
Nozzle:
A Defense Against Heap-spraying
Code Injection Attacks

Paruj Ratanaworabhan, Cornell University

Ben Livshits and Ben Zorn, Microsoft Research
(Redmond, WA)

Heap Spraying is a Problem

Firefox 3.5
July 14, 2009

http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html

Adobe Acrobat / Reader
February 19, 2009

Flash
July 23, 2009

http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html

Common Element:
All vulnerable applications support
embedded scripting languages
(JavaScript, ActionScript, etc.)

2

http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html

Drive-By Heap Spraying

3

Owned!

Drive-By Heap Spraying (2)

4

<HTML>

<SCRIPT language="text/javascript">

shellcode = unescape("%u4343%u4343%...'');

</SCRIPT>

<IFRAME

SRC=file://BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB …

NAME="CC …

഍഍">

</IFRAME>

</HTML>

ok

bad

ok

Creates the
malicious object

Triggers the jump

Program Heap
ASLR prevents the

attack

PC

Drive-By Heap Spraying (3)

5

<SCRIPT language="text/javascript">

shellcode = unescape("%u4343%u4343%...'');

oneblock = unescape("%u0C0C%u0C0C");

var fullblock = oneblock;

while (fullblock.length<0x40000) {

fullblock += fullblock;

}

sprayContainer = new Array();

for (i=0; i<1000; i++) {

sprayContainer[i] = fullblock + shellcode;

}

</SCRIPT>

ok

bad

ok

Program Heap

bad

bad

bad

bad

bad

Allocate 1000s of
malicious objects

Kittens of Doom
What data can you trust?

• Heap spraying is quite
general, easy to implement

• Many applications allow
scripts in type safe
languages
– JavaScript, ActionScript

– Java, C#

• Many applications accept
data from untrusted sources
– Embed malicious code

in images, documents, DLLs,
etc.

• [Sotirov & Dowd BH’08]

6

Nozzle – Runtime Heap Spraying Detection

Logical time (number of allocations/frees)

N
o

rm
al

iz
ed

 S
u

rf
ac

e
A

re
a Malicious Site

Normal Site

Application: Web Browser

Nozzle answers:
How much of my heap
is suspicious?

7

Outline

• Nozzle design & implementation

• Evaluation

– False positives

– False negatives

– New threats (Adobe Reader)

• Summary

8

Nozzle Design
Application Threads Nozzle Threads

Application Heap

new
object

Create
Object

Initialize
Object

init
object

scan object
and classify

suspect
object

Repeat

suspect
object

benign
objectbenign

object

benign
object

suspect
object benign

object

Advantages
-Just need to hook standard APIs –

malloc, free, HeapAlloc, HeapFree, etc.
- Monitor new applications using Detours
- Can be applied to existing binaries

9

Local Malicious Object Detection

Code or Data?

Is this object dangerous?

• Is this object code?

– Code and data look the same on x86

• Focus on sled detection

– Majority of object is sled

– Spraying scripts build simple sleds

• Is this code a NOP sled?

– Previous techniques do not look at heap

– Many heap objects look like NOP sleds

– 80% false positive rates using previous
techniques

• Need stronger local techniques

10

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

add [eax], al

add [eax], al

add [eax], al

add [eax], al

add [eax], al

add [eax], al

add [eax], al

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

0101010101

and ah, [edx]

and ah, [edx]

and ah, [edx]

and ah, [edx]

and ah, [edx]

and ah, [edx]

and ah, [edx]

10

NOP
sled

shellcode

Object Surface Area Calculation (1)

• Assume: attacker wants
to reach shell code from
jump to any point in
object

• Goal: find blocks that
are likely to be reached
via control flow

• Strategy: use dataflow
analysis to compute
“surface area” of each
block

1111

An example object from visiting google.com

Object Surface Area Calculation (2)

• Each block starts with
its own size as weight

• Weights are propagated
forward with flow

• Invalid blocks don’t
propagate

• Iterate until a fixpoint is
reached

• Compute block with
highest weight

1212

An example object from visiting google.com

4

2

4

2

2

310

14

4

12

6

912

14

12

12

12

15

Nozzle Global Heap Metric

obj

Bi

SA(Bi)SA(o)

SA(H)

NSA(H)

13

build CFG

dataflow

in eax, 0x11

arithmatic

memory

I/O or syscall

control flow

sub [eax], eax

adc dh, bh

jecxz 021c7fd8

test cl, ah

add al, 30h

add al, 80h

or eax, 0d172004h

outs dx, [esi]

jecxz 021c7fde

add [ecx], 0

add [eax], al

xor [eax], eax

add al, 38h

imul eax, [eax], 6ch

or eax, 0d179004h

To
 t

ar
ge

t
b

lo
ck

Legend:

Compute threat of
single block

Compute threat of
single object

Compute threat
of entire heap

Normalize to (approx):
P(jump will cause exploit)

Nozzle Experimental Summary

0 False Positives

• 10 popular AJAX-heavy sites

• 150 top Web sites

0 False Negatives

• 12 published heap spraying exploits and

• 2,000 synthetic rogue pages generated using Metasploit

Runtime Overhead

• As high as 2x without sampling

• 5-10% with sampling

14

Nozzle on Benign Sites

• Benign sites
have low
Nozzle NSA

• Max NSA
always less
than 12%

• Thresholds
can be set
much higher
for detection
(50% or more)

1515

Nozzle with Known Heap Sprays

• 12 published heap spray
pages in multiple
browsers

• 2,000 synthetic heap
spray pages using
MetaSploit

– advanced NOP
engine

– shellcode database

16

Result: max NSA between 76% and 96%
Nozzle detects real spraying attacks

Nozzle Runtime Overhead

1717

Using Nozzle in Adobe Reader

18

AcroRd32.exe

nozzlert.dll

Detours det-
AcroRd32.exe

Results
- Detected a published heap spray attack (NSA > 75%)
- Runtime overhead was 8% on average
- NSA of normal document < 10%

Demo

Summary

• Heap spraying attacks are

– Easy to implement, easy to retarget

– In widespread use

• Existing detection methods fail to classify
malicious objects on x86 architecture

• Nozzle

– Effectively detects published attacks (known and new)

– Has acceptable runtime overhead

– Can be used both online and offline

19

Questions?

Paruj Ratanaworabhan (paruj.r@gmail.com)

Ben Livshits (livshits@microsoft.com)

Ben Zorn (zorn@microsoft.com)

20

Nozzle heap spraying

See us on Channel 9:
http://channel9.msdn.com/posts/Peli/

Heap-Spraying-Attack-Detection-with-Nozzle/

mailto:paruj.r@gmail.com
mailto:livshits@microsoft.com
mailto:zorn@microsoft.com

Backup

21

Attacks on Nozzle

• Injecting junk into start of object

– Where does the exploit code begin?

• TOCTTOU – When do you scan the object?

• Attacks on surface area calculation

– Jumps outside of objects

– Multiple instances of shellcode inside an object

• Hiding the code itself

– Code that rewrites heap at last minute

22

What about Data Execution
Prevention?

• DEP / NX bit = hardware to prevent code
execution on the heap

• DEP is great , but isn’t used everywhere

– Issues with app compatibility

– DEP can be circumvented

– JIT compilers complicate the story

• Nozzle augments DEP for defense in depth

23

Normalized Surface Area Locally

25

