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Abstract

Current disk encryption techniques store necessary keys
in RAM and are therefore susceptible to attacks that tar-
get volatile memory, such as Firewire and cold boot at-
tacks. We present TRESOR, a Linux kernel patch that
implements the AES encryption algorithm and its key
management solely on the microprocessor. Instead of us-
ing RAM, TRESOR ensures that all encryption states as
well as the secret key and any part of it are only stored
in processor registers throughout the operational time of
the system, thereby substantially increasing its security.
Our solution takes advantage of Intel’s new AES-NI in-
struction set and exploits the x86 debug registers in a
non-standard way, namely as cryptographic key storage.
TRESOR is compatible with all modern Linux distribu-
tions, and its performance is on a par with that of stan-
dard AES implementations.

1 Introduction

Disk encryption is an increasingly used method to protect
confidential information in computer systems. It is par-
ticularly effective for mobile systems, such as laptops,
since these are frequently lost or stolen [29]. With the
growing availability of disk encryption systems, crimi-
nals and law enforcement alike have started to explore
ways to circumvent this protection. Since current disk
encryption techniques store keys in main memory, one
approach to access the encrypted data is to acquire the
key physically.

When physical access to the machine is given, keys
can be extracted from main memory of running and sus-
pended machines without privileged user access. Such
attacks can broadly be classified into DMA attacks and
cold boot attacks. DMA attacks use direct memory ac-
cess through ports like Firewire [4, 3, 5], PCI [6, 28, 13],
or PC Card [8, 17] to access RAM, while cold boot at-
tacks [14] exploit the fact that memory contents fade

away gradually over time. This allows to restore RAM
contents after a short power-down by rebooting the ma-
chine with a boot device that directly reads out memory.
Widespread disk encryption systems like BitLocker [1]
(Windows), FileVault (MacOS), dm-crypt [30] (Linux),
and TrueCrypt [36] (multi-platform) do not protect
against such attacks. The current technological response,
namely to keep the key in RAM but obfuscate its pres-
ence by using dispersal techniques, only partly counters
the threat of memory attacks.

1.1 TRESOR

In this paper, we present the design and implementa-
tion of TRESOR (pronounced [trε:zoa]), a Linux kernel
patch for the x86 architecture that implements AES in a
way that is resistant to the attacks mentioned above and
hence, allows for disk drive encryption with improved
security.

TRESOR runs encryption securely outside RAM. Its
underlying idea is to avoid RAM usage completely by
both storing the secret key in CPU registers and running
the AES algorithm entirely on the microprocessor. To-
wards this goal, TRESOR (mis)uses the debug registers
as secure cryptographic key storage. While the princi-
ple of TRESOR is basically applicable to most x86 com-
patible CPUs, we focus on an implementation exploiting
Intel’s new AES-NI [31] extensions. The new AES in-
structions, currently available on all Core i7 processors
and most Core i5, allow for accelerated AES using short
and efficient code which implements most of the crypto-
graphic primitive in hardware.

On systems running TRESOR, setting hardware
breakpoints is no longer possible because the breakpoint
registers are occupied with key data. However, as there
are only four breakpoint registers, debuggers like GDB
must deal with the possibility that all of them are busy
anyway, for example, when more than four are set in par-
allel.
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1.2 Related Work

TRESOR is the successor of AESSE [24], which was
our prototype implementation but not well applicable in
practice because it incurred two major problems. First,
the Streaming SIMD Extension (SSE) [34] were used
as key storage, breaking binary compatibility with many
multimedia, math, and 3d applications. Second, AESSE
was a pure software implementation and, due to the
shortage of space inside CPU registers, the algorithm
performed about six times more slowly than comparable
standard implementations of AES.

During the work on TRESOR, Simmons indepen-
dently developed a system called Loop-Amnesia [27]
which pursues the same idea of holding the crypto-
graphic key solely in CPU registers. In difference to
TRESOR, Loop-Amnesia stores the key inside machine
specific registers (MSRs) rather than in debug registers.
Currently, it does not support the AES-NI instruction set
and only a 128-bit version of AES. However, it allows to
store multiple disk encryption keys securely inside RAM
by scrambling them with a master key.

With BitArmor [23] there exists a commercial solution
that claims to be resistant against cold boot attacks in par-
ticular. But as BitArmor does not generally avoid storing
the secret key in RAM, it cannot protect from other at-
tacks against main memory. Consequently, its cold boot
resistance is not perfect, too (though quite good to resist
the most common attacks of this kind).

Additionally, Pabel proposed a solution called Frozen
Cache [21, 22] that exploits CPU caches rather than reg-
isters as secure key storage outside RAM. To our knowl-
edge, this project is currently work in progress at an early
development stage. Although it is a nice idea, a secure
and efficient implementation is very difficult, if possible
at all, because x86 caches can hardly be controlled by the
system programmer.

Last, hardware solutions like Full Disk Encryption
Hard Drives (HDD-FDE) [16, 35] use specialized crypto
chips for encryption instead of the system CPU and
RAM. Indeed, this is an effective method to defeat mem-
ory attacks, but it does not compete with TRESOR as a
software solution. In our opinion, software solutions are
not obsolete as they have several advantages: they are
cheaper, highly configurable, vendor independent, and,
last but not least, quickly employable on many existing
machines.

1.3 Contributions

The central innovations of TRESOR are storing the se-
cret key in CPU registers and utilizing AES-NI for en-
cryption. AES-NI offers encryption (and decryption)
primitives directly on the processor. This, however,

does not mean that AES-NI based implementations of
AES withstand memory attacks out-of-the-box. A typ-
ical AES-NI based implementation uses RAM to store
the secret key and, for reasons of performance, the key
schedule. The AES key schedule is required by the indi-
vidual AES rounds and is generally computed only once
and then stored inside RAM to speed up the encryption
process. In contrast, TRESOR implements AES using
AES-NI without leaking any key-related data to RAM.

The contributions of this paper are:

• We implement AES without storing any sensitive
information in RAM.

• To this end, we present a kernel patch (TRESOR)
that is binary compatible with all Linux distribu-
tions.

• We show that by using Intel’s new AES-NI instruc-
tions, the performance of TRESOR is as fast (even
slightly faster) than standard AES implementations
that use RAM.

• By running TRESOR in a virtual machine and con-
stantly monitoring its main memory, we demon-
strate that TRESOR can withstand considerable ef-
forts to compromise the encryption key. The only
method to access the key with reasonable effort is
compromising the system space, using a loadable
kernel module, for example. Many other attacks,
such as hardware attacks targeting processor regis-
ters, are defeated by TRESOR.

Overall, TRESOR is a disk encryption system that is
both secure against main memory attacks and well appli-
cable in practice.

1.4 Outline
The rest of this paper is structured as follows: In Sec-
tion 2 we explain our design choices and give imple-
mentation details. We have evaluated TRESOR regard-
ing three aspects: compatibility (Section 3), performance
(Section 4) and, most importantly, its security (Sec-
tion 5). We conclude in Section 6.

2 Design and Implementation

We now give an overview over design choices regarding
the interface and the implementation of TRESOR.

2.1 Security Policy
The goal of TRESOR is to run AES entirely on the mi-
croprocessor without using main memory. This implies
that neither the secret key, nor the key schedule, nor any
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intermediate state should ever get into RAM. With this
restrictive policy, any attacks against main memory be-
come useless. But such an implementation cannot be
achieved simply in user space for two reasons:

• First of all, user space is affected by scheduling,
meaning that CPU registers are frequently swapped
out to RAM due to context switching. That is the
key and/or intermediate states of AES would reg-
ularly enter RAM – even though AES was imple-
mented to run solely on the microprocessor.

• Second, the key storage registers should not be ac-
cessible from unprivileged tasks. Otherwise a local
attacker could easily read out and overwrite the key.

Both problems can only be solved by implementing
TRESOR in kernel space. To suppress context switching,
we run AES atomically. The atomic section is entered
just before an input block is encrypted and left again
right afterwards. Therefore, we can use arbitrary CPU
registers to encrypt a block; we just have to reset them
before leaving the atomic section. This guarantees that
no sensitive data leaks into RAM by context switches.
Between the encryption of two blocks, scheduling and
context switches can take place as usual, so that the in-
teractivity of multitasking environments is not affected.

To restrain userland from reading out the secret key, it
is stored inside a CPU register set accessible only with
ring 0 privileges. Any attempt to read or write the debug
registers from other privilege levels generates a general-
protection exception [18]. This defeats attackers who
gained local user privileges and try to read out the key
on software layer.

Due to the necessity to implement TRESOR in sys-
tem space, we choose Linux for our solution because of
its open source kernel. But in general our approach is
portable to any x86 operating system.

2.2 Key management
AES uses a symmetric secret key for encryption and de-
cryption. We now show how this key is managed by
TRESOR.

Key storage

The first question regarding key management is: In
which registers is the key stored within the proces-
sor? We now discuss several requirements these registers
should meet.

Since the key registers are exclusively reserved over
the entire uptime of the system, they will not be avail-
able for their designated use. Hence, to preserve bi-
nary compatibility with as many existing applications as

possible, only seldom used registers are qualified to act
as cryptographic key storage. Frequently used registers,
like the general purpose registers (GPRs), are not an op-
tion since all computer programs need to read from and
write to those registers. The loss of registers occupied by
TRESOR should not break binary compatibility.

Another requirement is that the key registers should
not be readable from user space as this would allow any
unprivileged process to read or write the secret key. A
key stored in GPRs, for example, could not be hidden
from userland as the GPRs are an unprivileged resource,
available to all processes.

Last but not least, the register set must be large enough
to hold AES keys, i.e., 128 bits for AES-128, 192 bits
for AES-192, and 256 bits for AES-256, respectively. A
single register is too small to hold AES keys – on both
32- and 64-bit systems and thus, we have to use a set of
registers.

Summarizing, a register set must satisfy four require-
ments to act as cryptographic key storage. The key reg-
isters must be:

1. seldom used by everyday applications,
2. well compensable in software,
3. a privileged resource, and
4. large enough to store at least 128, better 256 bits.

After considering all x86 registers we chose the de-
bug registers, because they meet these requirements as
we explain now.

The debug register set comprises four breakpoint reg-
isters dr0 to dr3, one status register dr6 and one con-
trol register dr7. Depending on the operating mode,
dr4 and dr5 are reserved or just synonyms for dr6 and
dr7. Thus, the only registers which can be freely set to
any value, are the four breakpoint registers dr0 to dr3.
On 32-bit systems these have 4 × 32 = 128 bits in to-
tal, just enough to store the secret key of AES-128. But
on 64-bit systems these have 4 × 64 = 256 bits in total,
enough to store any of the defined AES key lengths 128,
192, and 256 bits. 1

The actual intention of breakpoint registers is to hold
hardware breakpoints and watchpoints – features which
are only used for debugging. And even for debugging
their functionality can be compensated quite well in soft-
ware, because software breakpoints can be used instead
of hardware breakpoints. TRESOR reserves all four
x86 breakpoint registers exclusively as key storage, i.e.,
TRESOR reduces the number of available breakpoint
registers for other applications from at most 4 to always

1Although the principle of TRESOR is applicable to 32-bit systems,
we recommend the usage of 64-bit CPUs to support full AES-256. In-
tel’s Core-i processors are such 64-bit CPUs; these processors are also
recommended because of their AES-NI support.
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0. Since the breakpoint registers may be in use anyhow,
by debuggers for example, unavailability of them can
happen regularly as well, and thus, applications should
be able to tolerate lack of them. This ensures binary com-
patibility with almost all user space programs.

Debug registers are a privileged resource of ring 0,
meaning that none of the user space applications running
in ring 3 can access debug registers directly. Any such
access is done via system calls, namely via ptrace.
As we show later, we patched the ptrace system call
to return -EBUSY whenever a breakpoint register is re-
quested, to let the user space know all of them are busy.

Key derivation

The key we store in debug registers is derived from a user
password by computing a SHA-256 based message di-
gest. To resist brute force attacks, we strengthen the key
by applying 2000 iterations of the SHA-256 algorithm.
The password consists of 8 to 53 printable characters2

and is read from the user early during boot by an ASCII
prompt, directly in kernel space. Only in kernel space
we have full control over side effects like scheduling and
context switching.

But how do we actually compute the key and get it into
debug registers without using RAM? The answer is, that
we do use RAM for this transaction – but only for a very
short time frame during system startup. Although there
is a predefined implementation of SHA-256 in the ker-
nel, we implemented our own variant to ensure that all
memory lines holding sensitive information, like parts of
the key or password, are erased after usage. That is, dur-
ing boot, password and key do enter RAM very briefly.
But immediately afterwards, the key is copied into debug
registers and all memory traces of it are overwritten. All
this happens before any userland process comes to life.

Once the key has been entered and the machine is up
and running, it cannot be changed from user space dur-
ing runtime as it would be impossible to do so without
polluting RAM. The password must only be re-read upon
ACPI wakeup, because during suspend mode, the CPU is
switched off and its context is copied into main memory.
Naturally, we bar the debug registers from being copied
into RAM, and hence, the key is lost during suspension
and the password must be re-entered. Again, this hap-
pens early in the wakeup process, directly in kernel space
before any user mode process is unfrozen.

On 64-bit systems, like Intel’s Core-i series, we copy
always 256 key bits into the debug registers and each
of the AES variants (AES-128, AES-192, and AES-256)
takes as many bits from the key storage as it needs. On

2 More characters do not add to security as it becomes easier to
attack the key itself rather than the password because 9553 � 2256.

multi-core processors, we copy the key bits into the de-
bug registers of all CPUs. Otherwise we constantly had
to ensure that encryption runs on the single CPU which
holds the key. In terms of performance such migration
steps are very costly and it is more efficient to duplicate
the AES key onto all CPUs once. Furthermore, this al-
lows us to run several TRESOR tasks in parallel.

2.3 AES implementation
The challenge we faced was implementing the AES algo-
rithm without using main memory. This implies we were
not allowed to store runtime variables on the stack, heap
or anywhere else in the data segment. Naturally, our im-
plementation was written in assembly language, because
neither the usage of debug registers as key storage nor
the avoidance of the data segment is supported by any
high-level language compiler.

Encryption algorithm

Storing only the secret key in CPU registers would al-
ready defeat common attacks on main memory, but fol-
lowing our security policy mentioned above, absolutely
no intermediate state of AES and its key schedule should
get into RAM. This aims to thwart future attacks and
cryptanalysis. In other words, after a plaintext block is
read from RAM, we write nothing but the scrambled out-
put block back. No valuable information about the AES
key or state is visible in RAM at any time.

From earlier experiments with AESSE [24], we were
concerned about the performance penalty of encryption
methods implemented without RAM. We therefore in-
vestigated the utilization of the AES-NI instruction set
of new Intel processors [31]. AES-NI allows for hard-
ware accelerated implementations of AES by providing
the instructions aesenc, aesenclast, aesdec, and
aesdeclast. Each of them performs an entire AES
round with a single instruction, exclusively on the pro-
cessor without involving RAM. Hence, they are compat-
ible with our design.

Overall, utilizing AES-NI has several advantages:

• The code is clear and short.
• It runs without RAM usage.
• It is highly efficient.

The four AES instructions mentioned above work on
two operands, the AES state and an AES round key; the
round key is used to scramble the state. Instead of using
memory locations for these operands, the AES instruc-
tions work on SSE registers. On 64-bit systems there
are sixteen 128-bit SSE registers xmm0 to xmm15. AES
states and AES round keys exactly fit into one SSE reg-
ister as they encompass 128 bits, too.
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pxor %xmm0, %xmm15
aesenc %xmm1, %xmm15
aesenc %xmm2, %xmm15
aesenc %xmm3, %xmm15
aesenc %xmm4, %xmm15
aesenc %xmm5, %xmm15
aesenc %xmm6, %xmm15
aesenc %xmm7, %xmm15
aesenc %xmm8, %xmm15
aesenc %xmm9, %xmm15
aesenclast %xmm10,%xmm15

Figure 1: AES-128 encryption using AES-NI

Figure 1 shows assembly code of the AES-128 encryp-
tion algorithm. Each line performs one of the ten encryp-
tion rounds. The second parameter (xmm15) represents
the AES state and the first ten (xmm1 to xmm10) the AES
round keys. Writing a plaintext block into xmm15, the
secret key into xmm0, and the round keys into their re-
spective registers xmm1 to xmm10, these ten lines of as-
sembly code suffice to generate an AES encrypted output
block in xmm15.

The decryption algorithm of AES-128 basically looks
the same, just utilizing aesdec instead of aesenc and
applying the round keys in reverse order. The imple-
mentations of AES-192 and AES-256 basically look the
same, too, just performing twelve or 14 rounds instead of
ten.

Round key generation

The difficulty to implement AES completely within the
microprocessor stems from the structure of the AES al-
gorithm. As shown in Figure 1, encryption works with
round keys which we assumed to be stored in xmm1 to
xmm10. In conventional AES implementations, these
round keys are calculated once and then stored inside
RAM over the entire lifetime of the system. Only when
needed, they are copied from RAM into SSE registers to
be used in combination with AES-NI.

In TRESOR we cannot calculate the AES key sched-
ule beforehand and store it inside RAM as this would
obviously violate our security policy. On the other hand,
we cannot store the entire key schedule in CPU registers
either, because debug registers are too small to hold it and
we do not want to occupy further registers for TRESOR.
Consequently, we have to use an on-the-fly key schedule
that recalculates the round keys each time when enter-
ing the atomic section. This means the round keys must
be recalculated for each input block. Inside the atomic
section we can safely store the round keys inside SSE
registers as they are known not to be swapped out during

this period.
Fortunately, the AES-NI extensions comprise an in-

struction for hardware accelerated round key generation,
namely aeskeygenassist. Apparently, recomput-
ing the entire key schedule again and again is a signifi-
cant performance drawback compared to standard imple-
mentations of AES. By using this specialized instruction,
key generation is relatively efficient, as we show later in
this paper.

.macro key_schedule last next rcon
pxor %xmm14,%xmm14
movdqu \last,\next
shufps $0x1f,\next,%xmm14
pxor %xmm14,\next
shufps $0x8c,\next,%xmm14
pxor %xmm14,\next
aeskeygenassist $\rcon,\last,%xmm14
shufps $0xff,%xmm14,%xmm14
pxor %xmm14,\next

.endm

Figure 2: AES-128 round key generation

Figure 2 lists assembly code to generate the next
round key of AES-128. As each round key computa-
tion is based on slightly different parameters, we de-
fine a macro called key schedule awaiting these pa-
rameters: last is an SSE register containing the pre-
vious round key, next is one that is free to store
the next round key and rcon is an immediate byte,
the round constant. Inside this macro xmm14 is uti-
lized as temporary helping register. To generate the
ten round keys of AES-128, key schedule has to
be called ten times: key schedule %xmm0 %xmm1
0x1, key schedule %xmm1 %xmm2 0x2, and so
on. Initially the secret key has to be copied from debug
registers into xmm0.3

Using AES-NI it is more complex to generate round
keys than to actually scramble or unscramble blocks, be-
cause with aeskeygenassist Intel provides an in-
struction to assist the programmer in key generation, but
none to perform it autonomously. We conjecture that
this is because key generation of the three AES variants
AES-128, AES-192, and AES-256 differs slightly (for
details see the original standard on AES [12]).

2.4 Kernel patch

Many operating system issues have to be solved when
implementing encryption solely on processor registers.

3A full source code listing including all steps can be found in Ap-
pendix A.1.
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As mentioned above, we have to patch the OS kernel for
two reasons: First, we have to run parts of AES atomi-
cally in order to ensure that no intermediate state leaks
into memory during context switches. Second, only in
kernel space we can protect the debug registers from be-
ing overwritten or read out by unprivileged user space
threads. We chose the most recent Linux kernel at that
time (version 2.6.36) to implement these changes.

Key protection

For the security of TRESOR it is essential to protect the
key storage against malicious user access. Even if no lo-
cal attacker would read the debug registers on purpose,
the risk remains that a debugger is started accidentally
and pollutes the key storage. With a disk encryption sys-
tem being active in parallel, such a situation would im-
mediately lead to data corruption. Hence, the kernel must
be patched in a way that it denies any attempt to access
debug registers from user space.

int ptrace_set_debugreg
(tsk_struct *t,int n,long v)

{
thread_struct *thread = &(t->thread);
int rc = 0;
if (n == 4 || n == 5)

return -EIO;
+ #ifdef CONFIG_CRYPTO_TRESOR
+ else if (n == 6 || n == 7)
+ return -EPERM;
+ else
+ return -EBUSY;
+ #endif

if (n == 6) {
thread->debugreg6 = v;
goto ret_path;

}
if (n < HBP_NUM) {

rc=ptrace_set_breakpoint_addr(t,n,v);
if (rc) return rc;

}
if (n == 7) {

rc=ptrace_write_dr7(t, v);
if (!rc) thread->ptrace_dr7 = v;

}
ret_path: return rc;

}

Figure 3: Patched setter for debug registers

The debug registers can only be accessed from priv-
ilege level 0, i.e., from kernel space but not from user
space. Only the ptrace system call allows user space
applications like GDB to read from and write to them in
order to debug a traced child. This makes it effectively
possible to control access to debug registers centrally,
i.e., on system call level. Running an unpatched Linux
kernel, user space threads can access debug registers via

ptrace; running a TRESOR patched kernel, we filter
this access.

Figures 3 and 4 list patches we applied to
functions of the ptrace implementation in
/arch/x86/kernel/ptrace.c: ptrace set
debugreg and ptrace get debugreg. The first
patch returns -EBUSY whenever the user space attempts
to write into breakpoint registers and -EPERM whenever
it tries to write into debug control registers. The second
patch returns just 0 for any read access to debug
registers.

long ptrace_get_debugreg(tsk_struct *t, int n)
{

thread_struct *thread = &(t->thread);
unsigned long val = 0;

+ #ifndef CONFIG_CRYPTO_TRESOR
if (n < HBP_NUM) {

struct perf_event *bp;
bp = thread->ptrace_bps[n];
if (!bp) return 0;
val = bp->hw.info.address;

}
else if (n == 6)

val = thread->debugreg6;
else if (n == 7)

val = thread->ptrace_dr7;
+ #endif

return val;
}

Figure 4: Patched getter for debug registers

Additionally, we patched elementary functions in
/arch/x86/include/asm/processor.h to pre-
vent kernel internals other than ours from accessing
the debug registers: native set debugreg and
native get debugreg. While the ptrace patches
prevent user space threads from accessing debug regis-
ters, these patches prevent the kernel itself from access-
ing them, e.g., during context switching and ACPI sus-
pend.

Atomicity

The operating system regularly performs context
switches where processor contents are written out to
main memory. When TRESOR is active, the CPU con-
text encompasses sensitive information because our im-
plementation uses SSE and general purpose registers to
store round keys and intermediate states. These registers
are not holding sensitive data persistently, like the debug
registers do, but they hold them temporarily for the pe-
riod of encrypting one block. Thus, although our AES
implementation runs solely on registers and although we
have patched the kernel to protect debug registers, sen-
sitive data may still be written to RAM whenever the

6



scheduler decides to preempt AES in the middle of an
encryption phase.

We solved this challenge by making the encryption of
individual blocks atomic. Resetting the contents of SSE
and general purpose registers before leaving the atomic
section is an effective method to keep their contents away
from context switching. Our atomicity does not only
concern scheduling, but interrupt handling, too, because
interrupt handlers, spontaneously called by the hardware,
can write the CPU context into RAM as well.

Hence, to set up an atomic section we have to disable
interrupts. On multi-core systems it is sufficient to dis-
able interrupts locally, i.e., on the CPU the encryption
task actually takes place on. Other CPUs can proceed
with their tasks as a context switch on one CPU does not
affect registers of another.

preempt_disable();
local_irq_save(*irq_flags);
// ... (encrypt block)
local_irq_restore(*irq_flags);
preempt_enable();

Figure 5: AES block encryption runs atomically

Figure 5 illustrates how to set up an atomic sec-
tion in the Linux kernel that meets our needs. First
preempt disable is called to pause kernel pre-
emption, meaning that running kernel code cannot
be interrupted by scheduling anymore. Second,
local irq save is called to save the local IRQ
state and to disable interrupts locally. Next we are
safe to encrypt an AES block as we are inside the
atomic section. SSE and general purpose registers
are only allowed to contain sensitive data within this
section and must be reset before it is left. Once
they are reset, local interrupts can be re-enabled (by
local irq restore) and kernel preemption can be
continued (by preempt enable).

Crypto API

We integrated TRESOR into the Linux kernel Crypto-
API, an interface for cryptographic ciphers, hash func-
tions and compression algorithms. Besides a coherent
design for cryptographic primitives, the Crypto-API pro-
vides us with several advantages:

• It allows ciphers to be dynamically (un)loaded as
kernel modules. We left support for the standard
AES module untouched and inserted TRESOR as a
completely new cipher module. This enables end
users to choose between TRESOR and standard
AES, to run them in parallel, to compare their per-
formance, etc.

• We do not have to implement cipher modes of op-
eration, like ECB and CBC, ourselves since the
Crypto-API handles them automatically. We have
to provide the code to encrypt a single input block
only and encrypting larger messages is done by the
API.

• Existing software, most notably the disk encryption
solution dm-crypt, is based on the Crypto-API and
open to new cipher modules. That is, we do not have
to patch dm-crypt to support TRESOR, but it is sup-
ported out-of-the-box. (Only third party encryption
systems which do not rely on the Crypto-API, like
TrueCrypt, cannot benefit from TRESOR without
further ado.)

All in all, integrating TRESOR into the Crypto-API
simplifies design. However, there is also a little draw-
back of the Crypto-API: It comes with its own key man-
agement which is too insecure for our security policy
because it stores keys and key schedules inside RAM.
To overcome this difficulty without changing the Crypto-
API, we pass on a dummy key and look after the real key
ourselves. Setting up an encryption system, the end user
can pass on an arbitrary bit sequence as dummy key, but
for apparent reasons it should not be equal to the real key.

3 Compatibility

We evaluated TRESOR regarding its compatibility with
existing software (Section 3.1) and hardware (Sec-
tion 3.2).

3.1 Software compatibility
Running on a 64-bit CPU, TRESOR is compatible with
all three variants of AES, i.e., with AES-128, AES-192,
and AES-256. To verify that no mistake slipped into
the implementation we show its compatibility to standard
AES: First of all we used official test vectors as defined in
FIPS-197 [12]. TRESOR is integrated into the Crypto-
API in such a way that a test manager proves its cor-
rectness based on these vectors each time the TRESOR
module is loaded. Second, we scrambled a partition
with TRESOR, unscrambled it with standard AES and
vice versa. Along with structured data like text files and
the filesystem itself, we created large random files and
compared both plaintext versions, i.e., before scrambling
with AES and after unscrambling with TRESOR. We
compared these files and found them to be equal. This in-
dicated the correctness of our implementation – not only
in terms of single, predefined blocks (as test vectors do)
but also regarding a great amount of random data.

Thanks to the Crypto-API, TRESOR is compatible
with all kernel and user space applications relying on
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> cryptsetup create tr /dev/sdb1 -c tresor
Enter passphrase: ******

> mkfs.ext2 /dev/mapper/tr
> mount /dev/mapper/tr /media/tresor/

Figure 6: Create TRESOR partition using cryptsetup

this API. Among others these are the kernel-based disk
encryption solution dm-crypt and all its user space fron-
tends, e.g., cryptsetup and cryptmount. Figure 6
lists shell instructions to set up a TRESOR encrypted par-
tition on the device /dev/sdb1. The password can be
any arbitrary string as it is only used to create the dummy
key; it has no effect on the actual encryption process.
Consequently, a partition can be encrypted with the pass-
word “foobar” and decrypted with the password “magic”
(as long as the TRESOR key stays the same).

TRESOR is expected to be compatible with all Linux
distributions, meaning that all prepackaged user mode
binaries are expected to run on top of the TRESOR ker-
nel. For “normal” user mode applications like a shell,
the desktop environment, your web browser, etc., this is
pretty much self-evident – for a debugger it is not. But
even for debuggers like GDB, binary compatibility is not
broken because access to debug registers is handled via
ptrace and we intercept this system call to inform the
user space that all breakpoint registers are busy – a sit-
uation which could occur without TRESOR as well. To
be more precise, we have to distinguish breakpoints and
watchpoints:

1. Breakpoints: Calling break, GDB does not use
hardware breakpoints by default. Instead it uses
software breakpoints because their performance
penalty is negligible and they can be defined in
any quantity. Hardware breakpoints must explic-
itly be invoked by calling hbreak which fails on
TRESOR with “Couldn’t write debug register: De-
vice or resource busy.”

2. Watchpoints: Unlike breakpoints, watchpoints can-
not be implemented well in software and run about
a hundred times slower than normal execution [33].
Thus, GDB sets hardware watchpoints by default.
Calling watch fails on TRESOR with “Couldn’t
write debug register: Device or resource busy.”
as well. To use software watchpoints instead,
set can-use-hw-watchpoints 0 must be
run before.

Admittedly, not being able to use hardware break-
points may be a reasonable drawback for malware ana-
lysts and software reverse engineers. Here we must limit
the target audience to end-users and “normal” develop-
ers.

3.2 Hardware compatibility
TRESOR is only compatible with real hardware. Run-
ning TRESOR as guest inside a virtual machine is gen-
erally insecure as the guest’s registers are stored in the
host’s main memory.

On hardware level, TRESOR’s compatibility is fur-
ther restricted to the x86 architecture. It is possible to
run AES entirely on the microprocessor, even without
an AES-NI instruction set (given that your CPU sup-
ports at least SSE2, which is the case for Pentium 4 and
later CPUs). But in order to run full AES efficiently,
processor compatibility is restricted to Intel’s Core-i se-
ries at present. More clearly, we recommend the usage
of 64-bit CPUs supporting the AES-NI instruction set.
More and more processors will fall into this category in
the future. Intel supports AES-NI since its mircoarchi-
tecture code-named Westmere. AMD announced to sup-
port AES-NI starting with its Bulldozer core; processors
based on this core are going to be released in 2011 [20].
All in all, many, if not most, upcoming x86 CPUs will
support AES-NI.

4 Performance

We present performance measurements running a 64-bit
Linux on an Intel Core i7-620M. The two performance
aspects we evaluated are encryption speed and system
reactivity. The latter may be affected because we halt the
scheduler and run AES atomically.

4.1 Encryption benchmarks
We expected a performance penalty of TRESOR because
of its recomputation of the key schedule for each input
block – a substantial computing overhead compared to
standard implementations which calculate the round keys
only once. As shown in Section 2.3, round key gener-
ation is a heavy operation compared to the rest of the
AES algorithm; and we are running through the entire
key schedule for each 128-bit chunk, even when encrypt-
ing megabytes of data.

To measure the throughput of TRESOR in practice,
we performed several disk encryption benchmarks. For
disk benchmarking we mounted four partitions, one en-
crypted with TRESOR, one encrypted with generic AES,
one encrypted with common AES-NI, and a plain one
that was not encrypted at all. We mounted all of them
with the sync option, meaning that I/O to the filesys-
tem is done synchronously. We did this to avoid unre-
alistically high speed measurements that arise from disk
caching. Caching would falsify our results because en-
cryption does not take place before the data is actually
going to disk.
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Key Generic AES AES-NI TRESOR Plain
128 14.67 15.63 17.04
192 14.89 15.40 16.47 47.32
256 15.04 15.92 15.77

Table 1: dd throughput (in MB/s)

Table 1 lists average values over 24 dd runs, each writ-
ing a 400M file.4 TRESOR-128 is faster than TRESOR-
192 which again is faster than TRESOR-256, because
with an increasing key size, more rounds are performed
(10, 12 and 14, respectively) and thus, more round keys
must be calculated on-the-fly.

The table also shows that TRESOR performs well in
comparison to conventional AES variants: TRESOR is
faster than the generic implementation of AES and even
slightly faster than common AES-NI implementations.
We were surprised by this ourselves and double-checked
the results – once with the AES-NI module shipped with
Linux 2.6.36 and additionally with a self-written vari-
ant. Currently, we have no good explanation for this ef-
fect. One possibility is that TRESOR gains advantage
over other threads due to its atomic sections. Another
possibility is that linear key generation on registers per-
forms generally better than fetching round keys one after
another from RAM.

Generic AES AES-NI TRESOR Plain
read 2.10 2.54 2.80 7.95

write 6.92 8.39 9.26 26.23

Table 2: Postmark benchmarks for AES-256 (in MB/s)

Besides measuring the throughput of dd, we uti-
lized the disk drive benchmarking utility Postmark [19].
Postmark creates, reads, changes, and deletes many
small files rather than just writing a single large file.
As shown in Table 2, TRESOR has an advantage over
generic AES and common AES-NI here as well.

Additionally, to measure the exact time needed to en-
crypt a single block, we wrote a kernel module named
tresor-test. Inserting this module, diverse perfor-
mance tests can be run for AES-128, AES-192, and
AES-256. Findings from this module confirm our as-
sumption that TRESOR runs faster than standard AES.
For example, with TRESOR an AES-128 block is en-
crypted in about 440 nanoseconds (ns), while standard
AES needs about 538 ns (but these values fluctuate heav-
ily in practice, by more than 100%, and thus, we consider
disk benchmarks as more reliable).

Overall, TRESOR involves no performance penalty

4The underlying series of tests can be found in Appendix A.2.

and the impact of an on-the-fly round key generation is
negligible.

4.2 Interactivity benchmarks

Performing heavy TRESOR operations in background,
the OS reactivity to interactive events may be affected
because TRESOR disables interrupts in order to run en-
cryption atomically. In a desktop environment, for in-
stance, mouse and keyboard events are raising interrupts
which are now delayed until the end of a TRESOR oper-
ation. Furthermore, automatic scheduling is disabled for
this period.

Hence, to preserve the reactivity of the system, we set
the scope of atomicity to the smallest reasonable unit,
namely to the encryption of a single 128-bit input block.
Between processing two 128-bit blocks, interrupt pro-
cessing and scheduling can take place as usual. Thereby
interactivity is hardly affected because – as mentioned in
the last section – it takes only 500 ns on average to en-
crypt a single block. Assuming it never takes more than
1000 ns, interrupt handling and scheduling can take place
each microsecond if needed. But only delays greater
than 150 milliseconds are perceptible by humans [10]
and Linux scheduling slices are commonly between 50
and 200 milliseconds as well.

Crypto Add. Load AVG MAX STD
Generic None 1.40 34.2 4.96
AES X 6.73 43.0 11.30

Compile 26.80 64.7 30.30
TRESOR None 0.93 37.3 3.99

X 6.65 44.3 11.30
Compile 26.40 79.2 30.30

Plain None 0.14 26.2 1.51
X 0.40 23.8 2.34
Compile 0.74 32.4 3.47

Table 3: Interbench (latencies in ms)

To prove that interactivity is indeed not affected in
practice, we draw upon measurements from the bench-
marking utility Interbench [9]. We used Interbench to
simulate a video player trying to get the CPU 60 times
per second, i.e., simulating 60 fps. Table 3 lists a se-
lection of interactivity benchmarks running on an Intel
Core i7-620M under different loads.5 We disabled all but
the first CPU core to get a more convincing test set-up.
As shown by the table, latencies introduced by TRESOR
do not differ much from those introduced by generic
AES: Average latencies are slightly better for TRESOR,

5Full benchmarks are listed in Appendix A.3.
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maximum latencies are slightly better for generic AES,
and standard deviations are almost the same.

Overall, the atomic sections introduced with TRESOR
are too short to have any measurable effect to the reac-
tivity of the Linux kernel.

5 Security

Although it performs quite well, the ultimately decisive
factor to employ TRESOR should not be its performance
but its security qualities. Therefore we prove TRESOR’s
resistance against attacks on debug registers and, above
all, attacks on main memory.

5.1 Memory attacks

We have implemented AES in a way that nothing but
the scrambled output block is actively written into main
memory. However, this alone does not guarantee the se-
curity of TRESOR, because sensitive data may be copied
passively into RAM by side effects of the OS or hard-
ware, such as interrupt handling, scheduling, swapping,
ACPI suspend modes, etc. For example, we cannot di-
rectly exclude the possibility that there is a piece of ker-
nel code reading from debug registers in assembly rather
than calling our patched native get debugreg in
C. To minimize this risk, we performed extensive tests
observing the main memory of a TRESOR system at run-
time.

The problem we faced was how to observe main
memory reliably and efficiently. Just reading from
/proc/kcore or /dev/mem in a running Linux sys-
tem was not an option as the reading process itself in-
vokes kernel code which may falsify the result. On the
other hand, performing real attacks on main memory, like
cold boot attacks, to read out what is physically left in
RAM is very time consuming. Thus, we decided to run
TRESOR as guest inside a virtual machine and to exam-
ine its “physical” memory from the host.

As VM we chose Qemu/KVM [11, 2] because it is
lightweight, has a debug console and – last but not least
– is compatible with TRESOR (many other VMs are not;
VirtualBox [25], for instance, does not support AES-NI).
The debug console of Qemu allows to read CPU regis-
ters and to take physical memory dumps in a comfortable
way.

We started to browse the VM memory of an ac-
tive disk encryption system with key recovery tools like
AESKeyFind [15] and Interrogate [7]. As was expected,
these tools successfully reconstructed the key of standard
AES but not that of TRESOR. However, this alone is not
a meaningful result because AES key recovery is com-
monly based on the AES key schedule (since the secret

key itself has no structure; it is just a random bit se-
quence). As shown in Section 2.3, key schedules are not
persistently stored under TRESOR and thus, key recov-
ery must fail – it would even fail if the key actually leaks
to RAM.

Unlike real attackers, we are aware of the secret key.
We took advantage of this knowledge and searched for
the key bit pattern. Overall, we could find a bit sequence
matching the key of generic AES but none matching that
of TRESOR. However, even these findings do not nec-
essarily imply that the key is not present in RAM, be-
cause it could be stored discontinuously. This is not even
unlikely, because inside the CPU it is stored discontinu-
ously as well (in four breakpoint registers, 64-bit each).
Context switching may store each register separately, for
example.

Consequently, we had to perform more meaningful
tests taking fractions of the key into account. And thus,
we sought after the longest match of the key pattern and
its reverse and any parts of those, in little and in big en-
dian. We did not observe any case under TRESOR where
the longest match exceeded three bytes. And matches
of no more than three bytes can be explained purely by
probabilities (as also attested by searching for random bit
sequences instead of real key fractions).

This further raised our confidence that neither the se-
cret key nor any part of it was in RAM – at the time we
took the memory dump. This leads us to the immediately
next problem: How can we ensure that main memory
does not hold any part of the key at other times? In prin-
ciple, this question is impossible to answer fully because
of the intricacies of information leakage. In practice, it is
hardly feasible to put the Linux kernel into all its possible
states and to take a memory dump at the precise moment.

We tried to analyze at least the in our view most rele-
vant states concerning swapping and suspend. Both are
of special interest for TRESOR as they swap CPU reg-
isters into RAM or even further onto disk. We induced
swapping by creating large data structures in RAM. Once
Linux began to swap data onto disk we took a mem-
ory dump and a disk dump and analyzed both with
the methods mentioned before. Parts of the secret key
could neither be traced on disk nor in RAM. (Also for
generic AES, we never found sensitive information on
disk because kernel space memory is not swappable un-
der Linux.)

To examine TRESOR’s behavior for ACPI S3 (sus-
pend to RAM) we performed tests in Qemu and addi-
tionally on real hardware because Qemu fails to wake up
after S3. ACPI S4 (suspend to disk) on the other hand
works just fine under Qemu. Our findings indicate that
knowledge about the secret key is lost during both sus-
pend modes, because again, neither in RAM nor on disk
we could trace the key. As the CPU is switched off dur-
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Active AES Generic TRESOR None
Kernel state normal normal swapping suspend normal

Key recovery (AESKeyFind) yes no no no no
Dummy key matches – yes yes* yes –

Real key matches yes no no no no
Longest match of real key (bytes) 32 3 3 3 3

*) found in RAM, not on disk

Table 4: AES-256 key tracing, an overview

ing suspension, the key is irretrievably lost. We also ver-
ified this by looking into the CPU registers before, dur-
ing, and after suspension. After suspension, the CPU
context is restored completely except for the debug reg-
isters. (Therefore, TRESOR prompts the user to re-enter
the password upon wakeup).

Table 4 summarizes our findings of tracing an
AES-256 key in RAM and disk storage. Only using
Linux’ generic implementation of AES, the secret key
can be recovered by AESKeyFind and Interrogate. Us-
ing TRESOR, or no disk encryption system at all, no
key can be recovered. Indeed, we can trace the dummy
key of TRESOR as it is stored in RAM by the Crypto-
API, but the dummy key is of absolutely no importance.
AESKeyFind cannot even recover the dummy key be-
cause no key schedule of it is ever computed or stored
in RAM. The full 256-bit pattern of the real key can
only be traced running generic AES. Under TRESOR,
the longest sequence matching the real key has no more
than three bytes in all kernel states we tested.

Concluding, we searched for the secret AES key with
different methods in different situations and neither the
entire key, nor any parts of it, could ever be traced in
RAM. While this proves that we are successfully keep-
ing the key away from RAM in general, we have no per-
suasive argument that the key never enters RAM. Admit-
tedly, it is unlikely that a piece of code other than context
switching swaps debug registers into RAM, but it can-
not be ruled out. Anyhow, even for the hypothetical case
where such a piece of code exists, we are quite confident
that we can patch it. Hence, the feasibility of a system
like TRESOR and its fundamental idea to store secret
keys in debug registers is not at risk.

5.2 Processor attacks
Now that the key is stored inside the CPU and never en-
ters RAM, attackers may target processor registers rather
than RAM. Basically there are two ways to attack pro-
cessor registers: on software and on hardware layer.

On software layer we distinguish attackers who could
gain root access and attackers with an unprivileged ac-
cess. Naturally, for attackers with standard user privi-

leges there should be no way to read out the key. As de-
bug registers are only accessible from kernel space and
as the only way for standard users to execute kernel code
are system calls, unprivileged attackers are successfully
defeated by the ptrace patch. We verified this with a
user space utility making ptrace calls to read out de-
bug registers; as was expected, only 0 is returned to user
space. Overwriting the key via ptrace is not possible
either; here -EBUSY (dr0 to dr3) and -EPERM (dr6 and
dr7) are returned.

For root the situation is different, because for root
there are more ways to execute kernel code: via mod-
ules (LKMs) and via /dev/kmem. If Linux is compiled
with LKM or KMEM support, root can insert arbitrary
code into a running kernel and execute it with ring 0 priv-
ileges. To demonstrate this for LKMs, we have created a
small malicious module reading out the debug registers
and writing them into the kernel log file. A similar attack
is possible by writing to /dev/kmem. Thus, if com-
piled with LKM or KMEM support, root can gain full
access to the TRESOR key. On the other hand, if com-
piled without LKM and KMEM support, even root has
no ability to access the secret key – an advantage over
conventional disk encryption systems where root can al-
ways read and write the secret key from RAM. Running
TRESOR without LKM and KMEM support, the key can
be set once upon boot but never be retrieved or manipu-
lated while the system is running.

Besides the software layer, the hardware layer is crit-
ical. With physical access to the machine, new possibil-
ities open up for the attacker. First of all, for advanced
electrical engineers it may be possible to read out regis-
ters of a running CPU with an oscilloscope, by measur-
ing the electromagnetic field around the CPU or what-
ever else. But we are not aware of any successful attacks
of this type.

Instead, we focus on a simpler scenario: it may be
possible to reboot the machine with a malicious boot de-
vice reading out what is left in CPU registers (similar
to cold boot attacks [14]). Performing such an attack,
the interesting question is whether CPU registers are re-
set to zero upon reboot or keep their contents until they
are used otherwise. Besides the BIOS version and CPU
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reinitialization code, the answer may depend on whether
the machine was rebooted by a software interrupt (e.g.,
by pressing CTRL-ALT-DEL) or by pressing a hardware
reset button. While the former method keeps the CPU on
power, the latter switches it off briefly.

To investigate the practical impact of such an at-
tack, we developed a malicious boot device called Cobra
(Cold Boot Register Attack). First tested on virtual ma-
chines, Cobra revealed that debug registers are reset on
hardware reboots but not on software reboots. On soft-
ware reboots, Cobra was able to restore debug regis-
ters; all tested virtual machines (Qemu, Bochs, VMware
and VirtualBox) showed this behavior. If real hardware
showed this behavior as well, the consequences would
be fatal. It would be an ease to read out the secret key
and hence, TRESOR would be practically useless. For-
tunately, it turned out that all VMs have a little imple-
mentation flaw regarding this attack. On real hardware,
debug registers are always reset to zero – also upon soft-
ware reboots. We verified this by testing different ma-
chines with different processors and BIOS versions. Ta-
ble 5 gives an overview of our findings.

BIOS Soft Reboot Hard Reset
Athlon 64 AMI - -
Pentium 4 Phoenix - -
Pentium M First - -
Celeron M Phoenix - -
Core2 Duo First - -
Core i5 Phoenix - -
Core i7 Lenovo - -
Qemu Bochs x -
Bochs Bochs x -
VMware Phoenix x -
VirtualBox N/A x -

[x] = vulnerable [-] = not vulnerable

Table 5: Cobra (Cold Boot Register Attack)

Overall, we argue that TRESOR is secure against
local, unprivileged attacks in any case. Beyond that,
TRESOR is even secure against attackers who could gain
root access, if the kernel is compiled without LKM and
KMEM support. On hardware level, TRESOR with-
stands cold boot attacks against both main memory and
CPU registers. This does only hold for real hardware,
but running TRESOR inside a virtual machine is insecure
anyhow as register contents of the guest are simulated in
the host’s main memory.

5.3 Side channel attacks
Last, we want to mention briefly that TRESOR is resis-
tant to timing attacks [26]. This is not the achievement of

ourselves but that of Intel, or, to be more precise, that of
AES-NI. Intel states: “Beyond improving performance,
the AES instructions provide important security bene-
fits. By running in data-independent time and not us-
ing tables, they help in eliminating the major timing and
cache-based attacks that threaten table-based software
implementations of AES.” [31] Based on this statement
and the fact that there are no input dependent branches in
the control flow of our code, we argue that TRESOR is
resistant to side channel attacks, too.

6 Conclusions and Future Work

In the face of known attacks against main memory (above
all, DMA and cold boot attacks) we consider RAM as too
insecure to guarantee the confidentiality of secret disk
encryption keys today. Thus we presented TRESOR, an
approach to prevent main memory attacks against AES
by implementing the encryption algorithm and its key
management entirely on the microprocessor, solely using
processor registers. We first explained important design
choices of TRESOR and the key aspects of its imple-
mentation. We then discussed how we integrated it into
the Linux kernel. Eventually we showed that it performs
well in comparison to the generic version of AES and,
most importantly, that it satisfies our security policy.

6.1 Conclusions

Our primary security goal was to prevent tracing of the
secret key in volatile memory, effectively making attacks
on main memory pointless. Despite considerable effort,
we were not able to retrieve the key in RAM. Therefore,
we are confident that TRESOR is a substantial improve-
ment compared to conventional disk encryption systems.
As we took perfectly intact memory images of a run-
ning TRESOR VM and knew the key beforehand, we
had an advantage over real attackers trying to retrieve an
unknown key. This strengthens our test results, because
if we cannot retrieve the known key in an unscathed im-
age, it is even more unlikely that an attacker can retrieve
an unknown key in a partially damaged image.

Another security goal was, of course, not to intro-
duce flaws which are not present in ordinary encryp-
tion systems. Therefore, we showed that TRESOR is
safe against local attacks on the software layer as well
as on the hardware layer. Interestingly, if the kernel is
compiled without LKM and KMEM support, there is no
(known) way to retrieve the secret key even though privi-
leged root access is given – again, a substantial improve-
ment compared to conventional disk encryption systems.

Besides evaluating security aspects, we collected
performance benchmarks, revealing that TRESOR is
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slightly faster than common versions of AES. Further-
more, we showed that the reactivity of Linux is not af-
fected by the atomicity of encryption and decryption.

Summarizing, TRESOR runs encryption securely out-
side RAM and thereby it achieves a higher security than
any disk encryption system we know – without losing
performance or compatibility with existing applications.
To conclude, it is possible to treat RAM as untrusted and
to store secret keys in a safe place of today’s x86 standard
architecture.

6.2 Future Work

Currently, TRESOR allows only to store a single, static
key, because the debug registers cannot hold a second
one. Future versions of TRESOR may keep multiple disk
encryption keys securely inside RAM by srambling them
with a master key, like in Loop-Amnesia [27].

This idea may be extended to an even broader use case
in the future: Further AES keys to be used in conjunction
with IPSec or SSL, i.e., to be used in conjunction with the
userland, could be encrypted with the TRESOR master
key and stored securely inside RAM. Session keys could
be set and removed dynamically in any quantity. Using
such a session key to encrypt an input block, the user
space application would have to make a special system
call that: 1) invokes TRESOR to read and decrypt the de-
sired key and 2) lets TRESOR use the recently decrypted
key to encrypt the input block. Between these steps, the
session key may not leave the processor, meaning both
steps need to happen inside the same atomic section. As
a downside, such a system would require user space sup-
port and would induce a performance penalty.

Another future task is to move the secret key into reg-
isters which are even less frequently used than the debug
registers, e.g., into machine specific registers (MSRs).
As a benefit, by using MSRs as cryptographic key stor-
age, debuggers would be able to use hardware break-
points and watchpoints again. However, the best way
to get round this problem would be the introduction of
a special key register into future versions of AES-NI by
Intel or AMD.

Last, we want to investigate the possibility of imple-
menting a TRESOR like system as third party applica-
tion for Windows.
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A Appendix

A.1 AES-128 Source Code

.set rstate, %xmm0 // AES state

.set rhelp, %xmm1 // helping reg

.set rk0, %xmm2 // round key 0

.set rk1, %xmm3 // round key 1

.set rk2, %xmm4 // round key 2

.set rk3, %xmm5 // round key 3

.set rk4, %xmm6 // round key 4

.set rk5, %xmm7 // round key 5

.set rk6, %xmm8 // round key 6

.set rk7, %xmm9 // round key 7

.set rk8, %xmm10 // round key 8

.set rk9, %xmm11 // round key 9

.set rk10, %xmm12 // round key 10

.macro key_schedule r0 r1 rcon
pxor rhelp,rhelp
movdqu \r0,\r1
shufps $0x1f,\r1,rhelp
pxor rhelp,\r1
shufps $0x8c,\r1,rhelp
pxor rhelp,\r1
aeskeygenassist $\rcon,\r0,rhelp
shufps $0xff,rhelp,rhelp
pxor rhelp,\r1

.endm

movq %db0,%rax
movq %rax,\r0
movq %db1,%rax
movq %rax,rhelp
shufps $0x44,rhelp,\r0
pxor rk0,rstate

key_schedule rk0 rk1 0x1
key_schedule rk1 rk2 0x2
key_schedule rk2 rk3 0x4
key_schedule rk3 rk4 0x8
key_schedule rk4 rk5 0x10
key_schedule rk5 rk6 0x20
key_schedule rk6 rk7 0x40
key_schedule rk7 rk8 0x80
key_schedule rk8 rk9 0x1b
key_schedule rk9 rk10 0x36
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aesenc rk1,rstate
aesenc rk2,rstate
aesenc rk3,rstate
aesenc rk4,rstate
aesenc rk5,rstate
aesenc rk6,rstate
aesenc rk7,rstate
aesenc rk8,rstate
aesenc rk9,rstate
aesenclast rk10,rstate

A.2 dd Benchmarks for AES-192

--- Plain
410 MB copied, 6.30053 s, 65.0 MB/s
410 MB copied, 6.93762 s, 59.0 MB/s
410 MB copied, 10.0737 s, 40.7 MB/s
410 MB copied, 9.66396 s, 42.4 MB/s
410 MB copied, 8.20149 s, 49.9 MB/s
410 MB copied, 7.42723 s, 55.1 MB/s
410 MB copied, 7.16408 s, 57.2 MB/s
410 MB copied, 8.54818 s, 47.9 MB/s
410 MB copied, 9.91214 s, 41.3 MB/s
410 MB copied, 6.91875 s, 59.2 MB/s
410 MB copied, 10.3003 s, 39.8 MB/s
410 MB copied, 8.63959 s, 47.4 MB/s
410 MB copied, 10.3342 s, 39.6 MB/s
410 MB copied, 8.75659 s, 46.8 MB/s
410 MB copied, 8.12789 s, 50.4 MB/s
410 MB copied, 8.96658 s, 45.7 MB/s
410 MB copied, 7.90555 s, 51.8 MB/s
410 MB copied, 11.7209 s, 34.9 MB/s
410 MB copied, 8.31128 s, 49.3 MB/s
410 MB copied, 11.8716 s, 34.5 MB/s
410 MB copied, 9.90721 s, 41.3 MB/s
410 MB copied, 8.57025 s, 47.8 MB/s
410 MB copied, 9.34468 s, 43.8 MB/s
410 MB copied, 9.14162 s, 44.8 MB/s

--- TRESOR
410 MB copied, 23.9045 s, 17.1 MB/s
410 MB copied, 24.1203 s, 17.0 MB/s
410 MB copied, 26.3410 s, 15.5 MB/s
410 MB copied, 22.1279 s, 18.5 MB/s
410 MB copied, 24.9356 s, 16.4 MB/s
410 MB copied, 25.0071 s, 16.4 MB/s
410 MB copied, 23.5777 s, 17.4 MB/s
410 MB copied, 27.8006 s, 14.7 MB/s
410 MB copied, 24.8987 s, 16.5 MB/s
410 MB copied, 25.8959 s, 15.8 MB/s
410 MB copied, 25.7694 s, 15.9 MB/s
410 MB copied, 26.5178 s, 15.4 MB/s
410 MB copied, 25.3663 s, 16.1 MB/s
410 MB copied, 25.0566 s, 16.3 MB/s
410 MB copied, 25.4963 s, 16.1 MB/s
410 MB copied, 24.3083 s, 16.9 MB/s
410 MB copied, 23.9965 s, 17.1 MB/s
410 MB copied, 25.2287 s, 16.2 MB/s

410 MB copied, 24.5554 s, 16.7 MB/s
410 MB copied, 23.5884 s, 17.4 MB/s
410 MB copied, 24.2647 s, 16.9 MB/s
410 MB copied, 25.1395 s, 16.3 MB/s
410 MB copied, 25.0933 s, 16.3 MB/s
410 MB copied, 24.8469 s, 16.5 MB/s

--- Common AES-NI
410 MB copied, 26.2926 s, 15.6 MB/s
410 MB copied, 30.8604 s, 13.3 MB/s
410 MB copied, 26.1996 s, 15.6 MB/s
410 MB copied, 28.0075 s, 14.6 MB/s
410 MB copied, 23.5519 s, 17.4 MB/s
410 MB copied, 27.0643 s, 15.1 MB/s
410 MB copied, 30.2133 s, 13.6 MB/s
410 MB copied, 25.8206 s, 15.9 MB/s
410 MB copied, 22.3430 s, 18.3 MB/s
410 MB copied, 24.9686 s, 16.4 MB/s
410 MB copied, 25.1107 s, 16.3 MB/s
410 MB copied, 28.1641 s, 14.5 MB/s
410 MB copied, 23.6934 s, 17.3 MB/s
410 MB copied, 24.9228 s, 16.4 MB/s
410 MB copied, 25.4900 s, 16.1 MB/s
410 MB copied, 28.8577 s, 14.2 MB/s
410 MB copied, 31.2964 s, 13.1 MB/s
410 MB copied, 26.1635 s, 15.7 MB/s
410 MB copied, 29.8904 s, 13.7 MB/s
410 MB copied, 26.8250 s, 15.3 MB/s
410 MB copied, 26.8389 s, 15.3 MB/s
410 MB copied, 29.5131 s, 13.9 MB/s
410 MB copied, 24.2083 s, 16.9 MB/s
410 MB copied, 26.9091 s, 15.2 MB/s

--- Generic AES
410 MB copied, 28.6924 s, 14.3 MB/s
410 MB copied, 31.0992 s, 13.2 MB/s
410 MB copied, 31.5867 s, 13.0 MB/s
410 MB copied, 29.4021 s, 13.9 MB/s
410 MB copied, 28.9778 s, 14.1 MB/s
410 MB copied, 25.9368 s, 15.8 MB/s
410 MB copied, 27.3885 s, 15.0 MB/s
410 MB copied, 26.5581 s, 15.4 MB/s
410 MB copied, 29.6886 s, 13.8 MB/s
410 MB copied, 29.4497 s, 13.9 MB/s
410 MB copied, 27.6539 s, 14.8 MB/s
410 MB copied, 24.9992 s, 16.4 MB/s
410 MB copied, 26.6642 s, 15.4 MB/s
410 MB copied, 24.2744 s, 16.9 MB/s
410 MB copied, 26.0460 s, 15.7 MB/s
410 MB copied, 31.6460 s, 12.9 MB/s
410 MB copied, 26.6546 s, 15.4 MB/s
410 MB copied, 24.6940 s, 16.6 MB/s
410 MB copied, 27.0945 s, 15.1 MB/s
410 MB copied, 26.8366 s, 15.3 MB/s
410 MB copied, 29.6911 s, 13.8 MB/s
410 MB copied, 29.4740 s, 13.9 MB/s
410 MB copied, 25.5362 s, 16.0 MB/s
410 MB copied, 24.3959 s, 16.8 MB/s
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A.3 Interbench for AES-256

--- Plain
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 0.143 +/- 1.51 26.2 100 99.3
X 0.399 +/- 2.34 23.8 100 98.6
Burn 0.23 +/- 1.93 39 99.9 99.2
Write 0.16 +/- 0.852 20.7 100 99.9
Read 0.118 +/- 0.772 20.2 100 99.9
Compile 0.738 +/- 3.47 32.4 100 97
Memload 0.009 +/- 0.027 0.498 100 100

--- TRESOR
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 0.926 +/- 3.99 37.3 99.9 94.9
X 6.65 +/- 11.3 44.3 99.6 64.8
Burn 28 +/- 31 66.6 48.6 2.45
Write 1.9 +/- 5.87 33.7 99.8 89.9
Read 2.41 +/- 6.32 27.8 100 86.2
Compile 26.4 +/- 30.3 79.2 50.1 4.73
Memload 9.24 +/- 13.2 48.7 98.3 48.7

--- Generic AES
Load Latency +/- SD (ms) Max Latency % Desired CPU % Deadlines Met
None 1.4 +/- 4.96 34.2 99.9 92.3
X 6.73 +/- 11.3 43 99.2 63.5
Burn 29.2 +/- 32.4 66.5 45.8 2.22
Write 0.657 +/- 3.39 36.5 99.8 96.9
Read 3.05 +/- 7.18 36.9 99.9 82.5
Compile 26.8 +/- 30.3 64.7 48.9 4.09
Memload 9.34 +/- 13.4 45.3 97.7 48.5
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