
ADsafety
Type-Based Verification of JavaScript Sandboxing

Joe Gibbs Politz Spiridon Aristides Eliopoulos Arjun Guha Shriram Krishnamurthi

Brown University

Abstract

Web sites routinely incorporate JavaScript programs
from several sources into a single page. These sources
must be protected from one another, which requires ro-
bust sandboxing. The many entry-points of sandboxes
and the subtleties of JavaScript demand robust verifica-
tion of the actual sandbox source. We use a novel type
system for JavaScript to encode and verify sandboxing
properties. The resulting verifier is lightweight and effi-
cient, and operates on actual source. We demonstrate the
effectiveness of our technique by applying it to ADsafe,
which revealed several bugs and other weaknesses.

1 Introduction

A mashupWeb page displays content and executes
JavaScript from various untrusted sources. Facebook ap-
plications, gadgets on the iGoogle homepage, and vari-
ous embedded maps are the most prominent examples.
By now, mashups have become ubiquitous. Indeed, web
pages that display advertisements from ad networks are
also mashups, because they often employ JavaScript for
animations and interactivity. A survey of popular pages
shows that a large percentage of them include scripts
from a diverse array of external sources [41]. Unfortu-
nately, these third-party scripts run with the same privi-
leges as trusted, first-party code served directly from the
originating site. Hence, the trusted site is susceptible to
attacks by maliciously crafted third-party software.

This paper addresses language-based Web sandbox-
ing systems, one of several mechanisms for securing
mashups. Most sandboxing mechanisms have similar
high-level goals and designs, which we outline in sec-
tion 2. In section 3, we review the design and implemen-
tation of sandboxes and demonstrate the need for tool-
supported verification. Section 4 provides a detailed plan
for the rest of the paper. Our work makes several contri-
butions:

 �
reject

adnet.com

paper.com

Static

checks

Wrap

Figure 1: Web sandboxing architecture

1. A type system for general JavaScript programs,
with support for patterns found in sandboxing li-
braries;1

2. a formal definition of safety properties for Yahoo!’s
ADsafe sandbox in terms of this type system; and,

3. a type-based verification of the ADsafe framework,
and descriptions of bugs and their fixes found while
performing the verification.

2 Language-based Web Sandboxing

The Web browser environment provides references to ob-
jects that implement network access, disk storage, geo-
location, and other capabilities. Legitimate web applica-
tions use them for various reasons, but embedded wid-
gets can exploit them because all JavaScript on a page
runs in the same global environment. A Web sand-
box thus attenuates or prevents access to these capa-
bilities, allowing pages to safely embed untrusted wid-

1See cs.brown.edu/research/plt/dl/adsafety/v1
for our implementation, proofs, and other details.

gets. ADsafe [9], Caja [33],FBJS [13], and Browser-
Shield [35] arelanguage-basedsandboxes that employ
broadly similar security mechanisms, as defined by Maf-
feis, et al. [27]:

• A Web sandbox includes a static code checker that
filters out certain widgets that are almost certainly
unsafe. This checker is run before the widget is de-
livered to the browser.

• A Web sandbox provides runtimewrappersthat at-
tenuate access to theDOM and other capabilities.
These wrappers are defined in a trusted runtime li-
brary that is linked with the untrusted widget.

• Static checks are necessarily conservative and can
reject benign programs. Web sandboxes thus spec-
ify how potentially-unsafe programs arerewritten
to use dynamic safety checks.

This architecture is illustrated in figure 1, where an un-
trusted widget fromadnet.com is embedded in a page
from paper.com . The untrusted widget is filtered by
the static checker. If static checking passes, the widget is
rewritten to invoke the runtime library. Both the runtime
library and the checked, rewritten widget must be hosted
on a site trusted bypaper.com , and are assumed to be
free of tampering.

Reference Monitors A Web sandbox implements a
reference monitorbetween the untrusted widget and the
browser’s capabilities. Anderson’s seminal work on ref-
erence monitors identifies their certification demands [3,
p 10-11]:

The proof of [a reference monitor’s] model se-
curity requires a verification that the modeled
reference validation mechanism is tamper re-
sistant, is always invoked, and cannot be cir-
cumvented.

Therefore, a Web sandbox must come with a precisely
stated notion of security, and a proof that its static checks
and runtime library correctly maintain security. The end
result should be a quantified claim of safety overall pos-
sible widgets that execute against the runtime library.

3 Code-Reviewing Web Sandboxes

Imagine we are confronted with a Web sandbox and
asked to ascertain its quality. One technique we might
employ is a code-review. Therefore, we perform an
imaginary review of a Web sandbox, focusing on the de-
tails of ADsafe. Later, we will discuss how to (mostly)
remove people from the loop.

ADsafe, like all Web sandboxes, consists of two inter-
dependent components:

• a static verifier, called JSLint,2 which filters out
widgets not in a safe subset of JavaScript, and

• a runtime library,adsafe.js , which implements
DOM wrappers and other runtime checks.

These conspire to make it safe to embed untrusted wid-
gets, though “safe” is not precisely defined. We will re-
turn to the definition of safety in section 4.

Attenuated Capabilities Widgets should not be able
to directly reference various capabilities in the browser
environment. DirectDOM references are particularly
dangerous because, from an arbitraryDOM reference,
elt , a widget can simply traverse the object graph and
obtain references to all capabilities:

var myWindow = elt.ownerDocument.defaultView;
myWindow.XMLHttpRequest;
myWindow.localStorage;
myWindow.geolocation;

Widgets therefore manipulatewrapped DOM elements
instead of direct references.DOM wrappers form the bulk
of the runtime library and include many dynamic checks
and patterns that need to be verified:

• The runtime manipulatesDOM references, but re-
turns them to the widget in wrappers. We must ver-
ify that all returned values are in fact wrapped, and
that the runtime cannot be tricked into returning a
directDOM reference.

• The runtime callsDOM methods on behalf of the
widget. Many methods, such asappendChild and
removeChild , require directDOM references as ar-
guments. We must verify that the runtime cannot be
tricked with a maliciously crafted object that mim-
ics theDOM interface and steals references.

• The runtime attachesDOM callbacks on behalf of
the widget. These callbacks are invoked by the
browser with event arguments that include direct
DOM references. We must verify that the runtime
appropriately wraps calls to untrusted callbacks in
the widget.

• The widget has access to aDOM subtree that it is
allowed to manipulate. The runtime ensures that
the widget only manipulates elements in this sub-
tree. We must verify that variousDOM traversal
methods, such asdocument.getElementById and
Element.getParent , do not allow the widget obtain
wrappers to elements outside its subtree.

• The runtime wraps manyDOM functions that
are only conditionally safe. For example,
document.createElement is usually safe, unless it

2JSLint can perform other checks that are not related to ADsafe. In
this paper, “JSLint” refers to JSLint with ADsafe checks enabled.

2

is used to create a<script> tag, which can load ar-
bitrary code. Similarly, the runtime may allow wid-
gets to setCSSstyles, but aCSS URL-value can also
load external code. We must verify that the argu-
ments supplied to theseDOM functions are safe.

ADsafe’sDOM wrappers are calledBunches, which wrap
collections ofHTML elements. There are twenty Bunch-
manipulating functions that are exposed to the widget—
in addition to several private helper functions—that face
all the issues enumerated above and need to be verified.
These functions cannot be verified in isolation, because
their correctness is dependent on assumptions about the
kinds of values they receive from widgets. These as-
sumptions are discharged by the static checks in JSLint
and other runtime checks to avoid loopholes and com-
plexities in JavaScript’s semantics.

JavaScript Semantics A Web sandbox must contend
with JavaScript features that hinder security:

• Certain JavaScript features are unsafe to use in wid-
gets. For example, a widget can usethis to obtain
window , so it is rejected by JSLint:

f = function() { return this; };
var myWindow = f();

We must verify that the subset of JavaScript admit-
ted by the static checker does not violate the as-
sumptions of the runtime library.

• Many JavaScript operators and functions include
implicit type conversions and method calls that are
difficult to reason about. For example, when an op-
erator expects a string but is instead given an object,
it does not signal an error. Instead, it calls the ob-
ject’s toString method. It is easy to write a stateful
toString method that returns different strings on
different calls. Such an object can then circumvent
dynamic safety checks that are not carefully writ-
ten to avoid triggering implicit method calls. These
implicit calls are avoided by carefully testing the
runtime types of untrusted values, using thetypeof

operator. Such tests are pervasive in ADsafe. As a
further precaution, ADsafe tries to ensure that wid-
gets cannot definetoString andvalueOf fields in
objects.

JavaScript Encapsulation JavaScript objects have no
notion of private fields. If object operations are not re-
stricted, a widget could access built-in prototypes (via
the__proto__ field) and modify the behavior of the con-
tainer. Web sandboxes statically reject such expressions:

obj.__proto__;

There are various other dangerous fields that are also
blacklistedand hence rejected by sandboxes. However,

ADSAFE : ADSAFE. get(obj, name)

dojox.secure : get(obj, name)

Caja : $v. r($v. ro(' obj'), $v. ro(' name'))

WebSandbox : c(d. obj, d. name)

FBJS : a12345 obj[$FBJS. idx(name)]

Figure 2: Similar Rewritings forobj[name]

syntactic checks alone cannot determine whether com-
puted field names are unsafe:

obj["__pro" + "to__"];

Widgets are instead rewritten to use runtime checks that
restrict access to these fields. Figure 2 shows the rewrites
employed by various sandboxes. Some sandboxes insert
these and other checks automatically, giving the illusion
of programming in ordinary JavaScript; ADsafe is more
spartan, requiring widget authors to insert the dynamic
checks themselves; but the principle remains the same.

Web sandboxes also simulate private fields with this
method by introducing fields and then preventing wid-
gets from accessing them. For example, ADsafe stores
directDOM references in the__nodes__ field of Bunches,
and blacklists the__nodes__ field.

The Reviewability of Web Sandboxes

We have highlighted a plethora of issues that a Web
sandbox must address, with examples from ADsafe. Al-
though ADsafe’s source follows JavaScript “best prac-
tices,” the sheer number of checks and abstractions make
it difficult to review. There are approximately50 calls to
three kinds of runtime assertions,40 type-tests,5 regular-
expression based checks, and60 DOM method calls in
the1, 800 LOC adsafe.js library. Various ADsafe bugs
were found in the past and this paper presents a few more
(section 9). Note that ADsafe is a small Web sandbox
relative to larger systems like Caja.

The Caja project asked an external review team to per-
form a code review [4]. The findings describe many low-
level details that are similar to those we discussed above.
In addition, two higher-level concerns stand out:

• “[Caja is] hard to review. No map states invariants
and points to where they are enforced, which hurts
maintainability and security.”

• “Documentation of TCB is necessary for reviewa-
bility and confidence.”

These remarks identify an overarching requirement for
any review: the need for specifications so that readers can
both determine whether these fit their needs and check
whether these are implemented correctly.

3

4 Verifying a Sandbox: Our Roadmap

Defining Safety Because humans are expensive and
error-prone, and because the code review needs to be re-
peated every time the program changes, it is best to au-
tomate the review process. However, before we begin
automating anything, we need some definition of what
security means. We focus on a definition that is spe-
cific to ADsafe, though the properties are similar to the
goals of other web sandboxes. From correspondence
with ADsafe’s author, we initially obtained the follow-
ing list of intended properties (rewritten slightly to use
the terminology of this paper).

Definition 1 (ADsafety) If the containing page does not
augment built-in prototypes, and all embedded widgets
pass JSLint, then:

1. widgets cannot load new code at runtime, or cause
ADsafe to load new code on their behalf;

2. widgets cannot affect theDOM outside of their des-
ignated subtree;

3. widgets cannot obtain direct references toDOM

nodes; and

4. multiple widgets on the same page cannot commu-
nicate.

Note that the first two properties are common to sand-
boxes in general—allowing arbitrary JavaScript to load
at runtime compromises all sandboxes’ security goals,
and all sandboxes provide mediated access to the DOM
by preventing direct access.

We also note that the assumption about built-in pro-
totypes is often violated in practice [14]. Nevertheless,
like ADsafe, we make this assumption; mitigating it is
outside our scope. Given this definition, our goal is to
produce a (mostly) automated verification that supports
these properties.

Verifying Safety In this paper we perform this automa-
tion using static types, presenting a type-based approach
for defining and verifying the invariants of ADsafe.
While one could build a custom tool to do this, we are
able to perform our verification by extending (as dis-
cussed in section 11) a type checker [18] intended for
traditional type-checking of JavaScript.

We choose a static type system as our tool of choice
for several reasons. Programmers are familiar with type
systems, and ours is mostly standard (we discuss non-
standard features in sections 5 and 7). This lessens the
burden on sandbox developers who need to understand
what the verification is saying about their code. Sec-
ond, our type system is much more efficient than most
whole-program analyses or model checkers, leading to a
quick procedure for checking ADsafe’s runtime library

(20 seconds). Efficency and understandability allow for
incremental use in a tight development loop. Finally, our
type system is accompanied by a soundness proof. This
property accomplishes the actual verification. Thus, the
features of comprehensibility, efficiency, and soundness
combine to make type checking an effective tool for ver-
ifying some of the properties of web sandboxes.

In order to demonstrate the effectiveness of our type-
based verification approach, we use type-based argu-
ments to prove ADsafety. We mostly achieve this (sec-
tion 8) after fixing bugs exposed by our type checker
(section 9). The rest of this paper presents a typed ac-
count of untrusted widgets and the ADsafe runtime.

• The ADsafety claim is predicated on widgets pass-
ing the JSLint checker. Therefore, we need to model
JSLint’s restrictions. We do this in section 5.

• Once we know what we can expect from JSLint,
we can verify the actual reference monitor code in
adsafe.js using type-checking (section 7).

• Before we can verifyadsafe.js , we need to ac-
count for the details of JavaScript source and model
the browser environment in which this code runs.
Section 6 presents this additional work.

We discuss extensions to verify other Web sandboxes in
section 10.

5 Modeling Secure Sublanguages

All web sandboxes’ runtime libraries expect to exe-
cute against widgets that have been statically checked
and rewritten, as shown in figure 1. These checks and
rewrites enforce that widgets are written in a sublan-
guage of JavaScript. This sublanguage ought to be spec-
ified explicitly. We focus here on modeling the checks
performed by JSLint, ADsafe’s static checker, which
presents an interesting challenge: there is no formal
specification of the language of JavaScript programs that
pass JSLint. Instead, the specification is implicit in the
implementation of JSLint itself. In this section, we de-
sign a specification for JSLint-ed widgets and give con-
fidence in its correctness.3

Only a fraction of JSLint’s static checks are related
to ADsafe. The rest arelint -like code-quality checks.
JSLint also checks the staticHTML of a widget. Verifying
this staticHTML is beyond the scope of our work; we do
not discuss it further. We instead focus on the security-
critical static JavaScript checks in JSLint.

3Because we want a strategy that extends to other sandboxes, we
do not try to exploit the fact that JSLint is written in JavaScript. The
Cajoler of Caja is instead written in Java, and the filters andrewriters
for other sandboxes might be written in other languages. Thestrategy
we outline here avoids both getting bogged down in the details of all
these languages as well as over-reliance on JavaScript itself.

4

α := type identifiers
T := Num | Str | True | False | Undef | Null

| Ref T | ∀α.T | µα.T
| [T]T × . . .× T × T · · · → T

| ⊤ | ⊥ | T ∪ T | T ∩ T |Array〈T〉
| {⋆ : F, proto : T, code : T, f : F, . . .}
| (f, . . .)+ | (f, . . .)−

F := T |A | Absent

Figure 3: Type Language for ADsafe and Widgets

How is JSLint used? The ADsafe runtime makes sev-
eral assumptions about the shape of values it receives
from widgets. These assumptions are not documented
precisely, but they correspond to various static checks
in JSLint. To model JSLint, we reflect these checks in
a type, calledWidget, which we define below. In sec-
tion 5.2 we discuss how this type relates to the behavior
of the JSLint implementation.

5.1 DefiningWidget

We expect thatall variables and sub-expressionsof wid-
gets are typable asWidget. The ADsafe runtime can thus
assume that widgets only manipulateWidget-typed val-
ues. Our full type language is shown in figure 3 and in-
troduced gradually in the rest of this section.

Primitives JSLint admits JavaScript’s primitive val-
ues, with trivial types:

Prim = Num ∪ Str ∪ True ∪ False
∪Null ∪ Undef

We have separate types forTrue andFalse because they
are necessary to type-checkadsafe.js (section 7).Prim
is an untagged union type, and our type system ac-
counts for common JavaScript patterns for discriminat-
ing unions. We might initially assume that

Widget = Prim

Objects and Blacklisted Fields JSLint admits object
literals but blacklists certain field names as dangerous.
All other fields are allowed to contain widget values. We
therefore augment theWidget type to include objects. An
object type explicitly lists the names and types of various
fields in an object. In addition, the special field⋆ speci-

fies the type of all other fields:

Widget = µα.Prim ∪ Ref

⋆ : α,

"arguments" :A,

"caller" :A,

"callee" :A,

"eval" :A,

. . .

"toString" : Absent,
"valueOf" : Absent

The full list of blacklisted fields is in figure 4. Our type
checker signals a type error on anyA-typed field ac-
cess or assignment. This mirrors the behavior of JSLint,
which also rejects field accesses and assignments on
blacklisted fields (e.g.,o["constructor"] is rejected by
both the type checker and JSLint).

The Ref tag indicates that the object is mutable. We
use a recursive type (µ) to indicate that all other fields,
⋆, may recursively containWidget-typed values.4 JSLint
tries to ensure that objects in widgets do not have
toString and valueOf properties. We model this with
a typeAbsent, which ensures these fields are not present.

Absent andA properties are subtly different.Amod-
els fields that are intended to be inaccessible, and hence
looking them up is untypable. In contrast, the typing rule
for Absent field lookup performs the lookup with the type
of theprotofield, which we introduce below. Section 7.1
contains the details of type-checking field access.

Functions Widgets can create and apply functions, so
we must widen ourWidget type to admit them. Func-
tions in JavaScript are objects with an internalcodefield,
which we add to allowed objects:

. . .Ref

code: [Global ∪ α]α · · · → α,

⋆ : α,
. . .

The type of thecodefield indicates that widget-functions
may have an arbitrary number ofWidget-typed argu-
ments and returnWidget-typed results.5 It also speci-
fies that the type of the implicitthis-argument (written
inside brackets) may be eitherWidget or Global. The
typeGlobal is not a subtype ofWidget, which expresses
the underlying reason for JSLint’s rejection of all wid-
gets that containthis (see Claim 1 below). If thethis-
annotation is omitted, the type ofthis is⊤.

Prototypes JSLint does not allow widgets to explic-
itly manipulate objects’ prototypes. However, since field

4µα.T binds the type variableα in the typeT to the whole type,
µα.T . Therefore,α is in fact the typeWidget.

5Theα · · · syntax is a literal part of the type, and means the func-
tion can be applied to any number of additionalα-typed arguments.

5

lookup in JavaScript implicitly accesses the prototypes,
we specify the type of prototypes inWidget:

. . .Ref

proto : Object ∪ Function ∪ . . . ,

⋆ : α,
. . .

The proto field enumerates several safe prototypes, but
notably omits DOM prototypes such asHTMLElement ,
since widgets should not obtain direct references to the
DOM.

Typing Private Fields In addition to explicitly black-
listed field names, JSLint also blacklists all field names
that start and end with an underscore. This effectively
blacklists the__proto__ field, which gives direct access
to the prototype-chain, and the__nodes__ and__star__

fields, which adsafe.js uses internally to build the
Bunch abstraction. To keep our types simple, we enu-
merate these three fields instead of pattern-matching on
field names:

. . .Ref

"___nodes___" :Array〈HTML〉∪Undef,
"__proto__" :A,

"___star___" : Bool ∪ Undef,
⋆ : α,
. . .

The __proto__ field isA-typed, like other blacklisted
fields that are never used. However, the ADsafe run-
time uses__nodes__ and__star__ as private fields. The
types specify that ADsafe stores DOM references in the
__nodes__ field.

The full Widget type in figure 4 is a formal specifica-
tion of the shape of values thatadsafe.js receives from
and sends to widgets. This type is central to our verifica-
tion of adsafe.js and of JSLint.

5.2 Widget and JSLint Correspondence

Though we have offered intuitive arguments for why
Widget corresponds to the checks in JSLint, we would
like to gain confidence in its correspondence with the be-
havior of the actual JSLint program that sites use:

Claim 1 (Linted Widgets Are Typable) If JSLint (with
ADsafe checks) accepts a widgete, thene and all of its
variables and sub-expressions can beWidget-typed.

We validate this claim by testing. We use ADsafe’s sam-
ple widgets as positive tests—widgets that should be ty-
pable and lintable—and our own suite of negative test
cases (widgets that should be untypable and unlintable).
Note the direction of the implication: an unlintable wid-
get may still be typable, since our type checker admits

Widget = µα.

Str ∪ Num ∪ Null ∪ Bool ∪ Undef ∪

Ref

proto :
Object ∪ Function
∪Bunch ∪ Array ∪ RegExp
∪String ∪ Number ∪ Boolean,

⋆ : α,
code : [Global ∪ α]α · · · → α,

"___nodes___" :Array〈HTML〉∪Undef,
"___star___" : Bool ∪ Undef,
"caller" :A, "callee" :A,

"eval" :A, "prototype" :A,

"watch" :A, "constructor" :A,

"__proto__" :A, "unwatch" :A,

"arguments" :A, "valueOf" : Absent,
"toString" : Absent

Figure 4: TheWidget type

safe widgets that JSLint rejects.6 The type checker could
be used as a replacement for JSLint’s ADsafe checks, but
these tests give us confidence that checking theWidget
type corresponds to what JSLint admits in practice.

6 Modeling JavaScript and the Browser

Verification of a Web sandbox must account for the id-
iosyncrasies of JavaScript. It also needs to model the run-
time environment—provided by the browser—in which
the sandboxed code will execute. Here we discuss how
we model the language and the browser.

JavaScript Semantics We use the semantics of Guha,
et al. [17], which reduces JavaScript to a core semantics
calledλJS. This latter language models the “essentials”
of JavaScript: prototype-based objects, first-class func-
tions, basic control operators, and mutation.
λJS thus omits many of JavaScript’s complexities, but

it is accompanied by adesugaringfunction that maps all
JavaScript programs (idiosyncrasies included) to behav-
iorally equivalentλJS programs. The transformation ex-
plicates much of JavaScript’s implicit semantics. Hence,
we find it easier to build tools that analyze the much
smallerλJS language than to directly process JavaScript.

Does desugaring faithfully map JavaScript toλJS?
Guha, et al. test their desugaring and semantics on por-
tions of the Mozilla JavaScript test suite. On these
tests,λJS programs produce exactly the same output as
JavaScript implementations. Hence, their work substan-
tiates the following two claims.

6The supplemental material contains examples of the differences.

6

{

eval: A,
setTimeout: (Widget → Widget)× Widget → Int,
document: {

write: A,

writeln: A,
. . .

},
. . .

}

Figure 5: A Fragment of the Type ofwindow

Claim 2 (Desugaring is Total) For all JavaScript pro-
gramse, desugarJeK is defined.

Claim 3 (Desugar Commutes with Eval) For all
JavaScript programse, desugarJevalJavaScript(e)K =
evalλJS(desugarJeK).

This testing strategy, and the simplicity of implementa-
tion thatλJS enables, give us confidence that our tools
correctly account for JavaScript.

Modeling the Browser DOM ADsafety claims that
window.eval is not applied. To validate this claim,
we mark eval with A from section 5, which marks
banned fields. There are manyeval -like function
in Web browsers, such asdocument.write ; these are
also markedA. Finally, certain functions, such as
setTimeout , behave likeeval when given strings as ar-
guments. ADsafe does need to call these functions, but
it is careful to never call them with strings. In our type
environment, we give them restrictive types that disallow
string arguments.

Figure 5 specifies a fragment of the type ofwindow ,
which carefully specifies the type of unsafe functions in
the environment. The remaining safeDOM does not need
to be fully specified.adsafe.js only uses a small sub-
set of theDOM methods. These methods require types.
The browser environment is therefore modeled with500
lines of object types (one field per line). This type envi-
ronment is essentially the specification of foreignDOM

functions imported into JavaScript.

7 Verifying the Reference Monitor

In section 5, we discussed modeling the sublanguage of
widgets interacting with the sandboxing runtime. In the
case of ADsafe and JSLint, we built up theWidget type
as a specification of the kinds of values that the reference
monitor,adsafe.js , can expect at runtime. In this sec-
tion, we discuss how we use theWidget type to model the
boundary between reference monitor and widget code,

var dom = {
append:
function(bunch)
/ * : [Widget ∪ Global]Widget × Widget · · · → Widget * /

{ // body of append ... },
combine:
function(array)
/ * : [Widget ∪ Global]Widget × Widget · · · → Widget * /

{ // body of combine... },
q:
function (text)
/ * : [Widget ∪ Global]Widget × Widget · · · → Widget * /

{ // body of q... },
// ... more dom ...

};

Figure 6: Annotations on thedom object

and ensure that the runtime library correctly guards crit-
ical behavior.

The Widget type specifies the shape of widget values
that the ADsafe runtime manipulates.Widget is therefore
used pervasively in our verification ofadsafe.js . For
example, consider a typical Bunch method:

Bunch.prototype.append = function(child) {
reject_global(this);
var elts = child.__nodes__;
. . .

return this;
}

TheBunch objects that ADsafe passes to the widget have
Bunch.prototype as theirproto (see figure 4), making
these methods accessible. Their use in the widget is con-
strained only by JSLint, so we must type-check these
methods with (only) JSLint’s assumptions in mind.

For example, we might assume that thechild argu-
ment above should be aBunch, the implicit this argu-
ment should also be aBunch, and it therefore returns a
Bunch. However, JSLint does not provide such strong
guarantees. Consider this example, which passes JSLint:

var func = someBunch.append;
func(900, true, "junk", -7);

Here,this is bound towindow , child is a number, and
there are additional arguments. Therefore, we cannot as-
sume thatappend has the type[Bunch]Bunch → Bunch.
Instead, the most precise type we can ascribe is:

[Widget ∪ Global]Widget · · · → Widget

That is,this could beWidget-typed or the type of the
global object,Global, and the other arguments may have
any subtype ofWidget, which includes strings, num-
bers, and other non-Bunch types. The runtime check
in append ’s body (namely,reject_global(this)) is re-
sponsible for checking thatthis is not the global object
before manipulating it. Our type checker recognizes such

7

checks and narrows the broader type toWidget after ap-
propriate runtime checks are applied (section 7.1). If
such checks were missing, the type ofthis would re-
mainWidget ∪ Global, andreturn this would signal a
type error becauseWidget∪Global is not a subtype of the
stated return typeWidget.

Ascribing types to functions provided by the ADsafe
runtime is therefore trivial. We give all the same type:

[Widget ∪ Global]Widget · · · → Widget

The type checker we extend is not ADsafe-specific, and
requires explicit type annotations. However, since all the
annotations are identical, they are trivial to insert. Fig-
ure 6 shows a small excerpt of such annotations, which
the checker reads from comments, so programs can run
unaltered in the browser.

Types for Private Functions ADsafe also has a num-
ber of private functions, which are not exposed to the
widget. These functions have types with capabilities the
widget does not have access to, such asHTML. For ex-
ample, ADsafe specifies ahunter object, which con-
tains functions that traverse theDOM and accumulate ar-
rays of DOM nodes. These functions all have the type
HTML → Undef, and add to an arrayresult that has
type Array〈HTML〉. ADsafe can freely use these capa-
bilities inside the library as long as it doesn’t hand them
over to the widget. Our annotations show that it doesn’t,
because these types are not compatible withWidget.

7.1 Type System Highlights

In section 5 and 6, we presented types for safe objects
and for values in the browser environment. We build
upon earlier work on type systems that has been ap-
plied to JavaScript [18]. In this section, we present the
non-standard portions of our type system that we use for
typing operations on objects, sensitive conditionals, and
some idiosyncrasies of JSLint andadsafe.js .

Object Properties and String Set Types In
JavaScript, object properties (or “fields”) are merely
string indices: eveno. x is just an alias foro["x"] .
In addition, these strings can be computed and flow
through the program before they are used to look
up fields. Sandboxes thus deal with whitelists and
blacklists of property names. To model this, we enrich
the type language with sets of strings. For example,
("___nodes___" , "__proto__")− is the type of all
strings except "___nodes___" and "__proto__" , and
("x" , "foo")+ is the type of exactly"x" and"foo" .

Figure 7 shows typing rules and operations for string
sets. Sets support combination via unions, subtyping via

T-STRINGSET

Σ;Γ ⊢ str : (str)+

ST-STRINGSET
+

∀f ∈ (f1, . . .), f ∈ (s1, . . .)

(f1, . . .)
+ <: (s1, . . .)

+

ST-STRINGSET
−

∀f ∈ (f1, . . .), f 6∈ (s1, . . .)

(f1, . . .)
+ <: (s1, . . .)

−

ST-STRING
+

(f1, . . .)
+ <: Str

ST-STRING
−

(f1, . . .)
− <: Str

EQUIV-STR

Str <: ()−

Figure 7: Typing and operations on string set types

adding new strings, and subtyping of positive and nega-
tive sets. Both kinds of string sets can also be promoted
to the common supertype ofStr, which is equivalent to
the negative string set with no entries.

Equipped with string sets, we can describe the typing
of object property dereference. When the property name
is a string set, we union the types of the properties that
are members of the string set, paying careful attention to
absent fields and prototype lookup. Figure 8 shows the
rule T-LOOKUP, with examples shown in figure 9.

String sets allow the type checker to avoid certain
named properties, as in the last example of figure 9,
where the"eval" property has the bad typeA but the
string set type of the index excludes"eval" . The rule
for property update (not shown here) is similar but sim-
pler, as property update in JavaScript does not recur in-
side prototypes, and only operates on the property names
of the top-level object.

If-Splitting A reference monitor has various runtime
checks to ensure that protected objects—DOM objects
and browser functions in ADsafe’s case—are only ma-
nipulated in safe and well-defined ways. For example,
whensetTimeout ’s first argument is a string, rather than
a function, it exhibitseval -like behavior, which violates
ADsafety’s constraints. Thus we instead give it the type

(Widget → Widget)× Widget → Num

Doing so forces the first argument to be a function and,
in particular, not a string. Now consider its use:

later: function (func, timeout)
/ * : Widget × Widget → Widget * / {
if (typeof func === "function") {

setTimeout(func, timeout || 0);
} else { error(); }

}

BecauseADSAFE.later is exported to widgets, it can
only assume theWidget type for its arguments, including

8

{⋆} is shorthand for{⋆ : F⋆, proto : Tp, code : Tc, f1 : F1, . . .}

(f1, . . .)
+ − (s1, . . .)

+ = ∀fi 6∈ (s1, . . .), (fi, . . .)
+

(f1, . . .)− − (s1, . . .)+ = (f1, . . . , s1, . . .)−
f ∈ (f1, . . .)

+ : ∃f1.f = f1
f ∈ (f1, . . .)− : ∀f1.f 6= f1

fields⋆({⋆}, S) =

F⋆ :
S⋆ 6= ∅ and
F⋆ 6= Absent

⊥ : otherwise
whereS⋆ = S − (f1, . . .)

+

fieldsp({⋆}, S) =

Undef : Tp = Null
fields(Tp, Sp) : Sp 6= ∅

⊥ : otherwise
whereSp = S − (fi | Fi 6= Absent)+

fields({⋆}, S) = {Ti | fi ∈ S andFi = Ti} ∪ fields⋆({⋆}, S) ∪ fieldsp({⋆}, S)
fields(T1 ∪ T2, S) = fields(T1, S) ∪ fields(T2, S)
fields(T, ∅) = ⊥

Σ;Γ ⊢ eo : To Σ;Γ ⊢ ef : S S <: Str Tres = fields(To, S)

Γ ⊢ eo[ef] : Tres

(T-LOOKUP)

Figure 8: Typing object lookup

Object TypeTo String TypeS fields(To, S)

{proto : Null, ⋆ : Bool, "x" : Num} ("x")+ Num
{proto : Null, ⋆ : Bool, "x" : Num} ("x" , "y")+ Num ∪ Bool ∪ Undef

{proto : Object, ⋆ : Num} ("toString")+ Num∪ → Str
{proto : Object, ⋆ : Num, "toString" : Absent} ("toString")+ → Str

{proto : Null, ⋆ : Str, "x" : Num, "y" : Bool, "eval" :A} ("eval")− Str ∪ Num ∪ Bool ∪ Undef

{proto : Null, ⋆ : Str, "x" : Num, "y" : Bool, "eval" :A} ("eval")+ untypable

Figure 9: Examples of property lookup usingfields

func . A traditional type checker would thus conclude
thatfunc has typeWidget everywhere inlater . Because
Widget includesStr, the invocation ofsetTimeout would
yield a type error—even though this is precisely what the
conditional inlater is avoiding!

If-splitting is the name for a collection of techniques
that address this problem [39]. Our particular solution
uses a refinement of this idea, called flow typing [18],
which complements type-checking with flow analysis.
The analysis informs the type checker that due to the
typeof check, uses offunc in the then-branch of the
conditional can in fact berefined from the largeWid-
get type of Str ∪ Num ∪ . . . to the function type that
setTimeout requires.

7.2 Required Refactorings

Our type system cannot type check the ADsafe runtime
as-is; we need to make some simple refactorings. The

need for these refactorings does not reflect a weakness
in ADsafe. Rather, they are programming patterns that
we cannot verify with our type system. To gain confi-
dence that we didn’t change ADsafe’s behavior, we run
ADsafe’s sample widgets against our refactored version
of ADsafe, and they behave as expected. We describe
these refactorings below:

Additional reject_name Checks ADsafe uses
reject_name to check accesses and updates to object
properties inadsafe.js . If-splitting uses these checks
to narrow string set types and type-check object property
references. However, ADsafe does not usereject_name

in every case. For example, it uses a regular expression
to parseDOM queries, and uses the result to look up
object properties. Because our type system makes
conservative assumptions about regular expressions, it
would erroneously indicate that a blacklisted field may
be accessed. Thus, we add calls toreject_name so the

9

type system can prove that the accesses and assignments
are safe.

Inlined reject_global Checks Most Bunch methods
start by assertingreject_global(this) , which ensures
that this is Widget-typed in the rest of the method.
Our type system cannot account for such non-local side-
effects, but once we inlinereject_global , if-splitting
is able to refine types appropriately (for instance, in the
Bunch.prototype.append example early in this section).

makeableTagName ADsafe’s whitelist of safeDOM ele-
ments is defined as a dictionary:

var makeableTagName =
{ "div": true, "p": true, "b": true, . . . };

This dictionary omits an entry for"script" . The
document.createElement DOM method creates new
nodes. We ensure that<script> tags are not created by
typing it as follows:

document.createElement : ("script")− → HTML

ADsafe uses its tag whitelist before calling
document.createElement :

if (makeableTagName[tagName] === true) {
document.createElement(tagName);

}

Our type checker cannot account for this check. We in-
stead refactor the whitelist (a trick noted elsewhere [29]):

var makeableTagName =
{ "div": "div", "p": "p", "b": "b", . . . };

The type of these strings are("div")+, ("p")+,("b")+,
etc., so that makeableTagName[tagName] has type
("div" , "p" , "b" , . . .)+. Since this finite set of strings
excludes"script" , it now matches the argument type
of createElement .

7.3 Cheating and Unverifiable Code

A complex body of code like the ADsafe runtime cannot
be type-checked from scratch in one sitting. We there-
fore found it convenient to augment the type system with
a cheat construct that ascribes a given type to an ex-
pression without descending into it. We could thus use
cheat when we encountered an uninteresting type error
and wanted to make progress. Our goal, of course, was
to ultimately remove everycheat from the program.

We were unable to remove twocheat s, leaving eleven
unverified source lines in the 1,800 LOC ADsafe run-
time. We can, in fact, ascribe interesting types to these
functions, but checking them is beyond the power of our
type system. The details may not be of interest to the
general reader, but the web content contains the full body
of unverified code and a discussion of its types.

8 ADsafety Redux

Sections 5 and 7 gave the details of our strategy for mod-
eling JSLint and verifyingadsafe.js . In this section,
we combine these results and relate it to the original def-
inition of ADsafety (definition 1). The use of a type sys-
tem allows us to make straightforward, type-based argu-
ments of safety for the components of ADsafe.

The lemmas below formally reason about type-
checked widgets. Claim 1 (section 5.2) establishes that
linted widgets are in fact typable. Therefore,we do not
need to type-check widgets. Widget programmers can
continue to use JSLint and do not need to know about
our type checker. However, given the benefits of unifor-
mity provided by a type checker over ad hoc methods
like JSLint (section 9 details one exploit that resulted
from such an ad hoc approach), programmers may be
well served to use our type checker instead.

Type Soundness Most type systems come with a
soundness theorem that is stated asprogress(well-typed
programs do not error) andpreservation(well-typed pro-
grams do not violate their types).

We do not attempt to establish progress. Establishing
it would require many more refactorings in the ADsafe
runtime, and many lintable widgets would be untypable.
Because runtime errors are perfectly acceptable (they
halt execution before something bad happens), we re-
lax some of the typing rules in an existing type sys-
tem [18]—which does exhibit progress—to instead allow
some JavaScript errors (e.g., applying non-function val-
ues or looking up fields ofnull). We do still need an “un-
typed progress” theorem that states that our JavaScript
semantics fully models all error cases. This theorem is
provided by Guha, et al. [17].

We restate and prove preservation for the extensions
to Guha et al.’s type system, which is applicable toall
JavaScript programs.7 Stated formally:

Lemma 1 (Type Preservation) If, for an expressione,
typeT , environmentΓ and abstract heapΣ,

1. Σ ⊢ σ,

2. Σ;Γ ⊢ e : T , and

3. σe → σ′e′;

then there exists aΣ′ withΣ′ ⊢ σ′ andΣ′; Γ ⊢ e′ : T .

Our assumed environment (section 6) provides the ab-
stract heapΣ and abstract environmentΓ, which model
the initial state of the browser,σ. Given this lemma, we
can make type-based statements about the combination
of widgets andadsafe.js :

7For the formal proof, see Guha et al. [18] and the supplemental
material on the web.

10

Theorem 1 (ADsafety) For all widgetsp, if

1. all subexpressions ofp are Widget-typable,

2. adsafe.js is typable,

3. adsafe.js runs beforep, and

4. σp → σ′p′ (single-step reduction),

then at every stepp′, p′ also has the typeWidget.

This theorem says that for all widgetsp whose subex-
pressions areWidget-typed, if adsafe.js type-checks
and runs in the browser environment,p can take any
number of steps and still have theWidget type. Since
types are preserved, two further key lemmas hold during
execution:

Lemma 2 (Widgets cannot load new code at runtime)
For all widgetse, if all variables and sub-expressions of
e are Widget-typed, thene does not load new code.

By section 6,eval -like functions areA-typed, hence
cannot be referenced by widgets or by the ADsafe run-
time. Furthermore, functions that onlyeval when given
strings, such assetTimeout , have restricted types that
disallowstring -typed arguments. Therefore, neither the
widget nor the ADsafe runtime can load new code.�

Lemma 3 (Widgets do not obtain DOM references)
For all widgetse, if all variables and sub-expressions of
e are Widget-typed, thene does not obtain directDOM

references.

The type ofDOM objects is not subsumed by theWidget
type. All functions in the ADsafe runtime have the type:

[Widget ∪ Global]Widget · · · → Widget

Thus, functions in the ADsafe runtime do not leakDOM

references, as long as they are only applied toWidget-
typed values. Since all subexpressions of the widgete

areWidget-typed, all values thate passes to the ADsafe
runtime areWidget-typed. By the same argument,e can-
not directly manipulateDOM references either. �

Widgets can only manipulate their DOM subtree
We cannot prove this claim with our tools. JSLint
enforces this property by also verifying the static
HTML of widgets; it ensures that all elementIDs
are prefixed with the widget’sID. The wrapper for
document.getElementById ensures that the widgetID

is a prefix of the elementID. Verifying JSLint’s HTML

checks is beyond the scope of this work.
In addition, the wrapper forElement.parentNode

checks to see if the current element is the root of the wid-
get’sDOM subtree. It is not clear if our type checker can
express this property without further extensions.

ADSAFE.go("AD_", function (dom, lib) {
var myWindow, fakeNode, fakeBunch, realBunch;

fakeNode = {
appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;
},
tagName: "div",
value: null

};

fakeBunch = {"___nodes___": [fakeNode]};

realBunch = dom.tag("p");
fakeBunch.value = realBunch.value;
fakeBunch.value(""); // calls phony appendChild

myWindow.alert("hacked");
});

Figure 10: Exploiting JSLint

Widgets cannot communicate This claim is false;
section 9 presents a counterexample.

9 Bugs Found in ADsafe

We have implemented the type system presented in this
paper, and applied it to the ADsafe source. The imple-
mentation is about 3,000 LOC, and takes 20 seconds to
checkadsafe.js (mainly due to the presence of recur-
sive types). In some cases, type-checking failed due to
the weakness of the type checker; these issues are dis-
cussed in section 7.2. The other failures, however, rep-
resent genuine errors in ADsafe that were present in the
production system. The same applies to instances where
JSLint and our typed model of it failed to conform. All
the errors listed below have been reported, acknowledged
by the author, and fixed.

Missing Static Checks JSLint inadvertently allowed
widgets to include underscores in quoted field names. In
particular, the following expression was deemed safe:

fakeBunch = { "__nodes__": [fakeNode] };

A malicious widget could then create an object with an
appendChild method, and trick the ADsafe runtime into
invoking it with a direct reference to anHTML element,
which is enough to obtainwindow and violate ADsafety:

fakeNode = {
appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;
}

};

The full exploit is in figure 10.

11

ADSAFE.go("AD_", function (dom, lib) {
var called = false;
var obj = {

"toString": function() {
if (called) {
return "url(evil.xml#exp)";

}
else {

called = true;
return "dummy";

}
}

};
dom.append(dom.tag("div"));
dom.q("div").style("MozBinding", o);

});

<!-- evil.xml -->
<?xml version="1.0"?>
<bindings><binding id="exp">
<implementation><constructor>
document.write("hacked")
</constructor></implementation>
</binding></bindings>

Figure 11: Firefox-specific Exploit for ADsafe

This bug manifested as a discrepancy between our
model of JSLint as a type checker and the real JSLint.
Recall from section 5 that all expressions in widgets
must have typeWidget (defined in figure 4). For
{ "__nodes__": [fakeNode] } to type asWidget, the
"__nodes__" field must have typeArray〈HTML〉∪Undef.
However,[fakeNode] has typeWidget, which signals the
error.

JSLint similarly allowed"__proto__" and other fields
to appear in widgets. We did not investigate whether they
can be exploited as above, but setting them causes unan-
ticipated behavior. Fixing JSLint was simple once our
type checker found the error. (An alternative solution
would be to use our type system as a replacement for
JSLint.) We note that when the ADsafe option of JSLint
was first announced,8 its author offered:

If [a malicious client] produces no errors when
linted with the ADsafe option, then I will buy
you a plate of shrimp.

After this error report, he confirmed, “I do believe that I
owe you a plate of shrimp”.

Missing Runtime Checks Many functions
in adsafe.js incorrectly assumed that they
were applied to primitive strings. For example,
Bunch.prototype.style began with the following

8tech.groups.yahoo.com/group/caplet/message/
44

check, to ensure that widgets do not programmatically
load external resources viaCSS:

Bunch.prototype.style = function(name, value) {
if (/url/i.test(value)) { // regex match?

error();
}
...

};

Thus, the following widget code would signal an error:

someBunch.style("background",
"url(http://evil.com/image.jpg)");

The bug is that ifvalue is an object instead of a
string, the regular-expressiontest method will invoke
value.toString() .

A malicious widget can construct an object with a
statefultoString method that passes the test when first
applied, and subsequently returns a maliciousURL. In
Firefox, we can use such an object to load anXBL re-
source9 that contains arbitrary JavaScript (figure 11).

We ascribe types to JavaScript’s built-ins to prevent
implicit type conversions. Therefore, we require the ar-
gument ofRegexp.test to have typeStr. However, since
Bunch.prototype.style can be invoked by widgets, its
type isWidget × Widget → Widget, and thus the type of
value is Widget.

This bug was fixed by adding a newstring_check

function to ADsafe, which is now called in18 functions.
All these functions are not otherwise exploitable, but a
missing check would cause unexpected behavior. The
fixed code is typable.

Counterexamples to Non-Interference Finally, a
type error inBunch.prototype.getStyle helped us gen-
erate a counterexample to ADsafe’s claim of widget non-
interference (definition 1, part 4). ThegetStyle method
is available to widgets, so its type must beWidget →
Widget. The following code is the essence ofgetStyle :

Bunch.prototype.getStyle = function (name) {
var sty;
reject_global(this);
sty = window.getComputedStyle(this.__node__);
return sty[name];

}

The bug above is thatname is unchecked, so it may index
arbitrary fields, such as__proto__ :

someBunch.getStyle("__proto__");

This gives the widget a reference to the prototype of the
browser’sCSSStyleDeclaration objects. Thus the re-
turn type of the body is notWidget, yielding a type error.

A widget cannot exploit this bug in isolation. How-
ever, it can replace built-in methods ofCSSstyle objects

9https://developer.mozilla.org/en/XBL

12

and interfere with the operation of the hosting page and
other widgets that manipulate styles in JavaScript.

This bug was fixed by adding areject_name check
that is now used in this and other methods. Despite
the fix, ADsafe still cannot enforce non-interference,
since widgets can reference and affect properties of other
shared built-ins:

var arr = [];
arr.concat.channel = "shared data";

The author of ADsafe pointed out the above example and
retracted the claim of non-interference.

Prior Exploits Before and during our implementation,
other exploits were found in ADsafe and reported [27–
29]. We have run our type checker on the exploitable
code, and our tools catch the bugs and report type errors.

Fixing Bugs and Tolerating Changes Each of our bug
reports resulted in several changes to the source, which
we tracked. In addition to these changes,adsafe.js

also underwent non-security related refactorings during
the course of this work. Despite not providing its author
our type checker, we were easily able to continue type-
checking the code after these changes. One change in-
volved adding a number of newBunch methods to extend
theAPI. Keeping up-to-date was a simple task, since all
the newBunch methods could be quickly annotated with
theWidget type and checked. In short, our type checker
has shown robustness in the face of program edits.

10 Beyond ADsafe

Our security type system is capable of verifying useful
properties about JavaScript programs in general. Sec-
tions 5, 6, and 7 present carefully craftedtypesthat we
ascribe to the browser API andadsafe.js , and use to
model widget programs. Proving these types hold over
the ADsafe runtime library and JSLint-ed widgets guar-
antees robust sandboxing properties for ADsafe.

Verifications for other sandboxes would require the de-
sign of newtypes, to accurately model checked, rewritten
programs and their interface to the sandbox, but not nec-
essarily a newtype system. Indeed, our type-based strat-
egy provides a concrete roadmap for sandbox designers:

1. Formally specify the language of widgets using a
type system;

2. use this specification to define the interface between
the sandbox and untrusted code; and,

3. check that the body of the sandbox adheres to this
interface by type-checking.

In particular, developers ofnewsandboxes should be
aware of this strategy. Rather than trying to retrofit the

type system’s features onto existing static checks, the
sandbox designer can work with the type system to guar-
antee safety constructively from the start. Tweaks and
extensions to the type system are certainly possible—for
example, one may want to design a sandboxing frame-
work that forbids applying non-function values and look-
ing up fields ofnull, which the current type system al-
lows (section 8).

ADsafe shares many programming patterns with other
Web sandboxes (section 3), but doesn’t cover the full
range of their features. We outline some of the exten-
sions that could be used to verify them here:

Reasoning About Strings Our type system lets pro-
grammers reason about finite sets of strings and use these
sets to lookup fields in objects. To verify Caja, we would
need to reason about string patterns. For example, Caja
uses the field named"foo"+ "_w__" to store a flag that
determines if the field"foo" is writable.

Abstracting Runtime Tests Our type system accounts
for inlined runtime checks, but requires some refactor-
ings when these checks are abstracted into predicates.
Larger sandboxes, like Caja, have more predicates, so
refactoring them all would be infeasible. We could in-
stead use ideas from occurrence typing [39], which ac-
counts for user-defined predicates.

Modeling the Browser Environment ADsafe wraps a
small subset of theDOM API and we manually check that
this subset is appropriately typed in the initial type envi-
ronment. This approach does not scale to a sandbox that
wraps more of theDOM. If the type environment were
instead derived from the C++DOM implementation, we
would have significantly greater confidence in our envi-
ronmental assumptions.

11 Related Work

Verifying JavaScript Web Sandboxes ADsafe [9],
BrowserShield [35], Caja [33], andFBJS [13] are
archetypal Web sandboxes that use static and dynamic
checks to safely host untrusted widgets. However, the se-
mantics of JavaScript and the browser environment con-
spire to make JavaScript sandboxing difficult [17, 26].

Maffeis et al. [27] use their JavaScript semantics to
develop a miniature sandboxing system and prove it cor-
rect. Armed with the insight gained by their semantics
and proofs, they find bugs inFBJS and ADsafe (which
we also catch). However, they do not mechanically ver-
ify the JavaScript code in these sandboxes. They also for-
malize capability safety and prove that a Caja-like sub-
set is capability safe [30]. However, they do not verify

13

the Caja runtime or the actual Caja subset. In contrast,
we verify the source code of the ADsafe runtime and ac-
count for ADsafe’s static checks.

Taly, et al. [38] develop a flow analysis to find bugs
in the ADsafe runtime (that we also catch). They sim-
plify the analysis by modeling ECMAScript 5 strict
mode, which is not fully implemented in any current Web
browser. In contrast, ADsafe is designed to run on cur-
rent browsers, and thus supports older and more permis-
sive versions of JavaScript. We use the semantics and
tools of Guha, et al. [17], which does not limit itself to
the strict mode, so we find new bugs in the ADsafe run-
time. In addition, Taly, et al. use a simplified model of
JSLint. In contrast, we provide a detailed, type-theoretic
account of JSLint, and also test it. We can thus find se-
curity bugs in JSLint as well.

Lightweight Self-Protecting JavaScript [31, 34] is a
unique sandbox that does not transform or validate wid-
gets. It instead solely uses reference monitors to wrap
capabilities. These are modeled as security automata,
but the model ignores the semantics of JavaScript. In
contrast, this paper and the aforementioned works are
founded on detailed JavaScript semantics.

Yu, et al. [40] use JavaScript sandboxing techniques
to enforce various security policies on untrusted code.
Their semantic model, CoreScript, simplifies theDOM

and scripting language. CoreScript cannot be used to
mechanically verify the JavaScript implementation of a
Web sandbox, which is what we present in this paper.

Modeling the Web Browser There are formal mod-
els of Web browsers that are tailored to model whole-
browser security properties [1, 6]. These do not model
JavaScript’s semantics in any detail and are therefore or-
thogonal to semantic models of JavaScript [17, 26] that
are used to reason about language-based Web sandboxes.
In particular, ADsafe’s stated security goals are lim-
ited to statements about JavaScript and theDOM (sec-
tion 4). Therefore, we do not require a comprehensive
Web-browser model.

Static Analysis of JavaScript GateKeeper [15] uses a
combination of program analysis and runtime checks to
apply and verify security policies on JavaScript widgets.
GateKeeper’s program analysis is designed to model
more complex properties of untrusted code than we ad-
dress by modeling JSLint. However, the soundness of its
static analysis is proven relative to only a restricted sub-
language of JavaScript, whereasλJS handles the full lan-
guage. In addition, they do not demonstrate the validity
of their run-time checks.

Chugh et al. [8] andVEX [5] use program analy-
sis to detect possibly malicious information flows in
JavaScript. Our type system cannot specify information

flows, although we do use it to discover that ADsafe fails
to enforce a desirable information flow property.VEX’s
authors acknowledge that it is unsound, and Chugh et al.
do not provide a proof of soundness for their flow analy-
sis. Our type system and analysis are proven sound.

Other static analyses for JavaScript [16, 21, 22] are not
specifically designed to encode and check security.

Type Systems Our type checker is based on that of
Guha, et al. [18]. Theirs has a restrictive type system for
objects that we fully replace to type check ADsafe. We
also add simple extensions to theirflow typingsystem
to account for additional kinds of runtime checks em-
ployed by ADsafe. Their paper surveys other JavaScript
type systems [2, 19] that can type-check other patterns
but have not been used to verify security-critical code,
which is the goal of this paper. Our treatment of ob-
jects is also derived from ML-ART [36], but accounts
for JavaScript features and patterns such as function ob-
jects, prototypes, and objects as dictionaries.

Language-Based Security Schneider et al. [37] sur-
vey the design and type-based verification of language-
based security systems. JavaScript Web sandboxes are
inlined reference monitors [12]. Guha, et al. [17] offer a
type-based strategy to verify these, but their approach—
which depends on building a custom type rule around
each check in the reference monitor—does not scale to
a program of the size of ADsafe. Furthermore, their
custom rules essentially hand-code if-splitting, which we
obtain directly from the underlying type system.

Cappos, et al. [7] present a layered approach to build-
ing language sandboxes that prevents bugs in higher lay-
ers from breaking the abstractions and assurances pro-
vided by lower layers. They use this approach to build a
new sandbox for Python, whereas we verify an existing,
third-party JavaScript sandbox. However, our verifica-
tion techniques could easily be used from the onset to
build a new sandbox that is secure by construction.

IFrames IFrames are widely used for widget isola-
tion. However, JavaScript that runs in an IFrame can still
open windows, communicate with servers, and perform
other operations that a Web sandbox disallows. Further-
more, inter-frame communication is difficult when de-
sired; there are proposals to enhance IFrames to make
communication easier and more secure [20]. Language-
based sandboxing is somewhat orthogonal in scope, is
more flexible, and does not require changes to browsers.

Runtime Security Analysis of JavaScript There are
various means to secure widgets that do not employ

14

language-based security. Some systems rely on mod-
ified browsers, additional client software, or proxy
servers [10, 11, 23–25, 32, 40]. Some of these propose al-
ternative Web programming APIs that are designed to be
secure. Language-based sandboxing has the advantage
of working with today’s browsers and deployment meth-
ods, but our verification ideas could potentially apply to
the design of some of these systems, too.

Acknowledgments

We thank Douglas Crockford for discussions, open-
mindedness, and insightful feedback (and the promise
of certain crustaceans); Mark S. Miller for enlighten-
ing discussions; Matthias Felleisen, Andrew Ferguson,
and David Wagner for numerous helpful comments that
helped us understand weaknesses in exposition; the NSF
for financial support; and StackOverflow, as well as
Claudiu Saftoiu (our lower-latency version of StackOver-
flow), for unflagging attention to detail.

References

[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and
D. Song. Towards a Formal Foundation of Web
Security. InIEEE Computer Security Foundations
Symposium, 2010.

[2] C. Anderson, P. Giannini, and S. Drossopoulou.
Towards type inference for JavaScript. InEu-
ropean Conference on Object-Oriented Program-
ming, 2005.

[3] J. P. Anderson. Computer Security Technology
Planning Study. Technical Report ESD-TR-73-51,
Deputy for Command and Management Systems,
HQ Electronic Systems Division (AFSC), L. G.
Handscom Field, Bedford, Massachusetts 01730,
October 1972.

[4] I. Awad, T. Close, A. Felt, C. Jackson,
B. Laurie, F. Lee, K.-P. Lee, D.-S. Hopwood,
J. Nagra, E. Sachs, M. Samuel, M. Stay,
and D. Wagner. Caja external security re-
view. Technical report, Google Inc., 2008.
http://google-caja.googlecode.
com/files/Caja_External_Security_
Review_v2.pdf .

[5] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. VEX: Vetting browser extensions for
security vulnerabilities. InUSENIX Security Sym-
posium, 2010.

[6] A. Bohannon and B. C. Pierce. Featherweight Fire-
fox: Formalizing the Core of a Web Browser. In

Usenix Conference on Web Application Develop-
ment (WebApps), 2010.

[7] J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
I. Beschastnikh, C. Barsan, A. Krishnamurthy, and
T. Anderson. Retaining Sandbox Containment De-
spite Bugs in Privileged Memory-Safe Code. In
ACM Conference on Computer and Communica-
tions Security (CCS), 2010.

[8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for JavaScript. InACM
SIGPLAN Conference on Programming Language
Design and Implementation, 2009.

[9] D. Crockford. ADSafe. www.adsafe.org ,
2011.

[10] A. Dewald, T. Holz, and F. C. Freiling. ADSand-
box: Sanboxing JavaScript to fight Malicious Web-
sites. InSymposium On Applied Computing (SAC),
2010.

[11] M. Dhawan and V. Ganapathy. Analyzing in-
formation flow in JavaScript-based browser exten-
sions. InComputer Security Applications Confer-
ence, 2009.

[12] Ú. Erlingsson.The Inlined Reference Monitor Ap-
proach to Security Policy Enforcement. PhD thesis,
Cornell University, 2003.

[13] Facebook. FBJS, 2011.http://developers.
facebook.com/docs/fbjs/ .

[14] M. Finifter, J. Weinberger, and A. Barth. Prevent-
ing Capability Leaks in Secure JavaScript Subsets.
In Network and Distributed System Security Sym-
posium, 2010.

[15] S. Guarnieri and B. Livshits. GATEKEEPER:
Mostly static enforcement of security and reliabil-
ity policies for JavaScript code. InUSENIX Secu-
rity Symposium (SSYM), 2009.

[16] A. Guha, S. Krishnamurthi, and T. Jim. Static anal-
ysis for Ajax intrusion detection. InInternational
World Wide Web Conference, 2009.

[17] A. Guha, C. Saftoiu, and S. Krishnamurthi. The
Essence of JavaScript. InEuropean Conference on
Object-Oriented Programming, 2010.

[18] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing
Local Control and State Using Flow Analysis. In
European Symposium on Programming, 2011.

15

[19] P. Heidegger and P. Thiemann. Recency types
for dynamically-typed, object-based languages:
Strong updates for JavaScript. InACM SIGPLAN
International Workshop on Foundations of Object-
Oriented Languages, 2009.

[20] C. Jackson and H. J. Wang. Subspace: Secure
Cross-Domain Communication for Web Mashups.
In International World Wide Web Conference,
2007.

[21] S. H. Jensen, A. Møller, and P. Thiemann. Type
analysis for JavaScript. InInternational Static
Analysis Symposium, 2009.

[22] S. H. Jensen, A. Møller, and P. Thiemann. Interpro-
cedural analysis with lazy propagation. InInterna-
tional Static Analysis Symposium, 2010.

[23] T. Jim, N. Swamy, and M. Hicks. BEEP: Browser-
enforced embedded policies. InInternational
World Wide Web Conference, 2007.

[24] E. Kıcıman and B. Livshits. AjaxScope: A platform
for remotely monitoring the client-side behavior of
web 2.0 applications. InSymposium on Operating
System Principles, 2007.

[25] M. T. Louw, K. T. Ganesh, and V. Venkatakrish-
nan. AdJail: Practical enforcement of confidential-
ity and integrity policies on Web advertisements. In
USENIX Security Symposium (SSYM), 2010.

[26] S. Maffeis, J. Mitchell, and A. Taly. An Operational
Semantics for JavaScript. InASIAN Symposium on
Programming Languages and Systems, pages 307–
325, 2008.

[27] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating
JavaScript with Filters, Rewriting, and Wrappers.
In European Symposium on Research in Computer
Security (ESORICS), 2009.

[28] S. Maffeis, J. C. Mitchell, and A. Taly. Run-
time enforcement of secure javascript subsets. In
W2SP’09. IEEE, 2009.

[29] S. Maffeis, J. C. Mitchell, and A. Taly. Object Ca-
pabilities and Isolation of Untrusted Web Applica-
tions. InIEEE Symposium on Security and Privacy.
IEEE, 2010.

[30] S. Maffeis, J. C. Mitchell, and A. Taly. Object capa-
bilities and isolation of untrusted Web applications.
In IEEE Symposium on Security and Privacy, 2010.

[31] J. Magazinius, P. H. Phung, and D. Sands. Safe
Wrappers and Sane Policies for Self Protecting
JavaScript. InOWASP AppSec Research, 2010.

[32] L. Meyerovich and B. Livshits. Conscript: Spec-
ifying and enforcing fine-grained security policies
for javascript in the browser. InIEEE Symposium
on Security and Privacy, 2010.

[33] M. S. Miller, M. Samuel, B. Laurie, I. Awad,
and M. Stay. Caja: Safe active content
in sanitized JavaScript. Technical report,
Google Inc., 2008. http://google-

caja.googlecode.com/files/caja-spec-

-2008-06-07.pdf .

[34] P. H. Phung, D. Sands, and A. Chudnov.
Lightweight self-protecting JavaScript. InACM
Symposium on Information, Computer and Com-
munications Security, 2009.

[35] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML. InSymposium on Op-
erating Systems Design and Implementation, 2006.

[36] D. Rémy. Programming objects with ML-ART, an
extension to ML with abstract and record types.
In M. Hagiya and J. Mitchell, editors,Theoreti-
cal Aspects of Computer Software, volume 789 of
Springer Lecture Notes in Computer Science, pages
321–346. Springer Berlin / Heidelberg, 1994.

[37] F. B. Schneider, G. Morrisett, and R. Harper. A
Language-Based Approach to Security. In R. Wil-
helm, editor,Informatics, volume 2000 ofSpringer
Lecture Notes in Computer Science, pages 86–101.
Springer Berlin / Heidelberg, 2001.

[38] A. Taly, Ú. Erlingsson, M. S. Miller, J. C. Mitchell,
and J. Nagra. Automated analysis of security-
critical JavaScript APIs. InIEEE Symposium on
Security and Privacy, 2011.

[39] S. Tobin-Hochstadt and M. Felleisen. The De-
sign and Implementation of Typed Scheme. In
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 395–
406, 2008.

[40] D. Yu, A. Chander, N. Islam, and I. Serikov.
Javascript instrumentation for browser security. In
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2007.

[41] C. Yue and H. Wang. Characterizing Insecure
JavaScript Practices on the Web. InInternational
World Wide Web Conference, 2009.

16

