
USENIX Association 	 18th USENIX Security Symposium	 249

xBook: Redesigning Privacy Control in Social Networking Platforms

Kapil Singh∗ Sumeer Bhola∗ Wenke Lee
School of Computer Science Google School of Computer Science

Georgia Institute of Technology sumeer@acm.org Georgia Institute of Technology
ksingh@cc.gatech.edu wenke@cc.gatech.edu

Abstract
Social networking websites have recently evolved from
being service providers to platforms for running third
party applications. Users have typically trusted the so-
cial networking sites with personal data, and assume that
their privacy preferences are correctly enforced. However,
they are now being asked to trust each third-party applica-
tion they use in a similar manner. This has left the users’
private information vulnerable to accidental or malicious
leaks by these applications.

In this work, we present a novel framework for build-
ing privacy-preserving social networking applications that
retains the functionality offered by the current social net-
works. We use information flow models to control what
untrusted applications can do with the information they
receive. We show the viability of our design by means
of a platform prototype. The usability of the platform is
further evaluated by developing sample applications using
the platform APIs. We also discuss both security and non-
security challenges in designing and implementing such a
framework.

1 Introduction
Social networking sites have transformed the way peo-

ple express themselves on the Internet and have become
a door to the social life of many individuals. Users are
contributing more and more content to these sites in or-
der to express themselves as part of their profiles and to
contribute to their social circles online. While this builds
up the online identity for the user, it also leaves the data
vulnerable to be misused, as an example, for targeted ad-
vertising and sale.

More private data online has lead to growing privacy
concerns for the users, and some have faced extreme
repercussions for sharing their private information on
these networking sites. For example, students have been
fined for their online social behavior [29]; a mayor was
forced to resign because of a controversial Myspace pic-
ture [32]. There are numerous such cases, and these inci-
dents clearly underline the importance of privacy control

∗Part of the work was done when the first author was an intern and
the second author was an employee at IBM Research T.J. Watson.

in social networks.
With the advent of Web 2.0 technologies, web appli-

cation development has become much more distributed
with a growing number of users acting as developers and
source of online content. This trend has also influenced
social networks that now act as platforms allowing de-
velopers to run third-party content on top of their frame-
work. Facebook opened up for third-party application
development by releasing its development APIs in May
2007 [22]. Since the release of the Facebook platform,
several other sites have joined the trend by supporting
Google’s OpenSocial [10], a cross-site social network de-
velopment platform.

These third-party applications further escalate the pri-
vacy concerns as user data is shared with these applica-
tions. Typically, there is no or minimal control over what
user information these applications are allowed to access.
In most cases, these applications are hosted on third party
servers that are difficult to monitor. As a result, it is not
feasible to police the data being leaked from the applica-
tion after the data is shared with the application. There
have been several reported cases where users’ private in-
formation was leaked by the applications, either due to
intentional leaks [21] or due to vulnerabilities in the ap-
plication [26].

Most social networking platforms, such as Facebook,
currently provide the applications with full access to user
profile information. This permission is granted in Face-
book when the user adds the application, which requires
the user to make a trust decision. Setting fine-grained ac-
cess control policies for an application, even if they were
supported, would be a complex task. Furthermore, access
control policies are not sufficient in enforcing the privacy
of an individual: once an application is permitted by a
user’s access control policy, it has possession of the user’s
data and can freely leak this information anytime for per-
sonal gains. For example, a popular Facebook applica-
tion, Compare Friends, that promised users’ privacy in
exchange for opinions on their friends later started sell-
ing this information [35].

In this paper, we are concerned with protecting the
users’ private information from leaks by third-party ap-

250	 18th USENIX Security Symposium	 USENIX Association

plications. We present a mechanism that controls not only
what the third-party applications can access, but also what
these applications can do with the data that they are al-
lowed to access. We propose and implement a new frame-
work called xBook that provides a hosting service to the
applications and enforces information flow control within
the framework. xBook provides three types of enforce-
ment that encapsulate the privacy requirements in a typ-
ical social network setting: (1) user-user access control
(e.g., access to only friends) for data flowing within one
application, (2) information sharing outside xBook with
external parties; and (3) protection of the application’s
proprietary data. While (1) and (2) protects the privacy
of a user from information leaks, (3) prevents the applica-
tion’s proprietary data or algorithm from being leaked to
the application users.

The third-party applications are redesigned in such a
way that they have access to all the data they require (al-
lowing them to perform their functionality) and at the
same time, not allowing these applications to pass this
data to an external entity unless it is approved by the user.
Our framework enforces that the applications make these
communications explicit to the user so that he is more in-
formed before approving an application.

There are several challenges associated with the design
of our xBook framework:
Confinement. The execution of application code needs
to be confined. This problem needs to be dealt with inde-
pendently on the client side within the browser and on the
server side in the web server. We use “the web server” as
a conceptual entity to represent one or more servers.
Mediation. All communication from and within an ap-
plication needs to be mediated by the xBook platform for
permissible information flow. To this end, we developed
a labeling model that enforces user-defined security poli-
cies. High-level policies specified by the user are con-
verted to low-level labels enforced by xBook.
Programmability. The programming abstraction to the
application writers should be practical and easy to use.
xBook provides a set of simple APIs in line with the ex-
isting social networking platforms.
Portability. The requirements imposed by xBook on the
application design should not break the existing applica-
tions. In other words, it should be feasible to port most
functionality of typical applications to xBook with little
effort.

We show the viability of our framework design by im-
plementing a working prototype of our xBook system and
porting some of the popular applications from existing so-
cial networks, such as Facebook, on top of the framework.
We also demonstrate a practical deployment strategy of
our system by porting our framework itself as an appli-
cation on Facebook. Our system is available online [33].
We evaluate the security of our platform by illustrating

some possible application scenarios, and how xBook en-
sures privacy control in such cases. We also create some
synthetic attacks that attempt to exploit the platform to
leak information. Our results illustrate that xBook can
successfully prevent all such attacks. Our performance
results further demonstrate that xBook’s privacy control
mechanism incurs negligible overhead for typical social
networking applications.

The rest of the paper is organized as follows. Sec-
tion 2 motivates our work by analyzing some privacy is-
sues with the current social networking platforms. We
present an overview of our xBook framework in Section
3. Section 4 and 5 discuss the implementation details of
xBook’s client-side and server-side components, respec-
tively. Our labeling model is described in Section 6. Sec-
tion 7 presents the evaluation results. We discuss the limi-
tations of our work in Section 8, followed by related work
in Section 9. Finally, Section 10 concludes the paper.

2 Background
2.1 Social Networking Platforms

Social networks are the backbone of the online social
life of many Internet users. These networks have ex-
panded their development scope by allowing third-party
developers to write their own applications, which in turn
can be accessed and executed via the social network. An
application is an entity that provides some value-added
service to the user, and it requires user’s profile data to
perform its functionality. For example, a simple horo-
scope application generates daily horoscope based on
user’s birth information.

Facebook is one popular network that has pioneered the
concept of the social network as a platform. The applica-
tions bring value both to the platform and its users in pro-
viding new features. Applications are deployed on their
own servers and Facebook only acts as a proxy for in-
tegrating the applications’ output to its own pages. The
growing popularity of applications on Facebook has en-
ticed other networks, such as Google’s Orkut, to start sup-
porting applications. The Orkut platform model is based
on the OpenSocial framework [18]. OpenSocial provides
a set of APIs for its partner sites (which it refers to as
“containers”) to implement. An application that is built
for one container should be able to run with few modifi-
cations on other partner sites. The APIs allow third parties
to have access to the social graph and personal user data.

For the rest of the paper, we use the Facebook case as an
example; similar concepts apply to other social network-
ing platforms.

2.2 Privacy Issues with Current Designs
Facebook supports customized policies for user-user

access control, but currently provides no control on what

USENIX Association 	 18th USENIX Security Symposium	 251

(a) (b) (c)
Figure 1: Application architecture for: (a) current platforms. (b) xBook platform. (c) xBook on Facebook.

user profile data can be accessed by third party applica-
tions. Applications run on their own servers that have no
control administered by Facebook (Figure 1(a)). Appli-
cations need data to perform their functionality; they can
request user data from the social platform and store it at
their own servers. Facebook discourages storing user data
on the application’s own servers by barring it in their li-
cense agreement [5], but there is no way of enforcing it in
Facebook’s current architecture.

Application developers have access to a user’s data
even when they are not friends with the user. Unlike
a regular friend relationship, this relationship is neither
symmetric nor transparent: the application developer has
access to the user’s information, but the user does not nec-
essarily know who the application developer is.

Before adding an application, the users are required to
agree to a service agreement that allows the application to
have access to their profile data. This general agreement
is presented for every application, and no other specific
information is provided about the application. Since a ma-
jority of the applications are known not to exploit users’
personal data, the users tend to add any application, effec-
tively defeating the purpose behind the service agreement.
Additionally, second-degree permissions that allow appli-
cations to have access to the profiles of the users’ friends
add another layer of complexity.

There have been several reported incidents where users’
information was leaked due to a vulnerability in the appli-
cation [26]. The platform is trusting all third party devel-
opers, but the trust is misplaced since there is no restric-
tion on who is allowed to develop an application. One of
the most popular Facebook applications, TopFriends, had
a vulnerability that allowed any user of TopFriends to see
the profile of another user, even if they are not friends with
each other [26]. Private information of some high profile
users was leaked. Facebook’s response to this controversy
was that they expect third party applications to follow their
policies, which is not acceptable considering that there is
no effective way to police the application developers.

User data has a lot of commercial value to market-
ing companies, competing networking sites, and identity
thieves. Therefore, it is not surprising that many applica-
tions have been observed to intentionally leak user data to
external parties for profit [21]. Other surveys have also
discovered similar violations based on an application’s
externally-visible behavior [19]. The situation could be

even worse as it is not feasible to determine how many
other applications violate the user’s privacy with internal
data collection.

Social networking sites have a responsibility to protect
user data that has been entrusted to them. The current ap-
proach is to legally bind the third parties using a Terms
of Service (TOS) agreement [4]. However, it is not possi-
ble to monitor the path of information once the informa-
tion has been released to these parties. Therefore, social
networks can not rely on untrusted third parties follow-
ing their TOS agreements to protect user privacy. Instead,
privacy policies should be enforced by the platform and
applied to all data that has been entrusted to the social
networking site. Our platform design, xBook, is one step
forward in this direction.
Felt et al. [19] have proposed a solution to proxy the

user information in the form of tags to the third-party ap-
plications. These applications do not have access to user
data and instead use pre-defined tags to format their output
being displayed to the user. Their solution limits the ca-
pability of some important and popular applications, such
as the horoscope application, that perform processing on
user data beyond just displaying it. Our work enforces no
such restriction on the application behavior.

3 xBook Overview
xBook is an architectural framework for building social

networks that prevents untrusted third-party applications
from leaking users’ private information. The applications
are hosted on xBook’s trusted platform (Figure 1(b)), and
xBook provides complete mediation for all communica-
tion to and from these applications.

In a social network setting, an application might com-
municate with entities outside the xBook system, called
external entities, to perform specific tasks. For exam-
ple, the horoscope application may communicate with
www.tarot.com to receive horoscopes for every sun-
sign. The application also encapsulates its own data or
algorithm that needs to be protected from untrusted users.

In the xBook framework, applications are designed as a
set of components; a component being the smallest granu-
larity of application code monitored by xBook. A compo-
nent is chosen based on what information the component
has access to and what external entity it is allowed to com-
municate with. In the horoscope application, one compo-

252	 18th USENIX Security Symposium	 USENIX Association

nent communicates with www.tarot.com and has no
access to user data. Another component has access to
user’s birthday, but does not communicate with any ex-
ternal entity.

From an end user’s perspective, the applications are
monolithic as the user does not know about the compo-
nents. At the time of adding a particular application, the
user is presented with a manifest that states what user
profile data is needed by the application and which ex-
ternal entity will it be sharing this data with. For exam-
ple, horoscope’s manifest would specify that it does not
share any information with any external entity. Note that
the horoscope application does not need to reveal that it
communicates with www.tarot.com as no user infor-
mation is being sent to www.tarot.com. The user can
now make a more informed decision before adding the ap-
plication. Admittedly, the user will need to make a trust
decision with respect to the parties with which the appli-
cation shares user data, but these external parties can be
expected to be larger and better branded entities providing
internet services, such as Google for ads, Yahoo for maps,
etc.
Figure 2 shows a typical life cycle of an application.

The developer of an application decides on the structure of
the components for that application and during the appli-
cation’s deployment on xBook, he specifies the informa-
tion required by each component and the external entity a
particular component needs to communicate with. xBook
uses this information to generate the manifest for the ap-
plication. As shown in the figure, a manifest is basically a
set that specifies all of the application’s external commu-
nications (irrespective of the components) along with the
user’s profile data that is shared for each communication.
Additionally, the xBook platform ensures that all of the
application’s components comply with the user’s privacy
policy and the manifest approved by the user. We discuss
this further using the case study of an example application
in Section 6.3.

The division of an application into multiple compo-
nents allows the application writer to develop different
functionality within an application that rely on different
pieces of the user profile. For example, let us consider
an application that requires a user’s information to gen-
erate a customized profile for the user. It also requires
his address information to be passed to Google to gener-
ate a map showing the address. In the application design
of current social networks, the application would be able
to pass all information about the user to Google. In the
xBook framework, the application would be split into two
components: the first component presents the customized
profile of the user, has full access to the user’s data and
is not allowed to communicate with Google; the second
component encapsulates the user’s address (with no map-
ping to the user’s profile) that is passed to Google to gen-

Figure 2: Typical life cycle of an application in xBook.

erate the map. We discuss some example applications in
Section 7.1.
Figure 3 shows a high-level design of our xBook frame-

work. There are two parts of the xBook platform, one that
runs on the server-side and another that executes on the
client-side in the user’s browser (Figure 3). The applica-
tion components, in turn, are also split into client-side and
server-side components. The components are written in a
safe subset of javascript, called ADsafe [1], which facili-
tates confinement of these components in our xBook im-
plementation. Any communication to and from the com-
ponents occurs by using xBook APIs, thereby allowing
all such communication to be mediated by xBook. Each
component is associated with a privilege level or label that
is derived from the application’s manifest. The platform
mediates the information flow between the components
based on these labels (Section 6).

Both client-side and server-side components commu-
nicate with server-side storage to retrieve data. There
are two types of storage in xBook system: one for stor-
ing xBook data that includes user profiles, and second for
the data stored by the application. While the structure of
xBook data is known, the semantic of the application data
is internal to the application and hence unknown to the
platform. All data fields are labeled to control access by
application components. These labels are assigned based
on high-level user-defined policies, such as a policy al-
lowing access to only the user’s friends, and the manifest
approved by the user (Figure 2).

To store application data with unknown structure and
semantics, xBook contains a group of storage pools,
where data is stored as a set of name-value pairs. An ap-
plication can have multiple storage pools, which could be
for each user or for user-independent data.

3.1 Leakage Prevention by xBook Design
In the current platform designs, a user’s information

can be leaked in three major ways: (1) applications can

USENIX Association 	 18th USENIX Security Symposium	 253

Figure 3: xBook architecture shown along with sources of potential leaks.

share user’s information with any third party, including
advertisers, or fraudulent parties [21], and as shown in
Figure 1(a), there is no way such a leak can be moni-
tored in the current designs; (2) an application can pass
information of one application user to another user, break-
ing free from the platform restriction that only friends
can view a user’s profile. The reported vulnerability in
TopFriends allowed such a leak [26]; (3) the application
can recreate the social graph of all its users by connecting
common friends as edges in the graph.

xBook’s design enforces complete mediation of all
communication with the external entities (Figure 1(b)),
thus preventing these applications from leaking informa-
tion, effectively preventing (1) by design. A separate ap-
plication instance is created for every user, and that in-
stance only has a view of the data accessible to that user.
Data access is restricted to allowed user policies, such as
access to friends. We mediate any direct or indirect com-
munication between the components of two application
instances, thereby deterring (2). (3) is prevented as no
single component of an application can have direct access
to the data of all its users: a component can only access
an anonymized view of this data set (Section 5.2).

xBook, by design, solves most of the leakage problems
of the current platforms. However, there are still some
potential mechanisms to leak information in our system.
We enumerate these possible threats in our formal model
and address these threats one by one throughout the paper.

3.2 Formal Requirements
We present a formal model in this section that general-

izes xBook’s mediation of untrusted third party applica-
tions. We use this model to analyze possible attacks, in
terms of potential data leaks, under an adversary that de-
ploys an application for collecting users’ private data. We
also identify a list of requirements that our system should
satisfy in order to defeat such attacks. These formal re-
quirements drive the design and architecture of our sys-

tem.
Consider an application A consisting of a set of client-

side components and a set of server-side components. Let
U be the set of all users of the platform and Y be the set
of all external entities. Suppose the application is allowed
to communicate to a set of external entities X ⊆ Y and a
set of users Fu ⊆ U for a particular user u ∈ U who is
using the system. Now, we divide the set of all data items
D into three categories. First, there is a set of proprietary
data or code of the application represented as dA ⊆ D.
Second, the set of data items du→x belonging to the user
u ∈ U that the application can transfer to the external
entity x ∈ X . This set could be in the form of user’s age,
interests, photos, etc. Third, for an application instance
of user ui ∈ U , the set of data items dui→uj

is what the
application can transfer to a user uj ∈ Fui

.
The platform wants to monitor the occurrence of a set

of events E that can pass information outside an appli-
cation component. Any event e ∈ E is actively moni-
tored by intercepting the information flow path between
the point of the event occurring and the point where the
event is handled. The platform monitors the content in-
formation Ie contained in the event. We express the re-
sponse of the platform when the particular instance of the
event has potential leaking information as R(Ie), which
may include filtering the content, blocking the communi-
cation, etc.

We can identify several sources of potential leaks in the
xBook system (Figure 3). The first class of attacks (A1)
bypasses the active monitoring by the xBook platform to
leak private information from one client-side component
to another, by creating a prohibited flow. Such attacks ex-
ploit some of the abstract features of the development lan-
guage and the browser to leak information maliciously. In
other words, A1 occurs if response R(Ie) is not triggered
even if the Ie contains private information content that
is being leaked. Similar leaks (A2) are possible on the
server-side where application components can break out

254	 18th USENIX Security Symposium	 USENIX Association

of the sandbox to create a prohibited channel with other
components. In addition, some attacks (A3 and A4) can
occur during a component’s access to data store, where the
component gains access to restricted user or application
data. Leaks (A5) can also occur in the communication
between client-side and server-side components. Other
attacks (A6 and A7) leak private information to entities
outside the system. The leaks could be to an x ∈ Y that is
prohibited (x /∈ X), or it could be leaking restricted piece
of information d ∈ D to an entity via communication that
is allowed by the system, i.e., for x ∈ X, d /∈ du→x for a
user u ∈ U .

We completely forbid cross-application communica-
tion, effectively preventing leaks across applications. We
also prevent direct communication between server-side
components, only allowing them to communicate via stor-
age, thereby preventing attacks of type A2. We medi-
ate other communication paths based on the labels of the
communicating parties (Section 6). We address all other
identified classes of attacks in Section 7.3. The require-
ments of an ideal social networking platform that guides
the xBook design are as follows:

• Response R(Ie) is invoked if Ie contains prohibited
private information. In other words, the platform
should be able to monitor any event that might be
potentially leaking information, and should take ac-
tion to prevent such leaks.

• Applications can invoke an event e iff e ∈ E, i.e.,
applications are restricted to a limited set of events
for passing information to external entities.

• Application component having access to user u’s pri-
vate data d can send information to an external entity
x ∈ Y iff x ∈ X and d ∈ du→x. In other words, the
platform should enforce user policies by limiting the
communication to only allowed external parties and
passing only allowed information to these parties.

• Application component having access to user ui’s
private data d can send information to another com-
ponent acting for user uj iff uj ∈ Fui

and d ∈
dui→uj

. This means that the applications should in-
herit the user-user access control policies of the plat-
form.

• Application component x can access dA only if x ∈
S, i.e., only server-side component of the application
should have access to application’s proprietary data.

We do not cover attacks against the browser in this work
and assume that the browser behaves non-maliciously. Al-
though phishing attacks can entice the user in choosing
policies that might leak user information, we do not con-
sider such attacks here. This work enforces the policies
specified by the user, and does not consider social engi-
neering attacks against the user.

Figure 4: Client-side components in xBook design.

4 Client-side Components
The client-side of the xBook platform and the client

components of the applications run within the web
browser. The components are further divided into two
parts: the user interface (UI) part that is visible as part
of the page to the user, and the non-UI part that provides
communication interfaces with the external parties and
with the server side. There is a one-to-one mapping be-
tween the non-UI and the UI parts, i.e., for every non-UI
part, there is a corresponding UI part visible to the user
(Figure 4).

A component is allowed to create another component.
Information can flow during the component creation and
this opens up the possibility of an information leak. We
prevent such leaks by allowing components to create other
components that are at least as restricted as the creating
component. This principle prevents the creating compo-
nent from leaking information out of the system via a less
restrictive component.

At the front end, the creating component needs to dele-
gate some screen space to the created component. One
challenge is to isolate the third-party application com-
ponents within the Document Object Model (DOM) of
the webpage. A DOM is a platform- and language-
independent standard model for representing HTML or
XML documents in a browser. We present our confine-
ment approach in the next section.

4.1 Confinement Mechanism
The components of an application encapsulate differ-

ent levels of private information for the users. Therefore,
these components need to be isolated from each other in
order to prevent information leaks. On the client side, the
components form a part of the DOM of the web page. The
web page’s DOM may include multiple components from
one or multiple applications, apart from the platform’s
DOM objects.
In the current browser specifications, any script in a

page has intimate access to all of the information and re-
lationships of the page. As a result, the components are
free to access information about the DOM objects of other
components. In order to confine the components within

USENIX Association 	 18th USENIX Security Symposium	 255

their own control domain, we limit the application code
to be written in an object capability language called AD-
safe [1]. In an object capability language, references are
represented by capabilities and objects are accessed using
these references. Other alternatives to ADsafe, such as
Caja [25], are also available; we decided in favor of AD-
safe due to its simpler design and easier feature addition
and customization to meet our system needs.
ADsafe. ADsafe defines a subset of javascript that

makes it safe to put guest code (such as third-party
scripted advertising or widgets) on any web page. ADsafe
removes features from javascript that are unsafe or grant
uncontrolled access to browser elements. Some of the fea-
tures that are removed from javascript are global variables
and functions such as this, eval and prototype. It
is powerful enough to allow guest code to perform valu-
able interactions, while at the same time preventing ma-
licious or accidental damage or intrusion. The ADsafe
subset can be verified mechanically by static tools like JS-
Lint [8].

ADsafe was initially developed to host untrusted ad-
vertising content safely on a webpage. xBook’s isolation
mechanism is designed with the code base taken from an
earlier version of ADsafe. We customized ADsafe by
adding code for our component confinement model and
mediation based on our labeling model, to prevent in-
formation leaks from the “sandboxed” application com-
ponents. A recent version of ADsafe have since im-
plemented some of our features, but still would require
changes to be useful for our system.

One such example is that ADsafe runtime supports only
a single level of confinement: all subtrees of the untrusted
guest applications exist as children of the trusted web page
code. One guest application does not have another guest
application as a child to its subtree. In contrast, xBook
design requires nested DOM subtrees that need to be iso-
lated from each other. Figure 4 shows an example of a
nested subtree, where componentC3 is a child of compo-
nent C1, which in turn is a child of C0.

Our requirement is to restrict an application component
to within a set of connected DOM elements that form the
component. In the current DOM specification, any DOM
element can parse through the tree of the page via its par-
ent, children or siblings. We enforce confinement by pro-
viding the component elements only with a partial view
of the page’s DOM and only indirect access to the DOM
objects.
Confinement Rule 1. One DOM element belonging

to an application component should only access another
DOM element of the page (that includes accessing its
properties, adding a new element to it, etc.) iff they both
belong to the same component.

As part of the implementation, xBook associates each
component with a unique DOM wrapper object at the

time of creation. Figure 5 shows the partial code of
our DOM wrapper implementation. Before deploying
an application, xBook verifies that each component code
is ADsafe compliant. The code must be wrapped in a
<div> element having an identifier, which forms the
root of the component. xBook ensures that this identi-
fier is unique to the application page. The ADSAFE.go
method gives the component code access to the API ob-
ject that maps to our DOM wrapper object. The ADSAFE
code ensures that the second parameter passed to the
createDOMWrapper function is equal to the identifier
of the encapsulating <div> element, effectively prevent-
ing the developer from faking the identity of the compo-
nents. It also ensures that the DOM wrapper instance gets
the right identity of the component’s root node.

The wrapper allows an untrusted component to view
DOM nodes simply as integer handles; the component
has no direct access to the real DOM. To read or mod-
ify the DOM, the component code passes the appropri-
ate handles to the wrapper DOM object using the xBook
APIs, which in turn interacts with the real DOM. Addi-
tionally, element creation and modification are adminis-
tered using this component-specific wrapper object. For
example, createTextNode method in Figure 5 would
return an integer handle. Since a wrapper instance is iden-
tified by its root element <div> that is unique, the DOM
wrapper object restricts the untrusted component code to
interacting only with the portion of the document tree that
belongs to that component. All direct accesses to any real
DOM elements are forbidden: the wrapper is the only in-
terface for accessing the elements and it is mediated by
the xBook platform.

4.1.1 Event Handling
Another possibility of an application breaking the con-

finement mechanism originates from the way event han-
dling is designed in the current DOM specification.

Every event has a target, i.e., the XML or HTML el-
ement most closely associated with the event. An event
handler is a piece of executable code or markup that re-
sponds to a particular event. Any element of the DOM
can register an event handler to receive a particular event
type. Since an event generated from within a component
can be received outside the component, the flow of events
within a DOM needs to be controlled by the xBook plat-
form for any potential leaks.

In the current DOM implementation, it is possible to
assign multiple handlers for a given event. It allows a
DOM element to capture events during either of the two
phases in the event flow. The event flows down from the
root of the document tree to the target element in the first
phase called capture, then it bubbles back up to the root
in the bubbling phase. An element can receive the event
only if it lies in the path between the document root and

256	 18th USENIX Security Symposium	 USENIX Association

Figure 5: DOM wrapper implementation with sample functions.

the event target.
One of the goals of our event handling model is to keep

the functionality of the current DOM model (including
preserving the concept of the two stages). Therefore, we
specify our event flow model as follows: for any appli-
cation component, an element can receive an event iff it
lies in the path between the root of the component and the
target element for the event. We still need to restrict this
access to a single component so that no outside compo-
nent can receive the event; we provide such a restriction
by the following confinement rule:
Confinement Rule 2. A DOM element belonging to an

application component can receive an event iff the event
target belongs to the same component.

We implemented our event handling model using the
DOM wrapper object introduced in the previous section.
As shown in Figure 5, the object makes a wrapper to the
event handling interface available to applications. The
wrapper receives the event from the browser’s DOM im-
plementation and filters the information presented in the
received event object before passing the event to the appli-
cations. Any information about the real DOM elements,
such as the handler to the target element, is filtered; this
prevents application’s component code from breaking the
confinement. The addEventListener method copies
the received event e into new e while transforming the
real DOM element references to wrapped integer values.

The xBook platform mediates the event delivery and as a
result, ensures that an event can only be received by el-
ements that belong to the same component that contains
the target, thereby enforcing the second confinement rule.

4.2 Communication with External Entities
It is common for the applications to communicate with

external parties to perform specific tasks. One typical ex-
ample is the use of Google map APIs to generate maps of
some address known to the application [9]. In other cases,
a user’s date of birth is used by applications to contact
external providers to generate horoscopes [3]. What we
achieve in our architecture as compared to the existing so-
cial networking platforms is that we enforce the applica-
tions to make these communications explicit so that more
informed decisions can be made. The user or the platform
can decide on the policies regarding which external enti-
ties are allowed to receive what piece of the user’s private
information. These policies could be coarse-grained for
all applications of a user or fine-grained specific to each
application. xBook ensures that the information flows
from a specific application component to an external en-
tity according to the defined policies.
There are two kinds of communication flows that can

happen in our system:
Symmetric communication in which the response is re-
ceived by the requesting component. This is a typical case

USENIX Association 	 18th USENIX Security Symposium	 257

for most client-server communication in which there is a
two-way exchange of information between the two par-
ties.
Asymmetric communication in which the response is
not received by the component that made the request, but
is handled by another component of the application. Our
motivation for supporting this type of communication is
to enable some specific application scenarios. One mo-
tivating example is the advertising scenario where adver-
tisements are generated by external parties based on the
information passed to them: Google generating advertise-
ments based on the address passed to it. These external
party advertisements are typically in the form of links that
users click to access the related site. If we design this sce-
nario using symmetric communication, these advertising
links would not work, since the receiving component has
been restricted to communicate only with Google and not
any other party. In order to solve this problem, we can
create another application component that is considered
part of Google’s trust domain; since Google servers are
unconfined or public from xBook’s point of view, the cre-
ated component is also unconfined. We do not allow any
other application component to peek into this new com-
ponent or disrupt its integrity. Since we are only show-
ing Google’s view in this component and the application
is not allowed to change this component, this component
maintains the trust level of Google. The new component
is placed in an iframe with its own DOM and hence
cannot communicate with any other component. How-
ever, since the component is unconstrained, it is allowed
to communicate with any external entity and as a result,
the advertising links would work.

4.3 Communication between Components: Message
Passing Interface

xBook exposes a one-way message passing API that
the components use to pass messages to other compo-
nents. We implement this interface using the DOM wrap-
per object as shown in Figure 5. The platform mediates
this communication and ensures that the information flow
model is enforced. Since each component is associated
with a unique wrapper object that is used to send the mes-
sage (Section 4.1), the sending component of the mes-
sage can not fake its identify to fraudulently pass the in-
formation flow checks: as seen in Figure 5, the value of
currentUser and sender’s compID are implicitly pro-
vided by the wrapper object to xBook’s sendMessage
function. A component can register a message listener
with the platform through the xBook API. Any message
intended for a particular component is delivered to its
message listener. Since the platform knows the identity
of each component, it makes sure that the message is de-
livered to the right component.

The purpose of our message passing interface is to

allow xBook-mediated communication among untrusted
components of an application, while still preventing cre-
ation of any hidden channels. To this end, we needed to
evaluate some of the features of javascript that gives ap-
plication writers alternatives to pass hidden information
in the messages.

Javascript is a weakly typed language and allows any
property to be added to any object. For example, an object
message can take a propertyfoo using message.foo
= value; where value could be a number, string or
any other object type. Since all application components
run in the same scope, a component can pass informa-
tion to another component if it has access to an object of
that component. Let us assume that a component C1 is
allowed to talk to another component C2 as per the infor-
mation flow policies, but C2 can not communicate to C1.
Effectively, we have a one-way communication channel
from C1 to C2. If C1 passes the object message to C2,
the platform can observe message, but cannot identify
the object handler foo being passed. C2 can pass infor-
mation to C1 by writing to this handler.

We counter such leaks by limiting the message pass-
ing to being a JSON container [7], that is pure data. A
javascript JSON container is a collection of key/value
pairs or an array of values. These key/values are limited
to pure data types such as string or numbers. We make a
copy of the JSON object and pass the copy to guarantee
that there are no additional properties in the passed object.
This solution is also effective against attacks by a message
sender that use getters and setters.

The simplest way of designing the message passing in-
terface is to pass messages from a source to a destina-
tion in a single thread of execution. This option opens up
the possibility of a covert communication channel from a
more restricted to a less restricted component. For exam-
ple, let us consider that a less secret component C0 is pass-
ing multiple messages to a more secret component C1.
Because of the single-threaded non-preemptive nature of
javascript, C1 will complete processing the first message
before the control goes back to C0. This creates a covert
timing channel from C1 to C0. The amount of time taken
by C1 can be observed by C0 and C1 can change this time
to pass the desired information bits to C0.

We reduce the effect of this timing channel by making
the message passing interface asynchronous. We achieve
asynchronous behavior by implementing a global queue
for message passing that is shared among all the compo-
nents of an application. The receiving components reg-
ister listeners with the platform in order to receive mes-
sages. A timer event dequeues an available message and
delivers it to the message listener of the target component
of the message. Note that addressing all covert channels
in our system is beyond the scope of this paper; we discuss
this further in Section 8.

258	 18th USENIX Security Symposium	 USENIX Association

5 Server-side Components
The server-side of the application contains the main

functionality for typical applications. It follows a famil-
iar web server model where a server-side component is
instantiated for every client request.
Besides the regular user-specific components on the

server side, there are certain components that are user in-
dependent and works on non-user data or user public data.
These components perform two tasks: First, they commu-
nicate with external parties to provide functionality inde-
pendent of the user data. Second, they handle statistical
aggregation on user data sets. We discuss declassification
based on data anonymization in Section 5.2.

The server components also protect application propri-
etary data that needs to be declassified before sending it
to the client. The threat model is reversed in this case: the
applications do not trust the user for their data, so they
protect their internal data from being leaked to the users.
For example, an application might be giving horoscope
predictions to users based on their birth date, but it wants
to protect the data or algorithm used for such predictions.

There is no direct communication between the server-
side components: all such communication happens via
application-specific storage. The platform ensures that the
information flow is enforcedwhile accessing the database.
The platform also administers the communication with
external parties and client-side as allowed by the labeling
system.

5.1 Component Confinement
The server-side components need to be isolated from

each other. The server-side of xBook mediates all com-
munication flowing in and out from these components.
There are several options available for server-side iso-
lation. Operating system isolation mechanisms [12,
30] can be used to sandbox the application compo-
nents. Another option is a language level confine-
ment similar to the client-side isolation with options like
Caja (Javascript) [25], ADsafe (javascript) [1] and JoeE
(Java) [20] available. We use ADsafe on the server-side
in order to have the same language for developing appli-
cation components for both client and server.
To the best of our knowledge, we are the first ones

to port ADsafe to the server side. We had to make
some modification to the ADsafe object to implement our
server-side xBook APIs and to perform checking of the in-
formation flow labels. Each server-side component holds
a unique handle to the modified ADsafe object, and access
is restricted to the set of APIs provided by the modified
ADsafe object. The modified ADsafe object is concep-
tually similar to the DOM wrapper object on the client
side, but is customized to work in the server-side environ-
ment. The platform verifies the validity of the informa-
tion flow before any access is granted. The javascript ex-

ecution environment is provided by Helma [6], a popular
open source web application framework.

5.2 Anonymized Statistics
xBook ensures that no user data is leaked against the

user’s policies. A particular instance of an application can
only have access to profile data that belongs to the user
and only his friends. Different instances of the applica-
tions cannot share data due to the restrictions posed by
xBook’s labeling system.

It is desirable for some applications to have a view of all
its users so that some statistical results can be published
for the whole application. In other words, a component of
the application needs to receive data of all the application
users and still should be able to share these statistics as
output to all users, crossing the boundary of friends.

In order to facilitate this case, we are exploring a three-
step anonymization algorithm that provides conservative
access to data for the applications. Currently, case 1 and
3 have been implemented, case 2 will be explored as part
of our future work.
Case 1. If an application component requests a single field
of user information for all application users, it is given ac-
cess to the requested set in an unmodified form, but in a
random order of sequence.
Case 2. If an application component requests multiple
fields of user information for all application users, it is
given access to the requested set in a form generated by
anonymizing the original dataset and then randomizing
the resulting tuples’ order of sequence. We plan to lever-
age some of the existing work [15, 24, 31] to generate the
anonymized statistics. We acknowledge that providing se-
curity in anonymity and statistical queries is a challenging
problem and has its own limitations [13, 24]. Addressing
these limitations is orthogonal to our work and is not the
focus of this paper.
Case 3. Applications can also request the xBook plat-
form for statistics on unanonymized data. This gives the
applications more accurate statistics as compared to case
2, where some fields might be filtered or altered to pre-
serve anonymity. xBook provides a limited list of such op-
erations, including aggregation, maximum and minimum
value over one or multiple fields.
Discussion. Anonymizing the data might limit some

applications that rely on the original data for their func-
tionality. One such example is an application that plots
the location of a user’s friends on Google maps, and would
need to pass names and addresses of the user’s friends to
Google. The application also makes subsequent queries
to Google (for example, to build a Google calendar of
friends’ birthdays). If the data is anonymized, the appli-
cation might not produce completely accurate results.

On the other hand, if Google is provided with
unanonymized data, it can use the data to cross-reference

USENIX Association 	 18th USENIX Security Symposium	 259

and identify the friends. This is a conflict between pri-
vacy and functionality. If functionality is preferred and
unanonymized information is passed to external entities,
user’s personal information can be leaked. In such a case,
our xBook design, at the minimum, enforces the applica-
tions to explicitly declare all external communication (in-
cluding the data that will be transferred). Based on such
information, the user can make a much more informed de-
cision about adding the application.

6 Labeling Model
The xBook platform tracks and enforces information

flow using a labeling system defined based on existing
models [17,23,27,36]. All system abstractions are layered
on top of two types of entities – active and passive. Appli-
cation components represent active entities that actively
participate in label compatibility checks; database entries
are passive entities. Every active entity corresponds to a
principal and a label; passive entities only have a label.
We do not enforce information flow at the language

level [27], but instead at the level of application compo-
nents and database entries. There are multiple reasons
for this choice: (1) it is simpler for the application pro-
grammers as they do not need to learn a new language
or perform fine-grained code annotations, (2) information
flow on a language like javascript with dynamically cre-
ated source code may not be feasible, and (3) run-time in-
formation flow at fine-grained language level would prob-
ably be expensive as compared to a much coarser level of
components.
The label specifies the secrecy level of an entity. It rep-

resents what information is contained in a passive entity
and what information the active entity currently has or
will read. The entity’s principal defines whether the en-
tity has declassification privileges over the label. xBook
labels originated along the lines of the language based la-
bels in Jif [27]. Labels represent the confidentiality or
secrecy level of an entity in the system. Integrity label-
ing is not the focus of this work since we are focusing on
privacy.

A label L is represented as a set of tags, with each
tag having one principal as owner o and another set of
principals called readers R(L, o). The owner is the prin-
cipal whose data was observed in order to construct the
data value. The readers represent principals to whom the
owner is willing to release the information. An exam-
ple of a typical label is L = {o1 : r1, r2; o2 : r2, r3},
where O(L) = {o1, o2} denote the owner set for the label
and readers sets are R(L, o1) = {r1, r2} and R(L, o2) =
{r2, r3}.

In the xBook system, principals represent the identities
of various entities in the labeling model. There are five
types of principals in our system:
• C(ai, uj) and S(ai, uj) represents the client-side

and server-side components for an application ai

specific to a user uj .
• C(ai) and S(ai) represents user-independent client-

side and server-side components for an application
ai.

• uj represents the entities that the user uj is in com-
plete control of. Once the user uj is logged into
the xBook system, the user’s browser is assigned the
principal uj .

• �, ⊥ where � is highest priority principal in the sys-
tem and is allotted to the xBook platform. For the
sake of completeness, ⊥ is the least privileged prin-
cipal.

• External entities also have principal names
that contain the hostname and optionally the
scheme and port (like in URLs). For example,
https://www.example.com:8888 repre-
sents one such principal.

Our model assumes static labels for the entities and in-
formation flows from one entity to another if allowed by
the label comparison of the end points. Information can
flow from one label L1 to another label L2 only if L2 is
more restricted than L1 denoted as L1 � L2.
Restriction. L1 � L2 ⇐⇒ O(L1) ⊆ O(L2) and ∀o ∈

O(L1), R(L1, o) ⊇ R(L2, o)

6.1 acts-for Hierarchy
To facilitate easier conversion of user policies to low-

level labels, system entities are statically labeled. We de-
cided on immutable labels since it improves usability of
the application programming model from the perspective
of the application programmer. Unexpected runtime fail-
ures can occur when labels of components change at run-
time [23]. With immutable labels one can statically verify
that all the communication dependencies with respect to
other components, external entities, storage will be satis-
fied.

Some principals have the right to act for other prin-
cipals and assume their power. The acts-for relation is
transitive, defining a hierarchy or partial order of princi-
pals [17]. The right of one principal to act for another is
predefined by the platform. Figure 6 presents the acts-for
relationship within the xBook system. This hierarchy de-
fines the priority of different principles in the system. The
reasoning behind the defined hierarchy is as follows:
• � defines the xbook platform and has the highest se-

curity label. As a result, it can declassify any label.
• Any data sink or source that is not explicitly defined

by xBook is modeled as an unprivileged entity with
label ⊥.

• The client-side components are given lower prior-
ity than server-side components, because intuitively
server-side components residing on xBook servers

260	 18th USENIX Security Symposium	 USENIX Association

Figure 6: Label hierarchy in xbook.

Algorithm 1 Label Compatibility Check Algorithm.
eL1 = (entity1 is a database) ? L1 : maxDeclassify(L1, P1)
eL2 = (entity2 is a database) ? L2 : maxRestrict(L2, P2)
if eL1 � eL2 then
ALLOW flow from entity1 to entity2

else
DENY flow

end if

Figure 7: Algorithm to check if the information flow from entity1 to
entity2 is allowed.

are more trustworthy than client-side components.
For example, S(a0, u0) has higher priority over
C(a0, u0) for application a0 and user u0. The server-
side components can declassify an application’s pro-
prietary data, which has been labeled in a manner
such that it cannot be directly read by client-side
components.

• User-independent principals are at a lower priority
than any user-specific principal. This allows user-
specific components to read user-independent data
generated by an application, also effectively allowing
users to read statistical data generated for the whole
application.

• Principals representing the end user are higher than
the corresponding client-side principals since the
user controls the client.

6.2 Flow Enforcement
Information flows within the xBook system if the label

of source is less restricted than that of destination. Such
flow restrictions have been proposed earlier in classical
information flow control models [14]. We introduce the
concept of endpoints similar to the Flume model [23]. In-
stead of changing the labels of the entities, for every com-
munication the source and the destination create an end-
point each to facilitate the flow. The entity, based on its
principal, can restrict or declassify its label and allocate
it to an endpoint for communication. While restricting a
label means adding more owners and removing readers,
declassification either adds some readers for an owner o
or removes the owner o. This relabeling can be done only
if the principal of the entity is higher than an owner o in
the hierarchy.
Figure 7 shows our flow enforcement algorithm, where

maxRestrict and maxDeclassify are defined as:
• maxRestrict(L, P).O(L) = O(L)∪descendent(P);
∀o ∈ descendent(P): R(L, o) = {}

• maxDeclassify(L, P). ∀o ∈ O(L): if (o ∈
descendent(P)) then O(L) = O(L) − {o}

where descendent(P) represents all descendents of a
principal P in the acts-for hierarchy, O(L) is the set of
owners for label L and R(L, o) represents a set of read-
ers in label L for owner o. Intuitively, the communi-
cating end points support the communication with the
sender declassifying its label to the maximum possible
using maxDeclassify and the receiver restricting its la-
bel using maxRestrict. Since the information can only
flow from a less restricted to a more restricted component,
these functions facilitate the flow of information.
Some typical flows in the xBook system are depicted

in Figure 8. To demonstrate the validity of our algorithm,
let us consider the example of the flow between the client-
side componentC1 and the server-side componentS1. For
the flow from S1 to C1,
eL1 = maxDeclassify({S(a0) :;� : C(a0, u0)},

S(a0, u0)) = {� : C(a0, u0)}

eL2 = maxRestrict({� : C(a0, u0)}, C(a0, u0))

= {C(a0, u0) :;C(a0) :;� : C(a0, u0)}

Recollecting the definition of restriction, we can see
that eL1 � eL2 , therefore S1 can send data to C1. Con-
sidering the reverse flow from C1 to S1,
eL1 = maxDeclassify({� : C(a0, u0)}, C(a0, u0))

= {� : C(a0, u0)}

eL2 = maxRestrict({S(a0) :;� : C(a0, u0)}, S(a0, u0))

= {S(a0, u0) :;S(a0) :;C(a0, u0) :; (a0) :;

� : C(a0, u0)}

We can see that eL1 � eL2, i.e.,C1 can send data to S1.
Effectively, there is a two-way communication between
C1 and S1.

6.3 Case Study: Horoscope Application Lifecycle
An application’s lifecycle consists of three steps: the

application being hosted by xBook, a user adding the ap-

USENIX Association 	 18th USENIX Security Symposium	 261

Figure 8: Typical Flows in xBook system with the corresponding labels. For every component, the first parameter is the
principal and the second is the label associated with the component.

plication and then the user accessing it.
Hosting. Before xBook accepts a new application, the

developer needs to provide the following information:
• The application provides the components to be de-

ployed, in each case specifying if the component is
client-side or server-side and if it is user-dependent
or not, what user data would the component require
and which external entities and other components
will it communicate with. In our horoscope exam-
ple, there are three components: S0 communicates
with www.tarot.com and requires no user data;
S1 requires user’s birthday; C1 is on the client-side
and also requires user’s birthday.

• The application also states that there are user-
independent or user-dependent storage pools and
each is named declaratively by the application. This
ensures that the storage pool names do not leak any
user information, as the application has no user infor-
mation at this time. For example, horoscope applica-
tion declares a storage pool for storing its application
data generated by S0.

Based on the label of the user data, xBook derives the
labels and the principals of the components. The birthday
field has a label {� : C(ai, uj)}, therefore the following
labels are allocated to the horoscope components:
• S0 Principal: S(ai), Label: {S(ai) : }

• S1 Principal: S(ai, uj), Label: {S(ai) : ;
� : C(ai, uj)}

• C1 Principal: C(ai, uj), Label: {� : C(ai, uj)}

The principals define if the component is server-side or
client-side, and if it is user-dependent or not. The labels
allow S1 and C1 to read the birthday field. S0’s label al-
lows it to declassify itself to be public to communicate
with www.tarot.com, and write to the storage pool
that is given S0’s label. The storage pool label prevents

any of the client-side components (C1) from viewing this
data, thereby protecting application data from untrusted
users. S1 is allowed to read from the storage pool. The
labels of S1 and C1 correspond to the labels of S1 and
C1 respectively in Figure 8, where i = 0 and j = 0.
As we have observed in the last section, the labels of S1

and C1 effectively allow a two-way communication chan-
nel. Thus, S1 can pass the results to C1 that, in turn, can
present a formatted form of the horoscope to the user’s
browser.
Application Addition. When the user is adding the

application, he is provided with a manifest that de-
clares what information is passed to which external entity.
xBook derives the manifest from the component informa-
tion provided by the application developer. For example,
since none of the components of the horoscope applica-
tion share any user information with any external entity,
horoscope’s manifest would specify that it does not pass
any information to any external entity. Since the user’s
birthday is not shared with any external entity, the ap-
plication does not need to declare its need to access the
birthday information.
Application Access. When the user is accessing an

application, all user-specific components are instantiated
for that user, replacing the user wildcard in the template
of labels and principals with the user identifier. This en-
forces access control across multiple users: access is only
granted if it is aligned with the user’s privacy policy, for
example, access is granted to only user’s friends.

7 Evaluation
7.1 Prototype System and Example Applications

We developed a working prototype of the xBook sys-
tem, which includes platform code and APIs for devel-
oping third-party applications. We also implemented the
labeling model that enforces information flow control for

262	 18th USENIX Security Symposium	 USENIX Association

Attack Step Attack Type Prevented by xBook?
One client component accessing another component’s DOM object A1

√

Leaks via the message passing interface A1
√

A component creates or destroys a less restricted component leaking information A1
√

Retrieve information of another user not in the friend list A3/A4
√

Client component retrieves more restricted information from the server A5
√

Leaks to an unknown external entity A6/A7
√

Leaking restricted information to an allowed external entity A6/A7
√

Table 1: Prevention of information leaks against various kinds of synthetic attacks.

the data flowing through the system and prevents any in-
formation leaks. Our xBook platform consists of about
4300 lines of javascript code.

We developed two sample applications using the xBook
APIs to show the ease and viability of application devel-
opment in xBook. These applications are similar in func-
tionality to two popular Facebook applications: Horo-
scope [3] and TopFriends [11].The horoscope application
produces a user’s daily horoscope based on his birthday
information. The utility application based on TopFriends
produces a customized profile for the user based on his
complete profile information. It also generates a Google
map showing the user’s home location on the map. The
applications are written in javascript using xBook APIs,
with the horoscope application having about 180 lines and
the application based on TopFriends having around 480
lines of code. We tested these applications against a se-
ries of synthetic scenarios, where these applications tried
to leak the user’s private information. Our tests showed
that the xBook system was successful in detecting and
preventing all such leaks.

7.2 Porting xBook on Facebook
In order to show the practical viability of the system

and to demonstrate that our system can be incrementally
deployed, we ported the xBook platform as an applica-
tion on Facebook. Since Facebook allows any application
to have access to user data, including their friends’ data,
of any user adding the application, xBook as an “appli-
cation” is able to receive the data of the users agreeing
to use the xBook platform. Applications developed us-
ing xBook APIs can execute on top of xBook, while still
running on xBook servers. Since xBook act as an applica-
tion for Facebook, xBook’s response would be rendered
as part of Facebook’s web page. Since the third party ap-
plications are encapsulated in the page forming xBook’s
response, the output of these applications would also be
effectively rendered on Facebook (Figure 1(c)). Facebook
provides the data feed to xBook, which then enables ac-
cess to this data for xBook applications in a controlled
manner through xBook APIs. Facebook’s user identity is
maintained within xBook. Our running system is avail-
able online on Facebook [33].

We envision xBook to be assimilated into the Facebook

platform with Facebook providing two levels of applica-
tion service. First, the current applications based on cur-
rent Facebook design would be supported. Second, ap-
plications that are developed using xBook APIs are sup-
ported, with added privacy protection advantage. Users
can be given the discretion to choose between the two
options, and the users’ choice can drive new application
development on xBook.

7.3 Security Analysis
Our analysis shows that xBook prevents the applica-

tions from leaking any user information. All of the doc-
umented leaks in the current social networks are pre-
vented in the xBook system. For example, the TopFriends
leak [26] cannot happen in our system because a sepa-
rate application instance is created for every user. Each
instance only has view of the data accessible to that user
and xBook mediates all cross user data accesses.

We evaluated the privacy protection ability of our sys-
tem in three steps. First, we analyzed the security of the
xBook design in view of the potential leaks specified in
the formal model (Section 3.2). Second, we developed
a set of synthetic attacks targeting the xBook framework
and performed experiments to show that our prototype
successfully prevents these attacks. Finally, we prove that
xBook’s information flow model ensures that information
leaks cannot happen in the xBook design.
We first analyze the security of our prototype and show

that all the attacks discussed in Section 3.2 will not suc-
ceed against our design. Attack type A1 is prevented
due to the various mechanisms developed in our system
for client-side confinement (Section 4.1), such as compo-
nent isolation, event handling, etc. A2 is prevented by
server-side confinement of application components, only
allowing them to communicate via storage. Leaks via
A3 and A4 are inherently prevented by mediating the in-
formation flow from the database to application compo-
nents with label enforcement based on user-defined poli-
cies, and also by anonymizing data for statistical purposes
(Section 5.2). A5 is also prevented by label enforcement
before the client-side request is passed to the server-side
component and before response is returned. Enforcing the
confinement model to mediate the external communica-
tion, both in synchronous and asynchronous communica-

USENIX Association 	 18th USENIX Security Symposium	 263

Application User latency Server processing time Time for label checks (Number of checks) Overhead
Horoscope 183.1ms 128.8ms 7.7ms (6) 4.2%
Map utility 111.4ms 51.2ms 3.5ms (2) 3.1%

Table 2: Performance results of various operations in typical xBook applications.

tion scenarios, prevents A6 leaks (Section 4.2). Following
the same lines, A7 is prevented on the server-side.

Second, we tested the ability of our prototype by cre-
ating synthetic exploits that try to break out of xBook’s
information flow control model to leak user information.
We developed a sample application to launch these attacks
against our prototype; if successful, these attacks allow
the application to leak information to entities outside the
system. Table 1 contains the results of testing our proto-
type against a wide range of these synthetic attacks. In all
our experimental tests, xBook successfully prevented the
leaks before the information could be passed outside the
system.
We can also prove that if xBook’s confinement mecha-

nism is correctly enforced, the information model ensures
that no user information is leaked to external entities (The-
orem 1) and to any other user (Theorem 2) outside the
user-defined policies.
Theorem 1. Given a set of policiesP = D×X , where the
application can pass user’s information field d ∈ D to ex-
ternal entity x ∈ X , and assuming that the intended con-
finement is enforced, the information flow model ensures
that there is no possible leak outside the xBook system. In
other words, if (d, x) /∈ P then ∀Ci : Ci �d x, where Ci

are application components and Ci �d x shows that Ci

can not pass data item d to x.
Proof. LetC0, C1, · · ·Ck represents the information flow
path of a data element d from the xBook database to ex-
ternal entity x.

We present the proof by contradiction. Let us assume
that Ci can pass any information (represented by ∗) to x,
illustrated as Ci ∗

−→ x. This communication is monitored
by our xBook platform, but the platform does not know
the semantics of the information being passed.
Also, ∀i ∈ [0, k] : Ci−1 ∗

−→ Ci =⇒ Li−1 � Li (flow is a
restriction)
Ci ∗

−→ x =⇒ Li � Lx

Therefore, Li−1 � Lx =⇒ Ci−1 ∗

−→ x
Continuing this by induction, C0 ∗

−→ x

In our labeling model, the computational granularity is
at the component level. Therefore, we consider that ∀Ci :
Output(Ci) = �(Input(Ci)) for any computation �.
For component C0, Input(C0) = d, Output(C0) = ∗
=⇒ ∗ = �(d)
Since the input to C0 is supplied by the xBook platform,
and since (d, x) /∈ P, C0 �∗ x.
This is a contradiction. Therefore, Ci �∗ x.
By definition, ∗ represents any information (including d).

Therefore, Ci �d x.

Theorem 2. Given a set of user policies P (x) = D × U ,
where the application can pass user x ∈ U ’s information
field d ∈ D to another user y ∈ U , and assuming that the
intended confinement is enforced, the information flow
model ensures that user-user access control is enforced
in the xBook system. In other words, if (d, y) /∈ P (x)
then ∀Ci(x), Cj(y) : Ci(x) �d Cj(y), where Ci(x) and
Cj(y) are components of application instance for user x
and y, respectively.
Proof. Similar to Theorem 1.

7.4 Performance Estimates
xBook does not impose a substantial burden on the per-

formance of the third party applications. With an archi-
tectural framework of developing applications, it is dif-
ficult to accurately predict the impact of our design on
the performance of these applications as perceived by the
user. To get a rough estimate of the cost of supporting the
xBook design and the overhead involved in our system,
we conducted some experiments with our sample appli-
cations, measuring latency at the user end and overhead
imposed by the mediating design of xBook.
The xBook server side is hosted on a 2.4GHz Pentium

4 machine with 512MB of RAM. The requests are made
from Firefox 3.0 browser on a 2.33GHz, 2GB RAM, Pen-
tium Core Duo laptop. Each test was run 10 times and
values were averaged. We define user latency as the differ-
ence in the time when the request is made at the browser
and the time at which the response is received by the
browser. Table 2 shows the time required by xBook’s in-
formation flow control in comparison to the user’s over-
all latency. Server processing includes the application’s
logic, database access to retrieve required user data, and
xBook flow checks, and is independent of the network la-
tency experienced by the application. We instrumented
our code to derive the time for performing label checks in
the system, and measured overhead as a function of the
label checking time over the total latency experienced by
the user. Our results show that the overhead introduced
by xBook’s label checks is considerably small: about 4%
for the horoscope application and 3% for the map utility
marking user’s hometown location on Google maps.

On a cluster of commercial servers with much better
computational capacity, these values will be even smaller.
Although it is not possible to precisely determine the
cost of our approach without a large scale experiment,
both the details of our design and the results from these

264	 18th USENIX Security Symposium	 USENIX Association

experiments, support the conclusion that xBook design
would not substantially increase the latency experienced
by users.

8 Discussion
In this section, we discuss the limitations of the applica-

tion design in xBook and address some of the challenges
arising from the new requirements imposed by our design.

Our xBook design imposes no limitations on appli-
cations that follow a “pull model”, i.e., xBook would
preserve the functionality of applications that only re-
ceive data from external entities without passing any pri-
vate information to these entities. Our horoscope appli-
cation is an example of such as application: one pub-
lic component of horoscope pulls horoscope data from
www.tarot.com and does not pass any of the user’s
profile information. Note that the xBook platform does
not need to sanitize the request parameters (in both GET
and POST requests), as the component making such re-
quests has no user information that can be leaked. An-
other component, which has access to the user’s birthday
information, uses the data to calculate the daily horoscope
corresponding to the particular user. This component has
no communication with any external entity.

On the other hand, our design might limit some of the
applications that require data to be sent to external en-
tities for receiving user-specific information. One typi-
cal example is the use of Google APIs to generate maps:
it requires a location to be passed to Google before the
map is generated. In many cases, we expect these exter-
nal entities to be larger and well branded entities, such
as Google, Yahoo, etc. Such cases could be whitelisted
after explicit approval from the user. Note that xBook
makes no recommendation about which websites can be
trusted, including Google and Yahoo; such trust decisions
are made by an individual user from his own knowledge
and experiences. Our xBook system can keep track of
these approvals across applications for every user, so the
users need to approve an interaction only once.

Any social networking application would follow either
the pull model or the push model to get data from external
entities. In both cases, our platform enforces the appli-
cations to make all such interactions explicit and allows
the user to make a more informed decision based on the
information available. We argue that an application using
the pull model would be more acceptable to the users as
it requires minimal trust decisions from a user’s perspec-
tive. It is possible to transform many of the current social
networking applications that use the push model to start
using the pull model. We acknowledge that such a trans-
formation would require some changes to the application
design, and in some cases, such transformations might not
be practical due to large download size of the required
data. However, if enough users decide not to use the ap-

plication in view of privacy concerns, it would motivate
the developers to consider such a transition.

Our system also suffers from classical covert channels,
e.g. timing, memory, process, etc. However, in gen-
eral these channels have limited bandwidth and viable
approaches such as randomizing the time (for example,
the delivery time of our message queue discussed in Sec-
tion 4.3) can further limit their utilities. We plan to study
some of these channels as part of our future work.

Scalability of the applications is not a concern in our
system: applications hosted on clusters outside xBook
would now be hosted on clusters inside the xBook plat-
form. The application developers are already paying for
hosting their applications, in most cases to third-parties or
cloud owners like Amazon EC2 [2]. Thus, instead of the
developers paying to these parties, they would be paying
to xBook for the hosting service. xBook, in turn, can out-
source the hosting to third-parties, still assuming control
of the hosted applications.

We also propose a hybrid model where only the appli-
cation components that require access to xBook’s private
data needs to be hosted at the xBook servers. Other public
components can be controlled by the application develop-
ers on their own servers. Such an approach is useful for
many applications as research has shown that a large num-
ber of applications do not use any private data to perform
their functionality [19].

9 Related Work
Information flow control at the language level has been

well studied [16,27]. Jif is a Java-based programming lan-
guage that enforces decentralized information flow con-
trol within a program, providing finer grained control than
xBook [27]. In comparison to these language level tech-
niques that require the applications to be rewritten, the
xBook platform provides a simpler interface to the appli-
cation programmers: they do not need to learn a new lan-
guage or perform any fine-grained code annotations. Ad-
ditionally, information flow on a language like javascript
with dynamically created source code may not be feasi-
ble. Cong et al. [16] presented a technique of writing se-
cure web applications, which generates javascript code on
the client side and java code on the server side. However,
the applications are still written in the Jif language.
There are other systems [23, 36] that have utilized the

information flow concept to control data flow at the oper-
ating systems (OS) level. Information flows are tracked
at low-level OS object types such as threads, processes,
etc. xBook works at a much coarser level at the applica-
tions, with smallest unit of information being an applica-
tion component. As a result, run-time information flow
in xBook would probably be less expensive as compared
to a much finer granularity level used in these systems.
In order to make these systems useful for a typical social

USENIX Association 	 18th USENIX Security Symposium	 265

networking environment, it would require the systems to
be installed at a user’s computer because leaks can also
happen at the browser, which might not be feasible. In
comparison, xBook runs on a typical web server without
any changes to the OS environment.

Similar to the ADsafe environment, other safe subsets
of programming languages, such as JoeE [20] (for java)
and Caja [25] (for javascript), allow third-party applica-
tions to provide active content safely and flexibility within
the existing web standards. While we used ADsafe for its
simplicity and suitability to meet our system needs, we ex-
pect that it would be similarly possible to develop xBook
using these alternatives.

10 Conclusions
We presented a novel architecture for a social network-

ing framework, called xBook, that substantially improves
privacy control in the presence of untrusted third-party ap-
plication. Our design allows the applications to have ac-
cess to user data to preserve their functionality, but at the
same time preventing them from leaking users’ private in-
formation.

We developed a working prototype of the system that is
available as an application on Facebook [33]. We showed
the viability of our system by developing sample applica-
tions using the xBook APIs: these applications are similar
in functionality to the applications on existing social net-
works.

Our system shows promise in designing potentially
valuable future applications, that would require user data
to provide more customized service to the user. The grow-
ing popularity of social networks would attract increasing
attention from attackers because of the value of user infor-
mation available in these networks. This user information
not only has commercial value, but when combined with
some anonymized public data such as medical records,
might leak more sensitive information [28, 34]. The cur-
rent design of social networking applications poses a se-
rious threat to the privacy of individuals that needs to be
mitigated; the xBook platform is a major step in protect-
ing user privacy in social networking applications.

Acknowledgement
This material is based upon work supported in part by
the NSF under grants no. 0716570 and 0831300 and
the Department of Homeland Security under contract no.
FA8750-08-2-0141. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the NSF or the Department of Homeland Secu-
rity. We would also like to thank Monirul Sharif, Roberto
Perdisci and the anonymous reviewers for their helpful
comments and our shepherd George Danezis for his valu-
able suggestions.

References
[1] ADsafe. http://adsafe.org. Last accessed Feb. 1,

2009.
[2] Amazon elastic computing cloud. http://aws.

amazon.com/ec2/. Last accessed Feb. 1, 2009.
[3] Daily horoscopes. http://apps.facebook.com/

daily-horoscope. Last accessed Feb. 1, 2009.
[4] Facebook developers: Developer terms of service. http:

//developers.facebook.com/terms.php.
Last accessed Feb. 1, 2009.

[5] Facebook’s privacy policy. http://www.facebook.
com/policy.php. Last accessed Feb. 1, 2009.

[6] Helma javascript web application framework. http://
www.helma.org.

[7] Javascript object notation (JSON). http://www.
json.org. Last accessed Feb. 1, 2009.

[8] JSLint: The javascript verifier. http://www.jslint.
com. Last accessed Feb. 1, 2009.

[9] Map your friends. http://apps.facebook.com/
mapyourfriends. Last accessed Feb. 1, 2009.

[10] Opensocial. http://www.opensocial.org/. Last
accessed Feb. 1, 2009.

[11] Topfriends. http://apps.facebook.com/
topfriends. Last accessed Feb. 1, 2009.

[12] A. Acharya and M. Raje. MAPbox: using parameterized
behavior classes to confine untrusted applications. In Pro-
ceedings of the 9th USENIX Security Symposium, Denver,
CO, Aug. 2000.

[13] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
art thou r3579x?: Anonymized social networks, hidden
patterns, and structural steganography. In Proceedings
of the 16th International Conference on World Wide Web
(WWW), Banff, Canada, May 2007.

[14] D. E. Bell and L. J. Lapadula. Secure computer system:
Unified exposition and multics interpretation. Technical
Report MTR-2997, MITRE Corp., Bedford, MA, Mar.
1976.

[15] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Prac-
tical privacy: the SuLQ framework. In ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, Baltimore, MD, 2005.

[16] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proceedings of the 21st Sympo-
sium on Operating Systems Principles (SOSP), Stevenson,
WA, Oct. 2007.

[17] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[18] D. Farber. Google to open orkut opensocial developer
sandbox tonight, Nov. 2007. http://blogs.zdnet.
com/BTL/?p=6856. Last accessed Feb. 1, 2009.

[19] A. Felt and D. Evans. Privacy protection for social net-
working platforms. In Web 2.0 Security and Privacy Work-
shop, Oakland, CA, May 2008.

[20] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Ver-
ifiable functional purity in java. In Proceedings of the
ACM Conference on Computer and Communication Se-
curity (CCS), Alexandria, VA, Oct. 2008.

266	 18th USENIX Security Symposium	 USENIX Association

[21] S. Hacking. More advertising issues
on facebook (updated), 2008. http:
//theharmonyguy.com/2008/06/20/
more-advertising-issues-on-facebook/.
Last accessed Feb. 1, 2009.

[22] R. Konrad. Facebook opens to third-party develop-
ers, May 2007. http://www.msnbc.msn.com/id/
18899269/. Last accessed Feb. 1, 2009.

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions. In Proceedings of the
21st Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, Oct. 2007.

[24] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkita-
subramaniam. L-diversity: Privacy beyond k-anonymity.
ACM Transactions of Knowledge Discovery from Data,
1(1):3, 2007.

[25] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: safe active content in sanitized javascript, Oct.
2007. http://google-caja.googlecode.com/
files/caja-spec-2007-10-11.pdf.

[26] E. Mills. Facebook suspends app that permitted peephole,
2008. http://news.cnet.com/8301-10784_
3-9977762-7.html. Last accessed Feb. 1, 2009.

[27] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedings of the 16th Sym-
posium on Operating Systems Principles (SOSP), Saint-
Malo, France, Oct. 1997.

[28] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, Oakland, CA, May
2008.

[29] T. Panja. Oxford using Facebook to snoop. http:
//www.msnbc.msn.com/id/19813092/. Last ac-
cessed Feb. 1, 2009.

[30] D. S. Peterson, M. Bishop, and R. Pandey. A flexible con-
tainment mechanism for executing untrusted code. In Pro-
ceedings of the 11th USENIX Security Symposium, San
Franscisco, CA, Aug. 2002.

[31] P. Samarati. Protecting respondents’ identities in micro-
data release. IEEE Transactions on Knowledge and Data
Engineering, 13(6):1010–1027, 2001.

[32] D. Sciba. Mayor in myspace photo flap asked to re-
sign. http://www.katu.com/news/13670287.
html. Last accessed Feb. 1, 2009.

[33] K. Singh, S. Bhola, and W. Lee. xBook on Facebook.
http://apps.facebook.com/myxbook. Last ac-
cessed Feb. 1, 2009.

[34] L. Sweeney. Weaving technology and policy together to
maintain confidentiality. Journal of Law, Medicine and
Ethics, 25:98–110, 1997.

[35] C. Williams. Facebook application hawks
your personal opinions for cash, Sept. 2007.
http://www.theregister.co.uk/2007/
09/12/facebook_compare_people/. Last
accessed Feb. 1, 2009.

[36] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in his-
tar. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA,
Nov. 2006.

USENIX Association 	 18th USENIX Security Symposium	 267

Nemesis: Preventing Authentication & Access
Control Vulnerabilities in Web Applications

Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich
Computer Systems Laboratory CSAIL

Stanford University MIT
{mwdalton, kozyraki}@stanford.edu nickolai@csail.mit.edu

Abstract
This paper presents Nemesis, a novel methodology for

mitigating authentication bypass and access control vul-
nerabilities in existing web applications. Authentication
attacks occur when a web application authenticates users
unsafely, granting access to web clients that lack the ap-
propriate credentials. Access control attacks occur when
an access control check in the web application is incor-
rect or missing, allowing users unauthorized access to
privileged resources such as databases and files. Such
attacks are becoming increasingly common, and have oc-
curred in many high-profile applications, such as IIS [10]
and WordPress [31], as well as 14% of surveyed web
sites [30]. Nevertheless, none of the currently available
tools can fully mitigate these attacks.

Nemesis automatically determines when an application
safely and correctly authenticates users, by using Dy-
namic Information Flow Tracking (DIFT) techniques to
track the flow of user credentials through the application’s
language runtime. Nemesis combines authentication in-
formation with programmer-supplied access control rules
on files and database entries to automatically ensure that
only properly authenticated users are granted access to
any privileged resources or data. A study of seven pop-
ular web applications demonstrates that a prototype of
Nemesis is effective at mitigating attacks, requires little
programmer effort, and imposes minimal runtime over-
head. Finally, we show that Nemesis can also improve the
precision of existing security tools, such as DIFT analy-
ses for SQL injection prevention, by providing runtime
information about user authentication.

1 Introduction

Web applications are becoming increasingly prevalent
because they allow users to access their data from any
computer and to interact and collaborate with each other.
However, exposing these rich interfaces to anyone on the

internet makes web applications an appealing target for
attackers who want to gain access to other users’ data or
resources. Web applications typically address this prob-
lem through access control, which involves authenticating
users that want to gain access to the system, and ensuring
that a user is properly authorized to perform any operation
the server executes on her behalf. In theory, this approach
should ensure that unauthorized attackers cannot subvert
the application.

Unfortunately, experience has shown that many web
applications fail to follow these seemingly simple steps,
with disastrous results. Each web application typically
deploys its own authentication and access control frame-
work. If any flaw exists in the authentication system,
an authentication bypass attack may occur, allowing at-
tackers to become authenticated as a valid user without
having to present that user’s credentials, such as a pass-
word. Similarly, a single missing or incomplete access
control check can allow unauthorized users to access priv-
ileged resources. These attacks can result in the complete
compromise of a web application.

Designing a secure authentication and access control
system in a web application is difficult. Part of the reason
is that the underlying file system and database layers per-
form operations with the privileges of the web application,
rather than with privileges of a specific web application
user. As a result, the web application must have the super-
set of privileges of all of its users. However, much like a
Unix setuid application, it must explicitly check if the
requesting user is authorized to perform each operation
that the application performs on her behalf; otherwise, an
attacker could exploit the web application’s privileges to
access unauthorized resources. This approach is ad-hoc
and brittle, since these checks must be sprinkled through-
out the application code whenever a resource is accessed,
spanning code in multiple modules written by different
developers over a long period of time. It is hard for devel-
opers to keep track of all the security policies that have to
be checked. Worse yet, code written for other applications

1

268	 18th USENIX Security Symposium	 USENIX Association

or third-party libraries with different security assumptions
is often reused without considering the security implica-
tions. In each case, the result is that it’s difficult to ensure
the correct checks are always performed.

It is not surprising, then, that authentication and ac-
cess control vulnerabilities are listed among the top ten
vulnerabilities in 2007 [17], and have been discovered
in high-profile applications such as IIS [10] and Word-
Press [31]. In 2008 alone, 168 authentication and access
control vulnerabilities were reported [28]. A recent survey
of real-world web sites found that over 14% of surveyed
sites were vulnerable to an authentication or access con-
trol bypass attack [30].

Despite the severity of authentication or authorization
bypass attacks, no defensive tools currently exist to au-
tomatically detect or prevent them. The difficulty in ad-
dressing these attacks stems from the fact that most web
applications implement their own user authentication and
authorization systems. Hence, it is hard for an automatic
tool to ensure that the application properly authenticates
all users and only performs operations for which users
have the appropriate authorization.

This paper presents Nemesis,1 a security methodology
that addresses these problems by automatically tracking
when user authentication is performed in web applications
without relying on the safety or correctness of the existing
code. Nemesis can then use this information to automat-
ically enforce access control rules and ensure that only
authorized web application users can access resources
such as files or databases. We can also use the authentica-
tion information to improve the precision of other security
analyses, such as DIFT-based SQL injection protection,
to reduce their false positive rate.

To determine how a web application authenticates
users, Nemesis uses Dynamic Information Flow Tracking
(DIFT) to track the flow of user credentials, such as a user-
name and password, through the application code. The
key insight is that most applications share a similar high-
level design, such as storing usernames and passwords
in a database table. While the details of the authentica-
tion system, such as function names, password hashing
algorithms, and session management vary widely, we can
nonetheless determine when an application authenticates
a user by keeping track of what happens to user creden-
tials at runtime. Once Nemesis detects that a user has
provided appropriate credentials, it creates an additional
HTTP cookie to track subsequent requests issued by the
authenticated user’s browser. Our approach does not re-
quire the behavior of the application to be modified, and
does not require any modifications to the application’s
existing authentication and access control system. Instead,

1Nemesis is the Greek goddess of divine indignation and retribution,
who punishes excessive pride, evil deeds, undeserved happiness, and
the absence of moderation.

Nemesis is designed to secure legacy applications without
requiring them to be rewritten.

To prevent unauthorized access in web applications,
Nemesis combines user authentication information with
authorization policies provided by the application devel-
oper or administrator in the form of access control rules
for various resources in the application, such as files,
directories, and database entries. Nemesis then automati-
cally ensures that these access control rules are enforced
at runtime whenever the resource is accessed by an (au-
thenticated) user. Our approach requires only a small
amount of work from the programmer to specify these
rules—in most applications, less than 100 lines of code.
We expect that explicitly specifying access control rules
per-resource is less error-prone than having to invoke the
access control check each time the resource is accessed,
and having to enumerate all possible avenues of attack.
Furthermore, in applications that support third-party plug-
ins, these access control rules need only be specified once,
and they will automatically apply to code written by all
plugin developers.

By allowing programmers to explicitly specify access
control policies in their applications, and by tying the au-
thentication information to runtime authorization checks,
Nemesis prevents a wide range of authentication and ac-
cess control vulnerabilities seen in today’s applications.
The specific contributions of this paper are as follows:

• We present Nemesis, a methodology for inferring au-
thentication and enforcing access control in existing
web applications, while requiring minimal annota-
tions from the application developers.

• We demonstrate that Nemesis can be used to prevent
authentication and access control vulnerabilities in
modern web applications. Furthermore, we show
that Nemesis can be used to prevent false positives
and improve precision in real-world security tools,
such as SQL injection prevention using DIFT.

• We implement a prototype of Nemesis by modifying
the PHP interpreter. The prototype is used to collect
performance measurements and to evaluate our secu-
rity claims by preventing authentication and access
control attacks on real-world PHP applications.

The remainder of the paper is organized as follows.
Section 2 reviews the security architecture of modern web
applications, and how it relates to common vulnerabilities
and defense mechanisms. We describe our authentication
inference algorithm in Section 3, and discuss our access
control methodology in Section 4. Our PHP-based pro-
totype is discussed in Section 5. Section 6 presents our
experimental results, and Section 7 discusses future work.
Finally, Section 8 discusses related work and Section 9
concludes the paper.

2

USENIX Association 	 18th USENIX Security Symposium	 269

2 Web Application Security Architecture

A key problem underlying many security vulnerabilities
is that web application code executes with full privileges
while handling requests on behalf of users that only have
limited privileges, violating the principle of least priv-
ilege [11]. Figure 1 provides a simplified view of the
security architecture of typical web applications today.
As can be seen from the figure, the web application is
performing file and database operations on behalf of users
using its own credentials, and if attackers can trick the
application into performing the wrong operation, they
can subvert the application’s security. Web application
security can thus be viewed as an instance of the confused
deputy problem [9]. The rest of this section discusses this
architecture and its security ramifications in more detail.

2.1 Authentication Overview

When clients first connect to a typical web application,
they supply an application-specific username and pass-
word. The web application then performs an authenti-
cation check, ensuring that the username and password
are valid. Once a user’s credentials have been validated,
the web application creates a login session for the user.
This allows the user to access the web application without
having to log in each time a new page is accessed. Lo-
gin sessions are created either by placing authentication
information directly in a cookie that is returned to the
user, or by storing authentication information in a ses-
sion file stored on the server and returning a cookie to
the user containing a random, unique session identifier.
Thus, a user request is deemed to be authenticated if the
request includes a cookie with valid authentication infor-
mation or session identifier, or if it directly includes a
valid username and password.

Once the application establishes a login session for a
user, it allows the user to issue requests, such as posting
comments on a blog, which might insert a row into a
database table, or uploading a picture, which might re-
quire a file to be written on the server. However, there is
a semantic gap between the user authentication mecha-
nism implemented by the web application, and the access
control or authorization mechanism implemented by the
lower layers, such as a SQL database or the file system.
The lower layers in the system usually have no notion
of application-level users; instead, database and file op-
erations are usually performed with the privileges and
credentials of the web application itself.

Consider the example shown in Figure 1, where the
web application writes the file uploaded by user Bob to
the local file system and inserts a row into the database
to keep track of the file. The file system is not aware
of any authentication performed by the web application

or web server, and treats all operations as coming from
the web application itself (e.g. running as the Apache
user in Unix). Since the web application has access to
every user’s file, it must perform internal checks to en-
sure that Bob hasn’t tricked it into overwriting some other
user’s file, or otherwise performing an unauthorized oper-
ation. Likewise, database operations are performed using
a per-web application database username and password
provided by the system administrator, which authenticates
the web application as user webdb to MySQL. Much like
the filesystem layer, MySQL has no knowledge of any
authentication performed by the web application, inter-
preting all actions sent by the web application as coming
from the highly-privileged webdb user.

2.2 Authentication & Access Control At-
tacks

The fragile security architecture in today’s web appli-
cations leads to two common problems, authentication
bypass and access control check vulnerabilities.

Authentication bypass attacks occur when an attacker
can fool the application into treating his or her requests
as coming from an authenticated user, without having to
present that user’s credentials, such as a password. A
typical example of an authentication bypass vulnerability
involves storing authentication state in an HTTP cookie
without performing any server-side validation to ensure
that the client-supplied cookie is valid. For example,
many vulnerable web applications store only the user-
name in the client’s cookie when creating a new login
session. A malicious user can then edit this cookie to
change the username to the administrator, obtaining full
administrator access. Even this seemingly simple problem
affects many applications, including PHP iCalendar [20]
and phpFastNews [19], both of which are discussed in
more detail in the evaluation section.

Access control check vulnerabilities occur when an
access check is missing or incorrectly performed in the
application code, allowing an attacker to execute server-
side operations that she might not be otherwise autho-
rized to perform. For example, a web application may
be compromised by an invalid access control check if an
administrative control panel script does not verify that the
web client is authenticated as the admin user. A malicious
user can then use this script to reset other passwords, or
even perform arbitrary SQL queries, depending on the
contents of the script. These problems have been found
in numerous applications, such as PhpStat [21].

Authentication and access control attacks often result in
the same unfettered file and database access as traditional
input validation vulnerabilities such as SQL injection and
directory traversal. However, authentication and access
control bugs are more difficult to detect, because their

3

270	 18th USENIX Security Symposium	 USENIX Association

Client
Browser

Web
App

MySql User: webdb
Op: INSERT into pictbl

FS User: apache
Op: Write pic1092.jpg

Web User: Bob Password: ***
Op: Upload Picture

Web Server

FS

DB

Figure 1: The security architecture of typical web applications. Here, user Bob uploads a picture to a web application, which in turn inserts data into
a database and creates a file. The user annotation above each arrow indicates the credentials or privileges used to issue each operation or request.

logic is application-specific, and they do not follow simple
patterns that can be detected by simple analysis tools.

2.3 Other Web Application Attacks

Authentication and access control also play an important,
but less direct role, in SQL injection [27], command in-
jection, and directory traversal attacks. For example, the
PHP code in Figure 2 places user-supplied search parame-
ters into a SQL query without performing any sanitization
checks. This can result in a SQL injection vulnerability;
a malicious user could exploit it to execute arbitrary SQL
statements on the database. The general approach to ad-
dressing these attacks is to validate all user input before
it is used in any filesystem or database operations, and to
disallow users from directly supplying SQL statements.
These checks occur throughout the application, and any
missing check can lead to a SQL injection or directory
traversal vulnerability.

However, these kinds of attacks are effective only be-
cause the filesystem and database layers perform all opera-
tions with the privilege level of the web application rather
than the current authenticated webapp user. If the filesys-
tem and database access of a webapp user were restricted
only to the resources that the user should legitimately
access, input validation attacks would not be effective
as malicious users would not be able not leverage these
attacks to access unauthorized resources.

Furthermore, privileged users such as site administra-
tors are often allowed to perform operations that could
be interpreted as SQL injection, command injection, or
directory traversal attacks. For example, popular PHP
web applications such as DeluxeBB and phpMyAdmin
allow administrators to execute arbitrary SQL commands.
Alternatively, code in Figure 2 could be safe, as long as
only administrative users are allowed to issue such search
queries. This is the very definition of a SQL injection
attack. However, these SQL injection vulnerabilities can
only be exploited if the application fails to check that the
user is authenticated as the administrator before issuing

the SQL query. Thus, to properly judge whether a SQL
injection attack is occurring, the security system must
know which user is currently authenticated.

3 Authentication Inference

Web applications often have buggy implementations of
authentication and access control, and no two applications
have the exact same authentication framework. Rather
than try to mandate the use of any particular authentica-
tion system, Nemesis prevents authentication and access
control vulnerabilities by automatically inferring when
a user has been safely authenticated, and then using this
authentication information to automatically enforce ac-
cess control rules on web application users. An overview
of Nemesis and how it integrates into a web application
software stack is presented in Figure 3. In this section, we
describe how Nemesis performs authentication inference.

3.1 Shadow Authentication Overview

To prevent authentication bypass attacks, Nemesis must
infer when authentication has occurred without depend-
ing on the correctness of the application authentication
system., which are often buggy or vulnerable. To this end,
Nemesis constructs a shadow authentication system that
works alongside the application’s existing authentication
framework. In order to infer when user authentication
has safely and correctly occurred, Nemesis requires the
application developer to provide one annotation—namely,
where the application stores user names and their known-
good passwords (e.g. in a database table), or what external
function it invokes to authenticate users (e.g. using LDAP
or OpenID). Aside from this annotation, Nemesis is ag-
nostic to the specific hash function or algorithm used to
validate user-supplied credentials.

To determine when a user successfully authenticates,
Nemesis uses Dynamic Information Flow Tracking
(DIFT). In particular, Nemesis keeps track of two bits

4

USENIX Association 	 18th USENIX Security Symposium	 271

$res = mysql_query(“SELECT * FROM articles WHERE $_GET['search_criteria']}”)

$res = mysql_query(“SELECT * FROM articles WHERE 1 == 1; DROP ALL TABLES”)

Figure 2: Sample PHP code vulnerable to SQL injection, and the resulting query when a user supplies the underlined, malicious input.

2 tag bits per object to track credentials and taint
Tag propagation on all object operations
Automatic inference of authentication checks

Intercept I/O operations to enforce file ACLs
Intercept, rewrite SQL queries to enforce DB ACLs

ACL
Enforce

Blogging
Application

WebMail
Application

Wiki
Application

DIFT

LEGEND
Web Application

Language Runtime

Nemesis

Figure 3: Overview of Nemesis system architecture

of taint for each data item in the application—a “creden-
tial” taint bit, indicating whether the data item represents
a known-good password or other credential, and a “user
input” taint bit, indicating whether the data item was sup-
plied by the user as part of the HTTP request. User input
includes all values supplied by the untrusted client, such
as HTTP request headers, cookies, POST bodies, and
URL parameters. Taint bits can be stored either per object
(e.g., string), or per byte (e.g., string characters), depend-
ing on the needed level of precision and performance.

Nemesis must also track the flow of authentication cre-
dentials and user input during runtime code execution.
Much like other DIFT systems [8, 15, 16], this is done by
performing taint propagation in the language interpreter.
Nemesis propagates both taint bits at runtime for all data
operations, such as variable assignment, load, store, arith-
metic, and string concatenation. The propagation rule we
enforce is union: a destination operand’s taint bit is set if
it was set in any of the source operands. Since Nemesis
is concerned with inferring authentication rather than ad-
dressing covert channels, implicit taint propagation across
control flow is not considered. The rest of this section
describes how Nemesis uses these two taint bits to infer
when successful authentication has taken place.

3.2 Creating a New Login Session

Web applications commonly authenticate a new user ses-
sion by retrieving a username and password from a storage
location (typically a database) and comparing these cre-
dentials to user input. Other applications may use a dedi-
cated login server such as LDAP or Kerberos, and instead
defer all authentication to the login server by invoking
a special third-party library authentication function. We
must infer and detect both of these authentication types.

As mentioned, Nemesis requires the programmer to
specify where the application stores user credentials
for authentication. Typical applications store password
hashes in a database table, in which case the program-
mer should specify the name of this table and the column
names containing the user names and passwords. For
applications that defer authentication to an external login
server, the programmer must provide Nemesis with the
name of the authentication function (such as ldap login),
as well as which function arguments represent the user-
name and password, and what value the function returns
upon authentication success. In either case, the shadow
authentication system uses this information to determine
when the web application has safely authenticated a user.

5

272	 18th USENIX Security Symposium	 USENIX Association

3.2.1 Direct Password Authentication

When an application performs authentication via direct
password comparisons, the application must read the user-
name and password from an authentication storage lo-
cation, and compare them to the user-supplied authenti-
cation credentials. Whenever the authentication storage
location is read, our shadow authentication system records
the username read as the current user under authentication,
and sets the “credential” taint bit for the password string.
In most web applications, a client can only authenticate
as a single user at any given time. If an application allows
clients to authenticate as multiple users at the same time,
Nemesis would have to be extended to keep track of mul-
tiple candidate usernames, as well as multiple “credential”
taint bits on all data items. However, we are not aware of
a situation in which this occurs in practice.

When data tagged as “user input” is compared to data
tagged as “credentials” using string equality or inequal-
ity operators, we assume that the application is checking
whether a user-supplied password matches the one stored
in the local password database. If the two strings are
found to be equal, Nemesis records the web client as au-
thenticated for the candidate username. We believe this is
an accurate heuristic, because known-good credentials are
the only objects in the system with the “credential” taint
bit set, and only user input has the “user input” taint bit
set. This technique even works when usernames and pass-
words are supplied via URL parameters (such as “magic
URLs” which perform automatic logins in HotCRP) be-
cause all values supplied by clients, including URL pa-
rameters, are tagged as user input.

Tag bits are propagated across all common operations,
allowing Nemesis to support standard password tech-
niques such as cryptographic hashes and salting. Hashing
is supported because cryptographic hash functions consist
of operations such as array access and arithmetic com-
putations, all of which propagate tag bits from inputs to
outputs. Similarly, salting is supported because prepend-
ing a salt to a user-supplied password is done via string
concatenation, an operation that propagates tag bits from
source operands to the destination operand.

This approach allows us to infer user authentication
by detecting when a user input string is compared and
found to be equal to a password. This avoids any internal
knowledge of the application, requiring only that the sys-
tem administrator correctly specify the storage location
of usernames and passwords. A web client will only be
authenticated by our shadow authentication system if they
know the password, because authentication occurs only
when a user-supplied value is equal to a known password.
Thus, our approach does not suffer from authentication
vulnerabilities, such as allowing a user to log in if a magic
URL parameter or cookie value is set.

3.2.2 Deferred Authentication to a Login Server

We use similar logic to detect authentication when using
a login server. The web client is assumed to be authenti-
cated if the third-party authentication function is called
with a username and password marked as “user input”,
and the function returns success. In this case, Neme-
sis sets the authenticated user to the username passed
to this function. Nemesis checks to see if the username
and password passed to this function are tainted in order
to distinguish between credentials supplied by the web
client and credentials supplied internally by the applica-
tion. For example, phpMyAdmin uses MySQL’s built-in
authentication code to both authenticate web clients, and
to authenticate itself to the database for internal database
queries [23]. Credentials used internally by the applica-
tion should not be treated as the client’s credentials, and
Nemesis ensures this by only accepting credentials that
came from the web client. Applications that use single
sign-on systems such as OpenID must use deferred au-
thentication, as the third-party authentication server (e.g.,
OpenID Provider) performs the actual user authentication.

3.3 Resuming a Previous Login Session

As described in Section 2.1, web applications create login
sessions by recording pertinent authentication informa-
tion in cookies. This allows users to authenticate once,
and then access the web application without having to
authenticate each time a new page is loaded. Applications
often write their own custom session management frame-
works, and session management code is responsible for
many authentication bypass vulnerabilities.

Fortunately, Nemesis does not require any per-
application customization for session management. In-
stead, we use an entirely separate session management
framework. When Nemesis infers that user authentica-
tion has occurred (as described earlier in this section),
a new cookie is created to record the shadow authenti-
cation credentials of the current web client. We do not
interpret or attempt to validate any other cookies stored
and used by the web application for session management.
For all intents and purposes, session management in the
web application and Nemesis are orthogonal. We refer to
the cookie used for Nemesis session management as the
shadow cookie. When Nemesis is presented with a valid
shadow cookie, the current shadow authenticated user is
set to the username specified in the cookie.

Shadow authentication cookies contain the shadow
authenticated username of the current web user and an
HMAC of the username computed using a private key kept
on the server. The user cannot edit or change their shadow
authentication cookie because the username HMAC will
no longer match the username itself, and the user does

6

USENIX Association 	 18th USENIX Security Symposium	 273

not have the key used to compute the HMAC. This cookie
is returned to the user, and stored along with any other
authentication cookies created by the web application.

Our shadow authentication system detects a user safely
resuming a prior login session if a valid shadow cookie
is presented. The shadow authentication cookie is ver-
ified by recomputing the cookie HMAC based on the
username from the cookie. If the recomputed HMAC
and the HMAC from the cookie are identical, the user is
successfully authenticated by our shadow authentication
system. Nemesis distinguishes between shadow cookies
from multiple applications running on the same server
by using a different HMAC key for each application, and
including a hash derived from the application’s HMAC
key in the name of the cookie.

In practice, when a user resumes a login session, the
web application will validate the user’s cookies and ses-
sion file, and then authorize the user to access a priv-
ileged resource. When the privileged resource access
is attempted, Nemesis will examine the user’s shadow
authentication credentials and search for valid shadow
cookies. If a valid shadow cookie is found and verified to
be safe, the user’s shadow authentication credentials are
updated. Nemesis then performs an access control check
on the shadow authentication credentials using the web
application ACL.

3.4 Registering a New User
The last way a user may authenticate is to register as a
new user. Nemesis infers that new user registration has
occurred when a user is inserted into the authentication
credential storage location. In practice, this is usually a
SQL INSERT statement modifying the user authentica-
tion database table. The inserted username must be tainted
as “user input”, to ensure that this new user addition is
occurring on behalf of the web client, and not because the
web application needed to add a user for internal usage.

Once the username has been extracted and verified as
tainted, the web client is then treated as authenticated
for that username, and the appropriate session files and
shadow authentication cookies are created. For the com-
mon case of a database table, this requires us to parse the
SQL query, and determine if the query is an INSERT into
the user table or not. If so, we extract the username field
from the SQL statement.

3.5 Authentication Bypass Attacks
Shadow authentication information is only updated when
the web client supplies valid user credentials, such as
a password for a web application user, or when a valid
shadow cookie is presented. During authentication bypass
attacks, malicious users are authenticated by the web

application without supplying valid credentials. Thus,
when one of these attacks occurs, the web application
will incorrectly authenticate the malicious web client, but
shadow authentication information will not be updated.

While we could detect authentication bypass attacks by
trying to discern when shadow authentication information
differs from the authenticated state in the web application,
this would depend on internal knowledge of each web
application’s code base. Authentication frameworks are
often complex, and each web application typically cre-
ates its own framework, possibly spreading the current
authentication information among multiple variables and
complex data structures.

Instead, we note that the goal of any authentication
bypass attack is to use the ill-gotten authentication to
obtain unauthorized access to resources. These are exactly
the resources that the current shadow authenticated user is
not permitted to access. As explained in the next section,
we can prevent authentication bypass attacks by detecting
when the current shadow authenticated user tries to obtain
unauthorized access to a system resource such as a file,
directory, or database table.

4 Authorization Enforcement

Both authentication and access control bypass vulnera-
bilities allow an attacker to perform operations that she
would not be otherwise authorized to perform. The previ-
ous section described how Nemesis constructs a shadow
authentication system to keep track of user authentication
information despite application-level bugs. However, the
shadow authentication system alone is not enough to pre-
vent these attacks. This section describes how Nemesis
mitigates the attacks by connecting its shadow authentica-
tion system with an access control system protecting the
web application’s database and file system.

To control what operations any given web user is al-
lowed to perform, Nemesis allows the application de-
veloper to supply access control rules (ACL) for files,
directories, and database objects. Nemesis extends the
core system library so that each database or file operation
performs an ACL check. The ACL check ensures that
the current shadow authenticated user is permitted by the
web application ACL to execute the operation. This en-
forcement prevents access control bypass attacks, because
an attacker exploiting a missing or invalid access control
check to perform a privileged operation will be foiled
when Nemesis enforces the supplied ACL. This also miti-
gates authentication bypass attacks—even if an attacker
can bypass the application’s authentication system (e.g.,
due to a missing check in the application code), Neme-
sis will automatically perform ACL checks against the
username provided by the shadow authentication system,
which is not subject to authentication bypass attacks.

7

274	 18th USENIX Security Symposium	 USENIX Association

4.1 Access Control
In any web application, the authentication framework
plays a critical role in access control decisions. There
are often numerous, complex rules determining which re-
sources (such as files, directories, or database tables, rows,
or fields) can be accessed by a particular user. However,
existing web applications do not have explicit, codified
access control rules. Rather, each application has its own
authentication system, and access control checks are in-
terspersed throughout the application.

For example, many web applications have a privileged
script used to manage the users of the web application.
This script must only be accessed by the web application
administrator, as it will likely contain logic to change the
password of an arbitrary user and perform other privileged
operations. To restrict access appropriately, the beginning
of the script will contain an access control check to ensure
that unauthorized users cannot access script functionality.
This is actually an example of the policy, “only the admin-
istrator may access the admin.php script”, or to rephrase
such a policy in terms of the resources it affects, “only the
administrator may modify the user table in the database”.
This policy is often never explicitly stated within the web
application, and must instead be inferred from the autho-
rization checks in the web application. Nemesis requires
the developer or system administrator to explicitly provide
an access control list based on knowledge of the applica-
tion. Our prototype system and evaluation suggests that,
in practice, this requires little programmer effort while
providing significant security benefits. Note that a single
developer or administrator needs to specify access control
rules. Based on these rules, Nemesis will provide security
checks for all application users.

4.1.1 File Access

Nemesis allows developers to restrict file or directory ac-
cess to a particular shadow authenticated user. For exam-
ple, a news application may only allow the administrator
to update the news spool file. We can also restrict the set
of valid operations that can be performed: read, write, or
append. For directories, read permission is equivalent to
listing the contents of the directory, while write permis-
sion allows files and subdirectories to be created. File
access checks happen before any attempt to open a file or
directory. These ACLs could be expressed by listing the
files and access modes permitted for each user.

4.1.2 SQL Database Access

Nemesis allows web applications to restrict access to SQL
tables. Access control rules specify the user, name of the
SQL database table, and the type of access (INSERT,
SELECT, DELETE, or UPDATE). For each SQL query,

Nemesis must determine what tables will be accessed
by the query, and whether the ACLs permit the user to
perform the desired operation on those tables.

In addition to table-level access control, Nemesis also
allows restricting access to individual rows in a SQL table,
since applications often store data belonging to different
users in the same table.

An ACL for a SQL row works by restricting a given
SQL table to just those rows that should be accessible to
the current user, much like a view in SQL terminology.
Specifically, the ACL maps SQL table names and access
types to an SQL predicate expression involving column
names and values that constrain the kinds of rows the
current user can access, where the values can be either
fixed constants, or the current username from the shadow
authentication system, evaluated at runtime. For example,
a programmer can ensure that a user can only access their
own profile by confining SQL queries on the profile table
to those whose user column matches the current shadow
username.

SELECT ACLs restrict the values returned by a SE-
LECT SQL statement. DELETE and UPDATE query
ACLs restrict the values modified by an UPDATE or
DELETE statement, respectively. To enforce ACLs for
these statements, Nemesis must rewrite the database
query to append the field names and values from the
ACL to the WHERE condition clause of the query. For
example, a query to retrieve a user’s private messages
might be “SELECT * FROM messages WHERE recip-
ient=$current user”, where $current user is supplied by
the application’s authentication system. If attackers could
fool the application’s authentication system into setting
$current user to the name of a different user, they might
be able to retrieve that user’s messages.

Using Nemesis, the programmer can specify an ACL
that only allows SELECTing rows whose sender or recip-
ient column matches the current shadow user. As a result,
if user Bob issues the query, Nemesis will transform it into
the query “SELECT * FROM messages WHERE recipi-
ent=$current user AND (sender=Bob or recipient=Bob)”,
which mitigates any possible authentication bypass attack.

Finally, INSERT statements do not read or modify ex-
isting rows in the database. Thus, access control for
INSERT statements is governed solely by the table access
control rules described earlier. However, sometimes de-
velopers may want to set a particular field to the current
shadow authenticated user when a row is inserted into
a table. Nemesis accomplishes this by rewriting the IN-
SERT query to replace the value of the designated field
with the current shadow authenticated user (or to add an
additional field assignment if the designated field was not
initialized by the INSERT statement).

Modifying INSERT queries has a number of real-world
uses. Many database tables include a field that stores

8

USENIX Association 	 18th USENIX Security Symposium	 275

the username of the user who inserted the field. The ad-
ministrator can choose to replace the value of this field
with the shadow authenticated username, so that authen-
tication flaws do not allow users to spoof the owner of a
particular row in the database. For example, in the PHP
forum application DeluxeBB, we can override the author
name field in the table of database posts with the shadow
authenticated username. This prevents malicious clients
from spoofing the author when posting messages, which
can occur if an authentication flaw allows attackers to
authenticate as arbitrary users.

4.2 Enhancing Access Control with DIFT
Web applications often perform actions which are not au-
thorized for the currently authenticated user. For example,
in the PHP image gallery Linpha, users may inform the
web application that they have lost their password. At
this point, the web client is unauthenticated (as they have
no valid password), but the web application changes the
user’s password to a random value, and e-mails the new
password to the user’s e-mail account. While one user
should not generally be allowed to change the password
of a different user, doing so is safe in this case because the
application generates a fresh password not known to the
requesting user, and only sends it via email to the owner’s
address.

One heuristic that helps us distinguish these two cases
in practice is the taint status of the newly-supplied pass-
word. Clearly it would be a bad idea to allow an unauthen-
ticated user to supply the new password for a different
user’s account, and such password values would have the
“user input” taint under Nemesis. At the same time, our
experience suggests that internally-generated passwords,
which do not have the “user input” taint, correspond to
password reset operations, and would be safe to allow.

To support this heuristic, we add one final parameter
to all of the above access control rules: taint status. An
ACL entry may specify, in addition to its other parameters,
taint restrictions for the file contents or database query.
For example, an ACL for Linpha allows the application
to update the password field of the user table regardless
of the authentication status, as long as the query is un-
tainted. If the query is tainted, however, the ACL only
allows updates to the row corresponding to the currently
authenticated user.

4.3 Protecting Authentication Credentials
Additionally, there is one security rule that does not easily
fit into our access control model, yet can be protected via
DIFT. When a web client is authenticating to the web ap-
plication, the application must read user credentials such
as a password and use those credentials to authenticate

the client. However, unauthenticated clients do not have
permission to see passwords. A safe web application will
ensure that these values are never leaked to the client. To
prevent an information leak bug in the web application
from resulting in password disclosure, Nemesis forbids
any object that has the authentication credential DIFT tag
bit set from being returned in any HTTP response. In
our prototype, this rule has resulted in no false positives
in practice. Nevertheless, we can easily modify this rule
to allow passwords for a particular user to be returned
in a HTTP response once the client is authenticated for
that user. For example, this situation could arise if a se-
cure e-mail service used the user’s password to decrypt
e-mails, causing any displayed emails to be tagged with
the password bit.

5 Prototype Implementation

We have implemented a proof-of-concept prototype of
Nemesis by modifying the PHP interpreter. PHP is one of
the most popular languages for web application develop-
ment. However, the overall approach is not tied to PHP by
design, and could be implemented for any other popular
web application programming language. Our prototype is
based on an existing DIFT PHP tainting project [29]. We
extend this work to support authentication inference and
authorization enforcement.

5.1 Tag Management
PHP is a dynamically typed language. Internally, all val-
ues in PHP are instances of a single type of structure
known as a zval, which is stored as a tagged union. In-
tegers, booleans, and strings are all instances of the zval
struct. Aggregate data types such as arrays serve as hash
tables mapping index values to zvals. Symbol tables are
hash tables mapping variable names to zvals.

Our prototype stores taint information at the granular-
ity of a zval object, which can be implemented without
storage overhead in the PHP interpreter. Due to alignment
restrictions enforced by GCC, the zval structure has a few
unused bits, which is sufficient for us to store the two taint
bits required by Nemesis.

By keeping track of taint at the object level, Nemesis
assumes that the application will not combine different
kinds of tagged credentials in the same object (e.g. by con-
catenating passwords from two different users together, or
combining untrusted and authentication-based input into
a single string). While we have found this assumption to
hold in all encountered applications, a byte granularity
tainting approach could be used to avoid this limitation
if needed, and prior work has shown it practical to im-
plement byte-level tainting in PHP [16]. When multiple
objects are combined in our prototype, the result’s taint

9

276	 18th USENIX Security Symposium	 USENIX Association

bits are the union of the taint bits on all inputs. This works
well for combining tainted and untainted data, such as
concatenating an untainted salt with a tainted password
(with the result being tainted), but can produce impre-
cise results when concatenating objects with two different
classes of taint.

User input and password taint is propagated across all
standard PHP operations, such as variable assignment,
arithmetic, and string concatenation. Any value with
password taint is forbidden from being returned to the
user via echo, printf, or other output statements.

5.2 Tag Initialization

Any input from URL parameters (GET, PUT, etc), as well
as from any cookies, is automatically tainted with the
’user input’ taint bit. Currently, password taint initializa-
tion is done by manually inserting the taint initialization
function call as soon as the password enters the system
(e.g., from a database) as we have not yet implemented a
full policy language for automated credential tainting. For
a few of our experiments in Section 6 (phpFastNews, PHP
iCalendar, Bilboblog), the admin password was stored in
a configuration php script that was included by the appli-
cation scripts at runtime. In this case, we instrumented the
configuration script to set the password bit of the admin
password variable in the script.

At the same time as we initialize the password taint,
we also set a global variable to store the candidate user-
name associated with the password, to keep track of the
current username being authenticated. If authentication
succeeds, the shadow authentication system uses this can-
didate username to set the global variable that stores the
shadow authenticated user, as well as to initialize the
shadow cookie. If a client starts authenticating a second
time as a different user, the candidate username is reset
to the new value, but the authenticated username is not
affected until authentication succeeds.

Additionally, due to an implementation artifact in the
PHP setcookie() function, we also record shadow au-
thentication in the PHP built-in session when appropriate.
This is because PHP forbids new cookies to be added
to the HTTP response once the application has placed
part of the HTML body in the response output buffer. In
an application that uses PHP sessions, the cookie only
stores the session ID and all authentication information
is stored in session files on the server. These applications
may output part of the HTML body before authentication
is complete. We correctly handle this case by storing
shadow authentication credentials in the server session
file if the application has begun a PHP session. When val-
idating and recovering shadow cookies for authentication
purposes, we also check the session file associated with
the current user for shadow authentication credentials.

This approach relies on PHP safely storing session files,
but as session files are stored on the server in a temporary
directory, this is a reasonable assumption.

5.3 Authentication Checks
When checking the authentication status of a user, we first
check the global variable that indicates the current shadow
authenticated user. This variable is set if the user has
just begun a new session and been directly authenticated
via password comparison or deferred authentication to
a login server. If this variable is not set, we check to
see if shadow authentication information is stored in the
current session file (if any). Finally, we check to see if the
user has presented a shadow authentication cookie, and if
so we validate the cookie and extract the authentication
credentials. If none of these checks succeeds, the user is
treated as unauthenticated.

5.4 Password Comparison Authentication
Inference

Authentication inference for password comparisons is
performed by modifying the PHP interpreter’s string com-
parison equality and inequality operators. When one of
these string comparisons executes, we perform a check
to see if the two string operands were determined to be
equal. If the strings were equal, we then check their tags,
and if one string has only the authentication credential
tag bit set, and the other string has only the user input
tag bit set, then we determine that a successful shadow
authentication has occurred. In all of our experiments,
only PhpMyAdmin used a form of authentication that did
not rely on password string comparison, and our handling
of this case is discussed in Section 6.

5.5 Access Control Checks
We perform access control checks for files by checking the
current authenticated user against a list of accessible files
(and file modes) on each file access. Similarly, we restrict
SQL queries by checking if the currently authenticated
user is authorized to access the table, and by appending
additional WHERE clause predicates to scope the effect
of the query to rows allowed for the current user.

Due to time constraints, we manually inserted these
checks into applications based on the ACL needed by the
application. ACLs that placed constraints on field values
of a database row required simple query modifications to
test if the field value met the constraints in the ACL.

In a full-fledged design, the SQL queries should be
parsed, analyzed for the appropriate information, and
rewritten if needed to enforce additional security guar-
antees (e.g., restrict rows modified to be only those cre-

10

USENIX Association 	 18th USENIX Security Symposium	 277

ated by the current authenticated user). Depending on
the database used, query rewriting may also be partially
or totally implemented using database views and trig-
gers [18, 26].

5.6 SQL Injection
Shadow authentication is necessary to prevent authentica-
tion bypass attacks and enforce our ACL rules. However,
it can also be used to prevent false positives in DIFT SQL
injection protection analyses. The most robust form of
SQL injection protection [27] forbids tainted keywords
or operators, and enforces the rule that tainted data may
never change the parse tree of a query.

Our current approach does not support byte granular-
ity taint, and thus we must approximate this analysis.
We introduce a third taint bit in the zval which we use
to denote user input that may be interpreted as a SQL
keyword or operator. We scan all user input at startup
(GET, POST, COOKIE superglobal arrays, etc) and set
this bit only for those user input values that contain a
SQL keyword or operator. SQL quoting functions, such
as mysql real escape string(), clear this tag bit.
Any attempt to execute a SQL query with the unsafe SQL
tag bit set is reported as a SQL injection attack.

We use this SQL injection policy to confirm that DIFT
SQL Injection has false positives and real-world web ap-
plications. This is because DIFT treats all user input as
untrusted, but some web applications allow privileged
users such as the admin to submit full SQL queries. As
discussed in Section 6, we eliminate all encountered false
positives using authentication policies which restrict SQL
injection protection to users that are not shadow authen-
ticated as the admin user. We have confirmed that all of
these false positives are due to a lack of authentication
information, and not due to any approximations made in
our SQL injection protection implementation.

6 Experimental Results

To validate Nemesis, we used our prototype to protect
a wide range of vulnerable real-world PHP applications
from authentication and access control bypass attacks. A
summary of the applications and their vulnerabilities is
given in Table 1, along with the lines of code that were
added or modified in order to protect them.

For each application, we had to specify where the ap-
plication stores its username and password database, or
what function it invokes to authenticate users. This step is
quite simple for all applications, and the “authentication
inference” column indicates the amount of code we had to
add to each application to specify the table used to store
known-good passwords, and to taint the passwords with
the “credential” taint bit.

We also specified ACLs on files and database tables
to protect them from unauthorized accesses; the number
of access control rules for each application is shown in
the table. As explained in Section 5, we currently enforce
ACLs via explicitly inserted checks, which slightly in-
creases the lines of code needed to implement the check
(shown in the table as well). As we develop a full MySQL
parser and query rewriter, we expect the lines of code
needed for these checks to drop further.

We validated our rules by using each web application
extensively to ensure there are no false positives, and then
verifying that our rules prevented real-world attacks that
have been found in these applications in the past. We also
verified that our shadow authentication information is able
to prevent false positives in DIFT SQL injection analyses
for both the DeluxeBB and phpMyAdmin applications.

6.1 PHP iCalendar

PHP iCalendar is a PHP web application for presenting
calendar information to users. The webapp administra-
tor is authenticated using a configuration file that stores
the admin username and password. Our ACL for PHP
iCalendar allows users read access to various template
files, language files, and all of the calendars. In addition,
caches containing parsed calendars can be read or written
by any user. The admin user is able to write, create, and
delete calendar files, as well as read any uploaded calen-
dars from the uploads directory. We added 8 authorization
checks to enforce our ACL for PHP iCalendar.

An authentication bypass vulnerability occurs in PHP
iCalendar because a script in the admin subdirectory in-
correctly validates a login cookie when resuming a ses-
sion [20]. This vulnerability allows a malicious user to
forge a cookie that will cause her to be authenticated as
the admin user.

Using Nemesis, when an attacker attempts to exploit
the authentication bypass attack, she will find that her
shadow authentication username is not affected by the
attack. This is because shadow authentication uses its
own secure form of cookie authentication, and stores its
credentials separately from the rest of the web application.
When the attacker attempts to use the admin scripts to
perform any actions that require admin access, such as
deleting a calendar, a security violation is reported be-
cause the shadow authentication username will not be
’admin’, and the ACL will prevent that username from
performing administrative operations.

6.2 Phpstat

Phpstat is an application for presenting a database of IM
statistics to users, such as summaries and logs of their IM

11

278	 18th USENIX Security Symposium	 USENIX Association

Program LoC LoC for Number of LoC for Vulnerability
in program auth inference ACL checks ACL checks prevented

PHP iCalendar 13500 3 8 22 Authentication bypass
phpStat (IM Stats) 12700 3 10 17 Missing access check

Bilboblog 2000 3 4 11 Invalid access check
phpFastNews 500 5 2 17 Authentication bypass

Linpha Image Gallery 50000 15 17 49 Authentication bypass
DeluxeBB Web Forum 22000 6 82 143 Missing access check

Table 1: Applications used to evaluate Nemesis.

conversations. Phpstat stores its authentication credentials
in a database table.

The access control list for PhpStat allows users to read
and write various cache files, as well as read the statistics
database tables. Users may also read profile information
about any other user, but the value of the password field
may never be sent back to the Web client. The administra-
tive user is also allowed to create users by inserting into
or updating the users table, as well as all of the various
statistics tables. We added 10 authorization checks to
enforce our ACL for PhpStat.

A security vulnerability exists in PhpStat because an
installation script will reset the administrator password if
a particular URL parameter is given. This behavior occurs
without any access control checks, allowing any user to
reset the admin password to a user-specified value [21].
Successful exploitation grants the attacker full adminis-
trative privileges to the Phpstat. Using Nemesis, when
this attack occurs, the attacker will not be shadow au-
thenticated as the admin, and any attempts to execute
a SQL query that changes the password of the adminis-
trator are denied by our ACL rules. Only users shadow
authenticated as the admin may change passwords.

6.3 Bilboblog

Bilboblog is a simple PHP blogging application that au-
thenticates its administrator using a username and pass-
word from a configuration file.

Our ACL for bilboblog permits all users to read and
write blog caching directories, and read any posted articles
from the article database table. Only the administrator is
allowed to modify or insert new entries into the articles
database table. Bilboblog has an invalid access control
check vulnerability because one of its scripts, if directly
accessed, uses uninitialized variables to authenticate the
admin user [3]. We added 4 access control checks to
enforce our ACL for bilboblog.

In PHP, if the register globals option is set, unini-
tialized variables may be initialized at startup by user-
supplied URL parameters [22]. This allows a malicious
user to supply the administrator username and password

that the login will be authenticated against. The attacker
may simply choose a username and password, access
the login script with these credentials encoded as URL
parameters, and then input the same username and pass-
word when prompted by the script. This attack grants the
attacker full administrative access to Bilboblog.

This kind of attack does not affect shadow authentica-
tion. A user is shadow authenticated only if their input
is compared against a valid password. This attack in-
stead compares user input against a URL parameter. URL
parameters do not have the password bit set – only pass-
words read from the configuration do. Thus, no shadow
authentication occurs when this attack succeeds. If an
attacker exploits this vulnerability on a system protected
by our prototype, she will find herself unable to perform
any privileged actions as the admin user. Any attempt
to update, delete, or modify an article will be prevented
by our prototype, as the current user will not be shadow
authenticated as the administrator.

6.4 phpFastNews

PhpFastNews is a PHP application for displaying news
stories. It performs authentication via a configuration
file with username and password information. This web
application displays a news spool to users. Our ACL for
phpFastNews allows users to read the news spool, and
restricts write access to the administrator. We added 2 ac-
cess control checks to enforce our ACL for phpFastNews.

An authentication bypass vulnerability occurs in php-
FastNews due to insecure cookie validation [19], much
like in PHP iCalendar. If a particular cookie value is set,
the user is automatically authenticated as the administra-
tor without supplying the administrator’s password. All
the attacker must do is forge the appropriate cookie, and
full admin access is granted.

Using Nemesis, when the authentication bypass attack
occurs, our prototype will prevent any attempt to perform
administrator-restricted actions such as updating the news
spool because the current user is not shadow authenticated
as the admin.

12

USENIX Association 	 18th USENIX Security Symposium	 279

6.5 Linpha

Linpha is a PHP web gallery application, used to display
directories of images to web users. It authenticates its
users via a database table.

Our ACL for Linpha allows users to read files from the
images directory, read and write files in the temporary and
cache directories, and insert entries into the thumbnails
table. Users may also read from the various settings,
group, and configuration tables. The administrator may
update or insert into the users table, as well as the settings,
groups, and categories tables. Dealing with access by non-
admin users to the user table is the most complex part of
the Linpha ACL, and is our first example of a database
row ACL. Any user may read from the user table, with
the usual restriction that passwords may never be output
to the Web client via echo, print, or related commands.

Users may also update entries in the user table. Up-
dating the password field must be restricted so that a
malicious user cannot update the other passwords. This
safety restriction can be enforced by ensuring that only
user table rows that have a username field equal to the
current shadow authenticated user can be modified. The
exception to this rule is when the new password is un-
tainted. This can occur only when the web application
has internally generated the new user password without
using user input. We allow these queries even when they
affect the password of a user that is not the current shadow
authenticated user because they are used for lost password
recovery.

In Linpha, users may lose their password, in which case
Linpha resets their password to an internally generated
value, and e-mails this password to the user. This causes
an arbitrary user’s password to be changed on the behalf
of a user who isn’t even authenticated. However, we
can distinguish this safe and reasonable behavior from an
attack by a user attempting to change another user’s pass-
word by examining the taint of the new password value
in the SQL query. Thus, we allow non-admin users to
update the password field of the user table if the password
query is untainted, or if the username of the modified row
is equal to the current shadow authenticated user. Overall,
we added 17 authorization checks to enforce all of our
ACLs for Linpha.

Linpha also has an authentication bypass vulnerability
because one of its scripts has a SQL injection vulnerabil-
ity in the SQL query used to validate login information
from user cookies [13]. Successful exploitation of this
vulnerability grants the attacker full administrative access
to Linpha. For this experiment, we disabled SQL injection
protection provided by the tainting framework we used
to implement the Nemesis prototype [29], to allow the
user to submit a malicious SQL query in order to bypass
authentication entirely.

Using Nemesis, once a user has exploited this authen-
tication bypass vulnerability, she may access the various
administration scripts. However, any attempt to actually
use these scripts to perform activities that are reserved
for the admin user will fail, because the current shadow
authenticated user will not be set to admin, and our ACLs
will correspondingly deny any admin-restricted actions.

6.6 DeluxeBB

DeluxeBB is a PHP web forum application that supports a
wide range of features, such as an administration console,
multiple forums, and private message communication
between forum users. Authentication is performed using
a table from a MySQL database.

DeluxeBB has the most intricate ACL of any appli-
cation in our experiments. All users in DeluxeBB may
read and write files in the attachment directory, and the
admin user may also write to system log files. Non-admin
users in DeluxeBB may read the various configuration
and settings tables. Admin users can also write these ta-
bles, as well as perform unrestricted modifications to the
user table. DeluxeBB treats user table updates and lost
password modifications in the same manner as Linpha,
and we use the equivalent ACL to protect the user table
from non-admin modifications and updates.

DeluxeBB allows unauthenticated users to register via
a form, and thus unauthenticated users are allowed to
perform inserts into the user table. As described in Sec-
tion 3.4, inserting a user into the user table results in
shadow authentication with the credentials of the inserted
user.

The novel and interesting part of the ACLs for
DeluxeBB are the treatment of posts, thread creation,
and private messages. All inserts into the post, thread
creation, or private message tables are rewritten to use the
shadow authenticated user as the value for the author field
(or the sender field, in the case of a private message). The
only exception is when a query is totally untainted. For
example, when a new user registers, a welcome message
is sent from a fake system mailer user. As this query is
totally untainted, we allow it to be inserted into the pri-
vate message table, despite the fact that the identity of the
sender is clearly forged. We added fields to the post and
thread tables to store the username of the current shadow
authenticated user, as these tables did not directly store
the author’s username. We then explicitly instrumented
all SQL INSERT statements into these tables to append
this information accordingly.

Any user may read from the thread or post databases.
However, our ACL rules further constrain reads from the
private message database. A row may only be read from
the private message database if the ’from’ or ’to’ fields of
the row are equal to the current shadow authenticated user.

13

280	 18th USENIX Security Symposium	 USENIX Association

We manually instrumented all SELECT queries from the
private message table to add this condition to the WHERE
clause of the query. In total, we modified 16 SQL queries
to enforce both our private message protection and our
INSERT rules to prevent spoofing messages, threads, and
posts. We also inserted 82 authorization checks to enforce
the rest of the ACL.

A vulnerability exists in the private message script
of this application [6]. This script incorrectly validates
cookies, missing a vital authentication check. This allows
an attacker to forge a cookie and be treated as an arbitrary
web application user by the script. Successful exploitation
of this vulnerability gives an attacker the ability to access
any user’s private messages.

Using Nemesis, when this attack is exploited, the at-
tacker can fool the private message script into thinking he
is an arbitrary user due to a missing access control check.
The shadow authentication for the attack still has the last
safe, correct authenticated username, and is not affected
by the attack. Thus, the attacker is unable to access any
unauthorized messages, because our ACL rules only allow
a user to retrieve messages from the private message table
when the sender or recipient field of the message is equal
to the current shadow authenticated user. Similarly, the
attacker cannot abuse the private message script to forge
messages, as our ACLs constrain any messages inserted
into the private message table to have the sender field set
to the current shadow authenticated username.

DeluxeBB allows admin users to execute arbitrary SQL
queries. We verified that this results in false positives in
existing DIFT SQL injection protection analyses. After
adding an ACL allowing SQL injection for web clients
shadow authenticated as the admin user, all SQL injection
false positives were eliminated.

6.7 PhpMyAdmin

PhpMyAdmin is a popular web application used to re-
motely administer and manage MySQL databases. This
application does not build its own authentication sys-
tem; instead, it checks usernames and passwords against
MySQL’s own user database. A web client is validated
only if the underlying MySQL database accepts their user-
name and password.

We treat the MySQL database connection function
as a third-party authentication function as detailed in
Section 3.2.2. We instrumented the call to the MySQL
database connection function to perform shadow authenti-
cation, authenticating a user if the username and password
supplied to the database are both tainted, and if the login
was successful.

The ACL for phpMyAdmin is very different from other
web applications, as phpMyAdmin is intended to provide
an authenticated user with unrestricted access to the un-

derlying database. The only ACL we include is a rule
allowing authenticated users to submit full SQL database
queries. We implemented this by modifying our SQL
injection protection policy defined in Section 5.6 to treat
tainted SQL operators in user input as unsafe only when
the current user was unauthenticated. Without this pol-
icy, any attempt to submit a query as an authenticated
user results in a false positive in the DIFT SQL injection
protection policy. We confirmed that adding this ACL
removes all observed SQL injection false positives, while
still preventing unauthenticated users from submitting
SQL queries.

6.8 Performance
We also performed performance tests on our prototype im-
plementation, measuring overhead against an unmodified
version of PHP. We used the bench.php microbenchmark
distributed with PHP, where our overhead was 2.9% com-
pared to unmodified PHP. This is on par with prior results
reported by object-level PHP tainting projects [29]. How-
ever, bench.php is a microbenchmark which performs
CPU-intensive operations. Web applications often are
network or I/O-bound, reducing the real-world perfor-
mance impact of our information flow tracking and access
checks.

To measure performance overhead of our prototype
for web applications, we used the Rice University Bid-
ding System (RUBiS) [24]. RUBiS is a web application
benchmark suite, and has a PHP implementation that is
approximately 2,100 lines of code. Our ACL for RU-
BiS prevents users from impersonating another user when
placing bids, purchasing an item, or posting a bid com-
ment. Three access checks were added to enforce this
ACL. We compared latency and throughput for our pro-
totype and an unmodified PHP, and found no discernible
performance overhead.

7 Future Work

There is much opportunity for further research in pre-
venting authentication bypass attacks. A fully developed,
robust policy language for expressing access control in
web applications must be developed. This will require
support for SQL query rewriting, which can be imple-
mented by developing a full SQL query parser or by using
database table views and triggers similar to the approach
described in [18].

Additionally, all of our ACL rules are derived from
real-world behavior observed when using the web appli-
cation. While we currently generate such ACLs manually,
it should be possible to create candidate ACLs automati-
cally. A log of all database and file operations, as well as
the current shadow authenticated user at the time of the

14

USENIX Association 	 18th USENIX Security Symposium	 281

operation, would be recorded. Using statistical techniques
such as machine learning [14], this log could be analyzed
and access control files generated based on application
behavior. This would allow system administrators to au-
tomatically generate candidate ACL lists for their web
applications without a precise understanding of the access
control rules used internally by the webapp.

8 Related Work

Preventing web authentication and authorization vulner-
abilities is a relatively new area of research. The only
other work in this area of which we are aware is the
CLAMP research project [18]. CLAMP prevents autho-
rization vulnerabilities in web applications by migrating
the user authentication module of a web application into
a separate, trusted virtual machine (VM). Each new login
session forks a new, untrusted session VM and forwards
any authentication credentials to the authentication VM.
Authorization vulnerabilities are prevented by a trusted
query restricter VM which interposes on all session VM
database accesses, examining queries to enforce the ap-
propriate ACLs using the username supplied by the au-
thentication VM.

In contrast to Nemesis, CLAMP does not prevent au-
thentication vulnerabilities as the application authentica-
tion code is part of the trusted user authentication VM.
CLAMP also cannot support access control policies that
require taint information as it does not use DIFT. Further-
more, CLAMP requires a new VM to be forked when
a user session is created, and experimental results show
that one CPU core could only fork two CLAMP VMs per
second. This causes significant performance degradation
for throughput-driven, multi-user web applications that
have many simultaneous user sessions.

Researchers have extensively explored the use of DIFT
to prevent security vulnerabilities. Robust defenses
against SQL injection [15, 27], cross-site scripting [25],
buffer overflows [5] and other attacks have all been pro-
posed. DIFT has been used to prevent security vulner-
abilities in most popular web programming languages,
including Java [8], PHP [16], and even C [15]. This pa-
per shows how DIFT techniques can be used to address
authentication and access control vulnerabilities. Fur-
thermore, DIFT-based solutions to attacks such as SQL
injection have false positives in the real-world due to a
lack of authentication information. Nemesis avoids such
false positives by incorporating authentication and autho-
rization information at runtime.

Much work has also been done in the field of secure
web application design. Information-flow aware program-
ming language extensions such as Sif [4] have been de-
veloped to prevent information leaks and security vulner-
abilities in web application programs using the language

and compiler. Unfortunately these approaches typically
require legacy applications to be rewritten in the new,
secure programming language.

Some web application frameworks provide common
authentication or authorization code libraries [1, 2, 7].
The use of these authentication libraries is optional, and
many application developers choose to partially or en-
tirely implement their own authentication and authoriza-
tion systems. Many design decisions, such as how users
are registered, how lost passwords are recovered, or what
rules govern access control to particular database tables
are application-specific. Moreover, these frameworks do
not connect the user authentication mechanisms with the
access control checks in the underlying database or file
system. As a result, the application programmer must
still apply access checks at every relevant filesystem and
database operation, and even a single mistake can com-
promise the security of the application.

Operating systems such as HiStar [32] and Flume [12]
provide process-granularity information flow control sup-
port. One of the key advantages of these systems is that
they give applications the flexibility to define their own
security policies (in terms of information flow categories),
which are then enforced by the underlying kernel. A web
application written for HiStar or Flume can implement its
user authentication logic in terms of the kernel’s informa-
tion flow categories. This allows the OS kernel to then
ensure that one web user cannot access data belonging to
a different web user, even though the OS kernel doesn’t
know how to authenticate a web user on its own. Our
system provides two distinct advantages over HiStar and
Flume. First, we can mitigate vulnerabilities in existing
web applications, without requiring the application to be
re-designed from scratch for security. Second, by pro-
viding sub-process-level information flow tracking and
expressive access control checks instead of labels, we
allow programmers to specify precise security policies in
a small amount of code.

9 Conclusion

This paper presented Nemesis, a novel methodology for
preventing authentication and access control bypass at-
tacks in web applications. Nemesis uses Dynamic In-
formation Flow Tracking to automatically detect when
application-specific users are authenticated, and con-
structs a shadow authentication system to track user au-
thentication state through an additional HTTP cookie.

Programmers can specify access control lists for re-
sources such as files or database entries in terms of
application-specific users, and Nemesis automatically en-
forces these ACLs at runtime. By providing a shadow
authentication system and tightly coupling the authenti-
cation system to authorization checks, Nemesis prevents

15

282	 18th USENIX Security Symposium	 USENIX Association

a wide range of authentication and access control bypass
attacks found in today’s web applications. Nemesis can
also be used to improve precision in other security tools,
such as those that find SQL injection bugs, by avoiding
false positives for properly authenticated requests.

We implemented a prototype of Nemesis in the PHP
interpreter, and evaluated its security by protecting seven
real-world applications. Our prototype stopped all known
authentication and access control bypass attacks in these
applications, while requiring only a small amount of work
from the application developer, and introducing no false
positives. For most applications we evaluated, the pro-
grammer had to write less than 100 lines of code to avoid
authentication and access control vulnerabilities. We also
measured performance overheads using PHP benchmarks,
and found that our impact on web application perfor-
mance was negligible.

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback. Michael Dalton was supported by a Sequoia
Capital Stanford Graduate Fellowship. This work was
supported NSF Awards number 0546060 and 0701607.

References
[1] Turbogears documentation: Identity management. http://

docs.turbogears.org/1.0/Identity.
[2] Zope security. http://www.zope.org/

Documentation/Books/ZDG/current/Security.
stx.

[3] BilboBlog admin/index.php Authentication Bypass Vulnerability.
http://www.securityfocus.com/bid/30225, 2008.

[4] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confiden-
tiality and integrity in web applications. In Proceedings of the
16th Annual USENIX Security Symposium, 2007.

[5] M. Dalton, H. Kannan, and C. Kozyrakis. Real-World Buffer Over-
flow Protection for Userspace and Kernelspace. In Proceedings of
the 17th Annual USENIX Security Symposium, 2008.

[6] DeluxeBB PM.PHP Unauthorized Access Vulnerability. http:
//www.securityfocus.com/bid/19418, 2006.

[7] Django Software Foundation. User authentication in
Django. http://docs.djangoproject.com/en/dev/
topics/auth/.

[8] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation
for java. Annual Computer Security Applications Conference,
2005.

[9] N. Hardy. The Confused Deputy: (or why capabilities might have
been invented). SIGOPS Operating System Review, 1988.

[10] Microsoft Internet Information Server Hit Highlighting Authenti-
cation Bypass Vulnerability. http://www.securityfocus.
com/bid/24105, 2007.

[11] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make Least Privilege a Right (Not a Privilege). In
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, 2005.

[12] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard OS abstractions. In Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[13] Linpha User Authentication Bypass Vulnerability. http://
secunia.com/advisories/12189, 2004.

[14] E. Martin and T. Xie. Inferring access-control policy properties
via machine learning. In Proc. 7th IEEE Workshop on Policies for
Distributed Systems and Networks, 2006.

[15] S. Nanda, L.-C. Lam, and T. Chiueh. Dynamic multi-process infor-
mation flow tracking for web application security. In Proceedings
of the 8th International Conference on Middleware, 2007.

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications using
Precise Tainting. In Proceedings of the 20th IFIP Intl. Information
Security Conference, 2005.

[17] Top 10 2007 - Broken Authentication and Session Manage-
ment. http://www.owasp.org/index.php/Top_10_
2007-A7, 2007.

[18] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical Prevention of Large-Scale Data
Leaks. In Proceedings of the 2009 IEEE Symposium on Security
and Privacy, May 2009.

[19] phpFastNews Cookie Authentication Bypass Vulnerability. http:
//www.securityfocus.com/bid/31811, 2008.

[20] PHP iCalendar Cookie Authentication Bypass Vulnerability.
http://www.securityfocus.com/bid/31320, 2008.

[21] Php Stat Vulnerability Discovery. http://www.soulblack.
com.ar/repo/papers/advisory/PhpStat_
advisory.txt, 2005.

[22] PHP: Using Register Globals. http://us2.php.net/
register_globals.

[23] PhpMyAdmin control user. http://wiki.cihar.com/
pma/controluser.

[24] Rice University Bidding System. http://rubis.
objectweb.org, 2009.

[25] P. Saxena, D. Song, and Y. Nadji. Document structure integrity:
A robust basis for cross-site scripting defense. Network and Dis-
tributed Systems Security Symposium, 2009.

[26] S. R. Shariq, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2004.

[27] Z. Su and G. Wassermann. The Essence of Command Injection At-
tacks in Web Applications. In Proceedings of the 33rd Symposium
on Principles of Programming Languages, 2006.

[28] The MITRE Corporation. Common vulnerabilities and expo-
sures (CVE) database. http://cve.mitre.org/data/
downloads/.

[29] W. Venema. Taint support for php. http://wiki.php.net/
rfc/taint, 2008.

[30] Web Application Security Consortium. 2007 web application secu-
rity statistics. http://www.webappsec.org/projects/
statistics/wasc_wass_2007.pdf.

[31] WordPress Cookie Integrity Protection Unauthorized Access
Vulnerability. http://www.securityfocus.com/bid/
28935, 2008.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in histar. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation,
2006.

16

USENIX Association 	 18th USENIX Security Symposium	 283

Static Enforcement of Web Application Integrity Through Strong Typing

William Robertson
wkr@cs.ucsb.edu

Computer Security Group
UC Santa Barbara

Giovanni Vigna
vigna@cs.ucsb.edu

Computer Security Group
UC Santa Barbara

Abstract
Security vulnerabilities continue to plague web appli-
cations, allowing attackers to access sensitive data and
co-opt legitimate web sites as a hosting ground for mal-
ware. Accordingly, researchers have focused on various
approaches to detecting and preventing common classes
of security vulnerabilities in web applications, includ-
ing anomaly-based detection mechanisms, static and dy-
namic analyses of server-side web application code, and
client-side security policy enforcement.

This paper presents a different approach to web appli-
cation security. In this work, we present a web appli-
cation framework that leverages existing work on strong
type systems to statically enforce a separation between
the structure and content of both web documents and
database queries generated by a web application, and
show how this approach can automatically prevent the
introduction of both server-side cross-site scripting and
SQL injection vulnerabilities. We present an evaluation
of the framework, and demonstrate both the coverage and
correctness of our sanitization functions. Finally, exper-
imental results suggest that web applications developed
using this framework perform competitively with appli-
cations developed using traditional frameworks.

Keywords: Web applications, strongly typed languages,
functional languages, cross-site scripting, SQL in-
jection.

1 Introduction

In the last decade, web applications have become an
extremely popular means of providing services to large
numbers of users. Web applications are relatively easy to
develop, the potential audience of a web application is a
significant proportion of the planet’s population [36, 10],
and development frameworks have evolved to the point
that web applications are approaching traditional thick-
client applications in functionality and usability.

Unfortunately, web applications have also been found
to contain many security vulnerabilities [40]. Web ap-
plications are also widely accessible and often serve as
an interface to large amounts of sensitive data stored in
back-end databases. Due to these factors, web applica-
tions have attracted much attention from cyber-criminals.
Attackers commonly exploit web application vulnerabil-
ities to steal confidential information [41] or to host mal-
ware in order to build botnets, both of which can be sold
to the highest bidder in the underground economy [46].

By far, the most prevalent security vulnerabilities
present in web applications are cross-site scripting (XSS)
and SQL injection vulnerabilities [42]. Cross-site script-
ing vulnerabilities are introduced when an attacker is
able to inject malicious scripts into web content to be
served to other clients. These scripts then execute with
the privileges of the web application delivering the con-
tent, and can be used to steal authentication credentials
or to install malware, among other nefarious objectives.
SQL injections occur when malicious input to a web ap-
plication is allowed to modify the structure of queries
issued to a back-end database. If successful, an attacker
can typically bypass authentication procedures, elevate
privileges, or steal confidential information.

Accordingly, much research has focused on detecting
and preventing security vulnerabilities in web applica-
tions. One approach is to deploy web application fire-
walls (WAFs), usually incorporating some combination
of misuse and anomaly detection techniques, in order to
protect web applications from attack [6, 14, 8, 29, 45].
Anomaly detection approaches are attractive due to their
black-box approach; they typically require no a priori
knowledge of the structure or implementation of a web
application in order to provide effective detection.

Another significant focus of research has been on ap-
plying various static and dynamic analyses to the source
code of web applications in order to identify and miti-
gate security vulnerabilities [21, 33, 25, 2, 7, 50]. These
approaches have the advantage that developers can con-

284	 18th USENIX Security Symposium	 USENIX Association

tinue to create web applications using traditional lan-
guages and frameworks, and periodically apply a vulner-
ability analysis tool to provide a level of assurance that
no security-relevant flaws are present. Analyzing web
applications is a complex task, however, as is the inter-
pretation of the results of such security tools. Addition-
ally, several approaches require developers to specify se-
curity policies to be enforced in a specialized language.

A more recent line of research has focused on provid-
ing client-side protection by enforcing security policies
within the web browser [43, 22, 13]. These approaches
show promise in detecting and preventing client-side at-
tacks against newer web applications that aggregate con-
tent from multiple third parties, but the specification of
policies to enforce is generally left to the developer.

In this paper, we propose a different approach to web
application security. We observe that cross-site script-
ing and SQL injection vulnerabilities can be viewed as
a failure on the part of the web application to enforce a
separation of the structure and the content of documents
and database queries, respectively, and that this is a result
of treating documents and queries as untyped sequences
of bytes. Therefore, instead of protecting or analyzing
existing web applications, we describe a framework that
strongly types both documents and database queries. The
framework is then responsible for automatically enforc-
ing a separation between structure and content, as op-
posed to the ad hoc sanitization checks that developers
currently must implement. Consequently, the integrity
of documents and queries generated by web applications
developed using our framework are automatically pro-
tected, and thus, by construction, such web applications
are not vulnerable to server-side cross-site scripting and
SQL injection attacks.

To illustrate the problem at hand, consider that HTML
or XHTML documents to be presented to a client are typ-
ically constructed by concatenating strings. Without ad-
ditional type information, a web application framework
has no means of determining that the following opera-
tions could lead to the introduction of a cross-site script-
ing vulnerability:

String result = "<div>" + userInput + "</div>";

The key intuition behind our work is that because
both documents and database queries are strongly typed
in our framework, the framework can distinguish be-
tween the structure (<div> and </div>) and the content
(userInput) of these critical objects, and enforce their
integrity automatically.

In this work, we leverage the advanced type system
of Haskell, since it offers a natural means of expressing
the typing rules we wish to impose. In principle, how-
ever, a similar framework could be implemented in any

language with a strong type system that allows for some
form of multiple inheritance (e.g., Java or C#).

In summary, the main contributions of this paper are
the following:

• We identify the lack of typing of web documents
and database queries as the underlying cause of
cross-site scripting and SQL injection vulnerabili-
ties.

• We present the design of a web application develop-
ment framework that automatically prevents the in-
troduction of cross-site scripting and SQL injection
vulnerabilities by strongly typing both web docu-
ments and database queries.

• We evaluate our prototype web application frame-
work, demonstrate the coverage and correctness of
its sanitization functions, and show that applications
under our framework perform competitively with
those using existing frameworks.

The remainder of this paper is structured as follows.
Section 2 presents the design of a strongly typed web
application framework. The specification of documents
under the framework and how their integrity is enforced
is discussed in Section 3, and similarly for SQL queries
in Section 4. Section 5 evaluates the design of the frame-
work, and demonstrates that web applications developed
under this framework are free from certain classes of vul-
nerabilities. Related work is discussed in Section 6. Fi-
nally, Section 7 concludes and presents avenues for fur-
ther research.

2 Framework design

At a high level, the web application framework is com-
posed of several familiar components. A web server
component processes HTTP requests from web clients
and forwards these requests in an intermediate form to
the application server based on one of several configura-
tion parameters (e.g., URL path prefix). These requests
are directed to one of the web applications hosted by
the application server. The web application examines
any parameters to the request, performs some process-
ing during which queries to a back-end database may be
executed, and generates a document. Note that in the fol-
lowing, the terms “document” or “web document” shall
generically refer to any text formatted according to the
HTML or XHTML standards. This document is then
returned down the component stack to the web server,
which sends the document as part of an HTTP response
to the web client that originated the request. A graphical
depiction of this architecture is given in Figure 1.

USENIX Association 	 18th USENIX Security Symposium	 285

Database

HTTP

request

HTTP

response

HTTP

server

Application

server

Web

application

Figure 1: Architectural overview of the web application framework.

Web applications developed for our framework are
structured as a set of functions with access to a com-
bination of configuration data and application state.
More precisely, web applications execute inside the App
monad. Monads are a category theoretic construction
that have found wide application in Haskell to sequence
actions or isolate code that can produce side effects.1 For
the purposes of our framework, we use the App monad to
thread implicit state through the functions comprising a
web application, and to provide a controlled interface to
potentially dangerous functions. In particular, the App
monad itself is structured as a stack of monad transform-
ers that provide a functional interface to a read-only con-
figuration type AppConfig, a read-write application state
type AppState, and filtered access to the IO monad. The
definitions for AppConfig and AppState are given in
Figures 2 and 3.

data AppConfig = AppConfig {
appCfgPort :: Int,

appCfgPrefix :: String,

appCfgRoutes :: RouteMap,

appCfgFileRoot :: FilePath,

appCfgDBConn :: Connection,

appCfgDBStmts :: StmtMap

}

Figure 2: Definition for the AppConfig type.

The AppConfig type holds static information relating
to the configuration of the application, including the port
on which to listen for HTTP requests and the root direc-
tory of static files to serve from the filesystem. Of partic-
ular interest, however, are the RouteMap and StmtMap
fields. The RouteMap type describes how URL paths
are mapped to values of type DocumentGen, which are
simply functions that generate documents within the App
monad. In addition, the RouteMap type contains a de-
fault DocumentGen type that specifies an error page.
Given an incoming HTTP request destined for a partic-

1For further information on monads, please refer to [37, 48].

ular web application, the application server uses that ap-
plication’s RouteMap type to determine the proper func-
tion to call in order to generate the document to be re-
turned to the client.2 Finally, the StmtMap type asso-
ciates unique database query identifiers to prepared state-
ments that can be executed by a document generator.

data AppState = AppState {
appStClient :: Maybe SockAddr,

appStUrl :: Maybe Url

}

Figure 3: Definition for the AppState type.

The AppState type contains mutable state that is spe-
cific to each request for a document. In particular, one
field records information indicating the source of the re-
quest. Additionally, another field records the URL that
was requested, including any parameters that were spec-
ified by the client. More complex state types that hold
additional information (e.g., cached database queries or
documents) are possible, however.

3 Document structure

In this section, we introduce the means by which doc-
uments are specified under the framework. Then, we
discuss how these specifications allow the framework to
automatically contain the potentially harmful effects of
dynamic data.

3.1 Document specification
Once an appropriate route from the RouteMap structure
has been selected by the application server, the asso-
ciated document generator function is executed within
the context of the App monad (i.e., with access to the

2This construction is similar to the “routes” packages present in
popular web development frameworks such as Rails [18] and Py-
lons [4].

286	 18th USENIX Security Symposium	 USENIX Association

data Document Document {
docType :: DocumentType,

docHead :: DocumentHead,

docBody :: DocumentBody

}

data DocumentType = DOC TYPE HTML 4 01 STRICT

| DOC TYPE HTML 4 01 TRANS

| ...

| DOC TYPE XHTML 1 1

data DocumentHead = DocumentHead {
docTitle :: String,

docLinks :: [Node],

docScripts :: [Node],

docBaseUrl :: Maybe Url,

docBaseTarget :: Maybe Target,

docProfile :: [Url]

}

data DocumentBody = DocumentBody {
docBodyNode :: Node

}

Figure 4: Definition for the Document type.

configuration and current state of the application). The
document generator function processes the request from
the application server and returns a variable of type
Document. The definition of the Document type and its
constituent types are shown in Figure 4.

As is evident, documents in our framework are not
represented as an unstructured stream of bytes. Rather,
the structure of the Document type closely mirrors
that of parsed HTML or XHTML documents. The
DocumentType field indicates the document’s type, such
as “HTML 4.01 Transitional” or “XHTML 1.1”. The
DocumentHead type contains information such as the ti-
tle and client-side code to execute. The DocumentBody
type contains a single field that represents the root of a
tree of nodes that represent the body of the document.

Each node in this tree is an instantiation of the
Node type. Each Node instantiation maps to a distinct
(X)HTML element, and records the set of possible prop-
erties of that element. For instance, the TextNode data
constructor creates a Node that holds a text string to be
displayed as part of a document. The AnchorNode data
constructor, on the other hand, creates a Node that holds
information such as the href attribute, rel attribute, and
a list of child nodes corresponding to the text or other el-
ements that comprise the “body” of the link. A partial
definition of the Node type is presented in Figure 5.

With this construction, the entire document produced
by a web application in our framework is strongly typed.
Instead of generating a document as a byte stream, doc-

data Node = TextNode {
nodeText :: String

} | AnchorNode {
anchorAttrs :: NodeAttrs,

anchorHref :: Maybe Url,

anchorRel :: Maybe Relationship,

anchorRev :: Maybe Relationship,

anchorTarget :: Maybe Target,

anchorType :: Maybe MimeType,

anchorCharset :: Maybe CharSet,

anchorLang :: Maybe Language,

anchorName :: Maybe AttrValue,

anchorShape :: Maybe Shape,

anchorCoords :: Maybe Coordinates,

anchorNodes :: [Node]

} | DivNode {
divAttrs :: NodeAttrs,

divNodes :: [Node]

} ...

Figure 5: Sample Node definitions.

ument structure is explicitly encoded as a tree of nodes.
Furthermore, each element and element attribute has an
associated type that constrains, to one degree or another,
the range of possible values that can be represented. For
instance, the MimeType, CharSet, and Language types
are examples of enumerations that strictly limit the set
of possible values the attribute can take to legal values.
Standard (X)HTML element attributes (e.g., id, class,
style) are represented with the NodeAttr type. Op-
tional attributes are represented using either the Maybe
type,3 or as an empty list if multiple elements are al-
lowed.

Note that it is possible for a Document to represent
an (X)HTML document that is not necessarily consistent
with the respective W3C grammars that specify the set of
well-formed documents. One example is that any Node
instantiation may appear as the child of any other Node
that can hold children, which violates the official gram-
mars in several instances. Strict conformance with the
W3C standards is not, however, our goal.4

Instead, the typing scheme presented here allows our
framework to specify a separation between the structure
and the content of the documents a web application gen-
erates. More precisely, the dynamic data that enters a
web application as part of an HTTP request (e.g., as a
GET or POST parameter) can indirectly influence the
structure of a document. For instance, a search request
to a web application may result in a variable number of

3Maybe allows for the absence of a value, as Haskell does not pos-
sess nullable types. For example, the type Maybe a can be either
Just "..." or Nothing.

4Indeed, standards-conforming documents have been shown to be
difficult to represent in a functional language [12].

USENIX Association 	 18th USENIX Security Symposium	 287

class Render a where

render :: a -> String

instance Render AttrValue where

render = quoteAttr

quoteAttr :: AttrValue -> String

quoteAttr a = foldl’ step [] (attrValue a)

step acc c | c == ’<’ = acc ++ "<"

| c == ’>’ = acc ++ ">"

| c == ’&’ = acc ++ "&"

| c == ’"’ = acc ++ """

| otherwise = acc ++ [c]

Figure 6: Render typeclass definition and (simplified)
instance example. Here, quoteAttr performs a left fold
over attribute values using foldl’, which applies the
step function to each character of the string and ac-
cumulates the result. The definition of step specifies
a number of guards, where | c == ’<’ is a condition
that must be satisfied for the statement acc ++ "<"
to execute. This statement simply appends the string
"<" to acc, the accumulator, in order to build a new,
sanitized string. If no guard condition is satisfied, the
character is appended without conversion.

table rows in the generated document depending on the
number of results returned from a database query. Due
to our framework, however, client-supplied data cannot
directly modify the structure of the document in such a
way that a code injection can occur.

3.2 Enforcing document integrity
Once a Document has been constructed by the web ap-
plication in response to a client request, it is returned to
the application server. The application server is respon-
sible for converting this data structure into a format the
client can understand – that is, it must render the doc-
ument into a stream of bytes representing an (X)HTML
document. Consequently, the set of types that can com-
prise a Document are instances of the Render typeclass,
shown in Figure 6.5

The Render type class specifies that any instance of
the class must implement the render function. From the
type signature, the semantics of the function are clear:
render converts an instance type into a string represen-
tation suitable for presentation to a client. Crucially, for
our purposes, the Render type class is also responsible
for enforcing the integrity of a document’s structure.

5Haskell typeclasses are roughly similar to Java interfaces, in that
they specify a function interface that all instances (in Java, implemen-
tors) must provide.

As an example, Figure 6 presents a simplified render
definition for the AttrValue type that is used to indicate
element attribute strings that may assume (almost) arbi-
trary values. In order to preserve the integrity of the doc-
ument, an attribute value must not contain certain charac-
ters that would allow an attacker to inject malicious code
into the document. Consider, for instance, the following
element:

<input type="hidden" name="h1" value="..."/>

Now, suppose an attacker submitted the following
string as part of a request such that it was reflected to
another client as the value of the hidden input field:

"/>

<script src="http://example.com/malware.js">

</script>

<span id="

The result would be the following:

<input type="hidden" name="h1" value=""/>

<script src="http://example.com/malware.js">

</script>

To prevent such an injection from occurring, the
render function for the AttrValue class applies a sani-
tization function on the string wrapped by AttrValue.
Any occurrence of an unsafe character is replaced by
an equivalent HTML entity encoding that can safely ap-
pear as part of an attribute value.6 Similar render func-
tions are defined for the set of types that can comprise a
Document.

Therefore, to prepare a Document as part of an HTTP
response to a client, the application server applies the
render function to the document, which recursively
converts the data structure into an (X)HTML document.
As part of this process, the content of the document is
sanitized by type-specific render functions, ensuring
that client-supplied input to the web application cannot
modify the document structure in such a way as to result
in a client-side code injection.

4 SQL query structure

Similarly to the case of documents, SQL queries are
given structure in our framework through the application
of strong typing rules that control how the structure of
the query can be combined with dynamic data. In this
section, we examine the structure of SQL queries and
discuss two mechanisms by which SQL query integrity
is enforced under the framework.

6In the real implementation, the sanitization function is somewhat
more complex, as there are multiple encodings by which an unsafe
character can be injected. The example function given here is sim-
plified for the purposes of presentation.

288	 18th USENIX Security Symposium	 USENIX Association

INSERT INTO users(login, passwd)

VALUES(?, ?)

SELECT * FROM users

WHERE login=’admin’ AND passwd=’test’

UPDATE users SET passwd=’$passwd’

WHERE login=’$login’

Figure 7: Examples of SQL queries.

4.1 Query specification

SQL queries, as shown in Figure 7, are composed of
clauses, predicates, and expressions. For instance, a
clause might be SELECT * or UPDATE users. An exam-
ple of a predicate is login=’admin’, where ’admin’ is
an expression. Clauses, predicates, and expressions are
themselves composed of static tokens, such as keywords
(SELECT) and operators (=), and dynamic tokens, such as
table identifiers (users) or data values (’admin’).

Typically, the structure of a SQL query is fixed.7

Specifically, a query will have a static keyword denot-
ing the operation to perform, will reference a static set
of tables and fields, and specify a fixed set of predicates.
Generally, the only components of a query that change
from one execution to the next are data values, and, even
then, their number and placement remain fixed.

SQL injection attacks rely upon the ability of the at-
tacker to modify the structure of a query in order to per-
form a malicious action. When SQL queries are con-
structed using string operations without sufficient saniti-
zation applied to user input, such attacks become trivial.
For instance, consider the UPDATE query shown in Fig-
ure 7. If an attacker were to supply the value “quux’ OR
login=’admin” for the $login variable, the following
query would result:

UPDATE users SET passwd=’foo’

WHERE login=’quux’ OR login=’admin’

Because the attacker was able to inject single quotes,
which serve as delimiters for data values, the structure of
the query was changed, resulting in a privilege escalation
attack.

4.2 Integrity enforcement with static query
structure

In contrast to the case of document integrity enforce-
ment, a well-known solution exists for specifying SQL

7This is not always the case, but the case of dynamic query structure
will be considered later in this section.

SELECT * FROM users WHERE login=? AND passwd=?

UPDATE users SET passwd=? WHERE login=?

Figure 8: Examples of prepared statements, where “?”
characters serve as placeholders for data substitution.

query structure: prepared statements. Prepared state-
ments are a form of database query consisting of a
parameterized query template containing placeholders
where dynamic data should be substituted. An example
is shown in Figure 8, where the placeholders are signified
by the “?” character.

A prepared statement is typically parsed and con-
structed prior to execution, and stored until needed.
When an actual query is to be issued, variables that may
contain client-supplied data are bound to the statement.
Since the query has already been parsed and the place-
holders specified, the structure of the query cannot be
modified by the traditional means of providing malicious
input designed be interpreted as part of the query. In
the case of the injection attack described previously, the
result would be as the following (note that the injected
single quotes have been escaped):

UPDATE users SET passwd=’foo’

WHERE login=’quux’’ OR login=’’admin’

From our perspective, the query has been typed as a
composition of static and dynamic elements; it is ex-
actly this distinction between structure and content that
we wish to enforce. Haskell’s database library (HDBC),
as do most other languages, supports the use of prepared
statements. Therefore, the framework exports functions
that allow a web application to associate prepared state-
ments with a unique identifier in the AppConfig type.
During request processing, a document generator can
then retrieve a prepared statement using the identifier,
bind values to it, and execute queries that are not vul-
nerable to injection attacks.

One detail remains, however. The HDBC library also
provides functions allowing traditional ad hoc queries
that are assembled as concatenations of strings to be exe-
cuted. Without any other modification to the framework,
a web application developer would be free to directly call
these functions and bypass the protections afforded by
the framework. Therefore, an additional component is
required to encapsulate the HDBC interface and prevent
execution of these unsafe functions. This component
takes the form of a monad transformer AppIO, which
simply wraps the IO monad and exposes only those func-
tions that are considered safe to execute. The structure
of this stack is shown in Figure 9. In this environment,
within which all web applications using the framework
operate, unsafe database execution functions are inacces-
sible, since they will fail to type-check. Thus, assuming

USENIX Association 	 18th USENIX Security Symposium	 289

Figure 9: Graphical representation of the monad stack
within which framework applications execute. The
AppIO monad encapsulates applications, preventing
them from calling unsafe functions within the IO monad.

the correctness of the HDBC prepared statement inter-
face, web applications developed using the framework
are not vulnerable to SQL injection.

4.3 Integrity enforcement with dynamic
query structure

Though most SQL queries possess a fixed structure, there
does exist a small class of SQL queries that exhibit dy-
namic structure. For instance, many SQL database im-
plementations provide a set membership operator, where
queries of the form

SELECT * FROM users WHERE

login IN (’admin’, ’developer’, ’tester’)

can be expressed. In this case, the size of the set of data
values can often change at runtime. Another example
is the case where the structure of queries is determined
by the user, for instance through a custom search form
where many different combinations of predicates can
be dynamically expressed. Unfortunately, since these
queries cannot be represented using prepared statements,
they cannot be protected using the monadic encapsula-
tion technique described previously.

Therefore, a second database interface is exposed by
the framework to the application developers. Instead of
relying upon prepared statements, this interface allows
developers to dynamically construct queries as a tree of
algebraic data types as in the case of web documents.

data Select = Select {
sFields :: [Expr],

sTables :: [Expr],

sCons :: Maybe Expr,

sGrpFields :: [Expr],

sGrpCons :: Maybe Expr,

sOrdFields :: [Expr],

sLimit :: Maybe Int,

sOffset :: Maybe Int,

sDistinct :: Bool

}

data Expr = EXPR TABLE Table

| EXPR FIELD Field

| EXPR DATA String

| EXPR NOT Expr

| EXPR OR Expr Expr

| EXPR AND Expr Expr

| ...

data Table = Table {
tName :: String,

tAlias :: Maybe String

}

data Field = Field {
fName :: String,

fAlias :: Maybe String

}

Figure 10: Definition for the Select type.

Figure 10 shows an example of the type representing a
SELECT query.

To populate instances of these types, the interface pro-
vides a set of combinators, or higher-order functions, that
can be chained together. These combinators, which as-
sume names similar to SQL keywords, implement an em-
bedded domain-specific language (DSL) that allows ap-
plication developers to naturally specify dynamic queries
within the framework. For instance, a query could be
constructed using the following sequence of function in-
vocations:

qSelect [qField "*"] >>=

qFrom [qTable "users"] >>=

qWhere (((qField "login") == (qData "admin")) &&

((qField "passwd") == (qData "test")))

Similar to the case of the Document type, queries con-
structed in this manner are transformed into raw SQL
statements solely by the framework.8 Therefore, the
types that represent queries also implement the Render

8Note that, as in the case of web documents, we do not attempt to
enforce the generation of correct SQL, but rather focus on preventing
attacks by preserving query structures specified by the developer.

290	 18th USENIX Security Symposium	 USENIX Association

Context Semantics

Document nodes Conversion to static string
Document node attributes Encoding of HTML entities

Document text Encoding of HTML entities
URL components Encoding of HTML entities, percent encoding
SQL static value Removal of spaces, comments, quotes
SQL data value Escaping of quotes

Table 1: Example contexts for which specific sanitization functions are applied, and the semantics of those sanitization
functions under various encodings.

typeclass. Consequently, sanitization functions must be
applied to each of the fields comprising the query types,
such that the intended structure of the query cannot be
modified. This can be accomplished by enforcing the
conditions that no data value may contain an unescaped
single quote, and that all remaining query components
may not contain spaces, single quotes, or character signi-
fying the beginning of a comment. Assuming that these
sanitization functions are correct, this construction ren-
ders applications developed under the framework invul-
nerable to SQL injection attacks while allowing for more
powerful query specifications.

5 Evaluation

To demonstrate that web applications developed using
our framework are secure by construction from server-
side XSS and SQL injection vulnerabilities, we con-
ducted an evaluation of the system. First, we demon-
strate that all dynamic content contained in a Document
must be sanitized by an application of the render func-
tion, and that a similar condition holds for dynamically-
generated SQL queries. Then, we provide evidence that
the sanitization functions themselves are correct – that is,
they successfully strip or encode unsafe characters. We
also verify that the prepared statement library prevents
injections, as expected. Finally, to demonstrate the vi-
ability of the framework, an experiment to evaluate the
performance of a web application developed using the
framework is conducted.

5.1 Sanitization function coverage

The goal of the first experiment was to justify the claim
that all dynamic content contained in a Document or
query type must be sanitized prior to presentation to the
client that originated the request. To accomplish this, a
static control flow analysis of the framework was per-
formed. Figure 11 presents a control flow graph of the
application server in a simplified form, where function
calls are sequenced from left to right. Of particular inter-

est is the renderDoc function, which retrieves the appro-
priate document generator given a URL path, executes it
in the call to route, sanitizes it by applying render, and
creates an HTTP response by calling make200. The sani-
tized document is then returned to procRequest, which
writes it to the client. Therefore, the entire process of
converting the document to a byte stream for presentation
to the client is solely due to the recursive render appli-
cation. Similarly, because the only interface exposed to
applications to execute SQL queries are execStmt and
execPrepStmt from within the App monad, queries is-
sued by applications under the framework must be san-
itized either by the framework or the HDBC prepared
statement functions.

Figure 12 displays a subset of the full control
flow graph depicting an instance of the render func-
tion for the AnchorNode Node instantiation. For
clarity of presentation, multiple calls to render and
maybeRenderAttr have been collapsed into single
nodes. Recall from Figure 5 that the definition of
AnchorNode does not contain any bare strings; instead,
each field of the type is either itself a composite type,
or an enumeration for which a custom render function
is defined. Since no other string conversion function
is applied in this subgraph, we conclude that all data
contained in an AnchorNode variable must be filtered
through a sanitization function.

The analysis of this single case generalizes to the set of
all types that can comprise a Document or query type. In
total, 163 distinct sanitization function definitions were
checked to sanitize the contexts shown in Table 1. For
each function, our analysis found that no irreducible type
was concatenated to the document byte stream without
first being sanitized.

5.2 Sanitization function correctness
The goal of this experiment is to determine whether the
sanitization functions employed by the framework are
correct (i.e., whether all known sequences of danger-
ous characters are stripped or encoded). To establish
this, we applied a dynamic test-driven approach using the

USENIX Association 	 18th USENIX Security Symposium	 291

serveApp

appCfgPort socket bindSocket listen newMVar procConns

accept forkIO procRequest

socketToHandle hSetBuffering hGetContents handleRequest hPutStr hClose

runRequestParse renderDoc

reqUrl put getRoute urlPath appCfgRoutes route render make200

execStmt execPrepStmt

Figure 11: Simplified control flow graph for application server.

render

renderNode

concatMap maybeRenderAttr

quoteAttr

Figure 12: Example control flow graph for Render Node
instance.

QuickCheck property testing library [9]. QuickCheck
allows a developer to specify invariants in an embed-
ded language that should hold for a given set of func-
tions. The library then automatically generates a set of
random test cases, and checks that the invariants hold
for each test. In our case, we selected invariants based
upon known examples of XSS [44] and SQL injection
attacks [15]. In addition, we introduced modifications
of the invariants that account for different popular doc-
ument encodings, since these encodings directly affect
how browser parsers interpret the sequences of bytes that
comprise a document.

Since the coverage of the sanitization functions has
been established by the control flow analysis, we focused
our invariant testing on the low-level functions responsi-
ble for processing string data. In particular, we specified
invariants for 7 functions that are responsible for sani-

tizing (X)HTML content, element attributes, and various
URL components.9 An example invariant specification
is shown in Figure 13.

propAttrValueSafe :: AttrValue -> Bool

propAttrValueSafe input =

(not $ elem ’<’ output) &&

(not $ elem ’>’ output) &&

(not $ elem ’&’ $ stripEntities output) &&

(not $ elem ’"’ output) where

output = render input

Figure 13: Simplified example sanitization function
invariant specification. Here, propAttrValueSafe
is a conjunction of predicates, where not $ elem c
output specifies that the character c should not be an
element of the output of render in this context. Since
“&” is used to indicate the beginning of an HTML entity
(e.g., &), the stripEntities function ensures that
ampersands may only appear in this form.

For each of the sanitization functions, we first tested
the correctness of the invariants by checking that they
were violated over a set of 100 strings corresponding to
real-world cross-site scripting, command injection, and
other code injection attacks. Then, for each sanitization
function, we generated 1,000,000 test cases of random
strings using the QuickCheck library. In all cases, the
invariants were satisfied.

In addition to performing invariant testing on the set of
document sanitization functions, we also applied a sim-
ilar testing process to the sanitization of query types de-
scribed in Section 4.3. Finally, we applied manual invari-

9The 163 functions noted above eventually apply one of these 7
context-specific sanitization functions for web documents.

292	 18th USENIX Security Symposium	 USENIX Association

ant testing on the HDBC prepared statement interface. In
all cases, the invariants on the integrity of the queries and
the database itself held.

5.3 Framework performance
In this experiment, we compared the performance of a
web application developed using our framework to sim-
ilar applications implemented using other frameworks.
In particular, we developed a small e-commerce site
with a product display page, cart display page, and
checkout page under our framework, using the Pylons
framework 0.9.7 [4], and as a Java servlet using Tom-
cat 6.0.18.10 Each application was backed by a SQLite
database containing product information. The applica-
tion servers were hosted on a server running Ubuntu
Server 8.10 with dual Intel Core 2 Duo CPUs, 2 GB
of RAM, and 1000BaseT Ethernet network interfaces.
The httperf [20] web server benchmarking tool was
deployed on a similar server to generate load for each
application.

Figure 14 presents averaged latency and throughput
plots for 8 benchmarking runs for each framework tested.
In each run, the number of concurrent clients issuing re-
quests was varied, and the average response latency in
milliseconds and the aggregate throughput in kilobytes
was recorded. In this experiment, our framework per-
formed competitively compared to Pylons and Tomcat,
performing somewhat better than Pylons in both latency
and throughput scaling, and vice versa for Tomcat. In
particular, the latency plot shows that our framework
scales significantly better with the number of clients than
the Pylons framework. Unfortunately, our framework ex-
hibited approximately a factor of two increase in latency
compared to the Tomcat application. Cost-center profil-
ing revealed that this is mainly due to the overhead of
list-based String operations in Haskell,11 though this
could be ameliorated by rewriting the framework to pre-
fer the lower-overhead ByteString type. Therefore, it
is not unreasonable to assume that web applications de-
veloped using our framework would exhibit acceptable
performance behavior in the real world.

5.4 Discussion
The security properties enforced by this framework are
effective at guaranteeing that applications are not vulner-
able to server-side XSS and SQL injection. There are
limitations to this protection that need to be highlighted,
however, and we discuss these here.

10Pylons is a Python-based framework that is similar in design to
Ruby on Rails, and is used to implement a variety of well-known web
applications (e.g., Reddit (http://reddit.com/)).

11Strings are represented as lists of characters in Haskell – that is,
type String = [Char].

First, web applications can, in some cases, be vulner-
able to client-side XSS injections, or DOM-based XSS,
where the web application can potentially not receive any
portion of such an attack [28]. This can occur when a
client-side script dynamically updates the DOM after the
document has been rendered by the browser with data
controlled by an attacker. In general, XSS attacks stem-
ming from the misbehavior of client-side code within the
browser are not addressed by the framework in its current
form.

Recently, a new type of XSS attack against the
content-sniffing algorithms employed by web browsers
has been demonstrated [5]. In this attack, malicious non-
HTML files that nevertheless contain HTML fragments
and client-side code are uploaded to a vulnerable web
application. When such a file is downloaded by a vic-
tim, the content-sniffing algorithm employed by the vic-
tim’s browser can potentially interpret the file as HTML,
executing the client-side code contained therein, result-
ing in an XSS attack. Consequently, our framework im-
plements the set of file upload filters recommended by
the authors of [5] to prevent content-sniffing XSS. Since,
however, the documents are supplied by users and not
generated by the framework itself, the framework cannot
guarantee that it is immune to such attacks.

Finally, CSS stylesheets and JSON documents can
also serve as vectors for XSS attacks. In principle,
these documents could be specified within the frame-
work using the same techniques applied to (X)HTML
documents, along with context-specific sanitization func-
tions. In the case of CSS stylesheets that are uploaded to
a web application by users, additional sanitization func-
tions could be applied to strip client-side code fragments.
However, the framework in its current form does not ad-
dress these vectors.

6 Related work

An extensive literature exists on the detection of web ap-
plication vulnerabilities. One of the first tools to analyze
server-side code for vulnerabilities was WebSSARI [21],
which performs a taint propagation analysis of PHP in
order to identify potential vulnerabilities, for which run-
time guards are inserted. Nguyen-Tuong et al. proposed
a precise taint-based approach to automatically harden-
ing PHP scripts against security vulnerabilities in [39].
Livshits and Lam [33] applied a points-to static analy-
sis to Java-based web applications to identify a number
of security vulnerabilities in both open-source programs
and the Java library itself. Jovanovic et al. presented
Pixy, a tool that performs flow-sensitive, interprocedural,
and context-sensitive data flow analysis to detect security
vulnerabilities in PHP-based web applications [25]; Pixy
was later enhanced with precise alias analysis to improve

USENIX Association 	 18th USENIX Security Symposium	 293

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 8 12 16 20 24 28 32

La
te

nc
y

(m
s)

Clients

Haskell framework
Pylons framework

Tomcat framework

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (K

B
/s

)

Clients

Haskell framework
Pylons framework

Tomcat framework

(b)

Figure 14: Latency and throughput performance for the Haskell, Pylons, and Tomcat-based web applications.

the accuracy of the technique [26]. A precise, sound, and
fully automated technique for detecting modifications to
the structure of SQL queries was described by Wasser-
mann and Su in [49]. Balzarotti et al. observed that more
complex vulnerabilities in web applications can mani-
fest themselves as interactions between distinct modules
comprising the application, and proposed MiMoSA to
perform multi-module vulnerability analysis of PHP ap-
plications [2]. In [7], Chong et al. presented SIF, a frame-
work for developing Java servlets that enforce legal in-
formation flows specified by a policy language. A syn-
tactic technique of string masking is proposed by Johns
et al. in [23] in order to prevent code injection attacks in
web applications. Lam et al. described another informa-
tion flow enforcement system using PQL, and addition-
ally propose the use of a model checker to generate test
cases for identified vulnerabilities [30]. In [1], Balzarotti
et al. applied a combination of static and dynamic anal-
ysis to check the correctness of web application sanitiza-
tion functions. Wassermann and Su applied a combina-
tion of taint-based information flow and string analysis to
enforce effective sanitization policies against cross-site
scripting in [50]. Nadji et al. propose a similar notion
of document structure integrity in [38], using a combi-
nation of web application code randomization and run-
time tracking of untrusted data on both the server and the
browser. Finally, Google’s ctemplate [17], a templating
language for C++, and Django [11], a Python-based web
application framework, include an Auto-Escape feature
that allows for context-specific sanitization of web doc-
uments, while Microsoft’s LINQ [35] is an approach for
performing language-integrated data set queries in the
.NET framework.

The approach described in this work differs from the
above server-side techniques in several respects. First, an
advantage of several of the above techniques is that they
provide greater generality in their enforcement of secu-

rity policies; in particular, SIF allows for the enforce-
ment of complex information flows and uses some of the
techniques presented in this work. Our framework, on
the other hand, requires neither information flow policy
specifications or additional static or dynamic analyses to
protect against cross-site scripting or SQL injection vul-
nerabilities. String masking embodies a similar notion of
a separation of code and data for web applications, but is
implemented as a preprocessor for existing web applica-
tions and allows the possibility for both false positives
and false negatives. Django and ctemplate are similar in
spirit to this work in that they apply a similar context-
sensitive sanitization of documents generated from tem-
plate specifications. In both cases, however, this saniti-
zation is optional and relies upon a separate document
parser, whereas documents in our framework are spec-
ified in the language itself. ctemplate in particular has
an advantage in that it supports limited sanitization of
CSS and JSON documents, though this analysis is not
currently based upon a robust parser. Finally, LINQ pro-
vides a language-based mechanism for dynamically con-
structing parameterized queries on arbitrary data sets, in-
cluding SQL databases, and is therefore similar to the
system proposed in this framework. Use of this interface
is, however, optional and can be bypassed.

In addition to server-side vulnerability analyses, much
work has focused on client-side protection against ma-
licious code injection. The first system to implement
client-side protection was due to Kirda et al. In [27],
the authors presented Noxes, a client-side proxy that
uses manual and automatically-generated rules to pre-
vent cross-side scripting attacks. Vogt et al. proposed a
combination of dynamic data tainting and static analysis
to prevent cross-site scripting attacks from successfully
executing within a web browser [47]. BrowserShield,
due to Reis et al., is a system to download signatures for
known cross-site scripting exploits; JavaScript wrappers

294	 18th USENIX Security Symposium	 USENIX Association

that implement signature detection for these attacks are
then installed into the browser [43]. Livshits and Erlings-
son described an approach to cross-site scripting and
RSS attacks by modifying JavaScript frameworks such
as Dojo, Prototype, and AJAX.NET in [32]. BEEP, pre-
sented by Jim et al. in [22], implements a coarse-grained
approach to client-side policy enforcement by specify-
ing both black- and white-lists of scripts. Erlingsson
et al. proposed Mutation-Event Transforms, a technique
for enforcing finer-grained client-side security policies
by intercepting JavaScript calls that would result in po-
tentially malicious modifications to the DOM [13].

In contrast to the client-side approaches discussed
here, our framework does not require a separate analy-
sis to determine whether cross-site scripting vulnerabil-
ities exist in a web application. In the case of web ap-
plications that include client-side scripts from untrusted
third parties (e.g., mashups), a client-side system such as
BEEP or Mutation-Event Transforms can be considered
a complementary layer of protection to that provided by
our framework.

Several works have studied how the safety of func-
tional languages can be improved. Xu proposed the
use of pre/post-annotations to implement extended static
checking for Haskell in [51]; this work has been ex-
tended in the form of contracts in [52]. Li and Zdancewic
demonstrated how general information flow policies
could be integrated as an embedded security sublan-
guage in Haskell in [31]. A technique for performing
data flow analysis of lazy higher-order functional pro-
grams using regular sets of trees to approximate program
state is proposed by Jones and Andersen in [24]. Mad-
havapeddy et al. presented a domain-specific language
for securely specifying various Internet packet proto-
cols in [34]. In [16], Finifter et al. describe Joe-E, a
capability-based subset of Java that allows programmers
to write pure Java functions that, due to their referential
transparency, admit strong analyses of desirable security
properties.

The work presented in this paper differs from those
above in that our framework is designed to mitigate spe-
cific vulnerabilities that are widely prevalent on the Inter-
net. The generality of our approach could be enhanced,
however, by integrating general information flow poli-
cies, at the cost of an additional burden on developers.

Several application servers for Haskell have already
been developed, most notably HAppS [19]. To the best
of our knowledge, however, none of these frameworks
implement specific protection against cross-site script-
ing or SQL injection vulnerabilities. Finally, Elsman and
Larsen studied how XHTML documents can be typed
in ML [12]. Their focus, however, is on generating
standards-conforming documents; they do not directly
address security concerns.

7 Conclusions

In this paper, we have presented a framework for devel-
oping web applications that, by construction, are invul-
nerable to server-side cross-site scripting and SQL in-
jection attacks. The framework accomplishes this by
strongly typing both documents and database queries that
are generated by a web application, thereby automati-
cally enforcing a separation between structure and con-
tent that preserves the integrity of these objects.

We conducted an evaluation of the framework, and
demonstrated that all dynamic data that is contained in
a document generated by a web application must be
subjected to sanitization. Similarly, we show that all
SQL queries must be executed in a safe manner. We
also demonstrate the correctness of the sanitization func-
tions themselves. Finally, we give performance numbers
for representative web applications developed using this
framework that compare favorably to those developed in
other popular environments.

In future work, we plan to investigate how the frame-
work can be modified to allow developers to specify
“safe” transformations of document structure to occur in
a controlled manner. Also, we plan to investigate static
techniques for verifying the correctness of the sanitiza-
tion functions in terms of their agreement with invari-
ants extracted from web browser document parsers and
database query parsers, for instance using a combina-
tion of static and dynamic analyses [3, 5]. Finally, fu-
ture work will consider how language-based techniques
for ensuring document integrity could be applied on the
client.

Acknowledgments

The authors wish to thank the anonymous reviewers for
their insightful comments. We would also like to thank
Adam Barth for providing feedback on an earlier version
of this paper. This work has been supported by the Na-
tional Science Foundation, under grants CCR-0238492,
CCR-0524853, and CCR-0716095.

References

[1] D. Balzarotti, M. Cova, V. V. Felmetsger, N. Jo-
vanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing Static and Dynamic Analysis to Val-
idate Sanitization in Web Applications. In Pro-
ceedings of the 2008 IEEE Symposium on Security
and Privacy (S&P 2008), Oakland, CA, USA, May
2008.

[2] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vi-
gna. Multi-module Vulnerability Analysis of Web-

USENIX Association 	 18th USENIX Security Symposium	 295

based Applications. In Proceedings of the 2007
ACM Conference on Computer and Communica-
tions Security (CCS 2007), Alexandria, VA, USA,
October 2007.

[3] D. Balzarotti, W. Robertson, C. Kruegel, and G. Vi-
gna. Improving Signature Testing Through Dy-
namic Data Flow Analysis. In Proceedings of
the Annual Computer Security Applications Con-
ference (ACSAC 2007), Miami Beach, FL, USA,
December 2007.

[4] B. Bangert and J. Gardner. PylonsHQ. http://
pylonshq.com/, February 2009.

[5] A. Barth, J. Caballero, and D. Song. Secure Con-
tent Sniffing for Web Browsers, or How to Stop Pa-
pers from Reviewing Themselves. In Proceedings
of the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2009. IEEE Computer
Society.

[6] Breach Security, Inc. Breach WebDe-
fend. http://www.breach.com/products/
webdefend.html, January 2009.

[7] S. Chong, K. Vikram, and A. C. Myers. SIF: En-
forcing Confidentiality and Integrity in Web Ap-
plications. In Proceedings of the 2007 USENIX
Security Symposium, Boston, MA, USA, 2007.
USENIX Association.

[8] Citrix Systems, Inc. Citrix Application Fire-
wall. http://www.citrix.com/English/PS2/
products/product.asp?contentID=25636,
January 2009.

[9] K. Claessen and J. Hughes. Testing Monadic
Code with QuickCheck. ACM SIGPLAN Notices,
37(12):47–59, 2002.

[10] M. de Kunder. The Size of the World Wide Web.
http://www.worldwidewebsize.com/, May 2008.

[11] Django Software Foundation. Django
Web Application Framework. http:
//www.djangoproject.com/, June 2009.

[12] M. Elsman and K. F. Larsen. Typing XHTML
Web Applications in ML. In Proceedings of the 6th

International Symposium on Practical Aspects of
Declarative Languages, pages 224–238. Springer-
Verlag, 2004.

[13] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end
Web Application Security. In Proceedings of the
11th USENIX Workshop on Hot Topics in Operat-
ing Systems, San Diego, CA, USA, 2007. USENIX
Association.

[14] F5 Networks, Inc. BIG-IP Application Se-
curity Manager. http://www.f5.com/
products/big-ip/product-modules/
application-security-manager.html,
January 2009.

[15] Ferruh Mavituna. SQL Injection Cheat
Sheet. http://ferruh.mavituna.com/
sql-injection-cheatsheet-oku/, June 2009.

[16] M. Finifter, A. Mettler, N. Sastry, and D. Wagner.
Verifiable Functional Purity in Java. In Proceed-
ings of the 15th ACM Conference on Computer and
Communications Security, pages 161–174, Alexan-
dria, VA, USA, October 2008. ACM.

[17] Google, Inc. ctemplate. http://code.google.
com/p/google-ctemplate/, June 2009.

[18] D. H. Hansson. Ruby on Rails. http://
rubyonrails.org/, February 2009.

[19] HAppS LLC. HAppS – The Haskell Application
Server. http://happs.org/, February 2009.

[20] Hewlett Packard Development Company, L.P.
httperf. http://www.hpl.hp.com/research/
linux/httperf/, February 2009.

[21] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee,
and S.-Y. Kuo. Securing Web Application Code by
Static Analysis and Runtime Protection. In Pro-
ceedings of the 13th International Conference on
the World Wide Web, pages 40–52, New York, NY,
USA, 2004. ACM.

[22] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced Emded-
ded Policies. In Proceedings of the 16th Interna-
tional Conference on the World Wide Web, Banff,
Alberta, Canada, May 2007. ACM.

[23] M. Johns and C. Beyerlein. SMask: Preventing In-
jection Attacks in Web Applications by Approxi-
mating Automatic Data/Code Separation. In Pro-
ceedings of ACM Symposium on Applied Comput-
ing, Seoul, Korea, March 2007. ACM.

[24] N. D. Jones and N. Andersen. Flow analysis of
lazy higher-order functional programs. Theoretical
Computer Science, 375(1–3):120–136, 2007.

[25] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
Static Analysis Tool for Detecting Web Applica-
tion Vulnerabilities. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P 2006),
pages 258–263, Oakland, CA, USA, May 2006.
IEEE Computer Society.

296	 18th USENIX Security Symposium	 USENIX Association

[26] N. Jovanovic, C. Kruegel, and E. Kirda. Precise
Alias Analysis for Static Detection of Web Appli-
cation Vulnerabilities. In Proceedings of the 2006
Workshop on Programming Languages and Anal-
ysis for Security, pages 27–36, Ottawa, Ontario,
Canada, 2006. ACM.

[27] E. Kirda, C. Kruegel, G. Vigna, and N. Jo-
vanovic. Noxes: A Client-side Solution for Mitigat-
ing Cross-Site Scripting Attacks. In Proceedings of
the 2006 ACM Symposium on Applied Computing
(SAC 2006), Dijon, France, April 2006. ACM.

[28] A. Klein. DOM Based Cross Site Scripting or
XSS of the Third Kind. http://www.webappsec.
org/projects/articles/071105.shtml, July
2005.

[29] C. Kruegel, W. Robertson, and G. Vigna. A Multi-
model Approach to the Detection of Web-based At-
tacks. Journal of Computer Networks, 48(5):717–
738, July 2005.

[30] M. S. Lam, M. Martin, B. Livshits, and J. Wha-
ley. Securing Web Applications with Static and Dy-
namic Information Flow Tracking. In Proceedings
of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipu-
lation, pages 3–12, San Francisco, CA, USA, 2008.
ACM.

[31] P. Li and S. Zdancewic. Encoding Information
Flow in Haskell. In Proceedings of the 19th IEEE
Computer Security Foundations Workshop. IEEE
Computer Society, 2006.

[32] B. Livshits and U. Erlingsson. Using Web Appli-
cation Construction Frameworks to Protect Against
Code Injection Attacks. In Proceedings of the 2007
Workshop on Programming Languages and Anal-
ysis for Security, pages 95–104, San Diego, CA,
USA, 2007. ACM.

[33] B. Livshits and M. Lam. Finding Security Errors in
Java Programs with Static Analysis. In Proceedings
of the 14th USENIX Security Symposium (USENIX
Security 2005), pages 271–286. USENIX Associa-
tion, August 2005.

[34] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and
R. Sohan. Melange: Creating a “Functional In-
ternet”. In Proceedings of the 2nd ACM European
Conference on Computer Systems, pages 101–114,
Lisbon, Portugal, April 2007. ACM.

[35] Microsoft, Inc. LINQ. http://msdn.
microsoft.com/en-us/netframework/
aa904594.aspx, June 2009.

[36] Miniwatts Marketing Group.
World Internet Usage Statistics.
http://www.internetworldstats.com/stats.htm,
May 2008.

[37] E. Moggi. Notions of Computation and Monads.
Information and Computation, 93(1):55–92, 1991.

[38] Y. Nadji, P. Saxena, and D. Song. Document Struc-
ture Integrity: A Robust Basis for Cross-site Script-
ing Defense. In Proceedings of the Network and
Distributed System Security Symposium, February
2009.

[39] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shi-
fley, and D. Evans. Automatically Hardening Web
Applications Using Precise Tainting. In Proceed-
ings of the 2005 International Information Security
Conference, pages 372–382, 2005.

[40] Ofer Shezaf and Jeremiah Grossman and Robert
Auger. Web Hacking Incidents Database. http:
//www.xiom.com/whid-about, January 2009.

[41] Open Security Foundation. DLDOS: Data Loss
Database – Open Source. http://datalossdb.
org/, January 2009.

[42] Open Web Application Security Project (OWASP).
OWASP Top 10 2007. http://www.owasp.org/
index.php/Top 10 2007, February 2009.

[43] C. Reis, J. Dunagan, H. J. Wang, and O. Dubrovsky.
BrowserShield: Vulnerability-Driven Filtering of
Dynamic HTML. ACM Transactions on the Web,
1(3):11, 2007.

[44] Robert Hansen (RSnake). XSS (Cross Site Script-
ing) Cheat Sheet. http://ha.ckers.org/xss.
html, June 2009.

[45] W. Robertson, G. Vigna, C. Kruegel, and R. A.
Kemmerer. Using Generalization and Characteri-
zation Techniques in the Anomaly-based Detection
of Web Attacks. In Proceedings of the Network
and Distributed System Security Symposium (NDSS
2006), San Diego, CA, USA, February 2006.

[46] Symantec, Inc. Symantec Report on
the Underground Economy – July 07 –
June 08. http://eval.symantec.com/
mktginfo/enterprise/white papers/
b-whitepaper underground economy
report 11-2008-14525717.en-us.pdf,
November 2008.

[47] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross Site Scripting

USENIX Association 	 18th USENIX Security Symposium	 297

Prevention with Dynamic Data Tainting and Static
Analysis. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS 2007),
February 2007.

[48] P. Wadler. The Essence of Functional Program-
ming. In Proceedings of the 19th Annual Sym-
posium on Principles of Programming Languages,
pages 1–14, Albuquerque, NM, USA, 1992. ACM.

[49] G. Wassermann and Z. Su. Sound and Precise Anal-
ysis of Web Applications for Injection Vulnerabil-
ities. ACM SIGPLAN Notices, 42(6):32–41, April
2007.

[50] G. Wassermann and Z. Su. Static Detection of
Cross-Site Scripting Vulnerabilities. In Proceed-
ings of the 2008 International Conference on Soft-
ware Engineering (ICSE 2008), pages 171–180,
Leipzig, Germany, 2008. ACM.

[51] D. N. Xu. Extended Static Checking for Haskell.
In Proceedings of the 2006 ACM SIGPLAN Work-
shop on Haskell, pages 48–59, Portland, OR, USA,
2006. ACM.

[52] D. N. Xu, S. P. Jones, and K. Claessen. Static Con-
tract Checking for Haskell. In Proceedings of the
36th Annual ACM Symposium on the Principles of
Programming Languages, pages 41–52, Savannah,
GA, USA, 2009. ACM.

