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Abstract
Current Electronic Toll Pricing (ETP) implementa-

tions rely on on-board units sending fine-grained loca-
tion data to the service provider. We present PrETP, a
privacy-preserving ETP system in which on-board units
can prove that they use genuine data and perform cor-
rect operations while disclosing the minimum amount of
location data. PrETP employs a cryptographic proto-
col, Optimistic Payment, which we define in the ideal-
world/real-world paradigm, construct, and prove secure
under standard assumptions. We provide an efficient im-
plementation of this construction and build an on-board
unit on an embedded microcontroller which is, to the best
of our knowledge, the first self-contained prototype that
supports remote auditing. We thoroughly analyze our
system from a security, legal and performance perspec-
tive and demonstrate that PrETP is suitable for low-cost
commercial applications.

1 Introduction

Vehicular location-based technologies [36, 42] are
viewed by governments as a perfect tool to support ap-
plications such as electronic toll collection, automated
law enforcement, or collection of traffic statistics. In Oc-
tober 2009, the European Commission announced that
the current flat road tax systems existing in the Member
States will be substituted by an European Electronic Toll
Service (EETS) [13, 20]. In the United States, there are
also ongoing initiatives to introduce Electronic Toll Pric-
ing (ETP), as for instance the Regional High Occupancy
Toll Network of the California Metropolitan Transporta-
tion Commission [1].

ETP allows road taxes to be calculated depending on
parameters such as the distance covered by a driver, the
kind of road used, or the time of usage. This is benefi-
cial both for citizens and governments. The former pay
only for their actual road use, while the latter can im-
prove road mobility by applying “congestion pricing”.

This strategy assigns prices to roads depending on their
traffic density such that driving in congested roads im-
plies a higher cost. This in turn will encourage users to
change their route (or even avoid using their vehicles)
thus reducing congestion. Moreover, ETP has also en-
vironmental benefits as it discourages driving hence re-
duces pollution.

ETP architectures proposed so far [1, 13, 20] require
that vehicles are equipped with an on-board unit neces-
sary for collecting location data. At the end of each tax
period, the fee corresponding to those data is computed
either remotely [36, 42] or locally [44], and relayed to
the service provider. In both cases the service provider
needs to be convinced that the fees correspond to the ac-
tual road usage of the driver, and that they have been
correctly calculated. The verification is straightforward
in implementations in which all the location data is sent
to the service provider, but this constitutes an inherent
threat to users’ privacy.

We propose PrETP, a privacy-preserving ETP sys-
tem in which, without making impractical assumptions,
on-board units i) compute the fee locally, and ii) prove
to the service provider that they carry out correct com-
putations while revealing the minimum amount of lo-
cation data. PrETP employs a cryptographic protocol,
Optimistic Payment (OP), in which on-board units send
along with the final fee commitments to the locations and
prices used in the fee computation. These commitments
do not reveal information on the locations or prices to the
service provider. Moreover, they ensure that drivers can-
not claim that they were at any other position, nor used
different prices, from the ones used to create the commit-
ments. In order to check the veracity of the committed
values, we rely on the service provider having access to
a proof (e.g., a photograph taken by a road-side radar or
a toll gate) that a car was at a specific point at a par-
ticular time, as previously suggested in [17, 39]. Upon
being challenged with this proof, the on-board unit must
respond with some information proving that the location
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point where it was spotted was correctly used in the cal-
culation of the final fee. To this end, it opens the com-
mitment containing this location, thus revealing only the
location data and the price at the instant specified in the
proof. This information suffices for the provider to ver-
ify that correct input data (location and price) was used
to calculate the fee.

We formally define Optimistic Payment and propose
a construction based on homomorphic commitments
and signature schemes that allow for efficient zero-
knowledge proofs of signature possession. We prove
our construction secure under standard assumptions. Fi-
nally, we present a prototype implementation on an em-
bedded platform, and demonstrate that the cryptographic
overhead of Optimistic Payment is efficient enough to
be practically deployed in commercial in-car devices.
Further, the fact that on-board units carry out all oper-
ations without interaction with the driver makes our sys-
tem ideal in terms of usability.

The rest of the paper is organized as follows: we de-
scribe our system models and the security properties we
seek in Sect. 2. Sect. 3 presents a high level description
of our construction. Our prototype implementation and
its evaluation are presented in Sect. 4, and we discuss
some practical issues in Sect. 5. We situate our work
within the landscape of proposals for privacy-friendly
vehicular applications in Sect. 6, and we conclude in
Sect. 7. Finally, we define the concept of Optimistic Pay-
ment in Appendix A, and describe in detail our crypto-
graphic construction in Appendix B.

2 System model

PrETP employs the architecture and technologies rec-
ommended at European level [13, 20], although it could
be adapted to other systems, such as [1]. The system
model, illustrated in Fig. 1 (left), comprises three enti-
ties: an On-Board Unit (OBU), a Toll Service Provider
(TSP), and a Toll Charger (TC). The OBU is an elec-
tronic device installed in vehicles subscribed to an ETP
service, and it is in charge of collecting GPS data and cal-
culating the fee at the end of each tax period. The TSP is
the entity that offers the ETP service. It is responsible for
providing vehicles with OBUs and monitor their perfor-
mance and integrity. Finally, the TC is the organization
(either public or private) that levies tolls for the use of
roads and defines the correct use of the system. In agree-
ment with the TC, the TSP establishes prices for driving
on each of the roads. Such pricing policy can depend on
the type of road (e.g., highways vs. secondary roads), its
traffic density, or the time of the day (e.g., rush hours
vs. the middle of the night). Additionally, prices can
also depend on attributes of the vehicle or of the driver
(e.g., low-pollution vehicles, or discounts for retired peo-

ple). For the sake of clarity, in this work we focus on the
core functionality of PrETP, and defer the discussion of
practical issues to Sect. 5.

When the vehicle is driving, the OBU calculates the
subfees corresponding to the trajectories according to the
TSP pricing policy. At the end of each tax period, the
OBU aggregates all the subfees to obtain a total fee and
sends it to the TSP. This process safeguards the pri-
vacy of the driver from the TSP, the TC, or any other
third party eavesdropping the communications, as no lo-
cation data leaves the OBU. The privacy objectives of
PrETP focus on the limitation of deliberate surveillance
by any external party with limited access to the vehicle.
We note that for an adversary with physical access to the
vehicle it would be trivial to track it, e.g. by installing
a tracking device. In order to further protect the privacy
of users from adversaries that have occasional access to
OBUs (e.g., mechanic, valet), all location data stored in
the OBU is securely encrypted as specified in [44].

Besides preserving users’ privacy, the system has to
protect the interests of both TC and TSP and provide
means to prevent users from committing fraud. Our
threat model considers malicious drivers capable of tam-
pering with the internal functionality of the OBU, as well
as with any of its interfaces. Under these considerations,
we define the security goals of our system as the detec-
tion of:

Vehicles with inactive OBUs. Drivers should not be
able to shut down their OBUs at will to simulate they
drove less.

OBUs reporting false GPS location data. Drivers
should not be able to spoof the GPS signal and simulate
a cheaper route than the actual roads on which they are
driving.

OBUs using incorrect road prices. Drivers should
not be able to assign arbitrary prices to the roads on
which they are driving.

OBUs reporting false final fees. Drivers should not
be able to report an arbitrary fee, but only the result from
the correct calculations in the OBU.

Focusing on the detection of tampering rather that at
its prevention allows us to consider a very simple OBU
with no trusted components, reducing the production
costs of the device.

In order to perform this detection, reliable information
about the vehicle’s whereabouts is required. We consider
that the TC can perform random “spot checks” that are
recorded as proof of the time and location where a vehi-
cle has been seen. Such spot checks can be carried out by
using an automatic license plate reader, a police control,
or even challenging the OBUs using Dedicated Short-
Range Communications (DSRC) [13]. Without loss of
generality in this work we assume that the proof is gath-
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Figure 1: Entities in our Electronic Toll Pricing architecture (left.) Enforcement spot-check model (right.)

ered using an automatic license plate reader. This proof
can be used to challenge the vehicle’s OBU to verify its
functioning. In order to be able to respond to this chal-
lenge, the OBU slices the trajectories recorded in seg-
ments, and computes the subfees corresponding to them,
such that these subfees add up to the final fee transmit-
ted to the TSP. For each segment, the TSP receives a
payment tuple that consists of a commitment to location
data and time, a homomorphic commitment to the sub-
fee, and a proof that the committed subfee is computed
according to the policy. These payment tuples, explained
in detail in the next section, bind the reported final fee
to the committed values such that the OBU cannot claim
having used other locations or prices in its computations.
Furthermore, they are signed by the OBU to prevent a
malicious TSP from framing an honest driver.

The verification process, depicted in Fig. 1 (right), is
initiated when the TC gathers a proof of location of a
vehicle. Then it forwards this information to the TSP,
along with a request to check the correct functioning of
the vehicle’s OBU. To this end, the TSP challenges the
OBU to open a commitment containing the location and
time appearing in the proof. The TSP verifies that both
challenge and response match, for instance as explained
in [39], and reports to the TC whether or not the func-
tioning of the OBU is correct. We assume that the TC
(e.g., the government in the EETS architecture) is honest
and does not use fake proofs to challenge OBUs.

3 Optimistic Payment

In this section we sketch the technical concepts neces-
sary to understand the construction of Optimistic Pay-
ment, and we outline our efficient implementation of the
protocol. For a comprehensive and more formal descrip-
tion of OP, we refer the reader to Appendix B.

3.1 Technical Preliminaries

Signature Schemes. A signature scheme consists
of the algorithms SigKeygen, SigSign and SigVerify.
SigKeygen outputs a secret key sk and a public key
pk . SigSign(sk , x) outputs a signature sx of message x.
SigVerify(pk , x, sx) outputs accept if sx is a valid signa-
ture of x and reject otherwise. A signature scheme must
be correct and unforgeable [26]. Informally speaking,
correctness implies that the SigVerify algorithm always
accepts an honestly generated signature. Unforgeability
means that no p.p.t adversary should be able to output a
message-signature pair (x, sx) unless he has previously
obtained a signature on x.

Commitment schemes. A non-interactive commit-
ment scheme consists of the algorithms ComSetup,
Commit and Open. ComSetup(1k) generates the
parameters of the commitment scheme paramsCom .
Commit(paramsCom , x) outputs a commitment cx to
x and auxiliary information openx. A commitment is
opened by revealing (x, openx) and checking whether
Open(paramsCom , cx, x, openx) is true. A commitment
scheme has a hiding property and a binding property.
Informally speaking, the hiding property ensures that
a commitment cx to x does not reveal any informa-
tion about x, whereas the binding property ensures that
cx cannot be opened to another value x′. Given two
commitments cx1

and cx2
with openings (x1, openx1

)
and (x2, openx2

) respectively, the additively homomor-
phic property ensures that, if c = cx1

⋅ cx2
, then

Open(paramsCom , c, x1 + x2, openx1
+ openx2

).

Proofs of Knowledge. A zero-knowledge proof of
knowledge is a two-party protocol between a prover and
a verifier. The prover proves to the verifier knowledge
of some secret values that fulfill some statement without
disclosing the secret values to the verifier. For instance,
let x be the secret key of a public key y = gx, and let
the prover know (x, g, y), while the verifier only knows
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(g, y). By means of a proof of knowledge, the prover can
convince the verifier that he knows x such that y = gx,
without revealing any information about x.

3.2 Intuition Behind Our Construction

We consider a setting with the entities presented in
Sect. 2. During each tax period tag , the OBU slices
the trajectories of the driver in segments formed by a
structure containing GPS location data and time. Addi-
tionally, this data structure can contain information about
any other parameter that influences the price to be paid
for driving on the segment. We represent this data struc-
ture as a tuple (loc, time). The TSP establishes a func-
tion f : (loc, time) → Υ that maps every possible tuple
(loc, time) to a price p ∈ Υ. For each segment, the
OBU calculates f on input (loc, time) to get a price p,
and computes a payment tuple that consists of a random-
ized hash ℎ on the data structure (loc, time), a homo-
morphic commitment cp to its price, and a proof � that
the committed price belongs to Υ. The randomization of
the hash is needed in order to prevent dictionary attacks
to recover (loc, time).

At the end of the tax period, the OBU and the TSP en-
gage in a two-party protocol. The OBU adds the fees of
all the segments to obtain a total fee fee. The OBU adds
all the openings openp to obtain an opening openfee .
Next, the OBU composes a payment message m that
consists of (tag , fee, openfee) and all the payment tuples
(ℎ, cp , �). The OBU signs m and sends both the mes-
sage m and its signature sm to the TSP. The TSP veri-
fies the signature and, for each payment tuple, verifies the
proof �. Then the TSP, by using the homomorphic prop-
erty of the commitment scheme, adds the commitments
cp of all the payment tuples to obtain a commitment c′fee ,
and checks that (fee, openfee) is a valid opening for c′fee .

When the TC sends the TSP a proof � that a car was
at some position at a given time, the TSP relays � to the
OBU. The OBU first verifies that the request is signed
by the TC, and then it searches for a payment tuple
(ℎ, cp , �) for which �(�, (loc, time)) outputs accept.
Here, � : (�, (loc, time)) → {accept, reject} is a func-
tion established by the TSP that outputs accept when
the information in � and in (loc, time) are similar in ac-
cordance with some metric, such as the one proposed
in [39]. Once the payment tuple is found, the OBU sends
the number of the tuple to the TSP together with the
preimage (loc, time) of ℎ and the opening (p, openp)
of cp . The TSP checks that (p, openp) is the valid open-
ing of cp , that (loc, time) is the preimage of ℎ and that
�(�, (loc, time)) outputs accept.

Intuitively, this protocol ensures the four security
properties enunciated in the previous section. Drivers
cannot shut down their OBUs, nor report false GPS data

as they run the risk of not having committed to a seg-
ment containing the (loc, time) in the challenge �. We
note that after sending (m, sm) to the TSP, OBUs can-
not claim that they were at any position (loc′, time ′) dif-
ferent from the ones used to compute the message m.
Similarly, OBUs cannot use incorrect road prices with-
out being detected, as the TSP can check whether the
correct price for a segment (loc, time) was used once
the commitments are opened. The homomorphic prop-
erty ensures that the reported final fee is not arbitrary,
but the sum of all the committed subfees. Moreover,
by making the OBU prove that the committed prices be-
long to the image of f , we avoid that a malicious OBU
could decrease the final fee by sending only one wrong
commitment to a negative price in the payment message,
which would give it an overwhelming probability of not
being detected by the spot checks. Additionally, the fact
that the OBU signs the payment message m ensures that
no malicious TSP can frame an OBU by modifying the
received commitments, and that a malicious OBU can-
not plead innocent by invoking the possibility of being
framed by a malicious TSP. Similarly, the fact that
the TC signs the challenge � prevents a malicious TSP
sending fake proofs to the OBU, e.g. with the aim of
learning its location. Finally, the privacy of the drivers
is preserved as the OBU does not need to disclose more
location information than that in the payment tuple that
matches the proof � (already known to TSP).

3.3 Efficient Instantiation: High Level
Specification

We now outline at high level our efficient instantiation
of Optimistic Payment. We employ the integer com-
mitment scheme due to Damgård and Fujisaki [15] and
the CL-RSA signature scheme proposed by Camenisch
and Lysyanskaya [9]. Both schemes use cryptographic
keys based on special RSA modulus n of length ln.
A commitment cx to a value x is computed as cx =
g0
xg1

openx (mod n), where the opening openx is a ran-
dom number of length ln and the bases (g0, g1) corre-
spond to the commitment public parameters. Given a
public key pk = (n,R, S, Z), a CL-RSA signature has
the form (A, e, v), with lengths ln, le, and lv respectively,
such that Z ≡ AeRxSv(mod n). To prove that a price
belongs to Υ, we use a non-interactive proof of posses-
sion of a CL-RSA signature on the price. We also em-
ploy a collision resistant hash function H : {0, 1}∗ →
{0, 1}lc .

Initialization. The pricing policy f : (loc, time) → Υ,
where each price p ∈ Υ has associated a valid CL-RSA
signature (A, e, v) generated by the TSP, the crypto-
graphic key pair (pkOBU, skOBU), the public key of the
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OBU TSP
Pay() algorithm VerifyPayment() algorithm

1 // Main loop 1
2 For all 1 ≤ k ≤ N tuples do: 2
3 pk = f(lock, timek) 3
4 // Hash computation 4
5 ℎk = H((lock, timek)) 5
6 // Commitment computation 6
7 openpk ← {0, 1}ln 7
8 cpk = g0

pkg1
openpk (mod n) 8

9 // Proof computation 9
10 openw, w ← {0, 1}ln 10
11 Ã = Ag0

w (mod n) 11
12 cw = g0

wg1
openw (mod n) OBUverify(pkOBU,m, sm) 12

13 r� ← {0, 1}l� // Main loop 13
14 tcpk = g0

rpk g1
ropenpk (m, sm)

−−−−−−−−−−−−−−→
For all 1 ≤ k ≤ N tuples do: 14

15 tZ = ÃreRrpkSrv (g−10 )rw⋅e t′cpk
= ccℎpkg0

spk g1
sopenx 15

16 tcw = grw0 g
ropenw
1 t′Z = ZcℎÃseRspkSsv (1/g0)sw⋅e 16

17 t = crew (g−10 )rw⋅e(g−11 )ropenw⋅e t′cw = ccℎw g0
swg1

sopenw 17
18 cℎ = H(�∣∣tcpk ∣∣tZ ∣∣tcw ∣∣t) t′ = Csew (1/g0)sw⋅e(1/g1)sopenw⋅e 18
19 s� = r� − cℎ ⋅ � cℎ′ = H(�∣∣t′cpk ∣∣t

′
Z ∣∣t′cw ∣∣t

′)? = cℎ 19
20 �k = (Ã, cw, cℎ, s�) se ∈ {0, 1}le+lc+lz 20
21 End for spk ∈ {0, 1}lp+lc+lz 21
22 // Fee reporting End for 22
23 fee =

∑N
k=1 pk // Commitment validation 23

24 openfee =
∑N
k=1 openpk c′fee =

∏N
k=1 cpk 24

25 m = [tag , fee, openfee, (ℎk, cpk , �k)Nk=1] cfee = g0
feeg1

openfee (mod n) 25
26 sm = OBUsign(skOBU,m) cfee? = c′fee 26
� ∈ {pk, openpk , e, v, w, openw, w ⋅ e, openw⋅e}
� = (n∣∣g0∣∣g1∣∣Ã∣∣R∣∣S∣∣g−10 ∣∣g

−1
1 ∣∣cpk ∣∣Z∣∣cw∣∣1)

Protocol 1: Protocol between OBU and TSP during taxing phase

TSP (n,R, S, Z), the public key of TC, and the public
parameters (g0, g1) of the commitment scheme are stored
on the OBU. Similarly, the TSP possesses its own secret
key (skTSP) and knows all the public keys in the system.

Tax period. Protocol 1 illustrates the calculations and in-
teractions between the OBU and the TSP under normal
functioning during the tax period. We denote the opera-
tions carried out by the OBU as Pay(), and the operations
executed by the TSP as VerifyPayment(). While driving,
the OBU collects location data and slices it in segments
(loc, time) according to the policy. For each of the N
collected segments, the OBU generates a payment tu-
ple (ℎk, cpk , �k). This iterative step is broken down in
lines 1 to 21 in Protocol 1. The most resource consum-
ing operation is the computation of �k, which proves the
possession of a valid CL-RSA signature on the price pk
(lines 9 to 20). The length of the random values used
in this step is specified in Appendix B.2. At the end of
the tax period the OBU generates and signs the payment

message m including the tag tag , the total fee, the open-
ing openfee, and all the payment tuples (ℎk, cpk , �k),
lines 22 to 26. Finally it sends (m, sm) to the TSP.

Upon reception of a payment message, the TSP exe-
cutes the VerifyPayment() algorithm. First the TSP veri-
fies the signature sm using the OBU’s public key pkOBU.
Next, it proceeds to the verification of the proof �k in-
cluded in each of the N payment tuples contained in m,
lines 13 to 22. In each iteration it performs a series of
modular exponentiations, and uses the intermediate re-
sults to compute the hash cℎ′. Then, it checks whether
cℎ′ is the same as the value cℎ contained in �k. If this
verification, together with the two range proofs in lines
20 and 21, is successful, the TSP is convinced that all
the prices pk used by the OBU are indeed a valid image
of f . Finally, the TSP validates the commitments cpk to
ensure that the aggregation of all subfees add up to the fi-
nal fee (lines 24 to 26). For this, it calculates c′fee as the
product of all commitments cpk , and computes the com-
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mitment cfee using the values fee and openfee provided
by the OBU. If both values are the same, the TSP is con-
vinced that the final fee reported by the OBU adds up to
the sum of all subfees reported in the payment tuples.

Proof Challenge. We denote as OBUopen() and Check()
the algorithms carried out by the OBU and the TSP, re-
spectively, when the former is challenged with �. When
running the OBUopen() algorithm, the OBU searches
for the pre-image (lock, timek) of a hash ℎk containing
the location and time satisfying �, and sends this infor-
mation to the service provider along with the price pk
and the opening openpk .

Upon reception of this message, the TSP executes the
Check() algorithm. First, it verifies whether the segment
(lock, timek) actually contains the location in �. Then,
it computes the value ℎ′k = H(lock, timek) and checks
whether the OBU had committed to this value in one of
the payment tuples reported during the tax period. Lastly,
the TSP uses openpk to open the commitment cpk and
verifies whether p′k = f(lock, timek) equals the price
pk reported by the OBU during the OBUopen() algo-
rithm. If all verifications succeed, the TSP is convinced
that the location data used by the OBU in the fee calcu-
lation and the price assigned by the OBU to the segment
(lock, timek) are correct.

4 PrETP Evaluation

In this section we evaluate the performance of PrETP.
We start by describing the test scenario and both our
OBU and TSP prototypes. Next, we analyze the perfor-
mance of the prototypes for different configuration pa-
rameters. Finally, we study the communication overhead
in PrETP, and compare it to existing ETP systems.

4.1 Test Scenario

Policy model. The first step in the implementation of
PrETP consists in specifying a policy model in the form
of the mapping function f : (loc, time) → Υ. We de-
cide to follow the same criteria as currently existing ETP
schemes [36], i.e., road prices are determined by two pa-
rameters: type of road and time of the day. More specif-
ically, we define three categories of roads (‘highway’,
‘primary’, and ‘others’) and three time slots during the
day. For each of the possible nine combinations we as-
sign a price per kilometer p and we create a valid signa-
ture (A, e, v) using the TSP’s secret key. We note that
the choice of this policy is arbitrary and that PrETP, as
well as OP, can accommodate other price strategies.

Location data. We provide the OBU with a set of loca-
tion data describing a real trajectory of a vehicle . These
data are obtained by driving with our prototype for one

hour in an urban area, covering a total distance of 24
kilometers. We note that such dataset is sufficient to val-
idate the performance of PrETP, since results for differ-
ent driving scenarios (e.g., faster or slower) can easily be
extrapolated from the results presented in this section.

Parameters of the instantiation. The performance of
OP depends directly on the length of the protocol instan-
tiation parameters, and in particular, on the size of the
cryptographic keys of the entities (ln). In our experi-
ments we consider three case studies: medium security
(ln = 1024 bits), high security (ln = 1536 bits), and very
high security (ln = 2048 bits). The value lp is determined
by the length of the prices p, which in turn determines the
value of le. Therefore, both lengths are constant for all
security cases. The value of lv varies depending on the
value of ln. Finally, the rest of parameters (lℎ, lr, lz , and
lc) are set as the output length of the chosen hash func-
tion primitive (see Sect. 4.2). These lengths determine
the size of the random numbers generated in line 13 in
Protocol 1 (see Appendix B for a detailed explanation).
Table 1 summarizes the parameter lengths considered for
each security level.

Table 1: Length of the parameters (in bits)
Parameter ln le lv lp lr ,lℎ,lz ,lc
Normal Sec. 1 024 128 1 216 32 160
High Sec. 1 536 128 1 728 32 160
Very high Sec. 2 048 128 2 240 32 160

OBU Platform. In order to make our prototype as real-
istic as possible, we implement PrETP using as starting
point the embedded design described in [4], which per-
forms the conversion of raw GPS data into a final fee
internally. We extend and adapt this prototype with the
functionalities of OP to make it compatible with PrETP.

At high-level, the elements of our OBU prototype [4]
are: a processing unit, a GPS receiver, a GSM modem,
and an external memory module. We use as benchmark
the Keil MCB2388 evaluation board [30], which contains
an NXP LPC2388 [34] 32-bit ARM7TDMI [2] micro-
controller. This microcontroller implements a RISC ar-
chitecture, it runs at 72 MHz, and it offers 512 Kbytes
of on-chip program memory and 98 Kbytes of internal
SRAM. As external memory, we use an off-the-shelf
1 GByte SD Card connected to the microcontroller. Fi-
nally, we use the Telit GM862-GPS [43] as both GPS
receiver and GSM modem.

As our platform does not contain any cryptographic
coprocessors, we implement all functionalities exclu-
sively in software. Note that although we could easily
add a hardware coprocessor (e.g., [35]) to the prototype
in order to carry out the most expensive cryptographic
computations, we choose the option that minimizes the
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production costs of the OBU. Besides, this approach al-
lows us to identify the bottlenecks in the protocol im-
plementation, leaving the door open to hardware-based
improvements if needed.

We have constructed a cryptographic library with the
primitives required by our instantiation of the OP proto-
col, namely: i) a modular exponentiation technique, ii) a
one-way hash function, and iii) a random number gener-
ator. For the first primitive we use the ACL [5] library,
a collection of arithmetic and modular routines specially
designed for ARM microcontrollers. As hash function
we choose RIPEMD-160 [22], with an output length lℎ
of 160 bits. As our platform does not provide any phys-
ical random number generator, we use the Salsa20 [6]
stream cipher in keystream mode as third primitive. We
note that a commercial OBU should include a source of
true randomness.

In order to keep the OBU flexible and easily scalable,
we arrange data in different memory areas depending on
their lifespan. Long-term parameters (pkOBU, skOBU,
pkTSP, commitment parameters) are directly embedded
into the microcontroller’s program memory, while short-
term parameters (payment tuples, (loc, time) segments)
and updatable parameters (digital road map, policy f )
are stored separately on the SD Card. We note that our
library provides a byte-oriented interface with the SD
Card, resulting in a considerable overhead when read-
ing/writing values.

TSP Platform. We implement our TSP prototype on a
commodity computer equipped with an Intel Core2 Duo
E8400 processor at 3 GHz, and 4 Gbyte of RAM. We use
C as programming language, and the GMP [25] library
for large-integer cryptographic operations.

4.2 Performance Evaluation

OBU performance. The most time-consuming opera-
tions carried out by the OBU during the taxing phase are
the Mapping() algorithm and the Pay() algorithm. The
Mapping() algorithm is executed every time a new GPS
string is available in the microcontroller. Its function is
to search in the digital road map the type of road given
the GPS coordinates. When the vehicle drives for a kilo-
meter, the OBU maps the segment to the adequate price
pk as specified in the policy. At this point, the Pay() al-
gorithm is executed in order to create the payment tuple.
For each segment, the OBU generates: i) a hash value ℎk
of the location data, ii) a commitment cpk to the price pk,
and iii) a proof �k proving that the price pk is genuinely
signed by the TSP (and thus belongs to the image of f ).
To protect users’ privacy we also require that no sensi-
tive data is stored in the SD Card in plaintext form. For
this purpose we use the AES [33] block cipher in CCM

mode [23] with a key length of 128 bits. We denote this
operation asEk. At the end of the taxing phase, the OBU
adds all the prices pk mapped to each segment to obtain
the fee, and all the openings openk to obtain openfee .
Finally, the OBU constructs and signs the payment mes-
sage m and sends it to the TSP.

As it does not involve the key, the computing time of
the Mapping() algorithm is independent of the security
scenario. Further, this time only depends on the duration
of the trip and is independent of the speed of the vehicle:
the Mapping() algorithm is always executed 3 600 times
per hour, taking a total of 839.11 seconds in our proto-
type. However, for each of the segments this time can
vary depending on the number of points that have to be
processed, i.e., depending on the speed of the vehicle. In
our experiments it requires 76.10 seconds for the longest
segment, i.e., the one where the vehicle spent more time
to drive one kilometer and thus (lock, timek) contains
the larger number of points.

Similarly, the execution time for ℎk and Ek depends
exclusively on the length of the segments (lock, timek),
as it is proportional to the number of GPS points in the
segments. The amount of points per segment varies not
only with the average speed of the car but also depending
on the length of the segments defined in the pricing pol-
icy. In our experiments, computing ℎk and Ek take 0.08
seconds and 0.43 seconds, respectively, for the shortest
and the longest segments. For the Mapping() algorithm
and both ℎk and Ek operations, more than 90% of the
time is spent in the communication with the SD card.

On the other hand, the execution time for cpk and �k
is constant for all segments, as it does not depend on the
length of a particular slice (see lines 6 to 20 in Proto-
col 1). In order to calculate cpk , the OBU needs to gen-
erate a random opening openpk and perform two mod-
ular exponentiations and a modular multiplication. The
computation of �k involves the generation of ten random
numbers and a hash value, and the execution of fourteen
modular exponentiations, nine modular multiplications,
eight additions, and eight multiplications. The bottle-
neck of both operations is determined by the modular
operations. Although we could take advantage of fixed-
base modular exponentiation techniques, we choose to
use multi-exponentiations algorithms [18], which have
less storage requirements. Multi-exponentiation based
algorithms, which compute values of the form abcd(mod
n) in one step, allow us to considerably speed up the pro-
cess. The average execution times for computing cpk
are 0.76 seconds, 2.25 seconds, and 5.69 seconds for
medium, high, and very high security respectively. For
�k, these times are 6.20 seconds, 19.45 seconds, and
41.64 seconds, respectively.

Table 2 summarizes the timings for all OBU opera-
tions and routines for a journey of one hour. We note
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Table 2: Execution times (in seconds) for an hour journey of 24 km, for all possible security scenarios.
Medium Security High Security Very high Security

Algorithm Segment Full trip Segment Full trip Segment Full trip
Mapping() 76.10 s 839.11 s 76.10 s 839.11 s 76.10 s 839.11 s

Pay()

7.88 s 183.91 s 22.13 s 528.47 s 47.79 s 1 143.30 s
ℎk 0.08 s 1.08 s 0.08 s 1.08 s 0.08 s 1.08 s
Ek 0.43 s 6.35 s 0.43 s 6.35 s 0.43 s 6.35 s
cpk 0.76 s 18.19 s 2.25 s 54.08 s 5.69 s 136.82 s
�k 6.20 s 158.09 s 19.45 s 466.96 s 41.64 s 999.05 s

that, even when 2048-bit RSA keys are used, the OBU
can perform all operations needed to create the payment
tuples in real time. While the trip lasted one hour, the
Mapping() and Pay() algorithms only required 1 982.41
seconds. The computation time is dominated by the
Pay() algorithm, which depends on the number of GPS
strings in each segment (loc, time). This number varies
with the speed of the vehicle and the pricing policy. If
a vehicle is driving at a constant speed, policies that
establish prices for small distances result in segments
containing less GPS points than policies that consider
long distances. Similarly, given a policy fixing the size
of the segments, driving faster produces segments with
less points than driving slower. In both cases, �k has to
be computed fewer times and the Pay() algorithm runs
faster. Thus, the policy can be used as tuning parameter
to guarantee the real-time operation of the OBU.

Using the values in Table 2, for each of the levels
of security we can calculate the time our OBU is idle
– in our case (3 600 − 839.11) seconds, with 839.11
seconds being the time required by the Mapping() al-
gorithm. Then, considering our current policy, we can
estimate the number of times the Pay() algorithm could
be executed, which in turn represents the number of kilo-
meters that could have been driven by a car in one hour,
i.e., the average speed of the car. For normal security,
our OBU could operate in real time even if a vehicle was
driving at 350 km/h. This speed decreases to 124 km/h
when 1536-bit keys are used, and to 57 km/h if the keys
have length 2048 bits. Only when using high security
parameters our OBU would have problems to operate
in the field. However, as mentioned before, including
a cryptographic coprocessor in the platform would suf-
fice to solve this problem whenever high security is re-
quired. Moreover, in our tests we consider a worst-case
scenario in which all GPS strings are processed upon re-
ception. In fact, processing fewer strings would suffice
to determine the location of the vehicle. As the execu-
tion time required by the Mapping() algorithm would
decrease linearly, OBUs would be able to support higher
vehicle speeds.

In the OBUopen() algorithm, only executed upon re-

quest from TC, the OBU searches its memory for a seg-
ment (loc, time) in accordance to the proof sent by the
TSP. Here, the time accuracy provided by the GPS sys-
tem is used to ensure synchronization between the data
in � and the segment (loc, time). The main bottleneck
of this operation is the decryption of the location data
corresponding to the correct segment. On average, our
prototype can decrypt such a segment in 0.27 seconds.

TSP performance. The most consuming task the TSP
must perform corresponds to the VerifyPayment() algo-
rithm, which has to be executed each time the TSP re-
ceives a payment message. This algorithm involves three
operations: the verification of the proof �k for each seg-
ment, the multiplication of all commitments cpk to obtain
cfee, and the opening of cfee in order to check whether
it corresponds to the reported final fee. The most costly
operation is the verification of �k, in particular the calcu-
lation of the parameters (t′cm , t′Z , t′cw , t′) which requires
a total of eleven modular exponentiations (lines 14 to 22
in Protocol 1).

Table 4.2 (left) shows the performance of the
VerifyPayment() algorithm for each of the considered
security levels when segments have length one kilome-
ter. We also provide an estimation of the time required
to process all the proofs sent by OBU during a month,
assuming that a vehicle drives an average of 18 000 km
per year (1 500 km per month).

These results allow us to extrapolate the number of
OBUs that can be supported by a single TSP in each se-
curity scenario for different segment lengths. Intuitively,
the capacity of TSP increases when segments are larger,
as the payment messages contain fewer proofs �k. The
number of OBUs supported by a single TSP is presented
in Table 4.2 (right). For a segment length of 1 km, the
TSP is able to support 164 000, 58 000, and 29 000 vehi-
cles depending on the chosen security level. Even when
ln is 2048 bits, only 36 servers are needed to accommo-
date one million OBUs. This number can be reduced
by parallelizing tasks at the server side, or by using fast
cryptographic hardware for the modular exponentiations.
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Table 3: Timings (in seconds) for the execution of VerifyPayment() in TSP (left). Number of OBUs supported by a
single TSP (right).

VerifyPayment() Segment One Month
Medium Sec. 0.0105 s 15.750 s
High Sec. 0.0295 s 44.250 s
Very high Sec. 0.0587 s 88.050 s

Segment size Medium Sec. High Sec. Very high Sec.
0.5 km 82 000 29 000 14 000
0.75 km 123 000 43 000 22 000
1 km 164 000 58 000 29 000
2 km 329 000 117 000 58 000
3 km 493 000 175 000 88 000

4.3 Communication overhead

We now compare the communication overhead of
PrETP with respect to straightforward ETP implemen-
tations and VPriv [39]. Both in straightforward ETP
implementations and in VPriv the OBU sends all GPS
strings to the TSP. Let us consider that vehicles drive
1 500 km per month at an average speed of 80 km/h.
Then, transmitting the full GPS information to the the
TSP requires 2.05 Mbyte (considering a shortened GPS
string of 32 bytes containing only latitude, longitude,
date and time). VPriv requires more bandwidth than
straightforward ETP systems, as extra communications
are necessary to carry out the interactive verification pro-
tocol (see Sect. 6). Using PrETP, the communication
overhead comes from the payment tuples that must be
sent along with the fee. For each segment, the OBU
sends the payment tuple (ℎ, cp, �) to the TSP. When
sent uncompressed, this implies an overhead of approxi-
mately 1.5 Kbyte per segment, i.e., less than 2 Mbyte per
month, for medium security (ln=1024 bits). Addition-
ally, less than 50 Kbyte have to be sent occasionally to
respond a verification challenge after a vehicle has been
seen at a spot check. We believe this overhead is not ex-
cessive for the additional security and privacy properties
offered by PrETP.

The communication overhead in PrETP is dominated
by the payment messagem sent by the OBU to the TSP,
the length of which depends on the number of segments
covered by the driver. Therefore, the segment length
can be seen as a parameter of the system that tunes the
tradeoff between privacy and communication overhead.
The smaller the segments, the larger the communication
overhead, because more tuples (ℎk, cpk , �k) need to be
sent. Allowing larger segments reduces the communica-
tion cost but also reduces privacy because the OBU must
disclose a bigger segment when responding a verification
challenge.

Further, the communication overhead can be almost
eliminated by having the OBU sending only the hash of
the payment message at the end of each tax period and
leave the correct operation verification subject to random
checks. Following the spirit of the random “spot checks”
used for checking the input and prices, the OBUs could

occasionally be challenged to prove its correct function-
ing by sending the payment message corresponding to
the preimage of the hash sent at the end of a random tax
period.

5 Discussion

Practical issues. Our OP scheme allows the OBU to
prove its correct operation to the TSP while revealing a
minimum amount of information. Nevertheless, we note
that fee calculation is not flexible. The reason is that the
OBU should store signatures created by the TSP on all
the prices that belong to Im(f), and thus, for the sake of
efficiency, we need to keep Im(f) small. For this pur-
pose, in our evaluation f is only defined for trajectory
segments of a fixed length (one kilometer) and of a fixed
road type. There are two obvious cases in which this
feature is problematic: when a vehicle has driven a non-
integer amount of kilometers, and when one of the seg-
ments contains pieces of roads with different cost (e.g.,
when a driver leaves the highway entering a secondary
road). In both cases the OBU cannot produce a payment
tuple because it does not have the signature by the TSP
on the price of the segment.

There are two possible solutions to these issues. A first
option would be to solve them at contractual level. The
policy designed by the TSP could include clauses that
indicate how to proceed when these conflicts arise. For
instance, in the first case the TSP could dictate that the
driver must pay for the whole kilometer, and in the sec-
ond case the policy could be that the price corresponds to
the cheapest of the roads, or to the most expensive. We
note that these decisions do not conflict with the general
purpose of the system: congestion control, as in all cases,
on average, drivers will pay proportionally to their use of
the roads. The second option would be to change the
way the OBU proves that the committed prices belong
to Im(f). In the construction proposed in Sect. 3, the
OBU employs a set membership proof, based on prov-
ing signature possession, to prove that the committed
prices belong to the finite set Im(f). Alternatively, we
can define Im(f) as a range of (positive) prices, and let
the OBU use a range proof to prove that the committed
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prices belong to Im(f). Since now Im(f) is much big-
ger, f can be defined for segments of arbitrary length that
include several types of road. We outline a construction
that employs range proofs in the extended version of this
work [3].

Another issue is that our OP scheme does not offer
protection against OBUs that do not reply upon receiv-
ing a verification challenge. In this case, the TSP should
be able to demonstrate to the TC that the OBU is misbe-
having. To permit this, the TSP can delegate to the TC
the verification of the “spot-check”, i.e, the TSP sends
the payment message m and the signature sm to the TC,
and the TC interacts with the OBU (electronically, or by
contacting the driver through some other means) to ver-
ify that m is valid.

Although in Sect. 2 we mentioned that the cost associ-
ated with roads could depend on attributes of the driver
(e.g., retired users may get discounts) or on attributes of
the car (e.g., ecological cars may have reduced fees), the
pricing policy used by our prototype is rather inflexible.
We note that this is a limitation of our prototype and that
PrETP can support more flexible policies. For instance,
the TSP can apply discounts to the total fee reported by
the OBU, without the knowledge of fine grained location
data. Further, the system model in this work considers
only one service provider. However, the European legis-
lation [13, 20] points out that several TSPs may provide
services in a given Toll Charger domain. PrETP can be
trivially extended to this setting.

Production cost. Our OBU prototype, constructed with
off-the-shelf components, demonstrates that a system
like PrETP can be built at a reasonable cost 1. Although
the security of our Optimistic Payment scheme does not
rely on any countermeasure against physical attacks by
drivers, for liability reasons it is desirable to use OBUs
with a certain level of tamper resistance. Nevertheless,
we note that on-board units in the market [36, 42] al-
ready rely on tamper resistance. Further, secure remote
firmware updates are also required in privacy invasive de-
signs, and additional updates in PrETP containing new
maps and policies can be considered occasional.

Privacy. Although we protect the privacy of the users
by keeping the location data in the client domain and
exploiting the hiding property of cryptographic commit-
ments, there exist a few sources of information available
to the TSP. First, as in many other services, users in
PrETP must subscribe to the service by revealing their
identity, and most likely their home address, to the TSP.
Second, the final fee and all the commitments (which in-
dicate the number of kilometers driven), must be sent to
the TSP at the end of each tax period. Decoding tech-

1The cost of our prototype amounts to $500; such a number would
be drastically reduced in a mass-production scenario.

niques (e.g., [16]) using these data could be employed
by the TSP to infer the trajectories followed by a ve-
hicle by inspecting the possible combination of prices
per kilometers that could have generated the total fee.
A possible solution to this problem consists in giving
users the possibility to send data associated to dummy
segments. For this, a price p zero should be included in
the pricing policy so that it does not imply any cost for
the drivers when aggregating the homomorphic commit-
ments, and that the proofs �k are still accepted by the
TSP. The downside of this approach is that it introduces
an overhead in both the processing of the OBU and the
communication link with the TSP. Apart from this, sub-
liminal channels in the communication or the encryption
schemes must be avoided, e.g., by proving a true physi-
cal randomness source in the OBU (see [44] for further
discussion on the topic).

Legal Compliance. We build on the analysis pre-
sented in [44] and discuss the compliance of PrETP
with European Legislation. With regard to data pro-
cessing, the data controller (Art.6.2. in [13]) has to
abide by principles found in the Data Protection Direc-
tive 95/46/EC [21] (DPD) in Art. 6.1, 16 and 17. We use
these principles to assess compliance of the proposed ar-
chitecture since these principles have been further spec-
ified in the other provisions of the DPD. We only look
at the principles of direct interest for this paper which
are that i) the data must be adequate, relevant and not
excessive, ii) kept accurate and up to date, iii) the data
should be processed in a secure and confidential man-
ner and iv) data should not be kept longer than neces-
sary. Firstly, data must be kept accurate and up-to-date
(Art. 6.1(d) in [21]). In PrETP the OBU commits to lo-
cation data and to its price when reporting the final fee.
These commitments do not reveal any details on the lo-
cation or the price calculation. Given that the controller
is only allowed to process the data adequate, relevant and
not excessive for the provision of the service (Art. 6.1(c)
in [21]), this seems a good solution to the problem. The
TC and the TSP should know that the information given
by the user is correct but the information that the com-
mitment covers is not needed for PrETP [28, 38]. The
commitments implemented in PrETP are designed to
guarantee that the OBU sends out the correct data with-
out putting all the user’s data in the hands of the TSP
or the TC. The TC might want to execute checks at
certain points in time to verify the veracity of these com-
mitments and sends “spot-checks” to the TSP, which in-
teracts with the OBU for the sake of verification. Only
at those times will more data be disclosed because then
it is required to know the information the commitment
is based on to know whether the commitment is reli-
able. Data used for verification will however only be
kept when an infringement is found. If there is no in-
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fringement, the data will not be kept in accordance with
data protection principles (Art. 6.1(E) in [28, 38]). Sec-
ondly, the processing must be secure and confidential as
stated by Art. 16-17 in [21]. A positive step of PrETP in
this regard is keeping all the data inside the OBU and the
applied algorithms to protect these data [28, 38]. The al-
gorithms presented in this work are designed to reconcile
the conflicting interest of the users and the TSP, while
protecting the user from excessive data processing (note
that the data set in road tolling could be potentially quite
comprehensive – Art. 7, Annex VI in [13]) ). This crite-
rion may be the most important in a road tolling setting.

6 Related work

A privacy-friendly architecture for ETP in which loca-
tion data is not revealed to the service provider was pre-
sented in [44], and its viability was shown in [4]. How-
ever, the design by [44] does not take into account that
the TSP and the TC need to check the correctness of the
operations carried out in the on-board unit jeopardizing
its applicability to real world scenarios.

Another line of research has focused on the design of
secure multi-party protocols between the TSP and the
OBUs that allow TSPs to compute the total fee and de-
tect malicious OBUs while protecting location privacy.
Solutions proposed in [8, 7, 40] resort to general reduc-
tions for secure multi-party computation and are very in-
efficient. A more efficient protocol, VPriv, was proposed
in [39]. The basic idea consists in sending the location
data generated by a driver sliced into segments to the
TSP, in such a way that it remains hidden among seg-
ments from multiple drivers. Then the TSP calculates
the subfees (fees of small time periods that add to the fi-
nal fee) of all segments and returns them to all OBUs.
Each OBU uses this information to compute its total fee
and, without disclosing any location data, proves to the
TSP that the total fee is computed correctly, i.e., by only
using the subfees that correspond to the location data in-
put by this particular OBU. Moreover, in order to pre-
vent malicious users from spoofing the GPS signal to
simulate cheaper trips, VPriv has an out-of-band enforce-
ment mechanism. This mechanism is based on the use of
random spot checks that demonstrate that a vehicle has
been at a location at a time (e.g., a photograph taken by
a road-side radar). Given this proof, the TSP challenges
the OBU to prove that its fee calculation includes the lo-
cation where the vehicle was spotted.

The protocol proposed in [39] has several practical
drawbacks. First, it requires vehicles to send anonymous
messages to the server (e.g., by using Tor [19]) impos-
ing high additional costs to the system. Second, their
protocol only avoids leaking any additional informa-
tion beyond what can be deduced from the anonymized

database. As the database contains path segments, the
TSP could use tracking algorithms to recover paths fol-
lowed by the drivers [29, 27, 32] and infer further infor-
mation about them. Third, the scalability of the system
is limited by the complexity of the protocol on the client
side, as it depends on the number of drivers in the system.
Practical implementations require simplifications such as
partitioning the set of vehicles into smaller groups, thus
reducing the anonymity set of the drivers. Fourth, VPriv
only uses spot checks to verify correctness of the loca-
tion, and thus needs an extra protocol to verify the cor-
rect pricing of segments. This extra protocol produces an
overhead both in terms of computation and communica-
tion complexity.

Our solution, similar to PriPAYD [44], does not re-
quire messages between the OBU and the TSP to be
anonymous as the computation of the fee is made locally
and no personal data is sent to the provider. Thus, no
database of personal data is created and we do not need
to rely on database anonymization techniques to ensure
users’ privacy. Further, the OBU’s operations depend
only on the data it collects, independently of the number
of vehicles in the system. Finally, our protocol can be
integrated into a stand-alone OBU without the need of
external devices to carry out the cryptographic protocols.

To the best of our knowledge, the only protocol that
so far employs spot checks to verify both correctness of
the location and of the fee calculation is due to Jonge and
Jacobs [17]. In this solution, OBUs commit to segments
of location data and its corresponding subfees when re-
porting the total fee to the TSP. They employ hash func-
tions as commitments. Upon being challenged to ratify
the information in the spot check, OBUs must provide
the hash pre-image of the corresponding segment, and
demonstrate that indeed the location was used to com-
pute the final fee.

Jonge and Jacobs’ protocol is limited by the fact that
using hash-based commitments one cannot prove that the
commitments to the subfees add to the total fee. As so-
lution, they propose that the OBU also commits to the
subfees corresponding to bigger time intervals following
a tree structure. Each tax period is divided into months,
each month is divided into weeks, and so forth, and sub-
fees for each month, week, day,. . . are calculated and
committed. Then, instead of asking the OBU to open
only one commitment containing the instant specified in
TC’s proof, the TSP asks the OBU to open all the com-
mitments in the tree that include that instant. This in-
deed proves that the sum is correct at the cost of revealing
much more information to the TSP.

PrETP avoids this information leakage. The reason is
that, in our OP scheme, commitments are homomorphic
and thus allow TSP to check that the commitments to the
subfees add to the total fee without additional data. The
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use of homomorphic commitments was also proposed
and briefly sketched in [17]. However, their scheme does
not prevent the OBU from committing to a “negative”
price, which would give a malicious OBU the possibil-
ity of reducing the final fee by sending only one wrong
commitment, thus with an overwhelming probability of
not being detected by the spot checks.

7 Conclusion

The revelation of location data in Electronic Toll Pricing
(ETP) systems, besides conflicting with the users’ right
to privacy, can also pose inconveniences and extra invest-
ments to service providers as the law demands that per-
sonal data is stored and processed under strong security
guarantees [21]. Furthermore, it has been shown [31]
that security and privacy concerns are among the main
reasons that discourage the use of electronic communi-
cation services. Recent research [45] demonstrates that
users confronted to a prominent display of private infor-
mation not only prefer service providers that offer bet-
ter privacy guarantees but also are willing to pay higher
prices to utilize more privacy protective systems. Con-
sequently, it is of interest for service providers to deploy
systems where the amount of location information that
users need to disclose is minimized.

As ETP systems are becoming increasingly impor-
tant [13, 1], it is a challenge to implement them respect-
ing both the users’ privacy and the interest of the service
provider. Previous work relied on too expensive solu-
tions, or on unrealistic requirements, to fulfill both prop-
erties. In this work we have presented PrETP, an ETP
system that allows on-board units to prove that they op-
erate correctly leaking the minimum amount of informa-
tion. Namely, upon request of the service provider, on-
board units can attest that the input location data for the
calculation of the fee is authentic and has not been tam-
pered with. For this purpose we proposed a new cryp-
tographic protocol, Optimistic Payment, that we define,
construct and prove secure under standard assumptions.
For this protocol, we also provide an efficient instantia-
tion based on known secure cryptographic primitives.

We have performed a holistic analysis of PrETP. Be-
sides the security analysis, we have built an on-board
unit prototype on an embedded platform, as well as a ser-
vice provider prototype on a commodity computer, and
we have thoroughly tested the performance of both using
real world collected data. The result of our experiments
confirms that our protocol can be executed in real time
in an on-board unit constructed with off-the-shelf com-
ponents. Finally, we have analyzed the legal compliance
of PrETP under the European Law framework and con-
clude that it fully supports the Data Protection Directive
principles.
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A Security Definition of Optimistic Pay-
ment

Ideal-world/real-world paradigm. We use the ideal-
world/real-world paradigm to prove our construction se-
cure. In this paradigm, parties are modeled as proba-
bilistic polynomial time interactive Turing machines. A
protocol  is secure if there exists no environmentZ that
can distinguish whether it is interacting with adversaryA
and parties running protocol  or with the ideal process
for carrying out the desired task, where ideal adversary
S and dummy parties interact with an ideal functional-
ity ℱ . More formally, we say that protocol  emulates
the ideal process if, for any adversary A, there exists a
simulator S such that for all environments Z , the ensem-
bles IDEALℱ ,S,Z and REAL ,A,Z are computation-
ally indistinguishable. We refer to [11] for a description
of these ensembles.

Our construction operates in the ℱREG-hybrid model,
where parties register their public keys at a trusted reg-
istration entity and obtain from it a common reference
string. Below we depict the ideal functionality ℱREG,
which is parameterized with a set of participantsP that is
restricted to contain OBU, TSP and TC only. We also
describe an ideal functionality ℱOP for Optimistic Pay-
ment. Every functionality and every protocol invocation
should be instantiated with a unique session-ID that dis-
tinguishes it from other instantiations. For the sake of
ease of notation, we omit session-IDs from our descrip-
tion.

Functionality ℱREG. Parameterized with a set of parties
P , ℱREG works as follows:
- On input (crs) from party P , if P /∈ P it aborts. Other-

wise, if there is no value r recorded, it picks r ← D
and records r . It sends (crs, r) to P .

- Upon receiving (register, v) from party P ∈ P , it
records the value (P , v).

- Upon receiving (retrieve,P) from party P ′ ∈ P , if
(P , v) is recorded then return (retrieve,P , v) to P ′.
Otherwise send (retrieve,P ,⊥) to P ′.

Functionality ℱOP. Running with OBU, TSP and TC,
ℱOP works as follows:
- On input a message (initialize, f, �) from TSP, where

f is a mapping f : (loc, time) → Υ and � :
(�, (loc, time)) → {accept, reject}, ℱOP stores
(f, �) and sends (initialize, f, �) to OBU.

- On input a message (payment, tag , fee, (k, (lock,
timek), pk)Nk=1) from OBU, where tag identi-
fies the tax period, ℱOP checks that a message
(payment, tag , . . .) was not received before, that
for k = 1 to N , pk ∈ Υ, and that fee =∑N
k=1 pk. If these checks succeed, ℱOP sends

(payment, tag , fee, N) to TSP and stores the tu-

ple (tag , fee, (k, (lock, timek), pk)Nk=1). Otherwise
ℱOP sends (payment, tag ,⊥) and stores (tag ,⊥).

- On input a message (proof, tag , �) from TC, ℱOP
stores (tag , �) and sends (proof, tag , �) to TSP.

- On input a message (verify, tag , �) from TSP, ℱOP
checks that it stores messages (payment, tag , . . .)
and (proof, tag , �). If it is the case, ℱOP
sends (verifyreq, tag , �) to OBU. Upon receiv-
ing (verifyresp, tag , (�, (loc′�, time ′�), p′�)), ℱOP
checks whether the stored payment tuple (k, (lock,
timek), pk) equals (�, (loc′�, time ′�), p′�) for k =
�, whether �(�, (loc′�, time ′�)) outputs accept, and
whether p′� = f(loc′�, time ′�). If these checks
are correct, ℱOP sends (verifyresul, not guilty, (�,
(loc′�, time ′�), p′�)) to TSP. Otherwise it sends
(verifyresul, guilty, (�, (loc′�, time ′�), p′�)).

- On input a message (blame, tag) from TSP, ℱOP
checks that messages (payment, tag , . . .), (proof,
tag , �) and (verifyresp, tag , . . .) were previously
received, and in this case it proceeds with the same
checks done for (verify, . . .). It sends to TC either
(guilty) or (not guilty).

B Construction of an Optimistic Payment
Scheme

We use several existing results to prove statements about
discrete logarithms: (1) proof of knowledge of a discrete
logarithm modulo a prime [41]; (2) proof of knowledge
of the equality of some element in different representa-
tions [12]; (3) proof with interval checks [37] and (4)
proof of the disjunction or conjunction of any two of the
previous [14]. These results are often given in the form
of Σ-protocols but they can be turned into non-interactive
zero-knowledge arguments in the random oracle model
via the Fiat-Shamir heuristic [24].

When referring to the proofs above, we follow the
notation introduced by Camenisch and Stadler [10] for
various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete loga-
rithms. NIPK{(�, �, �) : y = g0

�g1
� ∧ ỹ = g̃0

�g̃1
� ∧

A ≤ � ≤ B} denotes a “zero-knowledge Proof of
Knowledge of integers �, �, and � such that y =
g0
�g1

� , ỹ = g̃0
�g̃1

� and A ≤ � ≤ B holds”, where
y, g0, g1, ỹ, g̃0, and g̃1 are elements of some groups G =
⟨g0⟩ = ⟨g1⟩ and G̃ = ⟨g̃0⟩ = ⟨g̃1⟩ that have the
same order. (Note that some elements in the represen-
tation of y and ỹ are equal.) The convention is that
letters in the parenthesis, in this example �, �, and
�, denote quantities whose knowledge is being proven,
while all other values are known to the verifier. We de-
note a non-interactive proof of signature possession as
NIPK{(x, sx) : SigVerify(pk , x, sx) = accept}.
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B.1 Construction

We begin with a high level description of the optimistic
payment scheme. We assume that each party registers its
public key at ℱREG, and retrieves public keys from other
parties by querying ℱREG. They also retrieve the com-
mon reference string paramsCom , which is computed by
algorithm SetupOP.

Optimistic Payment
When TSP is activated with (initialize, f, �), TSP

runs TSPkg(1k) to obtain (skTSP, pkTSP), and ob-
tains a setup params with TSPinit(f, skTSP). TSP
stores TSP0 = (f, �, skTSP, pkTSP, paramsCom ,
params) and sends (f, �, params) to OBU. OBU
runs OBUkg(1k) to get (skOBU, pkOBU) and ex-
ecutes OBUinit(params, pkTSP) to get a bit b. If
b = 0, OBU rejects params . Otherwise OBU
stores the tuple OBU0 = (f, �, skOBU, pkOBU,
pkTSP, paramsCom , params).

When OBU is activated with (payment, tag , fee, (k,
(lock, timek), pk)Nk=1) and OBU has previously
received (f, �, params), OBU runs algorithm Pay
(paramsCom , params, pkOBU, skOBU, pkTSP,
tag , fee, (k, (lock, timek), pk)Nk=1) to obtain a
payment message m along with a signature sm,
and auxiliary information aux. OBU sets aux =
(aux, (k, (lock, timek), pk)Nk=1), stores OBUtag =
(OBU0,m, sm, aux) and sends (m, sm) to TSP.
TSP runs VerifyPayment(paramsCom , pkOBU,
pkTSP,m, sm) to obtain a bit b. If b = 0, TSP
rejects (m, sm). Otherwise TSP stores TSPtag =
(TSP0,m, sm, pkOBU).

When TC is activated with (proof, tag , �), TC runs
TCkg(1k) to get (pkTC, skTC), runs Prove(skTC,
tag , �) to obtain a proof Q and sends (Q) to TSP.
TSP runs VerifyProof(pkTC, Q) and aborts if b =
0. Otherwise TSP stores TSPtag = (TSPtag , Q).

When TSP is activated with (verify, tag , �), and
TSP has previously obtained (m, sm) and (Q),
TSP sends (Q) to OBU. OBU executes
VerifyProof(pkTC, Q) and aborts if b = 0.
Otherwise OBU runs OBUopen(skOBU, Q, aux)
to get a response R and sends (R) to TSP.
TSP runs Check(paramsCom , pkOBU, pkTSP,m,
sm, Q,R) to obtain either (not guilty, (k, (lock,
timek), pk) or (guilty, (k, (lock, timek), pk)).

When TSP is activated with (blame, tag), and
messages (m, sm), (Q) and (R) were previ-
ously received, TSP sends ((m, sm), R) to TC.
TC runs Check(paramsCom , pkOBU, pkTSP,m,
sm, Q,R) to obtain (not guilty, (k, (lock, timek),
pk)) or (guilty, (k, (lock, timek), pk)).

In the following, we denote the signature algorithms
used by TSP, OBU and TC as (TSPkeygen,TSPsign,

TSPverify), (OBUkeygen,OBUsign,OBUverify) and
(TCkeygen,TCsign,TCverify). H stands for a
collision-resistant hash function, which is modeled as a
random oracle.
SetupOP(1k). Run ComSetup(1k) and output

paramsCom .
TSPkg(1k). Run TSPkeygen(1k) to get a key pair

(pkTSP, skTSP). Output (pkTSP, skTSP).
OBUkg(1k). Run OBUkeygen(1k) to get a key pair

(pkOBU, skOBU). Output (pkOBU, skOBU).
TCkg(1k). Run TCkeygen(1k) to obtain a key pair

(pkTC, skTC). Output (pkTC, skTC).
TSPinit(f, skTSP). For all possible prices p ∈ Υ,

run s = TSPsign(skTSP, p) and output the set
params = (p, s).

OBUinit(params, pkTSP). Parse params as (p, s) and
run TSPverify(pkTSP, p, s) for all p ∈ Υ. If all the
signatures are correct, output b = 1 else b = 0.

Pay(paramsCom , params, pkOBU, skOBU, pkTSP, tag
fee, (k, (lock, timek), pk)Nk=1). For k = 1 to
N , execute ℎk = H(lock, timek), calculate a
commitment to the price (ck, openk) = Commit
(paramsCom , pk) and compute a proof of posses-
sion of a signature on the price �k = NIPK{(pk,
openk, sk) : TSPverify(pkTSP, pk, sk) =
accept ∧ (ck, openk) = Commit(paramsCom ,
pk)}. Add all the prices to obtain the total fee
fee and all the openings openk to get an opening
openfee to the commitment to the fee. Set payment
message m = (tag , fee, openfee , (ℎk, ck, �k)Nk=1)
and run sm = OBUsign(skOBU,m). Output (m,
sm) and aux = (openk)Nk=1.

VerifyPayment(paramsCom , pkOBU, pkTSP,m, sm).
Parsem as (tag , fee, openfee , (ℎk, ck, �k)Nk=1). For
k = 1 to N , verify �k. Add all the commitments
to obtain a commitment to the total fee cfee , and
run Open(paramsCom , cfee , fee, openfee). If the
opening is correct, output b = 1. Otherwise output
b = 0.

Prove(skTC, tag , �). Set q = (tag , �) and run sq =
TCsign(skTC, q). Output Q = (q, sq).

VerifyProof(pkTC, Q). Parse Q as (q, sq) and run
TCverify(pkTC, q, sq). Output b = 1 if the signa-
ture is correct and b = 0 otherwise.

OBUopen(skOBU, Q, aux). Parse proof Q as (q, sq), q
as (tag , �) and aux as (openk, (k, (lock, timek),
pk))Nk=1. Find the data structure (lock, timek) such
that �(�, (lock, timek)) outputs accept. Set r =
(tag , (k, (lock, timek), pk), openk) and run sr =
OBUsign(skOBU, r). Output R = (r, sr).

Check(paramsCom , pkOBU, pkTSP,m, sm, Q,R).
Parse R as (r, sr) and run OBUverify(pkOBU,
r, sr). If the signature is correct, parse r as
(tag , (�, (loc′�, time ′�), p′�), open�), Q as ((tag ,
�), sq) and m as (tag , fee, openfee , (ℎk, ck,

15



�k)Nk=1). Check that openfee was picked from
the adequate interval. Compute ℎ′� = H(loc′�,
time ′�), check if ℎ′� = ℎ� and if �(�, (loc′�,
time ′�)) outputs accept. If it is the case, set
reasonpos = 0 and otherwise reasonpos = 1.
Compute p� = f(loc′�, time ′�) and check if
p� = p′� . Run Open(paramsCom , ck, pk, openk).
If it opens correctly set reasonprice = 0 and
otherwise reasonprice = 1. If reasonpos =
reasonprice = 0, output (not guilty, (k, (lock,
timek), pk)). If not, output (guilty, (k, (lock,
timek), pk)).

Theorem 1 This OP scheme securely realizes ℱOP.

We prove Theorem 1 in the extended version of this
work [3].

B.2 Efficient Instantiation

We propose an efficient instantiation for the commitment
scheme, TSP’s signature scheme and the non-interactive
proof of signature possession that are used in the con-
struction described in the previous section. The signa-
ture schemes of TC and OBU can be instantiated with
any existentially unforgeable signature scheme.

Signature Scheme. We select the signature scheme pro-
posed by Camenisch and Lysyanskaya [9].
- SigKeygen. On input 1k, generate two safe primes p, q

of length k such that p = 2p′ + 1 and q = 2q′ + 1.
The special RSA modulus of length ln is defined as
n = pq. Output secret key sk = (p, q). Choose uni-
formly at random S ∈R QRn, and R,Z ∈R ⟨S⟩.
Output public key pk = (n,R, S, Z).

- SigSign. On input message x of length lx, choose a
random prime number e of length le ≥ lx + 3, and
a random number v of length lv = ln + lx + lr,
where lr is a security parameter [9]. Compute the
value A such that Z ≡ AeRxSv(mod n). Output
the signature (A, e, v).

- SigVerify. On inputs message x and signature (A, e,
v), check that Z = AeRxSv(mod n) and 2le ≤ e ≤
2le−1.

Commitment Scheme. We select the integer commit-
ment scheme due to Damgard and Fujisaki [15].
- ComSetup. Given a special RSA modulus, pick a ran-

dom generator g1 ∈R QRn. Pick random � ←
{0, 1}ln+lz and compute g0 = g�1 . Output parame-
ters (g0, g1, n).

- Commit. On input message x of length lx, choose a
random number openx ∈ {0, 1}ln+lz , and compute
cx = g0

xg1
openx (mod n). Output the commitment

cx and the opening openx.

- Open. On inputs message x and opening openx, com-
pute c′x = g0

xg1
openx (mod n) and check whether

cx = c′x.

Non-Interactive Zero-Knowledge Argument. We em-
ploy the proof of possession of a signature in [9]. Given
a signature (A, e, v) on message x and a commitment
to the message cx = g0

xg1
openx , the prover computes

Ã = Agw, a commitment cw = gwℎopenw and a proof
that:

NIPK{ (x, openx, e, v, w, openw, w ⋅ e, openw ⋅ e) :

cx = g0
xg1

openx ∧ Z = ÃeRxSv(1/g0)w⋅e ∧
cw = g0

wg1
openw ∧ 1 = cew(1/g0)w⋅e

(1/g1)openw⋅e ∧ e ∈ {0, 1}le+lc+lz ∧
x ∈ {0, 1}lx+lc+lz}

We turn it into a non-interactive zero-knowledge argu-
ment via the Fiat-Shamir heuristic. The prover picks ran-
dom values:
rx ← {0, 1}lx+lc+lz , ropenx ← {0, 1}ln+lc+lz
rw ← {0, 1}ln+lc+lz , ropenw ← {0, 1}ln+lc+lz
re ← {0, 1}le+lc+lz , rw⋅e ← {0, 1}ln+le+lc+lz
rv ← {0, 1}lv+lc+lz , ropenw⋅e ← {0, 1}

ln+le+lc+lz

and computes commitments:

tcx = g0
rxg1

ropenx , tcw = grwℎropenw

t′Z = ÃreRrxSrv (1/g0)rw⋅e ,
t′ = crew (1/g0)rw⋅e(1/g1)ropenw⋅e .
Let the challenge computed by the prover be:

cℎ = H(n∣∣g0∣∣g1∣∣Ã∣∣R∣∣S∣∣1/g0∣∣1/g1∣∣cx∣∣Z∣∣
cw∣∣1∣∣tcx ∣∣tZ ∣∣tcw ∣∣t ).

The prover computes responses:
sx = rx − cℎ ⋅ x , sopenx = ropenx − cℎ ⋅ openx
sw = rw − cℎ ⋅ w , sopenw = ropenw − cℎ ⋅ openw
se = re − cℎ ⋅ e , sw⋅e = rw⋅e − cℎ ⋅ (w ⋅ e)
sv = rv − cℎ ⋅ v ,
sopenw⋅e = ropenw⋅e − cℎ ⋅ (openw ⋅ e)

and sends to the verifier:
� = (Ã, cw, cℎ, sx, sopenx , se, sv, sw, sopenw , sw⋅e,

sopenw⋅e) .
The verifier computes:

t′cx = ccℎx g0
smg1

sopenx , t′cw = ccℎw g0
swg1

sopenw

t′Z = ZcℎÃseRsxSsv (1/g0)sw⋅e ,
t′ = Csew (1/g0)sw⋅e(1/g1)sopenw⋅e

and checks whether:

se ∈ {0, 1}le+lc+lz , sx ∈ {0, 1}lx+lc+lz

and finally:

cℎ = H(n∣∣g0∣∣g1∣∣Ã∣∣R∣∣S∣∣1/g0∣∣1/g1∣∣cx∣∣Z∣∣
cw∣∣1∣∣t′cx ∣∣t

′
Z ∣∣t′cw ∣∣t

′ ).
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