
Peeping Tom in the Neighborhood: Keystroke
Eavesdropping on Multi-User System

Kehuan Zhang, XiaoFeng Wang
Indiana University

What I will talk about…

The discovery of a new vulnerability in the shared information
on multi-user systems
An example of attack

To infer the key input by the victim

Information Sharing on Multi-user Systems

Has the license
already been

checked out by
Bob?

Electronic Design Automation
(EDA) Server which has only
one valid license to do circuit

simulation

The output of top(1) program

The procfs (process file system)

A pseudo file system
Provides information about the system and each process

System information provided by procfs

File contents in /proc/interrupts

File contents in /proc/slabinfo

Process-related information

zkh@zkh-iu-office:/proc/13936$ ps
13936 pts/0 00:00:00 bash
13996 pts/0 00:00:00 ps
zkh@zkh-iu-office:/proc/13936$ ls
attr cpuset io mountinfo pagemap stat
auxv cwd latency mounts root statm
cgroup environ limits mountstats sched status
clear_refs exe loginuid net schedstat task
cmdline fd maps oom_adj sessionid wchan
coredump_filter fdinfo mem oom_score smaps

15146 (bash) S 15144 15146 15146 34816 15279
4194304 4389 27503 0 0 18 4 51 25 20 0 1 0
27457355 6582272 953 4294967295 134512640
135216992 3216531696 3216530760
3086509104 0 65536 3686404 1266761467
3222492509 0 0 17 1 0 0 0 0 0

Content of /proc/<pid>/stat
image name Starting address

of stack

ESP (Current
stack pointer)

EIP (Current
instruction pointer)

Contents of /proc/<pid>/maps

Privacy Implications

All the information mentioned is globally readable
Key inference (this paper)
Others

Trace program execution path
Infer user behavior or input data
ASLR (Address Space Layout Randomization)

Multi-user system

Shared Information

What we did – keystroke eavesdropping

Victim’s
process procfs

Attacker’s
Shadow
process

typing

ESP
changes

ESP
values

ESP traces
Keystroke timing
Keystroke contents

Related work

Keystroke inference has been well studied
Ssh traffic [SWT 2001]
Keyboard acoustic [AA 2004, ZZT 2005,BWY 2006]
Electromagnetic emanation [VP 2009]

What is different
A new and more accurate way to get keystroke timing
Use semantic information to get multiple timing sequences
Novel technology to get better results from multiple
sequences

Contributions

Discover a new vulnerability in process file system
Develop techniques to exploit this vulnerability to determine
keystroke timing
Augment the keystroke analysis technique with semantic
information

Assumptions

Multi-user system
Capability to execute programs
Multi-core CPU

Linux System

Victim
Is typing

Victim’s
process procfs

Attacker’s
Shadow
process

ESP
traces HMM

List of
Possible

inputs

Overview of the attack

STEP 1: Extract
the ESP variation
pattern of a
keystroke event

STEP 2: Log the
ESP trace at
background

STEP 3: Detect
the keystroke
timing from trace

STEP 4: Infer
the Keystroke
through timing
analysis

Step 1: Extract ESP patterns of keystrokes

Consists of ESP value when a system call is made
System call is time consuming
Can be reliably captured by the shadow program
Most ESP values captured are belonging to system call

Two types of program
Deterministic
Non-deterministic

Extract pattern for deterministic programs

Examples: Vim, sshd
Use differential analysis technique
Modify strace source code to output the ESP value when a
system call is made
Example

First run without any keystroke

Second run with a single keystroke
100 120 108 112

100 120 108 112 103 119 122 139

Pattern

Extract pattern for non-deterministic programs

Examples: Gedit
Driven by random Events

• like cursor blinks, screen refresh, buffer flush

Solution: Use instruction level analysis

Example: GTK+ Event loop in Gedit
Start ESP

Output

Stop ESP
Output

Event
processing

Step 2: Log ESP traces

Using a shadow process
Make it efficient as much as possible

Written in assembly language
Each sample has only two system calls: lseek() and read()
Use a buffer to reduce cost of writing data to disk

Step 3: Determine keystroke timings

Challenge:
To recognize a keystroke event from an incomplete ESP
trace

Solution
Convert into a LCS (longest common subsequence)
problem

• Let X be “ABCDEFG" and Y be “BGCEHAF". The longest
common subsequence between X and Y is “BCEF".

• We regard each ESP value as a unique character
• Using existed dynamic programming algorithms

Examples: Determine keystroke timings

Step 4: Key Inferences

Use the Hidden Markov Model (HMM)
Based on the n-Viterbi algorithm
Our contribution:

Leverage the information from multiple timing sequences

Limitation of single timing sequence

yt

q2 q1

●

●

y1 y2y3 y6y5 y4y7 y

q2

q1

Multi-sequence approach 1: Averaging

●

●

Multi-sequence approach 2: Combined probability

●

y1 y2y3 y6y5 y4y7

q2

q1

●
●
●

●

●

●
● ● ●

●

●

●

∏∏
==

<
7

1
2

7

1
1)|Pr()|Pr(

i

i
t

i

i
t qyqy

● ●

●

Evaluations

Things to be evaluated
The accuracy of the keystroke timing detected
The performance of key sequence inference

Three sample applications
Vim
sshd
Gedit

Platform
Intel Core 2 Duo E6700, 3GB RAM
Red Hat Linux Enterprise 4

Timing accuracy

Impacts of server workloads

Percentage of keystrokes detected vs. CPU usage

Impacts of server workloads

CPU usage history of three real-world severs within 72
hours

Evaluation of password inference

Acquire the training data for HMM
Generate three passwords randomly
Get 50 timing sequences for each password
Run HMM to generate a list of guessed passwords
Identify the position of the real password on the list
Calculate the percentage of the search space

Key Inference -- password

Evaluation of English word inference

Build a dictionary
Drawn words from the dictionary randomly
Get a keystroke timing for each word
Ask HMM to output a list of guessed words
Delete invalid output which is not appear in the dictionary
Find the position and calculate the percentage

Key Inference – English words

Discussion

Other UNIX-like systems
No ESP/EIP information
But provide CPU time information for system calls

Defense
Patch the kernel
Need a complete evaluation about the information leakage

Conclusion

Privacy vulnerability in the process file system
Keystroke inference attack

Further study
Other attacks
Potential mitigation technology

Q & A

