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• Web applications suffer from 

poor reliability

� Top 40 Web sites about 10 days 

of downtime per year

� 32% of shoppers experienced

online shopping problems 

during the 2006 holiday season

� 89% of all online customers experienced errors

INTRODUCTION

Practitioners rely on fast failure detection and recovery

to reduce the effects of failures on other users.



• Early failure detection can mitigate about 65% of failures

• Failure detection is challenging

� Requires up to 75% of failure recovery time

• User feedback has limited help for detecting failures

� User survey of www.clinicalguard.com in 2008

• 200 users

• 9 responses

• 1 specified the failure

INTRODUCTION



• Resource usages analysis

� Constructing statistics using data of resources usage

• Focusing on performance failures

• Not on failures related to software bugs

• Runtime components interaction analysis

� Detecting runtime execution path anomalies

� Not always effective to software bugs

• User-behavior-based analysis

� Analyzing request bursts to a URL/resource

• Assume users refreshing browsers for failures

� Users have different behavior than refreshing

Existing Detection Techniques
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Overview

HCI Rational Principle

Users must respond if the result of

a sequence of interactions is not satisfactory

Navigation Patterns

• Web users follow certain navigation patterns 

• Users’ response to failures may break these patterns

The Idea: Detecting anomalous navigation paths 

as indications that users encountered failures

Assumptions

The Goal: Detecting failures caused by software bugs



• A directed graph representing a Web site

� Nodes are Web pages

� Edges are users’ navigation 

S={A, B, C, C, D, A, D}

• A Markov model in the 1st order for estimating 

the probability of a navigation path

� The transition probability to the next state is 

conditionally dependent on only the current state

P[AB]=P[A]P[B|A]

P[S]=P[A]P[B|A]P[C|B] P[C|C] P[D|C] P[A|D] P[D|A]

The Model



• Two types of transition probability

� Outgoing Transition Probability (OTP)

The probability that users go from page A to page B

� Incoming Transition Probability (ITP)

The probability that users at page B coming from page A

• OTP usually is different from ITP

� A user can navigate to the Home page from any page

� But not vice versa

Transition Probability



� Given a sequence of user requests

� Compute the occurrence probability 

� Using 1st-order Markov model

� Outgoing Occurrence Probability (OOP)

The occurrence probability computed using OTP

� Incoming Occurrence Probability (IOP)

The occurrence probability computed using ITP

Occurrence Probability for Failure Detection   

If min (OOP, IOP) < threshold

Raise a failure alarm
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• Assume

� The parameter to estimate is a random variable

• Estimate

� The distribution of the parameter as a random variable

� A statistic as the estimator

• Process

� Assume a distribution of the parameter

� Find a conjugate prior distribution

� Compute the posterior distribution

• Update the prior distribution using the training data

� Decide an estimator

• posterior mean: the mean of the posterior distribution

Bayesian Learning



• Bayesian Learning to train a First-order Markov Model 

� A Multinomial distribution

� A Direchlet distribution as the conjugate prior

• Learn Outgoing/Incoming Transition Probability

• The learning process

• A small amount of training data for setting prior

• The rest training data for updating prior

• The posterior mean as the estimator

Bayesian Learning Transition Probability



Estimated Transition Probability

Estimated OTP from state i to state j 

All hits on state i in data for setting the prior

Transitions from i to j in data for setting the prior

All hits on state i in the rest training data

Transition frequency from i to j in the rest 

training data
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• NASA Web site 

• Construct user-sessions using one month access log

� 1,891,714 HTTP requests from real users

• Training data

� Prior: 572 user-sessions on 1st day 

� Learning: 2404 user-sessions on 2nd to 10th day

• Testing data

� 7941 non-error sessions for detection

� 500 error sessions for false positive 

Subject



Result

Equal Error Rate (i.e., EER): the decision boundary 

when detection and false-positive have the same loss function.

Our model’s EER=0.71/0.26
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• Improving the detection power

� Semi-Markov model (e.g., time)

� Hidden state

• The “ground truth”

� Error sessions as user-visible failures

• More case studies

� Controlled environments

• Recruit users 

• Instrument real-world Web sites

Discussion
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• Detecting User-visible failures

� Improving both reliability and user’s satisfaction

• User’s behavior changes when encounter failures

� Breaking navigation patterns

• Our technique detects anomaly user navigation paths

• The experiment results demonstrate our technique 

can detect failures with reasonable cost

• Future work aims at model improvements and case studies

Conclusion



Thank You!


