VPriv: Protecting Privacy in Location-Based Vehicular Services

Raluca Ada Popa and Hari Balakrishnan Computer Science and Artificial Intelligence Laboratory, M.I.T.

Andrew Blumberg Department of Mathematics Stanford University

(Part of the CarTel project http://cartel.csail.mit.edu/)

Motivation

- Location-based vehicular services are being increasingly adopted:
 - Automated toll collection (E-ZPass), traffic law enforcement, statistics collection
 - Insurance pricing based on driver behavior
- Promises efficiency, better driver experience, safety, revenue

Example: E-ZPass

- Antenna reads account ID, knows time, location
- A centralized server can assemble a driver's path
- Civil cases used driver path from E-ZPass data

VPriv: a system for preserving privacy

VPriv

- Observation: Most vehicular services are functions over time-location tuples
- Compute functions on drivers' time-location tuples without revealing any information other than result

Perform computations in zero-knowledge

- Secure multi-party computation
- VPriv designed from scratch
- Efficiency through homomorphic encryption
- Applicable to sum of cost functions

Outline

- Motivation
- Model
- Architecture
- Protocols
- Enforcement
- Evaluation
- Conclusion

Model

- Two parties: car/driver and server
 - Driver is not trusted (transponder entirely not trusted)
 - Server is trusted to run protocol, but attempts to violate privacy
- F is a function to compute on driver's path
- Cars' transponders periodically generate tuples:
 <tag, time, location>
 - Tag is *random* and changing for privacy
 - Sent to server while driving or at end of month

Goals

- Correctness
- Locational Privacy
- Efficiency: important for deployment

Locational Privacy

<u>VPriv</u>

- 1. Database of <tag, time, location>
- 2. Client-server interaction during computation of *F*

Database of <time, location>
 Result of *F*

3. Result of F

- To prevent information being inferred from oracle database
 - Upload tuples only when enough mixing (Hoh et *al.,* 2008)

<u>Oracle</u>

VPriv's Architecture

Two components:

- 1. Secure multi-party computation
 - Compute F on car's path
- 2. Enforcement scheme
 - Ensure clients abide by protocol

Applications

- Usage-based tolls
 - What is the toll a driver has to pay based on his path?
- Speeding tickets
 - Did the driver ever travel faster than 65MPH?
- "Pay-as-you-go" insurance premiums
 - How many minutes did the driver travel over the speed limit?
 - Did the driver travel through dangerous areas?

Crypto Tools

- Random function family: for k random, fk looks random
- Commitment scheme
 - To commit to x, Alice computes (c[x], d[x])
 - $\circ\,$ Sends c[x] to Bob; Bob cannot guess x
 - $\circ\,$ Later, Alice opens c[x] by providing x and d[x]; cannot provide other x
 - Homomorphism:

 $c[x_1] \cdot c[x_2] = c[x_1 + x_2], \ d[x_1 + x_2] = d[x_1] + d[x_2]$

Notation

- $\{v_i\}$: set of random tags of a 'v'ehicle
- ▶ $\{s_j\}$: set of all tags seen at the 's'erver
- t_j : 't'oll associated with the tuple with tag s_j
 - $< s_j = 142, 4:21$ PM, GPS for Sumner Tunnel>, $t_j =$ \$3.5
- COST: total toll

Protocol

- Registration
 - Client chooses random tags, v_i , and a random function, k
 - Commits to $f_k(v_i)$ and k (sends $c[f_k(v_i)], c[k]$ to server)
- Driving
 - Uploads $< v_i$, time, location>
- Reconciliation
 - Using t_j from server, client computes the result of F
 - Server challenges the client to verify result
 - Detection probability $\geq \frac{1}{2}$ per challenge
 - Detection probability exponential in # challenges
 - (e.g. 10 challenges, 99.9% probability)

Reconciliation (cont'd)

Tolling protocol

- Server computes toll, t_j , for every tuple
- Sends driver all pairs $\langle s_j, t_j \rangle$ for $t_j > 0$
- Client computes total toll, COST

Challenge Phase

Server

Challenge 0: open $c[f_k(s_j)]$ and $c[f_k(v_i)]$

Challenge 1: open $c[f_k(s_j)]$ and $c[t_j]$; show f_k

Client

- Challenge 0: assuming commitments are correct, verify COST
 - Compute $\prod_{j:\exists i, f_k(s_j)=f_k(v_i)} c[t_j]$
 - Check it is a commitment to COST
- Challenge 1: assuming COST is correct, verify commitments
 - Chec $c[f_k(s_j)]$, $c[t_j]$ are correct

Why does it work?

- Correctness
- Soundness
 - Malicious client: commitments or *COST* are incorrect
- Locational privacy:
 - Challenge 0: reveal $f_k(v_i)$, but do not reveal f_k
 - Challenge 1: provide f_k , but do not decommit $c[f_k(v_i)]$

Related Protocols: Speeding

- Two consecutive tuples use same tag
 - Server computes speed between them
- Adjust tolling protocol
 - Server assigns cost of 1 to tuples over speed limit
- Speeding tickets: COST ≥ 1
- Insurance premiums
 - Number of speedups: COST

Enforcement

Misbehaving clients:

- Turn off transponder device
- Use different tags
- Modify location

Random spot checks

- Police cars/cameras
- Record <license plate, time, location>
- Check for consistency with server's database

General, applicable to all functions

Example Attack

- Client reneges some of his tags
 - 1. Clients inform server which commitments from registration correspond to tags used while driving
 - 2. Client downloads set of tuples from server and claims that all tags from driving are included
 - 3. All spot checks collected are now checked for consistency; driver shows tuples corresponding to spot checks from driving; these tuples should have tags that are among the ones in Steps 1 and 2

If client reneged a tag in Steps 1 or 2, spot check fails

Outline

- Motivation
- Model
- Architecture
- Protocols
- Enforcement
- Evaluation
- Conclusion

Evaluation

- Tolling protocol, C++
- Linear in # of driver tags and tags downloaded from server
- Tradeoff privacy vs. efficiency

Implementation

- Registration and reconciliation
- 10 rounds, 10,000 tuples: ~100s running time/month

Comparison to Fairplay

- General purpose compiler for secure multiparty computation
- Implemented a simplified toll calculation
- Ran out of 1GB of heap space for 75 tuples, compiling and running > 5 min

About *three* orders of magnitude slower than VPriv

Enforcement

- Effectiveness similar to driving without a license plate
- Detection probability is exponential in # of spot checks
 - E.g. 1 spot check/500 mins, driver detected with 95% in less than 10h
- Penalty reduces incentives
 - 1 spot check in 1000 mins, after 1.5h, detected ~10%
- ► Each driver spot checked about *1-2 times* a month

Simulation

- CarTel traces (*Hull*, 2008): 27 taxis in Boston area during year 2008, 4826 one-day paths
- Training phase: Extract 1% (~300) popular places during each month
- Testing phase: Place spot checks randomly at these places and record # of one-day paths observed

Simulation Results

▶ 15–20 spot checks, 90% paths covered (out of 4826)

Related Work

- *Blumberg et al.*, 2005
 - Use multi-party secure computation as a black box, no resilience to physical attacks
- E-cash (*Chaum,* 1985)
 - Not general approach, no enforcement
- Privacy in social networks (*Zhong*, 2007)
 Specific point in polygon problem
- K-anonymity (*Sweeney*, 2002)
- Differential privacy (*Dwork*, 2006)
- Floating car data (*Rass*, 2008)

Conclusions

- Efficient protocol for preserving driver privacy
 Wide class of vehicular services: tolling, speeding
- General and practical enforcement scheme
 - Spot checks

Thank you!