
The Multi-Principal OS Construction of the Gazelle Web Browser

Helen J. Wang∗, Chris Grier†, Alexander Moshchuk‡, Samuel T. King†, Piali Choudhury∗, Herman Venter∗
∗Microsoft Research †University of Illinois at Urbana-Champaign ‡University of Washington

{helenw,pialic,hermanv}@microsoft.com, {grier,kingst}@uiuc.edu, anm@cs.washington.edu

Abstract
Original web browsers were applications designed to

view static web content. As web sites evolved into dy-
namic web applications that compose content from mul-
tiple web sites, browsers have become multi-principal
operating environments with resources shared among
mutually distrusting web site principals. Nevertheless,
no existing browsers, including new architectures like IE
8, Google Chrome, and OP, have a multi-principal oper-
ating system construction that gives a browser-based OS
the exclusive control to manage the protection of all sys-
tem resources among web site principals.

In this paper, we introduce Gazelle, a secure web
browser constructed as a multi-principal OS. Gazelle’s
browser kernel is an operating system that exclusively
manages resource protection and sharing across web site
principals. This construction exposes intricate design is-
sues that no previous work has identified, such as cross-
protection-domain display and events protection. We
elaborate on these issues and provide comprehensive so-
lutions.

Our prototype implementation and evaluation expe-
rience indicates that it is realistic to turn an existing
browser into a multi-principal OS that yields signifi-
cantly stronger security and robustness with acceptable
performance.

1 Introduction

Web browsers have evolved into a multi-principal oper-
ating environment where a principal is a web site [43].
Similar to a multi-principal OS, recent proposals [12,
13, 23, 43, 46] and browsers like IE 8 [34] and Fire-
fox 3 [16] advocate and support programmer abstrac-
tions for protection (e.g., <sandbox> in addition to
<iframe> [43]) and cross-principal communication
(e.g., PostMessage [24, 43]). Nevertheless, no exist-
ing browsers, including new architectures like IE 8 [25],
Google Chrome [37], and OP [21], have a multi-principal
OS construction that gives a browser-based OS, typically
called the browser kernel, the exclusive control to man-
age the protection and fair sharing of all system resources
among browser principals.

In this paper, we present a multi-principal OS con-
struction of a secure web browser, called Gazelle.
Gazelle’s browser kernel exclusively provides cross-
principal protection and fair sharing of all system re-

sources. In this paper, we focus only on resource pro-
tection in Gazelle.

In Gazelle, the browser kernel runs in a separate pro-
tection domain (an OS process in our implementation),
interacts with the underlying OS directly, and exposes a
set of system calls for web site principals. We use the
same web site principal as defined in the same-origin
policy (SOP), which is labeled by a web site’s origin,
the triple of <protocol, domain name, port>. In
this paper, we use “principal” and “origin” interchange-
ably. Unlike previous browsers, Gazelle puts web site
principals into separate protection domains, completely
segregating their access to all resources. Principals can
communicate with one another only through the browser
kernel using inter-process communication. Unlike all ex-
isting browsers except OP, our browser kernel offers the
same protection to plugin content as to standard web con-
tent.

Such a multi-principal OS construction for a browser
brings significant security and reliability benefits to the
overall browser system: the compromise or failure of a
principal affects that principal alone, leaving other prin-
cipals and the browser kernel unaffected.

Although our architecture may seem to be a straight-
forward application of multi-principal OS construction to
the browser setting, it exposes intricate problems that did
not surface in previous work, including display protec-
tion and resource allocation in the face of cross-principal
web service composition common on today’s web. We
will detail our solutions to the former and leave the latter
as future work.

We have built an Internet-Explorer-based prototype
that demonstrates Gazelle’s multi-principal OS archi-
tecture and at the same time uses all the backward-
compatible parsing, DOM management, and JavaScript
interpretation that already exist in IE. Our prototype ex-
perience indicates that it is feasible to turn an existing
browser into a multi-principal OS while leveraging its
existing capabilities.

With our prototype, we successfully browsed 19 out
of the top 20 Alexa-reported popular sites [5] that we
tested. The performance of our prototype is acceptable,
and a significant portion of the overhead comes from IE
instrumentation, which can be eliminated in a production
implementation.

We expect that the Gazelle architecture can be made
fully backward compatible with today’s web. Neverthe-

less, it is interesting to investigate the compatibility cost
of eliminating the insecure policies in today’s browsers.
We give such a discussion based on a preliminary analy-
sis in Section 9.

For the rest of the paper, we first give an in-depth
comparison with related browser architectures in Sec-
tion 2. We then describe Gazelle’s security model 3. In
Section 4, we present our architecture, its design ratio-
nale, and how we treat the subtle issue of legacy pro-
tection for cross-origin script source. In Section 5, we
elaborate on the problem statement and design for cross-
principal, cross-process display protection. We give a
security analysis including a vulnerability study in Sec-
tion 6. We describe our implementation in Section 7. We
measure the performance of our prototype in Section 8.
We discuss the tradeoffs of compatibility vs. security for
a few browser policies in Section 9. Finally, we conclude
and address future work in Section 10.

2 Related Work

In this section, we discuss related browser architectures
and compare them with Gazelle.

2.1 Google Chrome and IE 8

In concurrent work, Reis et al. detailed the various pro-
cess models supported by Google Chrome [37]: mono-
lithic process, process-per-browsing-instance, process-
per-site-instance, and process-per-site. A browsing in-
stance contains all interconnected (or inter-referenced)
windows including tabs, frames and subframes regard-
less of their origin. A site instance is a group of same-
site pages within a browsing instance. A site is defined
as a set of SOP origins that share a registry-controlled
domain name: for example, attackerAd.socialnet.com,
alice.profiles.socialnet.com, and socialnet.com share the
same registry-controlled domain name socialnet.com,
and are considered to be the same site or principal
by Chrome. Chrome uses the process-per-site-instance
model by default. Furthermore, Reis et al. [37] gave
the caveats that Chrome’s current implementation does
not support strict site isolation in the process-per-site-
instance and process-per-site models: embedded princi-
pals, such as a nested iframe sourced at a different ori-
gin from the parent page, are placed in the same process
as the parent page.

The monolithic and process-per-browsing-instance
models in Chrome do not provide memory or other re-
source protection across multiple principals in a mono-
lithic process or browser instance. The process-per-
site model does not provide failure containment across
site instances [37]. Chrome’s process-per-site-instance

model is the closest to Gazelle’s two processes-per-
principal-instance model, but with several crucial differ-
ences: (1) Chrome’s principal is site (see above) while
Gazelle’s principal is the same as the SOP principal. (2)
A web site principal and its embedded principals co-exist
in the same process in Chrome, whereas Gazelle places
them into separate protection domains. Pursuing this de-
sign led us to new research challenges including cross-
principal display protection (Section 5). (3) Plugin con-
tent from different principals or sites share a plugin pro-
cess in Chrome, but are placed into separate protection
domains in Gazelle. (4) Chrome relies on its render-
ing processes to enforce the same-origin policy among
the principals that co-exist in the same process. These
differences indicate that in Chrome, cross-principal (or -
site) protection takes place in its rendering processes and
its plugin process, in addition to its browser kernel. In
contrast, Gazelle’s browser kernel functions as an OS,
managing cross-principal protection on all resources, in-
cluding display.

IE 8 [25] uses OS processes to isolate tabs from one
another. This granularity is insufficient since a user may
browse multiple mutually distrusting sites in a single tab,
and a web page may contain an iframe with content from
an untrusted site (e.g., ads).

Fundamentally, Chrome and IE 8 have different goals
from that of Gazelle. Their use of multiple processes is
for failure containment across the user’s browsing ses-
sions rather than for security. Their security goal is to
protect the host machine from the browser and the web;
this is achieved by process sandboxing [9]. Chrome and
IE 8 achieved a good milestone in the evolution of the
browser architecture design. Looking forward, as the
world creates and migrates more data and functionality
into the web and establishes the browser as a dominant
application platform, it is critical for browser designers
to think of browsers as operating systems and protect
web site principals from one another in addition to the
host machine. This is Gazelle’s goal.

2.2 Experimental browsers

The OP web browser [21] uses processes to isolate
browser components (i.e., HTML engine, JavaScript in-
terpreter, rendering engine) as well as pages of the same
origin. In OP, intimate interactions between browser
components, such as JavaScript interpreter and HTML
engine, must use IPC and go through its browser ker-
nel. The additional IPC cost does not add much bene-
fits: isolating browser components within an instance of
a web page provides no additional security protection.
Furthermore, besides plugins, basic browser components
are fate-shared in web page rendering: the failure of any
one browser component results in most web pages not

functioning properly. Therefore, process isolation across
these components does not provide any failure contain-
ment benefits either. Lastly, OP’s browser kernel does
not provide all the cross-principal protection needed as
an OS because it delegates display protection to its pro-
cesses.

Tahoma [11] uses virtual machines to completely iso-
late (its own definition of) web applications, disallowing
any communications between the VMs. A web appli-
cation is specified in a manifest file provided to the vir-
tual machine manager and typically contains a suite of
web sites of possibly different domains. Consequently,
Tahoma doesn’t provide protection to existing browser
principals. In contrast, Gazelle’s browser kernel protects
browser principals first hand.

The Building a Secure Web Browser project [27, 28]
uses SubOS processes to isolate content downloading,
display, and browser instances. SubOS processes are
similar to Unix processes except that instead of a user
ID, each process has a SubOS ID with OS support for
isolation between objects with different SubOS IDs. Su-
bOS instantiates a browser instance with a different Su-
bOS process ID for each URL. This means that the prin-
cipal in SubOS is labelled with the URL of a page (pro-
tocol, host name plus path) rather than the SOP origin
as in Gazelle. Nevertheless, SubOS does not handle em-
bedded principals, unlike Gazelle. Therefore, they also
do not encounter the cross-principal display-sharing is-
sue which we tackle in depth. SubOS’s principal model
would also require all cross-page interactions that are
common within a SOP origin to go through IPC, incur-
ring significant performance cost for many web sites.

3 Security model

3.1 Background: security model in existing
browsers

Today’s browsers have inconsistent access and protec-
tion model for various resources. These inconsistencies
present significant hurdles for web programmers to build
robust web services. In this section, we give a brief
background on the relevant security policies in existing
browsers. Michal Zalewski gives an excellent and per-
haps the most complete description of existing browsers’
security model to date [48].

Script. The same-origin policy (SOP) [39] is the
central security policy on today’s browsers. SOP gov-
erns how scripts access the HTML document tree and
remote store. SOP defines the origin as the triple of
<protocol, domain-name, port>. SOP mandates
that two documents from different origins cannot access
each other’s HTML documents using the Document Ob-
ject Model (DOM), which is the platform- and language-

neutral interface that allows scripts to dynamically ac-
cess and update the content, structure and style of a doc-
ument [14]. A script can access its document origin’s
remote data store using the XMLHttpRequest object,
which issues an asynchronous HTTP request to the re-
mote server [45]. (XMLHttpRequest is the cornerstone
of AJAX programming.) SOP allows a script to issue
an XMLHttpRequest only to its enclosing page’s origin.
A script executes as the principal of its enclosing page
though its source code is not readable in a cross-origin
fashion.

For example, an <iframe> with source http://a.com
cannot access any HTML DOM elements from another
<iframe> with source http://b.com and vice versa.
http://a.com’s scripts (regardless of where the scripts
are hosted) can issue XMLHttpRequests to only a.com.
Furthermore, http://a.com and https://a.com are different
origins because of the protocol difference.

Cookies. For cookie access, by default, the principal
is the host name and path, but without the protocol [19,
32]. For example, if the page a.com/dir/1.html creates a
cookie, then that cookie is accessible to a.com/dir/2.html
and other pages from that directory and its subdirec-
tories, but is not accessible to a.com/ . Furthermore,
https://a.com/ and http://a.com/ share the cookie store
unless a cookie is marked with a “secure” flag. Non-
HTTPS sites may still set secure cookies in some im-
plementations, just not read them back [48]. A web pro-
grammer can make cookie access less restrictive by set-
ting a cookie’s domain attribute to a postfix domain or
the path name to be a prefix path. The browser ensures
that a site can only set its own cookie and that a cookie
is attached only to HTTP requests to that site.

The path-based security policy for cookies does not
play well with SOP for scripts: scripts can gain access
to all cookies belonging to a domain despite path restric-
tions.

Plugins. Current major browsers do not enforce any
security on plugins and grant plugins access to the local
operating system directly. The plugin content is subject
to the security policies implemented in the plugin soft-
ware rather than the browser.

3.2 Gazelle’s security model

Gazelle’s architecture is centered around protecting prin-
cipals from one another by separating their respective re-
sources into OS-enforced protection domains. Any shar-
ing between two different principals must be explicit us-
ing cross-principal communication (or IPC) mediated by
the browser kernel.

We use the same principal as the SOP, namely, the
triple of <protocol, domain-name, port>. While
it is tempting to have a more fine-grained principal,

we need to be concerned with co-existing with current
browsers [29, 43]: the protection boundary of a more
fine-grained principal, such as a path-based principal,
would break down in existing browsers. It is unlikely that
web programmers would write very different versions of
the same service to accommodate different browsers; in-
stead, they would forego the more fine-grained principal
and have a single code base.

The resources that need to be protected across princi-
pals [43] are memory such as the DOM objects and script
objects, persistent state such as cookies, display, and net-
work communications.

We extend the same principal model to all content
types except scripts and style sheets (Section 4): the el-
ements created by <object>, <embed>, , and
certain types of <input>1 are treated the same as an
<iframe>: the origin of the included content labels
the principal of the content. This means that we en-
force SOP on plugin content2. This is consistent with the
existing movement in popular plugins like Adobe Flash
Player [20]. Starting with Flash 7, Adobe Flash Player
uses the exact domain match (as in SOP) rather than
the earlier “superdomain” match (where www.adobe.com
and store.adobe.com have the same origin) [2]; and
starting with Flash 9, the default ActionScript behavior
only allows access to same-origin HTML content unlike
the earlier default that allows full cross-origin interac-
tions [1].

Gazelle’s architecture naturally yields a security pol-
icy that partitions all system resources across the SOP
principal boundaries. Such a policy offers consistency
across various resources. This is unlike current browsers
where the security policies vary for different resources.
For example, cookies use a different principal than that
of scripts (see the above section); descendant navigation
policy [7, 8] also implicitly crosses the SOP principal
boundary (more in Section 5.1).

It is feasible for Gazelle to enable the same security
policies as the existing browsers and achieve backward
compatibility through cross-principal communications.
Nevertheless, it is interesting to investigate the tradeoffs
between supporting backward compatibility and elimi-
nating insecure policies in today’s browsers. We gave a
preliminary discussion on this in Section 9.

4 Architecture

4.1 Basic Architecture
Figure 1 shows our basic architecture. A principal is the
unit of protection. Principals need to be completely iso-
lated in resource access and usage. Any sharing must

1<input> can be used to include an image using a “src” attribute.
2OP [21] calls this plugin policy the provider domain policy.

be made explicit. Just as in desktop applications, where
instances of an application are run in separate processes
for failure containment and independent resource alloca-
tion, a principal instance is the unit of failure contain-
ment and the unit of resource allocation. For example,
navigating to the same URL in different tabs corresponds
to two instances of the same principal; when a.com em-
beds two b.com iframes, the b.com iframes correspond to
two instances of b.com. However, the frames that share
the same origin as the host page are in the same principal
instance as the host page by default, though we allow the
host page to designate an embedded same-origin frame
or object as a separate principal instance for independent
resource allocation and failure containment. Principal in-
stances are isolated for all runtime resources, but princi-
pal instances of the same principal share persistent state
such as cookies and other local storage. Protection unit,
resource allocation unit, and failure containment unit can
each use a different mechanism depending on the sys-
tem implementation. Because the implementation of our
principal instances contains native code, we use OS pro-
cesses for all three purposes.

Our principal instance is similar to Google Chrome’s
site instance [37], but with two crucial differences: 1)
Google Chrome considers the sites that share the same
registrar-controlled domain name to be from the same
site, so ad.datacenter.com, user.datacenter.com, and dat-
acenter.com are considered to be the same site and be-
long to the same principal. In contrast, we consider them
as separate principals. 2) When a site, say a.com, em-
beds another principal’s content, say an <iframe> with
source b.com, Google Chrome puts them into the same
site instance. In contrast, we put them into separate prin-
cipal instances.

The browser kernel runs in a separate protection do-
main and interposes between browser principals and the
traditional OS. The browser kernel mediates the princi-
pals’ access to system resources and enforces security
policies of the browser. Essentially, the browser ker-
nel functions as an operating system to browser princi-
pals and manages the protection and sharing of system
resources for them. The browser kernel also manages
the browser chrome, such as the address bar and menus.
The browser kernel receives all events generated by the
underlying operating system including user events like
mouse clicks or keyboard entries; these events are then
dispatched to the appropriate principal instance. When
the user navigates a window by clicking on a hyperlink
that points to an URL at a different origin, the browser
kernel creates the protection domain for the URL’s prin-
cipal instance (if one doesn’t exist already) to render the
target page, destroys the protection domain of the hy-
perlink’s host page, and re-allocates and re-initializes the
window to the URL’s principal instance. The browser

�� �� � � �� �� � 	
� � ��� �
 � � ��� �� � ��� � ��� �� ���� �� � ! �" # �" ��$ �% &' !� � " (� � � ��)* + ,-. * /. *0 . 12) / 345 678 9: ;< = > >8$ �% &' !� � " (� � � �� $ ' # �" � ?
@A . *B C D0 E FG - C. HIJK LM NO LJ PQ RS MT O JK K

Figure 1: The Gazelle architecture

�� � �� ���� � �	 �
 � � � � �� � ��� � �	 �
 � �
�� ��� �� �� � � �� ��� � ! � "! �# ! $% � " &'() *+ ,- *(./0 1 +2 - ())1 + ,3 - ,45 6 , 3) *5 3 - (78 ! �9 : ;# < => :! ?

Figure 2: Supporting legacy protection

kernel is agnostic of DOM and content semantics and
has a relatively simple logic.

The runtime of a principal instance performs con-
tent processing and is essentially an instance of today’s
browser components including HTML and style sheet
parser, JavaScript engine, layout renderer, and browser
plugins. The only way for a principal instance to inter-
act with system resources, such as networking, persis-
tent state, and display, is to use browser kernel’s system
calls. Principals can communicate with one another us-
ing message passing through the browser kernel, in the
same fashion as inter-process communications (IPC).

It is necessary that the protection domain of a princi-
pal instance is a restricted or sandboxed OS process. The
use of process guarantees the isolation of principals even
in the face of attacks that exploit memory vulnerabilities.
The process must be further restricted so that any interac-
tion with system resources is limited to the browser ker-
nel system calls. Native Client [47] and Xax [15] have
established the feasibility of such process sandboxing.

This architecture can be efficient. By putting all
browser components including plugins into one process,
they can interact with one another through DOM inti-
mately and efficiently as they do in existing browsers.
This is unlike the OP browser’s approach [21] in which
all browser components are separated into processes;
chatty DOM interactions must be layered over IPCs
through the OP browser kernel, incurring unnecessary
overhead without added security.

Unlike all existing browsers except OP, this architec-
ture can enforce browser security policies on plugins,
namely, plugin content from different origins are segre-
gated into different processes. Any plugin installed is un-
able to interact with the operating system and is only pro-
vided access to system resources subject to the browser
kernel allowing that access. In this architecture, the pay-
load that exploits plugin vulnerabilities will only com-

promise the principal with the same origin as the ma-
licious plugin content, but not any other principals nor
browser kernel.

The browser kernel supports the following system
calls related to content fetching in this architecture (a
more complete system call table is shown in Table 3):

• getSameOriginContent (URL): Fetch the content at
URL that has the same origin as the issuing princi-
pal regardless of the content type.

• getCrossOriginContent (URL): Fetch the script or
style sheet content from URL; URL may be from
different origin than the issuing principal. The
content type is determined by the content-type

header of the HTTP response.

• delegate (URL, windowSpec): Delegate a display
area to a different principal of URL and fetch the
content for that principal.

The semantics of these system calls is that the browser
kernel can return cross-origin script or style content to a
principal based on the content-type header of the HTTP
response, but returns other content if and only if the con-
tent has the same origin as the issuing principal, abid-
ing the same-origin policy. All the security decisions are
made and enforced by the browser kernel alone.

4.2 Supporting Legacy Protection
The system call semantics in the basic architecture has
one subtle issue: cross-origin script or style sheet sources
are readable by the issuing principal, which does not con-
form with the existing SOP. The SOP dictates that a script
can be executed in a cross-origin fashion, but the access
to its source code is restricted to same origin only.

A key question to answer is that whether a script
should be processed in the protection domain of its

provider (indicated in “src”), in the same way as frames,
or in the protection domain of the host page that embeds
the script. To answer this question, we must examine the
primary intent of the script element abstraction. Script
is primarily a library abstraction (which is a necessary
and useful abstraction) for web programmers to include
in their sites and runs with the privilege of the includer
sites [43]. This is in contrast with the frame abstractions:
Programmers put content into cross-origin frames so that
the content runs as the principal of its own provider and
be protected from other principals. Therefore, a script
should be handled by the protection domain of its in-
cluder.

In fact, it is a flaw of the existing SOP to offer protec-
tion for cross-origin script source. Evidence has shown
that it is extremely dangerous to hide sensitive data inside
a script [22]. Numerous browser vulnerabilities exist for
failing to provide the protection.

Unfortunately, web sites that rely on cross-origin
script source protection, exist today. For example,
GMail’s contact list is stored in a script file, at the time
of writing. Furthermore, it is increasingly common for
web programmers to adopt JavaScript Object Notation
(JSON) [31] as the preferred data-interchange format.
Web sites often demand such data to be same-origin ac-
cess only. To prevent such data from being accidentally
accessed through <script> (by a different origin), web
programmers sometimes put “while (1);” prior to the
data definition or put comments around the data so that
accidental script inclusion would result in infinite loop
execution or a no-op.

In light of the existing use, new browser architecture
design must also offer the cross-origin script source pro-
tection. One way to do this is to strip all authentication-
containing information, such as cookies and HTTP au-
thentication headers, from the HTTP requests that re-
trieve cross-origin scripts so that the web servers will not
supply authenticated data. The key problem with this ap-
proach is that it is not always clear what in an HTTP re-
quest may contain authentication information. For exam-
ple, some cookies are used for authentication purposes
and some are not. Stripping all cookies may impair func-
tionality when the purpose of some cookies are not for
authentication purposes. In another example, a network
may use IP addresses for authentication, which are im-
possible to strip out.

We address the cross-origin script source protection
problem by modifying our architecture slightly, as shown
in Figure 2. The modification is based on the following
observation. Third-party plugin software vulnerabilities
have surged recently [36]. Symantec reports that in 2007
alone there are 467 plugin vulnerabilities [42], which is
about one magnitude higher than that of browser soft-
ware. Clearly, plugin software should be trusted much

less than browser software. Therefore, for protecting
cross-origin script or style sheet source, we place more
trust in the browser code and let the browser code retrieve
and protect cross-origin script or style sheet sources: for
each principal, we run browser code and plugin code
in two separate processes. The plugin instance process
cannot issue the getCrossOriginContent() and it can
only interact with cross-origin scripts and style sheets
through the browser instance process.

In this architecture, the quality of protecting cross-
origin script and style-sheet source relies on the browser
code quality. While this protection is not perfect with na-
tive browser code implementation, the architecture offers
the same protection as OP, and stronger protection than
the rest of existing browsers. The separation of browser
code and plugin code into separate processes also im-
proves reliability by containing plugin failures.

In recent work, Native Client [47] and Xax [15] have
presented a plugin model that uses sandboxed processes
to contain each browser principal’s plugin content. Their
plugin model works perfectly in our browser architec-
ture. We do not provide further discussions on plugins in
our paper.

5 Cross-Principal, Cross-Process Display
and Events Protection

Cross-principal service composition is a salient nature
of the web and is commonly used in web applications.
When building a browser as a multi-principal OS, this
composition raises new challenges in display sharing and
event dispatching: when a web site embeds a cross-origin
frame (or objects, images), the involved principal in-
stances share the display at the same time. Therefore, it is
important that the browser kernel 1) discerns display and
events ownership, 2) enforces that a principal instance
can only draw in its own display areas, 3) dispatches
UI events to only the principal instance with which the
user is interacting. An additional challenge is that the
browser kernel must accomplish these without access to
any DOM semantics.

From a high level, in Gazelle principal instances are
responsible for rendering content into bitmap objects,
and our browser kernel manages these bitmap objects
and chooses when and where to display them. Our ar-
chitecture provides a clean separation between the act of
rendering web content and the policies of how to display
this content. This is a stark contrast to today’s browsers
that intermingle these two functions, which has led to
numerous security vulnerabilities [18, 44].

Our display management fundamentally differs from
that of the traditional multi-user OSes, such as Unix and
Windows. Traditional OSes offer no cross-principal dis-

play protection. In X, all the users who are authorized
(through .Xauthority) to access the display can access
one another’s display and events. Experimental OSes
like EROS [41] have dealt with cross-principal display
protection. However, the browser context presents new
challenges that are absent in EROS, such as dual owner-
ship of display and cross-principal transparent overlays.

5.1 Display Ownership and Access Control
We define window to be a unit of display allocation and
delegation. Each window is allocated by a landlord prin-
cipal instance or the browser kernel; and each window
is delegated to (or rented to) a tenant principal instance.
For example, when the web site a.com embeds a frame
sourced at b.com, a.com allocates a window from its own
display area and delegates the window to b.com; a.com is
the landlord of the newly-created window, while b.com is
the tenant of that window. The same kind of delegation
happens when cross-origin object and image elements
are embedded. The browser kernel allocates top-level
windows (or tabs). When the user launches a site through
address-bar entry, the browser kernel delegates the top-
level window to the site, making the site a tenant. We
decided against using “parent” and “child” terminologies
because they only convey the window hierarchy, but not
the principal instances involved. In contrast, “landlord”
and “tenant” convey both semantics.

Window creation and delegation result in a
delegate(URL, position, dimensions) system
call. For each window, the browser kernel maintains
the following state: its landlord, tenant, position,
dimensions, pixels in the window, and the URL location
of the window content. The browser kernel manages a
three-dimensional display space where the position of a
window also contains a stacking order value (toward the
browsing user). A landlord provides the stacking order
of all its delegated windows to the browser kernel. The
stacking order is calculated based on the DOM hierarchy
and the CSS z-index values of the windows.

Because a window is created by a landlord and occu-
pied by a tenant, the browser kernel must allow reason-
able window interactions from both principal instances
without losing protection. When a landlord and its tenant
are from different principals, the browser kernel provides
access control as follows:

• Position and dimensions: When a landlord embeds
a tenant’s content, the landlord should be able to re-
tain control on what gets displayed on the landlord’s
display and a tenant should not be able to reposition
or resize the window to interfere with the landlord’s
display. Therefore, the browser kernel enforces that
only the landlord of a window can change the posi-
tion and the dimensions of a window.

Landlord Tenant
position (x,y,z) RW
dimensions (height, width) RW R
pixels RW
URL location W RW

Table 1: Access control policy for a window’s landlord
and tenant

• Drawing isolation: Pixels inside the window reflect
the tenant’s private content and should not be acces-
sible to the landlord. Therefore, the browser kernel
enforces that only the tenant can draw within the
window. (Nevertheless, a landlord can create over-
lapping windows delegated to different principal in-
stances.)

• Navigation: Setting the URL location of a window
navigates the window to a new site. Navigation
is a fundamental element of any web application.
Therefore, both the landlord and the tenant are al-
lowed to set the URL location of the window. How-
ever, the landlord should not obtain the tenant’s nav-
igation history that is private to the tenant. There-
fore, the browser kernel prevents the landlord from
reading the URL location. The tenant can read the
URL location as long as it remains being the ten-
ant. (When the window is navigated to a different
principal, the old tenant will no longer be associated
with the window and will not be able to access the
window’s state.)

Table 1 summarizes the access control policies in the
browser kernel. In existing browsers, these manipulation
policies also vaguely exist. However, their logic is inter-
mingled with the DOM logic and is implemented at the
object property and method level of a number of DOM
objects which all reside in the same protection domain
despite their origins. This had led to numerous vulnera-
bilities [18, 44]. In Gazelle, by separating these security
policies from the DOM semantics and implementation,
and concentrating them inside the browser kernel we
achieve more clarity in our policies and much stronger
robustness of our system construction.

The browser kernel ensures that principal instances
other than the landlord and the tenant cannot manipu-
late any of the window states. This includes manipulat-
ing the URL location for navigation. Here, we depart
from the existing descendant navigation policy in most
of today’s browsers [7, 8]. Descendant navigation pol-
icy allows a landlord to navigate a window created by
its tenant even if the landlord and the tenant are different
principals. This is flawed in that a tenant-created window
is a resource that belongs to the tenant and should not be
controllable by a different principal.

Existing literature [7, 8] supports the descendant navi-
gation policy with the following argument: since exist-
ing browsers allow the landlord to draw over the ten-
ant, a landlord can simulate the descendant navigation by
overdrawing. Though overdrawing can visually simulate
navigation, navigation is much more powerful than over-
drawing because a landlord with such descendant nav-
igation capability can interfere with the tenant’s opera-
tions. For example, a tenant may have a script interact-
ing with one of its windows and then effecting changes
to the tenant’s backend; navigating the tenant’s window
requires just one line of JavaScript and could effect un-
desirable changes in the tenant’s backend. With over-
drawing, a landlord can imitate a tenant’s content, but the
landlord cannot send messages to the tenant’s backend in
the name of the tenant.

5.2 Cross-Principal Events Protection

The browser kernel captures all events in the system
and must accurately dispatch them to the right princi-
pal instance to achieve cross-principal event protection.
Networking and persistent-state events are easy to dis-
patch. However, user interface events pose interesting
challenges to the browser kernel in discerning event own-
ership, especially when dealing with overlapping, poten-
tially transparent cross-origin windows: major browsers
allow web pages to mix content from different origins
along the z-axis where content can be occluded, either
partially or completely, by cross-origin content. In addi-
tion, current standards allow web pages to make a frame
or portions of their windows transparent, further blur-
ring the lines between principals. Although these flexible
mechanisms have a slew of legitimate uses, they can be
used to fool users into thinking they are interacting with
content from one origin, but are in fact interacting with
content from a different origin. Zalewski [48] gave a tax-
onomy on “UI redressing” or clickjacking attacks which
illustrated some of the difficulties with current standards
and how attackers can abuse these mechanisms.

To achieve cross-principal events protection, the
browser kernel needs to determine the event owner, the
principal instance to which the event is dispatched. There
are two types of events for the currently active tab: state-
less and stateful. The owner of a stateless event like a
mouse event is the tenant of the window (or display area)
on which the event takes place. The owner of a state-
ful event such as a key-press event is the tenant of the
current in-focus window. The browser kernel interprets
mouse clicks as focus-setting events and keeps track of
the current in-focus window and its principal instance.

The key problem to solve then is to determine the win-
dow on which a stateless or focus-setting event takes
place. We consider a determination to have high fidelity

if the determined event owner corresponds to the user in-
tent. Different window layout policies directly affect the
fidelity of this determination. We elaborate on our explo-
rations of three layout policies and their implications on
fidelity.

Existing browsers’ policy. The layout policy in exist-
ing browsers is to draw windows according to the DOM
hierarchy and the z-index values of the windows. Exist-
ing browsers then associate a stateless or focus-setting
event to the window that has the highest stacking order.
Today, most browsers permit page authors to set trans-
parency on cross-origin windows [48]. This ability can
result in poor fidelity in determining the event owner in
the face of cross-principal transparent overlays. When
there are transparent, cross-origin windows overlapping
with one another, it is impossible for the browser ker-
nel to interpret the user’s intent: the user is guided by
what she sees on the screen; when two windows present
a mixed view, some user interfaces visible to the user be-
long to one window, and yet some belong to another. The
ability to overlay transparent cross-origin content can
be extremely dangerous: a malicious site can make an
iframe sourced at a legitimate site transparent and over-
laid on top of the malicious site [48], fooling the users to
interact with the legitimate site unintentionally.

2-D display delegation policy. This is a new layout
policy that we have explored. In this policy, the display
is managed as two-dimensional space for the purpose of
delegation. Once a landlord delegates a rectangular area
to a tenant, the landlord cannot overdraw the area. Thus,
no cross-principal content can be overlaid. Such a lay-
out constraint will enable perfect fidelity in determining
an event ownership that corresponds to the user intent. It
also yields better security as it can prevent all UI redress-
ing attacks except clickjacking [48]. Even clickjacking
would be extremely difficult to launch with this policy
on our system since our cross-principal memory protec-
tion makes reading and writing the scrolling state of a
window an exclusive right of the tenant of the window.

However, this policy can have a significant impact on
backward compatibility. For example, a menu from a
host page cannot be drawn over a nested cross-origin
frame or object; many sites would have significant con-
straints with their own DOM-based pop-up windows cre-
ated with divs and such (rather than using window.open
or alert), which could overlay on cross-origin frames or
objects with existing browsers’ policy; and a cross-origin
image cannot be used as a site’s background.

Opaque overlay policy. This policy retains exist-
ing browsers’ display management and layout policies
as much as possible for backward compatibility (and
additionally provides cross-principal events protection),
but lets the browser kernel enforce the following layout
invariant or constraint: for any two dynamic content-

containing windows (e.g., frames, objects) win1 and
win2, win1 can overlay on win2 iff (Tenantwin1 ==
Tenantwin2) || (Tenantwin1 6= Tenantwin2 && win1
is opaque). This policy effectively constrains a pixel
to be associated with just one principal, making event
owner determination trivial. This is in contrast with
the existing browsers’ policy where a pixel may be as-
sociated with more than one principals when there are
transparent cross-principal overlays. This policy allows
same-origin windows to transparently overlay with one
another. It also allows a page to use a cross-origin im-
age (which is static content) as its background. Note that
no principal instance other than the tenant of the window
can set the background of a window due to our mem-
ory protection across principal instances. So, it is impos-
sible for a principal to fool the user by setting another
principal’s background. The browser kernel associates a
stateless event or a focus-setting event with the dynamic
content-containing window that has the highest stacking
order.

This policy eliminates the attack vector of overlaying a
transparent victim page over an attacker page. However,
by allowing overlapping opaque cross-principal frames
or objects, it allows not only legitimate uses, such as
those denied by the 2D display delegation policy, but it
also allows an attacker page to cover up and expose se-
lective areas of a nested cross-origin victim frame or ob-
ject. The latter scenario can result in infidelity. We leave
as future work the mitigation of such infidelity by deter-
mining how much of a principal’s content is exposed in
an undisturbed fashion to the user when the user clicks
on the page.

We implemented the opaque overlay policy in our pro-
totype.

6 Security Analysis

In Gazelle, the trusted computing base encompasses the
browser kernel and the underlying OS. If the browser
kernel is compromised, the entire browser is compro-
mised. If the underlying OS is compromised, the en-
tire host system is compromised. If the DNS is com-
promised, all the non-HTTPS principals can be compro-
mised. When the browser kernel, DNS, and the OS are
intact, our architecture guarantees that the compromise
of a principal instance does not give it any capabilities
in addition to those already granted to it through browser
kernel system call interface (Section 4).

Next, we analyze Gazelle’s security over classes of
browser vulnerabilities. We also make a comparison with
popular browsers with a study on their past, known vul-
nerabilities.

• Cross-origin vulnerabilities:

By separating principals into different protection
domains and making any sharing explicit, we can
much more easily eliminate cross-origin vulnera-
bilities. The only logic for which we need to en-
sure correctness is the origin determination in the
browser kernel.

This is unlike existing browsers, where origin val-
idations and SOP enforcement are spread through
the browser code base [10], and content from dif-
ferent principals coexists in shared memory. All of
the cross-origin vulnerabilities illustrated in Chen et
al. [10] simply do not exist in our system; no spe-
cial logic is required to prevent them because all of
those vulnerabilities exploit implicit sharing.

Cross-origin script source can still be leaked in our
architecture if a site can compromise its browser in-
stance. Nevertheless, only that site’s browser in-
stance is compromised, while other principals are
intact, unlike all existing browsers except OP.

• Display vulnerabilities:

The display is also a resource that Gazelle’s browser
kernel protects across principals, unlike existing
browsers (Section 5). Cross-principal display and
events protection and access control are enforced in
the browser kernel. This prevents a potentially com-
promised principal from hijacking the display and
events that belong to another principal. Display hi-
jacking vulnerabilities have manifested themselves
in existing browsers [17, 26] that allow an attacker
site to control another site’s window content.

• Plugin vulnerabilities:

Third-party plugins have emerged to be a signifi-
cant source of vulnerabilities [36]. Unlike exist-
ing browsers, Gazelle’s design requires plugins to
interact with system resources only by means of
browser kernel system calls so that they are sub-
ject to our browser’s security policy. Plugins are
contained inside sandboxed processes so that basic
browser code doesn’t share fate with plugin code
(Section 4). A compromised plugin affects the prin-
cipal instance’s plugin process only, and not other
principal instances nor the rest of the system. In
contrast, in existing browsers except OP, a compro-
mised plugin undermines the entire browser and of-
ten the host system as well.

A DNS rebinding attack results in the browser la-
beling resources from different network hosts with
a common origin. This allows an attacker to operate
within SOP and access unauthorized resources [30].
Although Gazelle does not fundamentally address
this vulnerability, the fact that plugins must inter-
act with the network through browser kernel system

IE 7 Firefox 2
Origin validation error 6 11
Memory error 38 25
GUI logic flaw 3 13
Others - 28
Total 47 77

Table 2: Vulnerability Study for IE 7 and Firefox 2

calls defeats the multipin form of such attacks.

We analyzed the known vulnerabilities of two major
browsers, Firefox 2 [3] and IE 7 [35], since their re-
lease to November 2008, as shown in Table 2. For both
browsers, memory errors are a significant source of er-
rors. Memory-related vulnerabilities are often exploited
by maliciously crafted web pages to compromise the en-
tire browser and often the host machines. In Gazelle,
although the browser kernel is implemented with man-
aged C# code, it uses native .NET libraries, such as net-
work and display libraries; memory errors in those li-
braries could still cause memory-based attacks against
the browser kernel. Memory attacks in principal in-
stances are well-contained in their respective sandboxed
processes.

Cross-origin vulnerabilities, or origin validation er-
rors, constitute another significant share of vulnerabili-
ties. They result from the implicit sharing across princi-
pals in existing browsers and can be much more easily
eliminated in Gazelle because cross-principal protection
is exclusively handled by the browser kernel and because
of Gazelle’s use of sandboxed processes.

In IE 7, there are 3 GUI logic flaws which can be
exploited to spoof the contents of the address bar. For
Gazelle, the address bar UI is owned and controlled by
our browser kernel. We anticipate that it will be much
easier to apply code contracts [6] in the browser kernel
than in a monolithic browser to eliminate many of such
vulnerabilities.

In addition, Firefox had other errors which didn’t map
into these three categories, such as JavaScript privilege
escalation, URL handling errors, and parsing problems.
Since Gazelle enforces security properties in the browser
kernel, any errors that manifest as the result of JavaScript
handling and parsing are limited in the scope of exploit
to the principal instance owning the page. URL handling
errors could occur in our browser kernel as well.

7 Implementation

We have built a Gazelle prototype mostly as described in
Section 4. We have not yet ported an existing plugin onto
our system. Our prototype runs on Windows Vista with

.NET framework 3.5 [4]. We next discuss the implemen-
tation of two major components shown in Figure 2: the
browser kernel and the browser instance.

Browser Kernel. The browser kernel consists of ap-
proximately 5k lines of C# code. It communicates with
principal instances using system calls and upcalls, which
are implemented as asynchronous XML-based messages
sent over named pipes. An overview of browser kernel
system calls and upcalls is presented in Table 3. Sys-
tem calls are performed by the browser instance or plug-
ins and sometimes include replies. Upcalls are messages
from the browser kernel to the browser instance.

Display management is implemented as described in
Section 5 using .NET’s Graphics and Bitmap libraries.
Each browser instance provides the browser kernel with
a bitmap for each window of its rendered content using
a display system call; each change in rendered content
results in a subsequent display call. For each top-level
browsing window (or tab), browser kernel maintains a
stacking order and uses it to compose various bitmaps
belonging to a tab into a single master bitmap, which is
then attached to the tab’s PictureBox form. This straight-
forward display implementation has numerous optimiza-
tion opportunities, many of which have been thoroughly
studied [33, 38, 40], and which are not the focus of our
work.

Browser instance. Instead of undertaking a signifi-
cant effort of writing our own HTML parser, renderer,
and JavaScript engine, we borrow these components
from Internet Explorer 7 in a way that does not com-
promise security. Relying on IE’s Trident renderer has a
big benefit of inheriting IE’s page rendering compatibil-
ity and performance. In addition, such an implementa-
tion shows that it is realistic to adapt an existing browser
to use Gazelle’s secure architecture.

In our implementation, each browser instance embeds
a Trident WebBrowser control wrapped with an interpo-
sition layer which enforces Gazelle’s security properties.
The interposition layer uses Trident’s COM interfaces,
such as IWebBrowser2 or IWebBrowserEvents2, to
hook sensitive operations, such as navigation or frame
creation, and convert them into system calls to the
browser kernel. Likewise, the interposition layer receives
browser kernel’s upcalls, such as keyboard or mouse
events, and synthesizes them in the Trident instance.

For example, suppose a user navigates to a web page
a.com, which embeds a cross-principal frame b.com.
First, the browser kernel will fetch a.com’s HTML con-
tent, create a new a.com process with a Trident compo-
nent, and pass the HTML to Trident for rendering. Dur-
ing the rendering process, we intercept the frame naviga-
tion event for b.com, determine that it is cross-principal,
and cancel it. The frame’s DOM element in a.com’s
DOM is left intact as a placeholder, making the interpo-

Type Call Name Description
syscall getSameOriginContent(URL) retrieves same origin content
syscall getCrossOriginContent(URL) retrieves script or css content
syscall delegate(URL, delegatedWindowSpec) delegates screen area to a different principal
syscall postMessage(windowID, msg, targetOrigin) cross-frame messaging
syscall display(windowID, bitmap) sets the display buffer for the window
syscall back() steps back in the window history
syscall forward() steps forward in the window history
syscall navigate (windowID, URL) navigates a window to URL
syscall createTopLevelWindow (URL) creates a new browser tab for the URL specified
syscall changeWindow (windowID, position, size) updates the location and size of a window
syscall writePersistentState (type, state) allows writing to origin-partitioned storage
syscall readPersistentState (type) allows reading of origin-partitioned storage
syscall lockPersistentState (type) locks one type of origin-partitioned storage
upcall destroy(windowID) closes a browser instance
upcall resize(windowID, windowSpec) changes the dimensions of the browser instance
upcall createPlugin(windowID, URL, content) creates a plugin instance
upcall createDocument(windowID, URL, content) creates a browser instance
upcall sendEvent(windowID, eventInfo) passes an event to the browser instance

Table 3: Some Gazelle System Calls

sition transparent to a.com. We extract the frame’s po-
sition, dimensions, and CSS properties from this element
through DOM-related COM interfaces, and send this in-
formation in a delegate system call to the browser ker-
nel to allow the landlord a.com to “rent out” part of its
display area to the tenant b.com. The browser kernel
then creates a new b.com process (with a new instance
of Trident), and asks it to render b.com’s frame. For any
rendered display updates for either a.com or b.com,
our interposition code obtains a bitmap of display con-
tent from Trident using the IViewObject interface and
sends it to the browser kernel for rendering.

One intricacy we faced was in rerouting all network
requests issued by Trident instances through the browser
kernel. We found that interposing on all types of fetches,
including frame, script, and image requests, to be very
challenging with COM hooks currently exposed by Tri-
dent. Instead, our approach relies on a local web proxy,
which runs alongside the browser kernel. We configure
each Trident instance to use our proxy for all network
requests, and the proxy converts each request into a cor-
responding system call to the browser kernel, which then
enforces our security policy and completes the request.

One other implementation difficulty that we encoun-
tered was to properly manage the layout of cross-origin
images. It is easy to render a cross-origin image in a sep-
arate process, but difficult to extract the image’s correct
layout information from the host page’s Trident instance.
We anticipate this to be an overcomable implementation
issue. In our current prototype, we are keeping cross-
origin images in the same process as their host page for

proper rendering of the pages.
Our interposition layer ensures that our Trident com-

ponents are never trusted with sensitive operations, such
as network access or display rendering. However, if a
Trident renderer is compromised, it could bypass our in-
terposition hooks and compromise other principals using
the underlying OS’s APIs. To prevent this, we are in the
process of implementing an OS-level sandboxing mecha-
nism, which would prevent Trident from directly access-
ing sensitive OS APIs. The feasibility of such a browser
sandbox has already been established in Xax [15] and
Native Client [47].

To verify that such an implementation does not cause
rendering problems with popular web content, we used
our prototype to manually browse through the top 20
Alexa [5] web sites. We checked the correctness of
Gazelle’s visual output against unmodified Internet Ex-
plorer and briefly verified page interactivity, for exam-
ple by clicking on links. We found that 19 of 20 web
sites rendered correctly. The remaining web site exposed
a (fixable) bug in our interposition code, which caused
it to load with incorrect layout. Two sites experienced
crashes (due to more bugs) when trying to render em-
bedded cross-principal <iframe>’s hosting ads. How-
ever, the crashes only affected the <iframe> processes;
the main pages rendered correctly with the exception of
small blank spaces in place of the failed <iframe>’s.
This illustrates a desirable security property of our archi-
tecture, which prevents malicious or misbehaving cross-
origin tenants from affecting their landlords or other
principals.

Gazelle Internet Explorer 7 Google Chrome
Memory Memory Memory

Time Used Time Used Time Used
1. Browser startup (no page) 668 ms 9 MB 635 ms 14 MB 500 ms 25 MB
2. New tab (blank page) 602 ms 14 MB 115 ms 0.7 MB 230 ms 1.8 MB
3. New tab (google.com) 939 ms 16 MB 499 ms 1.4 MB 480 ms 7.6 MB
4. Navigate from google.com 955 ms 6 MB 1139 ms 3.1 MB 1020 ms 1.4 MB

to google.com/ads
5. Navigate to nytimes.com 5773 ms 88 MB 3213 ms 53 MB 3520 ms 19.4 MB

(with a cross-origin frame)

Table 4: Loading times and memory overhead for a sequence of typical browser operations.

8 Evaluation

In this section, we measure the impact of our architecture
on browser performance. All tests were performed on an
Intel 3.00Ghz Core 2 Duo with 4GB of RAM, running
32-bit Windows Vista with a gigabit Ethernet connec-
tion. To evaluate Gazelle’s performance, we measured
page loading latencies, the memory footprint, and re-
sponsiveness of our prototype in comparison with IE7,
a monolithic browser, and Google Chrome v1, a multi-
process browser. We found that while Gazelle performs
on-par with commercial browsers while browsing within
an origin, it introduces some overhead for cross-origin
navigation and rendering embedded cross-origin princi-
pals (e.g., frames). Nevertheless, our main sources of
overhead stem from our interposition layer, various ini-
tialization costs for new browser instances, and the un-
optimized nature of our prototype. We point out simple
optimizations that would eliminate much of the overhead
along the way.

Page load latency. Table 4 shows the loading times
for a series of browser operations a typical user might
perform using our prototype, IE7, and Google Chrome.
The operations are repeated one after another within the
same browser. A web page’s loading time is defined as
the time between pressing the “Go” button and seeing the
fully-rendered web page. All operations include network
latency.

Operation 1 measures the time to launch the browser
and is similar for all three browsers. Although Gazelle’s
browser kernel is small and takes only 225 ms to start,
Gazelle also initializes the local proxy subsystem (see
Section 7), which takes an additional 443 ms. Operations
2 and 3 each carry an overhead of creating a new process
in Gazelle and Chrome, but not IE7. Operation 4 reuses
the same google.com process in Gazelle to render a
same-origin page to which the user navigates via a link
on google.com. Here, Gazelle is slightly faster than
both IE7 and Chrome, possibly because Gazelle does not
yet manage state such as browsing history between nav-

igations. Finally, operation 5 causes Gazelle to create a
new process for nytimes.com to render the popular
news page 3. In addition, NYTimes contains an embed-
ded cross-principal <iframe>, which triggers window
delegation and another process creation event in Gazelle.
Gazelle’s overall page load latency of 5773 ms includes
the rendering times of both the main page and the em-
bedded <iframe>, with the main page becoming visi-
ble and interactive to the user in 5085 ms.

Compared to both IE7 and Chrome, it is expected that
Gazelle will have a performance overhead due to ex-
tra process creation costs, messaging overhead, and the
overhead of our Trident interposition layer as well as Tri-
dent itself. Table 5 breaks down the major sources of
overhead involved in rendering the three sites in Table 4.

Our Trident interposition layer is a big source of
overhead, especially for larger sites like NYTimes.com,
where it consumes 813 ms. Although we plan to op-
timize our use of Trident’s COM interfaces, we are also
limited by the Trident host’s implementation of the hooks
that we rely on, and by the COM layer which exposes
these hooks. Nevertheless, we believe we could mitigage
most of this latency if Trident were to provide us with a
direct (non-COM) implementation for a small subset of
its hooks that Gazelle requires.

Our local proxy implementation for network interpo-
sition constitutes another large source of overhead, for
example 541 ms for NYTimes.com. Much of this over-
head would disappear if Trident were to make direct net-
work system calls to the browser kernel, rather than go-
ing through an extra proxy indirection. Another part of
this overhead stems from the fact that the browser kernel
currently releases web page data only when a whole net-
work transfer finishes; instead, it could provide browser
instances with chunks of data as soon as they arrive (e.g.,
by changing getContent system calls to the semantics
of a UNIX read() system call), allowing them to better
overlap network transfers with rendering.

Process creation is an expected source of overhead that

3In contrast, Chrome reuses the tab’s old google.com process

increases whenever sites embed cross-principal content,
such as NYTimes’s cross-origin <iframe>. As well,
each process must instantiate and initialize a new Trident
object, which is expensive. As an optimization, we could
use a worker pool of a few processes that have been pre-
initialized with Trident. This would save us 275 ms on
NYTimes’s load time and 134 ms on google.com’s
load time.

We encountered an unexpected performance hit when
initializing named pipes that we use to transfer system
calls: a new process’s first write to a pipe stalls for a con-
siderable time. This could be caused by initialization of
an Interop layer between .NET and the native Win32 pipe
interfaces, on which our implementation relies. We can
avoid this overhead by either using an alternate imple-
mentation of a system call transfer mechanism, or pre-
initializing named pipes in our worker pool. This would
save us 439 ms in NYTimes’s render time.

Retrieving bitmap display updates from Trident and
sending them to the browser kernel is expensive for large,
complex sites such as NYTimes.com, where this takes
422 ms. Numerous optimizations are possible, including
image compression, VNC-like selective transfers, and a
more efficient bitmap sharing channel between Trident
and the browser kernel. Our mechanism for transferring
bitmap updates currently performs an inefficient .NET-
based serialization of the image’s data (which takes 176
ms for NYTimes); passing this data directly would fur-
ther improve performance.

Overall, we believe that with the above optimizations,
Gazelle’s performance would be on par with production
browsers like Chrome or IE8; for example, we anticipate
that NYTimes.com could be rendered in about 3.6 s.

Memory overhead. As a baseline measurement, the
browser kernel occupies around 9MB of memory after
a page load. This includes the user interface compo-
nents of the browser to present the rendered page to the
user and the buffers allocated for displaying the rendered
page. Memory measurements do not include shared li-
braries used by multiple processes.

Table 4 shows the amount of memory for perform-
ing various browsing operations. For example, to open
a new tab to a blank page, Gazelle consumes 14MB, and
to open a new tab for google.com, Gazelle consumes
an additional 16MB. Each empty browser instance uses
1.5MB of internal storage plus the memory required for
rendered content. Given our implementation, the lat-
ter closely corresponds to Trident’s memory footprint,
which at the minimum consists of 14MB for a blank
page. In the case of NYTimes, our memory footprint
further increases because of structures allocated by the
interposition layer, such as a local DOM cache.

Responsiveness. We evaluated the response time of a
user-generated event, such as a mouse click. When the

browser kernel detects a user event, it issues a sendEvent
upcall to the destination principal’s browser instance.
Such calls take only 2 ms on average to transfer, plus
1 ms to synthesize in Trident. User actions might lead
to display updates; for example, a display update for
google.com would incur an additional 77 ms. Most
users should not perceive this overhead and will experi-
ence good responsiveness.

Process creation. In addition to latency and memory
measurements we also have tested our prototype on the
top 100 popular sites reported by Alexa [5] to provide an
estimate of the number of processes created for different
sites. Here, we place a cross-origin image into a separate
process to evaluate our design. The number of processes
created is determined by the use of different-origin con-
tent on sites, which is most commonly image content.
For the top 100 sites, the median number of processes re-
quired to view a single page is 4, the minimum is 1, and
the maximum is 28 (caused by skyrock.com, which
uses an image farm). Although creation of many pro-
cesses introduces additional latency and memory foot-
print, we did not experience difficulties when Gazelle
created many processes during normal browsing. Our
test machine easily handles a hundred running processes,
which are enough to keep 25 average web sites open si-
multaneously.

9 Discussions on compatibility vs. security

While Gazelle’s architecture can be made fully backward
compatible with today’s web, it is interesting to inves-
tigate the compatibility cost of eliminating the insecure
policies in today’s browsers. We have considered several
policies that differ from today’s browsers but offer bet-
ter security. We conducted a preliminary study on their
compatibility cost. This is by no means a conclusive or
complete study, but only a first look on the topic.

We mostly used the data set of the front pages of the
top 100 most popular web sites ranked by Alexa [5]. We
used a combination of browser instrumentation with au-
tomatic script execution and manual inspection in our
study. We consider any visual differences in the render-
ing of a web page to be a violation of compatibility. We
discuss our findings below.

Subdomain treatment Existing browsers and SOP
make exceptions for subdomains (e.g., news.google.com
is a subdomain of google.com) [39]: a page can set
the document.domain property to suffixes of its do-
main and assume that identity. This feature was one
of the few methods for cross-origin frames to communi-
cate before the advent of postMessage [25]. Changing
document.domain is a dangerous practice and violates
the Principle of Least Privilege: Once a subdomain sets
its domain to a suffix, it has no control over which other

Latency
Location Overhead blank site google.com nytimes.com

Overhead before rendering
Browser kernel - process creation 44 ms 40 ms 78 ms
Browser instance - creating interposed instances of Trident 94 ms 94 ms 197 ms
Browser instance - named pipe initialization 137 ms 145 ms 439 ms

Overhead during rendering
Browser instance - proxy-based network interposition 4 ms 134 ms 541 ms
Browser instance - other Trident interposition 127 ms 122 ms 813 ms

Overhead after rendering
Browser instance - bitmap capture 13 ms 35 ms 196 ms
Browser instance - bitmap transfer 37 ms 67 ms 226 ms
Browser kernel - display rendering 10 ms 11 ms 101 ms

Table 5: A breakdown of Gazelle’s overheads involved in page rendering. Note that nytimes.com creates two processes
for itself and an <iframe>; the other two sites create one process.

subdomains can access it. This is also observed by Za-
lewski [48]. Therefore, it would be more secure not to
allow a subdomain to set document.domain.

Our experiments indicate that six of the top 100 Alexa
sites set document.domain to a different origin, though
restricting write access to document.domain might not
actually break the operation of these web sites.

Mixed HTTPS and HTTP Content. When an
HTTPS site embeds HTTP content, browsers typically
warn users about the mixed content, since the HTTPS
site’s content can resist a network attacker, but the em-
bedded HTTP content could be compromised by a net-
work attacker.

When an HTTPS site embeds other HTTP principals
(through <iframe>, <object>, etc.), HTTPS princi-
pals and HTTP principals will have different protection
domains and will not interfere with each other.

However, when an HTTPS site embeds a script or style
sheet delivered with HTTP, existing browsers would al-
low the script to run with the HTTPS site’s privileges (af-
ter the user ignores the mixed content warning). This is
dangerous because a network attacker can then compro-
mise the HTTP-transmitted script and attack the HTTPS
principal despite its intent of preventing network attack-
ers. Therefore, a more secure policy is to deny ren-
dering of HTTP-transmitted scripts or style sheets for
an HTTPS principal. Instead of the Alexa top 100, we
identified a few different sites that provide SSL ses-
sions for parts of their web application: amazon.com,
mail.google.com, mail.microsoft.com, blogger.com, and
a few popular banking sites where we have existing ac-
counts. This allows us to complete the login process dur-
ing testing. These sites do not violate this policy. In
addition, we have also gathered data from one of the au-
thor’s browsing sessions over the course of a few months
and found that out of 5,500 unique SSL URLs seen, less

than two percent include HTTP scripts and CSS.
Layout policies. The opaque overlay policy allows

only opaque (and not transparent) cross-origin frames or
objects (Section 5.2). We test this policy with the top
100 Alexa sites by determining if any cross-origin frames
or objects are overlapped with one another. We found
that two out of 100 sites attempt to violate this policy.
This policy does not generate rendering errors; instead,
we convert transparent cross-origin elements to opaque
elements when displaying content.

We also tested the 2D display delegation policy that
we analyzed in Section 5.2. We found this policy to have
higher compatibility cost than our opaque overlay policy:
six of the top 100 sites attempt to violate this policy.

Sites that attempt to violate either policy have reduced
functionality, and will render differently than what the
web page author intends.

Plugins. Existing plugin software must be adapted
(ported or binary-rewritten) to use browser kernel sys-
tem calls to accomplish its tasks. Of top 100 Alexa sites,
34 sites use Flash, but no sites use any other kinds of plu-
gins. This indicates that porting or adapting Flash alone
can address a significant portion of the plugin compati-
bility issue.

10 Concluding Remarks

We have presented Gazelle, the first web browser that
qualifies as a multi-principal OS for web site princi-
pals. This is because Gazelle’s browser kernel exclu-
sively manages resource protection, unlike all existing
browsers which allow cross-principal protection logic to
reside in the principal space. Gazelle enjoys the security
and robustness benefit of a multi-principal OS: a com-
promise or failure of one principal leaves other principals
and the browser kernel intact.

Our browser construction exposes challenging design
issues that were not seen in previous work, such as pro-
viding legacy protection to cross-origin script source and
cross-principal, cross-process display and event protec-
tion. We are the first to provide comprehensive solutions
to them.

The implementation and evaluation of our IE-based
prototype shows promise of a practical multi-principal
OS-based browser in the real world.

In our future work, we are exploring the fair sharing
of resources among web site principals in our browser
kernel and a more in-depth study of the tradeoffs between
compatibility and security in browser policy design.

11 Acknowlegements

We thank Spencer Low, David Ross, and Zhenbin Xu
for giving us constant help and fruitful discussions. We
thank Adam Barth and Charlie Reis for their detailed and
insightful feedback on our paper. We also thank the fol-
lowing folks for their help: Barry Bond, Jeremy Con-
dit, Rich Draves, David Driver, Jeremy Elson, Xiaofeng
Fan, Manuel Fandrich, Cedric Fournet, Chris Hawblitzel,
Jon Howell, Galen Hunt, Eric Lawrence, Jay Lorch, Rico
Malvar, Wolfram Schulte, David Wagner, Chris Wilson,
and Brian Zill. We also thank our paper shepherd Niels
Provos for his feedback over our last revisions.

References
[1] Changes in allowScriptAccess default (Flash Player). http://

www.adobe.com/go/kb403183.

[2] Developer center: Security changes in Flash Player 7.
http://www.adobe.com/devnet/flash/articles/
fplayer_security.html.

[3] Security advisories for Firefox 2.0. http://www.
mozilla.org/security/known-vulnerabilities/
firefox20.html.

[4] .NET Framework Developer Center, 2008. http:
//msdn.microsoft.com/en-us/netframework/
default.aspx.

[5] Alexa, 2009. http://www.alexa.com/.

[6] M. Barnett, K. Rustan, M. Leino, and W. Schulte. The Spec#
programming system: An overview. In LNCS, editor, CAS-
SIS, volume 3362. Springer, 2004. http://research.
microsoft.com/en-us/projects/specsharp/.

[7] A. Barth and C. Jackson. Protecting browsers from frame hijack-
ing attacks, April 2008. http://crypto.stanford.edu/
websec/frames/navigation/.

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame com-
munication in browsers. In In Proceedings of the 17th USENIX
Security Symposium (USENIX Security), 2008.

[9] A. Barth, C. Jackson, C. Reis, and T. G. C. Team. The
security architecture of the Chromium browser, 2008.
http://crypto.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

[10] S. Chen, D. Ross, and Y.-M. Wang. An Analysis of Browser
Domain-Isolation Bugs and A Light-Weight Transparent Defense
Mechanism. In Proceedings of the ACM Conference on Computer
and Communications Security, 2007.

[11] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A Safety-
Oriented Platform for Web Applications. In Proceedings of the
IEEE Symposium on Security and Privacy, 2006.

[12] D. Crockford. JSONRequest. http://www.json.org/
jsonrequest.html.

[13] D. Crockford. The Module Tag: A Proposed Solution to
the Mashup Security Problem. http://www.json.org/
module.html.

[14] Document Object Model. http://www.w3.org/DOM/.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web. In
Proceedings of the Symposium on Operating Systems Design and
Implementation, 2008.

[16] Firefox 3 for developers, 2008. https://developer.
mozilla.org/en/Firefox_3_for_developers.

[17] Mozilla Browser and Mozilla Firefox Remote Window Hijacking
Vulnerability, 2004. http://www.securityfocus.com/
bid/11854/.

[18] Security Advisories for Firefox 2.0. http://www.
mozilla.org/security/known-vulnerabilities/
firefox20.html.

[19] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media
Inc., August 2006.

[20] Adobe Flash Player 9 Security, July 2008. http://
www.adobe.com/devnet/flashplayer/articles/
flash_player_9_security.pdf.

[21] C. Grier, S. Tang, and S. T. King. Secure web browsing with the
OP web browser. In Proceedings of the 2008 IEEE Symposium
on Securiy and Privacy, 2008.

[22] J. Grossman.
Advanced Web Attack Techniques using GMail. http:
//jeremiahgrossman.blogspot.com/2006/01/
advanced-web-attack-techniques-using.html.

[23] W. H. A. T. W. Group. Web Applications 1.0, February
2007. http://www.whatwg.org/specs/web-apps/
current-work/.

[24] HTML 5 Editor’s Draft, October 2008. http://www.w3.
org/html/wg/html5/.

[25] What’s New in Internet Explorer 8, 2008. http://msdn.
microsoft.com/en-us/library/cc288472.aspx.

[26] Microsoft Internet Explorer Remote Window Hijacking Vulner-
ability, 2004. http://www.securityfocus.com/bid/
11855.

[27] S. Ioannidis and S. M. Bellovin. Building a secure web browser.
In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[28] S. Ioannidis, S. M. Bellovin, and J. M. Smith. Sub-operating sys-
tems: a new approach to application security. In Proceedings of
the 10th workshop on ACM SIGOPS European workshop, pages
108–115, New York, NY, USA, 2002. ACM.

[29] C. Jackson and A. Barth. Beware of Finer-Grained Origins. In
Web 2.0 Security and Privacy, May 2008.

[30] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Pro-
tecting Browsers from DNS Rebinding Attacks. In Proceedings
of ACM Conference on Computer and Communications Security,
2007.

[31] JavaScript Object Notation (JSON). http://www.json.
org/.

[32] D. Kristol and L. Montulli. HTTP State Management Mecha-
nism. IETF RFC 2965, October 2000.

[33] T. W. Mathers and S. P. Genoway. Windows NT Thin Client So-
lutions: Implementing Terminal Server and Citrix MetaFrame.
Macmillan Technical Publishing, Indianapolis, IN, November
1998.

[34] IEBlog: IE8 Security Part V: Comprehensive Protection,
2008. http://blogs.msdn.com/ie/archive/2008/
07/02/ie8-security-part-v-comprehensive-
protection.aspx.

[35] Microsoft security bulletin. http://www.microsoft.
com/technet/security/.

[36] Microsfot Security Intelligence Report, Volume 5, 2008.
http://www.microsoft.com/security/portal/
sir.aspx.

[37] C. Reis and S. D. Gribble. Isolating web programs in modern
browser architectures. In Proceedings of Eurosys, 2009.

[38] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.
Virtual network computing. IEEE Internet Computing, 2(1):33–
38, 1998.

[39] J. Ruderman. The Same Origin Policy. http://www.
mozilla.org/projects/security/components/
same-origin.html.

[40] R. W. Scheifler and J. Gettys. The X window system. ACM
Transactions on Graphics (TOG), 5(2):79–109, April 1986.

[41] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS TrustedWindow system. In Usenix Security,
2004.

[42] Symantec Global Internet Security Threat Report: Trends for July
- December 07, April 2008.

[43] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
Communication Abstractions in MashupOS. In ACM Symposium
on Operating System Principles, October 2007.

[44] Cross-Domain Vulnerability In Microsoft Internet
Explorer 6. http://cyberinsecure.com/
cross-domain-vulnerability-in-microsoft-
internet-explorer-6/.

[45] The XMLHttpRequest Object. http://www.w3.org/TR/
XMLHttpRequest/.

[46] W3C XMLHttpRequest Level 2. http://dev.w3.org/
2006/webapi/XMLHttpRequest-2/.

[47] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2009.

[48] M. Zalewski. Browser security handbook, 2008. http://
code.google.com/p/browsersec/wiki/Main.

