
Analyzing Web Logs to Detect User-Visible Failures

Wanchun Li
Georgia Institute of Technology

Ian Gorton
Pacific Northwest National Laboratory

Abstract

Web applications suffer from poor reliability. Practition-
ers commonly rely on fast failure detection to recover
their applications quickly to reduce the effects of the
failures on other users. In this paper, we present a
technique for detecting user-visible failures by analyzing
Web logs. Our technique applies a first-order Markov
model to infer anomalous browsing behavior discovered
in Web logs as indicators that users have encountered
failures. We implemented our technique in a tool called
REBA (REcursive Byesian Analysis of Web Logs). We
evaluated our technique using REBA applied to the Web
site of NASA. The results demonstrate that our technique
can detect user-visible failures with reasonable cost.

1 Introduction

Web applications suffer from poor reliability. Practi-
tioners commonly rely on fast detection of user-visible
failures (i.e., failures encountered by users but not
detected by in-house testing), and expect to recover their
applications quickly to reduce the effects of the failures
on other users. Research shows that early detection
could mitigate about 65% of failures [13].

However, fast failure detection in Web applications is
challenging—it can require as much as 75% of failure
recovery time [5]. One possible way for practitioners
to quickly detect failures is to seek users’ feedback.
However, most users are reluctant to give feedback.
Moreover, even if users do provide feedback, it may
not be useful for detecting failures. Our industrial
collaborator, Clinical Guard, an online medical device
supplier, reported that in three months of 2008, their
application operators sent enquiries to 200 customers
whose browsing histories showed anomalous browsing
paths, which operators believed might be generated

because these customers encountered failures. The
operators received only nine responses. Of these, only
one identified the failure and provided information that
was helpful in detecting the failure. The remaining eight
users just mentioned that they encountered failures when
they tried to buy products through the Web site.

Previous research has addressed failure detection
in Web applications. One approach concentrates on
performance diagnosis by detecting failures of network
services [2, 7]. Many failures identified by these
techniques downgrade the performance but do not affect
the functionality of a Web application. Another ap-
proach investigates detecting failures at the application
level [6, 11]. These techniques trace runtime execution
paths that consist of components invoked in response to
user’s requests, and applies statistical analysis to infer
whether failures occurred with respect to anomalous
interactions of these components. The techniques
can successfully detect application level failures, but
may not be effective for detecting failures caused by
software bugs [11]. A third approach analyzes users’
browsing behavior to detect user-visible failures [3]. The
technique reported in Reference [3] assumes that users
refresh their browsers when they encounter failures.
The technique detects abrupt changes in the hit rates of
a Web page and notifies human operators to perform
further checking. The technique can detect failures
caused by software bugs for which users respond with
refreshing browsers. However, the technique could
miss failures if the number of refreshing responded for
failures is not enough to reach the threshold of abrupt
(e.g., users respond with other behavior than refreshing
for failures).

To address the limitations of these existing techniques,
we developed a technique for detecting user-visible fail-
ures in Web applications. Our technique assumes that
the HCI rational principle holds (i.e., users must respond

if the output of a sequence of interactions with software
is unsatisfactory) [4]. Web users normally browse Web
pages following certain browsing patterns [10, 12, 14].
Users’ reaction to failures may break these browsing
patterns and thus, has a low likelihood of occurrence.
Our technique applies a first-order Markov model to
model users’ browsing behavior, uses the data in Web
logs to train the Markov model, and applies the trained
model to infer unusual browsing paths (i.e., sequences of
requests from users with low probability of occurrence).
If an unusual browsing path is detected, our technique
reports that the user has encountered a failure.

We implemented our technique in a tool called REBA
(REcursive Byesian Analysis of Web Logs), and evalu-
ated the technique using REBA applied to NASA’s Web
site. We built the Markov model using user-session data
retrieved from a one-month Web log. We used Bayesian
inference to estimate the parameters of the model: the
user-session data from the first day were used in setting
the prior distribution to estimate the parameters, the
user-session data from the second to the tenth days were
used as training data to estimate the parameters, and
the user-session data for the remaining days were used
to test the model. Our study shows that our technique
detects approximately 71% of the failures with a 26%
false-positive rate. We analyzed the results using the
measures of ROC (Receiver Operating Characteristic)
curve [9], a broadly-used graphical plot for evaluating
and visualizing the performance of statistical models,
and the analysis indicated that our model can detect
failures with reasonable cost.

The main contributions of this paper are

• A new technique for detecting user-visible fail-
ures in Web applications that builds a probabilistic
model of user-browsing behavior

• A prototype tool, REBA, that implements our tech-
nique

• The results of an empirical study on a real-world ap-
plication that demonstrates the effectiveness of our
technique

2 Overview of the Technique

In this section, we discuss the assumptions of our tech-
nique (Section 2.1), present our model (Section 2.2), de-
scribe the way of using the model to detect failures (Sec-
tions 2.3), and discuss important features of our tech-
nique (Section 2.4).

2.1 Assumptions

Our technique assumes that HCI rational principle holds
that a user will respond when the output of a sequence
of interactions with the software is not satisfactory [4].
Research has shown that users follow browsing patterns
to use a Web site [10, 12, 14]. We assume that when
users encounter failures, their reactions to the failures of-
ten break browsing patterns and the probability of the oc-
currence of such response is low. Thus, if the occurrence
probability of several successive requests is low, the user
making these requests may have encountered failures.

2.2 The Model

A Markov model describes a system consisting of a set
of N distinct states [15]. The system transits from the
source state to the sink state. A Markov model can be
represented by a directed graph whose nodes represent
states and edges represent transitions (i.e., the start node
of an edge represents the source state and the end node
represents the sink state). A Markov model transits from
a source state to a sink state according to a conditional
probability, which is called the transition probability. If
the transition probability to the next state is conditionally
dependent on only the current state, the model is at the
first-order.

Our technique builds a first-order Markov model
to analyze user browsing behavior. The technique
employs user-session data retrieved from Web logs to
train this model, and then uses the model to compute the
occurrence probabilities of sequences of user requests.
If a sequence’s probability is lower than a threshold
value, the sequence is reported as one in which a user
encountered a failure.

In our Markov model, a state represents a Web page,
and a transition represents navigation from one page
to another. The direction of a transition represents the
direction of the navigation. For example, if a user first
visits page A and then visits page B, the corresponding
transition in our model is from the state representing A
to the state representing B. If a user refreshes page A,
this refreshing operation corresponds to the self-loop
transition from A’s state back to itself.

States and transitions of our model have associated oc-
currence numbers. A state s has a state occurrence num-
ber, denoted by Occ(s), which is the number of times
that s was visited; a transition sisj has a transition oc-
currence number, denoted by Occ(sisj), which is the
number of times that the system made the transition sisj .

2

2.3 Failure Detection

Our technique uses a trained Markov model to estimate
transition probabilities of a sequence of transitions to
infer anomalous browsing paths, which are viewed as
indicators that the user has encountered failures.

In our model, there are two types of transition prob-
abilities: outgoing and incoming. Given a transition
sisj , the outgoing transition probability (OTP) is the
probability that from state si the system will transit to
state sj ; the incoming transition probability (ITP) is the
probability that when the system is in sj , the system
transited to sj directly from si. For example, given the
Home page H and another Web page A, the OTP of the
transition from H to A is the probability that a user navi-
gates from the Home page to page A; while the ITP is the
probability that when a user is browsing page A, the user
navigated to the page directly from the home page. OPT
and ITP are usually different. For example, users may go
from any Web page to the Home page, but not vise versa.

To check whether a user encountered a failure in a spe-
cific request, our technique checks the outgoing occur-
rence probability and the incoming occurrence probabil-
ity of a fixed number 1 + w of subsequent requests (i.e.,
this request and its w successive requests). Given a se-
quence T of requests and a trained Markov model M , the
outgoing occurrence probability (OOP) is the occurrence
probability of T computed using OTPs, whereas the in-
coming occurrence probability (IOP) is computed using
ITPs. If the minimum of OOP and IOP of the subse-
quence of requests is less than a threshold, our technique
views T as an anomalous browsing path and reports that
the user encountered failures. For example, given a user
session, if we want to check whether a user encountered
failures in the fourth request, the model estimates the
OOP and the IOP of the sequence of transitions from the
4th request to the (4 + w)th request, where w is a pre-
defined value. If the minimum of OOP and IOP of this
sequence of transitions is less than a specific threshold,
the technique reports that the user encountered failures
in the 4th request.

2.4 Discussion

We discuss three important features of our technique.

Choice of the model. A first-order Markov model
may not perfectly model a user’s browsing behavior,
because the latter may not satisfy the first order Markov
property. The next page a user visits may depend not
only on the current page but also on earlier pages.
Although the dependence could be captured by a higher

order Markov model, it would entail additional complex-
ity and computational cost. Our empirical results (see
Section 4) suggest that a first-order model is adequate
for revealing many failures in Web pages.

Computing OOP and IOP. We use Bayesian esti-
mation to compute OTP and ITP. We set the prior to
compute the estimator. The way of setting prior ensures
that OOP and IOP of a sequence of requests are not
dependent on a specific page. For example, given two
pages that have 1000 links and 1 link, respectively,
the probabilities of visiting the page with more links
are not necessarily lower than the page has less links.
Rather, the probabilities are dependent on the number of
links and the frequencies of these links are visited (See
Section 3.3 for more details).

The threshold value. Our model raises an alarm
when the occurrence probability of a sequence of
requests is lower than a threshold value. The specific
value of the threshold depends on applications and the
loss functions. Suppose the practitioner chooses the
same loss function for detection rate and false positive
rate, the threshold value can be determined by the output
of the model training.

Limitations of our technique. Our technique does not
handle two types of user-browsing behavior. First, users
sometimes immediately leave a Web site when they find
a failure in their first request. In this case, it is difficult
for our technique to distinguish whether the user left the
site due to a failure. Second, a user may not take any
unusual actions after encountering a failure because the
user did not notice or care about it. In this case also, our
technique cannot detect the failure.

3 Model Training

Our technique employs Bayesian inference to estimate
parameters of the Markov model (i.e., outgoing transition
probabilities and incoming transition probabilities). In
this section, we introduce notations (Section 3.1), present
estimating transition probabilities (Section 3.2), discuss
setting parameters of the prior distribution (Section 3.3),
and describe updating the model (Section 3.4). Without
loss of generality, we consider in detail only estimation
of outgoing transition probabilities. The treatment of in-
coming transition probabilities is similar and is omitted.

3.1 Notations
Let D = (u1, ..., un) be a set of user sessions. For a user
session uq, let kqi = (kqi1, ..., k

q
im) be the occurrence

numbers of transitions leaving from si to m states,

3

Table 1: Example training user-session data.
User Session Requests

u1 {s1, s2, s1, s3, s1, s2, s1, s1, s2}
u2 {s1, s3, s2, s1, s2, s1, s2}
u3 {s1, s2, s1, s4}

including itself. Let θi = (θi1, ..., θim) be the forward
transition probabilities for transitions leaving from state
si. Let nij be the total occurrence number of transition
sisj in all the user sessions of data set D. We have
nij =

∑n
q=1 k

q
ij .

Table 1 shows a simple example of a set of user
sessions consisting of three user sessions, u1, u2, and
u3. The three user sessions are constructed by four
states, s1, s2, s3, and s4. For user session u1, we
have θ1 = (θ11, θ12, θ13, θ14) that are transition prob-
abilities from s1 to each of the four states, and k11 =
(k111, k

1
12, k

1
13, k

1
14), where k111 = 1, k112 = 3, k113 = 2,

and k114 = 0, that are the occurrence numbers of transi-
tion s1s1, s1s2, s1s3, and s1s4.

3.2 Estimating Transition Probabilities
Our technique uses Bayesian inference to learn a
first-order Markov model. Bayesian inference views
parameters of a model as random variables and infers the
distributions of these random variables by following the
process of Bayes Theorem. To estimate a parameter, a
common Bayesian method is to (1) assume a distribution
of the parameter, (2) set a conjugate prior distribution
(i.e., a distribution in the same distribution family as the
assumed distribution), (3) update the conjugate prior
using the training data, where the updated prior is the
posterior distribution, and (4) estimate the parameter
using the posterior distribution. One common estimator
used in Beyesian estimation is the posterior mean, which
is the mean of the estimated posterior distribution.

Given a Markov model with m states, according to
Bayes’ Theorem, we have

P [θi|D] =
P [D|θi]P [θi]

P [D]
(1)

where P [θi|D] is the posterior, P [D|θi] is the likelihood,
and P [θi] is the prior; P [D] is the probability that the
data D is observed, which is a normalization constant in
the computation of the posterior.

Equation 1 presents a Multinomial distribution. To
estimate the parameters of this Multinomial distribu-
tion, we use a Dirichlet distribution with parameters α

and q = (q1, ..., qm) as its conjugate prior, where qj
is the prior estimate of the forward transition probabil-
ity of sisj after si is visited α times. The distribu-
tion function of a random vector θ = (θ1, ..., θm) gov-
erned by a Dirichlet distribution with parameters α and
q = (q1, ..., qm) is

Dirα,q(θ) =
1

Z

m∏
i=1

θαqi−1
i (2)

where θi, qi, α ≥ 0,
∑

θi = 1,
∑

qi = 1, and
Z =

∏m
i=1 Γ(αqi)

Γ(α) is a constant normalization factor.

Thus, according to Equation 2, we have the prior

P [θi] =
1

Z

m∏
j=1

θ
αqj−1
ij (3)

Now, given the probability structure θi = (θi1, ..., θim),
we assume the independence of the training user ses-
sions. This assumption is reasonable because two user
sessions record two different browsing histories, which,
particularly generated by two different users, are inde-
pendent. Thus, we have the likelihood of selecting the
data set D as

P [D|θi] = P [(u1, ..., un)|θi]

= P [u1|θi]...P [un|θi] (4)

We also have the likelihood of collecting user session
uq, in which transition sisj occurred kijq times, regarding
to θij . As shown in Equation 5, the likelihood is the
marginal probability of random variable θij , which views
other variables in θi as 0.

P [uq|θi] = θ
kq
ij

ij (5)

Substitute Equation 4 using Equation 5, we have

P [D|θi] = P [u1|θi]...P [un|θi] =
m∏
j=1

n∏
q=1

θ
kq
ij

ij

=
m∏
j=1

θ
∑n

q=1 kq
ij

ij =
m∏
j=1

θ
nij

ij (6)

Then substitute Equation 1 using Equations 3 and 6, we
have

P [θi|D] =

∏m
j=1 θ

nij

ij · 1
Z

∏m
j=1 θ

αqj−1
ij

P [D]

=
1

Z · P [D]

m∏
j=1

θ
(nij+αqj−1)
ij (7)

4

Now, we have Equation 7 as the posterior distribution.
We use the expectation of this distribution (i.e., the
mean posterior) to estimate transition probabilities of
the outgoing transitions of state si.

To easily compute the mean posterior, we introduce
new symbols to construct a concise form of Equation 7.
Because both Z and P [D] are constant normalization
factors, as shown in Equations 1 and 3, we can set a
new constant Z ′ = Z · P [D]. We also introduce a new
parameter α′ = ni + α and a new vector parameter
q′j =

nij+αqj
ni+α . Substitute Equation 7 with Z ′, α′, and

q′, we have

P [θi|D] =
1

Z ′

m∏
j=1

θ
(α′q′j−1)

ij

which represents a Dirichlet distribution with a parame-
ter α′ and a parameter vector q′ = (q′1, ..., q

′
m), that is

P [θi|D] ∼ Dirα′q′(θi)

The expectation of a specific variable at j dimension of
θi is the mean posterior estimator of transition sisj’s for-
ward transition probability, denoted by θ̂ij . We have

θ̂ij = E(P [θij |D]) = E(Dirα′q′(θij) = q′j

=
nij + αqj
ni + α

(8)

3.3 Setting the Prior

Our technique uses the information extracted from the
Web logs to estimate α and qi. Let N be the sum of hits
of all Web pages, and again let m be the number of states
in the model. For each transition sisj , we let α = N .
In setting the parameters qij of Equation 8, the prior out-
going transition probability of sisj , we distinguish two
cases. The first case is that sj has incoming transitions.
We set each qij to the normalized value of the average
occurrence frequency of these transitions. (Normaliza-
tion is necessary so the qij sum to one.) The second case
is that sj has no incoming transitions. In this case, the
soonest we could observe a transition to sj will be when
the (N + 1)st page hit occurs. We assume “optimisti-
cally” that the probability of this event is 1

N+1 , which
would be the maximum likelihood estimate of sj’s fre-
quency if the event did occur. Without knowing the order
of previous page hits, we also assume that the transition
to sj is equally likely to come from any state. Therefore
we set each qij to 1

(N+1)m divided by a normalization
constant. For I ≥ 0, let s1, ..., sI be the states from
which transitions to sj were observed. Equation 9 gives

the value of qij in each case:

qij =
q′ij∑m
j=1 q

′
ij

(9)

where

q′ij =

{
1
I

∑I
k=1

Occ(sksj)
Occ(sk)

, I > 0;
1

(N+1)·m , otherwise.

3.4 Updating the Model
Our model is updated in two cases. In the first case, es-
timated probabilities of existing transitions sisj in the
model are updated, to account for new user-session data
consisting of states si and sj . (Both si and sj rep-
resent existing Web pages.) Our technique applies re-
cursive Bayes estimation [8] to update the model with
new user-session data, using the new user-session data
as the training data and the existing posterior distribution
as the prior. The second case of updating the model is
when states represented new Web pages are added to the
model. Our model simply views a new Web page as an
existing page that has never been visited. We used this
option in our empirical study.

4 Empirical Study

To evaluate the effectiveness of our technique, we imple-
mented it and performed an empirical study to evaluate
the effectiveness of our technique. This section presents
the study. We introduce the experiment subject (Sec-
tion 4.1), describe the empirical setup (Section 4.2), and
present and analyze the results (Section 4.3).

4.1 Subject of the Study
We used one month of log data for the NASA Web site
as the subject for our study. The log data consists of
1,891,714 HTTP requests from real users. After filtering
trivial sessions that consisted of only one user request,
we constructed two types of user sessions: non-error
sessions, which contained no requests with error status
code, and error sessions, which contained requests with
error status code.

Because the subject is a real-world application, we
could not control the experimental environment and thus,
did not know whether or not a user encountered a fail-
ure. Our only information was the requests that were not
successfully handled by the Web server—the errors that
were recorded in the Web log. Therefore, we used the
error sessions retrieved from the Web log to evaluate the
detection rate and used non-error sessions to evaluate the
false-positive rate of our technique.

5

4.2 Empirical Setup

We implemented our technique in a tool called REBA
(REcursive Byesian Analysis of Web Logs). REBA
consists of a preprocessing component implemented
in Jython 2.2.1 and a detection-model component
implemented in Java 1.6.

In our implementation of REBA, we set the size of the
sliding windows to 4 (see Section 2.3 for details), which
covers the state to be checked and its three successive
states (i.e., w = 3). Our observations indicate that after
encountering a failure, many users make two or three
more requests and then give up. Setting w = 3 means
that to check whether a user encountered failures in a
specific request si, our technique checks a sequence
T of up to four requests including si. If a request is
followed by fewer than three successive requests, the
sequence T contains fewer than 4 requests. For example,
if si has only one succeeding request (e.g., a user tried
only one more request after encountering a failure) then
T = (si, si+1).

We used the following process to perform the study
using REBA:

1. Set the prior for estimating parameters. We used the
first day’s non-error sessions, consisting of 572 user
sessions, to set the prior for estimating parameters
in our model.

2. Train the model. We trained our model with the
non-error sessions from the second day to the tenth
day, which consisted of 2,404 user sessions.

3. Investigate the detection rate of the model. We
tested our model using all error sessions of the re-
maining days of the month, which consisted of 500
user sessions. We checked the rate that these ses-
sions are reported as error sessions.

4. Investigate the false-positive rate of the model. We
tested our model using all non-error sessions of the
remaining days of the month, which were 7,491 user
sessions. We checked the rate that these sessions
were reported as error sessions.

5. Update the model. In both Step 3 and Step 4, if
a testing session was not reported as encountering
errors, the model was updated using this session as
new training data.

4.3 Results and Analysis

In this section, we present the results of the study and
analyze the results.

Table 2: Results of detection rate and false-positive rate.
Detection Rate False-positive Rate

0.60 0.11
0.70 0.26
0.80 0.40
0.90 0.53

1 0.87

Figure 1: The ROC curve of model testing, wherein AUC
is approximately 0.83 and EER is a detection rate of 0.71
with false-positive rate of 0.26.

4.3.1 Results

Table 2 shows several statistically important values of de-
tection rates with false-positive rates. In this table, the
first column is the threshold value, where 1 ≤ w ≤ 3.
The second column is the detection rate, and the third
column is the false-positive rate. For example, the sec-
ond column shows that the detection rate is 0.70 with a
false-positive rate of 0.26.

4.3.2 ROC Curve Analysis

Figure 1 shows the receiver operating characteristic
(ROC) curve of the study results. An ROC curve is a
broadly-used graphical plot for evaluating and visual-
izing the performance of classifier models [9]. In the
figure, the horizontal axis represents the false-positive
rate, and the vertical axis represents the detection rate.

There are two important measures of an ROC curve.
One measure of an ROC curve is the area under the
curve (AUC). As a rough guide of how the AUC re-
late to the performance of a model, an area of 0.90–1
is excellent, 0.80–0.90 is good, 0.70–0.80 is fair, 0.60–
0.70 is poor, and 0.50–0.60 is a failure. (See details at

6

http://gim.unmc.edu/dxtests/roc3.htm.) The other mea-
sure of an ROC curve is the Equal Error Rate (EER),
which is used as the decision boundary when detection
and false-positive have the same loss function. Geomet-
rically, the EER is the intersection of the ROC curve and
the diagonal from the top left to the bottom right of the
graph. In Figure 1, the bold curve is the ROC curve
and the AUC of this ROC curve is approximately 0.83;
the intercept point of the ROC curve and diagonal is the
EER, and the EER is a detection rate of 0.71 with a false-
positive rate of 0.26. The analysis of ROC indicates that
our model can detect failures with reasonable cost.

4.3.3 Result Discussion

We believe that the actual false-positive rate was lower
than our empirical results. We evaluated the false-
positive rate using non-error sessions whose status codes
were not errors in Web logs. These sessions had no
HTTP errors. However, user-visible failures caused by
application failures, such as incorrect outputs or Web
page display problems, are not recorded in Web logs.
Thus, there could be other types of failures than HTTP
errors in these non-error sessions. We expect that these
non-error sessions contains failures and thus, the true
false-positive rate is lower than our experiment results.

Our empirical results may also under-estimate the de-
tection rate. The error session for evaluating detection
rates were constructed based on the status code in Web
logs. However, there are cases that an error status was
recorded in Web logs but no failures actually occurred
on the client side. For example, suppose an HTML tem-
plate file is not used by a Web page, and the template file
is removed from the Web site but the code of using the
template still remains in the HTML code. If a user sends
a request to this Web page, there is an error log entry of
the template file in the Web logs, but no failure occurs
on the client side. In this case, our study reported that
a failure was encountered by users but was not detected
by our technique. However, no failure actually occurred,
and thus, the empirical results are lower than the real de-
tection rate.

4.3.4 Robustness

In our study, our model was updated in both Step 3 and
Step 4 if a testing session was not reported as encounter-
ing failures (Step 5 of the process we used indicates this
updating). This process means that some error sessions
were used to train the model because some error sessions
were not reported as errors. Nevertheless, our model still
detected failures with a reasonable false positive rate.
This result demonstrates the robustness of the model.

5 Related Work
There are three approaches to detect failures in Web
applications. The first set approach, which is the closely
related work to ours and inspires ours, was presented by
Bodik and colleagues [3]. Their technique addresses a
special case of our technique, and our technique general-
izes theirs and can detect more failures than theirs. Their
technique detects failures by analyzing Web logs to find
abrupt changes of hits on a Web page as an indication
of users encountering failures. The technique assumes
that users refresh their browsers when they encounter
failures, and refreshing operations are recorded in
Web logs as repeated requests to the same resource.
However, this assumption does not always hold because
users can have behaviors different from refreshing Web
pages when they encounter failures. Our empirical
results show that the frequency of users refreshing their
browsers when they encounter failures is low: refreshing
occurred in only 119 out of 500 error sessions. Like their
technique, ours assumes that users’ browsing behaviors
change when they encounter failures. However, our
technique does not presume any user’s behavior. Rather,
our technique constructs a first-order Markov model
to compute the probability of a browsing path to infer
whether a user’s browsing behavior is anomalous.

The second approach applies statistical analysis to
components’ runtime information to infer anomalous
execution paths (e.g., Chen and colleagues [6] and
Kiciman and Fox [11]). Our technique differs from these
in three ways. First, our technique can detect source
code bugs that cause user-visible changes, which theirs
is not always effectively detect failures caused by such
software bugs [11]. Second, our technique is more effi-
cient than these techniques. Ours does not require any
instrumentation, but theirs rely on code instrumentation
to monitor applications’ runtime behavior. Third, our
technique is more scalable. Their techniques can suffer
scalability issues because the number of underlying
components can grow exponentially as the systems
grow. This growth occurs particularly when users’
requests invoke a large number of objects of dynamic
binding, which is an essential programming technique in
multi-layer Web applications. In contrast, our technique
requires only Web logs and is independent of the size of
the application. However, theirs can detect failures that
are not caused by software bugs such as performance
failures, but ours does not ensure to detect such failures.

The third approach applies statistical analysis to infer
failures that downgrade the performance of multi-tier
Web applications (e.g., Barham and colleagues [2] and
Cohen and colleagues [7]). Their statistical models
analyze data from a variety of sources, including

7

networking, hardware, operating systems, databases,
middle-ware, and application components. These
techniques address failures that reduce the system’s
response. In contrast, our technique focuses on detecting
application-level failures.

Another set of techniques are related to ours in that
they also study user-browsing behavior. These tech-
niques aim at such goals as optimizing Web caching (e.g.
Padmanabhan and Mogul [14]), personalizing Web sites
(e.g., Mobasher and colleagues [12], or studying user
behavior patterns [1]. Our technique differs from these
in two ways. First, these techniques aim at discovering
the majority of user browsing behavior, whereas ours un-
covers the minority—they discover patterns, but we find
anomalies. Second, although both types of techniques
use a fixed-size sliding window to cover 1 + w user re-
quests, theirs uses the window in the w + 1 mode: using
the w requests to predict the (w + 1)th request. In con-
trast, our technique uses a fixed-size sliding window in
the 1+w mode: using the w requests to estimate the one
before the w requests.

6 Conclusion and Future Work

In our future work, we plan to improve our technique
from three aspects. First, we need improve the detection
power of our model. As shown in the ROC curve
in Section 4.3, the slope of the false positive shows
straight line segments, which indicates our model needs
further sources of evidence for detection. A potential
improvement of the model is to use a semi-Markov
model to characterize the time that the user spends in
each web page to infer additional indicators. We could
also introduce more hidden states into the model to
group users by their intention of using the Web site.
Second, we need further evaluate our technique. In
this work, we had only one cast study and could only
use “hard errors” (i.e., errors reported by HTTP error
code) as the “ground truth” to classify whether users
encountered errors. However, the goal of the technique
is to detect failures caused by software bugs that do not
necessarily generate an error code. Users’ responses to
software bugs might be different from responses to hard
errors, and such differences could potentially weaken
the validate of the experimental results of the current
work. However, it requires to have “known” data for
improving the evaluation. Thus, we plan to collect
user-interaction data of using multiple real Web sites
in the controlled environment. One possible solution is
to recruit user to use Web sites with seeded bugs and
collect user-interaction data of using such Web sites.
Third, we plan to introduce more human-computer
interaction techniques into our model. For instance,

our current model assumes an ideal environment where
users perform their tasks without interruption. However,
users may abandon their tasks by interruptions such as
phone calls and emails. In such cases, our model could
raise false alarms. A more sophisticated user model
could help to handle more realistic users’ environments.

References
[1] BALDI, P., FRASCONI, P., AND SMYTH, P. Modeling the Inter-

net and the Web: Prob. Meth. and Alg. Wiley, 2003.

[2] BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN,
D. Magpie: real-time modelling and performance-aware sys-
tems. In 9th Workshop on Hot Topics in Oper. Sys. (May 2003).

[3] BODIK, P., FRIEDMAN, G., BIEWALD, L., LEVINE, H., C, G.,
PATEL, K., TOLLE, G., HUI, J., FOX, O., JORDAN, M. I., AND
PATTERSON, D. Combining visualization and statistical analysis
to improve operator confidence and efficiency for failure detec-
tion and localization. In 2nd Intl. Conf. on Automatic Computing
(June 2005), pp. 89–100.

[4] CARD, S. K., MORAN, T. P., AND NEWELL, A. The Psychology
of Human-Computer Interaction. CRC Press, 1986.

[5] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PAT-
TERSON, D., FOX, A., AND BREWER, E. Path-based failure
and evolution management. In 1st Symp. on Netw. Sys. Design
and Impl. (March 2004), pp. 309–322.

[6] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic
Internet services. In 2002 Intl. Conf. on Dependable Sys. and
Netw. (June 2002), pp. 595–604.

[7] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND
CHASE, J. S. Correlating instrumentation data to system states:
A building block for automated diagnosis and control. In 6th
Conf. on Symp. on Operating Sys. Design & Impl. (June 2004),
pp. 231–244.

[8] DUDA, R. O., HART, P. E., AND STORK, D. G. Pattern Classi-
fication, 2 ed. Wiley-Interscience, 2000.

[9] FAWCETT, T. An introduction to roc analysis. Pattern Recogni-
tion Letters 27, 8 (June 2006), 861–874.

[10] HUBERMAN, B. A., PIROLLI, P. L. T., PITKOW, J. E., AND
LUKOSE, R. M. Strong regularities in world wide web surfing.
Science 280, 5360 (April 1998), 95–97.

[11] KICIMAN, E., AND FOX, A. Detecting application-level fail-
ures in component-based Internet services. IEEE Transactions
on Neural Networks 16, 5 (September 2005), 1027–1041.

[12] MOBASHER, B., DAI, H., LUO, T., AND NAKAGAWA, M. Dis-
covery and evaluation of aggregate usage profiles for Web per-
sonalization. Data Mining and Knowledge Discovery 6 (January
2002), 61–82.

[13] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.
Why do Internet services fail, and what can be done about it? In
4th conf. on USENIX Symp. on Internet Tech. and Sys. (March
2003), pp. 1–16.

[14] PADMANABHAN, V. N., AND MOGUL, J. C. Using predictive
prefetching to improve world wide web latency. Computer Com-
munication Review 26 (July 1996), 22–36.

[15] RABINER, L. R. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings of the
IEEE 77, 2 (Feb 1989), 257–286.

8

