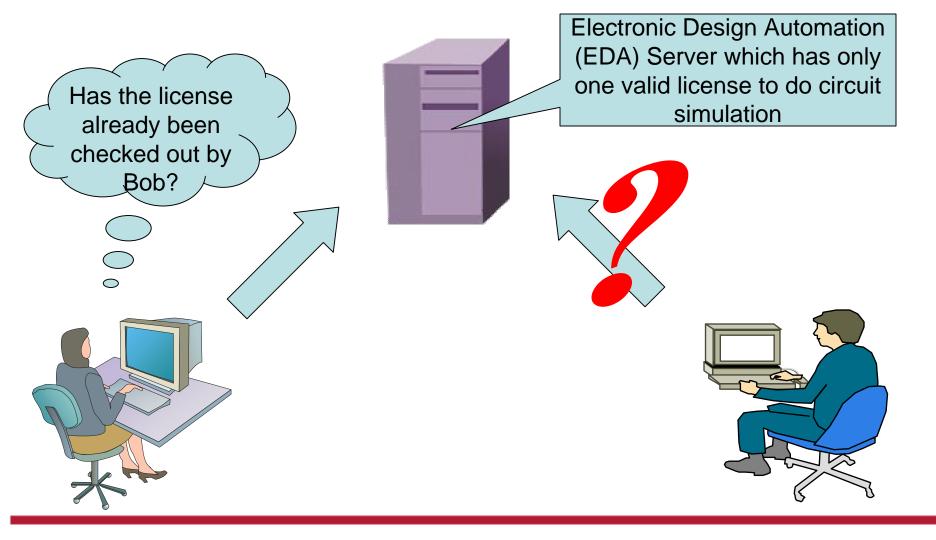


Peeping Tom in the Neighborhood: Keystroke Eavesdropping on Multi-User System

Kehuan Zhang, XiaoFeng Wang Indiana University



What I will talk about...

- The discovery of a new vulnerability in the shared information on multi-user systems
- An example of attack
 - > To infer the key input by the victim

Information Sharing on Multi-user Systems

Indiana University School of

The output of *top(1)* program

top – 07:11:47 up 2 days, 20:38, 2 users, load average: 0.00, 0.00, 0.00 Tasks: 123 total, 1 running, 122 sleeping, 0 stopped, 0 zombie Cpu(s): 3.5%us, 0.1%sy, 0.0%ni, 96.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 2063204k total, 1564500k used, 498704k free, 186612k buffers Swap: 3229024k total, 0k used, 3229024k free, 520144k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
5929	zkh	20	Ø	449m	313m	28m	S	7	15.5	256:23.03	firefox
5960	zkh	20	Ø	147m	77m	36m	S	1	3.8	25:08.10	ld-linux.so.2
13985	zkh	20	Ø	2416	1144	876	R	1	0.1	0:00.04	top
5523	root	20	Ø	384m	29m	1 0m	S	Ø	1.5	15:57.99	Xorg
5640	zkh	20	Ø	38732	22m	13m	S	0	1.1	4:04.69	gnome-panel
1	root	20	Ø	2920	1720	576	S	0	0.1	0:02.46	init
2	root	15	-5	Ø	Ø	Ø	S	0	0.0	0:00.00	kthreadd
3	root	RT	-5	Ø	Ø	G	S	0	0.0	0:00.02	migration/0
4	root	15	-5	Ø	Ø	0	S	0	0.0	0:01.88	ksoftirqd/0
5	root	RT	-5	0	Ø	Ø	S	0	0.0	0:00.00	watchdog/0
6	root	RT	-5	0	0	Ø	S	0	0.0	0:00.02	migration/1
7	root	15	-5	0	0	0	S	0	0.0	0:02.76	ksoftirqd/1
8	root	RT	-5	0	0	Ø	S	0	0.0	0:00.00	watchdog/1
9	root	15	-5	0	0	Ø	S	0	0.0	0:01.96	events/0
10	root	15	-5	0	0	Ø	S	0	0.0	0:01.60	events/1
11	root	15	-5	0	0	Ø	S	0	0.0	0:00.02	khelper
51	root	15	-5	0	Ø	Ø	S	0	0.0	0:00.00	kintegrityd/0

The procfs (process file system)

- A pseudo file system
- Provides information about the system and each process

System information provided by procfs

1	210	4764	5579	57	7836	filesystems	sched debug
10	211	4765	56.05	5702	7837	fs	schedstat
10086	2228	4768	5608	5703	7838	interrupts	scsi
11	2404	4769	5609	57.05	7850	iomem	self
1263	2951	4851	5612	5707	7854	ioports	slabinfo
1264	3	4862	5613	5709	7997	irg	stat
127	3980	4875	5615	5710	8	kallsyms	swaps
131	4	4916	5621	5712	9	kcore	sys
1336	4365	4936	5626	5718	acpi	key-users	sysrq-triqqer
1337	4366	4938	5628	5721	asound	kmsg	sysvipc
1338	4368	4939	5631	5726	buddyinfo	kpaqecount	timer list
13927	4369	4977	5633	5731	bus	kpageflags	timer_stats
13934	4370	5	5635	5791	cqroups	latency stats	tty
13936	4420	5007	5640	5792	cmdline	loadavq	uptime
14868	4443	51	5643	5793	cpuinfo	locks	version
168	4445	5104	5646	5796	crypto	meminfo	version_signature
169	4468	5182	5662	58	devices	MISC	vmallocinfo
170	4490	52	5668	5927	diskstats	modules	vmcore
2	4491	54	5670	5928	dma	mounts	vmstat
2013	4520	55	5673	5929	dri	mtrr	zoneinfo
2014	4566	55 05	5676	5960	driver	net	
2069	4675	5522	5678	6	execdomains	pagetypeinfo	
2070	4742	5523	5695	7	fb	partitions	

Indiana University School of

File contents in /proc/interrupts

	CPUO	CPU1			
0:	1072	0	IO-APIC-edge	timer	
1:	2	0	IO-APIC-edge	i8042	
4:	3	0	IO-APIC-edge		
7:	0	0	IO-APIC-edge	parport0	
8:	53	0	IO-APIC-edge	rtcO	
9:	0	0	IO-APIC-fasteoi	acpi	
12:	4	0	IO-APIC-edge	i8042	
14:	474360	0	IO-APIC-edge	ata_piix	
15:	0	0	IO-APIC-edge	ata_piix	
16:	1674852	0	IO-APIC-fasteoi	eth0, i915@pci	:0000:00:02.0
18:	0	0	IO-APIC-fasteoi	uhci_hcd:usb4	
20:	329344	0	IO-APIC-fasteoi	ata piix	
21:	6	0	IO-APIC-fasteoi	ehci_hcd:usb1,	uhci_hcd:usb2
22:	1044	0	IO-APIC-fasteoi	uhci_hcd:usb3	
23:	56253	Ø	IO-APIC-fasteoi	uhci hcd:usb5.	Intel ICH7
NMI:	0	0	Non-maskable inte	errupts	
LOC:	30046493	33508704	Local timer inter	rupts	
RES:	4084892	2899075	Rescheduling inte	errupts	
CAL:	75109	122026	function call int	errupts	
TLB:	41597	40468	TLB shootdowns		
SPU:	0	0	Spurious interrup	ots	
ERR:	0				
MIS:	0				

Indiana University School of

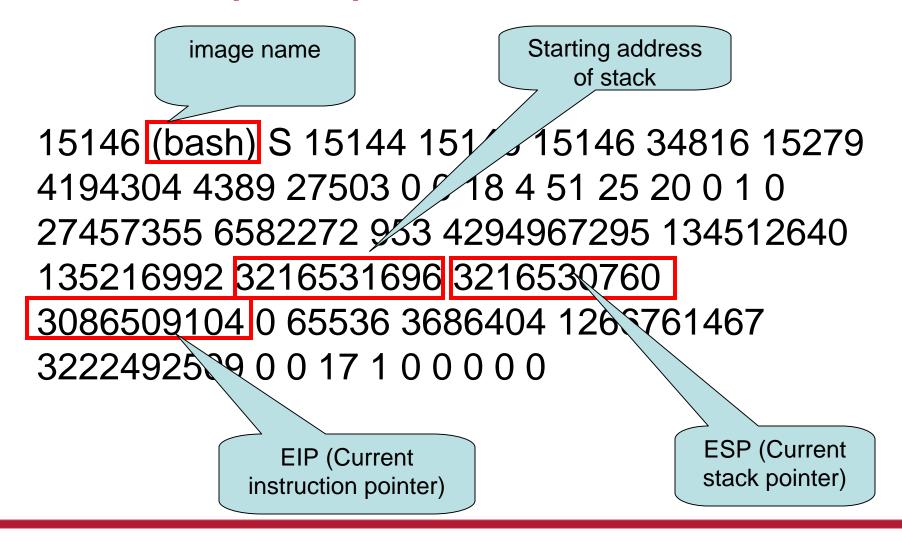
File contents in /proc/slabinfo

sock_inode_cache	573	588	384	21	2	:	tunables	0	0	0	=
file_lock_cache	78	78	104	39	1	:	tunables	0	Ø	0	:
Acpi-Operand	1419	1428	40	102	1	:	tunables	0	Ø	0	:
taskstats	48	48	328	24	2	:	tunables	0	Ø	0	:
page_cgroup	335578	339490	24	170	1	5	tunables	0	Ø	0	:
proc_inode_cache	1585	1628	368	22	2	:	tunables	0	0	0	:
sigqueue	56	56	144	28	1	5	tunables	0	0	0	:
radix_tree_node	10104	10152	296	27	2	:	tunables	0	0	0	:
bdev_cache	32	32	512	16	2	:	tunables	0	0	0	=
sysfs_dir_cache	13084	13090	48	85	1	2	tunables	0	0	0	:
inode_cache	8294	8326	344	23	2	:	tunables	0	0	Ø	:
dentry	784649	784650	136	30	1	:	tunables	0	0	0	:
buffer_head	64014	64192	64	64	1	5	tunables	0	0	Ø	:
vm_area_struct	13318	13800	88	46	1	5	tunables	0	0	0	:
files_cache	117	126	384	21	2	:	tunables	0	Ø	0	:
signal_cache	161	175	640	25	4	:	tunables	0	Ø	0	:
s <mark>ighand_cache</mark>	155	161	1408	23	8	:	tunables	0	Ø	0	:
task_struct	228	250	3216	10	8	:	tunables	0	Ø	0	:
anon_vma	5109	5376	16	256	1	5	tunables	0	Ø	0	:
idr_layer_cache	619	624	152	26	1	:	tunables	0	0	0	:
kmalloc-4096	44	56	4096	8	8	:	tunables	0	0	0	:
kmalloc-2048	289	384	2048	16	8	:	tunables	0	0	0	:
slabinfo [RO]						_	42	2,1		6	71%

Process-related information

zkh@zkh-iu-office:/proc/13936\$ ps

13936 pts/0 00:00:00 **bash**


13996 pts/0 00:00:00 ps

zkh@zkh-iu-office:/proc/13936\$ ls

attr	cpuset	io	mountinfo	pagemap	stat
auxv	cwd	latency	mounts	root	statm
cgroup	environ	limits	mountstats	sched	status
clear_refs	exe	loginuid	net	schedstat	task
cmdline	fd	maps	oom_adj	sessionid	wchan
coredump_filter	fdinfo	mem	oom_score	smaps	

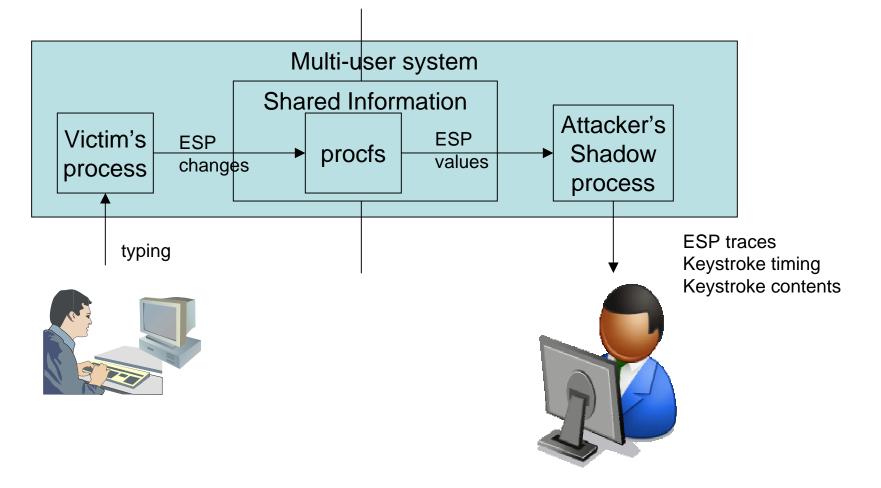
Content of /proc/<pid>/stat

Indiana University School of

Contents of /proc/<pid>/maps

C8048000-080f4000	r-xp 00	0000000	08:01	344069	/bin/bash
080f4000-080f9000	rw-p 00	00ac000	08:01	344069	/bin/bash
080f9000-080fe000	rw-p 08	30F9000	00:00	0	
09856000-09ab5000	rw-p 09	856000	00:00	0	[heap]
b7c5b000-b7c65000	r-xp 00	0000000	08:01	3441330	/lib/tls/i686/cmov/libnss_fi
b7c65000-b7c66000	rp 00	0009000	08:01	3441330	/lib/tls/i686/cmov/libnss_fi
b7c66000-b7c67000	rw-p 00	000a000	08:01	3441330	/lib/tls/i686/cmov/libnss_fi
b7c67000-b7c70000	r-xp 00	0000000	08:01	3441332	/lib/tls/i686/cmov/libnss_ni
b7c70000-b7c71000	rp 00	0008000	08:01	3441332	/lib/tls/i686/cmov/libnss_ni
b7c71000-b7c72000	rw-p 00	0009000	08:01	3441332	/lib/tls/i686/cmov/libnss_ni
b7c72000-b7c87000	r-xp 00	0000000	08:01	3441327	/lib/tls/i686/cmov/libns1-2.
b7c87000-b7c88000	rp 00	0014000	08:01	3441327	/lib/tls/i686/cmov/libns1-2.
b7c88000-b7c89000	rw-p 00	0015000	08:01	3441327	/lib/tls/i686/cmov/libns1-2.
b7c89000-b7c8b000	rw-p b7	7c89000	00:00	0	
b7c8b000-b7c92000	r-xp 00	0000000	08:01	3441328	/lib/tls/i686/cmov/libnss_co
b7c92000-b7c93000	rp 00	0006000	08:01	3441328	/lib/tls/i686/cmov/libnss_co
b7c93000-b7c94000	rw-p 00	0007000	08:01	3441328	/lib/tls/i686/cmov/libnss_co
b7ca5000-b7ce4000	rp 00	0000000	08:01	1754042	/usr/lib/locale/en_US.utf8/L
b7ce4000-b7dc5000	rp 00	0000000	08:01	1754041	/usr/lib/locale/en_US.utf8/L
b7dc5000-b7dc6000	rw-p b7	7dc5000	00:00	0	
b7dc6000-b7f1e000	r-xp 00	0000000	08:01	3441321	/lib/tls/i686/cmov/libc-2.8.
b7f1e000-b7f20000	rp 00	0158000	08:01	3441321	/lib/tls/i686/cmov/libc-2.8.
maps [RO]					1,1 Top

:set nowrap



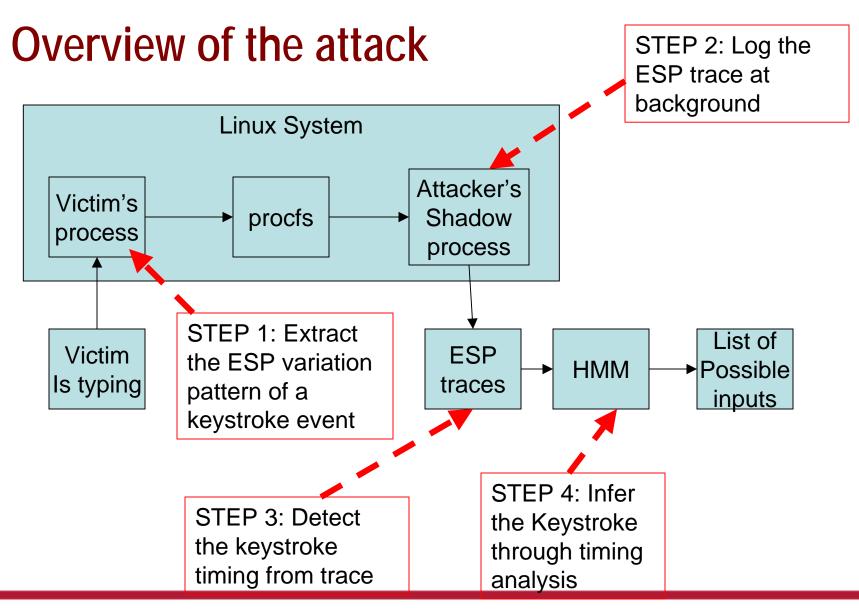
Privacy Implications

- All the information mentioned is globally readable
- Key inference (this paper)
- Others
 - Trace program execution path
 - > Infer user behavior or input data
 - >ASLR (Address Space Layout Randomization)

What we did – keystroke eavesdropping

Related work

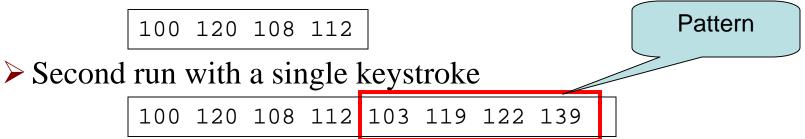
- Keystroke inference has been well studied
 - Ssh traffic [SWT 2001]
 - ≻ Keyboard acoustic [AA 2004, ZZT 2005,BWY 2006]
 - ≻ Electromagnetic emanation [VP 2009]
- What is different
 - > A new and more accurate way to get keystroke timing
 - > Use semantic information to get multiple timing sequences
 - Novel technology to get better results from multiple sequences


Contributions

- Discover a new vulnerability in process file system
- Develop techniques to exploit this vulnerability to determine keystroke timing
- Augment the keystroke analysis technique with semantic information

Assumptions

- Multi-user system
- Capability to execute programs
- Multi-core CPU

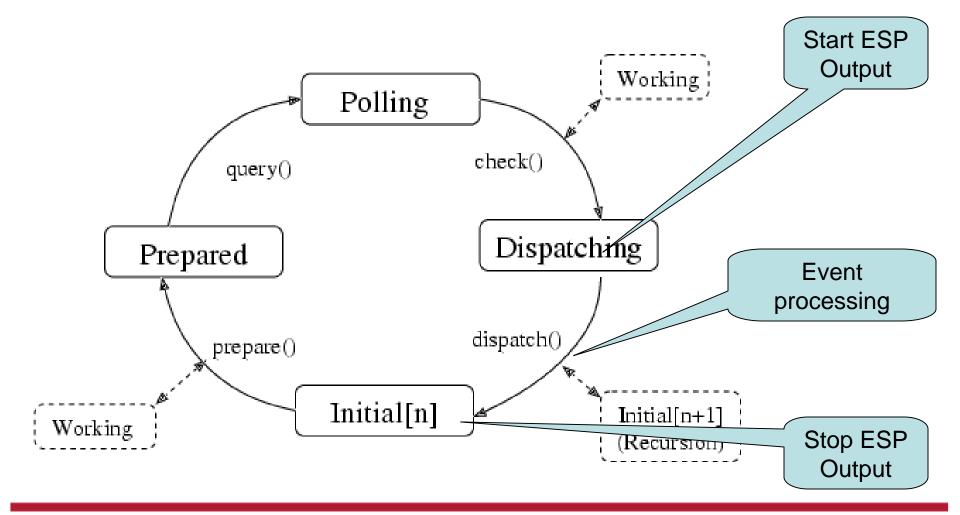

Step 1: Extract ESP patterns of keystrokes

- Consists of ESP value when a system call is made
 - > System call is time consuming
 - > Can be reliably captured by the shadow program
 - > Most ESP values captured are belonging to system call
- Two types of program
 - Deterministic
 - Non-deterministic

Extract pattern for deterministic programs

- Examples: Vim, sshd
- Use differential analysis technique
- Modify strace source code to output the ESP value when a system call is made
- Example
 - First run without any keystroke

Extract pattern for non-deterministic programs


• Examples: Gedit

Driven by random Events

- like cursor blinks, screen refresh, buffer flush
- Solution: Use instruction level analysis

Example: GTK+ Event loop in Gedit

Step 2: Log ESP traces

- Using a shadow process
- Make it efficient as much as possible
 - Written in assembly language
 - Each sample has only two system calls: lseek() and read()
 - → Use a buffer to reduce cost of writing data to disk

Step 3: Determine keystroke timings

- Challenge:
 - To recognize a keystroke event from an incomplete ESP trace
- Solution
 - Convert into a LCS (longest common subsequence) problem
 - Let X be "ABCDEFG" and Y be "BGCEHAF". The longest common subsequence between X and Y is "BCEF".
 - We regard each ESP value as a unique character
 - Using existed dynamic programming algorithms

Examples: Determine keystroke timings

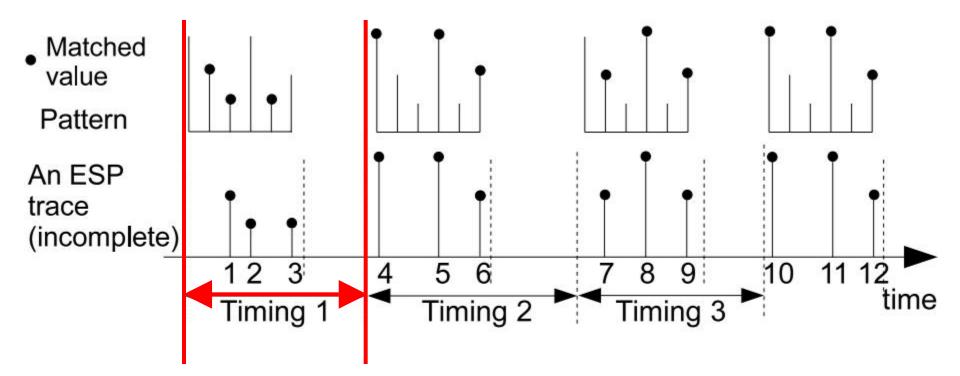
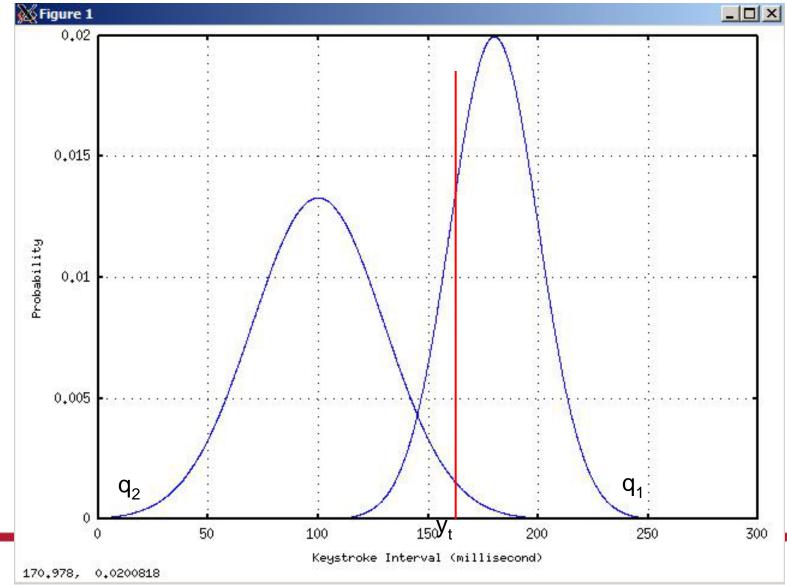
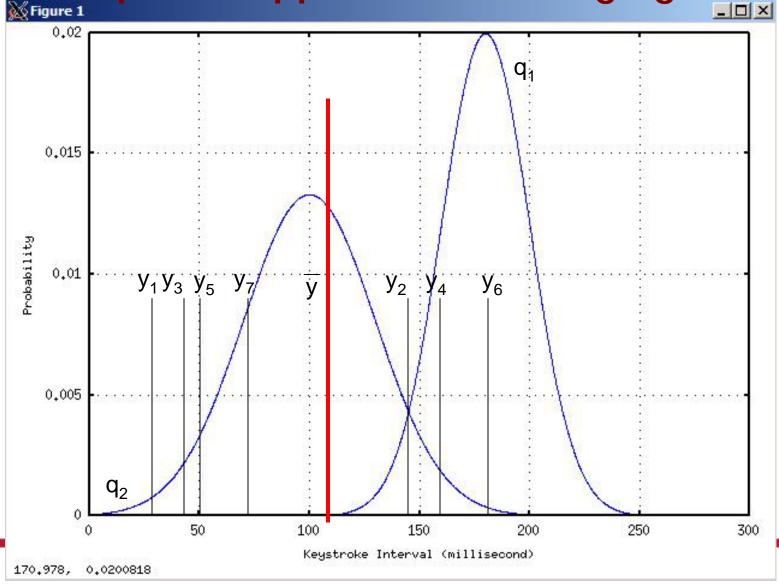


Figure 5: Pattern matching on an ESP trace and the timing interval

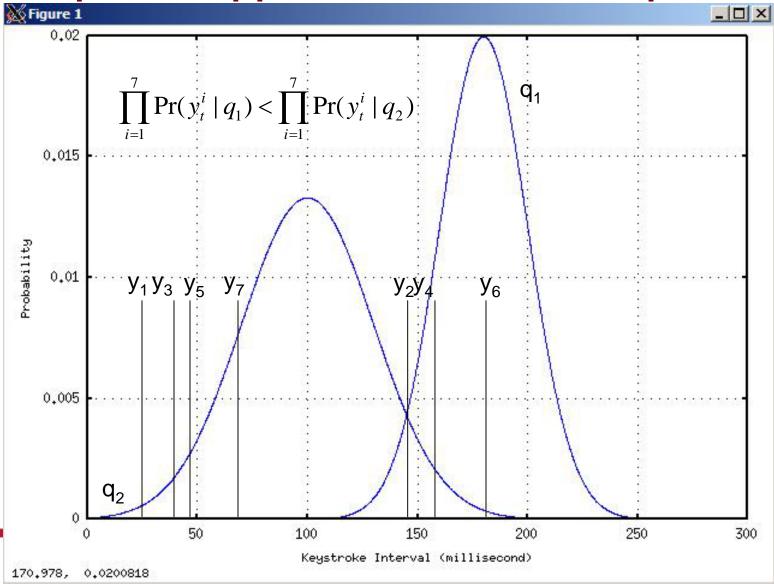


Step 4: Key Inferences

- Use the Hidden Markov Model (HMM)
- Based on the n-Viterbi algorithm
- Our contribution:


Leverage the information from multiple timing sequences

Indiana University School of informatics Limitation of single timing sequence


Multi-sequence approach 1: Averaging

Indiana University School of

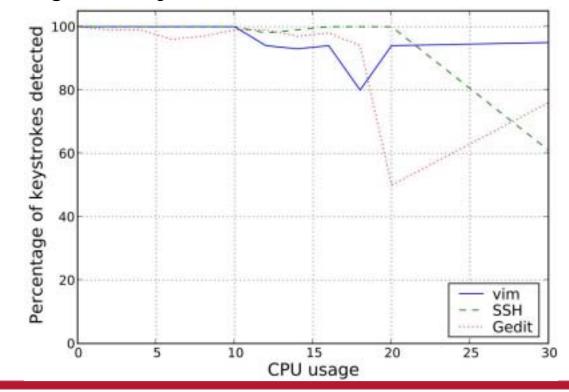
Indiana University School of

Multi-sequence approach 2: Combined probability

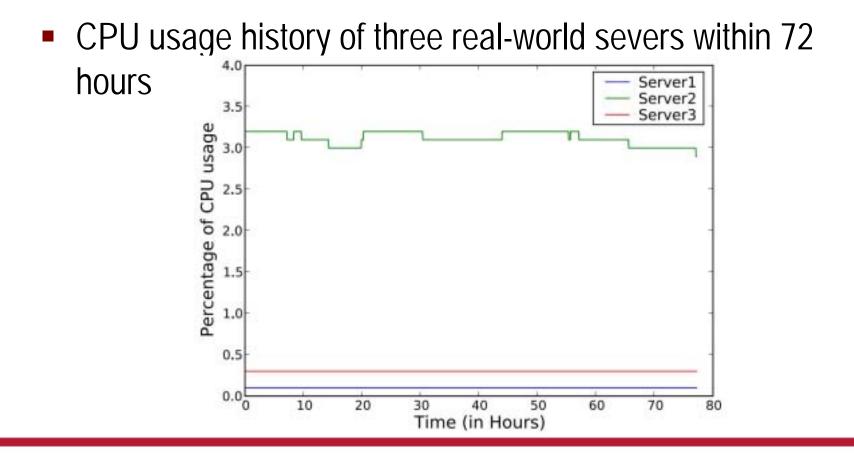
Evaluations

- Things to be evaluated
 - > The accuracy of the keystroke timing detected
 - > The performance of key sequence inference
- Three sample applications
 - > Vim
 - > sshd
 - ➤ Gedit
- Platform
 - ➢ Intel Core 2 Duo E6700, 3GB RAM
 - Red Hat Linux Enterprise 4

Timing accuracy


Table 3: Examples of the timings measured from ESP traces (Measured) and the real timings (Real) in milliseconds.

Timings	vim		ssh		Gedit		
Tunnigs	measured	real	measured	real	measured	real	
1	80	81	135	135	301	303	
2	139	139	124	123	285	285	
3	88	88	103	103	259	259	
4	101	101	110	109	236	236	
5	334	335	134	134	181	182	
6	86	87	111	110	265	265	
7	124	124	132	132	174	174	


Impacts of server workloads

Percentage of keystrokes detected vs. CPU usage

Impacts of server workloads

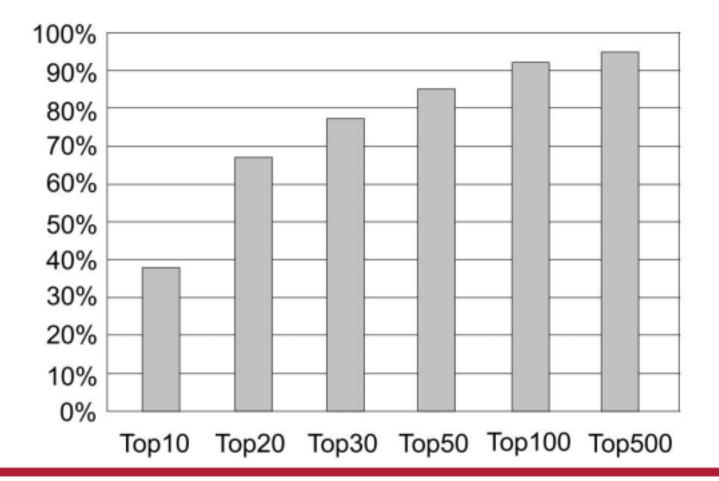
Evaluation of password inference

- Acquire the training data for HMM
- Generate three passwords randomly
- Get 50 timing sequences for each password
- Run HMM to generate a list of guessed passwords
- Identify the position of the real password on the list
- Calculate the percentage of the search space

Key Inference -- password

Table 4: The percentage of the search space the attacker has to search before the right password is found.

Method	Test Cases					
Wiethou	password 1	password 2	password 3			
Baseline(n-Viterbi)	7.8%	6.6%	6.8%			
Timing Averaging	0.38%	0.34%	0.05%			
<i>m</i> - <i>n</i> -Viterbi	0.39%	0.34%	0.05%			



Evaluation of English word inference

- Build a dictionary
- Drawn words from the dictionary randomly
- Get a keystroke timing for each word
- Ask HMM to output a list of guessed words
- Delete invalid output which is not appear in the dictionary
- Find the position and calculate the percentage

Key Inference – English words

Discussion

- Other UNIX-like systems
 - ➢ No ESP/EIP information
 - > But provide CPU time information for system calls
- Defense
 - Patch the kernel
 - > Need a complete evaluation about the information leakage

Conclusion

- Privacy vulnerability in the process file system
 Keystroke inference attack
- Further study
 - Other attacks
 - Potential mitigation technology

Q & A