
The Multi-Principal OS Construction of the
Gazelle Web Browser

Helen J. Wang, Chris Grier, Alex Moshchuk,
Sam King, Piali Choudhury, Herman Venter

Browser as an application platform

•  Single stop for many computing needs
–  banking, shopping, office tasks, social networks, entertainment

•  Static document browsing  rich programs
–  obtained from mutually distrusting origins

–  same-origin policy: a browser is a multi-principal platform where
web sites are principals

•  Browser = prime target of today’s attackers

Your valuables are online!

•  Existing browser security mentality:
–  valuables on local machine
–  protect local machine from the web

•  This work’s mentality:
–  valuables online
–  must also protect web site principals

from one another

Browser

OS

Browser

OS

Browser design requires OS thinking

•  Cross-principal protection is an essential function of an
operating system

•  Fundamental flaw with existing browser designs:
–  OS logic is intermingled with application-specific content processing
–  consequences:

•  unreliable cross-principal protection
•  many vulnerabilities

HTML
parsing

DOM

browser

rendering

JS engine

same-origin
protection

Persistent
state

network
access

Gazelle

•  An OS exclusively manages:
–  protection across principals
–  resource allocation
–  resource access control

•  Our approach for designing Gazelle:
–  take all OS functionality out of content processing logic
–  put it into a small, simple browser kernel

rendering
same-origin
protection

Persistent
state

network
access

Browser kernel

DOM

HTML
parsing JS engine

Gazelle

•  Build the browser as a multi-principal OS
–  label principals according to web site origins
–  enforce strong isolation among principals

•  apply to all resources
•  apply to all types of web content

•  Challenge: correctly handle web’s embedding model
(cross-origin mashups)
–  implications for managing display and other resources

a.
co

m

b.
co

m

c.
co

m

Outline

•  Motivation
•  Gazelle’s design

–  defining the principals
–  protection architecture
–  securing the display

•  Implementation
•  Evaluation

Defining the principals

•  Gazelle’s principal corresponds to a web site origin
–  origin = <protocol, domain, port>: http://www.news.com:80

•  Principal = unit of protection

 shop.com/index.html shop.com

Labeling embedded content
•  <scripts>, stylesheets

–  a library abstraction
–  runs as includer

•  <iframe>, <frame>, <object>,
–  runs as provider
–  same principal definition for plug-in content

<iframe src=“ad.com/ad.html”>

<object src=“youtube.com/v.swf”>

youtube.com

 shop.com/index.html shop.com

 ad.com

Principal instances

•  Can have multiple instances of same principal
•  A principal instance is:

–  the unit of failure containment
–  the unit of resource allocation

•  Principal instances of the same principal share persistent state

 shop.com/1 shop.com/2

Tab 1 Tab 2

shop.com

Architecture

•  Browser kernel:
–  exclusively manages principals and all system resources

•  processes, network, storage, display, IPC, system events

–  enforces all security policies

shop.com ad.com youtube.com

G a z e l l e s y s t e m c a l l s

Browser kernel process

OS

Principal
instance

libflash

Principal
instance

libweb

Principal
instance

libweb

ad.com

 shop.com/index.html

shop.com

 youtube.com

Architecture

•  Principal instances:
–  perform all content processing
–  access resources through system calls to browser kernel
–  reside in sandboxed processes

sandboxed
OS process

shop.com ad.com youtube.com

G a z e l l e s y s t e m c a l l s

Browser kernel process

OS

Principal
instance

libflash

Principal
instance

libweb

Principal
instance

libweb

ad.com

 shop.com/index.html

shop.com

 youtube.com

Architecture

•  Principal instances:
–  perform all content processing
–  access resources through system calls to browser kernel
–  reside in sandboxed processes

G a z e l l e s y s t e m c a l l s

Browser kernel process

OS

Principal
instance

libflash

Principal
instance

libweb

Principal
instance

libweb

 shop.com/index.html

… …
… …

multiple tabs

Gazelle’s security and robustness benefits

IE 8 & Google Chrome:

•  Security goal: protect host machine
•  Multiple processes are for reliable
 browsing sessions
•  Security decisions made in
 rendering process

shop.com ad.com youtube.com

Principal
instance

libflash

Principal
instance

libweb

Principal
instance

libweb

Rendering process for shop.com

shop.com
youtube.com

ad.com

8

shop.com

youtube.com ad.com

… …

multiple tabs

Architectural implications

•  Gazelle naturally provides principal-based isolation for:
–  all resources

•  network, display, memory, persistent state, etc.

–  all types of web content
•  HTML, JavaScript, images, plug-in content, etc.

•  This differs from today’s browser policies
–  often inconsistent across resources
–  e.g., cookies, scripts (document.domain exception)

•  Achieving backward compatibility is a policy issue
–  can achieve through cross-principal communication
–  this work: focus on architectural issues
–  future work: balance backward compatibility and security

Embedding cross-principal content
•  Powerful paradigm in modern web
•  Key deviation from the desktop model
•  Implications for browser’s resource allocation:

–  display (next)
–  other resources: CPU, memory, network (not in this talk)

youtube.com

 shop.com/index.html shop.com

 ad.com

•  Browser kernel manages the display
–  browser kernel doesn’t know content semantics

•  Principal instances render the content
•  Browser kernel composes the display

a.com

b.com

Display in Gazelle

Browser Kernel

display (winID, bitmap) display (winID, bitmap)

a.com b.com

Dual ownership of a window
•  Window: unit of display delegation
•  A window has two owners:

–  landlord: creator principal
–  tenant: resident principal
–  landlord can delegate screen area to tenant

•  delegate() system call

•  Window’s resources:
–  position, dimensions, content (pixels),

URL location

a.com

b.com

Landlord: a.com
Tenant: b.com

Display Access Control

Position Dimensions Pixels URL location

Landlord RW RW W

Tenant R RW RW

Tenant cannot
tamper owner’s
display

Tenant’s
display
content

No navigation
history leakage

Unlike existing browsers, display ownership and access
control is managed exclusively by the browser kernel

Protecting events

•  Browser kernel must dispatch user events to the right
principal instance

•  Challenge: cross-principal content overlaying
–  frames can be transparent
–  images under text
–  layers in CSS

•  Layout policy has security and backward
compatibility implications
–  see paper

a.com

b.com

Outline

•  Motivation
•  Gazelle’s design
•  Implementation
•  Evaluation

Implementation
•  Browser kernel implemented in C# (5K lines)
•  Principal instance is based on Internet Explorer renderer

–  we reuse IE rendering engine (Trident)
•  “free” HTML parsing/rendering, JavaScript engine, DOM

–  Trident instrumented to redirect resource access to BK
–  sandboxed process simulated through interposition
–  no plug-ins yet

Unmodified
IE renderer

web

Implementation
•  Browser kernel implemented in C# (5K lines)
•  Principal instance is based on Internet Explorer renderer

–  we reuse IE rendering engine (Trident)
•  “free” HTML parsing/rendering, JavaScript engine, DOM

–  Trident instrumented to redirect resource access to BK
–  sandboxed process simulated through interposition
–  no plug-ins yet

Unmodified
IE renderer

web

interposition layer

Browser kernel
process Principal instance

Evaluation – browsing performance

•  On par with IE7 and Chrome when browsing within an origin

Examples of web page load times Gazelle IE7 Chrome

Navigate from google.com to google.com/ads 1.0s 1.1s 1.0s

Evaluation – browsing performance

•  On par with IE7 and Chrome when browsing within an origin
•  More overhead for cross-origin navigation, rendering

embedded cross-origin content
–  main source: IE instrumentation

•  1.4s for nytimes (55% of overhead over IE7)
•  can be eliminated in a production implementation

Examples of web page load times Gazelle IE7 Chrome

Navigate from google.com to google.com/ads 1.0s 1.1s 1.0s

Navigate from google.com/ads to nytimes.com 5.8s 3.2s 3.5s

(nytimes.com contains a cross-origin iframe)

Evaluation – browsing performance

•  Many other optimizations can bring performance on par
–  overlapping fetching and rendering
–  pre-initializing principal instance processes
–  named pipes
–  bitmap transfers

(nytimes.com contains a cross-origin iframe)

Examples of web page load times Gazelle IE7 Chrome

Navigate from google.com to google.com/ads 1.0s 1.1s 1.0s

Navigate from google.com/ads to nytimes.com 5.8s 3.2s 3.5s

Related work

•  Security in other browsers:
–  IE8/Chrome: different security goals

•  origin protection logic in rendering process, not in browser kernel

–  OP: additional modularization without security benefits
•  some OS logic (e.g., display management) still in principal space

–  Tahoma: VM isolation, web sites opt in to take advantage
–  SubOS: principal definition differs from today’s web

•  None of these handle embedded web principals
shop.com

 ad.com

Ongoing research

•  Compatibility vs. security cost analysis
–  large-scale study over real web sites

•  Sandboxing for principal instances
–  system call interposition (Xax)
–  binary rewriting (Native Client)
–  adding native OS process sandboxing support

•  Porting plug-ins into the Gazelle architecture
•  Secure device access
•  Resource scheduling

Concluding remarks

•  Gazelle:
–  protect online valuables
–  first multi-principal OS-based browser design

•  OS functions shifted from renderer to privileged browser kernel
•  browser kernel exclusively manages principals, resources, and security

–  architecture does not prevent backward compatibility
–  cross-origin mashups present intricacies in managing display and other

resources

•  Practical to turn an existing browser into Gazelle

Questions?

