
Automatic Generation of Remediation Procedures for Malware Infections

Roberto Paleari1, Lorenzo Martignoni2, Emanuele Passerini1,
Drew Davidson3, Matt Fredrikson3, Jon Giffin4, Somesh Jha3

1Universit̀a degli Studi di Milano
{roberto, ema }@security.dico.unimi.it

2Universit̀a degli Studi di Udine
lorenzo.martignoni@uniud.it

3University of Wisconsin
{davidson, mfredrik, jha }@cs.wisc.edu

4Georgia Institute of Technology
giffin@cc.gatech.edu

Abstract
Despite the widespread deployment of malware-
detection software, in many situations it is difficult to
preemptively block a malicious program from infecting
a system. Rather, signatures for detection are usually
available only after malware have started to infect a large
group of systems. Ideally, infected systems should be
reinstalled from scratch. However, due to the high cost
of reinstallation, users may prefer to rely on the remedi-
ation capabilities of malware detectors to revert the ef-
fects of an infection. Unfortunately, current malware de-
tectors perform this task poorly, leaving users’ systems
in an unsafe or unstable state. This paper presents an
architecture to automatically generateremediation pro-
ceduresfrom malicious programs—procedures that can
be used to remediate all and only the effects of the mal-
ware’s execution in any infected system. We have imple-
mented a prototype of this architecture and used it to gen-
erate remediation procedures for a corpus of more than
200 malware binaries. Our evaluation demonstrates that
the algorithm outperforms the remediation capabilities of
top-rated commercial malware detectors.

1 Introduction

One of the most pressing problems faced by the In-
ternet community today is the widespread diffusion of
malware. To defend against malware, users rely on
signature- or behavior-based anti-malware software that
attempts to detect and prevent malware from damaging
an end-host. Unfortunately, in many cases detection and
prevention are not possible. Malware authors have per-
fected the practice of automatically creating a large num-
ber ofvariants, or malware that appears new to detectors
but exhibits the same behavior when executed. For new
malware and variants, signatures for detection are rarely
available by the time malware reaches a network, leaving
a time window in which systems are susceptible to infec-
tion. In these situations, the ability to detect and remove

the malware after infection is not enough—it is also im-
perative that any harmful changes to the system made by
the malware areremediated(or reverted).

The safest way to remediate a system is to format
the permanent storage and re-install the operating sys-
tem from scratch. While effective, this approach is also
costly and usually results in a loss of valuable personal
data, particularly when data backups are incomplete or
non-existent. Rather, end-users and administrators may
prefer to remove only those resources left behind by the
malware, leaving the rest of the system intact. Unfor-
tunately, current anti-malware products perform poorly
at this task. A recent study demonstrated that even top-
rated commercial anti-malware software fails to revert
the effects of all the actions performed by malware dur-
ing infections [15]. Needless to say, partially-remediated
systems are unstable and prone to error.

In this paper, we present a system that automatically
generatesremediation proceduresfrom malware bina-
ries. These remediation procedures can be executed on
infected systems to restore the state to a clean config-
uration, and are capable of remediating the effects of a
malware samplea posteriori, without observing the in-
fection take place. The fact that our remediation proce-
dures are generated to cover a particular malware binary,
rather than a specific sequence of system events resulting
in an infected state [7, 19], amounts to a substantial break
from previous technologies. Using our system, one can
generate a single general-purpose executable that is ca-
pable of reversing the effects of a malware sample on an
arbitrary number of hostsafter the fact. In other words,
one does not need to be aware of our system, or make
use of it, untilafter the infection takes place. To achieve
this goal, we rely on a combination of dynamic program
analysis and semantic generalization to produce models
of infection behavior that are resilient to common mal-
ware anti-analysis techniques, such as the use of nonde-
terminstic file names or the omission of malicious behav-
ior on some runs of the program. Then, we translate these

1

behavior models directly into executable procedures that
remediate the effects of a malware infection.

We have implemented our ideas in a prototype tool.
Using the prototype, we automatically generated reme-
diation procedures on a corpus of more than 200 binary
malware samples belonging to approximately 50 distinct
families. We evaluated the practical effectiveness of each
procedure by testing its ability to recognize all of the
harmful effects of a malware execution (true positives)
while leaving benign aspects of the system intact (true
negatives). The results of our evaluation attest to the ef-
fectiveness of our technique:in total, we reversed 98%
of the harmful effects while generating only a single false
positive, although we were not able to remediate user-
specific resource changes such as deleted documents and
personal file mutations. In contrast, the best commercial
anti-malware product remediated only 82% of the effects
of our corpus.

In summary, we make the following contributions:

• We present an architecture to automatically gener-
ate remediation procedures given binary malware
samples. To the best of our knowledge, our architec-
ture is the first to work under the assumption that in-
formation relating to a specific infection is not avail-
able; rather, characteristic infection patterns are ob-
served andgeneralizedto produce effective proce-
dures in this setting.

• We evaluated an implementation of our framework
on on more than 200 real malware samples and
found that it was able to remediate the resulting in-
fections more effectively than existing commercial
antivirus products. We have made this implementa-
tion available as an open-source package1.

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss related work. In Section 3.1, we de-
scribe the problem that our architecture solves by pre-
senting a realistic example, and in Section 3.2 we outline
our approach, relating it to the example. In Section 4,
we formalize the problem of malware remediation and
present the technical details of our approach. In Sec-
tion 5, we evaluate the effectiveness of our approach by
testing a prototype implementation against real malware.
In Section 6 we discuss the limitations of our approach,
the security implications, and potential avenues for fu-
ture work. We present concluding remarks in Section 7.

2 Related Work

Our contributions relate to ongoing research on behavior-
based malware analysis, on the execution of untrusted

1The URL for this tool is http://www.cs.wisc.edu/
∼mfredrik/remediate

applications in trusted systems, and on the automatic
generation of signatures to detect malicious network traf-
fic.

Behavior-Based Malware Analysis: The prevalence
of packed, polymorphic, and metamorphic malware
highlights the deficiencies of traditional detection ap-
proaches based on syntactic signatures. This has urged
researchers and security practitioners to focus on solu-
tions that base policy on the behavior exhibited by un-
trusted software. Behavior-based techniques attempt to
infer security-relevant information about an untrusted
program either by analyzing it statically [16] or by ob-
serving its operation dynamically [1, 11, 21]. The major
drawback of current behavior-based techniques is their
high computational overhead. Recently, Kolbitsch et al.
developed an efficient analysis solution intended to re-
place traditional anti-malware on the desktop [8]. Closer
in spirit to the work presented here is that of Christodor-
escu et al. [4]. They described an automatic approach
that derives formal specifications of malicious behavior
by comparing the observed dynamic behavior of mali-
cious and benign applications. Their technique uses de-
pendence graphs, which express the relationships among
various low-level behavior events, and is similar in many
ways to our high-level behavior abstraction component
(see Section 4.2.1). Another area of much recent activity
is that of automatic classification of malware into fami-
lies [2, 18]. For that type of work, malware is grouped
into clusters, which correspond to families, by some no-
tion of behavioral similarity. Our technique uses a form
of behavioral grouping as a means to remediate a system,
but we go further than malware classification by attempt-
ing to remove the harmful effects of the malware on the
system.

Execution of Untrusted Applications: In addition to
work that attempts to detect or prevent the execution of
malicious software, some work has been done to miti-
gate the harmful effects of softwarea posteriori. Hsu
et al. presented a framework for automatically repairing
an infected system after monitoring the execution of the
malware [7]. The actual work of remediating a system
given a detailed description of the malicious execution
is similar to the way that we construct remediation pro-
cedures from generalized behavior models. Liang et al.
described an alternative approach called Alcatraz [10].
In Alcatraz, an untrusted application is executed inside
of a sandbox, and any change it makes is not commit-
ted until the program is confirmed to be innocuous. The
manner in which a program is deemed innocuous is con-
sidered orthogonal to the main issue of sandboxing. The
idea was later tweaked [19] so that all state changes made

2

http://www.cs.wisc.edu/~mfredrik/remediate
http://www.cs.wisc.edu/~mfredrik/remediate

by an application arecached, and upon program termina-
tion the user decides whether or not to keep any changes.
The primary differences between these techniques and
the one presented in this paper is that they rely on in-
formation regarding specific execution traces, whereas
our remediation procedures use generalized notions of
the behavior of a malware instance. As such, our sys-
tem can remediate harmful effects of malware, including
some effects that were not observed in a trace.

Automatic Signature Generation: The generalized
behavior models that we use to construct executable re-
mediation procedures can be viewed as generic signa-
tures relating the effects of a malicious program on sys-
tem resources. Different approaches have been proposed
for automatically generating attack signatures. Poly-
graph [14] is one of the first systems proposed by re-
searchers to address the problem of generating network
signatures to detect polymorphic worms. Polygraph
identifies invariant fragments of packets that are found in
all the network flows generated by the same worm, since
they are necessary for the worm to successfully exploit a
given vulnerability. These fragments are then combined
into signatures using different techniques. Hamsa [9]
addresses the same problem using a different algorithm
that identifies and combines invariants. Hamsa’s signa-
tures have better accuracy and are more resilient against
attacks than Polygraph. Finally, Nemean [20] gener-
ates semantics-aware signatures to detect network intru-
sions. Nemean’s methodology, consisting of high-level
network traffic abstraction, clustering, and generalization
using automata learning, is similar to ours. However,
we operate on a fundamentally different domain than
Nemean, which generates signatures of network packet
traces.

3 Overview

In this section, we motivate our work using a realistic
example of a malware infection and present our architec-
ture by walking through the steps that it takes to remedi-
ate the example.

3.1 Motivation

Consider the malware whose pseudo-code is shown
in Figure 1. This program generates a random file-
name located in the system directory, drops a mali-
cious payload into the file, creates a new registry value
that causes the payload to be executed at system boot
time, tampers with the system’s network name resolver
(c:\...\etc\hosts), and infects a benign system li-
brary (c:\windows\user32.dll). Our goal is to gen-
erate a procedure that remediates infections caused by

any possible execution of this code. In this case, re-
covery includes:(1) deleting the file containing a copy
of the malicious payload,(2) deleting the registry key
created to start the malware at boot,(3) disinfecting
c:\windows\user32.dll , and(4) restoring the original
configuration of the name resolverc:\...\etc\hosts . It
is important that the effects ofall malicious actions taken
by the malware are removed. For example, consider what
happens when(1), (2), and(3) are remediated, but not
(4). In this case, all internet traffic on the host remains
subject to hijacking by the malware, so the system is still
in a dangerous configuration. Many commercial prod-
ucts would leave the system in this configuration [15].

Completely remediating the effects of the malware in
Figure 1 is not as straightforward as the example might
suggest. First, high-level source code is usually not avail-
able when dealing with real malware. Given the well-
known difficulty of statically analysing adversarial bi-
nary code [13], this means we must partially rely on
dynamic information. Although this example does not
illustrate it, there is a possibility that the malware con-
tains paths that are rarely executed under normal circum-
stances. Any harmful effects produced on such a path
would be difficult to account for in a remediation pro-
cedure, because the problem of discovering such an ef-
fect dynamically is extremely difficult. Secondly, mal-
ware can appear to be nondetermistic by relying on sub-
tle details in its environment, such as the system clock
or pseudorandom number generator. This behavior is of-
ten present even on common paths, and is apparent in
our example, despite its simplicity: Both the filename of
the malicious payload and the name of the registry value
used to activate the payload depend on randomness.

Given the limited nature of dynamic program informa-
tion, it may be hard to generate a remediation procedure
that precisely accounts for all of the nondeterminism in
a program. Procedures that do so may mistakenly iden-
tify benign system resources as malicious and attempt to
remediate them. Consider a remediation procedure that
attempts to account for the nondeterminism in our exam-
ple by looking for all files in the system directory with
the suffix.exe . While this policy would effectively cap-
ture the nondeterminism in the payload filename, any at-
tempt to remediate resources based on it would result in
the unacceptable removal of benign executables. Con-
versely, procedures that do not attempt to generalize ex-
ecution behavior are likely to miss some malicious ef-
fects that must be remediated. For example, after run-
ning the sample malware once, we might find that the
payload is delivered inc:\windows\poqwz.exe . If a re-
mediation procedure does not generalize this information
and only ever looks for this file when remediating infec-
tions caused by other executions of this malware, then it
will miss the payload file most of the time, as it is not

3

1 / / g e n e r a t e random f i l e and v a l u e names
2 filename = "po" + random_alpha () + random_alpha () + random_alpha () + ".exe" ;
3 valuename = (random_int () % 2) ? "qv" : "vq" ;
4 . . .
5 / / drop m a l i c i o u s code
6 f = CreateFile (”c: \windows \” + filename , GENERIC_WRITE, . . .) ;
7 WriteFile (f , malicious_buf , . . .) ;
8 WriteFile (f , other_malicious_buf , . . .) ;
9 . . .

10 / / s t a r t t h e newly c r e a t e d e x e c u t a b l e a t boo t
11 RegOpenKey (HKEY_LOCAL_MACHINE, "...\Windows\CurrentVersion\Run" , &r) ;
12 if (RegQueryValueEx (r , valuename , NULL, REG_SZ, . . .) == ERROR_FILE_NOT_FOUND)
13 RegSetKeyValue (r , valuename , REG_SZ, filename , . . .) ;
14 . . .
15 / / i n f e c t user32 . d l l
16 g = CreateFile ("c:\windows\user32.dll" , FILE_APPEND_DATA, . . . , OPEN_EXISTING, . . .) ;
17 WriteFile (g , malicious_buf , . . .) ;
18 . . .
19 / / h i j a c k HTTP c o n n e c t i o n s t o www. goog le . com and www. c i t i b a n k . com
20 h = CreateFile ("c:\windows\system32\drivers\etc\hosts" , . . . , OPEN_EXISTING, . . .) ;
21 ReadFile (h , buf , . . .) ;
22 WriteFile (f , "67.42.10.3 www.google.com\n67.42.10.3 www.citibank.com" , . . .) ;
23 . . .
24 / / d e l e t e main e x e c u t a b l e
25 DeleteFile ("c:\malware.exe") ;

Figure 1: Pseudo-code of a sample malicious program.

possible to observe the malware long enough to see all
possible variants of the payload file name.

3.2 Architecture Overview

The architecture we have developed for generating re-
mediation procedures from malware binaries is shown in
Figure 2. It has three primary components:(1) an execu-
tion monitor that infers the malware’s high-level behav-
iors from a low-level trace,(2) a component thatgener-
alizesthe high-level behaviors from multiple executions
of the malware, and(3) a component that produces exe-
cutable remediation procedures from generalized behav-
iors. The entire system works sequentially, with each
component using the information produced by the one
preceding it.

High-Level Behavior Extraction: The high-level be-
havior extraction component (numbered 1 in Figure 2)
analyzes the semantics of a program to produce a se-
quence of meaningful behaviors relevant to remediation.
Because malware authors usually obfuscate their bina-
ries, we rely on dynamic information to infer these be-
haviors; we execute binaries in a special environment (an
emulator) to extract a low-level execution trace, perform
analysis using manually constructed rules, and arrive at a
high-level trace [11]. Table 1 lists the high-level behav-
iors we consider. Each behavior modifies the state of the
system in some way and is parameterized by a set of ar-
guments that determine which aspects of the system state
are affected. The behaviors currently listed correspond to
those that commonly occur in malware, that are manda-
tory to infect a system, and were constructed manually to

reflect the salient behavioral features of most malware.
However, our technique can be extended to operate over
a wider set of high-level behaviors.

The environment in which a program runs typically
affects its behavior, and malware often exhibits a certain
degree of nondeterminism. To account for these factors,
we collect several high-level behavior traces for each
sample. To do so, we vary the environment by chang-
ing factors that malware typically rely on, such as lo-
cale, service pack level, and so forth. Although not sup-
ported by our current implementation, path exploration
techniques [12] can be applied in this component to ac-
count for a more complete subset of the malware’s be-
havior, as in Bouncer [5]. The lack of path exploration
techniques is not a fundamental limitation of our system,
and can be easilyplugged intoour system.

Our high-level behavior extractor would infer that
the sample malware from Figure 1 demonstrates the
FileCreation , RegistryCreation , DropAndAutostart ,
and FileInfection behaviors, with different argu-
ments for FileCreation , RegistryCreation , and
DropAndAutostart on each execution.

Behavior Generalization: After producing a set of
high-level behavior traces for a malware sample, we at-
tempt to account for nondeterminism by creating a gen-
eral, abstract model of behavior that accounts for all of
the concrete traces we observed (numbered 2 in Fig-
ure 2). Note that generalization attempts tooverapprox-
imate existing paths, thus encompassing future paths,
rather than explore as many new paths as possible. In ef-
fect, thispatchessome of the incompleteness of dynamic

4

Malware

Behavior
monitoring

High-level
behavior
analysis

S
1

S
2

S
3

S
4

1

Behavior
clustering

B1

B2

B3

B4

Cluster gen-
eralization

2 Remediation
procedure
generation

C
1

C
2

C
3

3
C1

C2

C3

Remediation
procedure

Figure 2: Architecture of the system for generating remediation procedures. In this figure,S denotes a system call
trace,B denotes a high-level behavior trace inferred from a system call trace,C denotes a cluster, and̄C denotes a
generalizedcluster.

analysis by extrapolating observed information to future,
unseen executions of the malware. This is accomplished
by recognizing when distinct behaviors from multiple
high-level traces, with possibly different arguments, are
actually instances of the same malicious activity. We re-
fer to this matching of behaviors asclustering. When a
cluster is identified, the arguments of its constituent be-
haviors are generalized to tolerate any differences that
may be present in the actual values. Thus, nondetermin-
ism is accounted for via overapproximation by ensuring
that this generalization extends to future, unseen execu-
tions.

In the malware from Figure 1, our technique would
cluster all instances of the same high-level behavior to-
gether. For example, all instances ofDropAndAutostart

would be clustered together and all instances of
FileInfection would be clustered together. Be-
cause there is likely variation among the arguments of
DropAndAutostart , we construct a regular expression
to tolerate minor differences while ensuring that be-
nign files are not mistakenly identified. The final re-
sult of the computation for this behavior would be a
DropAndAutoStart behavior with generic file argument
c:\windows\po[[:alpha:]]{3}.exe to generalize the
random filename at line 2, generic registry key/value pair
...\CurrentVersion\Run for the registry touched at line
11, and(qv|vq) for the registry value randomly created
at line 3.

Remediation Procedure Generation: The third com-
ponent of our architecture (numbered 3 in Figure 2) gen-
erates executable remediation procedures from the gen-
eralized behaviors produced in the previous step. The
resulting procedure examines the state of the system on

which it runs in search of symptoms of an infection, and
removes the symptoms whenever possible. It attempts
to match each resource (file, process, or registry key) on
the system against the constraints associated with each
generalized high-level behavior. For our running exam-
ple, each file is matched against the regular expression
c:\windows\po[[:alpha:]]{3}.exe associated with the
first argument of theDropAndAutoStart behavior, an-
other regular expression associated with the second ar-
gument, and a final one describing the content of the file.
If such a file is found, then the registry values under the
key ...\CurrentVersion\Run are matched against the
regular expression(qv|vq) . If such a value is found and
its data matches the current filename being considered,
then all of the resources (the file and registry key pair)
are removed. Currently, we only produce remediation
procedures that operate on system files. For technical
reasons explained in Section 4, we do not handle user-
specific files and resources. While this is a limitation
of our current approach, we hope to remove it in future
work.

4 Generating Remediation Procedures

In this section, we present the details of our sys-
tem for generating remediation procedures. We begin
by formalizing the problem solved by our system and
continue component-by-component describing the algo-
rithms used to solve the problem.

4.1 Problem Description

When malware runs on a system, it may infect the system
by changing its persistent state in an undesirable way.

5

R
es

ou
rc

e
cr

ea
tio

n

Behavior Arguments Description
FileCreation File name and content Creation of a new file
RegistryCreation Key name and content Creation of a new registry value
DropAndAutostart File name and content. Key name

and content
Creation of a new file and of a registry value con-
taining its name (to execute the file automatically at
every boot)

DropAndExecute File and process name Creation and execution of a new executable

R
es

ou
rc

e
in

fe
ct

io
n FileInfection File name and content. List of pre-

served regions
Infection of an existing file

RegistryInfection Key name and content Replacement of an existing registry value

R
es

ou
rc

e
de

le
tio

n

FileDeletion File name Deletion of an existing file
RegistryDeletion Key name Deletion of an existing registry value

Table 1: High-level behaviors considered for remediation.

For our purposes, the stateS of a system is modeled
as an association from resource namesN to data from
a domainD. Individual elements ofS are referred to
as resources. To simplify notation, we letS stand for
the set of possible system states. Because most malware
is written for Windows platforms, our targeted resource
namespace consists of Windows filenames, registry key
and value names, and process names. The data domain
is the set of all finite-length bit strings.

The infection behavior of a malware can be under-
stood as a transition relation between system states.
There are three ways in which the malware can mod-
ify the state of a system:(1) resources may be com-
pletely removed from the system,(2) new resources may
be added to the system, and(3) the data corresponding
to existing resources may be mutated. Because the infec-
tion behavior of a malware can be succinctly described
in terms of these three operations and the resources over
which they operate, we represent it using aninfection re-
lation R ⊆ S × N × S × S that encodes this informa-
tion. Intuitively, the infection relation describes the way
in which a particular malware changes the state of a sys-
tem. Given an element(S, Nrem , Sadd , Smut) ∈ R, the
malware transforms stateS into a new state by removing
the resources labeled byNrem , adding the resources in
Sadd , and modifying the resources inSmut . Note that the
infection behavior is described as a relation rather than a
function mapping. This is because of the fact that mal-
ware may behave nondeterministically when it infects a
system—it may infect the same system state in different
ways on two distinct executions.

After a given piece of malware has infected a system,
the goal of remediation is to undo the effects of the in-
fection, returning the system to a clean state. More pre-
cisely, given a malware binary, we seek to construct an

infection relation for that malware that describes its be-
havior. We can then use the information in the infection
relation to enact changes on the system that remediate
the effects of the malware: restoring any files that were
removed (Nrem) or mutated (Smut), and removing files
that were added (Sadd). We package this functionality
as an executable remediation procedure, as described in
Section 3.2. In general, there are a number of approaches
that may realize the goal of constructing the infection re-
lation corresponding to a given malware. In this paper,
we focus on applying dynamic analysis to the malware
sample to extract the information necessary to construct
the infection relation.

In practice, it is not usually possible to reconstruct the
true infection relation from a malware binary. Rather, we
compute a relation thatoverapproximatesthe actual be-
havior for a finite set of execution paths exhibited by the
malware. For example, we overapproximate the resource
names involved in theDropAndAutoStart behavior
of Figure 1 by creating a regular expression that matches
all of the resource names on the set of execution traces
we observed. Furthermore, our approximate infection re-
lations do not contain information regarding the removal
or mutation of non-system files, as it is generally not pos-
sible to restore this state without additional information
not encoded in the malware. Of course, using an ap-
proximate infection relation for remediation introduces
the possibility offalse negativesand false positives. A
false negative occurs when the remediation fails to prop-
erly reverse the changes left by the malware. Similarly, a
false positive occurs when remediation affects resources
that were not touched by the malware. Both types of er-
ror are possible given the way we construct approximate
infection relations. For example, false positives may re-
sult from the overapproximation of resource names with

6

regular expressions, whereas false negatives may result
from the fact that we do not account for all possible exe-
cution paths in the malware. Thus, it is our goal to con-
struct an approximate infection relation that minimizes
false positives and false negatives

4.2 System Details

This section details the specific algorithms and subsys-
tems used in the three main components of our system
(depicted in Figure 2).

4.2.1 High-Level Behavior Extraction

Intuitively, the problem of high-level behavior extraction
is to derive a concise description of the behavior seman-
tics demonstrated by a malware sample. Given a mal-
ware samplem and a setD of high-level behavior tem-
platesthat describe events related to system state modifi-
cation, the goal of this task is to produce a sequence of in-
stances of the members ofD, along with a corresponding
low-level description of system events that match each
template instance.

The set of behavior templates used in our prototype
is given in Table 1. To infer high-level behaviors from
a stream of system calls, we usemultilayer behavior
specifications, as proposed in previous work [11]. Al-
though the details of the inference algorithm are beyond
the scope of this paper, we give a brief account of the
main points here. Each high-level behavior is described
in terms of a hierarchical model. Each level of the hierar-
chy is composed of a set ofbehavior summariesand their
accompanyingbehavior graphs. The graph for a given
behavior summary encodes the behavior operationally, in
terms of events and the dependencies among them. The
events in a graph at a particular level are defined in terms
of the summaries of levels lower in the hierarchy. The
top level of the hierarchy corresponds to the final output
of the inference, and the layers beneath it provide de-
tails of incremental specificity, until the lowest level is
reached. In our prototype, the lowest level corresponds
to a system call trace collected in a virtual environment.
We use a modified version of QEMU [3] to monitor an
application for its system call trace.

The nodes in the behavior graphs at each layer cor-
respond to events that are observed by the monitor, and
the edges correspond to data dependencies between the
events. For example, in the graphs at the lowest level,
system calls that operate on the same resource handle
have edges between their representative nodes that re-
flect this dependency. At the highest level, this relation-
ship is preserved by edges that denote the fact that the
corresponding set of high-level behaviors operate on the
same file. Representing high-level behavior graphs hier-

archically has one crucial advantage: the same high-level
behavior can be described in terms of multiple alterna-
tive intermediate behaviors. For example, our high-level
behaviorDropAndAutostart can be represented in terms
of all possible low-level system call sequences that cre-
ate a new file, write executable content into it, and then
change the system configuration to activate the dropped
file at boot time. Because there are numerous distinct
ways to accomplish this high-level task in terms of sys-
tem calls, it is important to account for all of them in a
clean and straightforward way. Our heirarchical behavior
model formalism allows this, and thus makes our system
more resilient to this type of evasion.

Figure 3 shows a sample system call trace and two
of the high-level behaviors extracted from it. The fig-
ure shows both the concrete graphs and the template
instances that were matched. The first four system
calls in the trace (memberss1 through s4) are exe-
cuted by the malware sample to replicate its payload
into a new file. These calls are associated with the
layer-1 behaviorFileCreation. Similarly, the system
calls s11, s13, and s14 are associated with the layer-1
behaviorRegistryCreation, and the last system call
(s41) with the behaviorFileDeletion. Since the be-
haviorsFileCreation andRegistryCreation are re-
lated, the algorithm infers the high-level layer-2 behav-
ior DropAndAutostart, which represents the fact that
the malware replicates and configures the system to exe-
cute the malicious payload at boot. Note that this high-
level behavior was inferred hierarchically; the fact that
DropAndAutoStart is present in the trace was inferred
only from layer-1 behaviors, which were in turn inferred
from system calls originally found in the trace. By
modularizing the template definitions in this way, our
high-level behavior inference technique gains a certain
amount of resilience to obfuscations and differences in
malware implementation [11].

4.2.2 Behavior Clustering

Given a set of high-level behavior traces{B1, . . . ,Bm}
corresponding to multiple executions of the same mal-
ware sample,behavior clusteringidentifies elements of
distinct traces that correspond to the same malicious ac-
tivity. An admissible clusteringfor a given set of traces is
a set of behavior sets{C1, C2, . . . , Cn} that satisfies two
conditions:

1. All behaviors in a given clusterCi have the same
type. For example, all behaviors are of type
DropAndAutostart.

2. The clusteringpartitions the set of all events in ev-
ery execution trace: no behavior is in more than one
cluster, and each behavior is in some cluster.

7

s1 NtCreateFile("poqwz.exe") → f
s2 NtWriteFile(f, "...malicious code...")
s3 NtWriteFile(f, "...other malicious code...")
s4 NtClose(f)
...
s11 NtOpenKey("Run") → r
s12 NtQueryValueKey(r, "vq") → FAILURE

s13 NtSetValueKey(r, "vq", "poqwz.exe")
s14 NtClose(r)
...
s21 NtOpenFile("...\system32\user32.dll") → g
s22 NtWriteFile(g, "...malicious data...")
s23 NtClose(g)
...
s31 NtOpenFile("c:\windows\hosts") → h
s32 NtReadFile(h, 1024) → "# Copyright (c)..."

s33 NtWriteFile(h, "67.42.10.3 www.google.com...")
s34 NtWriteFile(h, "67.42.10.3 www.citibank.com...")
s35 NtClose(h)
...
s41 NtDeleteFile("c:\malware.exe")

(a)

DropAndAutostart FileDeletion

FileCreation RegistryCreation

s1 s3

s2

s4

s11

s13

s14

s41

La
ye

r
0

La
ye

r
1

La
ye

r
2

High-Level Behavior Summaries
DropAndAutostart("poqwz.exe", data , "Run", "vq",

"poqwz.exe")
FileCreation("poqwz.exe", data)
FileDeletion("c: \malware.exe")
RegistryCreation("Run", "vq", "poqwz.exe")

(b)

Figure 3: The system call trace for our samplemalware.exe (a) and high-level behaviors generated from the trace
(b).

In later stages of the system, it generalizes behaviors
in the same cluster by overapproximating their argument
values. Thus, desirable clusterings are those that lead to
tighter overapproximations, while still grouping related
behaviors together in order to allow generalization. As
an example, Figure 4 shows two high-level traces of our
sample malicious program. We denote thejth behavior
observed in theith execution trace asbi

j . For these traces,
we want to group behaviorsb1

1 andb2
1 because they cor-

respond to the same activity, and generalizing their ar-
guments leads to a tight overapproximation: we can use
regular expressions that match a fairly small set of strings
(namely,po[[: alpha :]]{3}.exe). Similarly, we want to
groupb1

2 with b2
2 andb1

3 with b2
3. However, had the sec-

ond trace contained anotherDropAndAutostart behav-
ior for an executable namedavkiller.exe, then cluster-
ing b1

1 with this behavior would have resulted in a poor
generalization. An optimal clustering is one that includes
all related high-level behaviors so that generalization will
create a powerful regular expression that finds all traces
of a malicious behavior. On the other hand, an optimal
clustering must not include unrelated high-level behav-
iors, as a generalization of such a cluster is likely to
match benign system resources.

Cluster Formation: Exhaustively searching for the
optimal clustering of{B1, . . . ,Bm} is infeasible, as
there are an exponential number of possibilities. Thus,
we do not attempt to find an optimal clustering and in-
stead rely on the heuristic method shown in Algorithm 1.
The algorithm begins by finding the execution trace with
the greatest number of high-level behaviorsBmax , and
creating an initial clustering by placing eachbmax

i in
its own clusterCi. Then, for each remaining behavior

traceBj , the events are enumerated in execution order
and added to the first cluster that satisfies the admissibil-
ity criterion discussed above. We discuss the details of
matching event types below. If an event cannot be added
to any existing cluster, then a new cluster is initialized
with the current event. This process is repeated until no
traces remain, at which point the current set of clusters is
returned as the final result.

Intuitively, the heuristics in this algorithm rely on two
asssumptions:(1) distinct executions of the malware ex-
hibit similar malicious behaviors, and(2) the ordering of
malicious behaviors between executions is similar. By
selecting the trace with the greatest number of events to
seed the clustering process and assuming that different
executions contain a similar set of behaviors, we seek
clusterings that group as many behaviors together as pos-
sible. By adding events to existing clusters in execution
order and assuming that the order does not vary substan-
tially between executions, we seek clusterings that match
similar argument values, thus resulting in tighter over-
approximations in the behavior generalization phase of
the system. Furthermore, these heuristics allow our al-
gorithm to operate efficiently: Algorithm 1 runs in time
linear in the number of execution traces and the length of
the traces.

For an example of how Algorithm 1 works, consider
the two high-level execution traces depicted in Figure 4.
As both traces are of equal length, the first is chosen,
in this caseB1. ClustersC1, C2, and C3 are initial-
ized with behaviorsb1

1, b1
2, andb1

3, respectively.b1
1 and

b2
1 can then be matched, as they are both instances of

the DropAndAutostart high-level behavior. Simi-
larly, b1

2 is matched tob2
2, andb1

3 is matched tob2
3. Fi-

nally, the algorithm returns clusters{C1, C2, C3} where

8

B1 B2

b1
1

b2
1

b1
2 b2

2
b1
3

b2
3

b11 : DropAndAutostart("c: \... \poqwz.exe", data , "... \Run",
"vq", "poqwz.exe")

b12 : FileDeletion("c: \malware.exe")

b13 : FileInfection("... \etc \hosts", "67.42...", data)

b21 : DropAndAutostart("c: \... \pobxz.exe", data , "... \Run",
"vq", "pobxz.exe")

b22 : FileDeletion("c: \malware.exe")

b23 : FileInfection("... \etc \hosts", "67.42...", data)

DropAndAutostart

FileCreation RegistryCreation

DropAndAutostart

FileCreationRegistryCreation

FileDeletion FileDeletionFileInfection FileInfection

Figure 4: High-level behavior clustering.

C1 = {b1
1, b

2
1} representsDropAndAutostart behav-

iors, C2 = {b1
2, b

2
2} representsFileDeletion behav-

iors, andC3 = {b1
3, b

2
3} representsFileInfection

behaviors.

Behavior Comparison: Our clustering algorithm re-
quires a sub-algorithm,isomorphic, to compare two be-
haviors. Intuitively, we perform this comparison bynor-
malizingthe graphs corresponding to each behavior and
then checking whether the resulting normalized graphs
are isomorphic. There is an important advantage in com-
paring the behavior graphs rather than their high-level
summaries: nondeterminism in a malicious program typ-
ically affects the summary of the behavior, but not the
low-level operations used to achieve the behavior. There-
fore, this approach is more resilient to nondeterminism
and performs a more thorough comparison, eventually
yielding more precise results.

The normalization we perform on each graph mainly
consists of abstracting away details of the behavior that
are likely affected by nondeterminism. System call ar-
guments that represent resource names are replaced by
constants that denote their type. For example, we use
a different constant for each file and registry type. Se-
quences of system calls that operate sequentially on the
same resource are replaced with a single,batchcall that
is semantically identical. Finally, we ignore system calls
whose effects are laterkilled, i.e. overwritten or other-
wise reversed. In this way, our normalization step pro-

duces more succinct graph representations of the mal-
ware’s behavior that are largely independent of common
forms of nondeterminism.

After normalizing two graphs for comparison, we use
the VFlib2 graph isomorphism algorithm [6]. Although
isomorphism is a difficult problem and may be inefficient
to compute on large graphs, we point out that the normal-
ized behavior graphs resulting from real-world programs
are typically quite small, comprising no more than a few
dozen nodes.

4.2.3 Behavior Generalization

After clustering, we have several sets of behaviors
grouped by semantic similarity but still differing in cer-
tain details. For example, when we build clusters we
group together behaviors that differ in the specific re-
sources they identify. The goal of behavior generaliza-
tion is to produce a single canonical behavior that rep-
resents all of the members of a given cluster, as well as
variations of the members that are likely to result from
other executions of the malware. In terms of the def-
initions presented in Section 4.1, behavior generaliza-
tion produces high-level behaviors with arguments con-
structed to accurately represent the resources modified
by observed executions, while generalizing to potential
future executions.

Algorithm 2 presentsGeneralize, our procedure for
generalizing a behavior cluster. Intuitively, generaliza-

9

Algorithm 1 Cluster(B,Bmax)
Require: B is a set of high-level behavior traces
{B1,B2, . . . ,Bm}
Bmax is the high-level behavior trace containing the maxi-
mum number of high-level behaviors

Result: A set of clusters of high-level behaviors of
{B1,B2, . . . ,Bm}
C ← ∅
for bmax

j ∈ Bmax do
add new cluster{bi

j} to C
end for
for all Bi ∈ B/Bmax do
{Traces are enumerated in the order of collection.}
for all bi

j ∈ Bi do
{Behaviors are enumerated in execution order.}
for all Ck ∈ C do

if isomorphic(bi
j , bk) wherebk is a behavior inCk

then
Ck ← Ck ∪ {bi

j}
end if

end for
if bi

j is not in any clusterthen
add new cluster{bi

j} to C
end if

end for
end for
return (C)

tion is performed on each high-level behavior argument
individually, and the individual results are eventually
combined to produce the generalized behavior. Because
each cluster member represents the same high-level be-
havior, and therefore has the same number of arguments
as the others, we are assured that all of the relevant infor-
mation is included in the generalization. Furthermore,
because all arguments for the behaviors that we are inter-
ested in have straightforward canonical representations
as strings, the problem of generalizing each argument
can be reduced to the problem of generalizing sets of
strings.Generalize proceeds in this vein, iterating over
each argument for the behaviors in a given clusterC. Af-
ter collecting each string for a given argument in a setAi,
a probabilistic finite-state automaton (PSFA) that accepts
all of the strings inAi is constructed using thesimulated
beam annealingalgorithm [17]. By merging states that
are probabilistically very similar, the resulting automaton
accepts a superset ofAi, thus resulting an initial gener-
alization.

After building the PFSA, certain regions of the state
transition diagram are examined for reduction using a set
G of generalization rules, which are templates for gen-
erating regular expressions that overapproximate high-
level behavior arguments. We refer to asingle-entry
single-exit regionas one whose entry is composed of a
noden1 that is the immediate dominator of the exit node

Algorithm 2 Generalize(C,G, δ)
Require: C is a cluster of behaviors that differ only in argu-

ment values,G is a set of generalization rules,δ is the density
threshold.

Result: A generalized high-level behavior.
{Loop through all arguments for behaviors in cluster C}
for i = 0 to |args(C0)| do

Ai ← ∅
{Gather all values for current argument}
for c in C do

Ai ← Ai ∪ argsi(c)
end for
{Generate PFSA that captures argument values}
(V, E)← PFSA(Ai)
{Find dense regions in the PFSA}
for (n1, n2) in V × V − {(n, n) | n ∈ V } do

if ¬idom(e1, e2) or ¬ipdom(n2, n1) or
numpaths(n1, n2) < δ then

continue
end if
for r in G do

E′ ← r(paths(n1, n2))
E ← (E − paths(n1, n2)) ∪ E′

end for
end for
{Build regular expression for the current arguments}
Gi ← regexp(E)

end for
{Return new behavior with type matching C, and gen-
eralized reg. exp. arguments}
return name(C0)(G0, . . . , G), 0 ≤ n < |args(C0)|

n2, which is the immediate postdominator ofn1. Fur-
thermore, we require that the number of paths between
n1 and n2 be at leastδ. The actual value ofδ is es-
timated empirically. This information is represented in
Algorithm 2 with the relationsidomE and ipdomE , as
well as the functionnumpathsE . When a suitable single-
entry single-exit region is found, each rule inG is applied
in an attempt to generalize it. The generalization rules
that we use have been chosen on the basis of experience
and consider information such as the number of paths in
the region, the probabilities associated with the paths, the
lengths of the paths, and the characters composing the
strings associated with each path. If a rule is able to gen-
eralize the region, then it returns a smaller set of edges
that are used to replace the original region. Otherwise,
the rule returns the original region, and the next rule is
applied. After all rules inG have been applied, a reg-
ular expression is built from the resulting PFSA, which
is eventually used as an argument in the final general-
ized behavior. The final behavior is represented in Algo-
rithm 2 by name(C0)(G0, . . . , Gn). Here,name(C0)
returns the behavior name of the high-level behaviorC0,
which is used to build the final generalized behavior from

10

1 DropAndAutostart("c: \windows \...po agp.exe", data ,"...Windows \CurrentVersion \Run"," vq","po agp.exe")
2 DropAndAutostart("c: \windows \...po bxz.exe", data ,"...Windows \CurrentVersion \Run"," vq","po bxz.exe")
3 DropAndAutostart("c: \windows \...po cra.exe", data ,"...Windows \CurrentVersion \Run"," qv","po cra.exe")
4 DropAndAutostart("c: \windows \...po mfq.exe", data ,"...Windows \CurrentVersion \Run"," vq","po mfq.exe")
5 DropAndAutostart("c: \windows \...po mmp.exe", data ,"...Windows \CurrentVersion \Run"," qv","po mmp.exe")
6 DropAndAutostart("c: \windows \...po pwz.exe", data ,"...Windows \CurrentVersion \Run"," qv","po pwz.exe")
7 DropAndAutostart("c: \windows \...po uwk.exe", data ,"...Windows \CurrentVersion \Run"," vq","po uwk.exe")

Figure 5: Sample cluster grouping seven different occurrences of theDropAndAutostart behavior manifested by
our sample malware (the corresponding graphs are omitted for conciseness).

the individual argument generalizations.
As an illustration of this algorithm, consider the clus-

ter presented in Figure 5. We apply the PFSA algorithm
to the first argument to arrive at the minimal automaton
shown in Figure 6. The automaton contains a single-
entry single-exit region with several paths, as highlighted
in the figure, that encodes the variable substring of the
filename. One of the generalization rules that we use
is triggered by the fact that this region isdense, i.e. it
contains many paths from entry to exit, as well as the
fact that it contains only alphabetic characters. Thus, it
returns a single edge labeled[[: alpha :]]{3}, which is a
wildcard sequence that denotes all alphabetic strings of
length three. The generalized PFSA results in the reg-
ular expressionc : \windows\po[[: alpha :]]{3}.exe,
which is capable of identifying all the names of
the files that our sample malicious program could
touch on the system. After applyingGeneralize to
all arguments ofDropAndAutostart, we obtain a
generic model of the cluster behavior represented by
DropAndAutostart(“c : \windows\po[[: alpha :]]{3}
.exe”, data, “...Windows\CurrentVersion\Run”,
“(vq|qv)”).

4.2.4 Generating Concrete Remediation Procedures

Each generalized high-level behavior must be remediated
differently. Our approach to generating executable re-
mediation procedures may be understood conceptually
in two parts. First, the generalized high-level behaviors
for each cluster are used to construct an approximate in-
fection relationR as discussed in Section 4.1. Then, we
use a generic procedure that scans the infection relation,
and changes the state of the system based on the contents
of each entry. When constructing the infection relation,
our procedure uses a model of a clean, bare installation
of the operating system installed on the machine for the
first system state component of each tuple. The use of
a bare installation enables us to remediate infected sys-
tem resources up to the correct service pack installed on
the system, but not personal or application-specific re-
sources.

The remainder of this section details the way that spe-
cific high-level behaviors are translated into entries in the
abstract infection relation, as well as the way that the

Algorithm 3 Remediate(S, R)

(Sabs , Nrem , Sadd , Smut) ← (Sabs , Nrem , Sadd , Smut) ∈
R such thatS has the same operating system version asSabs

for s in Sadd do
casess:

(name, data) : if file name exists, with contents
matchingdata then removename.

((key , value), data) : if (key , value) exists with
contents matchingdata
then remove(key , value).

((file, key , value), (data, regdata)) :
if file exists and is a suffix of some element of
Dregdata that also exists in a key matching

(key , value) then removefile and
(key , value).

((file, procname), data) :
if procname and(file, data) exist matching
file, data, procname and procname is a
suffix of file then removefile and
kill procname.

end cases
end for
for i in Imut do

casesi:
(file, data) : Remove(file, data) and replace it

with (file, data ′) ∈ β(S)
((key , value), data) : Remove((key , value), data)

and replace it with
((key , value), data) ∈ β(S).

end cases
end for

abstract infection relation is used to generate a concrete
(executable) remediation procedure.

Newly-Created Resources: Remediating resources
that are created by malware is straightforward, because
the remediation procedure only needs information re-
garding the names and data of newly-created resources
to completely remove the corresponding resources from
the system. Our remediation procedures are capable of
removing files and registry keys. To account for the pos-
sibility that the infection could create resources that were
not observed in a high-level behavior trace during anal-
ysis, we instead use generalized high-level behaviors in
the infection relationR.

11

. . .

w

r

g

f

m

x

w

c : \ w i n p o

u

c

d

m

b

q

k

a

p

q

z

. e x e

Single-entry-single-exit region

Figure 6: A fragment of the minimized automaton constructed to generalize the first argument of the
DropAndAutostart behavior, starting from the occurrences of the argument reported in Figure 5.

For the high-level file creation behavior
FileCreation(name, data), we find the resource
for name and data and append this pair toSadd .
Similarly, for the high-level registry creation behavior
RegistryCreation (key , value, data), we associate
the key/value pair to the corresponding data and add
them as a pair toSadd . As shown in Algorithm 3, the
remediation procedure processes these entries in the
infection relationR by checking for the existence of the
resource names on the system and removing them if they
exist with the contents specified byRα.

Remediating the DropAndAutostart and
DropAndExecute behaviors is more complicated,
as doing so involves multiple resources that are related
in a constrained manner. To handle a high-level behavior
of the form:

DropAndAutostart(file, data, key , value, regdata)

we group the resource names:file, key, valuetogether as
a compound resource name for a new element inSadd ,
and groupdataandregdatatogether for the correspond-
ing data component. The remediation procedure acts on
such an entry by scanning system resources for names
that match the file name and registry key/value pairs. If a
match is found, the corresponding resources are removed
only if the concrete filename is a suffix of the concrete
registry data and the concrete data matches the abstract
data.

For example, when the procedure encounters the gen-
eralizedDropAndAutostart from Figure 5, it will aug-
mentSadd with the following resource:

(c : \windows\po[[: alpha :]]{3}\.exe,
(...\CurrentVersion, Run),
(data, po[[: alpha :]]{3}\.exe))

The remediation procedure will then
search the system for a file that matches

c : \windows\po[[: alpha :]]{3}.exe, as well as
the registry key(...\CurrentVersion, Run), and will
remove the resources only if the value of the registry key
matches the name of any file that matches the regular
expression.

Infected Resources: Remediating infected resources
is more challenging than newly-created resources. In
general, it is not possible to know the contents of a file
before infection takes place, so it is not possible to re-
store their contents to a clean state. The exception to this
fact is with operating system files, which are common
to all systems and can thus be known to the remediation
procedurea priori.

A naive approach to remediating high-level
FileInfection(name, region, data) behaviors
would be to replace the entire file with the corresponding
file in the bare operating system. However, uninfected
regions of data may be removed by this technique, which
could result in the loss of important system data, or
leave the system in an inconsistent state. To avoid this
circumstance, high-level behavior traces keep track of
uninfected regionsregions in addition to file namefile
and infected datadata. We update theSmut component
of R to account for aFileInfection behavior only
if there is an actual file in the clean operating system
state whose name matches thefile. In this case,Smut is
updated with the contents offile in the bare operating
system state, modified by preserving the portions listed
in regionsand overwriting the rest withdata. As indi-
cated in Algorithm 3, when the remediation procedure
findsfile, it replaces the infected regions with a pristine
copy from the bare operating system.

Similarly, when a high-level
RegistryInfection((key , value), data) behavior
is encountered, and it is determined that a counterpart of
(key , value) exists in the bare operating system,Smut is
modified by adding the key/value pair together with the

12

modified data to the list of infected resources. As with
infected files, Algorithm 3 remediates these resources
by locating a pristine copy of(key , value) in the bare
operating system and replacing the infected resource
with it.

Deleted Resources: Currently, most malware is writ-
ten with the intent of leveraging infected systems to per-
petrate profitable, albeit illicit, activities. Therefore, it
is very rare to see malware removing system resources,
as doing so would render the system useless for money-
making activities. For this reason, our remediation pro-
cedures do not handle deleted resources.

5 Evaluation

We applied our remediation procedure generation algo-
rithm to over two hundred malware samples collected in
the wild. We evaluated the quality of the generated pro-
cedures with respect to two metrics: false positives and
false negatives. A false positive occurs when a resource
is mistakenly identified as being part of a malware in-
fection and subsequently remediated. A false negative
occurs when a resource that was actually involved in an
infection is not identified and left untouched by the re-
mediation procedure. The results of our evaluation tes-
tify to the effectiveness of our technique: we observed a
low false negative rate, with more than 98% of the ma-
licious resources successfully remediated, and only one
false positive was encountered. Finally, we compare our
results to the remediation capabilities of the three com-
mercial products that performed best in previous experi-
ments [15].

5.1 Experimental Setup

Our experiments were performed over a corpus of 200
malicious programs, obtained through our own honey-
pot, and a web crawler that crawls known malicious do-
mains for executable files. Several traces for each sam-
ple were collected by executing it in multiple distinct en-
vironments. To extract a wide range of behaviors from
each sample, we modified the environments along a va-
riety of dimensions, including locale, timezone, and the
set of installed applications. Specifically, for each sam-
ple we performed the following steps:

1. Execute the sample three times in five different en-
vironments, collecting a system call trace for each
execution. Apply the algorithm described in Sec-
tion 4.2 to generate a remediation procedure from
the collected data.

2. Infect twenty-five test environments, all of them dis-
tinct from those used to collect traces, with the sam-
ple.

3. Execute the generated remediation procedure in
each test environment.

4. Compare the remediated state to the original (clean)
state. Tally the false positives and false negatives.

Although we do not attempt to extract all possible exe-
cution paths from the malware, this strategy allows us to
observe a reasonable range of malware behavior in vari-
ous settings.

5.2 False Negatives

Figure 7 compares the false negative rate of our
automatically-generated remediation procedures with
the three top-rated commercial malware detectors eval-
uated in [15]: Nod32 Anti-Virus 3.0, Panda Anti-Virus
9.0.5, and Kaspersky Anti-Virus 2009. The graph depicts
the average number of malicious resources that were re-
mediated over the entire malware corpus. Resources are
divided into three categories: files, registry keys, and
processes. Each of these classes is further divided into
two subcategories: primary and ancillary. Primary re-
sources are composed of executable files, registry keys
that activate process creation, and processes that arise
from files dropped or infected by the malware sample.
Roughly, we argue that all other resources are not as crit-
ical to the security of the system, and are thus considered
ancillary.

For the majority of these categories and subcategories,
our remediation procedures are more complete than com-
mercial anti-malware products. For example, our proce-
dures were able to remediate more than 99% of the pri-
mary file resources, whereas the best commercial prod-
uct we tested reached only 82% in this subcategory. Sim-
ilarly, our procedures remediated 99% of primary reg-
istry activities, while commercial products did not ex-
ceed 86%. Furthermore, while ancillary objects are of-
ten ignored by commercial remediation procedures, our
procedures remediated 95% of ancilliary files and 98%
of ancilliary registry activities. The portion of file and
registry resources that were not remediated by our proce-
dures correspond to behaviors that were never observed
while collecting traces. This illustrates the primary limi-
tation of our dynamic analysis-based approach and high-
lights a clear avenue for improvement in future work. Fi-
nally, our procedures remediated 100% of primary pro-
cess resources. However, the performance on ancillary
processes is significantly lower. This is a result of the fact
that our processes do not have access to enough informa-
tion to discern a benign process from a process spawned
by the malware using a pre-existing benign file.

13

 0

 20

 40

 60

 80

 100

Files
(primary)

Files
(ancillary)

Reg. keys
(primary)

Reg. keys
(ancillary)

Processes
(primary)

Processes
(ancillary)

%
 a

ct
iv

iti
es

 r
ev

er
te

d

Our approach Nod32 Panda Kaspersky

Figure 7: Comparison of the completeness of our automatically generated remediation procedures with the complete-
ness of the procedures employed in three top-rated commercial malware detectors.

5.3 False Positives

To quantify false positives, we compared the set of re-
sources affected by each malware sample in each test en-
vironment with the set of resources our procedures re-
mediated in each test environment. Any remediated re-
source not affected by the corresponding malware sam-
ple in at least one trace is considered a false positive.
We found that only one of our procedures produced any
false positives. The cause of this false positive, not sur-
prisingly, was a high-level behavior argument specified
by a very general regular expression. This implies that
the nondeterminism demonstrated by the corresponding
malware sample was too complex to be easily described
by a regular language. Thus, one area for future work
is utilizing more expressive language classes, such as
context-free grammars, for generalizing argument val-
ues.

6 Discussion

We are aware of some limitations of our system. Some of
these limitations could be exploited by attackers to cause
the system to produce remediation procedures that are of
limited value. In this section, we discuss these limita-
tions and present some solutions that we will investigate
in the future to address the limitations.

We constructed the models that we use to detect high-
level behaviors by leveraging years of experience in mal-

ware analysis, and we carefully tested all models to en-
sure that they cannot be evaded. However, since we can-
not prove that these models are perfect, we must take into
account the possibility that attackers could find new ways
to perform some high-level malicious activities without
being detected. Moreover, in our proof-of-concept im-
plementation, multiple execution traces are obtained by
executing the same malware in several different operat-
ing system configurations. If attackers introduced dan-
gerous behaviors to their malicious programs that are not
triggered in our monitoring environment, then the result-
ing procedure would not be able to remediate such be-
haviors. Clearly, one area for future work is in expanding
the coverage of the dynamic behavioral analysis. While
our approach covers some of the potential behavior of the
sample, more sophisticated techniques [12, 21] can be
applied to increase the likelihood that all relevant paths
through the malware are explored.

The high-level behaviors observed in multiple execu-
tion traces are clustered to identify the instances of the
same behavior. If the clusters we generate did not in-
clude all the instances of the same behavior, or if they
included instances of different behaviors, then the reme-
diation procedures constructed by generalizing the be-
haviors associated to each cluster would be too specific
or too generic. An attacker could write malicious pro-
grams that manifest certain behaviors to break the clus-
tering. Similarly, the regular expressions used by our re-
mediation procedures to identify affected resources are

14

generalized heuristically. Attackers could develop mali-
cious programs that affect resources in a way that induces
us to perform very aggressive generalization (e.g. create
files with random names anywhere in the file system) and
thus to generate remediation procedures that remove be-
nign files. We plan to address these problems in the fu-
ture. One approach is to introduce a feedback loop while
clustering behaviors and generating regular expressions
to validate the quality of the results. This feedback loop
would repeat the process until no further progress can be
made. Finally, we assert that it is not possible to cause
our algorithm to generate a procedure that modifies ex-
isting files in a harmful way. This follows from the fact
that system files are only ever restored to their original
state by the procedure, not modified.

We currently generate a remediation procedure for
each malware sample we analyze. We plan to extend
our system to generate remediation procedures that cover
more than one malware sample. For example, it would be
useful to generate remediation procedures that are capa-
ble of operating on all samples for a given malware fam-
ily. Because the generated procedures will likely have
to account for a much higher degree of nondeterminism
than those that target only a single sample, additional
care must be taken to ensure that the high-level behav-
iors models are not too general, thus resulting in false
positives.

7 Conclusion

In this paper, we have presented a technique for auto-
matically generating malware remediation procedures.
Given a malware binary, our system produces executable
code that removes the harmful effects of executing that
malware on a system. We use dynamic analysis andbe-
havior generalizationto account for the difficulties posed
by real malware, thus allowing our procedures to effec-
tively remediate many possible executions of the mal-
ware without witnessing the actual infection take place.
This contribution represents a major break with previ-
ous automatic remediation techniques, which required
detailed information about the particular infection being
targeted. We implemented our technique and evaluated
its effectiveness on more than 200 malware binaries. The
performance of our prototype is quite good: on average,
98% of the harmful effects are remediated, and we en-
countered only a single false positive. In the future, we
plan to build on this work by extending it to work on
entire families, as well as exploring more precise tech-
niques for generalizing observed malware behaviors.

References

[1] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In15th European Insti-
tute for Computer Antivirus Research (EICAR) An-
nual Conference, Hamburg, Germany, Apr. 2006.

[2] U. Bayer, P. Milani, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, behavior-based malware clus-
tering. In 16th Annual Network and Distributed
System Security Symposium (NDSS), 2009.

[3] F. Bellard. QEMU, a fast and portable dynamic
translator. http://fabrice.bellard.
free.fr/qemu/ .

[4] M. Christodorescu, C. Kruegel, and S. Jha. Min-
ing specifications of malicious behavior. In6th
Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ES-
EC/FSE), Dubrovnik, Croatia, 2007.

[5] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: Securing software by block-
ing bad input. In21st ACM Symposium on Operat-
ing Systems Principles (SOSP), 2007.

[6] P. Foggia. The vflib graph matching library, ver-
sion 2.0. http://amalfi.dis.unina.it/
graph/db/vflib-2.0/ .

[7] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su.
Back to the future: A framework for automatic mal-
ware removal and system repair. In22nd Annual
Computer Security Applications Conference (AC-
SAC), 2006.

[8] C. Kolbitsch, P. M. Comparetti, C. Kruegel,
E. Kirda, X. Zhou, and X. Wang. Effective and effi-
cient malware detection at the end host. InUSENIX
Security Symposium, 2009.

[9] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and
B. Chavez. Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack
resilience. InIEEE Symposium on Security and Pri-
vacy, Oakland, California, 2006.

[10] Z. Liang, V. N. Venkatakrishnan, and R. Sekar. Iso-
lated program execution: An application transpar-
ent approach for executing untrusted programs. In
19th Annual Computer Security Applications Con-
ference (ACSAC), 2003.

15

http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/
http://amalfi.dis.unina.it/graph/db/vflib-2.0/
http://amalfi.dis.unina.it/graph/db/vflib-2.0/

[11] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha,
and J. C. Mitchell. A layered architecture for de-
tecting malicious behaviors. InInternational Sym-
posium on Recent Advances in Intrusion Detection
(RAID), Sept. 2008.

[12] A. Moser, C. Kruegel, and E. Kirda. Exploring mul-
tiple execution paths for malware analysis. InIEEE
Symposium on Security and Privacy, Oakland, Cal-
ifornia, 2007.

[13] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In23rd Annual
Computer Security Applications Conference (AC-
SAC), 2007.

[14] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymor-
phic worms. InIEEE Symposium on Security and
Privacy, Oakland, California, 2005.

[15] E. Passerini, R. Paleari, and L. Martignoni. How
good are malware detectors at remediating infected
systems? In6th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), Como, Italy, July 2009.

[16] M. D. Preda, M. Christodorescu, S. Jha, and S. De-
bray. A semantics-based approach to malware de-
tection. ACM Transactions on Programming Lan-
guages and Systems, 30(5):25.1–25.54, Aug. 2008.

[17] A. Raman, P. Andreae, and J. Patrick. A beam
search algorithm for PFSA inference.Pattern Anal-
ysis and Applications, 1(2):121–129, 1998.

[18] K. Rieck, T. Holz, C. Willems, P. D̈ussel, and
P. Laskov. Learning and classification of malware
behavior. In5th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), 2008.

[19] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrish-
nan. One-way isolation: An effective approach for
realizing safe execution environments. In12th Sym-
posium on Network and Distributed Systems Secu-
rity (NDSS), 2005.

[20] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha.
An architecture for generating semantics-aware sig-
natures. In14th USENIX Security Symposium, Bal-
timore, MD, 2005.

[21] H. Yin, D. Song, M. Egele, E. Kirda, and
C. Kruegel. Panorama: Capturing system-wide in-
formation flow for malware detection and analysis.
In 14th ACM Conference on Computer and Com-
munications Security (CCS), Alexandria, VA, 2007.

16

	Introduction
	Related Work
	Overview
	Motivation
	Architecture Overview

	Generating Remediation Procedures
	Problem Description
	System Details
	High-Level Behavior Extraction
	Behavior Clustering
	Behavior Generalization
	Generating Concrete Remediation Procedures

	Evaluation
	Experimental Setup
	False Negatives
	False Positives

	Discussion
	Conclusion

