
Permission Re-Delegation: Attacks and Defenses

Adrienne Porter Felt
apf@cs.berkeley.edu

University of California, Berkeley

Helen J. Wang, Alexander Moshchuk
{helenw, alexmos}@microsoft.com

Microsoft Research

Steven Hanna, Erika Chin
{sch, emc}@cs.berkeley.edu

University of California, Berkeley

Abstract
Modern browsers and smartphone operating systems
treat applications as mutually untrusting, potentially ma-
licious principals. Applications are (1) isolated ex-
cept for explicit IPC or inter-application communica-
tion channels and (2) unprivileged by default, requir-
ing user permission for additional privileges. Although
inter-application communication supports useful collab-
oration, it also introduces the risk of permission re-
delegation. Permission re-delegation occurs when an ap-
plication with permissions performs a privileged task for
an application without permissions. This undermines the
requirement that the user approve each application’s ac-
cess to privileged devices and data. We discuss permis-
sion re-delegation and demonstrate its risk by launching
real-world attacks on Android system applications; sev-
eral of the vulnerabilities have been confirmed as bugs.

We discuss possible ways to address permission re-
delegation and present IPC Inspection, a new OS mech-
anism for defending against permission re-delegation.
IPC Inspection prevents opportunities for permission re-
delegation by reducing an application’s permissions after
it receives communication from a less privileged applica-
tion. We have implemented IPC Inspection for a browser
and Android, and we show that it prevents the attacks we
found in the Android system applications.

1 Introduction

Traditional multi-user operating systems like Windows
and Linux associate privileges with user accounts. When
a user installs an application, the application runs in the
name of the user and inherits the user’s ability to access
system resources (e.g., the camera). Browsers and smart-
phone operating systems, however, have shifted to a fun-
damentally new model where applications are treated as
potentially malicious and mutually distrusting. Princi-
pals receive few privileges by default and are isolated
from one another except for communication through ex-
plicit IPC channels. Only the user can grant individual

applications permission to use devices and access user-
private data (e.g., location) through system APIs. Conse-
quently, each application has its own set of permissions,
as granted by the user.

IPC in a system with per-application permissions leads
to the threat of permission re-delegation. Permission
re-delegation occurs when an application with a user-
controlled permission makes an API call on behalf of
a less privileged application without user involvement.
The privileged application is referred to as a deputy,
wielding authority on behalf of the user. The permis-
sion system should prevent applications from accessing
privileged system APIs without user consent, but permis-
sion re-delegation circumvents this rule. This violates
the user’s expectation of safety when interacting with
unprivileged applications. Permission re-delegation is a
special case of the confused deputy problem [23] where
authority is given by the user’s permission.

We demonstrate that permission re-delegation is a re-
alistic threat with a case study on Android applications.
Android features per-application permissions and IPC,
which are the necessary conditions for permission re-
delegation vulnerabilities in applications. More than a
third of the 872 surveyed Android applications request
permissions for sensitive resources and also expose pub-
lic interfaces; they are therefore at risk of facilitating
permission re-delegation. We find 15 permission re-
delegation vulnerabilities in 5 core system applications.

The threat of permission re-delegation is particularly
important for web browsers, which are just beginning to
add APIs that provide websites with access to devices
and geolocation [32]. Additionally, an IPC primitive
named postMessage has been widely deployed over
the past few years, facilitating interaction between appli-
cations. Although device access for web applications is
not yet widespread in 2011, permission re-delegation at-
tacks will be a concern for future web applications. Ad-
dressing the problem of permission re-delegation prior
to the full adoption of device APIs will be beneficial to
future browser security.

We consider possible defenses against permission re-
delegation attacks and propose IPC Inspection, a new
OS mechanism that reduces a deputy’s privileges after
receiving communication from a less privileged applica-
tion. Privilege reduction reflects that a deputy is under
the influence of another application. Consequently, the
permission system can deny a privileged API call from
the deputy if any application in the chain of influence
lacks the appropriate permission(s). We implement IPC
Inspection for two different platforms: the Android oper-
ating system and ServiceOS’s browser runtime [38]. Our
Android implementation prevents all of the attacks we
discovered in our case study. We evaluate the impact of
IPC Inspection on applications and anticipate that most
applications would require few changes to work with IPC
Inspection, but some might require more permissions.

Contributions. We demonstrate that permission re-
delegation is a widespread threat in modern platforms
with per-application permissions and IPC. We also pro-
pose IPC Inspection, a new OS mechanism to defend
against permission re-delegation.

Outline. We define the problem of permission re-
delegation in Section 2. We then cast the problem in the
context of today’s web and smartphone platforms in Sec-
tion 3. We describe our experience of discovering per-
mission re-delegation vulnerabilities in Android in Sec-
tion 4. We discuss possible defenses utilizing known
techniques in Section 5 and then propose a detailed de-
sign for IPC Inspection in Section 6. We describe our
implementation experience on Android and ServiceOS
in Section 7. In Section 8, we evaluate the effectiveness
of IPC Inspection. We discuss related work in Section 9.

2 Permission Re-Delegation

Permission systems prevent applications from perform-
ing actions that are not desired by the user. We are con-
cerned with attacks on user-controlled resources, which
are the resources guarded by permissions that are granted
by the user. Devices like the camera and GPS are user-
controlled resources, as are private data stores like lists
of calendars and contacts. We do not consider attacks
on resources not controlled by user-granted permissions,
like memory or application-specific databases.

Permission re-delegation occurs when an application
with a permission performs a privileged task on behalf
of an application without that permission. This is a con-
fused deputy attack [23] or privilege escalation attack. In
this scenario, the user delegates authority to the deputy
by granting it a permission. The deputy defines a pub-
lic interface that exposes some of its functionality. A
malicious requester application lacks the permission that
the deputy has. The requester invokes the deputy’s inter-

System API

Deputy

Requester

Requester

Notify()

Send TextSend Text

Figure 1: Permission re-delegation attack. The requester does
not have the text message permission, but the deputy does. The
deputy also defines a public interface with a Notify method,
which makes an API call requesting to send a text message.
When the requester calls the deputy’s Notify method, the
system API will send the text message because the deputy has
the necessary permissions. Consequently, the attack succeeds.

face, causing the deputy to issue a system API call. The
system will approve and execute the deputy’s API call
because the deputy has the required permission. The re-
quester has succeeded in causing the execution of an API
call that it could not have directly invoked (Figure 1).

Permission re-delegation can occur in three ways.
First, an application may accidentally expose internal
functionality to other applications. Second, a “confused”
deputy might intentionally expose functionality, but an
attacker might invoke it in a surprising context [23].
Third, the developer might expose functionality with the
goal of attenuating authority but implement the attenu-
ation policy incorrectly or in a way that is inconsistent
with the system policy.

We cannot expect the deputy’s developer to “opt in”
to extra security measures or implement system policies.
The deputy is neither helpful nor harmful to system secu-
rity. Most developers are not security experts, and they
are not independently motivated to prevent permission
re-delegation because the consequences of permission
re-delegation do not affect the deputy itself.

Although the deputy is trusted with some permissions,
it is not trusted with all permissions. An application is
trusted with precisely the set of permissions approved by
the user, and the deputy and requester may have disjoint
sets of dangerous permissions. A prevention mechanism
cannot grant a deputy access to its requester’s permis-
sions unless the deputy already has the permissions.

We aim to equip the permission system with the abil-
ity to deny API requests made by a deputy on behalf
of an unprivileged requester. Such an access control
mechanism prevents the requester from executing priv-
ileged actions with side-effects or requesting sensitive
data through another application. However, we do not
address the problem of preventing a privileged applica-
tion from sharing sensitive data that it has legitimately
and independently obtained. We focus on protecting ac-
cess integrity, whereas improper data sharing is a confi-
dentiality problem. Preventing data leakage is a comple-
mentary problem beyond the scope of our work.

3 Scenarios

We discuss permission re-delegation as it applies to web
browsers and smartphone operating systems.

3.1 Web Applications
Websites are mutually distrusting principals [37, 5, 3].
Today’s browsers isolate websites from one another un-
der the Same Origin Policy, which states that code from
one site cannot access another site’s content [33]. Tradi-
tionally, websites have also been prevented from access-
ing the user’s local resources. However, this is changing
as web applications begin to exhibit rich functionality.

Browsers are starting to offer APIs for accessing users’
local resources. For example, the HTML5 device el-
ement [24] provides web applications with access to
streaming audio and video data. The W3C Device APIs
and Policy Working Group [35] is designing interfaces
for contacts, calendars, messaging, cameras, and more.
New versions of Firefox, Google Chrome, and Safari
support preliminary versions of the HTML5 geolocation
API [32]. Access to these APIs will be controlled by
permissions that users grant to website origins.

Web permission re-delegation can occur in two ways:

1. New windows. In this scenario, a user unknow-
ingly navigates to a malicious website. The ma-
licious website opens a website with a permission
in a new window. If the deputy website makes a
privileged API call upon loading, then the malicious
website has successfully mounted a permission re-
delegation attack. This attack can be completely in-
visible to the user if the malicious requester loads
the deputy in an invisible child frame; alternately, it
can be hidden by opening the deputy as a pop-under
window beneath the active browser window.

2. Messages. As in the previous scenario, a user un-
knowingly navigates to a malicious website. The
malicious website sends a message to a deputy
website that offers services to other websites via
postMessage, an asynchronous client-side mes-
sage passing channel. Requesters can send mes-
sages to new child frames or existing windows that
are navigationally connected to the requester [25].

Figure 2: Safari 5 requests the user’s permission before grant-
ing a website access to geolocation.

For example, consider a user who permanently grants a
website the ability to record live video of the user for
the purpose of streaming the video to a known web ad-
dress (like Qik). The video website automatically begins
simultaneously recording and streaming as soon as it is
loaded. Later, the user visits a malicious website that
loads the video website in an invisible child frame; as a
result, the browser begins recording streaming live video
without the user’s knowledge.

Major browser vendors have recognized the problem
of permission re-delegation. Mozilla Firefox, Safari, and
Google Chrome implemented the geolocation permis-
sion with restrictions on child iframes. When a web-
site is opened as a child iframe, it has no geolocation
permission; the user is prompted for approval, even if
the user has previously granted the website the geoloca-
tion permission. This prevents permission re-delegation
attacks using iframes, but does not prevent permission
re-delegation attacks on top-level windows or attacks be-
tween two iframes embedded in the same page. We also
want to extend the defense mechanism beyond geoloca-
tion to all future permission-controlled browser APIs.

3.2 Smartphone Applications
Smartphone platforms like iOS, Android, and Windows
Phone 7 support third-party application markets. The
markets have a low cost of entry, and not all of the devel-
opers are equally trustworthy. Consequently, smartphone
operating systems treat applications as potentially mali-
cious. Smartphone operating systems also provide APIs
to phone devices (Bluetooth, camera, GPS, etc.) and the
network. Upon user approval, smartphone operating sys-
tems grant per-application access to these resources.

This paper focuses on Android, although our work ap-
plies to other smartphone operating systems with user-
controlled application permissions and IPC. Android
permissions are categorized into 3 security levels: Nor-
mal, Dangerous, and Signature.1 Normal permissions
protect API calls that could annoy but not harm the user
(e.g., SET WALLPAPER); these do not require user ap-
proval. Dangerous permissions let an application per-
form harmful actions (e.g., RECORD AUDIO). Signature
permissions regulate access to extremely dangerous priv-
ileges, e.g., CLEAR APP USER DATA. Malware with
Dangerous or Signature permissions can spy on users,
delete data, and abuse their billing accounts [7, 27, 34].

Android applications may communicate with each
other, which introduces opportunities for permission re-
delegation. Inter-process messages known as Intents are
used for communication. Applications can make four
types of components publicly available:

1We group SignatureOrSystem and Signature permissions together
since there is no significant distinction between the two categories.

Figure 3: Android displays permissions for user approval dur-
ing the installation of an application from the Android Market.

• Services run in the background. They can be started
with Intents or “bound” for synchronous calls.
• Activities provide applications with user interfaces.

They can be started with Intents. An Activity can
optionally provide a return value that is delivered
when the user finishes interacting with the Activity.
• BroadcastReceivers handle broadcast Intents. They

run in the background. Sometimes they invoke a
Service or an Activity to handle the task.
• ContentProviders are local databases.

Services and BroadcastReceivers are inviting targets for
stealthy permission re-delegation attacks because they
may not have a visible user interface. A developer can
restrict access to a component by specifying in the man-
ifest that requesters must have a given permission or dy-
namically checking the caller’s identity at runtime.

3.3 Granting Permissions
Current permission systems ask users to grant permis-
sions in one of two ways:

Time-of-Use. In a time-of-use permission system, users
are prompted to approve or deny permission for a re-
source when a privileged API call is made. Web browsers
and Apple iOS use this type of permission for third-party
applications. The permission may be granted perma-
nently, for a period of time, or for a single use. Figure 2
provides an illustration of Safari 5 asking a user to grant
a time-of-use permission.

Install-Time. In a system with install-time permissions,
an application declares its permission requirements in a
manifest file. The user is prompted to approve the per-
missions during the installation process, and the appli-
cation is only installed if the user grants permanent per-
missions to the requested resources. In a strict install-
time permission system, new permissions cannot be re-
quested during runtime. Android and Windows Phone 7
use install-time permissions. Figure 3 shows an example
of an Android installation permission prompt.

Public Service Public Receiver
Dangerous permissions 84 269
Signature permissions 13 34

Figure 4: We surveyed 872 Android applications and identified
ones with both public components and notable permissions.

4 Case Study: Attacks on Android

We perform a case study on Android applications to
demonstrate that permission re-delegation is a real-world
concern. We find that many applications are at risk of
containing a vulnerability, and we build example attacks
using core system applications.

4.1 At-Risk Applications
An application is at risk of containing a permission re-
delegation vulnerability if it both requests permissions
and exposes a public interface. In particular, we are
interested in stealthy attacks that can be conducted in
the background. We examine a set of 872 applications,
which is composed of the 16 core system applications
that come pre-installed with Android 2.2, the 756 most
popular free applications from the Android Market, and
the 100 most popular paid Market applications.

For each application, we parse its manifest to find
its list of permissions, public Services, and public Re-
ceivers. Services always run in the background, and
Receivers might run in the background. By evaluating
whether an application has both permissions and a Ser-
vice/Receiver, we can identify at-risk applications. We
discard public components that are protected by permis-
sions in the manifest, as they may not be at risk.

It is also possible for an application to perform a dy-
namic check on its caller’s permissions, which would not
be reflected in our manifest analysis. 9% of all appli-
cations in our set perform dynamic permission checks;
however, the permission checks are not often used to
prevent external use of Services or Receivers. (They are
typically used to protect Providers, which we do not con-
sider, or by embedded advertising libraries to determine
what operations they can perform.) We examined a set
of 50 randomly selected applications with public compo-
nents and found that only 1 application does so to protect
a Receiver or Service.

Figure 4 shows the highest-level permission of an ap-
plication, and whether it also has an unprotected public
component. Overall, 320 of the 872 applications (37%)
have permissions and at least one type of public compo-
nent. 11 of the 16 system applications are at risk.

4.2 Vulnerabilities
We examine the at-risk system applications to identify
stealthy permission re-delegation vulnerabilities. An ap-
plication contains a vulnerability if there exists an ex-
ploitable path in the application between a public entry
point and a restricted system API call. We construct at-
tacks using 15 vulnerabilities in 5 applications. These
vulnerabilities are present on every Android 2.2 phone.

Finding Attacks. To find vulnerabilities, we created a
path-finding tool. We first disassemble the at-risk system
applications using Dedexer [31]. Our tool then parses
the disassembled applications to find method declara-
tions and invocations; from the results, we build the call
graphs of the applications. Searching the call graphs re-
veals paths from public entry points to protected system
API calls. This tool likely misses viable attack paths; our
call graph analysis does not handle inheritance relation-
ships or detect flow through structures like callbacks. We
also were only able to look for attacks on a subset of the
API due to incomplete documentation.

We identify valid attacks by building test cases for the
paths produced by our path-finding tool. We only con-
sider attacks on API calls with verifiable side effects, so
that we can tell if an attack succeeds. We are also only
able to look for attacks on a subset of the API because
Android permission documentation is incomplete.

Results. We built attacks using 5 of the 16 system ap-
plications. All of the attacks succeed in the background
with no visible indication to the user. These 5 applica-
tions provide 15 paths to 13 interfaces with permissions,
one of which is SignatureOrSystem and nine of which
are Dangerous. We present two example permission re-
delegation attacks:

Settings serves as the phone’s primary control panel.
When a user presses certain buttons, Settings’ user in-
terface sends a message to a Settings BroadcastReceiver
that turns WiFi, Bluetooth, and GPS location track-
ing on or off. However, Settings’ BroadcastReceiver
accepts Intents from any application. An unprivi-
leged application can therefore ask the Settings ap-
plication to toggle the state of devices by sending
its BroadcastReceiver the same Intents that it ex-
pects from its user interface. Turning these devices
on or off is supposed to require Dangerous permis-
sions (CHANGE WIFI STATE, BLUETOOTH ADMIN,
and ACCESS FINE LOCATION, respectively).

Desk Clock provides time and alarm functionality. One
of its public Services accepts directions for playing
alarms. If an unprivileged application sends an Intent re-
questing an alarm with no end time, then Desk Clock will
indefinitely vibrate the phone, play an alarm, and prevent
the phone from sleeping. The alarm will continue un-

til the user kills the Desk Clock process. Playing sound
with a wake lock requires the Dangerous WAKE LOCK
permission, and vibrating the phone requires the Normal
VIBRATE permission.

We found concrete vulnerabilities in 5 of the 16 appli-
cations, which amounts to half of the 11 system appli-
cations that we identified as at-risk. It is likely that the
other at-risk system applications also contain vulnerabil-
ities that we did not uncover. (Our call graph tool is lim-
ited, as discussed above.) We have notified the Android
team; several of the vulnerabilities have been confirmed
and fixed [16, 15, 17, 18].

5 Defense Discussion

We present our requirements for a permission re-
delegation defense mechanism and consider whether ex-
isting techniques can satisfy these goals.

5.1 Goals
Our goals for a successful permission re-delegation de-
fense mechanism are:

1. Preventing permission re-delegation: Applications
should not be able to re-delegate permissions for
user-controlled resources.

2. Runtime independence: We want the solution to be
language- and runtime-independent. This is advan-
tageous because many platforms support applica-
tions that are written in different programming lan-
guages and run on different runtimes.

3. Developer independence: Given evidence that de-
velopers are unmotivated to proactively prevent per-
mission re-delegation (Section 4.2), a solution can-
not rely on developer diligence for security.

4. Ease of development: The mechanism should not
impose an excessive burden on developers; applica-
tions should retain their functionality.

5. Dynamic: The defense mechanism must work at
runtime and not depend on application analysis.
Client-side application analysis is not feasible for
web applications because website code can change
and encompass arbitrarily many documents.

Our focus is on controlling access to resources; it is
not our goal to protect data privacy. We wish to prevent a
privileged piece of data from being accessed, but we do
not aim to prevent it from being shared once it has been
accessed. Protecting data privacy can be achieved with
complementary solutions like TaintDroid [12].

5.2 Potential Defenses

Capabilities. A capability is an unforgeable, shareable
token that, when used, grants access to a privilege [23].
To prevent permission re-delegation, a deputy could ask
its requester to provide a capability and use it to make
system API calls. However, this approach does not meet
our goal of developer independence; a poorly written
deputy could use its own capabilities rather than its re-
quester’s when making system API calls.

Alternately, a system could control access to privi-
leges by requiring approval before granting an applica-
tion the ability to communicate with a deputy. This
would require static analysis of the deputies installed on
the client to understand what user-relevant privileges the
communication would involve. Following the example
in Figure 1, an application that wants to use the “Notify”
deputy would need to be authorized to use the underlying
“Send Text” authority. Static capability provisioning is a
topic for further exploration, but it can only be applied to
platforms where static analysis of deputies is possible.

Taint Tracking. In a taint tracking-based solution, the
requester’s data could be the source of taint, and the taint
could propagate as the requester’s data interacts with the
deputy. If a deputy makes a privileged API call and the
call is tainted, then the system could become aware that
permission re-delegation has occurred. Unfortunately,
tracking both data flow and control flow in a runtime-
independent manner incurs more than an order of mag-
nitude of performance overhead [14]. Furthermore, taint
tracking both data and control flow would likely lead to
taint explosion. Taint explosion would make the system
unnecessarily restrictive. A taint tracking-based solution
would need to track both direct and indirect taint flows
because not all permission re-delegation attacks are data-
dependent. For example, not all API calls require param-
eters, and some applications process IPC calls without
reading the actual message.

MAC. Mandatory access control (MAC) systems (e.g.,
[9, 20]) are centralized information flow control systems
where the operating system enforces a fixed information
flow control policy across integrity or confidentiality lev-
els. Such systems mandate that no information can flow
from low-integrity principals to high-integrity principals
or from high-confidentiality to low-confidentiality prin-
cipals. Our goal of preventing permission re-delegation
can be cast as MAC to some extent: a permission set
could be treated as an integrity label, and A would have a
lower integrity level than B if A has a permission that B
does not. We are then concerned about safe information
flow with respect to access to user-controlled resources.

However, Android applications cannot be strictly or-
dered because applications often do not fit the subset re-

lationship. When this happens, neither the deputy nor
the requester has a strictly higher integrity level. This
presents an application functionality problem: when a
requester initiates communication with a deputy, the re-
quester cannot receive the response if it has a permission
that the deputy lacks. Since Android applications com-
monly have intersecting but non-subset permission sets,
this represents a significant functionality problem. Sec-
tion 8.2 describes examples of applications for which this
would be prohibitively restrictive.

Stack Inspection. Stack inspection [19, 36] is used in
Java Virtual Machines and the Common Language Run-
time to prevent confused deputy attacks within a runtime.
When a deputy makes a privileged API call, the system
checks whether the call stack includes any unprivileged
applications. Principals in the permission re-delegation
threat model operate in separate runtimes; to adapt to
this scenario, the runtime could annotate the bottom of
the stack with the requester’s identity when delivering a
message event or starting the application.

Standard stack inspection has several shortcomings.
First, the approach is dependent on the runtime for
correctness and would need to be re-implemented re-
peatedly for a system with multiple types of runtimes.
Second, stack inspection cannot prevent permission re-
delegation when the deputy’s API call is de-synchronized
from the request because the requester does not appear
on the call stack. For example, JavaScript is event-driven
after the initial document loads, and each event has a dif-
ferent stack; and Android applications often make inter-
nal IPC calls (each of which resets the stack) in order to
complete a single operation.

HBAC. History-based access control (HBAC) reduces
the permissions of trusted code after any interaction with
untrusted code [1]. Like stack inspection, HBAC relies
on runtime mechanisms and does not achieve our goal of
runtime independence. Like MAC, HBAC performs per-
mission reduction upon receipt of return values, which
places constraints on application functionality.

6 IPC Inspection

We build upon existing techniques to propose a new de-
fense for permission re-delegation. We track information
flow through inter-application messages, but not within
an application. Our solution is similar to stack inspec-
tion or HBAC, but modified to address their limitations.
Like HBAC, we perform privilege reduction following
communication, but we apply our mechanism at the OS
level rather than as part of a runtime.

6.1 Our Design
We propose IPC Inspection. When an application re-
ceives a message from another application, we reduce
the privileges of the recipient to the intersection of the
recipient’s and requester’s permissions. We consider an
application to be acting as a deputy on behalf of a re-
quester once it has received communication from the re-
quester. The deputy’s current set of permissions captures
the communication history of the deputy and other appli-
cations. Privilege reduction does not remove privileges
that are not controlled by the user.

IPC Inspection carries the same semantics as stack in-
spection, but we generalize method invocations to IPC
calls and externalize intra-application asynchronies like
message queues. IPC Inspection is also runtime- and
language-independent.

Basic Rules. IPC Inspection is comprised of three pri-
mary mechanisms. First, we maintain a list of current
permissions for each application. Second, we build priv-
ilege reduction into the system’s inter-application com-
munication mechanisms. Starting an application and
sending an explicit message both count as IPC. Third,
we allow a receiving application to accept or reject mes-
sages. Applications can limit who they receive messages
from by registering a list of acceptable requesters. De-
pending on the platform, acceptable requesters can be
identified individually (e.g., by domain) or based on their
set of permissions (i.e., any application with permission
Y). This prevents privilege reduction from being abused
as a denial of service mechanism.

More precisely, we define four basic rules to govern
access rights and privilege reduction. We write A → B
to indicate that application A sends a message to applica-
tion B, and let P t(A) denote the set of permissions held
by application A at time t. The rules follow:

1. Initial state: P 0(A) = POriginal(A). When an ap-
plication starts running, it begins with the permis-
sions that were granted by the user.

2. Privilege reduction for recipient: If R → D at time
t, then P t(D) = P t−1(D) ∩ P t−1(R). When an
application receives a message, its permissions are
reduced to the intersection of its and the sender’s
current permissions.

3. Sender’s permissions remain unchanged: If R→ D
at time t, then P t(R) = P t−1(R).

Several properties of privilege reduction follow from
the access rights rules:

• Transitivity. An application’s current permissions
reflect the permissions of all of the applications in
a chain of communication. If R1 → R2 at time
t, and R2 → D at time t + 1, then P t+1(D) =
P t−1(R1) ∩ P t−1(R2) ∩ P t(D).

• Additivity. If an application receives messages
from multiple applications, then its permissions
will be repeatedly reduced. P t(D) = P 0(D) ∩⋂t−1

i=1 P
i(Ri), where Ri → D for each time i.

• Bounds. An application’s current permissions can
never exceed its original permissions (i.e., P i(A) ⊆
P 0(A),∀i); there is no mechanism for increasing
permissions.

Privilege reduction requires the platform to compute
the intersection of two permissions, and this intersection
function will differ by permission scheme. For example,
permissions can be hierarchical, temporal, or monetary
(as in $5 for text messages). When calculating the inter-
section, the lesser value needs to be taken: the permission
lower in the hierarchy, the lower monetary limit, or the
shorter temporal permission.

Non-Simplex IPC. The basic rules apply to simplex (uni-
directional) communication. Simplex communication
implies a clear relationship: the requester sends a mes-
sage or starts an application, and the deputy acts. How-
ever, an operating system can offer other communication
mechanisms. With request-reply IPC, the recipient of a
message returns a value. For example, an Android Ac-
tivity may return a result upon completion. The roles
of deputy and requester remain clear with request-reply
IPC, so IPC Inspection does not reduce the requester’s
permissions when it delivers a reply. In contrast, duplex
communication is a stream of data that flows between
two applications (e.g., TCP sockets). Both applications
can act as a deputy or requester during duplex IPC, so
IPC Inspection reduces the privileges of both. Applica-
tions can implement alternate protocols atop these three
primitives, but the OS will not be aware of them.

IPC Inspection is similar in spirit to Mandatory Access
Control, but IPC Inspection is less strict because it does
not enforce privilege reduction in both directions after
request-reply communication. This decision is in the in-
terest of application functionality: highly-privileged re-
questers would be unable to accept responses from less-
privileged deputies without risking loss of privilege. Al-
though there is a chance that a permission re-delegation
attack could stem from the receipt of a return value, it is
not a common case. Section 8.2 describes examples of
applications that would not be able to function if return
values prompted privilege reduction.

HBAC also reduces privileges based on return values
but attempts to preserve application functionality by pro-
viding authors with explicit rights restoration. In HBAC,
an application can validate a return value and then re-
quest to have its removed privileges reinstated. Although
rights restoration solves the functionality problem, it re-
lies upon developers correctly and non-spuriously restor-
ing their permissions. Developers could abuse this mech-

anism by restoring permissions in every permission fail-
ure exception handler. Therefore, we choose not to sup-
port explicit rights restoration in IPC Inspection.

Application Instances. Deputies may need to simulta-
neously interact with the user and multiple requesters.
For example, the user might be interacting with an appli-
cation when it receives a message from a less-privileged
requester; the ensuing privilege reduction caused by the
requester would interfere with the user’s experience. To
prevent privilege reduction from impeding application
functionality, we create new application instances to han-
dle messages. All applications have a primary instance,
which is the instance of the application that the user in-
teracts with. When a requester asks the system to send
a message to the deputy, the system automatically starts
a new instance of the application. Multiple instances of
the same application will run concurrently, in their own
isolation units with their own current permissions.

As a performance optimization for install-time permis-
sion systems, it is not always necessary to create a new
instance. The primary instance can be used for requests
that do not prompt privilege reduction. In an install-time
permission system, we know that privilege reduction is
not necessary if the deputy already lacks permissions or
the requester has a superset of the deputy’s permissions.
Instance reuse is not possible with time-of-use permis-
sion systems because the deputy could dynamically re-
quest more permissions; it would not be clear which re-
quester is responsible for the permission prompt.

Some applications cannot exist in duplicate. Long-
running background processes may have state that cannot
be multiply instantiated. For this purpose, the system can
let applications request to be singletons. All communi-
cation events will be dispatched to the same instance for
a singleton application, and a singleton application’s per-
missions will be repeatedly reduced upon the delivery of
each communication event until the application exits.

Our altered version of Android automatically creates
a new instance for every communication event unless a
deputy asks to be a singleton; our browser implemen-
tation creates a new instance whenever a requester pro-
grammatically opens a new window, but not when mes-
sages are sent to an existing window. The singleton de-
sign pattern does not make sense from a web application
perspective because websites already expect to be simul-
taneously open in multiple windows in the same browser.

Circumvention. A malicious deputy could circumvent
the IPC Inspection rules: a developer could place in-
formation about a request in storage and then perform
the request later when the deputy regains full privileges.
This does not violate any of our goals. We are not con-
cerned with deputies maliciously sharing permissions;
after all, a malicious deputy could directly abuse its

permissions. Instead, we are concerned about benign
deputies thoughtlessly or accidentally giving away privi-
leges to other applications. We expect that the pattern of
saving requests in storage would be rare in practice.

Permission re-delegation attacks could be mounted us-
ing return values from request-reply IPC. In this attack,
a privileged application sends a message to an unprivi-
leged application. The unprivileged application returns
a malicious value, which causes the privileged applica-
tion to perform a malicious action. We do not defend
against this attack in the interest of application function-
ality. Our policy of disregarding return values is similar
to the policy enforced by stack inspection.

6.2 Platform Proposals

We discuss the impact of IPC Inspection rules on permis-
sions and communication, and we present proposals for
how systems could add extra support for IPC Inspection.

Permission Requests. IPC Inspection changes how
users and developers interact with permissions. The im-
pact of IPC Inspection depends on whether the system
uses time-of-use permissions or install-time permissions.
Time-of-use permission systems are the simpler case:
in a time-of-use permission system like the browser,
the user could be prompted whenever permission re-
delegation is detected. For example, “Allow R and D to
send text messages?” If the user answers affirmatively,
the API call completes. As such, time-of-use permis-
sion systems can accommodate IPC Inspection without
changes to the developer experience.

The relationship between IPC Inspection and install-
time permission systems (e.g., Android) is more com-
plex. If IPC Inspection is used with a pure install-time
permission system, then an application’s developer must
request all of the permissions used by the deputies that
the application interacts with. First, this might be hard to
determine. Second, this could lead to permission bloat: a
requester must have all of the permissions needed by its
deputy or deputies, even if the requester never individu-
ally uses the permissions. To prevent this, we propose the
relaxation of install-time permission requirements when
IPC Inspection is applied to a platform. If permission
re-delegation is detected, the platform could prompt the
user to grant the requester temporary access to the priv-
ilege via the deputy. If granted, the deputy’s permission
would be restored. This would prevent requester applica-
tions from needing to request permissions that they will
not use independently from deputies. This change would
require usability studies to determine whether it effects
user understanding of permissions.

Request-Reply for the Web. Today’s websites ex-
change messages using postMessage, a simplex com-
munication primitive. Websites that wish to use request-
reply semantics must construct the necessary support on
top of postMessage; e.g., such support is built into
the popular jQuery library. Unfortunately, the browser
is unaware of such application-level semantics and must
apply IPC Inspection rules to all postMessage recip-
ients, which may conflate the requester and the deputy.
When a requester receives a postMessage corre-
sponding to a return value, the browser will treat it as
a deputy and unnecessarily reduce its privileges.

Current web standards lack a request-reply IPC
primitive that would let browsers avoid this problem.
We propose adding such a primitive by extending
postMessage to take an optional callback argument.
Replies would not trigger privilege reduction.

Device Policies. Instance reuse is not possible for sys-
tems with time-of-use permissions, as discussed in Sec-
tion 6.1. However, it would be possible if the browser
could identify sites that do not ask for any permis-
sions. We propose that browsers only grant device ac-
cess to web applications if they statically declare that
they will ask for permissions. Web sites without permis-
sions would never need to be multiply instantiated. This
could be implemented, for example, with Content Secu-
rity Policies, which already support developer-authored
restrictions on what scripts, images, etc. can be loaded
into a page [28]; a new rule would enable device access.

7 Implementation

We implemented two IPC Inspection prototypes: one for
Android and one for ServiceOS’s browser runtime.

7.1 Android

We implemented a prototype of IPC Inspection as part of
Android 2.2. We added support for IPC Inspection to the
PackageManager and ActivityManager. The PackageM-
anager installs applications, stores their permissions, and
enforces permission requirements. The ActivityManager
handles communication between applications and starts
applications as necessary.

Five events trigger privilege reduction: starting a Ser-
vice, binding a Service, starting an Activity, receiving
a Broadcast Intent, and requesting a ContentProvider.
Our altered ActivityManager notifies the PackageMan-
ager whenever any of these five communication events
occurs. One notable exemption is the Launcher system
application, which we allow to communicate with any
other application freely, to prevent privilege reduction
from occurring whenever the user launches applications.

When the PackageManager is notified of a pending
communication event, it checks whether privilege reduc-
tion needs to occur. The message is dispatched normally,
without privilege reduction, if (1) the message is from
the system process, or (2) the requester has all of the tar-
get’s permissions. Otherwise, privilege reduction of the
target occurs before the message is delivered.

The mechanics of privilege reduction differ based on
whether the target application is a singleton. The Pack-
ageManager reduces privileges of singleton applications
by removing the appropriate permission(s) from the data
structure that assigns permissions to application UIDs.
An application can request to be a singleton by setting
a singleton value in its manifest. For non-singleton
applications, the PackageManager instructs the Activity-
Manager to create a new instance of the application to
receive the message. The ActivityManager places each
new instance in a new process, with the same UID as
the application’s primary instance. When the instance’s
process is created, the PackageManager records the re-
moved permissions in a data structure associated with the
instance’s PID. Instances of an application have access
to the same files because they share a UID. Android also
uses UIDs as a security boundary between applications,
but we assume instances are not trying to attack each
other. For both singletons and non-singletons, the Pack-
ageManager records which requester is responsible for
the removal of removed permissions in a blame map.

Permission enforcement in our modified version of
Android occurs in two steps. First, the standard permis-
sion enforcement mechanism checks whether the given
permission is assigned to the application’s UID. This
check will return the same result for all instances of an
application, since permissions are associated with UIDs.
If the standard permission check succeeds, then our al-
tered PackageManager additionally checks whether the
permission is in the process’s list of removed permis-
sions for that instance. If it is, then access is denied. The
blame map allows the PackageManager to identify the
requester that is responsible for a permission failure. Fol-
lowing our proposal in Section 6.2, the operating system
could then ask the user to temporarily grant the permis-
sion, although we did not implement this user interface.

We also extend the manifest file format so that
deputies can limit incoming messages. The existing An-
droid permission attribute lets an application specify
a permission that a requester must have. We extend this
to accept a set of permissions. If the developer limits
the receipt of incoming messages to requesters with ad-
equate permissions, then the application will never need
to undergo privilege reduction.

7.2 ServiceOS

To demonstrate IPC Inspection in the context of web
applications, we implemented IPC Inspection as a per-
mission manager for ServiceOS, a client platform that
supports both web and desktop applications [38]. Our
implementation enabled IPC Inspection for ServiceOS’s
browser runtime.

In ServiceOS, each web origin is a principal as defined
by the Same Origin Policy [33]. Permissions for user-
controlled resources are granted on a per-principal basis.
When a user navigates to a website by following a link
or entering a new URL into the location bar, the resulting
window is associated with the appropriate site principal.
The user is asked to grant or deny permissions for that
origin. The permission manager keeps track of all current
permissions and controls access to a mock device API
that represents the new HTML5 APIs.

The browser’s communication system informs the per-
mission manager of communication events. Two events
trigger privilege reduction:

PostMessages. When a website R.com sends a
postMessage to a window belonging to D.com, this
communication passes through the IPC mechanism in
the browser. Consequently, D.com’s permissions are
subject to reduction. Permissions are restored when all
windows belonging to a principal are closed. To pre-
vent DOS, we provide websites with the ability to limit
which origins they receive postMessages from; mes-
sages from other origins will be dropped by ServiceOS.

New Windows. When a website R.com creates a new
window (e.g., a child frame) belonging to D.com, we
treat this as a new service request; the parent window
is the requester and the new window is the deputy. We
consequently create a new principal for the new window,
isolated from the rest of its origin. The new window’s
privileges are immediately reduced. Unfortunately, we
cannot provide a mechanism for limiting who a web site
can be opened by; websites are typically opened by so
many others that a whitelist is not realistic.

As with the Android implementation, we record priv-
ilege reduction so that a correct prompt could be dis-
played to the user to explain the permission failure. Ad-
ditionally, this implementation could be re-implemented
in any major browser.

Action Data
Normal 15 26
Dangerous 59 31
Signature/System 10 1
Total 84 58

Figure 5: 142 Android API calls, classified.

8 Evaluation

We evaluate IPC Inspection with respect to security and
ease of application development.

8.1 Effectiveness

Our primary goal is to prevent permission re-delegation.
We evaluate IPC Inspection for Android security.

Scope. IPC Inspection strengthens access control for
user-controlled resources and prevents applications from
making unauthorized API calls. Now, we evaluate the
scope of protection on Android system APIs.

We consider 142 methods from the Android API that
are protected with permissions and classify each method
as action or data calls. Action calls have side effects, and
data calls return values without side effects. The set of
142 methods includes all of the protected methods in the
SDK documentation, plus additional protected methods
we identified using randomized testing. There are likely
more protected interfaces to be identified, but we believe
that the set of 142 methods is a representative sample
of the full set of protected interfaces. We classify each
method according to its description in the documenta-
tion. Accessors are typically data calls and mutators are
typically action calls.

IPC Inspection can prevent both action and data calls
from being invoked when an application is acting un-
der the influence of another, less-privileged application.
Nevertheless, IPC Inspection does not provide privacy
for the return results of data calls, if the API call was
not made on behalf of the requester. For example, an
application with privileged geolocation data may pass a
cached location value to a less privileged application. We
emphasize, however, that IPC Inspection does prevent an
application from obtaining the data while under the in-
fluence of another application.

We conducted a measurement on the makeup of action
and data on Android. Figure 5 shows the results. Nearly
70% of the interfaces protected by Dangerous and Sig-
nature/System permissions are action calls.

Attack Prevention. Our Android implementation pre-
vents all of the permission re-delegation attacks de-
scribed in Section 4.

We suspect that many Android applications do not
truly intend for their publicly invokable interfaces to be
public; instead, the interfaces are intended for internal
communication or messages from the operating system.
Some messages that are typically sent by the operating
system can also be sent by non-system applications; if
the application does not additionally check the identity
of its caller, it can be confused into performing an action.
For example, we found in Section 4 that the Phone appli-

Figure 6: In this ServiceOS test attack, a “Game” application
with no permissions opens a “Dialer” application from a differ-
ent domain as a child frame. The user previously granted the
Dialer the ability to send text messages, but the permission is
removed upon loading because the Game lacks it. The Game
sends the Dialer a postMessage asking the Dialer to send a
text message. The Dialer’s API call is denied.

cation will mute indications of an incoming phone call
based on a message it expects to receive from the sys-
tem. Tests on 5 applications that appear to fall in this cat-
egory indicate that IPC Inspection prevents unintention-
ally public interfaces from being surprisingly invoked.

We built attack test suites for both Android and Ser-
viceOS, and our implementation prevents all of the test
attacks from succeeding. Each test suite is comprised of
a set of communications from an unprivileged applica-
tion to a privileged application. The privileged applica-
tion is set up to make an API call following the receipt of
any type of message. In a successful test, IPC Inspection
prevents the API call from completing. We exercise all
of the communication events available in each platform.
Figure 6 is a screenshot of a test attack in ServiceOS.

8.2 Ease of Development on Android

Although we aim to prevent permission re-delegation,
we do not want to prevent legitimate application interac-
tions. We discuss four categories of applications: non-
deputies, intentional deputies, unintentional deputies,
and requesters. An application is an intentional deputy
if it is built to expose functionality to other applications,
whereas an application is an unintentional deputy if it
exposes internal functionality accidentally. The Android
communication system makes it easy for applications to
accidentally expose internal functionality [6]. We esti-
mate the prevalence of these four types of applications.

Non-Deputies. An application that does not offer ser-
vices to other applications will not be greatly impacted
by IPC Inspection. A non-deputy application will not
need to be multiply instantiated, nor will it experience
privilege reduction.

Unintentional Deputies. IPC Inspection will prevent
malicious applications from using accidentally public in-
terfaces of unintentional deputies to launch permission
re-delegation attacks. The application will not be af-
fected during normal operation.

Intentional Deputies. Applications that do provide pub-
lic services can take one of two approaches, depending
on their needs. The first option is that a deputy can accept
calls from arbitrary requesters. A developer that chooses
this option should place security exception handling code
around API calls that require permissions, in case an un-
privileged requester causes privilege reduction of an in-
stance. The second option is for an application to re-
quire that potential requesters have all of the permissions
necessary to make the relevant API calls. A developer
that chooses this option therefore needs to specify a list
of required permissions. This choice obviates the need
for multiple instances, which is beneficial from a perfor-
mance perspective. However, it may reduce the num-
ber of eligible requesters. A singleton application should
choose this option to prevent its primary (and only) in-
stance from experiencing privilege reduction.

Here, we discuss the impact of IPC Inspection on three
popular, real-world intentional deputies:

Barcode Scanner. The “ZXing” barcode scanner is
among the 50 most popular free applications in the An-
droid Market. It provides public interfaces for scanning,
creating, and displaying barcodes. ZXing uses several
permissions to complete these tasks (e.g., CAMERA). ZX-
ing correctly attenuates authority by asking for user per-
mission before performing privileged tasks, so IPC In-
spection does not add security in this case. ZXing can be
repeatedly instantiated without any apparent issues, so
ZXing does not necessarily need to limit its requesters to
applications with certain permissions.

E-Mail. “GMail” is the official Google e-mail client.
It provides several public interfaces. The primary pub-
lic interface is an e-mail composition Activity that
can be pre-seeded by the requester. GMail uses sev-
eral permissions to send a pre-composed e-mail, e.g.,
WRITE EXTERNAL STORAGE (for uploading file at-
tachments) and INTERNET. It is not clear whether all of
GMail’s other public interfaces are truly intended to be
public: for example, one BroadcastReceiver listens for
a message that indicates login accounts have changed.
Like ZXing, GMail can be repeatedly instantiated with-
out exhibiting obvious flaws.

Music Player. “Music” is one of the pre-installed system
applications. It provides many public interfaces, includ-
ing a MediaPlaybackService. The MediaPlaybackSer-
vice opens music files, starts and stops music playback,
and manages the current playlist. It uses permissions

such as WRITE EXTERNAL STORAGE (to open files)
and WAKE LOCK (to keep the phone on while playing
music). We discovered in Section 4 that permission re-
delegation attacks can be mounted using the MediaPlay-
BackService, but they are prevented with our Android
IPC Inspection implementation. MediaPlayBackService
needs to run as a singleton because it is a long-running
background service that maintains state.

In summary, ZXing and GMail developers can choose
whether to write exception handling code or lists of per-
mission requirements for their requesters. The Music ap-
plication is a singleton, so its developer should accept
requests only from applications with all of its required
permissions. The developer must specify that Music is a
singleton and list the desired requester permissions.

Requesters. Under IPC Inspection, deputies may require
their requesters to have more permissions. We present
three example requesters that make use of the deputies
presented above and consider whether they already have
the necessary permissions. Additional install-time per-
missions would not be necessary if Android were to al-
low time-of-use permissions for the specific case of in-
teracting with deputies.

We also consider the effects of a hypothetical rule that
reduces privileges for requesters upon receipt of a reply
value. Stricter policies (MAC and HBAC) include such
a rule, as discussed in Section 6.

Barcode Scanner. Many applications rely on the ZXing
barcode scanner [41]. One example is “Beer Cloud,”
which lets users find nearby bars that serve particular
beers. Beer Cloud invokes the ZXing barcode scanner to
identify beers. Under IPC Inspection, Beer Cloud would
require the CAMERA permission to interact with ZXing.
Currently, Beer Cloud does not have the CAMERA per-
mission; IPC Inspection would require it to add it, which
might overprivilege the Beer Cloud application.

Once Beer Cloud has received the barcode data from
ZXing, it passes the beer information and user location
to a backend server. The server returns nearby bar ad-
dresses. Beer Cloud uses Internet and location permis-
sions to accomplish this. If we were to implement priv-
ilege reduction following return values, then Beer Cloud
would not be able to pass the beer and location data to its
backend server because ZXing does not have the neces-
sary location permission.

E-Mail. “Blackmoon File Browser” relies on GMail for
file sharing. Blackmoon File Browser only has one per-
mission, WRITE EXTERNAL STORAGE. Under IPC In-
spection, it would require the INTERNET permission as
well. None of GMail’s public interfaces return values, so
a hypothetical return value rule would not impact Black-
moon File Browser or any other requesters of GMail.

Intentional Deputy 5 applications
Unintentional Deputy 4 applications
Requester 6 applications

Figure 7: We classify 20 Android applications. 13 applica-
tions are deputies or requesters. One is both an intentional and
unintentional deputy, and another acts as both a deputy and a
requester. All have Dangerous permissions.

Music Player. “ScrobbleDroid” uses the Music applica-
tion’s MediaPlayBackService to track the user’s recently
played songs. The recently played songs are then posted
on the website last.fm. Binding to the singleton Me-
diaPlayBackService would require ScrobbleDroid to add
four permissions under IPC Inspection. MediaPlayBack-
Service does not actually use all four of the extra permis-
sions (they are used elsewhere in Music), so this would
slightly over-privilege ScrobbleDroid. In the reverse di-
rection, ScrobbleDroid uses return values provided by
the MediaPlayBackService. Since ScrobbleDroid has
a permission that Music does not have, ScrobbleDroid
would be impacted by the hypothetical return result rule
that we rejected in Section 6.

In summary, Beer Cloud and Blackmoon File Browser
would need to gain user approval for additional per-
missions that make sense considering their functionality.
However, they wouldn’t use the permissions for anything
but communication with deputies. ScrobbleDroid would
need otherwise unnecessary permissions because Music
is a singleton. Beer Cloud and ScrobbleDroid also illus-
trate why we do not reduce privileges for request-reply
message exchanges.

Prevalence. We consider 20 randomly selected Android
applications (from our set of 872) and evaluate whether
they act as deputies, requesters, or both. We manually
interact with the applications’ user interfaces, log com-
munication events, and examine their manifests.

Figure 7 shows the results of the survey. Under IPC
Inspection, developers of intentional deputies and re-
questers may need to make minor changes to their ap-
plications: intentional deputies might need to specify
permission requirements for requesters, and requesters
might need to add extra permissions. 11 of the 20 appli-
cations are intentional deputies, requesters, or both.

We also classify 4 of the 20 applications as uninten-
tional deputies. IPC Inspection would prevent these acci-
dentally public interfaces from being used for permission
re-delegation attacks. The developer of the first uninten-
tional deputy obviously copied part of the manifest from
another application with public interfaces. The second
unintentional deputy’s public interface accepts paths to
local and remote files, which it then loads as an update to
the application. It appears that the developer expects the
files to be provided by the browser as part of an update

mechanism from their website; in reality, any applica-
tion can supply the path to the file. The third crashes
when any of its public Activities are loaded by other ap-
plications. The fourth has a public Activity that does not
appear to be a useful addition to any other application.

8.3 Ease of Web Development
We discuss IPC Inspection from the perspective of a web
developer and give examples of how it would be applied.

Deputies. Web applications that want to accept
postMessages without risking privilege reduction
should register a list of trusted requesters. It is already
best practice to check the origin of message senders [29];
we make this logic explicit by providing a mechanism to
register a list of acceptable requesters with the browser.
Even if a message does cause a permission failure, web
applications should already be built with the expectation
that access to a device API might fail because users al-
ready expect to continue interacting with websites after
denying permissions.

Any web application, regardless of whether it intends
to act as a deputy, may be multiply instantiated because
any website can be opened by another web site. Web
applications already expect to be simultaneously open in
multiple tabs in the same browser.

IPC Inspection does impose one restriction on web ap-
plications. If a.com opens the child frame b.com, and
b.com in turn opens a child frame a.com, we place
the two versions of a.com in separate instances because
they have different requesters.2 The two instances of
a.com can obtain references to each other’s window
objects [25], which we support. However, the Same Ori-
gin Policy implies that they should have full access to
each other’s DOM objects, but IPC Inspectiondisallows
this interaction because they are separate instances. We
are aware of only one legitimate use of this embedding
pattern, which is to facilitate cross-origin communication
between two sites in browsers that lack postMessage
support. However, modern browsers that support device
APIs will also support postMessage, obviating the
need for the embedding.

Requesters. Requesters do not need to make any
changes to their applications because browser device per-
missions are currently all time-of-use. When a deputy
makes an API call on behalf of a requester, the browser
will display a time-of-use prompt that asks the user to
grant the permission to the deputy and requesters.

2We do not break the case where a.com opens two child frames
from b.com; both will be placed in the same instance and will have
access to each other’s heaps as expected.

outer.com

map.com

Browser

getCurrentPosition

goToUserLoc(1)

(2)

photos.com

ads

Browser

camera.take()

Figure 8: Left: an unprivileged website opens a mapping ser-
vice that uses the user’s location. Right: a privileged website
includes unprivileged advertisements.

Examples. Both postMessage and device APIs are
too new for widespread support and use, so we cannot
measure the impact of IPC Inspection on real-world ap-
plications. Instead, we present two example cases of ap-
plications interacting with each other (Figure 8).

In the first example, a website (outer.com) opens a
mapping service. Outer.com has no permissions, so
the mapping service is opened as a new instance with no
permissions. When outer.com asks map.com to dis-
play the user’s current position on the map, map.com
asks the browser for the current location. The browser
would then prompt the user to give outer.com and
map.com access to the current location.

In the second example, the user has granted camera
access to a photo sharing website. The photo sharing
website loads a frame containing advertisements. The
ad site does not have any permissions, so it does not
lose any permissions when it is opened. The photo
sharing website can send messages to the advertising
site without any changes to either party’s permissions.
However, a postMessage from the advertising site
to photos.com would remove photos.com’s cam-
era permission. If photos.com were to use the cam-
era again after receiving a message from ads.com, the
user would be presented with a prompt asking to approve
camera access for both photos.com and ads.com. If
the photo sharing site wishes to avoid becoming a deputy,
it should refuse postMessages from the advertise-
ment. If it needs to receive replies from the ad, it can use
our proposed request-reply variant of postMessage
when communicating with the ad (Section 6.2).

8.4 Performance

The performance cost of IPC Inspection depends on the
workload, i.e., the set of running applications.

No Deputies. If the workload does not contain any per-
mission re-delegation, then there is no cost. This oc-
curs when applications don’t communicate, messages are
only being sent to applications with no permissions, or
the requesters have as many permissions as the deputies.

Singletons. A singleton is an application that is never
duplicated and has only one set of current permissions.
Top-level windows in the browser are singletons, as are
self-identified singleton applications in Android. If priv-
ilege reduction applies to a singleton, then the cost of
IPC Inspection is (1) removing permissions from a list or
hash map and (2) adding the removed permissions to a
hash map that records the reason for removal. Neither is
an expensive operation.

Instances. The primary cost of IPC Inspection occurs
when privilege reduction requires the creation of a new
instance. In a browser, new instances are created for
child frames. The frame needs to be opened, regard-
less of whether it is a new instance; the difference with
IPC Inspection is that the browser gives the child frame a
unique entry in the permission assignment map, separate
from the main application. This is a small cost.

In Android, the creation of a new instance might mean
that multiple versions of the same application are run-
ning simultaneously, in different processes and virtual
machines. Given the battery and memory constraints of
a mobile phone, this does not scale well. However, we
do not expect many instances to be open simultaneously.
The standard pattern for legitimate communication is as
follows: (1) the requester opens a target Activity, (2) the
user performs an action such as selecting a contact or ap-
proving an e-mail, (3) the target Activity closes and the
requester regains control of the screen. The instance only
needs to exist while the Activity is open. Only one Activ-
ity can be open at once, so we expect that in most cases
only one additional instance would be open at a time.

9 Related Work

Browser Defenses. Major browser vendors remove the
geolocation permission from iframes, so that the user
must re-approve the geolocation permission for every
parent-child window pair. This agrees with our proposal.
However, we suggest that these rules also be extended to
top-level windows that interact with each other.

Android. Three pieces of concurrent work address sim-
ilar issues. Davi et al. discuss permission re-delegation
attacks on Android [8]. They introduce the problem and
present an attack on a vulnerable deputy. We perform
a larger analysis of applications and discuss how plat-
forms need to change to prevent these attacks. Chin
et al. present ComDroid [6], a static analysis tool that
aims to help prevent developers from accidentally mak-
ing components public. They also make recommen-
dations for changes to the Android platform to reduce
the rate of unintentional deputies. Although their tool
and their platform recommendations would help prevent
some instances of permission re-delegation, attacks on

intentional deputies would still remain. Dietz et al. built
Quire [10], an extension to the Android IPC mechanisms
that helps developers avoid permission re-delegation at-
tacks. Quire annotates IPCs so that an application can
check the full chain of applications responsible for an
IPC call. This addresses the same problem as IPC In-
spection but does not force developer compliance.

Past work has also discussed Android permission us-
age. TaintDroid [12] performs dynamic taint analysis. It
tracks the real-time flow of sensitive data through appli-
cations to detect inappropriate sharing. The taint source
is API data, and the network is the sink. They track
only data flow, but not control flow. TaintDroid is com-
plementary to IPC Inspection because they track API
return values but do not prevent API calls from being
made. Another tool, ScanDroid [21], uses static anal-
ysis to determine data flow through Android applica-
tions; it is intended for use similar to TaintDroid. Scan-
Droid, however, requires access to application source
code. Kirin [13] checks application permission require-
ments and recommends against the installation of ap-
plications with certain permission combinations. Their
rules are intended to help detect malware, and they do
not consider application interaction as a capability.

HBAC. IPC Inspection revises and extends History-
Based Access Control (HBAC) [1]. The two approaches
share a core idea: application permissions are reduced af-
ter inter-application interactions. HBAC is intended for
use within a runtime; their permissions apply to threads,
and privilege reduction follows function calls. We apply
IPC Inspection to the application platform itself and cre-
ate rules appropriate for that context. Our design places a
high priority on application functionality and ease of de-
velopment. Unlike HBAC, we do not reduce privileges
following return values or permit explicit rights restora-
tion. We introduce the concept of multiple instances of
an application to prevent privilege reduction from im-
pacting the application as a whole.

Stack Inspection. IPC Inspection has the same seman-
tics as stack inspection, but permission checks are asso-
ciated with IPC rather than method calls. We do not de-
pend on the stack, so event-driven code does not present
a problem. We make message queues explicit and exter-
nal, by servicing each message with a new application
instance. IPC Inspection is also runtime- and language-
independent.

DIFC. Decentralized information flow control (DIFC)
lets applications explicitly express their information flow
policies to the operating system or a language runtime,
which then enforces the policies [30, 26, 39, 11]. DIFC is
not suitable for the problem of permission re-delegation
because the access control policy for user-controlled re-
sources is centrally decided by the user, not applications.

IPC Inspection is more similar to centralized information
flow control, but IPC Inspection is deployed at the appli-
cation level rather than the variable level.

Low Watermark. IPC inspection carries out the seman-
tics of Biba’s low watermark model [4] in that subjects
are application instances, and the integrity level of an ap-
plication instance is determined by the permissions that
the user has granted to the application instance. When
Instance A sends an IPC message to Instance B, the mes-
sage represents objects with the same integrity level as
that of Instance A. If Integrity(A) < Integrity (B) (mean-
ing B contains permissions that A does not), then B re-
moves the permissions that A does not have.

LOMAC [20] applies Biba’s low watermark mode in a
different way. LOMAC aims to prevent (malicious) low
integrity content from tampering with high integrity pro-
gram execution, whereas IPC Inspection is intended to
prevent less-privileged (low integrity) applications from
using the additional privileges belonging to another (high
integrity) application. In LOMAC, a subject is a job
(which contains multiple application instances) and an
object is data. Integrity levels for objects are assigned
based on the sources for the objects. For example, Inter-
net objects are at a lower integrity level than local data.
Named pipes and shared memory are considered objects
with integrity levels. Subjects’ integrity levels are as-
signed based on the hierarchy of the jobs. The first set
of system jobs have the highest integrity level and lower
levels in the job hierarchy (as jobs spawn new jobs) rep-
resent lower integrity levels. Both LOMAC and IPC in-
spection face the “self revocation problem” [20] inherent
in the Biba’s low watermarking model. The self revoca-
tion problem occurs when a principal’s privilege reduc-
tion prevents it from accessing high-integrity level data,
preventing legitimate functionality. Each scheme has to
relax the low watermark model slightly to accommodate
the problem. In our case, we ignore the reply in the non-
simplex IPC communications. In the case of LOMAC,
they use jobs as subjects rather than processes.

CSRF. Like permission re-delegation, cross-site request
forgery (CSRF) is a confused deputy attack that occurs
in browsers [40]. However, CSRF attacks are targeted at
server-side resources. CSRF defenses rely on developer
participation and require changes to servers [2].

10 Conclusion

We discuss permission re-delegation as a problem with
new permission systems. Permission re-delegation oc-
curs when a deputy delegates a user-controlled permis-
sion to an unprivileged application without user autho-
rization. This is an emerging threat for both the web and
smartphone platforms. We find that many Android ap-

plications are at risk of having permission re-delegation
vulnerabilities, and we construct attacks that exploit 15
vulnerabilities in Android system applications. We dis-
closed our findings and filed bug reports; several of the
vulnerabilities have been confirmed as bugs.

We also devise a runtime-independent defense mech-
anism, IPC Inspection, which transparently protects
against attacks on confused deputies, with no compatibil-
ity cost for non-deputies or confused deputies. However,
intentional deputies and their clients need some modifi-
cations to work with IPC Inspection. In particular, appli-
cations that interact with deputies may need to add per-
missions that they otherwise do not use. We feel that
the problem of permission re-delegation deserves careful
attention, and we hope this paper will encourage future
work on these problems. In particular, we believe static
analysis of deputies is a promising future area for server-
side analysis or platforms with installed packages.

Acknowledgements

We would like to thank Dean Tribble, William Enck,
and David Wagner for their insightful comments. This
work is partially supported by National Science Foun-
dation grant CCF-0424422. This material is also based
upon work supported under a National Science Founda-
tion Graduate Research Fellowship. Any opinions, find-
ings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation.

References
[1] ABADI, M., AND FOURNET, C. Access Control Based on Exe-

cution History. In NDSS (2003).

[2] BARTH, A., JACKSON, C., AND MITCHELL, J. Robust Defenses
for Cross-Site Request Forgery. In CCS (2008).

[3] BARTH, A., WEINBERGER, J., AND SONG, D. Cross-Origin
JavaScript Capability Leaks: Detection, Exploitation, and De-
fense. In USENIX Security (2009).

[4] BIBA, K. J. Integrity Considerations for Secure Computer Sys-
tems. Tech. Rep. ESD-TR-76-372, USAF Electronic Sstems Di-
vision, Hanscom Air Force Base, 1977.

[5] CHEN, S., ROSS, D., AND WANG, Y.-M. An Analysis of
Browser Domain-Isolation Bugs and A Light-Weight Transpar-
ent Defense Mechanism. In CCS (2007).

[6] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing Inter-Application Communication in Android. In Mo-
biSys (2011).

[7] CLULEY, G. Windows Mobile Terdial Tro-
jan makes expensive phone calls. http://
www.sophos.com/blogs/gc/g/2010/04/10/
windows-mobile-terdial-trojan-expensive-
phone-calls/.

[8] DAVI, L., DMITRIENKO, A., SADEGHI, A., AND WINANDY,
M. Privilege escalation attacks on Android. In ISC (2010).

[9] DEPARTMENT OF DEFENSE. Trusted Computer System Eval-
uation Criteria (Orange Book). DoD 5200.28-STD, December
1985.

[10] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In USENIX Security (2011).

[11] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLAR, D., KOHLER, E., MAZIERES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and Event Processes
in the Asbestos Operating System. In SOSP (2005).

[12] ENCK, W., GILBERT, P., CHUN, P., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In OSDI (2010).

[13] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On
Lightweight Mobile Phone Application Certification. In CCS
(2009).

[14] ERMOLINSKIY, A., KATTI, S., SHENKER, S., FOWLER, L.,
AND MCCAULEY, M. Towards Practical Taint Tracking. Tech.
Rep. UCB/EECS-2010-92, UC Berkeley, 2010.

[15] FELT, A. P. DeskClock service should require WAKE LOCK
permission. http://code.google.com/p/android/
issues/detail?id=14659.

[16] FELT, A. P. MediaPlaybackService should require
WAKE LOCK permission. http://code.google.
com/p/android/issues/detail?id=14660.

[17] FELT, A. P. PhoneApp Receiver can be abused.
http://code.google.com/p/android/issues/
detail?id=14600.

[18] FELT, A. P. Settings app – security bug. http://code.
google.com/p/android/issues/?id=14602.

[19] FOURNET, C., AND GORDON, A. D. Stack inspection: theory
and variants. In POPL (2002).

[20] FRASER, T. LOMAC: Low Water-Mark Integrity Protection for
COTS Environments. In IEEE Symposium on Security and Pri-
vacy (2000).

[21] FUCHS, A., CHAUDHURI, A., AND FOSTER, J. S. SCanDroid:
Automated Security Certification of Android Applications. Tech.
rep., University of Maryland, College Park, 2009.

[22] GOOGLE INC. Android 2.2 Compatability Definition. http:
//static.googleusercontent.com/external_
content/untrusted_dlcp/source.android.com/
en/us/compatibility/android-2.2-cdd.pdf.

[23] HARDY, N. The Confused Deputy: (or why capabilities might
have been invented). In ACM SIGPOS Operating Systems Review
(1988), vol. 22.

[24] HICKSON, I. HTML Device: An addition to HTML. http:
//dev.w3.org/html5/html-device, 2010.

[25] HICKSON, I. HTML5: Loading Web Pages: Browsing Con-
texts. http://dev.w3.org/html5/spec/browsers.
html#windows, November 2010.

[26] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, F., KOHLER, E., AND MORRIS, R. Information
Flow Control for Standard OS Abstractions. In SOSP (2007).

[27] LEOPANDO, J. TrendLabs Malware Blog: New Symbian Mal-
ware on the Scene. http://blog.trendmicro.com/
new-symbian-malware-on-the-scene, June 2010.

[28] MOZILLA. Content Security Policies (CSP). https://wiki.
mozilla.org/Security/CSP/Specification.

[29] MOZILLA. window.postMessage. https://developer.
mozilla.org/en/DOM/window.postMessage.

[30] MYERS, A., AND LISKOV, B. Protecting privacy using the de-
centralized label model. ACM Transactions on Software Engi-
neering and Methodology 9, 4 (2000), 410–442.

[31] PALLER, G. Dedexer. http://dedexer.sourceforge.
net/.

[32] POPESCU, A. Geolocation API Specification. http://dev.
w3.org/geo/api/spec-source.html.

[33] RUDERMAN, J. The Same Origin Policy. http:
//www.mozilla.org/projects/security/
components/same-origin.html.

[34] SERIOT, N. iPhone Privacy. Black Hat DC (2010).

[35] W3C. Device APIs and Policy Working Group. http://www.
w3.org/2009/dap/.

[36] WALLACH, D. S., AND FELTEN, E. W. Understanding Java
Stack Inspection. In IEEE Symposium on Security and Privacy
(1998).

[37] WANG, H. J., FAN, X., HOWELL, J., AND JACKSON, C. Pro-
tection and Communication Abstractions in MashupOS. In ACM
Symposium on Operating System Principles (October 2007).

[38] WANG, H. J., MOSHCHUK, A., AND BUSH, A. Convergence of
Desktop and Web Applications on a Multi-Service OS. In Usenix
Workshop on Hot Topics in Security (2009).

[39] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIERES, D. Making information flow explicit in HiStar. In
OSDI (2006).

[40] ZELLER, W. P., AND FELTEN, E. W. Cross-Site Request Forg-
eries: Exploitation and Prevention. Tech. rep., Princeton Univer-
sity, 2008.

[41] ZXING. Projects and Products Using ZXing. http://code.
google.com/p/zxing/wiki/InterestingLinks.

Appendix

The 16 pre-installed system applications referenced in
Section 4 are: Browser, Calendar, Calculator, Camera,
Contacts, Desk Clock, Email, Gallery, Global Search,
Launcher, Live Wallpaper, Messaging/Mms, Music,
Phone, Settings, and SoundRecorder. These pre-installed
applications must be present on every phone, as set
forth by the Android 2.2 compatibility definition [22].
We built permission re-delegation attacks using Settings,
DeskClock, Phone, Music, and Launcher. We collected
the applications from the Android Market on August 27,
2010 (free) and October 15, 2010 (paid).

The 20 applications surveyed in Section 8.2 are: Daum
Maps, Pages Jaunes, Korean IME, Sherpa, Qik, Yan-
dex Maps, First Aid, Three Stooges, Öffi, Cheech and
Chong, Coupons, Human Body Facts, Android System
Info, Baidu Input, Bubbles, Hello Kitty Wallpaper, Mu-
sical Lite, Time2Hunt Free, ModernInfo: BlackOps, and
Wolfram Alpha.

