
SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 45

An Architecture for Developing Behavioral History

Mark Allman†, Ethan Blanton‡, Vern Paxson†

†International Computer Science Institute, ‡Purdue University

Abstract– We present an architecture for large-scale
sharing of past behavioral patterns about network ac-
tors (e.g., hosts or email addresses) in an effort to in-
form policy decisions about how to treat future interac-
tions. In our system, entities can submit reports of certain
observed behavior (particularly attacks) to a distributed
database. When deciding whether to provide services to
a given actor, users can then consult the database to ob-
tain a global history of the actor’s past activity. Three
key elements of our system are: (i) we do not require
a hard-and-fast notion of identity, (ii) we presume that
users make local decisions regarding the reputations de-
veloped by the contributors to the system as the basis
of the trust to place in the information, (iii) we envision
enabling witnesses to attest that certain activity was ob-
served without requiring the witness to agree as to the
behavioral meaning of the activity. We sketch an archi-
tecture for such a system that we believe the community
could benefit from and collectively build.

1 Introduction

A key problem in trying to prevent unwanted traffic is
that interactions on the Internet are largely anonymous
and self-contained. The host offering services often has
no idea who is requesting the service or what sorts of
activity the requester has undertaken in the recent past.
Lightweight anonymous access to information has been
fundamental to the proliferation of network services.
However, the Internet’s wide-open nature has also fueled
the spread of worms, viruses, spam, DDoS attacks, and
other forms of unwanted traffic.

Consider some requester, R, attempting to access
some service, S. What does S know about R? Several
bits of information may be available, such as:

• If IPsec [7] or TCP’s MD5 option [5] are used then
S may have a reasonably solid notion of the iden-
tity of R, and therefore can make a determination of
whether to provide access to the given service.

• S may be able to query a local cache of R’s previ-
ous activity. For instance, a local Intrusion Detec-
tion System (IDS) may track behavior exhibited by
remote hosts over time.

• S may have access to information about R collected

and shared by remote entities. For instance, [11] out-
lines a scheme for one instance of Bro to receive
event notifications over the network from other Bro’s.
Additionally, systems such as www.dshield.org ag-
gregate simple activity reports from a vast number of
locations to form a picture of a host’s recent activity.
Another class of mechanisms proactively test hosts to
determine some characteristic, which is then publicly
disclosed (e.g., R is an open SMTP relay).

• S could check R against a list of host “types”. For
instance, lists exist that identify DSL, cable modem
or dial-up IP addresses (e.g., www.sorbs.net), and
a number of spam-fighting systems block or score
email based on whether a remote host is on such a
list.

The above systems all provide useful information that
can help form policy. However, the information is quite
often narrow in scope and/or difficult to obtain — espe-
cially when trying to thwart unwanted traffic in real-time.
For instance, locally-collected IDS information may be
quite rich, but it only relates to hosts that attempt to ac-
cess the local network. Further, setting up pair-wise trust
between IDS systems is an arduous process when done at
any scale. Likewise, setting up and managing pair-wise
keys for IPsec or MD5 can be burdensome and contrary
to the nature of providing publicly available services. Fi-
nally, databases containing the “type” of IP address offer
a broad view of the network, but offer no indication of
the behavior of individual hosts.

Our goal is to overcome these limitations. We envi-
sion doing so by devising a system that can accumulate
reports of unwanted traffic in a general fashion across
the entire network. As mentioned above, there are some
systems currently providing instances of such services.
However, given their centralized nature these lack the ro-
bustness we would desire in a system called upon to ab-
sorb large numbers of queries and provide actionable in-
formation that we can use in real-time. In addition, the
consumers of the data provided by these services must
both trust the information and agree with the policies
used to aggregate the reports and derive the information.
Finally, we believe an opportunity exists to consider a
general architecture for tracking the behavior of large
numbers of actors, where both “behavior” and “actor”



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association46

can encompass a wide range (as discussed below).
In this paper we elucidate an architecture for a dis-

tributed system that provides a lightweight actor-based
history database. Rather than requiring a large series of
pair-wise key exchanges, a user of the database makes
local decisions regarding the degree to which to trust in-
formation in the database, primarily in terms of the user’s
local assessment of the submitter’s reputation. While we
primarily illustrate the architecture in terms of tracking
purported attacks associated with Internet hosts, the ar-
chitecture generalizes to tracking general types of pur-
ported behavior (e.g., attacks) associated with actors
(e.g., Internet hosts or IP addresses).

The system we propose does not require aggregation
of information in the database into a succinct “status” of
a given actor. Rather, the database provides information
to consumers who make their own determination as to the
validity and trustworthiness of the information, and then
formulate a local policy decision based on these assess-
ments.

By having judgments of reputations and reports re-
main local decisions, we aim to address some of the is-
sues with how users can possibly trust such a wide-open
database that will inevitably include misinformation. An
additional, and arguably more powerful, mechanism for
developing such trust is the inclusion in the system of
witness reports: these are additional records that corrob-
orate part of the context of other reports. For example,
a router might corroborate that a certain packet passed
its way, without needing to agree that the packet consti-
tuted an attack. Because the router is attesting to a low-
level fact rather than a high-level judgment, the hope is
that well-known parties (e.g., ISPs) will find it affordable
in terms of both processing and reputation to contribute
such reports.

This paper presents an architectural overview of the
system, not a detailed analysis of any particular facet.
Much more work must be done by the community to
bring such a system to fruition. Our hope is to refine
the thinking behind the system by receiving community
input. We present an overview of the information in the
database in § 2; discuss the role of policy in § 3; analyze
attacks on the system in § 4; present additional issues
in § 5; and sketch future work in § 6.

2 Database Overview
We maintain the history database in a Distributed Hash
Table (DHT) [3] designed to support querying in mas-
sively distributed environments (e.g., PIER [6]). DHTs
provide a robust and distributed system for storing infor-
mation, meaning that each DHT node need only cache a
fraction of the information in the database, while com-
plete information is efficiently made available to every
node. The use of a DHT also minimizes the amount of

damage that duplicitous database nodes can cause, while
encouraging arbitrary systems to join the database.

Entries in the database are cryptographically signed by
the entity which submits them. Each record is inserted
under two hash keys: one hash key identifies the actor
about whom the entry relates, and the other hash key is
a cryptographic public key associated with the submitter.
These allow consumers to look up behavior associated
with particular actors (e.g., the IP address of a remote
host attempting to access one of the consumer’s services)
and the set of all records submitted under a given key,
respectively.

The cryptographic keys used in the system need not
be widely known or authenticated in any way; they serve
only to correlate records in the database by tying them
to a particular submitter. For our purposes, it is often
enough to know that two records were submitted by the
same entity without necessarily having a clear idea of
who that entity is. The use of cryptographic signatures al-
lows entities which retrieve a set of records to have some
degree of confidence that the records were inserted by
the same entity (or at least inserted under collusion), as
well as opening the possibility for local policy decisions
to “trust” certain foreign keys. We discuss this and other
opportunities for using keys to influence policy in § 3.

We store several kinds of information in the hash table.
The basic record is a behavior record: a statement that
the reporting entity believes it observed a given type of
behavior perpetrated by a given actor (e.g., that a given
IP address launched a given attack). Records may also
be inserted by witnesses that vouch that certain events
occurred, but not whether these events reflected the pur-
ported behavior. For example, a witness could report
that they observed a particular packet, without needing to
agree that it constituted an attack. Such records form au-
dit trails that can lend credibility to reports of particular
behaviors. Finally, entities which make use of a particu-
lar record in the database may note that they have done
so, and thus make it known that they have some level of
trust in the record. Or they might note that they declined
to make use of a particular record. In either case, they
might later record their post facto assessment of their
own decision.

2.1 Behavior: Attacks

In this section we illustrate the general framework for
tracking behavior using attacks from Internet hosts as
a specific example. The reader should however keep
in mind that the scope of “actor” and “behavior” could
in principle be considerably broader. For example, the
domain of actors might be email From addresses, with
the corresponding behaviors reflecting the use of the ad-
dresses in phishing or spamming email. As an exam-
ple that focuses on behavior but not attacks, we might



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 47

imagine a system for which actors are blogger Web page
URLs, with the associated reports being submitters’ as-
sessments of the accuracy and utility of the postings.

For tracking attack behavior, when a participating
host or edge network (e.g., an IDS) determines that
“unwanted” traffic has arrived they may indicate this
by inserting a corresponding record in the distributed
database. They would insert the record twice, once using
the IP address (i.e., actor’s identity) of the purported ma-
licious host as the hash key and once with the reporter’s
public key as the hash key. Each record might consist of
the following fields:

• Timestamp: The time when the first instance of the
behavior was received. The DHT node that stores
the record also records a report timestamp indicat-
ing when it received the report. As discussed in § 4,
the relative time reports are made could have impli-
cations in terms of the reputation of the reporter (and,
therefore, independent timestamps may be useful).

• Actor identity: A characteristic of the actor creating
the behavior that can be used to retrieve reports of
that actor’s behavior. For some types of behavior, the
identity to associate with them may appear obvious.
For example, for observations of network attacks, the
IP address of the purportedly malicious host will of-
ten make sense. Clearly, equating identity with an
IP address is not quite right. However, IP addresses
can be acted upon in enforcing security policy. Also,
future namespaces (e.g., HIP [9]) could be readily in-
corporated into the architecture.
In other cases, the notion might be more diffuse, and
might even involve multiple identities. For exam-
ple, testing email for possible spam might be done
in terms of looking up each of the relaying servers
listed in “Received:” headers. Thus, we may find it
useful to think in terms of “identity components” or
“identity hints”, rather than a single notion of iden-
tity.

• Protocol and port number: The reporter could op-
tionally report the protocol and port numbers on
which the unwanted traffic arrives. In some cases
this could be useful, for example when subsequent
traffic from the given host is likely benign (e.g., web
requests from a host with an open SMTP relay are not
necessarily likely to be problematic). In other cases,
an attack may span a wide variety of ports and/or pro-
tocols (e.g., a port scan), in which case this informa-
tion is difficult to express and has little utility.

• Behavior observed: a code roughly describing the
unwanted traffic observed. We envision encoding
the behavior in broad categories rather than trying to
highlight specifics. For instance, a reporter of attacks
would indicate “worm”, not “Code Red”. Possible

attack categories might be: worm, virus, spam, scan-
ner, DDoS attack, etc.

• Behavior digest: This field contains a fingerprint of
the specific activity observed. For an attack, it might
be a packet digest [10] of the packet that triggered
the report. The point of capturing a behavior digest is
to correlate the record with audit trails (as discussed
below).

• Signature: the cryptographic signature of the above
fields and the associated public key.

Defining when to place something in the database is
behavior-dependent. For instance, if an IDS finds the
signature for a well known attack (e.g., Slammer) then
it could record an event immediately. However, an SSH
connection that attempts to log in with a bad username
one time may not be cause for recording an event (given
that someone might have made a mistake or a typo). Or,
this might warrant a delay in the inserting of the event in
the database to better ascertain whether the SSH service
is under attack.

2.2 Witnesses

To add credence to a reporter’s database entry we allow
for the insertion of witness statements in the database.
These records do not indicate particular behavior, rather
they indicate that the witness indeed observed some el-
ement that is purported to be part of the behavior. One
possible source of witnesses would be in the routers
that forwarded the unwanted traffic to the reporter. If
such routers kept records of the traffic traversing their
networks in digest form (e.g., for traceback [10] or for
reporting packet obituaries [2]), the reporter could re-
quest these systems to insert witness statements into the
database (signed by the witness’ public key).

The statements form the basis of an audit trail that
at least supports the reporter’s contention that a partic-
ular traffic stream arrived. In keeping with the locally-
determined nature of decision-making in our system, the
precise use of this audit trail in assessing a reporter’s rep-
utation or setting policy is left for each database user to
determine.

2.3 Signatories

A final item for the database to store is annotations of
records based on their use (or not) in setting policy. In its
simplest form, sites or hosts that make use of a record in
forming a decision to treat some traffic in a non-standard
way (blocking, rate-limiting, heightened surveillance)
can sign that record to indicate that they used the infor-
mation to form policy. These hosts are indicating that
they have used this record as part of their policy in how to
treat an actor without actually observing specific behav-
ior (which would cause an independent behavior report



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association48

to be entered). The signatory mechanism is designed to
play a part in determining the reputation of reporters by
recording which of these reports other sites have found
useful.

The decision to use a particular attack record in the
database, or to sign and report its usage, does not need to
be solely based on the information from the database. It
could be partially based on local policy and observation,
as well. For instance, a report of an IP address as a scan-
ner by some arbitrary reporter may not be believed on its
own. However, if an incoming packet from that address is
destined for a dark portion of a site’s address space, then
these two pieces of information together may be enough
to enact a policy of blocking the given IP address. In this
case, the given record in the database should be signed
to indicate that it played a part in designing a particular
policy.

Finally, we envision two possible refinements to the
use of signatories. The first is the reporting of negative
use; i.e., that a site decided not to use a reporter’s re-
port about a given actor. This allows other sites to more
quickly learn of the skepticism of peers they deem trust-
worthy. The second is follow-up, in which sites later re-
port whether subsequent activity led them to a different
conclusion than they formed initially. Follow-up is basi-
cally a form of report revocation, per § 5.

3 Policy
The point of the database is to inform local security de-
cisions with a broader context than that which can be lo-
cally collected. The database does not determine that a
given actor is somehow malicious (or, more generally,
exhibited a particular behavior). Rather, it simply stores
and provides reports from sites that have made such de-
terminations. The reports from the distributed database
can be combined with any other information on-hand
(e.g., IDS records or topology information) to make pol-
icy decisions. In using such reports a key component is
trust. The consumers of the reports have to somehow
trust that the report providers inserted valid records in
the database.

Database records could be invalid for three reasons:
(i) the record provider makes inaccurate assessments of
an actor’s behavior, (ii) the record provider is intention-
ally inserting inaccurate records in an attempt to use the
database as the basis of a denial-of-service attack on an
actor (or, more generally, to frame an actor), or (iii)
the information contained in the record was accurate at
one time but is now out-of-date. To address the first
two validity issues we depend on a reporter’s locally-
determined reputation to assess the degree to which the
information will be trusted. The third issue is addressed
by aging information in the database.

As discussed in § 2, each entry in the database is signed

by the reporter. We do not impose a tight coupling be-
tween the identity of the reporter and the key used to
sign records; rather the history of the key’s reports can be
used to assess a reporter’s aptitude in determining mali-
cious behavior. Reputation is a local calculation based on
various pieces of information culled from the database.
See, for example, [1] for an illustration of one particular
scheme for using a distributed database to assess the rep-
utation of participants in a peer-to-peer system. We leave
a concrete definition of reputation as future work (and,
indeed, there can be various calculations depending on
what a particular site values); however, we note several
aspects that could be taken into account when assessing
the fidelity of reporter X :

• The number of distinct reporters (and their reputa-
tions) making the same assessment as X . This lends
weight to the fact that X is not inaccurate or mali-
cious.

• The number of signatories on reports made by X .
This indicates how many others have some amount
of trust in the given report (perhaps due to corrobo-
rating evidence, as discussed in § 2).

• An audit trail of the events that X has reported.
While the third-party statements that form the audit
trail do not confirm X’s assessment of some property
of the given actor, they do offer evidence that X did
in fact observe a traffic stream with the given digest
(with a high probability). This can be used as evi-
dence that X may be acting honestly.

• Local evidence that concurs with X’s findings; for
instance, if X identifies some host H as a scanner and
local information has not yet made that determination
but has noted several attempts by H to access dark IP
addresses.

• Reputations can be earned within different contexts.
For instance, a particular X may have a highly ac-
curate worm detector, while having a sub-par scan
detector that is often wrong.

Each of the above bases for reputation can be gamed
by a malicious reporter. The algorithms for deriving a re-
porter’s reputation therefore need to be tuned to be skep-
tical of a reporter until the reporter has a track record that
is supported by evidence and previously well-known re-
porters. See § 5 regarding the problem of bootstrapping
such a system.

While assessment of reputation can be used to take
care of some aspects of invalid information in the
database, it cannot account for out-dated information. In
fact, out-dated information may well lead to the reputa-
tion of a reporter suffering because a once-valid report is
now seen as invalid. Therefore, we need some way to age
out old information. If we retain the information in the
database and allow users to apply their own aging poli-



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 49

cies, this would likely yield a database full of information
that consumers always essentially factor out, wasting re-
sources. Therefore, we likely need the DHT nodes to
prune “old” information, either deleting it or perhaps us-
ing sketch-like schemes [8] to aggregate older informa-
tion in a form of graceful degradation.

4 Cheating
A key component of the system sketched above is that it
does not require the identity of the actors to be known,
but rather depends on the track record of various enti-
ties. This leaves the door open for abuse from mali-
cious actors. One concern in this regard is misbehavior
by the nodes participating in the DHT, to prevent legit-
imate information from being inserted into the database
or from reaching users in response to queries. In general,
DHTs are susceptible to a variety of attacks [4], and re-
sisting these (for example, by restricting membership in
the DHT) is an area of active research that is not unique
to our needs. Thus, in this section we focus on a sec-
ond class of cheating, namely attackers inserting bogus
information in the database that is, itself, an attack (e.g.,
noting that one’s enemy has a worm in the hopes that this
will cause denial of service to said enemy).

In previous work, [1] shows that a workable reputa-
tion system can be built such that reporters providing a
good amount of bogus information can be identified as
cheaters. However, that work also shows that catching
reporters that generate only a small amount of misinfor-
mation is difficult. Therefore, additional reputation as-
sessment techniques are likely needed, based on the sorts
of misinformation that could be placed into the database
in our system. We consider the four kinds of misinfor-
mation an attacker could place into the database.

First, a malicious user could attempt to place bogus
reports in the database in the hopes of denying service
to the given hosts. For dealing with some simple ver-
sions of such attacks, see [1]. However, a more moti-
vated attacker could retrieve database entries for a key,
K , that represents a solid contributor (which could be
determined by looking at signatories or by running some
known, widely-used reputation algorithms) and then in-
sert attack records with the same information as those
submitted by K but signed with the attacker’s key, K ′.
If the attacker monitors the database for a period of time
and continues to report entries based on those of K (or,
even a few keys to mask the blatant copying) then K ′ can
steal solid reputation built by K , and at this point K ′ can
start inserting bogus records.

One way to resist such attacks is to incorporate the
time when an attack was reported, with the first re-
porter getting more “reputation points” than subsequent
reporters. For this defense to work, it is critical that
the database correctly record reporting times. In addi-

tion, the reputation assessment may highlight “unique
reports” to ferret out reports that only K ′ makes that
others do not (though this can be countered with mul-
tiple malicious keys colluding). More speculatively, an
honest, high-reputation reporter could occasionally in-
sert “ringers” into the database: false records that are re-
vealed as such after a delay. Any other reporter who also
reported the ringer is unmasked at that point as having
copied the original report.

A second form of misinformation is hosts filing false
witness statements in an attempt to bolster their false at-
tack claims. This might be mitigated by asking ISPs to
sign all their witness reports with well-known keys.

Third, hosts could add fake signatories to falsified at-
tack reports in an effort to add weight to those reports.
If the signer of some record engaged in the above “rep-
utation stealing” scheme then it is conceivable that hosts
could be fooled into impeding an innocent actor’s traf-
fic. The reputation assessment could take into account
the set of signatories in an effort to see if they overlap
with known solid keys, or not.

Finally, attackers could flood the database with useless
records, to render legitimate use of the database com-
putationally infeasible, to greatly complicate reputation
calculations, or even for purposes of spamming adver-
tisements if a mechanism exists that will display entries
in the database to users (e.g., for error handling). This
threat is quite significant because the system purposely
does not tie reporter keys to specific entities. Therefore,
it lacks the means to prevent an attacker from minting
an endless stream of keys to avoid having a single key
identified as a flooder.

It may be possible to diminish the problem of flooding
by requiring that reports be corroborated by witnesses
that themselves have established reputation in a more
global manner (perhaps by independent auditing, as dis-
cussed below in § 5). Clearly, there is much future work
to do in terms of developing reputation assessment tech-
niques that can ferret out or resist complex patterns of
misbehavior.

5 Other Issues
In this section we tackle a variety of topics that require
additional work as the community moves from an archi-
tectural concept to building a real system.
Deployment: The architecture we sketch should be
incrementally deployable because users do not require
global coverage to gain benefit from the system. How-
ever, bootstrapping issues remain, both in terms of start-
ing the system as a whole and then adding reporters later.
What sort of bar must a reporter meet before they can be
reasonably trusted? How does a new consumer of the in-
formation in the database know whom to trust? Is there
some sort of calibration system that could be developed



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association50

to help new users of the database verify which reporters
are providing solid information? The path for a new re-
porter seems less burdensome because the reporter is just
informing the database of local decisions already being
made. As the reporter develops a track record, the re-
ported entries gain more usefulness globally. This does
not greatly benefit the reporter, but perhaps no additional
incentive is needed in this regard — it is annoying to be
attacked, and for many victims satisfying by itself to en-
gage in some sort of response, even one without direct
benefit.
Linking Keys and Identity: A key to the scalability of
the system is that keys are linked to reputations (which
can be independently computed). However, there are
pros and cons associated with keys becoming linked with
identity. For instance, if network operator A told network
operator B, whom they trusted, how to identify the re-
ports A sent to the database, then B may decide to trust
those reports without bothering to compute a reputation
for A. (Of course, this can work in the reverse and B
could decide that A is sloppy and thus untrustworthy.)

However, if an adversary knows that a particular key
reports attacks on a given address space, then they could
avoid that address space to avoid being reported. (E.g.,
it is easy enough to check the database after performing
a scan to see if the attack triggered an entry, and if so,
which key was used to sign it.) If attackers avoid net-
works that report malicious activity, this can create an in-
centive for network operators to report malicious activity
in the database. On the other hand, in a global sense this
could work against trying to quickly contain malicious
hosts.

Additionally, if an attacker determines that some ad-
dress space is linked to a particular public key in the
database, the user could use this information in an at-
tempt to determine the site’s security policy. For in-
stance, a malicious user may be able to determine what
sort of criteria the site uses to declare that a host is a scan-
ner. Such knowledge may let the user explore the site
(from additional compromised hosts, say) without trig-
gering alarms.

Finally, if a key is known to represent some organi-
zation and the organization’s reports to the database are
often wrong, then this could cause embarrassment to the
organization (and, hence, be a disincentive for participat-
ing).
Revoking Reports: Another aspect of the system that
requires thought is how (or whether) a given reporter cor-
rects mistakes it has inserted into the database (by anno-
tating, not deleting records). For instance, suppose some-
one from a given host attempted to SSH into some system
using an invalid username. This is not an infrequent at-
tack method, and as such it could be reported. However,
if this was later determined to be a simple case of a user

making a typo in a username, then it seems reasonable
for the reporter to indicate that the given report was be-
nign after all. Allowing the database to support this is
not difficult, but the question remains of what happens
within the reputation assessment. The assessment should
probably give the reporter some credit for correcting a
mistake. However, at the same time we could view the
need to correct as an indication of sloppiness because the
maliciousness was not soundly assessed before entering
the initial report.

A more speculative application of revocations would
be after an infected machine is cleaned up. For instance,
if some host was flagged as spewing spam and later
closed an open relay, one approach would be for the re-
porters that noted the spammer to indicate that they now
believed the host was no longer sending spam. This path
becomes messy because it requires that the reporters have
some way to determine a given host has been cleaned up.
Alternatively, the architecture could allow for a separate
entity (e.g., the victim’s ISP) to enter such a record (and
of course they would accrue reputation for the fidelity of
their cleanup reports).

Finally, the system needs to support key revocation in
order to flag a previously-valid key as now compromised
and untrustworthy, lest an attacker steal the key’s repu-
tation. This could be done by inserting a self-signed re-
vocation in the database as one of the entries under the
key’s hash.
System Openness: The openness of the system is a bal-
ancing act. Ideally, we would like to allow only honest
participants and to deny anyone with ill-intent. The de-
gree to which the system can remain open may largely
hinge on the power of the reputation assessment tech-
niques used and the system’s ability to resist database
flooding attacks.

As discussed thus far, we have considered the system
to be open for use by anyone. However, there are ad-
vantages to restricting membership in the DHT itself to
only known parties to reduce the trustworthiness issues
involved in the infrastructure that supports the database.
Likewise, closing audit reports to a certain subset of par-
ticipants also seems tractable and useful.

In addition, the entire system could be instantiated
multiple times, each scoped in terms of who can re-
port to and/or query from the database. Such a scop-
ing could prove burdensome due to additional credential
requirement. On the other hand, the credentials would
be known by the DHT and would still likely be easier
to manage than the pair-wise interactions currently re-
quired for sites to share information. Furthermore, the
complexity of the reputation assessment system in such
an environment, while not being completely eliminated,
would likely be substantially reduced (e.g., because the
likelihood of “reputation stealing” attacks would be quite



SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 51

small). Finally, we note that for some environments, such
as the Grid, our system could leverage an existing iden-
tity infrastructure.
Overhead: The system outlined in this paper has a cost
in terms of the network resources used. The worst case
is that each session establishment initiated by a remote
host would require a database query to assess the pos-
sible intent of the requester. Even a modest-sized insti-
tute such as ICSI (a few hundred hosts and a dozen pub-
lic servers) is visited by many thousands of remote hosts
each day, and this figure could become much larger if an
attacker were spoofing IP source addresses, though we
could offset this by requiring that connections first es-
tablish before then deferring their further progress until
we can vet their source. We could also gain benefit by
caching the lookups from the database, but must do so
carefully to avoid using stale information in the face of a
fast-spreading attack.
Surrogates: A final avenue for investigation is the use
of surrogates to aggregate the information from the
database such that local resources are not required for
this task. Clearly, this requires that a consumer trust the
surrogate to accurately aggregate information from the
database in a timely manner; in particular, to precompute
reputations of reporters (as opposed to summarizing per-
actor behavior). Such trust could be established based
on external relationships. For instance, a company’s field
offices could trust a surrogate at headquarters to do the
computational work of determining reporter reputations
nightly and then distributing the information. More spec-
ulatively public web sites could be setup to serve in-
formation about reputations (or even their judgment of
given actors) based on the information culled from the
database. In this case, trust goes back to the track record
of the surrogate’s reports. Also, given that the informa-
tion being aggregated is generally available, we can audit
aggregation sites periodically to verify their trustworthi-
ness.

As a practical matter it may be worthwhile to store
snapshots of the database periodically in “data ware-
houses”. Whereas our belief is that information about
the distant past is not useful in terms of current malicious
activity, such a warehouse would allow us to test this hy-
pothesis. In addition, new reputation algorithms and cir-
cumvention attacks based on the database’s timeouts can
be analyzed.

6 Future Work
We have sketched the beginnings of an architecture to
store and retrieve activity reports. Here we focussed on
the big picture, but to bring such a system to fruition will
require community efforts on a number of fronts: (i) de-
veloping workable locally-computable reputation algo-
rithms, (ii) obtaining acceptable performance in terms of

lookup overhead, timeliness of information propagation,
and resilience to flooding, and (iii) devising workable
witness digests and associated audit trails, as a key ele-
ment in providing a low barrier-to-entry when developing
a reputation.

Acknowledgments
Many thanks to Joe Hellerstein, Petros Maniatis, Scott
Shenker and the anonymous reviewers for their thought-
ful comments. This work was supported in part by
the National Science Foundation under grants ITR/ANI-
0205519, NSF-0433702 and STI-0334088, for which we
are grateful.

References
[1] K. Aberer and Z. Despotovic. Managing Trust in a Peer-

2-Peer Information System. In Proceedings of the Tenth
International Conference on Information and Knowledge
Management, 2001.

[2] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker.
Providing Packet Obituaries. In Proceedings of ACM SIG-
COMM HotNets-III, 2004.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Looking Up Data in P2P Systems. Commu-
nications of the ACM, 46(2):43–48, Feb. 2003.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Security for Peer-to-Peer Routing Overlays.
In Fifth Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), Dec. 2002.

[5] A. Heffernan. Protection of BGP Sessions via the TCP
MD5 Signature Option, Aug. 1998. RFC 2385.

[6] R. Huebsch, J. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In Proceedings of the 29

th VLDB Conference,
2003.

[7] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol, Nov. 1998. RFC 2401.

[8] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based Change Detection: Methods, Evaluation, and Ap-
plications. In ACM SIGCOMM Internet Measurement
Conference, Oct. 2003.

[9] R. Moskowitz and P. Nikander. Host Identity Protocol Ar-
chitecture, Jan. 2004. Internet-Draft draft-ietf-hip-arch-
02.txt (work in progress).

[10] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Single-IP
Packet Traceback. IEEE/ACM Transactions on Network-
ing, 10(6):721–734, Dec. 2002.

[11] R. Sommer and V. Paxson. Exploiting Independent State
For Network Intrusion Detection. Technical Report TUM-
I0420, Technische Universitat Munchen, Nov. 2004.




