
TRESOR Runs Encryption
Securely Outside RAM

20th USENIX Security Symposium
August 8 – 12, 2011 • San Francisco, CA

Tilo Müller Felix C. Freiling Andreas Dewald
Department of Computer Science

University of Erlangen

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 2

 Who we are

Nuremberg
Franconia, Germany

Chair for IT-Security Infrastructures
University of Erlangen-Nuremberg
www1.cs.fau.de

PART I

Introduction

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 4

Cold Boot Attacks
Firewire Attacks
Other DMA Attacks

- PCI
- PC-Card
- Thunderbolt?

→ RAM is insecure
→ Disk encryption which stores the key in RAM is insecure
 Affected: BitLocker, FileVault, dm-crypt, TrueCrypt and more

 Motivation

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 5

TRESOR Runs Encryption Securely Outside RAM:

 - AES implementation solely on the microprocessor
 - Secret keys and states never enter RAM
 - Instead, only processor registers are used as storage

 TRESOR's Security Policy

PART II

Implementation

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 7

→ fulfilled by the set of debug registers

 Key management: key storage

The key registers must be:

- big enough to store AES-128/192/256 keys (size)
- a privileged ring-0 resource (security)
- seldom used by applications and compensable in

software (compatibility)

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 8

→ supports AES-128/192/256 on 64-bit machines
supports AES-128 on 32-bit machines

 Key management: debug regs

TRESOR (mis)uses debug registers as persistent key storage

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 9

 Key management: key derivation

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 10

 AES Algorithm: guideline

Security Policy: No valuable information about the AES key or
state should be visible in RAM at any time

Challenge: Implement AES without using RAM at all

→ no runtime variables in data segment (stack, heap, …)
→ use SSE registers and GPRs to store intermediate states
→ written in assembly language (x86)

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 11

1. Generic x86 assembler instructions
→ possible, but far too slow
2. Intel's new AES instruction set (AES-NI)
 - hardware accelerated AES instructions
 aesenc, aesenclast, aesdec, aesdeclast
 - runs without RAM (instead: SSE)

- short and efficient AES code
→ does perfectly meet our needs

/* Encrypt */
.macro encrypt_block rounds

movdqu 0(%rsi),rstate
read_key rk0 rk1 \rounds
pxor rk0,rstate
generate_rks_\rounds
aesenc rk1,rstate
aesenc rk2,rstate
aesenc rk3,rstate
aesenc rk4,rstate
aesenc rk5,rstate
aesenc rk6,rstate
aesenc rk7,rstate
aesenc rk8,rstate
aesenc rk9,rstate
.if (\rounds > 10)
aesenc rk10,rstate
aesenc rk11,rstate
.endif
.if (\rounds > 12)
aesenc rk12,rstate
aesenc rk13,rstate
.endif
aesenclast rk\rounds,rstate
epilog

.endm

 AES Algorithm: assembly implementation

/* Decrypt */
.macro decrypt_block rounds

movdqu 0(%rsi),rstate
read_key rk0 rk1 \rounds
generate_rks_\rounds
pxor rk\rounds,rstate
.if (\rounds > 12)
read_key rk0,rk1,10
aesdec_ rk13,rstate
aesdec_ rk12,rstate
.endif
.if (\rounds > 10)
aesdec_ rk11,rstate
aesdec_ rk10,rstate
.endif
aesdec_ rk9,rstate
aesdec_ rk8,rstate
aesdec_ rk7,rstate
aesdec_ rk6,rstate
aesdec_ rk5,rstate
aesdec_ rk4,rstate
aesdec_ rk3,rstate
aesdec_ rk2,rstate
aesdec_ rk1,rstate
aesdeclast rk0,rstate
epilog

.endm

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 12

/* generate next round key */
.macro key_schedule r0 r1 r2 rcon
 pxor rhelp,rhelp
 movdqu \r0,\r2
 shufps $0x1f,\r2,rhelp
 pxor rhelp,\r2
 shufps $0x8c,\r2,rhelp
 pxor rhelp,\r2
 aeskeygenassist $\rcon,\r1,rhelp
 .if (\rcon == 0)
 shufps $0xaa,rhelp,rhelp
 .else
 shufps $0xff,rhelp,rhelp
 .endif
 pxor rhelp,\r2
.endm

Conventional AES:
round keys are calculated once and then stored in RAM
(for performance reasons)

TRESOR:
on-the-fly round key generation
(since the entire key schedule is too big to be stored inside CPU)

 AES Algorithm: key schedule

/* generate round keys rk1 to rk10 */
.macrogenerate_rks_10
 key_schedule rk0 rk0 rk1 0x1
 key_schedule rk1 rk1 rk2 0x2
 key_schedule rk2 rk2 rk3 0x4
 key_schedule rk3 rk3 rk4 0x8
 key_schedule rk4 rk4 rk5 0x10
 key_schedule rk5 rk5 rk6 0x20
 key_schedule rk6 rk6 rk7 0x40
 key_schedule rk7 rk7 rk8 0x80
 key_schedule rk8 rk8 rk9 0x1b
 key_schedule rk9 rk9 rk10 0x36
.endm

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 13

We have to patch the operating system kernel for two reasons:

1. Problem: unprivileged user access to debug registers
→ Solution: patch ptrace syscall

2. Problem: scheduling and context switching of SSE /GPRs
→ Solution: introduce atomicity

Hence, TRESOR is implemented in kernel space (currently Linux 2.6.36)

 Kernel Patch

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 14

Risks:
1. Malicious user access to debug registers
 → compromised key
2. Writing to debug registers accidentally (e.g., starting gdb)
 → polluting key storage
 → data corruption

 Kernel Patch: key protection

Solution:
deny access to debug
registers from userland

int ptrace_set_debugreg (tsk_struct *t,int n,long v)
{
 thread_struct *thread = &(t->thread);
 int rc = 0;
 if (n == 4 || n == 5)
 return -EIO;
 + #ifdef CONFIG_CRYPTO_TRESOR
 + else if (n == 6 || n == 7)
 + return -EPERM;
 + else
 + return -EBUSY;
 + #endif
 if (n == 6) {
 thread->debugreg6 = v;
 goto ret_path;
 }
 if (n < HBP_NUM) {
 rc=ptrace_set_breakpoint_addr(t,n,v);
 if (rc) return rc;
 }
 [...]
 ret_path: return rc;
}

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 15

• OS regularly performs CPU context switches
• when TRESOR is active this context comprises sensitive data
 (general purpose and SSE registers)

⇒ run TRESOR atomically
 (per 128-bit input block)

 Kernel Patch: atomicity

/* Encrypt one TRESOR block */
void tresor_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{

struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
unsigned long irq_flags;

// enter atomicity
preempt_disable();
local_irq_save(*irq_flags);

// encrypt block
switch(ctx->key_length) {

case AES_KEYSIZE_128: tresor_encblk_128(dst,src); break;
case AES_KEYSIZE_192: tresor_encblk_192(dst,src); break;
case AES_KEYSIZE_256: tresor_encblk_256(dst,src); break;

}

// leave atomicity
local_irq_restore(*irq_flags);
preempt_enable();

}

PART III

Security Evaluation

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 17

 Security Analysis: memory attacks

TRESOR: nothing but the output block is written actively to RAM

But: sensitive data may be copied into RAM passively by OS side effects
 (e.g., interrupt handling, scheduling, swapping, ACPI suspend, etc.)

→ observe RAM of a TRESOR system at runtime

Test-Setup:
- KVM/Qemu
- guest1: unpatched Linux, no encryption
- guest2: unpatched Linux, generic AES encryption
- guest3: patched Linux, TRESOR encryption
- examine guests main memories from the host

physical
memory TRESOR

Generic
AES

no enc

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 18

 Security Analysis: memory attacks

Test 1: Browse guest's main memory with AESKeyFind.

Result:
- guest 1 (no enc): no key recovered
- guest 2 (generic AES): key recovered
- guest 3 (TRESOR): no key recovered

But:
AESKeyFind is heavily based on the AES key schedule.
Since TRESOR does not store a key schedule, this may be the only
reason why the key cannot be recovered.

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 19

 Security Analysis: memory attacks

Test 2: Unlike real attackers we are aware of the secret key.
→ we don't need the key schedule but can search for the key
 bit pattern directly.

Result:
- guest 1 (no enc): -/-
- guest 2 (generic AES): match found
- guest 3 (TRESOR): no match found

But:
The key could be stored discontiniously, in another endianess, etc.

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 20

 Security Analysis: memory attacks

Test 3: Search for the longest match of the key pattern, its reverse and
any part of those, in little and in big endian.

Result:
- guest 1 (no enc): -/-
- guest 2 (generic AES): 32-byte longest match
- guest 3 (TRESOR): 3-byte longest match

But:
The key could enter RAM only seldom, in special situations.

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 21

 Security Analysis: memory attacks

Test 4: Search for the longest match of the key pattern during ACPI
suspend and during swapping.

Result (suspend-to-RAM):
- guest 2 (generic AES): 32-byte longest match
- guest 3 (TRESOR): 3-byte longest match

Result (swapping):
- guest 2 (generic AES): 3-byte longest match on disk
- guest 3 (TRESOR): 3-byte longest match on disk

But:
These are only the most important special states of the Linux kernel.
Unfortunately, it is practically impossible to put the Linux kernel into
all it's different states and analyze it's memory at the right moment.

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 22

 Security Analysis: memory attacks

Test Summary:

AES variant: Generic
AES

TRESOR None

Kernel state: normal normal swapping suspend normal

AESKeyFind yes no no no no

Exact key match yes no no no -/-

Longest match 32 bytes 3 bytes 3 bytes 3 bytes -/-

 → we never found sensitive information in RAM or on disk

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 23

 Security Analysis: processor attacks

- Virtual Machines (tested on Qemu, Boch, Vmware and VirtualBox)
vulnerable

- Real Hardware (tested on seven different CPUs and BIOS versions)
not vulnerable

 Cold Boot Register Attack

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 24

 Security Analysis: processor attacks

 Compromise system space

Always possible with superuser rights if
- LKMs are supported
- or /dev/kmem can be written

PART IV

Future Work

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 26

Currently TRESOR supports …

- AES-128 on 32-bit machines

- AES-128/192/256 for 64-bit/AES-NI machines

- multi core/processor environments

- hibernation / suspend-to-RAM

- kernel level encryption: dm-crypt

- Linux kernel 2.6.36

 Current Features

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 27

 Future Work
Upcoming releases of TRESOR will support …

- multiple keys and session keys
 (holding a master-key-encrypted keyring in RAM)

- userland encryption
 (via syscalls or, better, via sysfs)

- optionally MSRs instead of debug registers
 (to restore ability of hw breakpoints on a chosen set of CPUs)

- sealing the symmetric key by TPM
 (like BitLocker)

- runtime management
 (enable/disable TRESOR, set new key at runtime, etc.; a bit more
 insecure but required by server systems with remote-access only)

- Linux kernel 3.0
 (and more long-term stable releases from there on)

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 28

btw: TRESOR is not just another recursive backronym,
it's German for safe / vault ;)

 TRESOR's name

August 11, 2011 · 20th USENIX SECURITY · TRESOR · Tilo Müller 29

Thank you for your attention.

Questions?

E.g., Do you publish the source code?
Of course, it's available under GPLv2 here:

www1.cs.fau.de/tresor

 Thank you!

	Slide1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

