

Creating the Knowledge about IT Events

Gilad Barash, Ira Cohen, Eli Mordechai, Carl Staelin, Rafael Dakar

HP-Labs Israel

firstname.lastname@hp.com

Abstract

We describe a system which automatically associates

documents containing knowledge about problems and

their resolutions to IT events. IT professionals use these

when troubleshooting problems in the IT environment.

The system associates documents from several

independent sources, both internal and external to the

organization, using machine learning techniques to

associate the most relevant and pertinent information.

Problem statement

In today’s complex IT environment, millions of events are

generated daily by hardware, software, middleware,

applications, network, and storage system sources. These

events describe, usually in text form, normal behavior as

well as abnormal behavior (errors and outages) and are

analyzed to alert and to help troubleshoot problems that

may affect availability and performance of the business

services using the IT infrastructure. IT support engineers

are expected to interpret and act upon these quickly. For

example, in one of the large financial firms we

interviewed, Level 1 IT Support Engineers are required to

react to an incoming alert event within two minutes.

Commercial software tools such as HP’s OMi or IBM’s

NetCool, collect, filter and correlate events from the

different components of the IT environment. IT

organizations leverage these tools to consolidate their

operations to a single group of support engineers that

monitors events from the entire IT environment. To be

able to react quickly to events, the engineers require a

breadth of knowledge about the meaning of the events

and the remediation procedures required to address them.

Companies such as Splunk and LogLogic, collect and

index raw event logs, making it easier to search through

logs to identify events related to various types of

problems, such as performance, security and failures.

Significant research efforts have been dedicated in recent

years to the analysis of logs, making them accessible for

administrators and operators for understanding system

behavior (e.g.,[1] [3]).

Over time, knowledge related to events is accumulated,

but tends to exist in various decentralized document

corpora: technology forums, wikis, product documents

and incidents, to name a few. To leverage the existing

body of knowledge, support engineers and administrators

must manually search for the relevant documents,

manually rank them based on relevancy and quality of

information and utilize them to resolve the problem at

hand, as search engines produce `noisy` results. There are

various reasons for these noisy results: search engines do

not know which document corpora (or domains) are

relevant, or more importantly, irrelevant to the type of IT

events an operator is handling, and the search result

rankings do not account for the quality of the information.

For example, searching documents containing the text of

IT events stemming from an Oracle DB results in many

pages that may talk about MySQL, and even pages

returned from an Oracle forum, may contain unanswered

questions of users, making those pages of low quality to

the administrator in need of a solution.

 In the following, we describe our system, which

automatically collects, ranks, and associates knowledge

documents describing IT events, the problems they

represent and remediation procedures from various

document sources – both intranet and WWW. This

knowledge helps the support engineers resolve problems

faster, and serves as the stepping stone for creating

automated resolution plans for a portion of the problems

detected through these events. In creating the system, we

developed several novel components for accurately

associating documents to events. Specifically, our system

ranks documents based on the relevancy their source (e.g,

the domain of a webpage), the quality of information, as

relevant to solving problems (e.g., is a question in a forum

thread answered or not), and the relevancy to the events

seen in the system being debugged. In this paper we

describe the system, and the algorithms used for each of

the ranking mechanism. Our main contributions are as

follows:

 Proposed and built a system which automatically

associates knowledge articles to IT events, with

the stated purpose of aiding administrators

understand remediation actions when they

appear.

 Developed a novel source ranking algorithm for

determining which knowledge sources are most

relevant to events coming from a specific system

 Developed a system for determining the quality

of information in technology forums. Our system

extracts generic attributes related to quality (such

as rankings of users and number of posts), and

infers, using classifiers, other quality measures,

such as whether the question in forum thread was

answered or not.

 Developed a novel algorithm for learning

classifiers in the presence of label noise. This

was required since training data necessary to

infer quality of information measures was noisy

in terms of the class label given to the training

examples.

In the following sections we’ll describe the overall system

and its components, provide details of the technology

with results on data collected from various IT domains.

Solution Outline

Our solution consists of an event-driven system which

automatically creates a knowledge base fed from various

disparate content sources and organizing the content in a

way that enables IT engineers’ quick and efficient access

to the knowledge they need to learn about and resolve a

problem quickly.

The architecture of the solution is shown in Figure 1, with

a detailed description below. The input is a set of IT

events. For each IT event, or groups of events known to

be correlated, the system performs the composition,

search and rank functions. We now describe these steps in

more detail.

Composer: The composer takes as input the text of an

event, or group of events, and creates a ranked set of

search queries, starting from queries that are constrained

to include all words in the events in sequence, reducing

the constraints in subsequent queries. Removal of

constraints includes allowing flexibility in word ordering,

removal of words that contain numbers of special

characters, all the way to removal of words from the

queries.

Searcher: The searcher traverses the set of queries,

starting from the most restrictive, passes it to the available

search engines, and collects the search results from each

query in their ranked order. The searcher stops when a

sufficient amount of results are returned (e.g., 20 pages).

The searcher searches both the intranet (internal

knowledge articles, sharepoints, wikis, online product

documentation) and the web (technical websites, user

forums, etc.) to find data that pertains to the events.

Ranker: The ranker goes over the set of search results,

computes rank scores based on various criteria and

combines the different rank scores using weighting of

importance. The criteria are as follows:

1) Quality of Information (QoI): Ranking pages based

on the quality of information is a critical and

innovative aspect of the system. We extract attributes

from the retrieved documents and employ machine

learning techniques for classifying and ranking the

documents based on their quality. In documents such

as technology forums (or incidents), where questions

are asked by users, and answered by a set of other

users, we extract quality attributes such as the

expertise of the users answering/asking the questions,

number of replies to a question, thread duration, and

linguistic attributes. These attributes are also used as

input features to classifiers that decide whether the

question was actually answered, and thus should be

ranked higher as a useful document.

2) Content source ranking: When searching the

internet and intranet, there are many sources of

document corpora (e.g., the Oracle technology forum,

Knowledge
Database

Events

• Creates set
of queries

Composer

• Collects
search
results

Searcher

Combines scores
to create ranked
results

Associated
Relevancy

Quality of
Information

Source
Rank

Ranker

Figure 1: Architecture of solution

forums.oracle.com) that may be more or less relevant

to the types of events seen in a system, e.g., an

Apache forum site is less relevant compared the

Oracle technology forum if the events come from a

system running an Oracle DB. We developed a

method for automatically ranking sources of

documents based on the type of events being queried.

3) Content relevancy ranking: We compute the

relevancy of each document to the IT events that

were part of the query and problem description (if it

exists). The relevancy computation includes the edit

distance between the IT event text and the document

(seeing how much of the event text actually appeared

in the document), where in the document it appears

and by whom (if it is a forum or incident, was it

written by the user with the problem?). Additional

attributes making up relevance are determined by the

creation date of the document, determining whether it

is still relevant to the version of the system/software

which created the event (e.g., events from an Oracle

8 may be less relevant to an event generated by a

system with Oracle 10).

In the next sections we expand on each of the ranking

technologies listed above.

Content Source Ranking

When our system queries knowledge corpora in regards to

events, additional information can be leveraged to

improve the search results. We sometimes know what the

source of the events is (e.g., Apache, Oracle DB, j2ee

based system, etc), and more often can identify that a

group of events came from the same type of system, even

without knowing its name, simply because the events

came from the same log file. We leverage this

information, coupled with the fact that we have many

types of events on which we query each such source to

rank different sources of documents, such as forum

domains, internal knowledge databases, and any general

internet domain. In a nutshell, we perform many search

queries based on a large set of events from the same

subsystem source (e.g., apache). We then collect all of

the results, strip them to the origin domain (in the case of

internet search), and count appearances and rank of each

domain, to produce a ranked list of domains. The method

works is described in Figure 2.

To demonstrate the results of the source ranking, we ran

tests on two types of logs. The first was a windows logs

containing mainly multiple printer events (HP printers).

The second is a combination of log events from multiple

components of HP Software’s Business Availability

Center software (in-house events, java events, jboss,

apache, database events, etc). The top eight results, with

their rank are shown in Table 1. As can be seen, hp.com

ranks at the top in both cases, with enterprise related sites

ranked high in the case of BAC’s logs, and consumer

related technology help sites in the case of the printer

logs. The score of the ranking is shown, where we see that

there is a quick drop in rank between the first rank and the

8’th rank.

Quality of information based ranking

Quality of Information is a concept that measures how fit

certain data is for a use. In other words, it quantifies

whether the correct information is being used to make a

decision or to take a certain action. Defining, quantizing

and standardizing QOI metrics is an effort that requires

much thought and domain knowledge. There tends to be

roughly two kinds of QOI metrics: ones that are innate to

the data source and are context-free (such as date of

creation, completeness), and those that are content-

specific, which must be extracted from the unstructured

text data within the data source. It is the latter type of

metrics that pose the biggest research challenge due to

their elusive and unstructured nature.

Algorithm 1: Content Source Rank

Input: Set of events E from the same subsystem source (e.g., Oracle DB events)

Initialize DomainHash as Hashtable of domain names

For each event in E do

Run the composer to create a set of queries

 Run the searcher on each query

 Collect the top K search results for each query with its search result rank i

 For each search result in their ranked order (i=1,…,K)

 CurrentDomain ← Domain name from the full URL (e.g., hp.com)

 If the CurrentDomain did not appear in a higher rank

 \\ Add the inverse rank of the domain in the current search to previous counts

 DomainHash(CurrentDomain) += 1/i;

Extract RankedList with weight of domains from DomainHash

Figure 2: Source Ranking Algorithm

In order to find the QOI of user forum threads, we

extracted the metrics, both innate and content-specific. A

partial list appears below:

 Whether the thread is marked as

“Answered” or “Not Answered”.

 The date the thread was last modified.

 Number of replies to the original poster

(OP).

 Total number of words in the thread.

 Thread duration (in days).

 Highest rank of any poster in the thread.

 Is the last post written by the original

poster?

 Does the last post include a derivation of

the words “thank you”?

 Does the last post include a question mark?

 Is the last post written by the original poster

and includes a derivation of the words

“thank you”?

 Is the last post written by the original poster

and a question mark?

 Is the last post written by the original poster

and derivation of the words “thank you”

and a question mark?

 Number of links

In order to extract these QOI metrics we implemented a

utility that was capable of downloading forum threads and

through mechanisms of screen scraping either found or

calculated the above metrics for each forum thread. The

utility supported scraping HP forums, as well as those of

IBM and Oracle.

For the purpose of ranking user forum threads, one of the

main QOI metrics is whether or not a thread is considered

as having been answered, since these would be the results

we would want to rank higher. Some forums contain this

label, but many do not. We designed a system for

inferring this measure from the other QoI measures.

In some forums, albeit not all, the notion of whether a

thread was “answered” or “not answered” is marked by

the original poster. However, even in these cases, we

found that many threads can be inaccurately designated,

leading to a problem of noisy labels. This is caused by the

fact that marking a thread as “answered” is a manual

operation that must be performed by the original user who

posted the question, when and if his question is answered.

All too often, users will find their question answered in

the thread but neglect to check the box that designates the

thread as “answered”. Therefore, while threads that were

designated as “answered” tended to always really have the

answers in them, those that were left as “unanswered”

many times did indeed include the answers to the original

poster’s question.

The research question then became two-fold:

a) Is it possible to learn whether a thread was

answered or not based on the other features that

we extracted?

b) Would the learning result from one forum

domain (such as HP) be useful for forums in

other domains (such as IBM or Oracle).

To test the ability to classify threads as “answered” or

“not answered” we gathered user threads from two

different public forums: Oracle (5500 threads) and IBM

(1200 threads), and extracted 10 quality related attributes.

These sites were chosen because they provide a label to

each thread on whether the question is answered or not.

We trained decision tree classifiers (found to work the

best) on the threads from the different sites. We tested the

classifiers on the threads from the same site (using cross

validation) and from the different site. The results are

shown in Table 2. They show that while the accuracy is

reduced when transferring a classifier from one forum to

another (due to label noise), it remains fairly high, giving

credence to generalization of the classifiers.

Table 2 Classification accuracy on IBM/Oracle forums

Train\Test Oracle IBM

Table 1 Source ranking results

Printer log events source ranking BAC log events source ranking

1 hp.com 119.157375 1 hp.com 59.369148

2 ibm.com 65.521497 2 microsoft.com 51.931098

3 microsoft.com 43.811642 3 eggheadcafe.com 36.795678

4 oracle.com 42.549713 4 experts-exchange.com 33.695516

5 apache.org 36.819445 5 forums.techarena.in 25.293438

6 sun.com 28.664713 6 pcreview.co.uk 14.205668

7 scribd.com 25.912615 7 tech-archive.net 14.055154

8 jboss.org 25.084923 8 soft32.com 13.247566

Oracle 90% 85%

IBM 79% 97%

To handle noisy labels, we use an ensemble-classifier

training algorithm to help identify and remove

misclassified labels [3], utilizing a concept of majority

vote wherein different classifiers vote on whether or not

the training sample is correctly labeled or not and the

votes are tallied accordingly. This alleviates possibilities

of over-fitting by one or more classifiers. We extended

and improved the algorithm introduced in [3] by changing

the step which discards training samples. We assumed

that if a majority of classifiers misclassified the sample,

there was a good chance that if we flipped its label it

would then be correctly classified. Rather than discarding

training samples that were voted on as having been

misclassified, we flipped their labels and added them back

into the new training set, thus boosting correct

classification without throwing out any samples. The

algorithm is described in Figure 3.

 We tested out the revised algorithm on datasets from the

UCI repository with a varying amount of artificially-

places noisy labels in order to see how robustly it deals

with them. For each dataset we randomly flipped between

10 – 40% of labels so that they became noisy prior to

classifier training.

The classification accuracy results of running both

methods on the Forest Cover dataset for each of five noise

levels appear in Table 3 below.

Table 3 Accuracy results for methods handling label

noise

Based on the results we made the following observations:

 The ensemble method is robust to different noise

percentages.

 Flipping the noisy labels seems to always be a

good idea and improves the classification ability.

 Multiple flip iterations did not seem to improve

the results.

 Less restrictive classifiers (Nearest Neighbor /

Decision Trees) were more sensitive to label

Method \

%Noise

0% 10% 20% 30% 40%

Classification

without

filtering

0.7794 0.7527 0.7341 0.6877 0.6464

Ensemble

Filter

0.7813 0.7681 0.7488 0.7237 0.6912

Ensemble

Flip Filter

0.7805 0.7680 0.7499 0.7258 0.6940

Noiseless

data

0.7794 0.7794 0.7794 0.7794 0.7794

Algorithm 2: Ensemble classification method

 For every sample

o For every classifier

 Classify sample with classifier

 If given label equals classified labels, return 1

 Else return -1

o Aggregate results of all classifiers for each sample

o If result > 0 (i.e. majority of classifiers classified sample correctly), add sample to new

training data

o If result < 0 (i.e. majority of classifiers misclassified sample)

 Randomly flip label and add to new training data if two random coin tosses are

true: one based on weight of sample and the second based on the average

predicted class distribution of opposite class

 Else discard sample

 Train all classifiers with new training data

Figure 3: Ensemble method for handling noisy labels

noise.

 False negatives (left-over noisy samples) have

more detrimental effect compared to false

positives (non-noisy samples with low weights).

We also created a modified version of the ensemble

learning algorithm with weighted sampled that iteratively

reduced mislabeled samples’ weights. This was shown to

perform better with higher levels of noise in the data, but

was less robust to low level of noise. Given that the level

of noisy labels in the data is unknown, we opted to use the

ensemble method with the flipping mechanism for our

system.

Combined Ranking

We combine the results of the various ranking methods in

three steps. First, the search engine returns a ranked list of

results. In our initial implementation we used the google

search API, and therefore the ranking is based on the

google search engine. Second, for each search result we

extract the domain, and average the google rank of the

page with the source ranking position (weighted by the

source rank weight). This produces a new ordering of the

search results. Lastly, we change the order of the results

based on the quality of information measures, when the

results are forum threads – giving highest weight to

whether there is an answer or not, and lower weights to

the other quality measures. The ranked results, together

with all of the separate ranking measures are stored in the

DB. This gives the flexibility to re-rank the order based

on inputs from the users on the quality of the search

results, giving higher or lower weights to the various

ranking measures.

Demonstration of the system

A prototype of the proposed system was implemented and

has been tested using events from several systems. In the

first test, we collected events (200,000) from an HP BAC

product installed at a customer site. During the collection

period, BAC suffered a data collection problem, which

was reflected in a subset of the events, discovered by our

event correlation system. This period is shown as a

shaded period in the top view of Figure 4. As can be seen

in the bottom image of Figure 4, our system associated

with these events threads from the HP technology forum

which described a similar problem encountered by a

different customer, and its workaround. The solution

described in the forum allowed the engineers to quickly

workaround the problem, until a code fix was produced.

Figure 4 Snapshot of system

Summary

We presented a system which links documents to IT

events, to create a knowledge base linking the events to

relevant problems which were previously documented.

Our system leverages search engine technology, enhanced

with rankings based on content source and quality of

information relevancy, to produce a list of documents

relevant to an event or group of events. We introduced the

research problems related to these ranking problems, and

suggested solutions, in form of machine learning

algorithms.

References

[1] Aharon, M. Barash, G. Cohen, I., Mordechai, E. One

Graph Is Worth a Thousand Logs: Uncovering

Hidden Structures in Massive System Event Logs.

European Conference on Machine Learning 2009.

[2] Brodley, C. Freidl, L. Identifying Mislabeled

Training Data, Journal Of Articial Intelligence

Research 11, 1999.

[3] Wei Xu, Ling Huang, Armando Fox, David

Patterson, Michael Jordan. Large-Scale System

Problem Detection by Mining Console Logs. Proc.

SOSP 2009

