic due to unsolicited e-mails [12, 3], which is
widely known as spam. Spamming activities often turn
into remarkable losses of user time and productivity, and
a waste of user and service provider resources.

The most diffused proposals and products for fight-
ing against spam are receiver-oriented in the sense that
the mail server tends to receive all e-mails and then to
determine through some filtering technique(s) whether
an e-mail is valid or not (e.g., [19, 16, 7]). Similar
techniques can be applied at the client level by the user
(e.g., [18, 21, 11]) or can be integrated (e.g., [22]). In-
dependently of the applied techniques that are becom-
ing more sophisticated and valid, these approaches suf-
fer of two main problems: the percentage of low pos-
itives is nowadays very low, but there are still false
negatives [26, 17]; even worse, receiver-oriented ap-
proaches do not reduce the Internet traffic and do not
limit the waste of network and disk resources of the ser-
vice providers.

The alternative idea proposed in this paper is to

address the previous issues by working on the spam
sources instead of the spam destinations. A first
source-oriented solution can be achieved through filter-
ing mechanisms, such as the use of mail server black
lists [25]. The destination e-mail server checks whether
the IP address of the source e-mail server is inserted into
the black list and, in case, denies the receipt of mes-
sages. This is a brute force approach with limited effects
because an increasing number of spammers use forged
SMTP headers in order to hide the real sender. An-
other source-oriented approach aims to build white lists
of friendly addresses from which the receipt of spam is
highly unlikely; all other sources that are not included in
the white lists are not accepted (e.g., [8]). It should be
clear that, although more modern white list are dynam-
ically built and self-adaptable, they are really effective
just for specific user communities. Apart from theses is-
sues, black and white listing do not help in decreasing
the amount of unwanted traffic through the network, but
only at the destination.

We follow the idea that fighting against the spam
sources cannot be done through one tool, because send-
ing unsolicited e-mails is just the last step of a com-
plex set of operations that are carried out by spammers
(see Section 2). Hence, an adequate fight against spam
sources requires a framework of different tools and, pos-
sibly, the cooperation among interested organizations.
The proposal of this paper does not yet include coop-
eration, but it describes a framework (HoneySpam) that
is built up of many components among which the pivot
is represented by the honeypot technology. The tradi-
tional goal of honeypots is to trace the activity of an
attacker, locate him through a traceback operation, rec-
ognize common operational patterns in attacks with the
purpose of automatically detecting them in the future.
HoneySpam faces the following spamming actions at the
source:

• e-mail harvesting;
• anonymous operations.

E-mail harvesting that is, the collection of valid e-mail
addresses through automated crawlers [2, 27], is fought

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association78

through emulated Web services. Two different damages
are inflicted to crawlers: crawler slowdown and e-mail
database poisoning. First, the crawlers are slowed down
into endless loops of Web page retrievals, through the
creation of Web pages with many hyperlinks. Second,
databases used by spammers to collect the e-mail ad-
dresses are polluted. In particular, the pages generated
by the Web service contain special, valid, dynamically
created e-mail addresses that are handled by emulated
SMTP services present in HoneySpam. As soon as the
spammer starts to use these freshly collected addresses,
it can be traced back and blacklisted.

Fraudulent activities such as spamming are often
achieved anonymously, through the use of open proxy
chains. HoneySpam provides fake open proxy and open
relay services [12, 14] that log every activity and block
spam-related traffic.

HoneySpam fights common spamming actions for one
organization, although its real potential should be tested
in a cooperative context, such as [10].

The rest of the paper is organized as following. Sec-
tion 2 presents a brief overview of some common spam-
ming activities. Section 3 describes the requirements of
an anti-spam tool that emerge from a detailed study of
spamming activities and presents the design and some
implementation details of the HoneySpam architecture.
Section 4 presents an overview of possible countermea-
sures that the spammers might carry out against Hon-
eySpam and how they are handled. Section 5 discusses
related work. Section 6 illustrates future research per-
spectives. Finally, Section 7 presents some conclusive
remarks.

2 Spammer activities
In this section, we present a brief summary of the most
common actions performed by a spammer.

E-mail harvesting. Figure 1 shows one of the first ac-
tions performed by spammers that is, e-mail harvesting.
An automated browsing software (called crawler) issues
a HTTP request to fetch a Web document (page 1). Once
the HTTP response is retrieved from the Web server, the
crawler parses its content, extracting links to e-mail ad-
dresses and to other Web pages. Links to Web pages are
used to continue the crawling process (link 1 to link k),
while links to e-mail addresses (address 1 to address n)
are used to compose lists or (more usually) to populate
databases of potential customers. E-mail harvesting is
an important step, because a spammer has to build its list
of victims before sending unsolicited messages to them.
It should be pointed out that (thanks to existing collec-
tions of e-mail addresses, usually available on CDs or
databases), e-mail harvesting is not performed by every
spammer, since long lists of (presumably valid) e-mail
addresses can be bought from the Internet. Although

harvesting actions have softened recently, they still re-
main one of the major sources of e-mail addresses for
spammers [13].

CRAWLER TARGET
WEB SERVER

SPAMMER DB

HTTP request:page1

HTTP response

Web page parsing

INSERT
e-mail address 1

HTTP request:link1

HTTP request:link2

HTTP request:link k

INSERT
e-mail address 2

INSERT
e-mail address n

Figure 1: E-mail harvesting

Operating anonymously. Spamming activities are il-
legal in many (but not every) countries, thus anonymity
is one of the most important goals pursued by a spam-
mer. Figure 2 shows the actions undertaken by a spam-
mer to gain anonymity when sending e-mails.

A common technique to hide traces of malicious ac-
tivities is the use of an open relay, that is an SMTP server
which does not need authentication to forward e-mail
messages. The open relay is contacted by the spammer,
receives the e-mail message, and forwards it to the desti-
nation SMTP server. This path is detailed through cross-
hatch arrows in Figure 2. In theory, a single open relay
is sufficient to provide anonymity because every SMTP
request appears to be coming from the open relay IP ad-
dress. However, if a spammer contacts an open relay
that is configured to log any activity, the IP address of
the spamming machine gets stored in the open relay log
files. Using a single open relay is considered a “risky”
operation for the spammer.

For this reason, spammers often use one or more open
proxies (which form a proxy chain) to hide their activ-

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 79

ities. An open proxy is an intermediary node that for-
wards traffic between a client and a server without the
need of authentication. As shown by straight-arrow path
in Figure 2, the spammer establishes a TCP connection
with the first open proxy (open proxy 1). Next, the spam-
mer uses this connection to establish a new proxy con-
nection with another open proxy (e.g., open proxy 2)
through the CONNECT method. In this way, a chain of
proxy connections is built, until open proxy n. Finally,
the spammer uses the proxy chain to send an e-mail mes-
sage to an open relay, which is forwarded to the destina-
tion SMTP server.

The use of open proxy chains makes it much more
difficult to trace spammers back, because, even if the
logs of every open proxy are available, the whole path
of requests has to be reconstructed. The problem is aug-
mented because public lists of open proxies can be easily
found online, for instance at [23].

Figure 2: Sending spam anonymously

3 Architecture of HoneySpam
Once the principal activities of a spammer are detailed,
in this section we outline the requirements that a system
fighting against spam sources has to satisfy. Next, we
propose the architectural design and some implementa-
tion details of HoneySpam.

3.1 Requirements of an anti-spam system
To effectively fight against spam sources, it is necessary
to contrast the operations described in Section 2. In
particular, we identify the following three goals.

Reduce the efficiency of crawlers. Spammers rely
on up-to-date lists of valid e-mail addresses in order to
reach as many recipients as possible. Thus, it is crucial
to reduce the efficiency of the e-mail harvesting process.
This goal can be obtained in several ways, as shown be-

low.
A first step to reduce the effectiveness of crawlers con-

sists in the possibility of forcing them into a (possibly
endless) loop of Web page retrievals. In particular, if
each Web page in the loop does not contain any parsable
e-mail address, the final goal of the crawler (that is, col-
lecting valid e-mail addresses) is defeated.

A further damage that can be inflicted to crawlers
is the possibility of populating the Web pages with in-
valid addresses (poisoning). These are parsed by the
crawlers and are usually fed to the spammer databases.
The end result is a database that contains many invalid
entries (polluted database). The drawback of possibly
increased network traffic due to the spammer attempts
to contact all those fake addresses can be used to better
trace spam sources.

Web pages are browsed not only by malicious
crawlers, but also by normal ones (e.g., Googlebot). To
permit legitimate crawling, the robot exclusion protocol
[5] has to be implemented at the Web server. It tells
crawlers which portions of the site are available to in-
dexing purposes and which are not. The vast majority of
legitimate crawlers complies to this protocol and is not
involved in the Web page retrieval loop.

Identify spammers. To identify spammers, it is nec-
essary to encourage them to use honeypot services to
their advantages. This is done through the deployment
of fake servers, such as open proxies and open relays.

Letting spammers use honeypot services is not
enough. To ensure traceability of their actions, logging
must be enabled for every deployed service (open proxy,
open relay, Web server).

A further measure that helps in the identification is the
use of valid e-mail addresses in the Web pages returned
by the fake Web server. These addresses are handled
by a honeypot SMTP server, which logs every activity
and every message. This information is parsed to obtain
valuable information about the spam sources.

Block spam e-mails To reduce the end effects of
spam that is, the deliver of unsolicited messages, the
associated traffic has to be blocked. A good anti-spam
tool must not block valid e-mail messages (false posi-
tives) and should pass the least amount of unsolicited
messages (false negatives).

3.2 Architecture
Figure 3 shows the architecture of HoneySpam. The
framework is placed into the DMZ area of an enterprise
network. HoneySpam includes several emulated compo-
nents, each one dedicated to fight one specific aspect of
spamming. We distinguish the following components:
fake Web servers (to allow e-mail harvesting), fake open
proxies, fake open relays (to provide spammers with ser-
vices that can be used to their advantage), destination

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association80

Figure 3: Architecture of HoneySpam

SMTP servers (to increase spammers traceability). Ser-
vice emulation is obtained through honeypots. In the
following we detail the design choices and some imple-
mentation details regarding honeypots and each consid-
ered component.

3.3 Honeypots
The first design choice concerns the deployment of hon-
eypots. Many alternatives exist.

A possibility is to use real software on real hardware,
for example an instance of an Apache Web server run-
ning on a node. This solution, though feasible, is def-
initely not advisable, since software typically has secu-
rity bugs, which could be used to penetrate the host in or-
der to obtain valuable information, to install “unwanted”
services, even to obtain a privilege escalation. Besides
making a service unavailable, a compromised host could
also be used to attack third-party nodes. In this case, it is
often necessary to install both the operating system and
the applications from scratch.

Another possibility is to use real software on emu-
lated hardware, for instance by using User-Mode Linux
(UML), as explained in [24]. UML is an open source
virtual machine. It allows to run multiple instances of
Linux, as a user process, on the same system at the same
time. Real services are executed on emulated hosts. Us-
ing emulated hardware instead of real hardware is a bet-
ter approach, because if the host is compromised, it is
only necessary to replace the copy of the emulated host
and to restart it to obtain the previous situation. Still
there is the possibility to use the security holes of the
UML software to acquire superuser privileges and to
drive attacks to third party hosts.

Finally, it is possible to run emulated software on both
real and emulated hardware. Depending on the amount
of the available system nodes, emulated services are ex-
ecuted on real or emulated hardware. In this way no
security holes can be exploited, simply because there is
no real service running, only an emulation.

This possibility seems the most promising for imple-
menting honeypots, because it is the most immune so-
lution from exploits, which must be avoided at all costs.
The previous considerations motivate the implementa-
tion of the honeypots of our framework by using emu-
lated software on both real and emulated hardware. We
use the honeyd tool [14], which is a small daemon that
creates virtual hosts on a network. The hosts can be con-
figured to run arbitrary services (e.g., an Apache Web
server, a sendmail SMTP server), on predefined oper-
ating systems (Windows 2000 Pro, GNU/Linux with a
2.4.x kernel). These services are implemented through
Perl scripts.

3.4 System components
Fake Web server. To protect against harvesting we de-
ploy fake Web sites, whose goal is to slow down the pro-
cess and to pollute the spammer databases. The idea
is to provide a (potentially endless) sequence of links,
thus catching the crawlers in a very long process. The
pages of HoneySpam Web servers provide “special” e-
mail addresses that, if used by the spammer, help trace
him back. Furthermore, each action is logged in order to
understand who is accessing the Web servers.

The fake Web servers generate dynamic pages con-
taining many links and e-mail addresses which cannot
be identified as fake by common spammer tools [15].
This idea resembles the behavior of Wpoison [6], with
some improvements. The number of links, as well as
that of the addresses is randomly chosen in a given range
(for instance there is a minimum of 2 and a maximum
of 20 links per document). We also provide many text
files to be randomly used as the body of the html docu-
ment. Random generation of Web pages greatly reduces
determinism and, consequently, the risk of being iden-
tified as a honeypot. The e-mail addresses are not ran-
domly chosen, because otherwise one cannot be sure to
create a valid address. Instead, the user names are cre-
ated as a composition of as much information as pos-

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 81

sible about the crawler from the Web server it is vis-
iting. We collect the source IP address as well as the
timestamp of the request and create a user name of the
form crawler-IP timestamp. The domain is ran-
domly chosen among the list of domains belonging to
our system. This approach is useful in two ways. First
of all these addresses cannot be recognized as fake by
software like e-mail Verifier [15], whose goal is to clean
polluted e-mail databases. Next, spammers send e-mails
to many of our honeypots, thus increasing the effective-
ness of traceability.

An interesting aspect concerns the creation of fake
links. These are randomly distributed among different
Web servers. At each Web server the same script is ex-
ecuted, regardless of the requested resource, except for
the requests directed to robots.txt to implement the
robot exclusion protocol.

Fake open proxies and relays. In order to destroy
the anonymity of the spammer, we provide virtual open
proxies and open relays, whose main goal is to intercept
illegal traffic operated by spammers. Connections to our
open proxy and open relay servers are logged, to under-
stand where the unwanted traffic is coming from. Fur-
thermore, the traffic is blocked, thus reducing the num-
ber of unwanted e-mails reaching target users.

A connection that reaches an open proxy is usually
generated by a spammer or another open proxy, in both
cases enemy entities. Consequently, the corresponding
source IP address is logged (and, optionally, inserted
into a black list). We also log the IP address of the fol-
lowing node, since usually it is another open proxy or
an open relay [12]. This allows HoneySpamto catch two
enemy entities at a time. A connection that reaches an
open relay is almost always generated by an open proxy,
mainly for anonymity reasons. In this case, the cor-
responding source IP address is logged (and, possibly,
blacklisted).

The fake open proxies emulate a subset of the HTTP
protocol. Requests made with methods other than GET
and CONNECT are answered with an error message.
GET requests are answered with a randomly generated
page. CONNECT requests to port 25 are internally redi-
rected to an emulated open relay. The motivation behind
this redirection is that the spammer may think nothing
went wrong and he is connected to the SMTP server he
requested, while he actually is connected to one of our
honeypots. CONNECT requests to ports other than 25
are served with a “Request Timeout” message.

The fake open relays emulate a sendmail SMTP
server. All the main commands of the SMTP protocol
have been implemented, so that no one could notice the
difference with a real server. When an e-mail is sent
through the open relay, it actually does not reach desti-
nation, since all messaged are logged but not forwarded,

except the very first one. This is done in order to fool a
spammer who sends a first probe message to himself to
see if the service is properly running.

Fake destination SMTP server. The destination
SMTP server is specific to the domains protected by
HoneySpam. If the spammer has harvested e-mail ad-
dresses from Web servers present in HoneySpam, these
addresses will correspond to mailboxes in HoneySpam’s
destination SMTP servers. The idea is to redirect all the
traffic coming to any of the special address to a single
mailbox, in which all the messages are logged and stored
for analysis and backtracking purposes. The fake des-
tination SMTP server is implemented similarly to the
open relay; as a matter of fact, the set of SMTP com-
mands is the same. This time the server is configured
not to send any message, if requested to.

4 Possible countermeasures to Hon-
eySpam

In this section we present a brief survey of malicious
activities that can be directed to HoneySpam and related
responses.

Honeypot identification. One on the main problems
when using honeypots is the possibility to be discovered.
Attackers use footprinting techniques [4, 9] in order to
understand whether the services they are using are real
or emulated. The honeyd framework is extremely use-
ful to this purpose, since it is capable of returning dif-
ferent messages based on which operating system and
services it is emulating. We tested its capabilities of em-
ulating network topologies with many tools, including
ping, hping, traceroute. All IP addresses emu-
lated by the system are reachable through these tools,
thus we can say honeyd is effectively able to emulate
network topologies. Furthermore, we tested the capa-
bility of emulating in a proper way the features of vari-
ous operating systems (Windows 2000 Professional, and
Linux with a 2.4.7 kernel, among others) and of the ser-
vices (a sendmail SMTP server, an Apache Web server).
Network scanners such as nmap and amap have been
fooled by honeyd. Indeed, they were not able to rec-
ognize that the operating systems and the services were
emulated and not real. Thus, we can conclude that, with
the tools usually adopted by spammers, it is rather diffi-
cult to recognize our servers as honeypots.

Besides white hats, spammers and attackers also
maintain their blacklists (in this case, of honeypots);
they are called reverse blacklists. In the actual imple-
mentation, HoneySpam is not able to address this prob-
lem, because each emulated server uses only one IP ad-
dress. Each blacklisted server is no longer available for
honeypotting. A possible improvement, which does not
solve this problem entirely, is to use as many IP ad-
dresses as possible. An authoritative DNS server will

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association82

map entire IP ranges into one hostname in a random way.
Thus, if one of the IP addresses of a host is blacklisted,
the host will still be reachable thanks to the other IP ad-
dresses it is related to.

Intrusion. Another possible malicious action is to
penetrate the host in order to get valuable information,
to install “unwanted” services or even to attack a third
party. This is usually accomplished by using a software
or protocol vulnerability. For instance, if the attacker
gets to understand that the servers are running honeyd,
he could take advantage of its security holes to penetrate
one of HoneySpam’s hosts. Removing all security vul-
nerabilities in honeyd is difficult, but these risks may
be kept limited through simple actions. For example,
honeyd has to be run with superuser privileges in or-
der to let it manage networking; this is quite dangerous.
If, on the other hand, honeyd runs in a restricted envi-
ronment (such as a chroot jail), the privileges obtained
through an exploit are limited only to the restricted area.
As a consequence, the attacker is prevented from hav-
ing access to sensible information such as system con-
figuration files. To improve protection against intrusion
attacks, HoneySpam can be integrated with a file alter-
ation monitoring service, such as [28]. Its main purpose
is to check for the creation of new files, which is one of
the most common steps in installing new unwanted soft-
ware. Changing or just reading existing files should also
be cared, with the exception of the log files, because they
are constantly changed by HoneySpam.

5 Related Work
The idea of using honeypots to fight spam is not quite
novel. There are many works in literature describing
how to use honeypots to detect suspicious traffic in order
to understand how black hats behave, which include (but
are not limited to) spam traffic detection.

A recent work describing the main steps followed by
spammers in sending e-mails is presented in [12]. The
author also explains how it is possible to use honeypots
to fight the various spammer activities, for instance by
deploying fake Web servers in order to pollute the spam-
mers databases, after the e-mail harvesting process, or
by deploying fake open proxies and relays in order to
trace the spammer back. The author explains how to use
real Web servers and how to turn them into honeypots.

In [14] Provos suggests to implement fake open prox-
ies and relays through the honeyd framework, in an
emulated network environment. HoneySpam not only
implements all the suggestions of this paper, but also
adds an anti-harvesting mechanism that poisons the
spammer databases. The goal is to drive spammer ac-
tivity to other honeypots of the HoneySpam framework.

In [10] a mobile honeypot mechanism is proposed,
that allows unwanted traffic to be detected significantly

close to the origin of spam. This is obtained through
a strict cooperation among Autonomous Systems (ASs).
The main goal of Mohonk is to detect and possibly block
the routing of messages through the use of dark address
spaces. HoneySpam tries to reach the same goal, that is
to block spam close to its source.

Real software can also be used to provide honeypots.
As an example, a description on how to use sendmail as
a honeypot SMTP server is presented in [20]. In [1],
an open proxy honeypot (Proxypot) is deployed through
an Apache Web server compiled with additional security
modules. Wpoison [6] is a tool that attempts to solve the
e-mail harvesting problem. It is a CGI script that gen-
erates randomized invalid addresses and pseudo-hyper-
links. The goal is to pollute the spammers databases
and to capture the crawlers in a possibly endless loop.
There are two main differences with the approach of
HoneySpam: the e-mail addresses are bogus, thus pre-
venting the interaction with further honeypot facilities,
such as HoneySpam’s destination SMTP servers. Fur-
thermore, being it a CGI script, this tool has to be run on
a real Web server, which is a security treat.

6 Future work
Though it is far from being perfect, HoneySpam can be
extended to improve its effectiveness in fighting spam
sources. There are two possible directions to look for
improvement.

Scalability and fault-tolerance Given the increasing
amount of attacks, a single honeypot is more likely to be-
come the bottleneck of the entire framework. Honeypot
overloads have to be definitively avoided, since an over-
loaded host loses appreciation to spammers, and its at-
tracting potential decreases. A future direction towards
scalability consists in the replication of the honeypots,
both at the local and at the geographical level.

Limiting the network throughput of spammers An-
other way to avoid overloads is to take advantage of
traffic shapers, which limit both incoming and outgoing
bandwidth to given thresholds. Traffic shaping also car-
ries another benefit: it helps slowing down the through-
put associated to spammer activities. In order to better
emulate the network conditions, variable routing delays
should be considered. In this way it is much more dif-
ficult for a spammer to recognize that the traffic is ar-
tificially slowed down, since these network conditions
resemble a real environment.

7 Conclusions
In this paper we have shown the design and implemen-
tation of a fully working anti spam framework. Through
the deployment of honeypot services, we are able to
face the main spammers’ malicious actions. The e-
mail harvesting phase is slowed down and the addresses

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 83

databases are polluted with special e-mail addresses,
which lead the spammer to interact with other honey-
pot services (destination SMTP servers). This improves
spammer traceability. We also deploy honeypot open
proxies and relays, with the goal of intercepting and
blocking unwanted traffic. Furthermore all interactions
are logged with analysis purposes to increase the spam-
mer traceability. Finally, we take into account the main
attacks spammers could drive against our framework,
and how we can face them. We are currently testing the
implementation of the HoneySpam framework. We are
running honeyd on a few machines to test the function-
ality and effectiveness of the implemented services.

Acknowledgements
The authors acknowledge the financial support of the
FIRB project ”Wide-scalE, Broadband, MIddleware for
Network Distributed Services” (Web-MiNDS).

References
[1] BARNETT, R. C. Open Proxy Honeypots, Mar 2004.

http://honeypots.sourceforge.net/open_
proxy_honeypots.pdf.

[2] CENTER FOR DEMOCRACY & TECHNOLOGY. Why Am I Get-
ting All This Spam?, Mar 2003. http://www.cdt.org/
speech/spam/030319spamreport.pdf.

[3] CHANNEL MINDS. Spam Traffic Risen 40% Since
November Says Email Systems, Feb 2005. http:
//www.channelminds.com/article.php3?id_
article=2464.

[4] COREY, J. Advanced Honey Pot Identification And Exploita-
tion, Jan 2004. http://www.phrack.org/fakes/p63/
p63-0x09.txt.

[5] COSTER, M. A Method for Web Robots Control, Nov 1996.
http://www.robotstxt.org/wc/norobots-rfc.
html.

[6] E-SCRUB TECHNOLOGIES, INC. Wpoison, 2000. http://
www.monkeys.com/wpoison/.

[7] ERIDANI STAR SYSTEM. MailStripper, 2005. http://www.
eridani.co.uk/MailStripper/.

[8] HANNA, J. Anti-Spam SMTP Proxy, 2004. http://assp.
sourceforge.net/.

[9] KOHNO, T., BROIDO, A., AND CLAFFY, K. Remote physical
device fingerprinting. In Proc. of the 2005 IEEE Symposium on
Security and Privacy (May 2005).

[10] KRISHNAMURTHY, B. Mohonk: Mobile honeypots to trace un-
wanted traffic early. In NetT ’04: Proceedings of the ACM SIG-
COMM workshop on Network troubleshooting (Aug-Sep 2004).

[11] OPEN FIELD SOFTWARE. Ella for Spam Control, 2005. http:
//www.openfieldsoftware.com/.

[12] OUDOT, L. Fighting Spammers With Honeypots: Part 1
and 2, Nov 2003. http://www.securityfocus.com/
infocus/1747.

[13] PRINCE, M., KELLER, A. M., AND DAHL, B. No-Email-
Collection Flag. In Proceedings of the First Conference on Email
and Anti-Spam (CEAS) (Jul 2004).

[14] PROVOS, N. A Virtual Honeypot Framework. In Proc. of 13th
USENIX Security Symposium (Aug 2004).

[15] SEND-SAFE. Email Verifier, 2005. http://www.
send-safe.com/verifier.php.

[16] SERVICE STRATEGIES INC. MailSWAT SPAM Filter, 2003.
http://www.ssimail.com/SMTP_spam_filter.
htm.

[17] SNYDER, J. What is a false positive?, Dec 2004.
http://www.networkworld.com/reviews/2004/
122004spamside3.html.

[18] SOPHOS. MailMonitor, 2005. http://www.sophos.com/
products/es/gateway/.

[19] SOPHOS. PureMessage, 2005. http://www.sophos.com/
products/es/gateway/.

[20] SPENCER, B. Fighting Relay Spam the Honeypot Way,
Mar 2002. http://www.tracking-hackers.com/
solutions/sendmail.html.

[21] SUBMIT SERVICES AND WEB WORLD DIRECTORY. Mail-
Washer PRO, 2005. http://www.submitservices.
com/mailwasher.html.

[22] THE APACHE SOFTWARE FOUNDATION. The Apache SpamAs-
sassin Project, 2005. http://spamassassin.apache.
org/.

[23] THE ATOMINTERSOFT TEAM. AliveProxy, 2005. http://
www.aliveproxy.com/.

[24] THE HONEYNET PROJECT & RESEARCH ALLIANCE. Know
your Enemy: Learning with User-Mode Linux, Dec 2002.
http://www.honeynet.org/papers/uml/.

[25] THE SPAMHAUS PROJECT. SpamHaus Block List. http://
www.spamhaus.org/sbl/index.lasso.

[26] UNIVERSITY OF ALBERTA. SpamAssassin FAQ. http://
www.ualberta.ca/HELP/email/spamfaq.html .

[27] UNSPAM, LLC. Project Honey Pot, 2005. http://www.
projecthoneypot.org.

[28] WARDLE, M. FAM - File Alteration Monitor, 2004. http:
//savannah.nongnu.org/projects/fam/.

