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Abstract
Use-after-free vulnerabilities exploiting so-called dan-
gling pointers to deallocated objects are just as dangerous
as buffer overflows: they may enable arbitrary code exe-
cution. Unfortunately, state-of-the-art defenses against
use-after-free vulnerabilities require compiler support,
pervasive source code modifications, or incur high per-
formance overheads. This paper presents and evaluates
Cling, a memory allocator designed to thwart these at-
tacks at runtime. Cling utilizes more address space, a
plentiful resource on modern machines, to prevent type-
unsafe address space reuse among objects of different
types. It infers type information about allocated objects
at runtime by inspecting the call stack of memory allo-
cation routines. Cling disrupts a large class of attacks
against use-after-free vulnerabilities, notably including
those hijacking the C++ virtual function dispatch mecha-
nism, with low CPU and physical memory overhead even
for allocation intensive applications.

1 Introduction

Dangling pointers are pointers left pointing to deallo-
cated memory after the object they used to point to has
been freed. Attackers may use appropriately crafted in-
puts to manipulate programs containing use-after-free
vulnerabilities [18] into accessing memory through dan-
gling pointers. When accessing memory through a dan-
gling pointer, the compromised program assumes it op-
erates on an object of the type formerly occupying the
memory, but will actually operate on whatever data hap-
pens to be occupying the memory at that time.

The potential security impact of these, so called, tem-
poral memory safety violations is just as serious as that of
the better known spatial memory safety violations, such
as buffer overflows. In practice, however, use-after-free
vulnerabilities were often dismissed as mere denial-of-
service threats, because successful exploitation for arbi-
trary code execution requires sophisticated control over

the layout of heap memory. In one well publicized case,
flaw CVE-2005-4360 [17] in Microsoft IIS remained un-
patched for almost two years after being discovered and
classified as low-risk in December 2005.

Use-after-free vulnerabilities, however, are receiving
increasing attention by security researchers and attack-
ers alike. Researchers have been demonstrating exploita-
tion techniques, such as heap spraying and heap feng
shui [21, 1], that achieve the control over heap layout
necessary for reliable attacks, and several use-after-free
vulnerabilities have been recently discovered and fixed
by security researchers and software vendors. By now
far from a theoretical risk, use-after-free vulnerabilities
have been used against Microsoft IE in the wild, such
as CVE-2008-4844, and more recently CVE-2010-0249
in the well publicized attack on Google’s corporate net-
work.

Such attacks exploiting use-after-free vulnerabilities
may become more widespread. Dangling pointers likely
abound in programs using manual memory management,
because consistent manual memory management across
large programs is notoriously error prone. Some dan-
gling pointer bugs cause crashes and can be discovered
during early testing, but others may go unnoticed be-
cause the dangling pointer is either not created or not
dereferenced in typical execution scenarios, or it is deref-
erenced before the pointed-to memory has been reused
for other objects. Nevertheless, attackers can still trigger
unsafe dangling pointer dereferences by using appropri-
ate inputs to cause a particular sequence of allocation and
deallocation requests.

Unlike omitted bounds checks that in many cases are
easy to spot through local code inspection, use-after-free
bugs are hard to find through code review, because they
require reasoning about the state of memory accessed
by a pointer. This state depends on previously executed
code, potentially in a different network request. For the
same reasons, use-after-free bugs are also hard to find
through automated code analysis. Moreover, the combi-



nation of manual memory management and object ori-
ented programming in C++ provides fertile ground for
attacks, because, as we will explain in Section 2.1, the
virtual function dispatch mechanism is an ideal target for
dangling pointer attacks.

While other memory management related security
problems, including invalid frees, double frees, and heap
metadata overwrites, have been addressed efficiently and
transparently to the programmer in state-of-the-art mem-
ory allocators, existing defenses against use-after-free
vulnerabilities incur high overheads or require compiler
support and pervasive source code modifications.

In this paper we describe and evaluate Cling, a mem-
ory allocator designed to harden programs against use-
after-free vulnerabilities transparently and with low over-
head. Cling constrains memory allocation to allow ad-
dress space reuse only among objects of the same type.
Allocation requests are inferred to be for objects of the
same type by inspecting the allocation routine’s call stack
under the assumption that an allocation site (i.e. a call site
of malloc or new) allocates objects of a single type
or arrays of objects of a single type. Simple wrapper
functions around memory allocation routines (for exam-
ple, the typical my malloc or safe malloc wrap-
pers checking the return value of malloc for NULL)
can be detected at runtime and unwound to recover a
meaningful allocation site. Constraining memory allo-
cation this way thwarts most dangling pointer attacks
—importantly— including those attacking the C++ vir-
tual function dispatch mechanism, and has low CPU and
memory overhead even for allocation intensive applica-
tions.

These benefits are achieved at the cost of using addi-
tional address space. Fortunately, sufficient amounts of
address space are available in modern 64-bit machines,
and Cling does not leak address space over time, because
the number of memory allocation sites in a program is
constant. Moreover, for machines with limited address
space, a mechanism to recover address space is sketched
in Section 3.6. Although we did not encounter a case
where the address space of 32-bit machines was insuf-
ficient in practice, the margins are clearly narrow, and
some applications are bound to exceed them. In the rest
of this paper we assume a 64-bit address space—a rea-
sonable requirement given the current state of technol-
ogy.

The rest of the paper is organized as follows. Section 2
describes the mechanics of dangling pointer attacks and
how type-safe memory reuse defeats the majority of at-
tacks. Section 3 describes the design and implementa-
tion of Cling, our memory allocator that enforces type-
safe address space reuse at runtime. Section 4 evaluates
the performance of Cling on CPU bound benchmarks
with many allocation requests, as well as the Firefox web

browser (web browsers have been the main target of use-
after-free attacks so far). Finally, we survey related work
in Section 5 and conclude in Section 6.

2 Background

2.1 Dangling Pointer Attacks
Use-after-free errors are, so called, temporal memory
safety violations, accessing memory that is no longer
valid. They are duals of the better known spatial memory
safety violations, such as buffer overflows, that access
memory outside prescribed bounds. Temporal memory
safety violations are just as dangerous as spatial memory
safety violations. Both can be used to corrupt memory
with unintended memory writes, or leak secrets through
unintended memory reads.

When a program accesses memory through a dangling
pointer during an attack, it may access the contents of
some other object that happens to occupy the memory
at the time. This new object may even contain data le-
gitimately controlled by the attacker, e.g. content from
a malicious web page. The attacker can exploit this to
hijack critical fields in the old object by forcing the pro-
gram to read attacker supplied values through the dan-
gling pointer instead.
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Figure 1: Unsafe memory reuse with dangling pointer.

For example, if a pointer that used to point to an ob-
ject with a function pointer field (e.g. object 1 at time t0
in Figure 1) is dereferenced to access the function pointer
after the object has been freed, the value read for the
function pointer will be whatever value happens to oc-
cupy the object’s memory at the moment (e.g. raw data
from object 2 at time t1 in Figure 1). One way to ex-
ploit this is for the attacker to arrange his data to end up
in the memory previously occupied by the object pointed
by the dangling pointer and supply an appropriate value
within his data to be read in place of the function pointer.
By triggering the program to dereference the dangling
pointer, the attacker data will be interpreted as a function
pointer, diverting program control flow to the location



dictated by the attacker, e.g. to shellcode (attacker code
smuggled into the process as data).

Placing a buffer with attacker supplied data to the ex-
act location pointed by a danging pointer is complicated
by unpredictability in heap memory allocation. However,
the technique of heap spraying can address this chal-
lenge with high probability of success by allocating large
amounts of heap memory in the hope that some of it will
end up at the right memory location. Alternatively, the
attacker may let the program dereference a random func-
tion pointer, and similarly to uninitialized memory ac-
cess exploits, use heap spraying to fill large amounts of
memory with shellcode, hoping that the random location
where control flow will land will be occupied by attacker
code.

Attacks are not limited to hijacking function pointers
fields in heap objects. Unfortunately, object oriented pro-
gramming with manual memory management is inviting
use-after-free attacks: C++ objects contain pointers to
virtual tables (vtables) used for resolving virtual func-
tions. In turn, these vtables contain pointers to virtual
functions of the object’s class. Attackers can hijack the
vtable pointers diverting virtual function calls made
through dangling pointers to a bogus vtable, and exe-
cute attacker code. Such vtable pointers abound in the
heap memory of C++ programs.

Attackers may have to overcome an obstacle: the
vtable pointer in a freed object is often aligned with
the vtable pointer in the new object occupying the
freed object’s memory. This situation is likely, because
the vtable pointer typically occupies the first word of
an object’s memory, and hence will be likely aligned
with the vtable pointer of a new object allocated in its
place right after the original object was freed. The attack
is disrupted because the attacker lacks sufficient control
over the new object’s vtable pointer value that is main-
tained by the language runtime, and always points to a
genuine, even if belonging to the wrong type, vtable,
rather than arbitrary, attacker-controlled data. Attackers
may overcome this problem by exploiting objects using
multiple inheritance that have multiple vtable pointers
located at various offsets, or objects derived from a base
class with no virtual functions that do not have vtable
pointers at offset zero, or by manipulating the heap to
achieve an exploitable alignment through an appropriate
sequence of allocations and deallocations. We will see
that our defense prevents attackers from achieving such
exploitable alignments.

Attacks are not limited to subverting control flow; they
can also hijack data fields [7]. Hijacked data pointers, for
instance, can be exploited to overwrite other targets, in-
cluding function pointers, indirectly: if a program writes
through a data pointer field of a deallocated object, an
attacker controlling the memory contents of the deallo-

cated object can divert the write to an arbitrary mem-
ory location. Other potential attacks include information
leaks through reading the contents of a dangling pointer
now pointing to sensitive information, and privilege es-
calation by hijacking data fields holding credentials.

Under certain memory allocator designs, dangling
pointer bugs can be exploited without memory having
to be reused by another object. Memory allocator meta-
data stored in free memory, such as pointers chaining free
memory chunks into free lists, can play the role of the
other object. When the deallocated object is referenced
through a dangling pointer, the heap metadata occupy-
ing its memory will be interpreted as its fields. For ex-
ample, a free list pointer may point to a chunk of free
memory that contains leftover attacker data, such as a
bogus vtable. Calling a virtual function through the
dangling pointer would divert control to an arbitrary lo-
cation of the attacker’s choice. We must consider such
attacks when designing a memory allocator to mitigate
use-after-free vulnerabilities.

Finally, in all the above scenarios, attackers exploit
reads through dangling pointers, but writes through a
dangling pointer could also be exploited, by corrupt-
ing the object, or allocator metadata, now occupying the
freed object’s memory.
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Figure 2: No memory reuse (very safe but expensive).

2.2 Naive Defense
A straight forward defense against use-after-free vul-
nerabilities that takes advantage of the abundant ad-
dress space of modern 64-bit machines is avoiding any
address space reuse. Excessive memory consumption
can be avoided by reusing freed memory via the op-
erating system’s virtual memory mechanisms (e.g. re-



linquishing physical memory using madvise with the
MADV DONTNEED option on Linux, or other OS specific
mechanisms). This simple solution, illustrated in Fig-
ure 2, protects against all the attacks discussed in Sec-
tion 2.1, but has three shortcomings.

First, address space will eventually be exhausted. By
then, however, the memory allocator could wrap around
and reuse the address space without significant risk.

The second problem is more important. Memory frag-
mentation limits the amount of physical memory that can
be reused through virtual memory mechanisms. Operat-
ing systems manage physical memory in units of several
Kilobytes in the best case, thus, each small allocation can
hold back several Kilobytes of physical memory in adja-
cent free objects from being reused. In Section 4, we
show that the memory overhead of this solution is too
high.

Finally, this solution suffers from a high rate of sys-
tem calls to relinquish physical memory, and attempting
to reduce this rate by increasing the block size of mem-
ory relinquished with a single system call leads to even
higher memory consumption.
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Figure 3: Type-safe memory reuse.

2.3 Type-Safe Memory Reuse

Type-safe memory reuse, proposed by Dhurjati et al. [9],
allows some memory reuse while preserving type safety.
It allows dangling pointers, but constrains them to point
to objects of the same type and alignment. This way,
dereferencing a dangling pointer cannot cause a type vi-
olation, rendering use-after-free bugs hard to exploit in
practice. As illustrated in Figure 3, with type-safe mem-
ory reuse, memory formerly occupied by pointer fields
cannot be reused for raw data, preventing attacks as the
one in Figure 1.

Moreover, memory formerly occupied by pointer
fields can only overlap with the corresponding pointer

fields in objects of the same type. This means, for ex-
ample, that a hijacked function pointer can only be di-
verted to some other function address used for the same
field in a different object, precluding diverting function
pointers to attacker injected code, and almost certainly
thwarting return-to-libc [20] attacks diverting function
pointers to legitimate but suitable executable code in the
process. More importantly, objects of the same type
share vtables and their vtable pointers are at the
same offsets, thus type-safe memory reuse completely
prevents hijacking of vtable pointers. This is simi-
lar to the attacker constraint discussed in Section 2.1,
where the old vtable pointer happens to be aligned
with another vtable pointer, except that attackers are
even more constrained now: they cannot exploit differ-
ences in inheritance relationships or evade the obstacle
by manipulating the heap.

These cases cover generic exploitation techniques and
attacks observed in the wild. The remaining attacks are
less practical but may be exploitable in some cases, de-
pending on the application and its use of data. Some
constraints may still be useful; for example, attacks that
hijack data pointers are constrained to only access mem-
ory in the corresponding field of another object of the
same type. In some cases, this may prevent dangerous
corruption or data leakage. However, reusing memory of
an object’s data fields for another instance of the same
type may still enable attacks, including privilege escala-
tion attacks, e.g. when data structures holding credentials
or access control information for different users are over-
lapped in time. Another potential exploitation avenue are
inconsistencies in the program’s data structures that may
lead to other memory errors, e.g. a buffer may become in-
consistent with its size stored in a different object when
either is accessed through a dangling pointer. Interest-
ingly, this inconsistency can be detected if spatial pro-
tection mechanisms, such as bounds checking, are used
in tandem.

3 Cling Memory Allocator

The Cling memory allocator is a drop-in replacement for
malloc designed to satisfy three requirements: (i) it
does not reuse free memory for its metadata, (ii) only al-
lows address space reuse among objects of the same type
and alignment, and (iii) achieves these without sacrific-
ing performance. Cling combines several solutions from
existing memory allocators to achieve its requirements.

3.1 Out-of-Band Heap Metadata
The first requirement protects against use-after-free vul-
nerabilities with dangling pointers to free, not yet reallo-
cated, memory. As we saw in Section 2.1, if the memory



allocator uses freed memory for metadata, such as free
list pointers, these allocator metadata can be interpreted
as object fields, e.g. vtable pointers, when free mem-
ory is referenced through a dangling pointer.

Memory allocator designers have considered using
out-of-band metadata before, because attackers targeted
in-band heap metadata in several ways: attacker con-
trolled data in freed objects can be interpreted as heap-
metadata through double-free vulnerabilities, and heap-
based overflows can corrupt allocator metadata adjacent
to heap-based buffers. If the allocator uses corrupt heap
metadata during its linked list operations, attackers can
write an arbitrary value to an arbitrary location.

Although out-of-band heap metadata can solve these
problems, some memory allocators mitigate heap meta-
data corruption without resorting to this solution. For
example, attacks corrupting heap metadata can be ad-
dressed by detecting the use of corrupted metadata with
sanity checks on free list pointers before unlinking a free
chunk or using heap canaries [19] to detect corruption
due to heap-based buffer overflows. In some cases, cor-
ruption can be prevented in the first place, e.g. by detect-
ing attempts to free objects already in a free list. These
techniques avoid the memory overhead of out-of-band
metadata, but are insufficient for preventing use-after-
free vulnerabilities, where no corruption of heap meta-
data takes place.

An approach to address this problem in allocator de-
signs reusing free memory for heap metadata is to ensure
that these metadata point to invalid memory if interpreted
as pointers by the application. Merely randomizing the
metadata by XORing with a secret value may not be suf-
ficient in the face of heap spraying. One option is setting
the top bit of every metadata word to ensure it points to
protected kernel memory, raising a hardware fault if the
program dereferences a dangling pointer to heap meta-
data, while the allocator would flip the top bit before
using the metadata. However, it is still possible that
the attacker can tamper with the dangling pointer before
dereferencing it. This approach may be preferred when
modifying an existing allocator design, but for Cling, we
chose to keep metadata out-of-band instead.

An allocator can keep its metadata outside deallo-
cated memory using non-intrusive linked lists (next and
prev pointers stored outside objects) or bitmaps. Non-
intrusive linked lists can have significant memory over-
head for small allocations, thus Cling uses a two-level
allocation scheme where non-intrusive linked lists chain
large memory chunks into free lists and small allocations
are carved out of buckets holding objects of the same
size class using bitmaps. Bitmap allocation schemes
have been used successfully in popular memory alloca-
tors aiming for performance [10], so they should not pose
an inherent performance limitation.

3.2 Type-Safe Address Space Reuse

The second requirement protects against use-after-free
vulnerabilities where the memory pointed by the dan-
gling pointer has been reused by some other object.
As we saw in Section 2.3, constraining dangling point-
ers to objects within pools of the same type and align-
ment thwarts a large class of attacks exploiting use-after-
free vulnerabilities, including all those used in real at-
tacks. A runtime memory allocator, however, must ad-
dress two challenges to achieve this. First, it must bridge
the semantic gap between type information available to
the compiler at compile time and memory allocation re-
quests received at runtime that only specify the number
of bytes to allocate. Second, it must address the memory
overheads caused by constraining memory reuse within
pools. Dhurjati et al. [9], who proposed type-safe mem-
ory reuse for security, preclude an efficient implemen-
tation without using a compile time pointer and region
analysis.

To solve the first challenge, we observe that security
is maintained even if memory reuse is over-constrained,
i.e. several allocation pools may exist for the same type,
as long as memory reuse across objects of different types
is prevented. Another key observation is that in C/C++
programs, an allocation site typically allocates objects of
a single type or arrays of objects of a single type, which
can safely share a pool. Moreover, the allocation site
is available to the allocation routines by inspecting their
call stack. While different allocation sites may allocate
objects of the same type that could also safely share the
same pool, Cling’s inability to infer this could only af-
fect performance—not security. Section 4 shows that
in spite of this pessimization, acceptable performance is
achieved.

The immediate caller of a memory allocation routine
can be efficiently retrieved from the call stack by inspect-
ing the saved return address. However, multiple tail-call
optimizations in a single routine, elaborate control flow,
and simple wrappers around allocation routines may ob-
scure the true allocation site. The first two issues are suf-
ficiently rare to not undermine the security of the scheme
in general. These problems are elaborated in Section 3.6,
and ways to address simple wrappers are described in
Section 3.5.

A further complication, illustrated in Figure 4, is
caused by array allocations and the lack of knowledge of
array element sizes. As discussed, all new objects must
be aligned to previously allocated objects, to ensure their
fields are aligned one to one. This requirement also ap-
plies to array elements. Figure 4, however, illustrates
that this constraint can be violated if part of the mem-
ory previously used by an array is subsequently reused
by an allocation placed at an arbitrary offset relative to
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Figure 4: Example of unsafe reuse of array memory, even
with allocation pooling, due to not preserving allocation
offsets.

the start of the old allocation. Reusing memory from
a pool dedicated to objects of the same type is not suf-
ficient for preventing this problem. Memory reuse must
also preserve offsets within allocated memory. One solu-
tion is to always reuse memory chunks at the same offset
within all subsequent allocations. A more constraining
but simpler solution, used by Cling, is to allow memory
reuse only among allocations of the same size-class, thus
ensuring that previously allocated array elements will be
properly aligned with array elements subsequently occu-
pying their memory.

This constraint also addresses the variable sized struct
idiom, where the final field of a structure, such the fol-
lowing one, is used to access additional, variable size
memory allocated at the end of the structure:

1 struct {
2 void (*fp)();
3 int len;
4 char buffer[1];
5 };

By only reusing memory among instances of such struc-
tures that fall into the same size-class, and always align-
ing such structures at the start of this memory, Cling pre-
vents the structure’s fields, e.g. the function pointer fp in
this example, from overlapping after their deallocation
with buffer contents of some other object of the same
type.

The second challenge is to address the memory over-
head incurred by pooling allocations. Dhurjati et al. [8]
observe that the worst-case memory use increase for a
program with N pools would be roughly a factor of
N − 1: when a program first allocates data of type A,
frees all of it, then allocates data of type B, frees all of
it, and so on. This situation is even worse for Cling, be-

cause it has one pool per size-class per allocation site,
instead of just one pool per type.

The key observation to avoid excessive memory over-
head is that physical memory, unlike address space, can
be safely reused across pools. Cling borrows ideas from
previous memory allocators [11] designed to manage
physical memory in blocks (via mmap) rather than mono-
tonically growing the heap (via sbrk). These allocators
return individual blocks of memory to the operating sys-
tem as soon as they are completely free. This technique
allows Cling to reuse blocks of memory across different
pools.

Cling manages memory in blocks of 16K bytes, satis-
fying large allocations using contiguous ranges of blocks
directly, while carving smaller allocations out of homo-
geneous blocks called buckets. Cling uses an OS prim-
itive (e.g. madvise) to inform the OS it can reuse the
physical memory of freed blocks.

Deallocated memory accessed through a dangling
pointer will either continue to hold the data of the in-
tended object, or will be zero-filled by the OS, trigger-
ing a fault if a pointer field stored in it is dereferenced.
It is also possible to page protect address ranges after
relinquishing their memory (e.g. using mechanisms like
mprotect on top of madvise).

Cling does not suffer from fragmentation as the naive
scheme described in Section 2.2, because it allows imme-
diate reuse of small allocations’ memory within a pool.
Address space consumption is also more reasonable: it
is proportional to the number of allocation sites in the
program, so it does not leak over time as in the naive
solution, and is easily manageable in modern 64-bit ma-
chines.

3.3 Heap Organization

Cling’s main heap is divided into blocks of 16K bytes.
As illustrated in Figure 5, a smaller address range,
dubbed the meta-heap, is reserved for holding block de-
scriptors, one for each 16K address space block. Block
descriptors contain fields for maintaining free lists of
block ranges, storing the size of the block range, asso-
ciating the block with a pool, and pointers to metadata
for blocks holding small allocations. Metadata for block
ranges are only set for the first block in the range—the
head block. When address space is exhausted and the
heap is grown, the meta-heap is grown correspondingly.
The purpose of this meta-heap is to keep heap metadata
separate, allowing reuse of the heap’s physical memory
previously holding allocated data without discarding its
metadata stored in the meta-heap.

While memory in the heap area can be relinquished
using madvise, metadata about address space must be
kept in the meta-heap area, thus contributing to the mem-



ory overhead of the scheme. This overhead is small. A
block descriptor can be under 32 bytes in the current im-
plementation, and with a block size of 16K, this corre-
sponds to memory overhead less than 0.2% of the ad-
dress space used, which is small enough for the address
space usage observed in our evaluation. Moreover, a
hashtable could be employed to further reduce this over-
head if necessary.

Both blocks and block descriptors are arranged in
corresponding linear arrays, as illustrated in Figure 5,
so Cling can map between address space blocks and
their corresponding block descriptors using operations
on their addresses. This allows Cling to efficiently re-
cover the appropriate block descriptor when deallocating
memory.

Block
Descriptors
(Never Scrapped)

16 KiB
Block

Heap

Meta Heap...

...

Resident Block

Scrapped Block

Figure 5: Heap comprised of blocks and meta-heap of
block descriptors. The physical memory of deallocated
blocks can be scrapped and reused to back blocks in other
pools.

Cling pools allocations based on their allocation
site. To achieve this, Cling’s public memory al-
location routines (e.g. malloc and new) retrieve
their call site using the return address saved on the
stack. Since Cling’s routines have complete con-
trol over their prologues, the return address can al-
ways be retrieved reliably and efficiently (e.g. using the
__builtin_return_address GCC primitive). At
first, this return address is used to distinguish between
memory allocation sites. Section 3.5 describes how to
discover and unwind simple allocation routine wrappers
in the program, which is necessary for obtaining a mean-
ingful allocation site in those cases.

Cling uses a hashtable to map allocation sites to pools
at runtime. An alternative design to avoid hash table
lookups could be to generate a trampoline for each call
site and rewrite the call site at hand to use its dedicated
trampoline instead of directly calling the memory allo-
cation routine. The trampoline could then call a version
of the memory allocation routine accepting an explicit

pool parameter. The hash table, however, was preferred
because it is less intrusive and handles gracefully cor-
ner cases including calling malloc through a function
pointer. Moreover, since this hash table is accessed fre-
quently but updated infrequently, optimizations such as
constructing perfect hashes can be applied in the future,
if necessary.

Pools are organized around pool descriptors. The rel-
evant data structures are illustrated in Figure 6. Each
pool descriptor contains a table with free lists for block
ranges. Each free list links together the head blocks of
block ranges belonging to the same size-class (a power of
two). These are blocks of memory that have been deal-
located and are now reusable only within the pool. Pool
descriptors also contain lists of blocks holding small al-
locations, called buckets. Section 3.4 discusses small ob-
ject allocation in detail.

Initially, memory is not assigned to any pool. Larger
allocations are directly satisfied using a power-of-two
range of 16K blocks. A suitable free range is reused from
the pool if possible, otherwise, a block range is allocated
by incrementing a pointer towards the end of the heap,
and it is assigned to the pool. If necessary, the heap is
grown using a system call. When these large allocations
are deallocated, they are inserted to the appropriate pool
descriptor’s table of free lists according to their size. The
free list pointers are embedded in block descriptors, al-
lowing the underlying physical memory for the block to
be relinquished using madvise.

3.4 Small Allocations

Allocations less than 8K in size (half the block size) are
stored in slots inside blocks called buckets. Pool de-
scriptors point to a table with entries to manage buck-
ets for allocations belonging to the same size class. Size
classes start from a minimum of 16 bytes, increase by 16
bytes up to 128 bytes, and then increase exponentially
up to the maximum of 8K, with 4 additional classes in
between each pair of powers-of-two. Each bucket is as-
sociated with a free slot bitmap, its element size, and a
bump pointer used for fast allocation when the block is
first used, as described next.

Using bitmaps for small allocations seems to be a
design requirement for keeping memory overhead low
without reusing free memory for allocator metadata, so
it is critical to ensure that bitmaps are efficient com-
pared to free-list based implementations. Some effort
has been put into making sure Cling uses bitmaps ef-
ficiently. Cling borrows ideas from reaps [5] to avoid
bitmap scanning when many objects are allocated from
an allocation site in bursts. This case degenerates to just
bumping a pointer to allocate consecutive memory slots.
All empty buckets are initially used in bump mode, and
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Figure 6: Pool organization illustrating free lists of blocks available for reuse within the pool and the global hot bucket queue
that delays reclamation of empty bucket memory. Linked list pointers are not stored inside blocks, as implied by the figure, but
rather in their block descriptors stored in the meta-heap. Blocks shaded light gray have had their physical memory reclaimed.

stay in that mode until the bump pointer reaches the end
of the bucket. Memory released while in bump mode is
marked in the bucket’s bitmap but is not used for satis-
fying allocation requests while the bump pointer can be
used.

A pool has at most one bucket in bump mode per size
class, pointed by a field of the corresponding table entry,
as illustrated in Figure 6. Cling first attempts to satisfy an
allocation request using that bucket, if available. Buck-
ets maintain the number of freed elements in a counter. A
bucket whose bump pointer reaches the end of the bucket
is unlinked from the table entry and, if the counter in-
dicates it has free slots, inserted into a list of non-full
buckets. If no bucket in bump mode is available, Cling
attempts to use the first bucket from this list, scanning
its bitmap to find a free slot. If the counter indicates the
bucket is full after an allocation request, the bucket is

unlinked from the list of non-full buckets, to avoid ob-
stracting allocations.

Conversely, if the counter of free elements is zero prior
to a deallocation, the bucket is re-inserted into the list of
non-full buckets. If the counter indicates that the bucket
is completely empty after deallocation, it is inserted to a
list of empty buckets queuing for memory reuse. This ap-
plies even for buckets in bump mode (and was important
for keeping memory overhead low). This list of empty
buckets is consulted on allocation if there is neither a
bucket in bump mode, nor a non-full bucket. If this list is
also empty, a new bucket is created using fresh address
space, and initialized in bump mode.

Empty buckets are inserted into a global queue of hot
buckets, shown at the bottom of Figure 6. This queue has
a configurable maximum size (10% of non-empty buck-
ets worked well in our experiments). When the queue



size threshold is reached after inserting an empty bucket
to the head of the queue, a hot bucket is removed from
the tail of the queue, and becomes cold: its bitmap is
deallocated, and its associated 16K of memory reused
via an madvise system call. If a cold bucket is en-
countered when allocating from the empty bucket list of
a pool, a new bitmap is allocated and initialized. The
hot bucket queue is important for reducing the number
of system calls by trading some memory overhead, con-
trollable through the queue size threshold.

3.5 Unwinding Malloc Wrappers

Wrappers around memory allocation routines may con-
ceal real allocation sites. Many programs wrap malloc
simply to check its return value or collect statistics. Such
programs could be ported to Cling by making sure that
the few such wrappers call macro versions of Cling’s al-
location routines that capture the real allocation site, i.e.
the wrapper’s call site. That is not necessary, however,
because Cling can detect and handle many such wrap-
pers automatically, and recover the real allocation site by
unwinding the stack. This must be implemented care-
fully because stack unwinding is normally intended for
use in slow, error handing code paths.

To detect simple allocation wrappers, Cling initiates
a probing mechanism after observing a single allocation
site requesting multiple allocation sizes. This probing
first uses a costly but reliable unwind of the caller’s stack
frame (using libunwind) to discover the stack loca-
tion of the suspected wrapper function’s return address.
Then, after saving the original value, Cling overwrites
the wrapper’s return address on the stack with the ad-
dress of a special assembler routine that will be inter-
posed when the suspected wrapper returns. After Cling
returns to the caller, and, in turn, the caller returns, the
overwritten return address transfers control to the inter-
posed routine. This routine compares the suspected al-
location wrapper’s return value with the address of the
memory allocated by Cling, also saved when the probe
was initiated. If the caller appears to return the address
just returned by Cling, it is assumed to be a simple wrap-
per around an allocation function.

To simplify the implementation, probing is aborted if
the potential wrapper function issues additional alloca-
tion requests before returning. This is not a problem in
practice, because simple malloc wrappers usually per-
form a single allocation. Moreover, a more thorough im-
plementation can easily address this.

The probing mechanism is only initiated when multi-
ple allocation sizes are requested from a single alloca-
tion site, potentially delaying wrapper identification. It
is unlikely, however, that an attacker could exploit this
window of opportunity in large programs. Furthermore,

this rule helps prevent misidentifying typical functions
encapsulating the allocation and initialization of objects
of a single type, because these request objects of a sin-
gle size. Sometimes, such functions allocate arrays of
various sizes, and can be misidentified. Nevertheless,
these false positives are harmless for security; they only
introduce more pools that affect performance by over-
constraining allocation, and the performance impact in
our benchmarks was small.

Similarly, the current implementation identifies func-
tions such as strdup as allocation wrappers. While we
could safely pool their allocations (they are of the same
type), the performance impact in our benchmarks was
again small, so we do not handle them in any special
way.

While this probing mechanism handles well the com-
mon case of malloc wrappers that return the allocated
memory through their function return value, it would not
detect a wrapper that uses some other mechanism to re-
turn the memory, such as modifying a pointer argument
passed to the wrapper by reference. Fortunately, such
malloc wrappers are unusual.

Allocation sites identified as potential wrappers
through this probing mechanism are marked as such in
the hashtable mapping allocation site addresses to their
pools, so Cling can unwind one more stack level to get
the real allocation site whenever allocation requests from
such an allocation site are encountered, and associate it
with a distinct pool.

Stack unwinding is platform specific and, in general,
expensive. In 32-bit x86 systems, the frame pointer reg-
ister ebp links stacks frames together, making unwind-
ing reasonably fast, but this register may be re-purposed
in optimized builds. Heuristics can still be used with
optimized code, e.g. looking for a value in the stack
that points into the text segment, but they are slower.
Data-driven stack unwinding on 64-bit AMD64 systems
is more reliable but, again, expensive. Cling uses the
libunwind library to encapsulate platform specific de-
tails of stack unwinding, but caches the stack offset of
wrappers’ return addresses to allow fast unwinding when
possible, as described next, and gives up unwinding if
not.

Care must be taken when using a cached stack offset to
retrieve the real allocation site, because the cached value
may become invalid for functions with a variable frame
size, e.g. those using alloca, resulting in the retrieval
of a bogus address. To guard against this, whenever a
new allocation site is encountered that was retrieved us-
ing a cached stack offset, a slow but reliable unwind (us-
ing libunwind) is performed to confirm the allocation
site’s validity. If the check fails, the wrapper must have
a variable frame size, and Cling falls back to allocating
all memory requested through that wrapper from a single



pool. In practice, typical malloc wrappers are simple
functions with constant frame sizes.

3.6 Limitations

Cling prevents vtable hijacking, the standard exploita-
tion technique for use-after-free vulnerabilities, and its
constraints on function and data pointers are likely to
prevent their exploitation, but it may not be able to pre-
vent use-after-free attacks targeting data such as creden-
tials and access control lists stored in objects of a single
type. For example, a dangling pointer that used to point
to the credentials of one user may end up pointing to the
credentials of another user.

Another theoretical attack may involve data structure
inconsistencies, when accessed through dangling point-
ers. For example, if a buffer and a variable holding its
length are in separate objects, and one of them is read
through a dangling pointer accessing an unrelated object,
the length variable may be inconsistent with the actual
buffer length, allowing dangerous bound violations. In-
terestingly, this can be detected if Cling is used in con-
junction with a defense offering spatial protection.

Cling relies on mapping allocation sites to object
types. A program with contrived flow of control, how-
ever, such as in the following example, would obscure
the type of allocation requests:

1 int size = condition ? sizeof( ←↩
struct A) : sizeof(struct B);

2 void *obj = malloc(size);

Fortunately, this situation is less likely when allocating
memory using the C++ operator new that requires a type
argument.

A similar problem occurs when the allocated object is
a union: objects allocated at the same program location
may still have different types of data at the same offset.

Tail-call optimizations can also obscure allocation
sites. Tail-call optimization is applicable when the call to
malloc is the last instruction before a function returns.
The compiler can then replace the call instruction with
a simple control-flow transfer to the allocation routine,
avoiding pushing a return address to the stack. In this
case, Cling would retrieve the return address of the func-
tion calling malloc. Fortunately, in most cases where
this situation might appear, using the available return ad-
dress still identifies the allocation site uniquely.

Cling cannot prevent unsafe reuse of stack allocated
objects, for example when a function erroneously returns
a pointer to a local variable. This could be addressed by
using Cling as part of a compiler-based solution, by mov-
ing dangerous (e.g. address taken) stack based variables
to the heap at compile time.

Custom memory allocators are a big concern. They al-
locate memory in huge chunks from the system allocator,
and chop them up to satisfy allocation requests for indi-
vidual objects, concealing the real allocation sites of the
program. Fortunately, many custom allocators are used
for performance when allocating many objects of a sin-
gle type. Thus, pooling such custom allocator’s requests
to the system allocator, as done for any other allocation
site, is sufficient to maintain type-safe memory reuse. It
is also worth pointing that roll-your-own general purpose
memory allocators have become a serious security liabil-
ity due to a number of exploitable memory management
bugs beyond use-after-free (invalid frees, double frees,
and heap metadata corruption in general). Therefore, us-
ing a custom allocator in new projects is not a decision
to be taken lightly.

Usability in 32-bit platforms with scarce address space
is limited. This is less of a concern for high-end and fu-
ture machines. If necessary, however, Cling can be com-
bined with a simple conservative collector that scans all
words in used physical memory blocks for pointers to
used address space blocks. This solution avoids some
performance and compatibility problems of conservative
garbage collection by relying on information about ex-
plicit deallocations. Once address space is exhausted,
only memory that is in use needs to be scanned and
any 16K block of freed memory that is not pointed by
any word in the scanned memory can be reused. The
chief compatibility problem of conservative garbage col-
lection, namely hidden pointers (manufactured pointers
invisible to the collector), cannot cause premature deal-
locations, because only explicitly deallocated memory
would be garbage collected in this scheme. Neverthe-
less, relying on the abundant address space of modern
machines instead, is more attractive, because garbage
collection may introduce unpredictability or expose the
program to attacks using hidden dangling pointers.

3.7 Implementation
Cling comes as a shared library providing implementa-
tions for the malloc and the C++ operator new alloca-
tion interfaces. It can be preloaded with platform specific
mechanisms (e.g. the LD PRELOAD environment vari-
able on most Unix-based systems) to override the sys-
tem’s memory allocation routines at program load time.

4 Experimental Evaluation

4.1 Methodology
We measured Cling’s CPU, physical memory, and vir-
tual address space overheads relative to the default GNU
libc memory allocator on a 2.66GHz Intel Core 2 Q9400
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Figure 8: Cumulative distribution function of mem-
ory allocation sizes for perlbmk, vortex, twolf,
espresso, and gobmk.

CPU with 4GB of RAM, running x86 64 GNU/Linux
with a version 2.6 Linux kernel. We also measured two
variations of Cling: without wrapper unwinding and us-
ing a single pool.

We used benchmarks from the SPEC CPU 2000
and (when not already included in CPU 2000) 2006
benchmark suites [22]. Programs with few alloca-
tions and deallocations have practically no overhead
with Cling, thus we present results for SPEC bench-
marks with at least 100,000 allocation requests. We also
used espresso, an allocation intensive program that
is widely used in memory management studies, and is
useful when comparing against related work. Finally,
in addition to CPU bound benchmarks, we also evalu-
ated Cling with a current version of the Mozilla Firefox
web browser. Web browsers like Firefox are typical at-
tack targets for use-after-free exploits via malicious web
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Figure 9: Cumulative distribution function of mem-
ory allocation sizes for hmmer, h264ref, omnetpp,
astar, and dealII.
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Figure 10: Cumulative distribution function of mem-
ory allocation sizes for sphinx3, soplex, povray,
xalancbmk, and Firefox.

sites; moreover, unlike many benchmarks, Firefox is an
application of realistic size and running time.

Some programs use custom allocators, defeating
Cling’s protection and masking its overhead. For these
experiments, we disabled a custom allocator implemen-
tation in parser. The gcc benchmark also uses a
custom allocation scheme (obstack) with different
semantics from malloc that cannot be readily dis-
abled. We include it to contrast its allocation size
distribution with those of other benchmarks. Recent
versions of Firefox also use a custom allocator [10]
that was disabled by compiling from source with the
--disable-jemalloc configuration option.

The SPEC programs come with prescribed input data.
For espresso, we generated a uniformly random input
file with 15 inputs and 15 outputs, totalling 32K lines.
For Firefox, we used a list of 200 websites retrieved from
our browsing history, and replayed it using the -remote



Allocation Sites Allocation Requests Deallocation Requests
Benchmark Not Wrappers Wrappers Unwound Small Large Small Large
CPU2000

gzip 3 0 0 419,724 16,483 419,724 16,463
vpr 11 2 59 107,184 547 103,390 42
gcc 5 1 66 194,871 4,922 166,317 4,922

parser 218 3 3 787,695,542 46,532 787,523,051 46,532
equake 31 0 0 1,335,048 19 0 0

perlbmk 10 3 90 31,399,586 33,088 30,704,104 32,732
vortex 5 0 0 4,594,278 28,094 4,374,712 26,373
twolf 3 1 129 574,552 15 492,722 5

CPU2006
gobmk 50 5 15 621,144 20 621,109 0
hmmer 8 4 107 2,405,928 10,595 2,405,928 10,595
dealII 285 0 0 151,324,612 7,701 151,324,610 7,701

sphinx3 25 2 6 14,160,472 64,086 13,959,978 63,910
h264ref 342 0 0 168,634 9,145 168,631 9,142
omnetpp 158 1 17 267,167,577 895 267,101,325 895
soplex 285 6 25 190,986 44,959 190,984 44,959
povray 44 0 0 2,414,082 268 2,413,942 268
astar 102 0 0 4,797,794 2,161 4,797,794 2,161

xalancbmk 304 1 1 135,037,352 118,205 135,037,352 118,205
Other

espresso 49 7 14 3,877,784 77,711 3,877,783 77,711
firefox 2101 51 595 22,579,058 464,565 22,255,963 464536

Table 1: Memory allocation sites and requests in benchmarks and Firefox browser.

option to direct a continuously running Firefox instance
under measurement to a new web site every 10 seconds.

We report memory consumption using information ob-
tained through the /proc/self/status Linux inter-
face. When reporting physical memory consumption, the
sum of the VmRSS and VmPTE fields is used. The lat-
ter measures the size of the page tables used by the pro-
cess, which increases with Cling due to the larger address
space. In most cases, however, it was still very small in
absolute value. The VmSize field is used to measure
address space size. The VmPeak and VmHWM fields are
used to obtain peak values for the VmSize and VmRSS
fields respectively.

The reported CPU times are averages over three runs
with small variance. CPU times are not reported for Fire-
fox, because the experiment was IO bound with signifi-
cant variance.

4.2 Benchmark Characterization
Figures 7–10 illustrate the size distribution of alloca-
tion requests made by any given benchmark running with
their respective input data. We observe that most bench-
marks request a wide range of allocation sizes, but the
gcc benchmark that uses a custom allocator mostly re-
quests memory in chunks of 4K.

Table 1 provides information on the number of static
allocation sites in the benchmarks and the absolute num-
ber of allocation and deallocation requests at runtime.
For allocation sites, the first column is the number of al-
location sites that are not wrappers, the second column is

the number of allocation sites that are presumed to be in
allocation routine wrappers (such as safe_malloc in
twolf, my_malloc in vpr, and xmalloc in gcc),
and the third column is the number of call sites of these
wrappers, that have to be unwound. We observe that
Firefox has an order of magnitude more allocation sites
than the rest.

The number of allocation and deallocation requests for
small (less than 8K) and large allocations are reported
separately. The vast majority of allocation requests are
for small objects and thus the performance of the bucket
allocation scheme is crucial. In fact, no attempt was
made to optimize large allocations in this work.

4.3 Results
Table 2 tabulates the results of our performance measure-
ments. We observe that the runtime overhead is modest
even for programs with a higher rate of allocation and
deallocation requests. With the exception of espresso
(16%), parser (12%), and dealII (8%), the over-
head is less than 2%. Many other benchmarks with few
allocation and deallocation requests, not presented here,
have even less overhead—an interesting benefit of this
approach, which, unlike solutions interposing on mem-
ory accesses, does not tax programs not making heavy
use of dynamic memory.

In fact, many benchmarks with a significant num-
ber of allocations run faster with Cling. For example
xalancbmk, a notorious allocator abuser, runs 25%
faster. In many cases we observed that by tuning allo-



Benchmark

Execution time Peak memory usage Peak VM usage

Orig. (Sec.)
Cling Ratio

Orig. (MiB)
Cling Ratio

Orig. (MiB)
Cling Ratio

Pools No No Pools No No PoolsUnwind Pools Unwind Pools
CPU2000

gzip 95.7 1.00 1.00 1.00 181.91 1.00 1.00 1.00 196.39 1.10
vpr 76.5 1.00 0.99 0.99 48.01 1.06 1.06 1.06 62.63 1.54
gcc 43.29 1.01 1.01 1.01 157.05 0.98 0.98 0.98 171.42 1.21

parser 152.6 1.12 1.08 1.05 21.43 1.14 1.13 1.05 35.99 2.26
equake 47.3 0.98 1.00 0.99 49.85 0.99 0.99 0.99 64.16 1.14

perlbmk 68.18 1.02 0.99 1.00 132.47 0.96 0.95 0.95 146.69 1.16
vortex 72.19 0.99 0.99 0.99 73.09 0.91 0.91 0.91 88.18 1.74
twolf 101.31 1.01 1.00 1.00 6.85 0.93 0.91 0.90 21.15 1.19

CPU2006
gobmk 628.6 1.00 1.0 1.00 28.96 1.01 1.00 1.00 44.69 1.64
hmmer 542.15 1.02 1.02 1.01 25.75 1.02 1.01 1.01 40.31 1.79
dealII 476.74 1.08 1.07 1.06 793.39 1.02 1.02 1.02 809.46 1.70

sphinx3 1143.6 1.00 1.00 0.99 43.45 1.01 1.01 1.01 59.93 1.37
h264ref 934.71 1.00 1.01 1.01 64.54 0.97 0.97 0.96 80.18 1.52
omnetpp 573.7 0.83 0.83 0.87 169.58 0.97 0.97 0.97 183.45 1.03
soplex 524.01 1.01 1.01 1.01 421.8 1.27 1.27 1.27 639.51 2.31
povray 272.54 1.00 1.00 0.99 4.79 1.33 1.33 1.29 34.1 0.77
astar 656.09 0.93 0.93 0.92 325.77 0.94 0.94 0.94 345.51 1.56

xalancbmk 421.03 0.75 0.75 0.77 419.93 1.03 1.03 1.14 436.54 1.45
Other

espresso 25.21 1.16 1.07 1.10 4.63 1.13 1.06 1.02 19.36 2.08

Table 2: Experimental evaluation results for the benchmarks.

cator parameters such as the block size and the length of
the hot bucket queue, we were able to trade memory for
speed and vice versa. In particular, with different block
sizes, xalancbmk would run twice as fast, but with a
memory overhead around 40%.

In order to factor out the effects of allocator design
and tuning as much as possible, Table 2 also includes
columns for CPU and memory overhead using Cling
with a single pool (which implies no unwinding over-
head as well). We observe that in some cases Cling
with a single pool is faster and uses less memory than
the system allocator, hiding the non-zero overheads of
pooling allocations in the full version of Cling. On the
other hand, for some benchmarks with higher overhead,
such as dealII and parser, some of the overhead re-
mains even without using pools. For these cases, both
slow and fast, it makes sense to compare the overhead
against Cling with a single pool. A few programs, how-
ever, like xalancbmk, use more memory or run slower
with a single pool. As mentioned earlier, this benchmark
is quite sensitive to allocator tweaks.

Table 2 also includes columns for CPU and memory
overhead using Cling with many pools but without un-
winding wrappers. We observe that for espresso and
parser, some of the runtime overhead is due to this
unwinding.

Peak memory consumption was also low for most
benchmarks, except for parser (14%), soplex
(27%), povray (33%), and espresso (13%). Inter-
estingly, for soplex and povray, this overhead is not

because of allocation pooling: these benchmarks incur
similar memory overheads when running with a single
pool. In the case of soplex, we were able to deter-
mine that the overhead is due to a few large realloc
requests, whose current implementation in Cling is sub-
optimal. The allocation intensive benchmarks parser
and espresso, on the other hand, do appear to incur
memory overhead due to pooling allocations. Disabling
unwinding also affects memory use by reducing the num-
ber of pools.

The last two columns of Table 2 report virtual ad-
dress space usage. We observe that Cling’s address
space usage is well within the capabilities of modern 64-
bit machines, with the worst increase less than 150%.
Although 64-bit architectures can support much larger
address spaces, excessive address space usage would
cost in page table memory. Interestingly, in all cases,
the address space increase did not prohibit running the
programs on 32-bit machines. Admittedly, however, it
would be pushing up against the limits.

In the final set of experiments, we ran Cling with Fire-
fox. Since, due to the size of the program, this is the
most interesting experiment, we provide a detailed plot
of memory usage as a function of time (measured in al-
located Megabytes of memory), and we also compare
against the naive solution of Section 2.2.

The naive solution was implemented by preventing
Cling from reusing memory and changing the memory
block size to 4K, which is optimal in terms of mem-
ory reuse. (It does increase the system call rate how-
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Figure 11: Firefox memory usage over time (measured in
requested memory).

ever.) The naive solution could be further optimized by
not using segregated storage classes, but this would not
affect the memory usage significantly, as the overhead
of rounding small allocation requests to size classes in
Cling is at most 25%—and much less in practice.

Figure 11 graphs memory use for Firefox. We ob-
serve that Cling (with pools) uses similar memory to the
system’s default allocator. Using pools does incur some
overhead, however, as we can see by comparing against
Cling using a single pool (which is more memory effi-
cient than the default allocator). Even after considering
this, Cling’s approach of safe address space reuse ap-
pears usable with large, real applications. We observe
that Cling’s memory usage fluctuates more than the de-
fault allocator’s because it aggressively returns memory
to the operating system. These graphs also show that the
naive solution has excessive memory overhead.

Finally, Figure 12 graphs address space usage for Fire-
fox. It illustrates the importance of returning memory
to the operating system; without doing so, the scheme’s
memory overhead would be equal to its address space
use. We observe that this implied memory usage with
Firefox may not be prohibitively large, but many of the
benchmarks evaluated earlier show that there are cases
where it can be excessive. As for the address space usage
of the naive solution, it quickly goes off the chart because
it is linear with requested memory. The naive solution
was also the only case where the page table overhead
had a significant contribution during our evaluation: in
this experiment, the system allocator used 0.99 MiB in
page tables, Cling used 1.48 MiB, and the naive solu-
tion 19.43 MiB.
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sured in requested memory).

5 Related Work

Programs written in high-level languages using garbage
collection are safe from use-after-free vulnerabilities, be-
cause the garbage collector never reuses memory while
there is a pointer to it. Garbage collecting unsafe lan-
guages like C and C++ is more challenging. Neverthe-
less, conservative garbage collection [6] is possible, and
can address use-after-free vulnerabilities. Conservative
garbage collection, however, has unpredictable runtime
and memory overheads that may hinder adoption, and is
not entirely transparent to the programmer: some port-
ing may be required to eliminate pointers hidden from
the garbage collector.

DieHard [4] and Archipelago [16] are memory alloca-
tors designed to survive memory errors, including dan-
gling pointer dereferences, with high probability. They
can survive dangling pointer errors by preserving the
contents of freed objects for a random period of time.
Archipelago improves on DieHard by trading address
space to decrease physical memory consumption. These
solutions are similar to the naive solution of Section 2.2,
but address some of its performance problems by even-
tually reusing memory. Security, however, is compro-
mised: while their probabilistic guarantees are suitable
for addressing reliability, they are insufficient against at-
tackers who can adapt their attacks. Moreover, these so-
lutions have considerable runtime overhead for alloca-
tion intensive applications. DieHard (without its replica-
tion feature) has 12% average overhead but up to 48.8%
for perlbmk and 109% for twolf. Archipelago has
6% runtime overhead across a set of server applications
with low allocation rates and few live objects, but the
allocation intensive espresso benchmark runs 7.32
times slower than using the GNU libc allocator. Cling
offers deterministic protection against dangling pointers



(but not spatial violations), with significantly lower over-
head (e.g. 16% runtime overhead for the allocation in-
tensive espresso benchmark) thanks to allowing type-
safe reuse within pools.

Dangling pointer accesses can be detected using
compile-time instrumentation to interpose on every
memory access [3, 24]. This approach guarantees com-
plete temporal safety (sharing most of the cost with spa-
tial safety), but has much higher overhead than Cling.

Region-based memory management (e.g. [14]) is a
language-based solution for safe and efficient memory
management. Object allocations are maintained in a lex-
ical stack, and are freed when the enclosing block goes
out of scope. To prevent dangling pointers, objects can
only refer to other objects in the same region or regions
higher up the stack. It may still have to be combined with
garbage collection to address long-lived regions. Its per-
formance is better than using garbage collection alone,
but it is not transparent to programmers.

A program can be manually modified to use reference-
counted smart pointers to prevent reusing memory of ob-
jects with remaining references. This, however, requires
major changes to application code. HeapSafe [12], on
the other hand, is a solution that applies reference count-
ing to legacy code automatically. It has reasonable over-
head over a number of CPU bound benchmarks (geomet-
ric mean of 11%), but requires recompilation and some
source code tweaking.

Debugging tools, such as Electric Fence, use a new
virtual page for each allocation of the program and
rely on page protection mechanisms to detect dangling
pointer accesses. The physical memory overheads due
to padding allocations to page boundaries make this ap-
proach impractical for production use. Dhurjati et al. [8]
devised a mechanism to transform memory overhead to
address space overhead by wrapping the memory allo-
cator and returning a pointer to a dedicated new virtual
page for each allocation but mapping it to the physical
page used by the original allocator. The solution’s run-
time overhead for Unix servers is less than 4%, and for
other Unix utilities less than 15%, but incurs up to 11×
slowdown for allocation intensive benchmarks.

Interestingly, type-safe memory reuse (dubbed type-
stable memory management [13]) was first used to sim-
plify the implementation of non-blocking synchroniza-
tion algorithms by preventing type errors during specu-
lative execution. In that case, however, it was not applied
indiscriminately, and memory could be safely reused af-
ter some time bound; thus, performance issues addressed
in this work were absent.

Dynamic pool allocation based on allocation site in-
formation retrieved by malloc through the call stack
has been used for dynamic memory optimization [25].
That work aimed to improve performance by laying out

objects allocated from the same allocation site consecu-
tively in memory, in combination with data prefetching
instructions inserted into binary code.

Dhurjati et al. [9] introduced type-homogeneity as a
weaker form of temporal memory safety. Their solution
uses automatic pool allocation at compile-time to seg-
regate objects into pools of the same type, only reusing
memory within pools. Their approach is transparent to
the programmer and preserves address space, but relies
on imprecise, whole-program analysis.

WIT [2] enforces an approximation of memory safety.
It thwarts some dangling pointer attacks by constraining
writes and calls through hijacked pointer fields in struc-
tures accessed through dangling pointers. It has an aver-
age runtime overhead of 10% for SPEC benchmarks, but
relies on imprecise, whole-program analysis.

Many previous systems only address the spatial di-
mension of memory safety (e.g. bounds checking sys-
tems like [15]). These can be complemented with Cling
to address both spatial and temporal memory safety.

Finally, address space layout randomization (ASLR)
and data execution prevention (DEP) are widely used
mechanisms designed to thwart exploitation of memory
errors in general, including use-after-free vulnerabilities.
These are practical defenses with low overhead, but they
can be evaded. For example, a non-executable heap can
be bypassed with, so called, return-to-libc attacks [20]
diverting control-flow to legitimate executable code in
the process image. ASLR can obscure the locations of
such code, but relies on secret values, which a lucky or
determined attacker might guess. Moreover, buffer over-
reads [23] can be exploited to read parts of the memory
contents of a process running a vulnerable application,
breaking the secrecy assumptions of ASLR.

6 Conclusions

Pragmatic defenses against low-level memory corrup-
tion attacks have gained considerable acceptance within
the software industry. Techniques such as stack ca-
naries, address space layout randomization, and safe ex-
ception handling —thanks to their low overhead and
transparency for the programmer— have been read-
ily employed by software vendors. In particular, at-
tacks corrupting metadata pointers used by the mem-
ory management mechanisms, such as invalid frees, dou-
ble frees, and heap metadata overwrites, have been ad-
dressed with resilient memory allocator designs, benefit-
ing many programs transparently. Similar in spirit, Cling
is a pragmatic memory allocator modification for defend-
ing against use-after-free vulnerabilities that is readily
applicable to real programs and has low overhead.

We found that many of Cling’s design requirements
could be satisfied by combining mechanisms from suc-



cessful previous allocator designs, and are not inherently
detrimental for performance. The overhead of mapping
allocation sites to allocation pools was found acceptable
in practice, and could be further addressed in future im-
plementations. Finally, closer integration with the lan-
guage by using compile-time libraries is possible, espe-
cially for C++, and can eliminate the semantic gap be-
tween the language and the memory allocator by for-
warding type information to the allocator, increasing se-
curity and flexibility in memory reuse. Nevertheless, the
current instantiation has the advantage of being readily
applicable to a problem with no practical solutions.
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