The Multi-Principal OS Construction of the
Gazelle Web Browser

Helen |.Wang, Chris Grier, Alex Moshchuk,
Sam King, Piali Choudhury, Herman Venter

Browser as an application platform

* Single stop for many computing needs

— banking, shopping, office tasks, social networks, entertainment

* Static document browsing = rich programs
— obtained from mutually distrusting origins

— same-origin policy: a browser is a multi-principal platform where
web sites are principals

* Browser = prime target of today’s attackers

Your valuables are online!

* Existing browser security mentality:
— valuables on local machine

— protect local machine from the web

* This work’s mentality:

— valuables online

— must also protect web site principals
from one another

" Browser

[os)

Browser design requires OS thinking

Cross-principal protection is an essential function of an
operating system

Fundamental flaw with existing browser designs:

— OS logic is intermingled with application-specific content processing

— consequences: N
* unreliable cross-principal protection | JS engine |

/«
TITLE: GOOGLE CHROME 'CHROMEHTML:" PROTOCOL HANDLER SAME

ORIGIN POLICY BYPASS VULNERABILITY ? S mte otr'g'”
protection

Severity: MODERATE N\
network
Description: access)

Google Chrome is a web browser.

< -

ser
Google Chrome is prone to a vulnerability that allows attackers to bypass the same-origin policy. The

o« o o o

s B N vhen handlina the 'chromehtm! nrotoco Ne A vhen A ina this nrotaoco

Gazelle

* An OS exclusively manages:

— protection across principals

— resource allocation

— resource access control

* Our approach for designing Gazelle:

— take all OS functionality out of content processing logic

— put it into a small, simple browser kernel

HTML
parsing

same-origin
protection

rendering

network
access

Persistent
state

Browser kernel

Gazelle

* Build the browser as a multi-principal OS

— label principals according to web site origins

a.com

b.com

c.com

— enforce strong isolation among principals
* apply to all resources

* apply to all types of web content

* Challenge: correctly handle web’s embedding model
(cross-origin mashups)

— implications for managing display and other resources

\ ¥

Outline

* Gazelle’s design
— defining the principals
— protection architecture
— securing the display

* Implementation

 Evaluation

Defining the principals

* Gazelle’s principal corresponds to a web site origin

— origin = <protocol, domain, port>: http://www.news.com:80

* Principal = unit of protection

shop.com shop.com/index.html
- ON SALE NOW! .Kﬁ! “ ;EKV[;;:M

EBJI.!

Labeling embedded content

e <scripts>, stylesheets
— a library abstraction
— runs as includer
* <iframe>, <frame>, <object>,
— runs as provider
— same principal definition for plug-in content

shop.com shop.com/index.html
k‘_ e
ooy cNaﬁVZX”L“ES&%WILﬂ] ww
<iframe src=“ad.com/ad.html’>
ad.com . .

<object src=*"youtube.com/v.swf”’>

__youtube.com

Principal instances

* Can have multiple instances of same principal

* A principal instance is:
— the unit of failure containment
— the unit of resource allocation

* Principal instances of the same principal share persistent state

Monitor your FICO” creditscore EquiFax
with Score Watch’

Tab 2

Architecture

shop.com
shop.com ad.com youtube.com
stop.com/index.html
Principal Principal Principal
instance instance instance

libweb libweb libflash
e e)
Gazelle system calls
N2 4 NS

Browser kernel process

[os]

Browser kernel:

— exclusively manages principals and all system resources

* processes, network, storage, display, IPC, system events

— enforces all security policies

Architecture

shop.com
shop.com ad.com youtube.com
stop.com/index.html
Principal Principal Principal
- instance instance instance
sandboxed

OS process libweb libweb libflash
e I |

Gazelle system calls
N {/ N

Browser kernel process

ad.com youtuBe.com [Os]

Principal instances:
— perform all content processing

— access resources through system calls to browser kernel
— reside in sandboxed processes

Architecture

shop.com/index.html

CSEETN |\ \1USIC
"= ON SALE NOW! “ ,,,,,,,,

GT\a/EeIIe s@tem c@s

nnnnnnn

Browser kernel process]

[
[os J

* Principal instances:
— perform all content processing

— access resources through system calls to browser kernel
— reside in sandboxed processes

Gazelle’s security and robustness benefits

shop.com ad.com youtube.com
shop.com

P ool
i<

| libweb |

.........

ad.com y5utube.com

IE 8 & Google Chrome: Rendering process for shop.com

* Security goal: protect host machine

* Multiple processes are for reliable
browsing sessions

* Security decisions made in
rendering process

Architectural implications

* Gazelle naturally provides principal-based isolation for:

— all resources

* network, display, memory, persistent state, etc.
— all types of web content
* HTML, JavaScript, images, plug-in content, etc.
* This differs from today’s browser policies
— often inconsistent across resources

— e.g., cookies, scripts (document.domain exception)
* Achieving backward compatibility is a policy issue
— can achieve through cross-principal communication

— this work: focus on architectural issues

— future work: balance backward compatibility and security

Embedding cross-principal content

* Powerful paradigm in modern web
* Key deviation from the desktop model

* Implications for browser’s resource allocation:
— display (next)

— other resources: CPU, memory, network (not in this talk)
shop.com

ad.com . youtube.com

Display in Gazelle

* Browser kernel manages the display

— browser kernel doesn’t know content semantics

* Principal instances render the content

* Browser kernel composes the display

a.com

b.com

display (winID, bitmap)

Browser Kernel

display (winID, bitmap)

a.com

b.com

)

Dual ownership of a window

* Window: unit of display delegation

A window has two owners: a.com

— landlord: creator principal

— tenant: resident principal b.com

— landlord can delegate screen area to tenant
* delegate() system call

A
* Window’s resources:
— position, dimensions, content (pixels),
URL location Landlord: a.com

Tenant: b.com

Display Access Control

Position Dimensions Pixels URL location
Landlord RW RW W
Tenant /R jW RW
Tenant cannot Tenant’s No navigation
tamper owner’s display history leakage
display content

Unlike existing browsers, display ownership and access
control is managed exclusively by the browser kernel

Protecting events

Browser kernel must dispatch user events to the right
principal instance

Challenge: cross-principal content overlaying
— frames can be transparent

— images under text

— layers in CSS

Layout policy has security and backward
compatibility implications

— see paper

Outline

* Implementation

 Evaluation

Implementation

* Browser kernel implemented in C# (5K lines)

* Principal instance is based on Internet Explorer renderer

we reuse |E rendering engine (Trident)

* “free” HTML parsing/rendering, JavaScript engine, DOM

Trident instrumented to redirect resource access to BK

sandboxed process simulated through interposition

no plug-ins yet

IE renderer

Unmodified_

Implementation

* Browser kernel implemented in C# (5K lines)

* Principal instance is based on Internet Explorer renderer

— we reuse |E rendering engine (Trident)
* “free” HTML parsing/rendering, JavaScript engine, DOM

— Trident instrumented to redirect resource access to BK
— sandboxed process simulated through interposition

— no plug-ins yet

interposition layer

Unmodified

Browser kernel

Principal instance process

Evaluation — browsing performance

* On par with |[E7 and Chrome when browsing within an origin

Examples of web page load times Gazelle IE7 Chrome

Navigate from google.com to google.com/ads |.0s l.1s |.0s

Evaluation — browsing performance

* On par with |[E7 and Chrome when browsing within an origin

* More overhead for cross-origin navigation, rendering

embedded cross-origin content

— main source: I[E instrumentation
* |.4s for nytimes (55% of overhead over IE7)

* can be eliminated in a production implementation

Examples of web page load times Gazelle IE7
Navigate from google.com to google.com/ads |.0s l.1s |.0s
Navigate from google.com/ads to nytimes.com ~~ 5.8s 3.2s 3.5s

\

(nytimes.com contains a cross-origin iframe)

Evaluation — browsing performance

* Many other optimizations can bring performance on par

— overlapping fetching and rendering
— pre-initializing principal instance processes
— named pipes

— bitmap transfers

Examples of web page load times Gazelle IE7
Navigate from google.com to google.com/ads |.0s l.1s
Navigate from google.com/ads to nytimes.com 5.8s 3.2s

|.0s

3.5s

<

(nytimes.com contains a cross-origin iframe)

Related work

Security in other browsers:
— |E8/Chrome: different security goals

* origin protection logic in rendering process, not in browser kernel
— OP: additional modularization without security benefits

* some OS logic (e.g., display management) still in principal space
— Tahoma: VM isolation, web sites opt in to take advantage

— SubOS: principal definition differs from today’s web

None of these handle embedded web principals

shop.com

ad.com

Ongoing research

Compatibility vs. security cost analysis

— large-scale study over real web sites

Sandboxing for principal instances
— system call interposition (Xax)
— binary rewriting (Native Client)

— adding native OS process sandboxing support
Porting plug-ins into the Gazelle architecture
Secure device access

Resource scheduling

Concluding remarks

* Gazelle:
— protect online valuables

— first multi-principal OS-based browser design
* OS functions shifted from renderer to privileged browser kernel

* browser kernel exclusively manages principals, resources, and security
— architecture does not prevent backward compatibility

— cross-origin mashups present intricacies in managing display and other
resources

* Practical to turn an existing browser into Gazelle

Questions!

