
USENIX Association 18th USENIX Security Symposium 101

Detecting Spammers with SNARE:

Spatio-temporal Network-level Automatic Reputation Engine

Shuang Hao, Nadeem Ahmed Syed, Nick Feamster, Alexander G. Gray, Sven Krasser ∗

College of Computing, Georgia Tech ∗McAfee, Inc.

{shao, nadeem, feamster, agray}@cc.gatech.edu, sven_krasser@mcafee.com

Abstract

Users and network administrators need ways to filter

email messages based primarily on the reputation of

the sender. Unfortunately, conventional mechanisms for

sender reputation—notably, IP blacklists—are cumber-

some to maintain and evadable. This paper investigates

ways to infer the reputation of an email sender based

solely on network-level features, without looking at the

contents of a message. First, we study first-order prop-

erties of network-level features that may help distinguish

spammers from legitimate senders. We examine features

that can be ascertained without ever looking at a packet’s

contents, such as the distance in IP space to other email

senders or the geographic distance between sender and

receiver. We derive features that are lightweight, since

they do not require seeing a large amount of email from

a single IP address and can be gleaned without looking

at an email’s contents—many such features are appar-

ent from even a single packet. Second, we incorporate

these features into a classification algorithm and evalu-

ate the classifier’s ability to automatically classify email

senders as spammers or legitimate senders. We build

an automated reputation engine, SNARE, based on these

features using labeled data from a deployed commercial

spam-filtering system. We demonstrate that SNARE can

achieve comparable accuracy to existing static IP black-

lists: about a 70% detection rate for less than a 0.3% false

positive rate. Third, we show how SNARE can be inte-

grated into existing blacklists, essentially as a first-pass

filter.

1 Introduction

Spam filtering systems use two mechanisms to filter

spam: content filters, which classify messages based on

the contents of a message; and sender reputation, which

maintains information about the IP address of a sender

as an input to filtering. Content filters (e.g., [22, 23])

can block certain types of unwanted email messages, but

they can be brittle and evadable, and they require ana-

lyzing the contents of email messages, which can be ex-

pensive. Hence, spam filters also rely on sender repu-

tation to filter messages; the idea is that a mail server

may be able to reject a message purely based on the rep-

utation of the sender, rather than the message contents.

DNS-based blacklists (DNSBLs) such as Spamhaus [7]

maintain lists of IP addresses that are known to send

spam. Unfortunately, these blacklists can be both in-

complete and slow-to-respond to new spammers [32].

This unresponsiveness will only become more serious

as both botnets and BGP route hijacking make it easier

for spammers to dynamically obtain new, unlisted IP ad-

dresses [33, 34]. Indeed, network administrators are still

searching for spam-filtering mechanisms that are both

lightweight (i.e., they do not require detailed message or

content analysis) and automated (i.e., they do not require

manual update, inspection, or verification).

Towards this goal, this paper presents SNARE (Spatio-

temporal Network-level Automatic Reputation Engine),

a sender reputation engine that can accurately and au-

tomatically classify email senders based on lightweight,

network-level features that can be determined early in

a sender’s history—sometimes even upon seeing only a

single packet. SNARE relies on the intuition that about

95% of all email is spam, and, of this, 75 − 95% can be

attributed to botnets, which often exhibit unusual send-

ing patterns that differ from those of legitimate email

senders. SNARE classifies senders based on how they are

sending messages (i.e., traffic patterns), rather than who

the senders are (i.e., their IP addresses). In other words,

SNARE rests on the assumption that there are lightweight

network-level features that can differentiate spammers

from legitimate senders; this paper finds such features

and uses them to build a system for automatically deter-

mining an email sender’s reputation.

SNARE bears some similarity to other approaches that

classify senders based on network-level behavior [12,21,

102 18th USENIX Security Symposium USENIX Association

24, 27, 34], but these approaches rely on inspecting the

message contents, gathering information across a large

number of recipients, or both. In contrast, SNARE is

based on lightweight network-level features, which could

allow it to scale better and also to operate on higher traf-

fic rates. In addition, SNARE ismore accurate than previ-

ous reputation systems that use network-level behavioral

features to classify senders: for example, SNARE’s false

positive rate is an order of magnitude less than that in

our previous work [34] for a similar detection rate. It is

the first reputation system that is both as accurate as ex-

isting static IP blacklists and automated to keep up with

changing sender behavior.

Despite the advantages of automatically inferring

sender reputation based on “network-level” features, a

major hurdle remains: We must identify which features

effectively and efficiently distinguish spammers from le-

gitimate senders. Given the massive space of possible

features, finding a collection of features that classifies

senders with both low false positive and low false neg-

ative rates is challenging. This paper identifies thirteen

such network-level features that require varying levels of

information about senders’ history.

Different features impose different levels of overhead.

Thus, we begin by evaluating features that can be com-

puted purely locally at the receiver, with no information

from other receivers, no previous sending history, and

no inspection of the message itself. We found several

features that fall into this category are surprisingly ef-

fective for classifying senders, including: The AS of the

sender, the geographic distance between the IP address of

the sender and that of the receiver, the density of email

senders in the surrounding IP address space, and the time

of day the message was sent. We also looked at var-

ious aggregate statistics across messages and receivers

(e.g., the mean and standard deviations of messages sent

from a single IP address) and found that, while these

features require slightly more computation and message

overhead, they do help distinguish spammers from legit-

imate senders as well. After identifying these features,

we analyze the relative importance of these features and

incorporate them into an automated reputation engine,

based on the RuleFit [19] ensemble learning algorithm.

In addition to presenting the first automated classifier

based on network-level features, this paper presents sev-

eral additional contributions. First, we presented a de-

tailed study of various network-level characteristics of

both spammers and legitimate senders, a detailed study

of how well each feature distinguishes spammers from

legitimate senders, and explanations of why these fea-

tures are likely to exhibit differences between spammers

and legitimate senders. Second, we use state-of-the-art

ensemble learning techniques to build a classifier using

these features. Our results show that SNARE’s perfor-

mance is at least as good as static DNS-based blacklists,

achieving a 70% detection rate for about a 0.2% false

positive rate. Using features extracted from a single mes-

sage and aggregates of these features provides slight im-

provements, and adding an AS “whitelist” of the ASes

that host the most commonly misclassified senders re-

duces the false positive rate to 0.14%. This accuracy

is roughly equivalent to that of existing static IP black-

lists like SpamHaus [7]; the advantage, however, is that

SNARE is automated, and it characterizes a sender based

on its sending behavior, rather than its IP address, which

may change due to dynamic addressing, newly compro-

mised hosts, or route hijacks. Although SNARE’s per-

formance is still not perfect, we believe that the benefits

are clear: Unlike other email sender reputation systems,

SNARE is both automated and lightweight enough to op-

erate solely on network-level information. Third, we pro-

vide a deployment scenario for SNARE. Even if others do

not deploy SNARE’s algorithms exactly as we have de-

scribed, we believe that the collection of network-level

features themselves may provide useful inputs to other

commercial and open-source spam filtering appliances.

The rest of this paper is organized as follows. Sec-

tion 2 presents background on existing sender reputation

systems and a possible deployment scenario for SNARE

and introduces the ensemble learning algorithm. Sec-

tion 3 describes the network-level behavioral properties

of email senders and measures first-order statistics re-

lated to these features concerning both spammers and

legitimate senders. Section 4 evaluates SNARE’s perfor-

mance using different feature subsets, ranging from those

that can be determined from a single packet to those that

require some amount of history. We investigate the po-

tential to incorporate the classifier into a spam-filtering

system in Section 5. Section 6 discusses evasion and

other limitations, Section 7 describes related work, and

Section 8 concludes.

2 Background

In this section, we provide background on existing sender

reputation mechanisms, present motivation for improved

sender reputation mechanisms (we survey other related

work in Section 7), and describe a classification algo-

rithm called RuleFit to build the reputation engine. We

also describe McAfee’s TrustedSource system, which is

both the source of the data used for our analysis and a

possible deployment scenario for SNARE.

2.1 Email Sender Reputation Systems

Today’s spam filters look up IP addresses in DNS-

based blacklists (DNSBLs) to determine whether an

IP address is a known source of spam at the time

USENIX Association 18th USENIX Security Symposium 103

of lookup. One commonly used public blacklist is

Spamhaus [7]; other blacklist operators include Spam-

Cop [6] and SORBS [5]. Current blacklists have three

main shortcomings. First, they only provide reputation

at the granularity of IP addresses. Unfortunately, as our

earlier work observed [34], IP addresses of senders are

dynamic: roughly 10% of spam senders on any given day

have not been previously observed. This study also ob-

served that many spamming IP addresses will go inactive

for several weeks, presumably until they are removed

from IP blacklists. This dynamism makes maintaining

responsive IP blacklists a manual, tedious, and inaccu-

rate process; they are also often coarse-grained, black-

listing entire prefixes—sometimes too aggressively—

rather than individual senders. Second, IP blacklists are

typically incomplete: A previous study has noted that

as much as 20% of spam received at spam traps is not

listed in any blacklists [33]. Finally, they are sometimes

inaccurate: Anecdotal evidence is rife with stories of

IP addresses of legitimate mail servers being incorrectly

blacklisted (e.g., because they were reflecting spam to

mailing lists). To account for these shortcomings, com-

mercial reputation systems typically incorporate addi-

tional data such as SMTP metadata or message finger-

prints to mitigate these shortcomings [11]. Our previous

work introduced “behavioral blacklisting” and developed

a spam classifier based on a single behavioral feature: the

number of messages that a particular IP address sends

to each recipient domain [34]. This paper builds on the

main theme of behavioral blacklisting by finding better

features that can classify senders earlier and are more re-

sistant to evasion.

2.2 Data and Deployment Scenario

This section describes McAfee’s TrustedSource email

sender reputation system. We describe how we use the

data from this system to study the network-level features

of email senders and to evaluate SNARE’s classification.

We also describe how SNARE’s features and classifica-

tion algorithms could be incorporated into a real-time

sender reputation system such as TrustedSource.

Data source TrustedSource is a commercial reputation

system that allows lookups on various Internet identifiers

such as IP addresses, URLs, domains, or message finger-

prints. It receives query feedback from various differ-

ent device types such as mail gateways, Web gateways,

and firewalls. We evaluated SNARE using the query logs

from McAfee’s TrustedSource system over a fourteen-

day period from October 22–November 4, 2007. Each

received email generates a lookup to the TrustedSource

database, so each entry in the query log represents a

single email that was sent from some sender to one of

McAfee’s TrustedSource appliances. Due to the volume

Field Description

timestamp UNIX timestamp

ts_server_name Name of server that handles the

query

score Score for the message based on a

combination of anti-spam filters

source_ip Source IP in the packet (DNS server

relaying the query to us)

query_ip The IP being queried

body_length Length of message body

count_taddr Number of To-addresses

Figure 1: Description of data used from the McAfee

dataset.

Figure 2: Distribution of senders’ IP addresses in Hilbert

space for the one-week period (October 22–28, 2007) of

our feature study. (The grey blocks are unused IP space.)

of the full set of logs, we focused on logs from a sin-

gle TrustedSource server, which reflects about 25 million

email messages as received from over 1.3 million IP ad-

dresses each day. These messages were reported from

approximately 2,500 distinct TrustedSource appliances

geographically distributed around the world. While there

is not a precise one-to-one mapping between domains

and appliances, and we do not have a precise count for

the number of unique domains, the number of domains

is roughly of the same order of magnitude.

The logs contain many fields with metadata for each

email message; Figure 1 shows a subset of the fields that

we ultimately use to develop and evaluate SNARE’s clas-

sification algorithms. The timestamp field reflects the

time at which the message was received at a Trusted-

Source appliance in some domain; the source_ip field

reflects the source IP of the machine that issued the DNS

query (i.e., the recipient of the email). The query_ip

104 18th USENIX Security Symposium USENIX Association

field is the IP address being queried (i.e., the IP address

of the email sender). The IP addresses of the senders

are shown in the Hilbert space, as in Figure 21, where

each pixel represents a /24 network prefix and the inten-

sity indicates the observed IP density in each block. The

distribution of the senders’ IP addresses shows that the

TrustedSource database collocated a representative set

of email across the Internet. We use many of the other

features in Figure 1 as input to SNARE’s classification

algorithms.

To help us label senders as either spammers or legiti-

mate senders for both our feature analysis (Section 3) and

training (Sections 2.3 and 4), the logs also contain scores

for each email message that indicate how McAfee scored

the email sender based on its current system. The score

field indicates McAfee’s sender reputation score, which

we stratify into five labels: certain ham, likely ham, cer-

tain spam, likely ham, and uncertain. Although these

scores are not perfect ground truth, they do represent

the output of both manual classification and continually

tuned algorithms that also operate on more heavy-weight

features (e.g., packet payloads). Our goal is to develop a

fully automated classifier that is as accurate as Trusted-

Source but (1) classifies senders automatically and (2) re-

lies only on lightweight, evasion-resistant network-level

features.

Deployment and data aggregation scenario Because

it operates only on network-level features of email mes-

sages, SNARE could be deployed either as part of Trust-

edSource or as a standalone DNSBL. Some of the fea-

tures that SNARE uses rely on aggregating sender behav-

ior across a wide variety of senders. To aggregate these

features, a monitor could collect information about the

global behavior of a sender across a wide variety of re-

cipient domains. Aggregating this information is a rea-

sonably lightweight operation: Since the features that

SNARE uses are based on simple features (i.e., the IP

address, plus auxiliary information), they can be piggy-

backed in small control messages or in DNS messages

(as with McAfee’s TrustedSource deployment).

2.3 Supervised Learning: RuleFit

Ensemble learning: RuleFit Learning ensembles have

been among the popular predictive learning methods

over the last decade. Their structural model takes the

form

F (x) = a0 +

M�

m=1

amfm(x) (1)

Where x are input variables derived form the train-

ing data (spatio-temporal features); fm(x) are different

1A larger figure is available at http://www.gtnoise.net/

snare/hilbert-ip.png.

functions called ensemble members (“base learner”) and

M is the size of the ensemble; and F (x) is the predictive

output (labels for “spam” or “ham”), which takes a lin-

ear combination of ensemble members. Given the base

learners, the technique determines the parameters for the

learners by regularized linear regression with a “lasso”

penalty (to penalize large coefficients am).

Friedman and Popescu proposed RuleFit [19] to con-

struct regression and classification problems as linear

combinations of simple rules. Because the number of

base learners in this case can be large, the authors pro-

pose using the rules in a decision tree as the base learn-

ers. Further, to improve the accuracy, the variables them-

selves are also included as basis functions. Moreover,

fast algorithms for minimizing the loss function [18] and

the strategy to control the tree size can greatly reduce the

computational complexity.

Variable importance Another advantage of RuleFit is

the interpretation. Because of its simple form, each rule

is easy to understand. The relative importance of the

respective variables can be assessed after the predictive

model is built. Input variables that frequently appear in

important rules or basic functions are deemed more rel-

evant. The importance of a variable xi is given as im-

portance of the basis functions that correspond directly

to the variable, plus the average importance of all the

other rules that involve xi. The RuleFit paper has more

details [19]. In Section 4.3, we show the relative impor-

tance of these features.

Comparison to other algorithms There exist two other

classic classifier candidates, both of which we tested

on our dataset and both of which yielded poorer per-

formance (i.e., higher false positive and lower detection

rates) than RuleFit. Support Vector Machine (SVM) [15]

has been shown empirically to give good generalization

performance on a wide variety of problems such as hand-

writing recognition, face detection, text categorization,

etc. On the other hand, they do require significant pa-

rameter tuning before the best performance can be ob-

tained. If the training set is large, the classifier itself can

take up a lot of storage space and classifying new data

points will be correspondingly slower since the classifi-

cation cost is O(S) for each test point, where S is the

number of support vectors. The computational complex-

ity of SVM conflicts with SNARE’s goal to make decision

quickly (at line rate). Decision trees [30] are another type

of popular classification method. The resulting classifier

is simple to understand and faster, with the prediction on

a new test point taking O(log(N)), where N is the num-

ber of nodes in the trained tree. Unfortunately, decision

trees compromise accuracy: its high false positive rates

make it less than ideal for our purpose.

USENIX Association 18th USENIX Security Symposium 105

3 Network-level Features

In this section, we explore various spatio-temporal fea-

tures of email senders and discuss why these properties

are relevant and useful for differentiating spammers from

legitimate senders. We categorize the features we ana-

lyze by increasing level of overhead:

• Single-packet features are those that can be deter-

mined with no previous history from the IP address

that SNARE is trying to classify, and given only a

single packet from the IP address in question (Sec-

tion 3.1).

• Single-header and single-message features can be

gleaned from a single SMTP message header or

email message (Section 3.2).

• Aggregate features can be computed with varying

amounts of history (i.e., aggregates of other fea-

tures) (Section 3.3).

Each class of features contains those that may be either

purely local to a single receiver or aggregated across

multiple receivers; the latter implies that the reputation

system must have some mechanism for aggregating fea-

tures in the network. In the following sections, we de-

scribe features in each of these classes, explain the intu-

ition behind selecting that feature, and compare the fea-

ture in terms of spammers vs. legitimate senders.

No single feature needs to be perfectly discriminative

between ham and spam. The analysis below shows that it

is unrealistic to have a single perfect feature to make op-

timal resolution. As we describe in Section 2.3, SNARE’s

classification algorithm uses a combination of these fea-

tures to build the best classifier. We do, however, evalu-

ate SNARE’s classifier using these three different classes

of features to see how well it can perform using these

different classes. Specifically, we evaluate how well

SNARE’s classification works using only single-packet

features to determine how well such a lightweight classi-

fier would perform; we then see whether using additional

features improves classification.

3.1 Single-Packet Features

In this section, we discuss some properties for identify-

ing a spammer that rely only on a single packet from

the sender IP address. In some cases, we also rely on

auxiliary information, such as routing table information,

sending history from neighboring IP addresses, etc., not

solely information in the packet itself. We first discuss

the features that can be extracted from just a single IP

packet: the geodesic distance between the sender and re-

ceiver, sender neighborhood density, probability ratio of

spam to ham at the time-of-day the IP packet arrives, AS

number of the sender and the status of open ports on the

machine that sent the email. The analysis is based on the

McAfee’s data from October 22–28, 2007 inclusive (7

days).2

3.1.1 Sender-receiver geodesic distance:

Spam travels further

Recent studies suggest that social structure between

communicating parties could be used to effectively iso-

late spammers [13, 20]. Based on the findings in these

studies, we hypothesized that legitimate emails tend to

travel shorter geographic distances, whereas the distance

traveled by spam will be closer to random. In other

words, a spam message may be just as likely to travel

a short distance as across the world.

Figure 3(a) shows that our intuition is roughly correct:

the distribution of the distance between the sender and

the target IP addresses for each of the four categories

of messages. The distance used in these plots is the

geodesic distance, that is, the distance along the surface

of the earth. It is computed by first finding the physical

latitude and longitude of the source and target IP using

the MaxMind’s GeoIP database [8] and then computing

the distance between these two points. These distance

calculations assume that the earth is a perfect sphere.

For certain ham, 90% of the messages travel about 2,500

miles or less. On the other hand, for certain spam, only

28% of messages stay within this range. In fact, about

10% of spam travels more than 7,000 miles, which is a

quarter of the earth’s circumference at the equator. These

results indicate that geodesic distance is a promising met-

ric for distinguishing spam from ham, which is also en-

couraging, since it can be computed quickly using just a

single IP packet.

3.1.2 Sender IP neighborhood density: Spammers

are surrounded by other spammers

Most spam messages today are generated by botnets

[33, 37]. For messages originating from the same bot-

net, the infected IP addresses may all lie close to one

another in numerical space, often even within the same

subnet. One way to detect whether an IP address belongs

to a botnet is to look at the past history and determine if

messages have been received from other IPs in the same

subnet as the current sender, where the subnet size can

be determined experimentally. If many different IPs from

the same subnet are sending email, the likelihood that the

whole subnet is infested with bots is high.

The problem with simply using subnet density is that

the frame of reference does not transcend the subnet

2The evaluation in Section 4 uses the data from October 22–

November 4, 2007 (14 days), some of which are not included in the

data trace used for measurement study.

106 18th USENIX Security Symposium USENIX Association

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100

Distance between sender and recipient in miles

C
u

m
u

la
ti
v
e

 %
 o

f
m

e
s
s
a

g
e

s
The cdf (x100) of the distance between the senders and receivers

certain spam
certain ham

likely spam
likely ham

(a) Geodesic distance between the sender and recipient’s geo-

graphic location.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1000

10000

100000

1e+06

Neighbor number

A
v
g

.
n

u
m

e
ri
c
a

l
d

is
ta

n
c
e

 (
lo

g
−

s
c
a

le
)

Average of distances to 20 nearest neighbors

certain spam
certain ham

likely spam
likely ham

(b) Average of numerical distances to the 20 nearest neighbors in

the IP space.

Figure 3: Spatial differences between spammers and legitimate senders.

boundaries. A more flexible measure of email sender

density in an IP’s neighborhood is the distances to its k
nearest neighbors. The distance to the k nearest neigh-

bors can be computed by treating the IPs as set of num-

bers from 0 to 232
− 1 (for IPv4) and finding the nearest

neighbors in this single dimensional space. We can ex-

pect these distances to exhibit different patterns for spam

and ham. If the neighborhood is crowded, these neighbor

distances will be small, indicating the possible presence

of a botnet. In normal circumstances, it would be unusual

to see a large number of IP addresses sending email in a

small IP address space range (one exception might be a

cluster of outbound mail servers, so choosing a proper

threshold is important, and an operator may need to eval-

uate which threshold works best on the specific network

where SNARE is running).

The average distances to the 20 nearest neighbors of

the senders are shown in Figure 3(b). The x-axis in-

dicates how many nearest neighbors we consider in IP

space, and the y-axis shows the average distance in the

sample to that many neighbors. The figure reflects the

fact that a large majority of spam originates from hosts

have high email sender density in a given IP region. The

distance to the kth nearest neighbor for spam tends to be

much shorter on average than it is for legitimate senders,

indicating that spammers generally reside in areas with

higher densities of email senders (in terms of IP address

space).

3.1.3 Time-of-day: Spammers send messages ac-

cording to machine off/on patterns

Another feature that can be extracted using information

from a single packet is the time of day when the mes-

sage was sent. We use the local time of day at the

sender’s physical location, as opposed to Coordinated

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Hour of day

%
 o

f
to

ta
l
m

e
s
s
a

g
e

s
 s

e
n

t
fo

r
e

a
c
h

 c
a

te
g

o
ry

Number of Messages sent at different times of the day

certain spam
certain ham

likely spam
likely ham

Figure 4: Differences in diurnal sending patterns of

spammers and legitimate senders.

Universal Time (UTC). The intuition behind this feature

is that local legitimate email sending patterns may more

closely track “conventional” diurnal patterns, as opposed

to spam sending patterns.

Figure 4 shows the relative percentage of messages of

each type at different times of the day. The legitimate

senders and the spam senders show different diurnal pat-

terns. Two times of day are particularly striking: the rel-

ative amount of ham tends to ramp up quickly at the start

of the workday and peaks in the early morning. Volumes

decrease relatively quickly as well at the end of the work-

day. On the other hand spam increases at a slower, stead-

ier pace, probably as machines are switched on in the

morning. The spam volume stays steady throughout the

day and starts dropping around 9:00 p.m., probably when

machines are switched off again. In summary, legitimate

USENIX Association 18th USENIX Security Symposium 107

senders tend to follow workday cycles, and spammers

tend to follow machine power cycles.

To use the timestamp as a feature, we compute the

probability ratio of spam to ham at the time of the day

when the message is received. First, we compute the

a priori spam probability ps,t during some hour of the

day t, as ps,t = ns,t/ns, where ns,t is the number of

spam messages received in hour t, and ns is the number

of spam messages received over the entire day. We can

compute the a priori ham probability for some hour t,
ph,t in a similar fashion. The probability ratio, rt is then

simply ps,t/ph,t. When a new message is received, the

precomputed spam to ham probability ratio for the corre-

sponding hour of the day at the senders timezone, rt can

be used as a feature; this ratio can be recomputed on a

daily basis.

3.1.4 AS number of sender: A small number of

ASes send a large fraction of spam

As previously mentioned, using IP addresses to iden-

tify spammers has become less effective for several rea-

sons. First, IP addresses of senders are often transient.

The compromised machines could be from dial-up users,

which depend on dynamic IP assignment. If spam comes

form mobile devices (like laptops), the IP addresses will

be changed once the people carry the devices to a dif-

ferent place. In addition, spammers have been known to

adopt stealthy spamming strategies where each bot only

sends several spam to a single target domain, but overall

the botnets can launch a huge amount of spam to many

domains [33]. The low emission-rate and distributed at-

tack requires to share information across domains for de-

tection.

On the other hand, our previous study revealed that a

significant portion of spammers come from a relatively

small collection of ASes [33]. More importantly, the

ASes responsible for spam differ from those that send

legitimate email. As a result, the AS numbers of email

senders could be a promising feature for evaluating the

senders’ reputation. Over the course of the seven days in

our trace, more than 10% of unique spamming IPs (those

sending certain spam) originated from only 3 ASes; the

top 20 ASes host 42% of spamming IPs. Although our

previous work noticed that a small number of ASes orig-

inated a large fraction of spam [33], we believe that

this is the first work to suggest using the AS number of

the email sender as input to an automated classifier for

sender reputation.

90%

922715

7%

78627

2%

18680

<1%

3879
<1%

1265

0 port

1 port

2 ports

3 ports

4 ports

(a) spam

55%

4786

33%

2883

8%

693

4%

315

<1%

52

0 port

1 port

2 ports

3 ports

4 ports

(b) legitimate mail

Figure 5: Distribution of number of open ports on hosts

sending spam and legitimate mail.

3.1.5 Status of service ports: Legitimate mail tends

to originate from machines with open ports

We hypothesized that legitimate mail senders may also

listen on other ports besides the SMTP port, while bots

might not; our intuition is that the bots usually send

spam directly to the victim domain’s mail servers, while

the legitimate email is handed over from other domains’

MSA (Mail Submission Agent). The techniques of

reverse DNS (rDNS) and Forward Confirmed Reverse

DNS (FCrDNS) have been widely used to check whether

the email is from dial-up users or dynamically assigned

addresses, and mail servers will refuse email from such

sources [1].

We propose an additional feature that is orthogonal to

DNSBL or rDNS checking. Outgoing mail servers open

specific ports to accept users’ connections, while the bots

are compromised hosts, where the well-known service

ports are closed (require root privilege to open). When

packets reach the mail server, the server issues an ac-

tive probe sent to the source host to scan the following

four ports that are commonly used for outgoing mail ser-

vice: 25 (SMTP), 465 (SSL SMTP), 80 (HTTP) and 443

(HTTPS), which are associated with outgoing mail ser-

vices. Because neither the current mail servers nor the

McAfee’s data offer email senders’ port information, we

need to probe back sender’s IP to check out what service

ports might be open. The probe process was performed

during both October 2008 and January 2009, well after

the time when the email was received. Despite this de-

lay, the status of open ports still exposes a striking differ-

ence between legitimate senders and spammers. Figure 5

shows the percentages and the numbers of opening ports

for spam and ham categories respectively. The statis-

tics are calculated on the senders’ IPs from the evalua-

tion dataset we used in Section 4 (October 22–28, 2007).

In the spam case, 90% of spamming IP addresses have

none of the standard mail service ports open; in contrast,

108 18th USENIX Security Symposium USENIX Association

2 10 100
0

10

20

30

40

50

60

70

80

90

100

Number of addresses listed on the "To" field (log−scale)

C
u
m

u
la

ti
v
e
 %

 o
f
m

e
s
s
a
g
e
s

The cdf (x100) of the number of addresses

certain spam
certain ham

likely spam
likely ham

Figure 6: Distribution of number of addresses listed

on the “To” field for each category (ignoring single-

recipient messages).

half of the legitimate email comes from machines listen-

ing on at least one mail service port. Although firewalls

might block the probing attempts (which causes the le-

gitimate mail servers show no port listening), the status

of the email-related ports still appears highly correlated

with the distinction of the senders. When providing this

feature as input to a classifier, we represent it as a bitmap

(4 bits), where each bit indicates whether the sender IP is

listening on a particular port.

3.2 Single-Header and Single-Message

Features

In this section, we discuss other features that can be ex-

tracted from a single SMTP header or message: the num-

ber of recipients in the message, and the length of the

message. We distinguish these features from those in

the previous section, since extracting these features ac-

tually requires opening an SMTP connection, accepting

the message, or both. Once a connection is accepted, and

the SMTP header and subsequently, the compete mes-

sage are received. At this point, a spam filter could ex-

tract additional non-content features.

3.2.1 Number of recipients: Spam tends to have

more recipients

The features discussed so far can be extracted from a sin-

gle IP packet from any given specific IP address com-

bined with some historical knowledge of messages from

other IPs. Another feature available without looking into

the content is the number of address in “To” field of the

header. This feature can be extracted after receiving the

0 10 100 1000 10000 100000 1e+06 1e+07 1e+08
0

10

20

30

40

50

60

70

80

90

100

Message size (log−scale)

C
u
m

u
la

ti
v
e
 %

 o
f
m

e
s
s
a
g
e
s

The cdf (x100) of the message size

certain spam
certain ham

likely spam
likely ham

Figure 7: Distribution of message size (in bytes) for the

different categories of messages.

entire SMTP header but before accepting the message

body. However, the majority of messages only have one

address listed. Over 94% of spam and 96% of legitimate

email is sent to a single recipient. Figure 6 shows the

distribution of number of addresses in the “To” field for

each category of messages for all emails that are sent to

more than one recipient. The x-axis is on a log-scale to

focus the plot on the smaller values. Based on this plot

and looking at the actual values, it appears that if there

are very large number of recipients on the “To” field (100

or more), there does not seem to be a significant differ-

ence between the different types of senders for this mea-

sure. The noticeable differences around 2 to 10 addresses

show that, generally, ham has fewer recipients (close to

2) while spam is sent to multiple addresses (close to 10).

(We acknowledge that this feature is probably evadable

and discuss this in more detail in Section 6.1).

3.2.2 Message size: Legitimate mail has variable

message size; spam tends to be small

Once an entire message has been received, the email

body size in bytes is also known. Because a given spam

sender will mostly send the same or similar content in all

the messages, it can be expected that the variance in the

size of messages sent by a spammer will be lower than

among the messages sent by a legitimate sender. To stay

effective, the spam bots also need to keep the message

size small so that they can maximize the number of mes-

sages they can send out. As such the spam messages can

be expected to be biased towards the smaller size. Fig-

ure 7 shows the distribution of messages for each cate-

gory. The spam messages are all clustered in the 1–10KB

range, whereas the distribution of message size for legit-

imate senders is more evenly distributed. Thus, the mes-

USENIX Association 18th USENIX Security Symposium 109

sage body size is another property of messages that may

help differentiate spammers from legitimate senders.

3.3 Aggregate Features

The behavioral properties discussed so far can all be con-

structed using a single message (with auxiliary or neigh-

borhood information). If some history from an IP is

available, some aggregate IP-level features can also be

constructed. Given information about multiple messages

from a single IP address, the overall distribution of the

following measures can be captured by using a combi-

nation of mean and variance of: (1) geodesic distance

between the sender and recipient, (2) number of recipi-

ents in the “To” field of the SMTP header, and (3) mes-

sage body length in bytes. By summarizing behavior

over multiple messages and over time, these aggregate

features may yield a more reliable prediction. On the

flip side, computing these features comes at the cost of

increased latency as we need to collect a number of mes-

sages before we compute these. Sometimes gathering ag-

gregate information even requires cross-domain collabo-

ration. By averaging over multiple messages, these fea-

tures may also smooth the structure of the feature space,

making marginal cases more difficult to classify.

4 Evaluating the Reputation Engine

In this section, we evaluate the performance of SNARE’s

RuleFit classification algorithm using different sets of

features: those just from a single packet, those from a

single header or message, and aggregate features.

4.1 Setup

For this evaluation, we used fourteen days of data from

the traces, from October 22, 2007 to November 4, 2007,

part of which are different from the analysis data in Sec-

tion 3. In other words, the entire data trace is divided into

two parts: the first half is used for measurement study,

and the latter half is used to evaluate SNARE’s perfor-

mance. The purpose of this setup is both to verify the

hypothesis that the feature statistics we discovered would

stick to the same distribution over time and to ensure that

feature extraction would not interfere with our evaluation

of prediction.

Training We first collected the features for each mes-

sage for a subset of the trace. We then randomly sampled

1 million messages from each day on average, where the

volume ratio of spam to ham is the same as the original

data (i.e., 5% ham and 95% spam; for now, we consider

only messages in the “certain ham” and “certain spam”

categories to obtain more accurate ground truth). Only

our evaluation is based on this sampled dataset, not the

feature analysis from Section 3, so the selection of those

features should not have been affected by sampling. We

then intentionally sampled equal amounts of spam as the

ham data (30,000 messages in each categories for each

day) to train the classifier because training requires that

each class have an equal number of samples. In practice,

spam volume is huge, and much spam might be discarded

before entering the SNARE engine, so sampling on spam

for training is reasonable.

Validation We evaluated the classifier using temporal

cross-validation, which is done by splitting the dataset

into subsets along the time sequence, training on the sub-

set of the data in a time window, testing using the next

subset, and moving the time window forward. This pro-

cess is repeated ten times (testing on October 26, 2007

to November 4, 2007), with each subset accounting for

one-day data and the time window set as 3 days (which

indicates that long-period history is not required). For

each round, we compute the detection rate and false pos-

itive rate respectively, where the detection rate (the “true

positive” rate) is the ratio of spotted spam to the whole

spam corpus, and false positive rate reflects the propor-

tion of misclassified ham to all ham instances. The final

evaluation reflects the average computed over all trials.

Summary Due to the high sampling rate that we used

for this experiment, we repeated the above experiment

for several trials to ensure that the results were consistent

across trials. As the results in this section show, detection

rates are approximately 70% and false positive rates are

approximately 0.4%, even when the classifier is based

only on single-packet features. The false positive drops

to less 0.2% with the same 70% detection as the classifier

incorporates additional features. Although this false pos-

itive rate is likely still too high for SNARE to subsume all

other spam filtering techniques, we believe that the per-

formance may be good enough to be used in conjunction

with other methods, perhaps as an early-stage classifier,

or as a substitute for conventional IP reputation systems

(e.g., SpamHaus).

4.2 Accuracy of Reputation Engine

In this section, we evaluate SNARE’s accuracy on three

different groups of features. Surprisingly, we find that,

even relying on only single-packet features, SNARE

can automatically distinguish spammers from legitimate

senders. Adding additional features based on single-

header or single-message, or aggregates of these features

based on 24 hours of history, improves the accuracy fur-

ther.

110 18th USENIX Security Symposium USENIX Association

(a) Single Packet

Classified as

Spam Ham

Spam 70% 30%

Ham 0.44% 99.56%

(b) Single Header/Message

Classified as

Spam Ham

Spam 70% 30%

Ham 0.29% 99.71%

(c) 24+ Hour History

Classified as

Spam Ham

Spam 70% 30%

Ham 0.20% 99.80%

Table 1: SNARE performance using RuleFit on different sets of features using covariant shift. Detection and false posi-

tive rates are shown in bold. (The detection is fixed at 70% for comparison, in accordance with today’s DNSBLs [10]).

0 5 10 15 20 25 30 35
50

55

60

65

70

75

80

85

90

95

100

False positive (%)

T
ru

e
 p

o
s
it
iv

e
 (

%
)

ROC in SNARE

0 1 2 3 4 5
70

80

90

100

24+ hour history

message based

packet based

tp = 70 %
fp = 0.2 %

Figure 8: ROC in SNARE.

4.2.1 Single-Packet Features

When a mail server receives a new connection request,

the server can provide SNARE with the IP addresses of

the sender and the recipient and the time-stamp based

on the TCP SYN packet alone. Recall from Section 3

even if SNARE has never seen this IP address before, it

can still combine this information with recent history of

behavior of other email servers and construct the follow-

ing features: (1) geodesic distance between the sender

and the recipient, (2) average distance to the 20 nearest

neighbors of the sender in the log, (3) probability ratio

of spam to ham at the time the connection is requested

(4) AS number of the sender’s IP, and (5) status of the

email-service ports on the sender.

To evaluate the effectiveness of these features, we

trained RuleFit on these features. The dash-dot curve in

Figure 8 demonstrate the ROC curve of SNARE’s reputa-

tion engine. The fp = 0.2% and tp = 70% statistics refer

to the curve with 24-hour history (solid line), which will

be addresses later. We check the false positive given a

fixed true positive, 70%. The confusion matrix is shown

in Table 1(a). Just over 0.44% of legitimate email gets la-

belled as spam. This result is significant because it relies

on features constructed from a limited amount of data

0 5 10 15 20 25 30 35
50

55

60

65

70

75

80

85

90

95

100

False positive (%)

T
ru

e
 p

o
s
it
iv

e
 (

%
)

ROC in SNARE on new IPs

5 6 7 8 9 10
70

80

90

100

tp = 70 %
fp = 5.2 %

Figure 9: ROC on fresh IPs in SNARE.

and just a single IP packet from the candidate IP. Sender

reputation system will be deployed in conjunction with a

combination of other techniques including content based

filtering. As such, as a first line of defense, this system

will be very effective in eliminating a lot of undesired

senders. In fact, once a sender is identified as a spam-

mer, the mail server does not even need to accept the

connection request, saving network bandwidth and com-

putational resources. The features we describe below im-

prove accuracy further.

4.2.2 Single-Header and Single-Message Features

Single-packet features allow SNARE to rapidly identify

and drop connections from spammers even before look-

ing at the message header. Once a mail server has ac-

cepted the connection and examined the entire message,

SNARE can determine sender reputation with increased

confidence by looking at an additional set of features. As

described in Section 3.2, these features include the num-

ber of recipients and message body length. Table 1(b)

shows the prediction accuracy when we combine the

single-packet features (i.e., those from the previous sec-

tion) with these additional features. As the results from

Section 3 suggest, adding the message body length and

USENIX Association 18th USENIX Security Symposium 111

number of recipients to the set of features further im-

proves SNARE’s detection rate and false positive rate.

It is worth mentioning that the number of recipients

listed on the “To” field is perhaps somewhat evadable: a

sender could list the target email addresses on “Cc” and

“Bcc” fields. Besides, if the spammers always place a

single recipient address in the “To” field, this value will

be the same as the large majority of legitimate messages.

Because we did not have logs of additional fields in the

SMTP header beyond the count of email addresses on

the “To” field, we could not evaluate whether considering

number of recipients listed under “Cc” and “Bcc” head-

ers is worthwhile.

4.2.3 Aggregate Features

If multiple messages from a sender are available, the fol-

lowing features can be computed: the mean and variance

of geodesic distances, message body lengths and number

of recipients. We evaluate a classifier that is trained on

aggregate statistics from the past 24 hours together with

the features from previous sections.

Table 1(c) shows the performance of RuleFit with

these aggregate features, and the ROC curve is plotted

as the solid one in Figure 8. Applying the aggregate fea-

tures decreases the error rate further: 70% of spam is

identified correctly, while the false positive rate is merely

0.20%. The content-based filtering is very efficient to

identify spam, but can not satisfy the requirement of pro-

cessing a huge amount of messages for big mail servers.

The prediction phase of RuleFit is faster, where the query

is traversed from the root of the decision tree to a bottom

label. Given the low false positive rate, SNARE would be

a perfect first line of defense, where suspicious messages

are dropped or re-routed to a farm for further analysis.

4.3 Other Considerations

Detection of “fresh” spammers We examined data

trace, extracted the IP addresses not showing up in the

previous training window, and further investigated the

detection accuracy for those ‘fresh’ spammers with all

SNARE’s features. If fixing the true positive as 70%,

the false positive will increase to 5.2%, as shown in Fig-

ure 9. Compared with Figure 8, the decision on the new

legitimate users becomes worse, but most of the new

spammers can still be identified, which validates that

SNARE is capable of automatically classifying “fresh”

spammers.

Relative importance of individual features We use

the fact that RuleFit can evaluate the relative importance

of the features we have examined in Sections 3. Ta-

ble 2 ranks all spatio-temporal features (with the most

important feature at top). The top three features—AS

rank Feature Description

1 AS number of the sender’s IP

2 average of message length in previous 24 hours

3 average distance to the 20 nearest IP neighbors of the sender in the log

4 standard deviation of message length in previous 24 hours

5 status of email-service ports on the sender

6 geodesic distance between the sender and the recipient

7 number of recipient

8 average geodesic distance in previous 24 hours

9 average recipient number in previous 24 hours

10 probability ratio of spam to ham when getting the message

11 standard deviation of recipient number in previous 24 hours

12 length of message body

13 standard deviation of geodesic distance in previous 24 hours

Table 2: Ranking of feature importance in SNARE.

num, avg length and neig density—play an important role

in separating out spammers from good senders. This

result is quite promising, since most of these features

are lightweight: Better yet, two of these three can be

computed having received only a single packet from the

sender. As we will discuss in Section 6, they are also

relatively resistant to evasion.

Correlation analysis among features We use mutual

information to investigate how tightly the features are

coupled, and to what extent they might contain redun-

dant information. Given two random variables, mutual

information measures how much uncertainty of one vari-

able is reduced after knowing the other (i.e., the infor-

mation they share). For discrete variables, the mutual

information of X and Y is calculated as: I(X, Y) =�
x,y p(x, y) log(p(x,y)

p(x)p(y)). When logarithm base-two is

used, the quantity reflects how many bits can be removed

to encode one variable given the other one. Table 3 shows

the mutual information between pairs of features for one

day of training data (October 23, 2007). We do not show

statistics from other days, but features on those days re-

flect similar quantities for mutual information. The fea-

tures with continuous values (e.g., geodesic distance be-

tween the sender and the recipient) are transformed into

discrete variables by dividing the value range into 4,000

bins (which yields good discrete approximation); we cal-

culate mutual information over the discrete probabilities.

The indexes of the features in the table are the same as the

ranks in Table 2; the packet-based features are marked

with black circles. We also calculate the entropy of ev-

ery feature and show them next to the indices in Table 3.

The interpretation of mutual information is consistent

only within a single column or row, since comparison

of mutual information without any common variable is

meaningless. The table, of course, begs additional anal-

ysis but shows some interesting observations. The top-

ranked feature, AS number, shares high mutual informa-

tion (shown in bold) with several other features, espe-

cially with feature 6, geodesic distance between sender

and recipient. The aggregate features of first-order statis-

112 18th USENIX Security Symposium USENIX Association

� (8.68) 2 (7.29) � (2.42) 4 (6.92) � (1.20) � (10.5) 7 (0.46) 8 (9.29) 9 (2.98) � (4.45) 11 (3.00) 12 (6.20)

2 (7.29) 4.04

� (2.42) 1.64 1.18

4 (6.92) 3.87 4.79 1.23

� (1.20) 0.65 0.40 0.11 0.43

� (10.5) 5.20 3.42 0.88 3.20 0.35

7 (0.46) 0.11 0.08 0.02 0.08 0.004 0.15

8 (9.29) 5.27 5.06 1.20 4.79 0.46 5.16 0.13

9 (2.98) 1.54 1.95 0.53 2.03 0.09 1.17 0.10 2.08

� (4.45) 0.66 0.46 0.07 0.49 0.02 0.87 0.006 0.85 0.13

11 (3.00) 1.87 1.87 0.75 2.04 0.16 1.55 0.09 2.06 1.87 0.20

12 (6.20) 2.34 2.53 0.49 2.12 0.20 2.34 0.07 2.30 0.52 0.31 0.73

13 (8.89) 4.84 4.78 1.15 4.69 0.41 4.77 0.11 6.47 1.98 0.69 2.04 2.13

Table 3: Mutual information among features in SNARE; packet-based features are shown with numbers in dark circles.

(The indices are the feature ranking in Table 2.)

0 1 10 100
70

75

80

85

90

95

100

False positive (%, log−scale)

T
ru

e
 p

o
s
it
iv

e
 (

%
)

ROC comparision in SNARE

24+ hour history

message based

packet based

AS only

Figure 10: ROC comparison with AS-only case.

tics (e.g., feature 2, 4, 8) also have high values with each

other. Because spammers may exhibit one or more of

these features across each message, aggregating the fea-

tures across multiple message over time indicates that,

observing a spammer over time will reveal many of these

features, though not necessarily on any message or sin-

gle group of message. For this reason, aggregate features

are likely to share high mutual information with other

features that are common to spammers.

One possible reason that aggregate features have high

mutual information with each other is that aggregating

the features across multiple messages over time incorpo-

rates history of an IP address that may exhibit many of

these characteristics over time.

Performance based on AS number only Since AS

number is the most influential feature according to Rule-

Fit and shares high mutual information with many other

features, we investigated how well this feature alone can

distinguish spammers from legitimate senders. We feed

the AS feature into the predictive model and plot the

ROC as the lower dashed curve in Figure 10. To make a

close comparison, the “packet-based”, “message-based”,

and “history-based” ROCs (the same as those in Fig-

ure 8) are shown as well, and the false positive is dis-

played on a log scale. The classifier gets false positive

0.76% under a 70% detection rate. Recall from Table 1

the false positive rate with “packet-based” features is al-

most a half, 0.44%, and that with “history-based” fea-

tures will further reduce to 0.20%, which demonstrates

that other features help to improve the performance. We

also note that using the AS number alone as a distin-

guishing feature may cause large amounts of legitimate

email to be misclassified, and could be evaded if an

spammer decides to announce routes with a forged ori-

gin AS (which is an easy attack to mount and a somewhat

common occurrence) [2, 26, 39].

5 A Spam-Filtering System

This section describes how SNARE’s reputation engine

could be integrated into an overall spam-filtering system

that includes a whitelist and an opportunity to continu-

ally retrain the classifier on labeled data (e.g., from spam

traps, user inboxes, etc.). Because SNARE’s reputation

engine still has a non-zero false positive rate, we show

how it might be incorporated with mechanisms that could

help further improve its accuracy, and also prevent dis-

carding legitimate mail even in the case of some false

positives. We propose an overview of the system and

evaluate the benefits of these two functions on overall

system accuracy.

5.1 System Overview

Figure 11 shows the overall system framework. The sys-

tem needs not reside on a single server. Large public

email providers might run their own instance of SNARE,

since they have plenty of email data and processing re-

sources. Smaller mail servers might query a remote

USENIX Association 18th USENIX Security Symposium 113

Figure 11: SNARE framework.

SNARE server. We envision that SNARE might be in-

tegrated into the workflow in the following way:

1. Email arrival. After getting the first packet, the

mail server submits a query to the SNARE server

(only the source and destination IP). Mail servers

can choose to send more information to SNARE af-

ter getting the SMTP header or the whole message.

Sending queries on a single packet or on a message

is a tradeoff between detection accuracy and pro-

cessing time for the email (i.e., sending the request

early will make mail server get the response early).

The statistics of messages in the received queries

will be used to build up the SNARE classifier.

2. Whitelisting. The queries not listed in the whitelist

will be passed to SNARE’s reputation engine (pre-

sented in Section 2.3) before any spam-filtering

checks or content-based analysis. The output is a

score, where, by default, positive value means likely

spam and negative value means likely ham; and the

absolute values represent the confidence of the clas-

sification. Administrators can set a different score

threshold to make tradeoff between the false posi-

tive and the detection rate. We evaluate the benefits

of whitelisting in Section 5.2.1.

3. Greylisting and content-based detection. Once

the reputation engine calculates a score, the email

will be delivered into different queues. More

resource-sensitive and time-consuming detection

methods (e.g., content-based detection) can be ap-

plied at this point. When the mail server has the ca-

pability to receive email, the messages in ham-like

queue have higher priority to be processed, whereas

the messages in spam-like queue will be offered less

resources. This policy allows the server to speed up

processing the messages that SNARE classifies as

spam. The advantage of this hierarchical detecting

scheme is that the legitimate email will be delivered

to users’ inbox sooner. Messages in the spam-like

queue could be shunted to more resource-intensive

spam filters before they are ultimately dropped.3

4. Retraining Whether the IP address sends spam or

legitimate mail in that connection is not known at

the time of the request, but is known after mail is

processed by the spam filter. SNARE depends on ac-

curately labelled training data. The email will even-

tually receive more careful checks (shown as “Re-

train” in Figure 11). The results from those filters

are considered as ground truth and can be used as

feedback to dynamically adjust the SNARE thresh-

old. For example, when the mail server has spare

resource or much email in the spam-like queue is

considered as legitimate later, SNARE system will

be asked to act more generous to score email as

likely ham; on the other hand, if the mail server is

overwhelmed or the ham-like queue has too many

incorrect labels, SNARE will be less likely to put

email into ham-like queue. Section 5.2.2 evaluates

the benefits of retraining for different intervals.

5.2 Evaluation

In this section, we evaluate how the two additional

functions (whitelisting and retraining) improve SNARE’s

overall accuracy.

5.2.1 Benefits of Whitelisting

We believe that a whitelist can help reduce SNARE’s

overall false positive rate. To evaluate the effects of such

a whitelist, we examined the features associated with

the false positives, and determine that, 43% of all of

SNARE’s false positives for a single day originate from

just 10 ASes. We examined this characteristic for differ-

ent days and found that 30% to 40% of false positives

from any given day originate from the top 10 ASes. Un-

fortunately, however, these top 10 ASes do not remain

the same from day-to-day, so the whitelist may need to

be retrained periodically. It may also be the case that

other features besides AS number of the source provide

an even better opportunity for whitelisting. We leave the

details of refining the whitelist for future work.

Figure 12 shows the average ROC curve when we

whitelist the top 50 ASes responsible for most misclassi-

fied ham in each day. This whitelisting reduces the best

3Although SNARE’s false positive rates are quite low, some opera-

tors may feel that any non-zero chance that legitimate mail or sender

might be misclassified warrants at least a second-pass through a more

rigorous filter.

114 18th USENIX Security Symposium USENIX Association

0 5 10 15 20 25 30 35
50

55

60

65

70

75

80

85

90

95

100

False positive (%)

T
ru

e
 p

o
s
it
iv

e
 (

%
)

ROC in SNARE with whitelisting

0 1 2 3 4 5
70

80

90

100

tp = 70 %
fp = 0.14%

Figure 12: ROC in SNARE with whitelisting on ASes.

possible detection rate considerably (effectively because

about 11% of spam originates from those ASes). How-

ever, this whitelisting also reduces the false positive rate

to about 0.14% for a 70% detection rate. More aggres-

sive whitelisting, or whitelisting of other features, could

result in even lower false positives.

5.2.2 Benefits of Retraining

Setup Because email sender behavior is dynamic, train-

ing SNARE on data from an earlier time period may even-

tually grow stale. To examine the requirements for peri-

odically retraining the classifier, we train SNARE based

on the first 3 days’ data (through October 23–25, 2007)

and test on the following 10 days. As before, we use

1 million randomly sampled spam and ham messages to

test the classifier for each day.

Results Figure 13 shows the false positive and true

positive on 3 future days, October 26, October 31, and

November 4, 2007, respectively. The prediction on fu-

ture days will become more inaccurate with time pas-

sage. For example, on November 4 (ten days after train-

ing), the false positive rate has dropped given the same

true positive on the ROC curve. This result suggests

that, for the spammer behavior in this trace, retraining

SNARE’s classification algorithms daily should be suffi-

cient to maintain accuracy. (We expect that the need to

retrain may vary across different datasets.)

6 Discussion and Limitations

In this section, we address various aspects of SNARE

that may present practical concerns. We first discuss

the extent to which an attacker might be able to evade

various features, as well as the extent to which these

0 0.5 1 1.5 2 2.5 3 3.5 4
70

75

80

85

90

95

100

False positive (%)

T
ru

e
 p

o
s
it
iv

e
 (

%
)

ROC of testing on different days

1 day away

6 days away

10 days away

Figure 13: ROC using previous training rules to classify

future messages.

features might vary across time and datasets. We then

discuss scalability concerns that a production deploy-

ment of SNARE may present, as well as various possible

workarounds.

6.1 Evasion-Resistance and Robustness

In this section, we discuss the evasion resistance of the

various network-level features that form the inputs to

SNARE’s classification algorithm. Each of these features

is, to some degree, evadable. Nevertheless, SNARE raises

the bar by making it more difficult for spammers to evade

detection without altering the techniques that they use to

send spam. Although spammers might adapt to evade

some of the features below, we believe that it will be dif-

ficult for a spammer to adjust all features to pass through

SNARE, particularly without somewhat reducing the ef-

fectiveness of the spamming botnet. We survey each of

the features from Table 2 in turn.

AS number AS numbers are more persistently associ-

ated with a sender’s identity than the IP address, for two

reasons: (1) The spamming mail server might be set up

within specific ASes without the network administrator

shutting it down. (2) Bots tend to aggregate within ASes,

since the machines in the same ASes are likely to have

the same vulnerability. It is not easy for spammers to

move mail servers or the bot armies to a different AS;

therefore, AS numbers are robust to indicate malicious

hosts.

Message length In our analysis, we discovered that

the size of legitimate email messages tends to be much

more variable than that of spam (perhaps because spam-

mers often use templates to sent out large quantities of

mail [25]). With knowledge of this feature, a spammer

might start to randomize the lengths of their email mes-

USENIX Association 18th USENIX Security Symposium 115

sages; this attack would not be difficult to mount, but

it might restrict the types of messages that a spammer

could send or make it slightly more difficult to coordi-

nate a massive spam campaign with similar messages.

Nearest neighbor distances Nearest neighbor distance

is another feature that will be hard to modify. Distances

to k nearest neighbors effectively isolate existence of un-

usually large number of email servers within a small se-

quence of IP addresses. If the spammers try to alter their

neighborhood density, they will not be able to use too

many machines within a compromised subnet to send

spam to the same set of destinations. Although it is pos-

sible for a botnet controller to direct bots on the same

subnet to target different sets of destinations, such eva-

sion does require more coordination and, in some cases,

may restrict the agility that each spamming bot has in

selecting its target destinations.

Status of email service ports Some limitation might fail

the active probes, e.g., the outgoing mail servers use own

protocol to mitigate messages (such as Google mail) or a

firewall blocks the connections from out of the domain.

But the bots do not open such ports with high probabil-

ity, and the attackers need to get root privilege to enable

those ports (which requires more sophisticated methods

and resources). The basic idea is to find out whether the

sender is a legitimate mail server. Although we used ac-

tive probes in SNARE, other methods could facilitate the

test, such as domain name checking or mail server au-

thentication.

Sender-receiver geodesic distance The distribution of

geodesic distances between the spammers’ physical loca-

tion and their target IP’s location is a result of the spam-

mers’ requirement to reach as many target mail boxes

as possible and in the shortest possible time. Even in a

large, geographically distributed botnet, requiring each

bot to bias recipient domains to evade this feature may

limit the flexibility of how the botnet is used to send

spam. Although this feature can also be evaded by tun-

ing the recipient domains for each bot, if bots only sent

spam to nearby recipients, the flexibility of the botnet is

also somewhat restricted: it would be impossible, for ex-

ample, to mount a coordinate spam campaign against a

particular region from a fully distributed spamming bot-

net.

Number of recipients We found that spam messages

tend to have more recipients than legitimate messages;

a spammer could likely evade this feature by reducing

the number of recipients on each message, but this might

make sending the messages less efficient, and it might

alter the sender behavior in other ways that might make

a spammer more conspicuous (e.g., forcing the spammer

to open up more connections).

Time of day This feature may be less resistant to eva-

sion than others. Having said that, spamming botnets’

diurnal pattern results from when the infected machines

are switched on. For botnets to modify their diurnal mes-

sage volumes over the day to match the legitimate mes-

sage patterns, they will have to lower their spam volume

in the evenings, especially between 3:00 p.m. and 9:00

p.m. and also reduce email volumes in the afternoon.

This will again reduce the ability of botnets to send large

amounts of email.

6.2 Other Limitations

We briefly discuss other current limitations of SNARE,

including its ability to scale to a large number of recipi-

ents and its ability to classify IP addresses that send both

spam and legitimate mail.

Scale SNARE must ultimately scale to thousands of do-

mains and process hundreds of millions of email ad-

dresses per day. Unfortunately, even state-of-the-art ma-

chine learning algorithms are not well equipped to pro-

cess datasets this large; additionally, sending data to a

central coordinator for training could potentially con-

sume considerably bandwidth. Although our evaluation

suggests that SNARE’s classification is relatively robust

to sampling of training data, we intend to study further

the best ways to sample the training data, or perhaps even

perform in-network classification.

Dual-purpose IP addresses Our conversations with

large mail providers suggest that one of the biggest

emerging threats are “web bots” that send spam from

Web-based email accounts [35]. As these types of at-

tacks develop, an increasing fraction of spam may be

sent from IP addresses that also send significant amounts

of legitimate mail. These cases, where an IP address is

neither good nor bad, will need more sophisticated clas-

sifiers and features, perhaps involving timeseries-based

features.

7 Related Work

We survey previous work on characterizing the network-

level properties and behavior of email senders, email

sender reputation systems, and other email filtering sys-

tems that are not based on content.

Characterization studies Recent characterization stud-

ies have provided increasing evidence that spammers

have distinct network-level behavioral patterns. Ra-

machandran et al. [34] showed that spammers utilize

transient botnets to spam at low rate from any specific

IP to any domain. Xie et al. [38] discovered that a vast

116 18th USENIX Security Symposium USENIX Association

majority of mail servers running on dynamic IP address

were used solely to send spam. In their recently pub-

lished study [37], they demonstrate a technique to iden-

tify bots by using signatures constructed from URLs in

spam messages. Unlike SNARE, their signature-based

botnet identification differs heavily on analyzing mes-

sage content. Others have also examined correlated be-

havior of botnets, primarily for characterization as op-

posed to detection [25,31]. Pathak et al. [29] deployed a

relay sinkhole to gather data from multiple spam senders

destined for multiple domains. They used this data to

demonstrate how spammers utilize compromised relay

servers to evade detection; this study looked at spam-

mers from multiple vantage points, but focused mostly

on characterizing spammers rather than developing new

detection mechanisms. Niu et al. analyzed network-

level behavior of Web spammers (e.g., URL redirections

and “doorway” pages) and proposed using context-based

analysis to defend against Web spam [28].

Sender reputation based on network-level behav-

ior SpamTracker [34] is most closely related to SNARE;

it uses network-level behavioral features from data ag-

gregated across multiple domains to infer sender reputa-

tion. While that work initiated the idea of behavioral

blacklisting, we have discovered many other features

that are more lightweight and more evasion-resistant

than the single feature used in that paper. Beverly and

Sollins built a similar classifier based on transport-level

characteristics (e.g., round-trip times, congestion win-

dows) [12], but their classifier is both heavyweight, as

it relies on SVM, and it also requires accepting the mes-

sages to gather the features. Tang et al. explored the

detection of spam senders by analyzing the behavior of

IP addresses as observed by query patterns [36]. Their

work focuses on the breadth and the periodicity of mes-

sage volumes in relation to sources of queries. Vari-

ous previous work has also attempted to cluster email

senders according to groups of recipients, often with an

eye towards spam filtering [21, 24, 27], which is similar

in spirit to SNARE’s geodesic distance feature; however,

these previous techniques typically require analysis of

message contents, across a large number of recipients, or

both, whereas SNARE can operate on more lightweight

features. McAfee’s TrustedSource [4] and Cisco Iron-

Port [3] deploy spam filtering appliances to hundreds or

thousands of domains which then query the central server

for sender reputation and also provide meta-data about

messages they receive; we are working with McAfee to

deploy SNARE as part of TrustedSource.

Non-content spam filtering Trinity [14] is a distributed,

content-free spam detection system for messages origi-

nating from botnets that relies on message volumes. The

SpamHINTS project [9] also has the stated goal of build-

ing a spam filter using analysis of network traffic patterns

instead of the message content. Clayton’s earlier work on

extrusion detection involves monitoring of server logs at

both the local ISP [16] as well as the remote ISP [17]

to detect spammers. This work has similar objectives as

ours, but the proposed methods focus more on properties

related to SMTP sessions from only a single sender.

8 Conclusion

Although there has been much progress in content-based

spam filtering, state-of-the-art systems for sender reputa-

tion (e.g., DNSBLs) are relatively unresponsive, incom-

plete, and coarse-grained. Towards improving this state

of affairs, this paper has presented SNARE, a sender repu-

tation system that can accurately and automatically clas-

sify email senders based on features that can be deter-

mined early in a sender’s history—sometimes after see-

ing only a single IP packet.

Several areas of future work remain. Perhaps the most

uncharted territory is that of using temporal features to

improve accuracy. All of SNARE’s features are essen-

tially discrete variables, but we know from experience

that spammers and legitimate senders also exhibit differ-

ent temporal patterns. In a future version of SNARE, we

aim to incorporate such temporal features into the classi-

fication engine. Another area for improvement is making

SNAREmore evasion-resistant. Although we believe that

it will be difficult for a spammer to evade SNARE’s fea-

tures and still remain effective, designing classifiers that

are more robust in the face of active attempts to evade

and mis-train the classifier may be a promising area for

future work.

Acknowledgments

We thank our shepherd, Vern Paxson, for many helpful

suggestions, including the suggestions to look at mutual

information between features and several other improve-

ments to the analysis and presentation. We also thank

Wenke Lee, Anirudh Ramachandran, and Mukarram bin

Tariq for helpful comments on the paper. This work was

funded by NSF CAREER Award CNS-0643974 and NSF

Awards CNS-0716278 and CNS-0721581.

USENIX Association 18th USENIX Security Symposium 117

References

[1] FCrDNS Lookup Testing. http://ipadmin.

junkemailfilter.com/rdns.php.

[2] Internet Alert Registry.

http://iar.cs.unm.edu/.

[3] IronPort. http://www.ironport.com.

[4] McAfee Secure Computing.

http://www.securecomputing.com.

[5] SORBS: Spam and Open Relay Blocking System.

http://www.au.sorbs.net/.

[6] SpamCop. http://www.spamcop.net/bl.shtml.

[7] SpamHaus IP Blocklist. http://www.spamhaus.org.

[8] GeoIP API. MaxMind, LLC.

http://www.maxmind.com/app/api, 2007.

[9] spamHINTS: Happily It’s Not The Same.

http://www.spamhints.org/, 2007.

[10] DNSBL Resource: Statistics Center.

http://stats.dnsbl.com/, 2008.

[11] ALPEROVITCH, D., JUDGE, P., AND KRASSER, S. Taxonomy

of email reputation systems. In Proc. of the First International

Workshop on Trust and Reputation Management in Massively

Distributed Computing Systems (TRAM) (2007).

[12] BEVERLY, R., AND SOLLINS, K. Exploiting the transport-level

characteristics of spam. In 5th Conference on Email and Anti-

Spam (CEAS) (2008).

[13] BOYKIN, P., AND ROYCHOWDHURY, V. Personal email net-

works: An effective anti-spam tool. IEEE Computer 38, 4 (2005),

61–68.

[14] BRODSKY, A., AND BRODSKY, D. A distributed content inde-

pendent method for spam detection. In First Workshop on Hot

Topics in Understanding Botnets (HotBots) (2007).

[15] BURGES, C. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery 2, 2 (1998),

121–167.

[16] CLAYTON, R. Stopping spam by extrusion detection. In First

Conference of Email and Anti-Spam (CEAS) (2004).

[17] CLAYTON, R. Stopping outgoing spam by examining incom-

ing server logs. In Second Conference on Email and Anti-Spam

(CEAS) (2005).

[18] FRIEDMAN, J., AND POPESCU, B. Gradient directed regulariza-

tion. Stanford University, Technical Report (2003).

[19] FRIEDMAN, J., AND POPESCU, B. Predictive learning via rule

ensembles. Annals of Applied Statistics (to appear) (2008).

[20] GOLBECK, J., AND HENDLER, J. Reputation network analysis

for email filtering. In First Conference on Email and Anti-Spam

(CEAS) (2004).

[21] GOMES, L. H., CASTRO, F. D. O., ALMEIDA, R. B., BET-

TENCOURT, L. M. A., ALMEIDA, V. A. F., AND ALMEIDA,

J. M. Improving spam detection based on structural similarity.

In Proceedings of the Steps to Reducing Unwanted Traffic on the

Internet Workshop (SRUTI) (2005).

[22] GOODMAN, J., CORMACK, G., AND HECKERMAN, D. Spam

and the ongoing battle for the inbox. Communications of the ACM

50, 2 (2007), 24–33.

[23] HULTON, E., AND GOODMAN, J. Tutorial on junk email filter-

ing. Tutorial in the 21st International Conference on Machine

Learning (ICML) (2004).

[24] JOHANSEN, L., ROWELL, M., BUTLER, K., AND MCDANIEL,

P. Email communities of interest. In 4th Conference on Email

and Anti-Spam (CEAS) (2007).

[25] KANICH, C., KREIBICH, C., LEVCHENKO, K., ENRIGHT, B.,

PAXSON, V., VOELKER, G. M., AND SAVAGE, S. Spamalytics:

An empirical analysis of spam marketing conversion. In Proceed-

ings of the 15th ACM Conference on Computer and Communica-

tions Security (CCS) (2008).

[26] KARLIN, J., FORREST, S., AND REXFORD, J. Autonomous

security for autonomous systems. Computer Networks 52, 15

(2008), 2908–2923.

[27] LAM, H., AND YEUNG, D. A learning approach to spam detec-

tion based on social networks. In 4th Conference on Email and

Anti-Spam (CEAS) (2007).

[28] NIU, Y., WANG, Y.-M., CHEN, H., MA, M., AND HSU, F. A

quantitative study of forum spamming using context-based anal-

ysis. In Proceedings of the 14th Annual Network and Distributed

System Security Symposium (NDSS) (2007).

[29] PATHAK, A., HU, C., Y., AND MAO, Z., M. Peeking into

spammer behavior from a unique vantage point. In First USENIX

Workshop on Large-Scale Exploits and Emergent Threats (LEET)

(2008).

[30] QUINLAN, J. Induction of decision trees. Machine Learning 1,

1 (1986), 81–106.

[31] RAJAB, M., ZARFOSS, J., MONROSE, F., AND TERZIS, A. A

multifaceted approach to understanding the botnet phenomenon.

In Proceedings of the 6th ACM SIGCOMM conference on Inter-

net measurement (IMC) (2006).

[32] RAMACHANDRAN, A., DAGON, D., AND FEAMSTER, N. Can

DNSBLs keep up with bots? In 3rd Conference on Email and

Anti-Spam (CEAS) (2006).

[33] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding the

network-level behavior of spammers. In Proceedings of the ACM

SIGCOMM (2006).

[34] RAMACHANDRAN, A., FEAMSTER, N., AND VEMPALA, S. Fil-

tering spam with behavioral blacklisting. In ACM Conference on

Computer and Communications Security (CCS) (2007).

[35] Private conversation with Mark Risher, Yahoo Mail., 2008.

[36] TANG, Y. C., KRASSER, S., JUDGE, P., AND ZHANG, Y.-

Q. Fast and effective spam IP detection with granular SVM for

spam filtering on highly imbalanced spectral mail server behavior

data. In 2nd International Conference on Collaborative Comput-

ing (CollaborateCom) (2006).

[37] XIE, Y., YU, F., , ACHAN, K., PANIGRAHY, R., HULTEN, G.,

AND OSIPKOV, I. Spamming bots: Signatures and characteris-

tics. In Proceedings of ACM SIGCOMM (2008).

[38] XIE, Y., YU, F., ACHAN, K., GILUM, E., GOLDSZMIDT, M.,

AND WOBBER, T. How dynamic are IP addresses. In Proceed-

ings of ACM SIGCOMM (2007).

[39] ZHAO, X., PEI, D., WANG, L., MASSEY, D., MANKIN, A.,

WU, S. F., AND ZHANG, L. An analysis of BGP multiple origin

AS (MOAS) conflicts. In Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement (IMW) (2001).

USENIX Association 18th USENIX Security Symposium 119

Improving Tor using a TCP-over-DTLS Tunnel

Joel Reardon∗

Google Switzerland GmbH

Brandschenkestrasse 110

Zürich, Switzerland

reardon@google.com

Ian Goldberg

University of Waterloo

200 University Ave W.

Waterloo, ON, Canada

iang@cs.uwaterloo.ca

Abstract

The Tor network gives anonymity to Internet users by re-

laying their traffic through the world over a variety of

routers. All traffic between any pair of routers, even

if they represent circuits for different clients, are mul-

tiplexed over a single TCP connection. This results in

interference across circuits during congestion control,

packet dropping and packet reordering. This interference

greatly contributes to Tor’s notorious latency problems.

Our solution is to use a TCP-over-DTLS (Datagram

Transport Layer Security) transport between routers. We

give each stream of data its own TCP connection, and

protect the TCP headers—which would otherwise give

stream identification information to an attacker—with

DTLS. We perform experiments on our implemented

version to illustrate that our proposal has indeed resolved

the cross-circuit interference.

1 Introduction

Tor [2] is a tool to enable Internet privacy that has seen

widespread use and popularity throughout the world.

Tor consists of a network of thousands of nodes—

known as Onion Routers (ORs)—whose operators have

volunteered to relay Internet traffic around the world.

Clients—known as Onion Proxies (OPs)—build circuits

through ORs in the network to dispatch their traffic. Tor’s

goal is to frustrate an attacker who aims to match up

the identities of the clients with the actions they are per-

forming. Despite its popularity, Tor has a problem that

dissuades its ubiquitous application—it imposes greater

latency on its users than they would experience without

Tor.

While some increased latency is inevitable due to the

increased network path length, our experiments show

that this effect is not sufficient to explain the increased

cost. In Section 2 we look deeper, and find a component

∗Work done while at the University of Waterloo

of the transport layer that can be changed to improve

Tor’s performance. Specifically, each pair of routers

maintains a single TCP connection for all traffic that is

sent between them. This includes multiplexed traffic for

different circuits, and results in cross-circuit interference

that degrades performance. We find that congestion con-

trol mechanisms are being unfairly applied to all circuits

when they are intended to throttle only the noisy senders.

We also show how packet dropping on one circuit causes

interference on other circuits.

Section 3 presents our solution to this problem—a new

transport layer that is backwards compatible with the ex-

isting Tor network. Routers in Tor can gradually and in-

dependently upgrade, and our system provides immedi-

ate benefit to any pair of routers that choose to use our

improvements. It uses a separate TCP connection for

each circuit, but secures the TCP header to avoid the dis-

closure of per-circuit data transfer statistics. Moreover, it

uses a user-level TCP implementation to address the is-

sue of socket proliferation that prevents some operating

systems from being able to volunteer as ORs.

Section 4 presents experiments to compare the exist-

ing Tor with our new implementation. We compare la-

tency and throughput, and perform timing analysis of our

changes to ensure that they do not incur non-negligible

computational latency. Our results are favourable: the

computational overhead remains negligible and our solu-

tion is successful in addressing the improper use of con-

gestion control.

Section 5 compares our enhanced Tor to other ano-

nymity systems, and Section 6 concludes with a descrip-

tion of future work.

1.1 Apparatus

Our experiments were performed on a commodity

Thinkpad R60—1.66 GHz dual core with 1 GB of RAM.

Care was taken during experimentation to ensure that the

system was never under load significant enough to influ-

120 18th USENIX Security Symposium USENIX Association

ence the results. Our experiments used a modified ver-

sion of the Tor 0.2.0.x stable branch code.

2 Problems with Tor’s Transport Layer

We begin by briefly describing the important aspects of

Tor’s current transport layer. For more details, see [2].

An end user of Tor runs an Onion Proxy on her machine,

which presents a SOCKS proxy interface [7] to local ap-

plications, such as web browsers. When an application

makes a TCP connection to the OP, the OP splits it into

fixed-size cells which are encrypted and forwarded over

a circuit composed of (usually 3) Onion Routers. The

last OR creates a TCP connection to the intended desti-

nation host, and passes the data between the host and the

circuit.

The circuit is constructed with hop-by-hop TCP con-

nections, each protected with TLS [1], which provides

confidentiality and data integrity. The OP picks a first

OR (OR1), makes a TCP connection to it, and starts TLS

on that connection. It then instructs OR1 to connect to

a particular second OR (OR2) of the OP’s choosing. If

OR1 and OR2 are not already in contact, a TCP connec-

tion is established between them, again with TLS. If OR1

and OR2 are already in contact (because other users, for

example, have chosen those ORs for their circuits), the

existing TCP connection is used for all traffic between

those ORs. The OP then instructs OR2 to contact a third

OR, OR3, and so on. Note that there is not an end-to-end

TCP connection from the OP to the destination host, nor

to any OR except OR1.

This multi-hop transport obviously adds additional un-

avoidable latency. However, the observed latency of Tor

is larger than accounted for simply by the additional

transport time. In [12], the first author of this paper

closely examined the sources of latency in a live Tor

node. He found that processing time and input buffer

queueing times were negligible, but that output buffer

queueing times were significant. For example, on an in-

strumented Tor node running on the live Tor network,

40% of output buffers had data waiting in them from

100 ms to over 1 s more than 20% of the time. The

data was waiting in these buffers because the the operat-

ing system’s output buffer for the corresponding socket

was itself full, and so the OS was reporting the socket

as unwritable. This was due to TCP’s congestion control

mechanism, which we discuss next.

Socket output buffers contain two kinds of data:

packet data that has been sent over the network but is un-

acknowledged1, and packet data that has not been sent

due to TCP’s congestion control. Figure 1 shows the

1Recall that TCP achieves reliability by buffering all data locally

until it has been acknowledged, and uses this to generate retransmission

messages when necessary

size of the socket output buffer over time for a partic-

ular connection. First, unwritable sockets occur when

the remaining capacity in an output buffer is too small to

accept new data. This in turn occurs because there is al-

ready too much data in the buffer, which is because there

is too much unacknowledged data in flight and throt-

tled data waiting to be sent. The congestion window

(CWND) is a variable that stores the number of packets

that TCP is currently willing to send to the peer. When

the number of packets in flight exceeds the congestion

window then the sending of more data is throttled until

acknowledgments are received. Once congestion throt-

tles sending, the data queues up until either packets are

acknowledged or the buffer is full.

In addition to congestion control, TCP also has a flow

control mechanism. Receivers advertise the amount of

data they are willing to accept; if more data arrives at

the receiver before the receiving application has a chance

to read from the OS’s receive buffers, this advertised re-

ceiver windowwill shrink, and the sender will stop trans-

mitting when it reaches zero. In none of our experiments

did we ever observe Tor throttling its transmissions due

to this mechanism; the advertised receiver window sizes

never dropped to zero, or indeed below 50 KB. Conges-

tion control, rather than flow control, was the reason for

the throttling.

While data is delayed because of congestion control, it

is foolhardy to attempt to circumvent congestion control

as a means of improving Tor’s latency. However, we ob-

serve that Tor’s transport between ORs results in an un-

fair application of congestion control. In particular, Tor’s

circuits are multiplexed over TCP connections; i.e., a sin-

gle TCP connection between two ORs is used for multi-

ple circuits. When a circuit is built through a pair of un-

connected routers, a new TCP connection is established.

When a circuit is built through an already-connected pair

of ORs, the existing TCP stream will carry both the ex-

isting circuits and the new circuit. This is true for all

circuits built in either direction between the ORs.

In this section we explore how congestion control af-

fects multiplexed circuits and how packet dropping and

reordering can cause interference across circuits. We

show that TCP does not behave optimally when circuits

are multiplexed in this manner.

2.1 Unfair Congestion Control

We believe that multiplexing TCP streams over a sin-

gle TCP connection is unwise and results in the unfair

application of TCP’s congestion control mechanism. It

results in multiple data streams competing to send data

over a TCP stream that gives more bandwidth to circuits

that send more data; i.e., it gives each byte of data the

same priority regardless of its source. A busy circuit that

USENIX Association 18th USENIX Security Symposium 121

      

















































Figure 1: TCP socket output buffer size, writability, and unacknowledged packets over time.

triggers congestion control will cause low-bandwidth cir-

cuits to struggle to have their data sent. Figure 2 il-

lustrates data transmission for distinct circuits entering

and exiting a single output buffer in Tor. Time increases

along the X-axis, and data increases along the Y-axis.

The main part of the figure shows two increasing line

shapes, each corresponding to the data along a different

circuit over time. When the shapes swell, that indicates

that Tor’s internal output buffer has swelled: the left edge

grows when data enters the buffer, and the right edge

grows when data leaves the buffer. This results in the

appearance of a line when the buffer is well-functioning,

and a triangular or parallelogram shape when data ar-

rives too rapidly or the connection is troubled. Addition-

ally, we strike a vertical line across the graph whenever a

packet is dropped.

What we learn from this graph is that the buffer serves

two circuits. One circuit serves one MB over ten min-

utes, and sends cells evenly. The other circuit is inactive

for the most part, but three times over the execution it

suddenly serves 200 KB of cells. We can see that each

time the buffer swells with data it causes a significant

delay. Importantly, the other circuit is affected despite

the fact that it did not change its behaviour. Conges-

tion control mechanisms that throttle the TCP connec-

tion will give preference to the burst of writes because it

simply provides more data, while the latency for a low-

bandwidth application such as ssh increases unfairly.

2.2 Cross-Circuit Interference

Tor multiplexes the data for a number of circuits over a

single TCP stream, and this ensures that the received data

will appear in the precise order in which the component

streams were multiplexed—a guarantee that goes beyond

what is strictly necessary. When packets are dropped

or reordered, the TCP stack will buffer available data

on input buffers until the missing in-order component is

available. We hypothesize that when active circuits are

multiplexed over a single TCP connection, Tor suffers an

unreasonable performance reduction when either packet

dropping or packet reordering occur. Cells may be avail-

able in-order for one particular circuit but are being de-

layed due to missing cells for another circuit. In-order

guarantees are only necessary for data sent within a sin-

gle circuit, but the network layer ensures that data is only

readable in the order it was dispatched. Packet loss or re-

ordering will cause the socket to indicate that no data is

available to read even if other circuits have their sequen-

tial cells available in buffers.

Figure 3 illustrates the classic head-of-line blocking

behaviour of Tor during a packet drop; cells for distinct

circuits are represented by shades and a missing packet

is represented with a cross. We see that the white, light

grey, and black circuits have had all of their data suc-

cessfully received, yet the kernel will not pass that data

to the Tor application until the dropped dark grey packet

is retransmitted and successfully received.

We verify our cross-circuit interference hypothesis in

two parts. In this section we show that packet drops on a

122 18th USENIX Security Symposium USENIX Association

       


























Figure 2: Example of congestion on multiple streams.

OROR

TCP Stream (over network)

Readable

Kernel TCP

Buffered / Waiting

Figure 3: TCP correlated streams. Shades correspond to cells for different circuits.

Experiment 1Determining the effect of packet dropping

on circuit multiplexing.

1: A Tor network of six ORs on a single host was con-

figured to have a latency of 50 milliseconds and a

variable packet drop rate.

2: Eight OP built circuits that were fixed so that the sec-

ond and third ORs were the same for each client, but

the first hop was evenly distributed among the re-

maining ORs. Figure 4 illustrates this setup.

3: There were three runs of the experiment. The first

did not drop any packets. The second dropped 0.1%

of packets on the shared link, and the third dropped

0.1% of packets on the remaining links.

4: The ORs were initialized and then the clients were

run until circuits were established.

5: Each OP had a client connect, which would tunnel a

connection to a timestamp server through Tor. The

server sends a continuous stream of timestamps. The

volume of timestamps measures throughput, and the

difference in time measures latency.

6: Data was collected for one minute.

shared link degrade throughput much more severely than

drops over unshared links. Then in Section 4 we show

that this effect disappears with our proposed solution.

To begin, we performed Experiment 1 to investigate

the effect of packet dropping on circuit multiplexing.

The layout of circuits in the experiment, as shown in

Figure 4, is chosen so that there is one shared link that

carries data for all circuits, while the remaining links do

not.

In the two runs of our experiments that drop packets,

they are dropped according to a target drop rate, either on

the heavily shared connection or the remaining connec-

tions. Our packet dropping tool takes a packet, decides

if it is eligible to be dropped in this experiment, and if

so then it drops it with the appropriate probability. How-

ever, this model means the two runs that drop packets

will see different rates of packet dropping systemwide,

since we observe greater traffic on the remaining con-

nections. This is foremost because it spans two hops

along the circuit instead of one, and also because traf-

fic from multiple circuits can be amalgamated into one

packet for transmission along the shared connection. As

a result, a fixed drop rate affecting the remaining connec-

USENIX Association 18th USENIX Security Symposium 123

Timing

Client

Timing

Client

Timing

Client

Timing

Client

Timing

Client

Timing

Client

Timing

Client

Timing

Client

Timing

Server

OR OR

OR

OR

OR

OR

OP

OP

OP

OP

OP

OP

OP

OP

Shared

Link

Remaining Links

Figure 4: Setup for Experiment 1. The shared link multiplexes all circuits from the various OPs to the final OR; the

remaining links carry just one or two circuits each. The splay of links between the final OR and the timing server

reflect the fact that a separate TCP connection is made from the final OR to the timing server for each timing client.

Network Circuit Throughput Effective

Configuration Throughput Throughput Degradation Drop

(KB/s) (KB/s) Rate

No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %

0.1 % (remaining) 208 ± 14 34.7 ± 2.3 6 % 0.08 %

0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 1: Throughput for different dropping configurations. Network throughput is the total data sent along all the

circuits.

Average Latency Effective

Configuration Latency Increase Drop Rate

No dropping 933 ± 260 ms 0 % 0 %

0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %

0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 2: Latency for different dropping configurations.

124 18th USENIX Security Symposium USENIX Association

tions will result in more frequent packet drops than one

dropping only along the shared connection. This dispar-

ity is presented explicitly in our results as the effective

drop rate; i.e., the ratio of packets dropped to the total

number of packets we observed (including those ineligi-

ble to be dropped) in the experiment.

The results of Experiment 1 are shown in Tables 1

and 2. They show the results for three configurations:

when no packet dropping is done, when 0.1% of packets

are dropped on all connections except the heavily shared

one, and when 0.1% of packets are dropped only on the

shared connection. The degradation column refers to

the loss in performance as a result of introducing packet

drops. The average results for throughput and delay were

accumulated over half a dozen executions of the exper-

iment, and the mean intervals for the variates are com-

puted using Student’s T distribution to 95% confidence.

These results confirm our hypothesis. The throughput

degrades nearly threefold when packets are dropped on

the shared link instead of the remaining links. This is

despite a significantly lower overall drop rate. The be-

haviour of one TCP connection can adversely affect all

correlated circuits, even if those circuits are used to trans-

port less data.

Table 2 suggests that latency increases when packet

dropping occurs. Latency is measured by the time re-

quired for a single cell to travel alongside a congested

circuit, and we average a few dozen such probes. Again

we see that dropping on the shared link more adversely

affects the observed delay despite a reduced drop rate.

However, we note that the delay sees wide variance, and

the 95% confidence intervals are quite large.

2.3 Summary

Multiplexing circuits over a single connection is a poten-

tial source of unnecessary latency since it causes TCP’s

congestion control mechanism to operate unfairly to-

wards connections with smaller demands on throughput.

High-bandwidth streams that trigger congestion control

result in low-bandwidth streams having their congestion

window unfairly reduced. Packet dropping and reorder-

ing also cause available data for multiplexed circuits to

wait needlessly in socket buffers. These effects degrade

both latency and throughput, which we have shown in

experiments.

To estimate the magnitude of this effect in the real Tor

network, we note that 10% of Tor routers supply 87%

of the total network bandwidth [8]. A straightforward

calculation shows that links between top routers—while

only comprising 1% of the possible network links—

transport over 75% of the data. At the time of writing,

the number of OPs is estimated in the hundreds of thou-

sands and there are only about one thousand active ORs

[14]. Therefore, even while most users are idle, the most

popular 1% of links will be frequently multiplexing cir-

cuits.

Ideally, we would open a separate TCP connection for

every circuit, as this would be a more appropriate use of

TCP between ORs; packet drops on one circuit, for ex-

ample, would not hold up packets in other circuits. How-

ever, there is a problem with this naive approach. An

adversary observing the network could easily distinguish

packets for each TCP connection just by looking at the

port numbers, which are exposed in the TCP headers.

This would allow him to determine which packets were

part of which circuits, affording him greater opportunity

for traffic analysis. Our solution is to tunnel packets from

multiple TCP streams over DTLS, a UDP protocol that

provides for the confidentiality of the traffic it transports.

By tunnelling TCP over a secure protocol, we can protect

both the TCP payload and the TCP headers.

3 Proposed Transport Layer

This section proposes a TCP-over-DTLS tunnelling

transport layer for Tor. This tunnel transports TCP

packets between peers using DTLS—a secure datagram

(UDP-based) transport [9]. A user-level TCP stack run-

ning inside Tor generates and parses TCP packets that

are sent over DTLS between ORs. Our solution will use

a single unconnected UDP socket to communicate with

all other ORs at the network level. Internally, it uses a

separate user-level TCP connection for each circuit. This

decorrelates circuits from TCP streams, which we have

shown to be a source of unnecessary latency. The use of

DTLS also provides the necessary security and confiden-

tiality of the transported cells, including the TCP header.

This prevents an observer from learning per-circuit meta-

data such data how much data is being sent in each di-

rection for individual circuits. Additionally, it reduces

the number of sockets needed in kernel space, which

is known to be a problem that prevents some Windows

computers from volunteering as ORs. Figure 5 shows

the design of our proposed transport layer, including how

only a single circuit is affected by a dropped packet.

The interference that multiplexed circuits can have on

each other during congestion, dropping, and reordering

is a consequence of using a single TCP connection to

transport data between each pair of ORs. This proposal

uses a separate TCP connection for each circuit, ensur-

ing that congestion or drops in one circuit will not affect

other circuits.

3.1 A TCP-over-DTLS Tunnel

DTLS [9] is the datagram equivalent to the ubiquitous

TLS protocol [1] that secures much traffic on the Inter-

USENIX Association 18th USENIX Security Symposium 125

OROR

UDP Stream (over network) Kernel UDP

RXed Packets

User TCP
Buffered/Waiting

Readable

Readable

Figure 5: Proposed TCP-over-DTLS Transport showing decorrelated streams. Shades correspond to cells for different

circuits (cf. Figure 3).

net today, including https web traffic, and indeed Tor.

DTLS provides confidentiality and authenticity for In-

ternet datagrams, and provides other security properties

such as replay prevention. IPsec [6] would have been

another possible choice of protocol to use here; how-

ever, we chose DTLS for our application due to its ac-

ceptance as a standard, its ease of use without kernel or

superuser privileges, and its existing implementation in

the OpenSSL library (a library already in use by Tor).

The TLS and DTLS APIs in OpenSSL are also unified;

after setup, the same OpenSSL calls are used to send and

receive data over either TLS or DTLS. This made sup-

porting backwards compatibility easier: the Tor code will

send packets either over TCP (with TLS) or UDP (with

DTLS), as appropriate, with minimal changes.

Our new transport layer employs a user-level TCP

stack to generate TCP packets, which are encapsulated

inside a DTLS packet that is then sent by the system in

a UDP/IP datagram. The receiving system will remove

the UDP/IP header when receiving data from the socket,

decrypt the DTLS payload to obtain a TCP packet, and

translate it into a TCP/IP packet, which is then forwarded

to the user-level TCP stack that processes the packet. A

subsequent read from the user-level TCP stack will pro-

vide the packet data to our system.

In our system, the TCP sockets reside in user space,

and the UDP sockets reside in kernel space. The use

of TCP-over-DTLS affords us the great utility of TCP:

guaranteed in-order delivery and congestion control. The

user-level TCP stack provides the functionality of TCP,

and the kernel-level UDP stack is used simply to trans-

mit packets. The secured DTLS transport allows us to

protect the TCP header from snooping and forgery and

effect a reduced number of kernel-level sockets.

ORs require opening many sockets, and so our user-

level TCP stack must be able to handle many concur-

rent sockets, instead of relying on the operating sys-

tem’s TCP implementation that varies from system to

system. In particular, some discount versions of Win-

dows artificially limit the number of sockets the user

can open, and so we use Linux’s free, open-source,

and high-performance TCP implementation inside user

space. Even Windows users will be able to benefit from

an improved TCP implementation, and thus any user of

an operating system supported by Tor will be able to vol-

unteer their computer as an OR if they so choose.

UDP allows sockets to operate in an unconnected

state. Each time a datagram is to be sent over the Inter-

net, the destination for the packet is also provided. Only

one socket is needed to send data to every OR in the Tor

network. Similarly, when data is read from the socket,

the sender’s address is also provided alongside the data.

This allows a single socket to be used for reading from

all ORs; all connections and circuits will be multiplexed

over the same socket. When reading, the sender’s ad-

dress can be used to demultiplex the packet to determine

the appropriate connection for which it is bound. What

follows is that a single UDP socket can be used to com-

municate with as many ORs as necessary; the number of

kernel-level sockets is constant for arbitrarily many ORs

with which a connection may be established. This will

become especially important for scalability as the num-

ber of nodes in the Tor network grows over time. From

a configuration perspective, the only new requirement is

that the OR operator must ensure that a UDP port is ex-

ternally accessible; since they must already ensure this

for a TCP port we feel that this is a reasonable configu-

ration demand.

Figure 6(a) shows the packet format for TCP Tor, and

Figure 6(b) shows the packet format for our TCP-over-

DTLS Tor, which has expanded the encrypted payload to

include the TCP/IP headers generated by the user-level

TCP stack. The remainder of this section will discuss

how we designed, implemented, and integrated these

changes into Tor.

3.2 Backwards Compatibility

Our goal is to improve Tor to allow TCP communica-

tion using UDP in the transport layer. While the origi-

nal ORs transported cells between themselves, our pro-

posal is to transport, using UDP, both TCP headers and

cells between ORs. The ORs will provide the TCP/IP

packets to a TCP stack that will generate both the ap-

propriate stream of cells to the Tor application, as well

126 18th USENIX Security Symposium USENIX Association

Application Payload

TCPIP

IP DTLS

Application PayloadTLS

UDP

(a)

(b)

TORTP

Figure 6: Packets for TCP Tor and our TCP-over-DTLS improved Tor. Encrypted and authenticated components

of the packet are shaded in grey. (a) shows the packet format for TCP Tor. (b) shows the packet format for our

TCP-over-DTLS Tor. TORTP is a compressed form of the IP and TCP headers, and is discussed in Section 3.4.

as TCP/IP packets containing TCP acknowledgements to

be returned.

The integration of this transport layer into Tor has two

main objectives. The first is that of interoperability; it is

essential that the improved Tor is backwards compatible

with the TCP version of Tor so as to be easily accepted

into the existing codebase. Recall that Tor has thousands

of ORs, a client population estimated in the hundreds of

thousands, and has not experienced any downtime since

it launched in 2003. It is cumbersome to arrange a syn-

chronized update of an unknown number of anonymous

Tor users. A subset of nodes that upgrade and can take

advantage of TCP-over-DTLS can provide evidence of

the transport’s improvement for the user experience—

this incremental upgrade is our preferred path to accep-

tance. Our second objective is to minimize the changes

required to the Tor codebase. We must add UDP con-

nections into the existing datapath by reusing as much

existing code as possible. This permits future developers

to continue to improve Tor’s datapath without having to

consider two classes of communication. Moreover, it en-

courages the changes to quickly be incorporated into the

main branch of the source code. While it will come with

a performance cost for doing unnecessary operations, we

perform timing analyses below to ensure that the result-

ing datapath latency remains negligible.

Interoperability between existing ORs and those using

our improved transport is achieved by fully maintaining

the original TCP transport in Tor—improved ORs con-

tinue to advertise a TCP OR port and multiplexed TCP

connections can continue to be made. In addition, im-

proved nodes will also advertise a UDP port for making

TCP-over-DTLS connections. Older nodes will ignore

this superfluous value, while newer nodes will always

choose to make a TCP-over-DTLS connection whenever

such a port is advertised. Thus, two UDP nodes will au-

tomatically communicate using UDP without disrupting

the existing nodes; their use of TCP-over-DTLS is in-

consequential to the other nodes. As more nodes support

TCP-over-DTLS, more users will obtain its benefits, but

we do not require a synchronized update to support our

improvements.

Clients of Tor are not required to upgrade their soft-

ware to obtain the benefits of UDP transport. If two

nodes on their circuit use TCP-over-DTLS to commu-

nicate then this will happen transparently to the user. In

fact, it is important that the user continue to choose their

circuit randomly among the ORs: intentionally choosing

circuits consisting of UDP nodes when there are only

a few such nodes decreases the privacy afforded to the

client by rendering their circuit choices predictable.

3.3 User-level TCP Stack

If we simply replaced the TCP transport layer in Tor

with a UDP transport layer, our inter-OR communica-

tion would then lack the critical features of TCP: guaran-

teed in-order transmission of streams, and the most well-

studied congestion control mechanism ever devised. We

wish to remove some of the unnecessary guarantees of

TCP for the sake of latency; i.e., we do not need cells

from separate circuits over the same connection to arrive

in the order they were dispatched. However, we must

still be able to reconstruct the streams of each individ-

ual circuit at both ends of the connection. We use a TCP

implementation in user space (instead of inside the oper-

ating system) to accommodate us; a user-level TCP stack

provides the implementation of the TCP protocols [4] as

part of our program. User-level socket file descriptors

and their associated data structures and buffers are ac-

cessible only in user space and so are visible and relevant

only to Tor. We use the UDP transport layer and DTLS

to transport TCP packets between the UDP peers. Only

part of the TCP packet is transmitted; the details will be

discussed in section 3.4, but it serves our purposes now

to conceptualize the two nodes as transporting full TCP

packets as the UDP datagram’s payload. Upon receiving

a UDP datagram, the kernel will remove the UDP header

and provide Tor with the enclosed DTLS packet; Tor will

decrypt the DTLS payload and present the result (a TCP

packet) to its user-level TCP stack. Similarly, when the

user-level TCP stack presents a packet for transmission,

the node will encrypt it with DTLS and forward the re-

sulting packet to the kernel which then sends it to the

USENIX Association 18th USENIX Security Symposium 127

intended destination over UDP. The stack also performs

retransmission and acknowledgement of TCP data that

are integral to TCP’s reliability; these are protected with

DTLS and forwarded over UDP in the same manner.

A user-level TCP stack provides an implementation of

the suite of socket function calls, such as socket(), send(),

and recv(). These reimplementations exist in harmony

with the proper set of operating system commands, al-

lowing both a user-level and kernel-level network layer.

Thus, data structures and file descriptors created by calls

to the user-level stack are visible and relevant only to the

parent process; the operating system manages its sock-

ets separately. The user-level stack responds to socket

calls by generating packets internally for dispatching as

dictated by TCP.

It may seem cumbersome to include an entire TCP im-

plementation as a core component of Tor. In particular,

patching the kernel’s implementation of TCP to support

our features would take significantly less effort. How-

ever, Tor relies on volunteers to route traffic; complicated

installation procedures are an immediate roadblock to-

wards the ubiquitous use of Tor. The diverse operating

systems Tor aims to support and the diverse skill level of

its users prevent its installation from requiring external

procedures, or even superuser privileges.

Daytona [11] is a user-level TCP stack that we chose

for our purposes. It was created by researchers study-

ing network analysis, and consists of the implementation

of Linux’s TCP stack and the reimplementations of user-

level socket functions. It uses libpcap to capture pack-

ets straight from the Ethernet device and a raw socket to

write generated packets, including headers, onto the net-

work. Daytona was designed to operate over actual net-

works while still giving user-level access to the network

implementation. In particular, it allowed the researchers

to tune the implementation while performing intrusive

measurements. A caveat—there are licensing issues for

Daytona’s use in Tor. As a result, the deployment of this

transport layer into the real Tor network may use a dif-

ferent user-level TCP stack. Our design uses Daytona

as a replaceable component and its selection as a user-

level TCP stack was out of availability for our proof-of-

concept.

3.4 UTCP: Our Tor-Daytona Interface

Our requirements for a user-level TCP stack are to cre-

ate properly formatted packets, including TCP retrans-

missions, and to sort incoming TCP/IP packets into data

streams: a black box that converts between streams and

packets. For our purpose, all notions of routing, Eth-

ernet devices, and interactions with a live network are

unnecessary. To access the receiving and transmitting of

packets, we commandeer the rx() (receive) and tx()

(transmit) methods of Daytona to instead interface di-

rectly with reading and writing to connections in Tor.

UTCP is an abstraction layer for the Daytona TCP

stack used as an interface for the stack by Tor. Each

UDP connection between ORs has a UTCP-connection

object that maintains information needed by our stack,

such as the set of circuits between those peers and the

socket that listens for new connections. Each circuit has

a UTCP-circuit object for similar purposes, such as the

local and remote port numbers that we have assigned for

this connection.

As mentioned earlier, only part of the TCP header is

transmitted using Tor—we call this header the TORTP

header; we do this simply to optimize network traffic.

The source and destination addresses and ports are re-

placed with a numerical identifier that uniquely identifies

the circuit for the connection. Since a UDP/IP header

is transmitted over the actual network, Tor is capable of

performing a connection lookup based on the address of

the packet sender. With the appropriate connection, and

a circuit identifier, the interface to Daytona is capable

of translating the TORTP header into the corresponding

TCP header.

When the UTCP interface receives a new packet, it

uses local data and the TORTP headers to create the cor-

responding TCP header. The resulting packet is then in-

jected into the TCP stack. When Daytona’s TCP stack

emits a new packet, a generic tx() method is invoked,

passing only the packet and its length. We look up

the corresponding UTCP circuit using the addresses and

ports of the emitted TCP header, and translate the TCP

header to our TORTP header and copy the TCP pay-

load. This prepared TORTP packet is then sent to Tor,

along with a reference to the appropriate circuit, and Tor

sends the packet to the destination OR over the appropri-

ate DTLS connection.

3.5 Congestion Control

The congestion control properties of the new scheme

will inherit directly from those of TCP, since TCP is the

protocol being used internally. While it is considered

an abuse of TCP’s congestion control to open multiple

streams between two peers simply to send more data,

in this case we are legitimately opening one stream for

each circuit carrying independent data. When packets

are dropped, causing congestion control to activate, it

will only apply to the single stream whose packet was

dropped. Congestion control variables are not shared

between circuits; we discuss the possibility of using

the message-oriented Stream Control Transport Protocol

(SCTP), which shares congestion control information, in

Section 5.2.

If a packet is dropped between two ORs communicat-

128 18th USENIX Security Symposium USENIX Association

ing with multiple streams of varying bandwidth, then the

drop will be randomly distributed over all circuits with

a probability proportional to their volume of traffic over

the link. High-bandwidth streams will see their packets

dropped more often and so will back off appropriately.

Multiple streams will back off in turn until the conges-

tion is resolved. Streams such as ssh connections that

send data interactively will always be allowed to have at

least one packet in flight regardless of the congestion on

other circuits.

Another interesting benefit of this design is that it

gives Tor direct access to TCP parameters at runtime.

The lack of sophistication in Tor’s own congestion con-

trol mechanism is partially attributable to the lack of di-

rect access to networking parameters at the kernel level.

With the TCP stack in user space Tor’s congestion con-

trol can be further tuned and optimized. In particular,

end-to-end congestion control could be gained by ex-

tending our work to have each node propagate its TCP

rate backwards along the circuit: each node’s rate will

be the minimum of TCP’s desired rate and the value re-

ported by the subsequent node. This will address conges-

tion imbalance issues where high-bandwidth connections

send traffic faster than it can be dispatched at the next

node, resulting in data being buffered upon arrival. When

TCP rates are propagated backwards, then the bandwidth

between two ORs will be prioritized for data whose next

hop has the ability to immediately send the data. Cur-

rently there is no consideration for available bandwidth

further along the circuit when selecting data to send.

4 Experimental Results

In this section we perform experiments to compare the

existing Tor transport layer with an implementation of

our proposed TCP-over-DTLS transport. We begin by

timing the new sections of code to ensure that we have

not significantly increased the computational latency.

Then we perform experiments on a local Tor network

of routers, determining that our transport has indeed ad-

dressed the cross-circuit interference issues previously

discussed.

4.1 Timing Analysis

Our UDP implementation expands the datapath of Tor

by adding new methods for managing user-level TCP

streams and UDP connections. We profile our modified

Tor and perform static timing analysis to ensure that our

new methods do not degrade the datapath unnecessarily.

Experiment 2 was performed to profile our new version

of Tor.

The eightieth percentile of measurements for Experi-

ment 2 are given in Table 3. Our results indicate that no

Experiment 2 Timing analysis of our modified TCP-

over-DTLS datapath.

1: TCP-over-DTLS Tor was modified to time the dura-

tion of the aspects of the datapath:

• injection of a new packet (DTLS decryption,

preprocessing, injecting into TCP stack, possi-

bly sending an acknowledgment),

• emission of a new packet (header translation,

DTLS encryption, sending packet),

• the TCP timer function (increments counters

and checks for work such as retransmissions

and sending delayed acknowledgements), and

• the entire datapath from reading a packet on a

UDP socket, demultiplexing the result, inject-

ing the packet, reading the stream, processing

the cell, writing the result, and transmitting the

generated packet.

2: The local Tor network was configured to use 50 ms

of latency between connections.

3: A client connected through Tor to request a data

stream.

4: Data travelled through the network for several min-

utes.

new datapath component results in a significant source of

computational latency.

We have increased the datapath latency to an expected

value of 250 microseconds per OR, or 1.5 milliseconds

for a round trip along a circuit of length three. This is

still an order of magnitude briefer than the round-trip

times between ORs on a circuit (assuming geopolitically

diverse circuit selection). Assuming each packet is 512

bytes (the size of a cell—a conservative estimate as our

experiments have packets that carry full dataframes), we

have an upper bound on throughput of 4000 cells per sec-

ond or 2 MB/s. While this is a reasonable speed that will

likely not form a bottleneck, Tor ORs that are willing

to devote more than 2 MB/s of bandwidth may require

better hardware than the Thinkpad R60 used in our ex-

periments.

4.2 Basic Throughput

We perform Experiment 3 to compare the basic through-

put and latency of our modification to Tor, the results of

which are shown in Table 4. We can see that the UDP

version of Tor has noticeably lower throughput. Origi-

nally it was much lower, and increasing the throughput

up to this value took TCP tuning and debugging the user-

level TCP stack. In particular, errors were uncovered in

Daytona’s congestion control implementation, and it is

USENIX Association 18th USENIX Security Symposium 129

Datapath Component Duration

Injecting Packet 100 microseconds

Transmitting Packet 100 microseconds

TCP Timer 85 microseconds

Datapath 250 microseconds

Table 3: Time durations for new datapath components. The results provided are the 80th percentile measurement.

Network Circuit Base

Configuration Throughput Delay Delay

TCP Tor 176 ± 24.9 KB/s 1026 ± 418 ms 281 ± 12 ms

TCP-over-DTLS Tor 111 ± 10.4 KB/s 273 ± 31 ms 260 ± 1 ms

Table 4: Throughput and delay for different reordering configurations. The configuration column shows which row

correspond to which version of Tor we used for our ORs in the experiment. Network throughput is the average data

transfer rate we achieved in our experiment. Circuit delay is the latency of the circuit while the large bulk data transfer

was occurring, whereas the base delay is the latency of the circuit taken in the absence of any other traffic.

suspected that more bugs remain to account for this dis-

parity. While there may be slight degradation in perfor-

mance when executing TCP operations in user space in-

stead of kernel space, both implementations of TCP are

based on the same Linux TCP implementation operat-

ing over in the same network conditions, so we would

expect comparable throughputs as a result. With more

effort to resolve outstanding bugs, or the integration of

a user-level TCP stack better optimized for Tor’s needs,

we expect the disparity in throughputs will vanish. We

discuss this further in the future work section.

More important is that the circuit delay for a sec-

ond stream over the same circuit indicates that our UDP

version of Tor vastly improves latency in the presence

of a high-bandwidth circuit. When one stream triggers

the congestion control mechanism, it does not cause the

low-bandwidth client to suffer great latency as a con-

sequence. In fact, the latency observed for TCP-over-

DTLS is largely attributable to the base latency imposed

on connections by our experimental setup. TCP Tor, in

contrast, shows a three-and-a-half fold increase in la-

tency when the circuit that it multiplexes with the bulk

stream is burdened with traffic.

The disparity in latency for the TCP version means

that information is leaked: the link between the last two

nodes is witnessing bulk transfer. This can be used as

a reconnaissance technique; an entry node, witnessing a

bulk transfer from an client and knowing its next hop,

can probe potential exit nodes with small data requests

to learn congestion information. Tor rotates its circuits

every ten minutes. Suppose the entry node notices a bulk

transfer when it begins, and probes various ORs to deter-

mine the set of possible third ORs. It could further reduce

this set by re-probing after nine minutes, after which time

most of the confounding circuits would have rotated to

new links.

We conclude that our TCP-over-DTLS, while cur-

rently suffering lower throughput, has successfully ad-

dressed the latency introduced by the improper use of

the congestion control mechanism. We expect that once

perfected, the user-level TCP stack will have nearly the

same throughput as the equivalent TCP implementation

in the kernel. The response latency for circuits in our

improved Tor is nearly independent of throughput on ex-

isting Tor circuits travelling over the same connections;

this improves Tor’s usability and decreases the ability for

one circuit to leak information about another circuit us-

ing the same connection through interference.

4.3 Multiplexed Circuits with Packet

Dropping

Packet dropping occurs when a packet is lost while being

routed through the Internet. Packet dropping, along with

packet reordering, are consequences of the implementa-

tion of packet switching networks and are the prime rea-

son for the invention of the TCP protocol. In this section,

we perform an experiment to contrast the effect of packet

dropping on the original version of Tor and our improved

version.

We reperformed Experiment 1—using our TCP-over-

DTLS implementation of Tor instead of the standard

implementation—to investigate the effect of packet drop-

ping. The results are presented in Tables 5 and 6. We

reproduce our results from Tables 1 and 2 to contrast the

old (TCP) and new (TCP-over-DTLS) transports.

We find that throughput is much superior for the TCP-

over-DTLS version of Tor. This is likely because the

130 18th USENIX Security Symposium USENIX Association

Network Circuit Throughput Effective

Version Configuration Throughput Throughput Degradation Drop

(KB/s) (KB/s) Rate

TCP- No dropping 284 ± 35 47.3 ± 5.8 0 % 0 %

over- 0.1 % (remain.) 261 ± 42 43.5 ± 7.0 8 % 0.08 %

DTLS 0.1 % (shared) 270 ± 34 45.2 ± 5.6 4 % 0.03 %

No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %

TCP 0.1 % (remain.) 208 ± 14 34.7 ± 2.3 6 % 0.08 %

0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 5: Throughput for different dropping configurations.

Average Latency Effective

Version Configuration Latency Degradation Drop Rate

TCP- No dropping 428 ± 221 ms 0 % 0 %

over- 0.1 % (remaining) 510 ± 377 ms 20 % 0.08 %

DTLS 0.1 % (shared) 461 ± 356 ms 7 % 0.03 %

No dropping 933 ± 260 ms 0 % 0 %

TCP 0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %

0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 6: Latency for different dropping configurations.

TCP congestion control mechanism has less impact on

throttling when each TCP stream is separated. One

stream may back off, but the others will continue send-

ing, which results in a greater throughput over the bot-

tleneck connection. This is reasonable behaviour since

TCP was designed for separate streams to function over

the same route. If congestion is a serious problem then

multiple streams will be forced to back off and find the

appropriate congestion window. Importantly, the streams

that send a small amount of data are much less likely to

need to back off, so their small traffic will not have to

compete unfairly for room inside a small congestion win-

dow intended to throttle a noisy connection. The benefits

of this are clearly visible in the latency as well: cells

can travel through the network considerably faster in the

TCP-over-DTLS version of Tor. Despite the large confi-

dence intervals for latency mentioned earlier, we see now

that TCP-over-DTLS consistently has significantly lower

latency than the original TCP Tor.

The TCP-over-DTLS version has its observed

throughput and latency affected proportionally to packet

drop rate. It did not matter if the drop was happen-

ing on the shared link or the remaining link, since the

shared link is not a single TCP connection that multi-

plexes all traffic. Missing cells for different circuits no

longer cause unnecessary waiting, and so the only effect

on latency and throughput is the effect of actually drop-

ping cells along circuits.

5 Alternative Approaches

There are other means to improve Tor’s observed latency

than the one presented in this paper. For comparison, in

this section we outline two significant ones: UDP-OR,

and SCTP-over-DTLS.

5.1 UDP-OR

Another similar transport mechanism for Tor has been

proposed by Viecco [15] that encapsulates TCP pack-

ets from the OP and sends them over UDP until they

reach the exit node. Reliability guarantees and conges-

tion control are handled by the TCP stacks on the client

and the exit nodes, and the middle nodes only forward

traffic. A key design difference between UDP-OR and

our proposal is that ours intended on providing back-

wards compatibility with the existing Tor network while

Viecco’s proposal requires a synchronized update of the

Tor software for all users. This update may be cumber-

some given that Tor has thousands of routers and an un-

known number of clients estimated in the hundreds of

thousands.

This strategy proposes benefits in computational com-

plexity and network behaviour. Computationally, the

middle nodes must no longer perform unnecessary op-

erations: packet injection, stream read, stream write,

packet generation, and packet emission. It also removes

the responsibility of the middle node to handle retrans-

USENIX Association 18th USENIX Security Symposium 131

Experiment 3 Basic throughput and delay for TCP and

TCP-over-DTLS versions of Tor.

1: To compare TCP and TCP-over-DTLS we run the

experiment twice: one where all ORs use the original

TCP version of time, and one where they all use our

modified TCP-over-DTLS version of Tor.

2: A local Tor network running six routers on a local

host was configured to have a latency of 50 millisec-

onds.

3: Two OPs are configured to connect to our local Tor

network. They use distinct circuits, but each OR

along both circuit is the same. The latency-OP will

be used to measure the circuit’s latency by send-

ing periodic timestamp probes over Tor to a timing

server. The throughput-OP will be used to measure

the circuit’s throughput by requesting a large bulk

transfer and recording the rate at which it arrives.

4: We start the latency-OP’s timestamp probes and

measure the latency of the circuit. Since we have

not begun the throughput-OP, we record the time as

the base latency of the circuit.

5: We begin the throughput-OP’s bulk transfer and

measure throughput of the circuit. We continue to

measure latency using the latency-OP in the pres-

ence of other traffic. The latency results that are col-

lected are recorded separately from those of step 4.

6: Data was collected for over a minute, and each con-

figuration was run a half dozen times to obtain con-

fidence intervals.

missions, which means a reduction in its memory re-

quirements. The initial endpoint of communication will

be responsible for retransmitting the message if neces-

sary. We have shown that computational latency is in-

significant in Tor, so this is simply an incidental benefit.

The tangible benefit of UDP-OR is to improve the net-

work by allowing the ORs to function more exactly like

routers. When cells arrive out of order at the middle

node, they will be forwarded regardless, instead of wait-

ing in input buffers until the missing cell arrives. More-

over, by having the sender’s TCP stack view both hops

as a single network, we alleviate problems introduced by

disparity in network performance. Currently, congestion

control mechanisms are applied along each hop, mean-

ing that an OR in the middle of two connections with

different performance metrics will need to buffer data to

send over the slower connection. Tor provides its own

congestion control mechanism, but it does not have the

sophistication of TCP’s congestion control.

We require experimentation to determine if this pro-

posal is actually beneficial. While it is clear that mem-

ory requirements for middle nodes are reduced [15],

the endpoints will see increased delay for acknowledge-

ments. We expect an equilibrium for total system mem-

ory requirements since data will be buffered for a longer

time. Worse, the approach shifts memory requirements

from being evenly distributed to occurring only on exit

nodes—and these nodes are already burdened with extra

responsibilities. Since a significant fraction of Tor nodes

volunteer only to forward traffic, it is reasonable to use

their memory to ease the burden of exit nodes.

Circuits with long delays will also suffer reduced

throughput, and so using congestion control on as short a

path as possible will optimize performance. If a packet is

dropped along the circuit, the endpoint must now gener-

ate the retransmission message, possibly duplicating pre-

vious routing efforts and wasting valuable volunteered

bandwidth. It may be more efficient to have nodes along

a circuit return their CWND for the next hop, and have

each node use the minimum of their CWND and the next

hop’s CWND. Each node then optimizes their sending

while throttling their receiving.

5.1.1 Low-cost Privacy Attack

UDP-OR may introduce an attack that permits a hostile

entry node to determine the final node in a circuit. Previ-

ously each OR could only compute TCP metrics for ORs

with whom they were directly communicating. Viecco’s

system would have the sender’s TCP stack communicate

indirectly with an anonymous OR. Connection attributes,

such as congestion and delay, are now known for the

longer connection between the first and last nodes in a

circuit. The first node can determine the RTT for traffic

to the final node. It can also reliably compute the RTT

for its connection to the middle node. The difference in

latency reflects the RTT between the second node and

the anonymous final node. An adversary can use a sim-

ple technique to estimate the RTT between the second

node and every other UDP Tor node in the network [3],

possibly allowing them to eliminate many ORs from the

final node’s anonymity set. If it can reduce the set of

possible final hops, other reconnaissance techniques can

be applied, such as selectively flooding each OR outside

of Tor and attempting to observe an increased latency in-

side Tor [10]. Other TCP metrics may be amalgamated

to further aid this attack: congestion window, slow-start

threshold, occurrence of congestion over time, standard

deviation in round-trip times, etc. The feasibility of this

attack should be examined before allowing nodes who do

not already know each other’s identities to share a TCP

conversation.

5.2 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) [13]

is a message-based transport protocol. It provides sim-

132 18th USENIX Security Symposium USENIX Association

ilar features to TCP: connection-oriented reliable deliv-

ery with congestion control. However, it adds the ability

to automatically delimit messages instead of requiring

the receiving application to manage its own delimiters.

The interface is based on sending and receiving mes-

sages rather than bytes, which is appropriate for Tor’s

cell-based transport.

More importantly, SCTP also adds a feature well-

suited to our purposes—multiple streams can be trans-

ported over the same connection. SCTP allows multi-

ple independent ordered streams to be sent over the same

socket; we can use this feature to assign each circuit a

different stream. Cells from each circuit will arrive in

the order they were sent, but the order cells arrive across

all circuits may vary from they dispatch order. This is

exactly the behaviour we want for cells from different

circuits being sent between the same pair of ORs.

While SCTP is not as widely deployed as TCP, the

concept of using a user-level SCTP implementation [5]

inside Tor remains feasible. This suggests a SCTP-over-

DTLS transport similar in design to our TCP-over-DTLS

design. This means that the extra benefits of TCP-over-

DTLS will also extend to SCTP-over-DTLS: backwards

compatibility with the existing Tor network, a constant

number of kernel-level sockets required, and a secured

transport header.

What is most interesting about the potential of SCTP-

over-DTLS is SCTP’s congestion control mechanism.

Instead of each TCP stream storing its own congestion

control metrics, SCTP will share metrics and computa-

tions across all streams. An important question in the

development of such a scheme is whether SCTP will act

fairly towards streams that send little data when other

streams invoke congestion control, and whether the shar-

ing of congestion control metrics results in a privacy-

degrading attack by leaking information.

6 Future Work

6.1 Live Experiments

The most pressing future work is to perform these ex-

periments on live networks of geographically distributed

machines running TCP-over-DTLS Tor, using comput-

ers from the PlanetLab network, or indeed on the live

Tor network. Once running, we could measure latency

and throughput as we have already in our experiments,

comparing against results for regular Tor. Moreover, we

can also compare other approaches, such as SCTP-over-

DTLS and UDP-OR, using the same experiments. Note

that UDP-OR could of course not be tested on the live Tor

network, but it could be in a PlanetLab setup. A key met-

ric will be the distribution of throughput and latency for

high- and low-volume circuits before and after our im-

provements, and an analysis of the cause of the change.

Additionally, once most ORs use UDP, we can determine

if the reduced demand on open sockets solves the prob-

lem of socket proliferation on some operating systems.

6.2 TCP Stack Memory Management

Tor requires thousands of sockets to buffer fixed-size

cells of data, but data is only buffered when it arrives

out-of-order or has not been acknowledged. We envision

dynamic memory management such as a shared cell pool

to handle memory in Tor. Instead of repeatedly copying

data cells from various buffers, each cell that enters Tor

can be given a unique block of memory from the cell pool

until it is no longer needed. A state indicates where this

cell currently exists: input TCP buffer, input Tor buffer,

in processing, output Tor buffer, output TCP buffer. This

ensures that buffers are not allocated to store empty data,

which reduces the overall memory requirements. Each

cell also keeps track of its socket number, and its posi-

tion in the linked list of cells for that socket. While each

socket must still manage data such as its state and metrics

for congestion control, this is insignificant as compared

to the current memory requirements. This permits an ar-

bitrary number of sockets, for all operating systems, and

helps Tor’s scalability if the number of ORs increases by

orders of magnitude.

This approach results in the memory requirements of

Tor being a function of the number of cells it must man-

age at any time, independent of the number of open sock-

ets. Since the memory requirements are inextricably tied

to the throughput Tor offers, the user can parameterize

memory requirements in Tor’s configuration just as they

parameterize throughput. A client willing to denote more

throughput than its associated memory requirements will

have its contribution throttled as a result. If network

conditions result in a surge of memory required for Tor,

then it can simply stop reading from the UDP multiplex-

ing socket. The TCP stacks that sent this unread data

will assume there exists network congestion and conse-

quently throttle their sending—precisely the behaviour

we want—while minimizing leaked information about

the size of our cell pool.

7 Summary

Anonymous web browsing is an important step in the de-

velopment of the Internet, particularly as it grows ever

more inextricable from daily life. Tor is a privacy-

enhancing technology that provides Internet anonymity

using volunteers to relay traffic, and uses multiple relays

in series to ensure that no entity (other than the client) in

the system is aware of both the source and destination of

messages.

USENIX Association 18th USENIX Security Symposium 133

Relaying messages increases latency since traffic must

travel a longer distance before it is delivered. However,

the observed latency of Tor is much larger than just this

effect would suggest. To improve the usability of Tor,

we examined where this latency occurs, and found that it

happens when data sat idly in buffers due to congestion

control. Since multiple Tor circuits are multiplexed over

a single TCP connection between routers, we observed

cross-circuit interference due to the nature of TCP’s in-

order, reliable delivery and its congestion control mech-

anisms.

Our solution was the design and implementation of

a TCP-over-DTLS transport between ORs. Each cir-

cuit was given a unique TCP connection, but the TCP

packets themselves were sent over the DTLS protocol,

which provides confidentiality and security to the TCP

header. The TCP implementation is provided in user

space, where it acts as a black box that translates between

data streams and TCP/IP packets. We performed exper-

iments on our implemented version using a local exper-

imentation network and showed that we were successful

in removing the observed cross-circuit interference and

decreasing the observed latency.

Acknowledgements

We would like to thank Steven Bellovin, Vern Pax-

son, Urs Hengartner, S. Keshav, and the anonymous re-

viewiers for their helpful comments on improving this

paper. We also gratefully acknowledge the financial sup-

port of The Tor Project, MITACS, and NSERC.

References

[1] Tim Dierks and Eric Rescorla. RFC 5246—The

Transport Layer Security (TLS) Protocol Version

1.2. http://www.ietf.org/rfc/rfc5246.txt, August

2008.

[2] Roger Dingledine, Nick Mathewson, and Paul

Syverson. Tor: The Second-Generation Onion

Router. Proceedings of the 13th USENIX Security

Symposium, 2004.

[3] Krishna P. Gummadi, Stefan Saroiu, and Steven D.

Gribble. King: Estimating Latency between

Arbitrary Internet End Hosts. ACM SIGCOMM

Computer Communication Review, 2002.

[4] Information Sciences Institute. RFC

793—Transmission Control Protocol.

http://www.ietf.org/rfcs/rfc793.txt, September

1981.

[5] Andreas Jungmaier, Herbert Hölzlwimmer,

Michael Tüxen, and Thomas Dreibholz. The

SCTP library (sctplib).

http://www.sctp.de/sctp-download.html, 2007.

Accessed February 2009.

[6] Stephen Kent and Randall Atkinson. RFC

2401—Security Architecture for the Internet

Protocol. http://www.ietf.org/rfcs/rfc2401.txt,

November 1998.

[7] Marcus Leech et al. RFC 1928—SOCKS Protocol

Version 5. http://www.ietf.org/rfc/rfc1928.txt,

March 1996.

[8] Damon McCoy, Kevin Bauer, Dirk Grunwald,

Parisa Tabriz, and Douglas Sicker. Shining Light

in Dark Places: A Study of Anonymous Network

Usage. University of Colorado Technical Report

CU-CS-1032-07, August 2007.

[9] Nagendra Modadugu and Eric Rescorla. The

Design and Implementation of Datagram TLS.

Network and Distributed System Security

Symposium, 2004.

[10] Steven J. Murdoch and George Danezis. Low-Cost

Traffic Analysis of Tor. In IEEE Symposium on

Security and Privacy, pages 183–195, 2005.

[11] Prashant Pradhan, Srikanth Kandula, Wen Xu,

Anees Shaikh, and Erich Nahum. Daytona: A

User-Level TCP Stack.

http://nms.lcs.mit.edu/˜kandula/data/daytona.pdf,

2002.

[12] Joel Reardon. Improving Tor using a

TCP-over-DTLS Tunnel. Master’s thesis,

University of Waterloo, Waterloo, ON, September

2008.

[13] Randall Stewart, Qiaobing Xie, Ken Morneualt,

Chip Sharp, Hanns Juergen Schwarzbauer, Tom

Taylor, Ian Rytina, Malleswar Kalla, Lixia Zhang,

and Vern Paxson. RFC 2960—Stream Control

Transmission Protocol.

http://www.ietf.org/rfc/rfc2960.txt, October 2000.

[14] TorStatus. Tor Network Status.

http://torstatus.kgprog.com/. Accessed February

2009.

[15] Camilo Viecco. UDP-OR: A Fair Onion Transport

Design.

http://www.petsymposium.org/2008/hotpets/udp-

tor.pdf,

2008.

USENIX Association 18th USENIX Security Symposium 135

Locating Prefix Hijackers using LOCK

Tongqing Qiu

Georgia Tech

tongqqiu@cc.gatech.edu

Lusheng Ji

AT&T Labs – Research

lji@research.att.com

Dan Pei

AT&T Labs – Research

peidan@research.att.com

Jia Wang

AT&T Labs – Research

jiawang@research.att.com

Jun (Jim) Xu

Georgia Tech

jx@cc.gatech.edu

Hitesh Ballani

Cornell University

hitesh@cs.cornell.edu

Abstract

Prefix hijacking is one of the top known threats on to-

day’s Internet. A number of measurement based so-

lutions have been proposed to detect prefix hijacking

events. In this paper we take these solutions one step fur-

ther by addressing the problem of locating the attacker in

each of the detected hijacking event. Being able to locate

the attacker is critical for conducting necessary mitiga-

tion mechanisms at the earliest possible time to limit the

impact of the attack, successfully stopping the attack and

restoring the service.

We propose a robust scheme named LOCK, for LO-

Cating the prefix hijacKer ASes based on distributed In-

ternet measurements. LOCK locates each attacker AS

by actively monitoring paths (either in the control-plane

or in the data-plane) to the victim prefix from a small

number of carefully selected monitors distributed on the

Internet. Moreover, LOCK is robust against various

countermeasures that the hijackers may employ. This is

achieved by taking advantage of two observations: that

the hijacker cannot manipulate AS path before the path

reaches the hijacker, and that the paths to victim prefix

“converge” around the hijacker AS. We have deployed

LOCK on a number of PlanetLab nodes and conducted

several large scale measurements and experiments to

evaluate the performance. Our results show that LOCK

is able to pinpoint the prefix hijacker AS with an accu-

racy up to 94.3%.

1 Introduction

The Internet consists of tens of thousands of Au-

tonomous Systems (ASes), each of which is an indepen-

dently administrated domain. Inter-AS routing informa-

tion is maintained and exchanged by the Border Gate-

way Protocol (BGP). The lack of adequate authentication

schemes in BGP leaves an opportunity for misbehaving

routers to advertise and spread fabricated AS paths for

targeted prefixes. Originating such a false AS path an-

nouncement is referred to as “prefix hijacking”. Once a

BGP router accepts such a false route and replaces a le-

gitimate route with it, the traffic destined for the target

prefix can be redirected as the hijacker wishes. The vic-

tim prefix network of a successful hijacking will experi-

ence performance degradation, service outage, and secu-

rity breach. The incident of the prefix of YouTube being

hijacked by an AS in Pakistan for more than 2 hours [1]

is just a recent and better known reminder of the possi-

bility of real prefix hijacking attacks.

Recently proposed solutions for combating prefix hi-

jacking either monitor the state of Internet and detect on-

going hijacking events [12, 21, 22, 26, 34, 45], or attempt

to restore service for victim prefix networks [42]. Both

approaches are compatible with existing routing infras-

tructures and generally considered more deployable than

another family of proposals (e.g., [4, 8, 11, 13, 18, 19, 27,

32,35–37,44]) which aim at prefix hijacking prevention,

because the latter usually require changes to current rout-

ing infrastructures (e.g., router software, network opera-

tions), and some also require public key infrastructures.

However, the aforementioned detection and service

restoration solutions only solve parts of the problem and

a critical step is still missing towards a complete and au-

tomated detection-recovery system. That is how to locate

the hijackers. More importantly, the location of hijackers

is one of the key information that enables existing miti-

gation methods against prefix hijacking (e.g., [42]). One

may consider this step trivial. Indeed in current prac-

tice this step is actually accomplished by human inter-

actions and manual inspections of router logs. However,

we would argue that the success of the current practice is

due to the fact that discovered attacks so far are still prim-

itive. Many of them are simply not attacks but rather the

results of router mis-configurations. As we will elabo-

rate, locating sophisticated hijackers is far from a trivial

problem and the current practice will have great difficul-

ties in locating them.

136 18th USENIX Security Symposium USENIX Association

In this paper, we present a scheme called LOCK to

LOCate prefix hijacKers. It is a light-weight and incre-

mentally deployable scheme for locating hijacker ASes.

The main idea behind LOCK are based the following

two observations: that the hijacker cannot manipulate

AS path before the path reaches the hijacker, and that

the paths to victim prefix “converge” around the hijacker

AS. Our contributions are four-fold. First, to the best

of our knowledge, it is the first work studying the at-

tacker locating problem for prefix hijacking, even when

countermeasures are engaged by the hijacker. Second,

our locating scheme can use either data-plane or control-

plane information, making the deployment more flexible

in practice. Third, we propose an algorithm for selecting

locations where data-plane or control-plane data are col-

lected such that the hijackers can be more efficiently lo-

cated. Finally, we have deployed LOCK on a number of

PlanetLab nodes and conducted several large scale mea-

surements and experiments to evaluate the performance

of LOCK against three groups of hijacking scenarios:

synthetic attacks simulated using real path and topology

information collected on the Internet, reconstructed pre-

viously known attacks, and controlled attack experiments

conducted on the Internet. We show that the proposed ap-

proach can effectively locate the attacker AS with up to

94.3% accuracy.

The rest of the paper is organized as follows. Section

2 provides background information on prefix hijacking.

Section 3 provides an overview of the framework of our

LOCK scheme. Then we describe detailed monitoring

and locating methodologies in Section 4 and Section 5

respectively. Section 6 evaluates the performance of the

LOCK scheme. Section 7 briefly surveys related works

before Section 8 concludes the paper.

2 Background

As mentioned before, IP prefix hijacking occurs when

a mis-configured or malicious BGP router either origi-

nates or announces an AS path for an IP prefix not owned

by the router’s AS. In these BGP updates the misbehav-

ing router’s AS appears very attractive as a next hop for

forwarding traffic towards that IP prefix. ASes that re-

ceive such ill-formed BGP updates may accept and fur-

ther propagate the false route. As a result the route entry

for the IP prefix in these ASes may be polluted and traffic

from certain part of the Internet destined for the victim

prefix is redirected to the attacker AS.

Such weakness of the inter-domain routing infrastruc-

ture has great danger of being exploited for malicious

purposes. For instance the aforementioned misbehaving

AS can either drop all traffic addressed to the victim pre-

fix that it receives and effectively perform a denial-of-

service attack against the prefix owner, or redirect traf-

fic to an incorrect destination and use this for a phish-

ing attack [28]. It can also use this technique to spread

spams [33].

We refer to this kind of route manipulation as IP pre-

fix hijack attacks and the party conducting the attack

hijacker or attacker. Correspondingly the misbehaving

router’s AS becomes the hijacker AS, and the part of the

Internet whose traffic towards the victim prefix is redi-

rected to the hijacker AS is hijacked. So do we call the

data forwarding paths that are now altered to go through

the hijacker AS hijacked. We also refer to the victim pre-

fix as the target prefix.

Following the convention in [45], we classify prefix

hijacks into the following three categories:

• Blackholing: the attacker simply drops the hijacked

packets.

• Imposture: the attacker responds to senders of the

hijacked traffic, mimicking the true destination’s

(the target prefix’s) behavior.

• Interception: the attacker forwards the hi-

jacked traffic to the target prefix after eavesdrop-

ping/recording the information in the packets.

While the conventional view of the damage of prefix hi-

jacking has been focused on blackholing, the other two

types of hijacking are equally important, if not more

damaging [6]. In addition, the characteristics of different

hijack types are different, which often affect how differ-

ent types of attacks are detected. In this paper, we use

the term hijack to refer to all three kinds of prefix hijack

attacks unless otherwise specified.

There have been a number of approaches proposed for

detecting prefix hijacks. They utilize either information

in BGP updates collected from control plane [21, 22, 26,

34], or end-to-end probing information collected from

data plane [43, 45], or both [6, 12, 36]. We will not get

into the details of most of these approaches here because

LOCK is a hijacker-locating scheme, not a hijack detec-

tion scheme. The difference between these two will be

explained later in section 3.1. To locate a hijacker, the

LOCK scheme only needs to know whether a given pre-

fix is hijacked. Therefore LOCK can be used together

with any detection method to further locate the hijacker

AS. Moreover, LOCK can locate the hijacker using ei-

ther data-plane or control-plane information.

3 Framework

In this section, we present an overview of key ideas of the

hijacker locating algorithm in LOCK. Similar to detect-

ing prefix hijacking, locating hijacker AS can be done in

either control-plane or data-plane. Either way, the goal

USENIX Association 18th USENIX Security Symposium 137

is, to use the AS path information to the hijacked prefix

observed at multiple and diverse vantage points (or mon-

itors) to figure out who the hijacker is. In control-plane

approach, the AS path information is obtained from BGP

routing tables or update messages. In data-plane ap-

proach, the AS path is obtained via AS-level traceroute

(mapping the IP addresses in traceroute to AS numbers).

Both methods have pros and cons. Realtime data-

plane information from multiple diverse vantage points is

easier to be obtained than realtime BGP information(e.g.

the BGP updates from [3] are typically delayed for a few

hours). On the other hand, it is relatively easier for the

attacker to manipulate the data-plane AS path to coun-

termeasure the locating algorithm than the control-plane

AS path. LOCK can use either data-plane or control-

plane AS paths to locate the hijackers.

3.1 Challenges

Currently, the most commonly used hijacker-locating ap-

proach (called simple locating approach) is to look at the

origin ASes of the target prefix. For example, Figure 1

(a) shows the control-plane AS path information to tar-

get prefix p at vantage points M1, M2, and M3, respec-

tively, before hijacker H launches the hijack. All three

vantage points observe the origin AS is T . In Figure 1

(b), Hijacker AS H announces a path H to target pre-

fix p, which ASes A, B, M1, and M2 accept since the

paths via H are better than their previous ones via CDT .

In this case, the simple locating approach can easily iden-

tify the newly-appearing origin AS H as the hijacker.

However, this simple locating approach can fail even

without any countermeasures by the hijackers. For ex-

ample, in Figure 1(c), hijacker H pretends there is a link

between H and the target AS T , and announces an AS

path HT , again accepted by A,B,M1, and M2. The

simple locating approach does not work here since the

origin AS in all the AS paths are still T .

One might try to look beyond just origin AS and check

other ASes in the path, but the hijacker AS might counter

this such that the hijacker AS might not even appear in

any of the AS paths. For example, in Figure 1(d) H sim-

ply announces an AS path T without prepending its own

AS number H 1.

Above challenges in control-plane locating ap-

proaches also exist in data-plane approaches. Almost

all data-plane path probing mechanisms are derived from

the well known traceroute program. In traceroute, trig-

gering messages with different initial TTL values are sent

towards the same destination. As these messages are for-

warded along the path to this destination, as soon as a

message’s TTL reduces to zero after reaching a router,

the router needs to send back an ICMP Timeout message

to notify the probing source. If the triggering messages

go through the hijacker, this happens when the trigger-

ing messages’ initial TTL values are greater than the hop

distance from the probing source to the hijacker, the hi-

jacker can do many things to interfere the path probing

as a countermeasure to the locating algorithm.

In Figure 2(a), the hijacker AS’s border router re-

sponds to traceroute honestly in blackholing (in which

for example the border router responds with a no route

ICMP message with its own IP address) and imposture

(in which for example a router in H responds “destina-

tion reached” message with its own IP address). In either

case, the router address belongs to H and maps to AS H ,

and the simple locating approach can identify H as the

newly appearing origin AS hence the hijacker AS.

However, in the interception attack shown in Fig-

ure 2(b), the hijacker further propagates the traceroute

probe packets to the target via XY ZT , thus the origin

AS is still H . Hence the simple locating approach fails

in this case.

Furthermore, the hijacker can use various countermea-

sures. For instance, the hijacker may simply drop the

triggering messages without replying to interrupt tracer-

oute probing from proceeding further. Or it may send

back ICMP Timeout messages with arbitrary source IP

addresses to trick the probing source into thinking routers

of those addresses are en route to the destination. The hi-

jacker may even respond with ICMP Timeout messages

before the triggering messages’ TTL values reach zero.

In Figure 2 (c), hijacker H manipulates the traceroute

response such that after the IP-to-AS mapping, the AS

path appears to M1 to be ACDT , and appears to M2 to

be BDT , neither of which contains hijacker AS H in it,

making the hijacker locating difficult. We refer to above

manipulation of traceroute response as countermeasure

for data-plane locating approach, and call such hijackers

countermeasure-capable or malicious.

In summary, sophisticated hijackers that are capable of

engaging countermeasures can inject false path informa-

tion into measurements collected in both control plane

and data plane, easily evading simple hijacker-locating

mechanisms. We therefore design a more effective algo-

rithm for locating these hijackers in the next section.

3.2 Locating Hijackers

The basic idea of LOCK is based on two key observa-

tions, which apply to both data-plane and control-plane

approaches, different types of hijacks (blackholing, im-

posture, and interception), and with or without counter-

measures by the attackers.

The first observation is that the hijacker cannot ma-

nipulate the portion of the AS path from a polluted van-

tage point to the upstream (i.e., closer to the vantage

point) neighbor AS of the hijacker AS. For example, in

138 18th USENIX Security Symposium USENIX Association

M 1

HM 2

M 3

(a) B e f o r e t h e a t t a c k

B

A

C

B C D T

C D T

T

M 1

HM 2

M 3

(b) H i j a c k e r a n n o u n c e s i t s e l f

 a s o r i g i n A S

B

A
H

H

(c) H i j a c k e r a n n o u n c e s i t s e l f

 a s a n e i g h o b r o f T

D

A H

B H

C D T

C TD

M 1

HM 2

M 3

B

A
H T

H T

A H T

B H T

C D T

C TD

A B C D T

(d) H i j a c k e r a n n o u n c e s i t s e l f a s T

M 1

H
M 2

M 3

B

A
 T

 T

A T

B T

C D T

C TD

X
Y

X

Z

X
Y

Z

X
Y

Z

X
Y

Z

A S p a t h a n n o u n c e m e n t

c o n t r o l - p l a n e A S p a t h

: p o l l u t e d A S : u n a f f e c t e d A S

p

T : T a r g e t A S H : H i j a c k e r A S

p p p

Figure 1: Control plane examples

M 1

HM 2

M 3

(a) B l a c k h o l i n g o r I m p o s t u r e

B

A
H

H

(b) I n t e r c e p t i o n

d a t a - p l a n e A S p a t h

B H

C D T

C TD

M 1

HM 2

M 3

B

A
H X Y Z T

H X Y Z T

A H X Y Z T

B H X Y Z T

C D T

C TD

(c) H i j a k e r m a n i p u l a t e s t r a c e r o u t e

r e s p o n s e

M 1

H
M 2

M 3

B

A

 D T

A C D T

B D T

C D T

C TD

X
Y

Z

X
Y

Z

X
Y

Z

 C D T

t r a c e r o u t e r e s p o n s e

A H

: p o l l u t e d n o d e : u n a f f e c t e d n o d eT : T a r g e t A S H : H i j a c k e r A S

p pp

Figure 2: Data plane examples

Figures 1(c) and (d) and Figures 2 (b) and (c), for the

polluted vantage points M1 and M2, the upstream ASes

for hijacker AS H are A and B, and the portion of AS

path M1A and M2B are trustworthy. This is easy to

understand since the routers from the vantage points to

hijacker upstream ASes are all well-behaving ones thus

conform to BGP protocol in control-plane and ICMP

protocol used in traceroute in data-plane.

The second observation is that the trustworthy portion

of polluted AS paths from multiple vantage points to a

hijacked victim prefix “converge” “around” the hijacker

AS. This is also intuitive since, if the set of monitors are

topologically diverse enough, the trustworthy portion of

AS paths from all the polluted monitors to the target pre-

fix must include the upstream AS neighbors of the hi-

jacker AS (e.g. in Figure 1(d), and Figure 2 (c)) thus

converge “around” the hijacker AS, or directly converge

at hijacker AS (e.g. in Figure 1(b) and (c) and Figure 2(a)

and (b)).

Since we do not know beforehand the hijack scenarios

and whether there is any countermeasure, we focus on

identifying these upstream neighbors of the hijacker AS,

and then intuitively hijacker should be within the inter-

section of the 1-hop neighbor sets of the hijacker’s neigh-

bors. And chances are that the size of the intersection set

is very small if the monitors have diversified locations.

The neighbor sets of a given AS can be obtained from

a daily snapshot of the state-of-arts AS level topology

repository such as [16].

For example, in both Figures 1 and 2, ideally sup-

pose we know that ASes A, B (which are on the pol-

luted paths from vantage points M1 and M2, respec-

tively) are the upstream neighbors of the hijacker. We

can then infer that the hijacker AS should be within

the intersection of neighorset(A) = {M1, B,H} and

neighborse(B) = {M2, A,H}, which is H . Of course

in reality LOCK does not know beforehand which ASes

are the upstream neighbors of the hijackers, thus each

AS in a polluted path can potentially be such a neighbor

of the hijacker AS. And hence the hijacker could be a

neighbor of any of these nodes. We therefore put all the

neighbors of each AS on a polluted path together with

the path nodes themselves to form a neighborhood set of

the polluted path. The hijacker should be included in this

neighborhood set.

For reasons that we will explain in the Section 5, in-

stead of using the neighborhood set of an arbitrary path,

LOCK conservatively starts from the union of all the

neighborhood sets of all polluted paths, H. Then given

that all polluted paths go through a neighbor AS of the hi-

jacker, an AS which appears in more neighborhood sets

is more likely to be the hijacker. We thus “rank” the ASes

within H based on how many neighborhood sets an AS

is in to narrow down to the handful of top ranked ASes.

USENIX Association 18th USENIX Security Symposium 139

Also when there are multiple convergence points, the ear-

liest convergence point is more likely to be the hijacker

than the later ones. More detailed ranking algorithm will

be presented in Section 5.

As shown in this section, LOCK can utilize either

control-plane or data-plane information. However, for

the ease of presentation and due to space limitation, in

the rest of paper we focus on data-plane approach unless

otherwise specified.

4 Monitor Selection

LOCK operates in a distributed fashion from a number

of monitors on the Internet. Both the number of moni-

tors and locations of these monitors affect the accuracy in

locating prefix hijackers. In general, the more monitors

used by LOCK, the higher accuracy LOCK can achieve

in locating prefix hijackers, and the more measurement

overhead are incurred by LOCK. More importantly, the

measurement overhead increase linearly as the number

of monitors increases, while at the same time the im-

proved accuracy gained by each additional monitor can

gradually diminish. Therefore, it is hopeful to achieve

very good accuracy with a limited number of carefully

selected monitors.

In this section, we present a novel algorithm for select-

ing a number of monitors from a candidate set. In par-

ticular, we model the monitor selection problem as fol-

lows. Initially, we have M candidate monitors around the

world. For each target prefix, we select a subset m mon-

itors among the M candidates. In order to achieve the

highest possible hijacker-locating accuracy with a lim-

ited number of monitors, the selection of monitors should

be guided by two objectives: (i) maximize the likelihood

of observing hijacking events on the target prefix; and (ii)

maximize the diversity of paths from monitors to the tar-

get prefix so that a hijacking event can be observed from

multiple distinct vantage points.

Our monitor selection algorithm consists of three

steps:

1. Clustering: The M candidate monitors are grouped

into m clusters. Monitors in the same cluster have

more similar paths to the target prefix than those in

different clusters.

2. Ranking: Candidate monitors in each cluster are

ranked based on probability of their paths to the

target prefix being polluted when the prefix is hi-

jacked. The monitors with higher ranks are more

likely to observe the hijacking event.

3. Selecting: The monitor which ranks the highest in

each cluster is chosen to monitor the target prefix.

Thus, a total of m monitors are selected for each

target prefix.

4.1 Clustering

For a given target prefix, the candidate monitors are clus-

tered based on similarity of their AS-level paths to the

prefix. We measure the similarity between a pair of paths

as the number of common ASes between these two paths

over the length of the shorter path. If there is no com-

mon AS, the similarity score is 0. On the other hand, if

the two paths are identical or one path is a sub-path of

the other, the similarity score is 1. We also define the

similarity between two clusters of paths as the maximum

similarity between any two paths, one from each cluster.

We model the clustering part as a hierarchical clus-

tering problem. Such problems have well-known algo-

rithms, such as [17], that are polynomial-time complex.

In this paper, we adopt the following simple clustering

algorithm2. First, we start from M clusters, with one

candidate site in each cluster, and compute similarity

score for each pair of clusters. Second, we identify the

pair of clusters with the largest similarity score among

all pairs of clusters, and merge these two clusters into a

single cluster. Third, we recompute the similarity score

between this newly-formed cluster with each of the other

clusters. We repeat steps two and three until only m clus-

ters remain.

4.2 Ranking

We rank candidate monitors in each cluster based on their

likelihood of observing hijacking events on the target

prefix t (i.e., the path from monitor to target prefix is pol-

luted by hijacking). For a given candidate site s, whether

or not the route from s to t is polluted by hijacker h
depends on the original best route (before the hijacking

happens) from s to t and the fake route announced by h.

This has been demonstrated by previous analysis in [6].

We assume that “prefer customer route” and “valley-

free routing” are commonly adopted interdomain routing

policies on today’s Internet. We denote the original best

route from s to t as a “customer-route”, a “peer-route”, or

a “provider-route” if the next-hop AS on the route from s
to t is a customer, a peer, or a provider of the AS to which

s belongs, respectively. According to the interdomain

routing policies, a customer-route would be the most

preferable and a provider-route would be the least prefer-

able by each router; similarly, when policy preferences

are equal, the route with shorter AS path is more prefer-

able [10]. Therefore, when hijacker h announces a fake

path, the monitor whose original best route is provider-

route is more likely to be polluted than a original route

of peer-route, which in turn is more likely to be polluted

140 18th USENIX Security Symposium USENIX Association

Algorithm 1: Ranking monitors in each cluster

foreach monitor i in the cluster1

if provider-route R[i] = 300; /* Assign the2

ranking. The larger the number is, the higher the

rank is. */

elseif peer-route R[i] = 200;3

else R[i] = 100;4

R[i]+ = D(i, t); /* Add the AS-level distance */5

than a original route of customer-route; when the policy

preferences are equal, the monitor whose original best

route has a longer AS path to t is more likely to be pol-

luted than the one whose original best route has a shorter

AS path (Please refer to Table 1 of [6] for detailed anal-

ysis). Our ranking algorithm is shown in Algorithm 1.

Note that establishing AS topology itself is a challeng-

ing problem. We use most advanced techniques [30] to

infer the AS relationship. Admittedly, inferred results

could be incomplete. However, the evaluation part will

show that the ranking algorithm based on such data can

still achieve high location accuracy.

5 Hijacker-Locating Algorithm

LOCK locates hijacker AS based on AS paths from a set

of monitors to the victim prefix. The AS path from a

monitor to the victim prefix can be either obtained from

the control plane (e.g., BGP AS path) or from the data

plane (e.g., traceroute path). In the latter case, LOCK

will need to pre-process the path and compute the corre-

sponding AS path (described in Section 5.1).

5.1 Pre-Processing

When a prefix is hijacked, a portion of the Internet will

experience the hijack. Traffic originated from this por-

tion of the Internet and destined for the hijacked pre-

fix will be altered to go through the hijacker. Moni-

tors deployed in this affected portion of the Internet can

observe that their monitor-to-prefix paths being altered.

These monitor-to-prefix paths are the foundation of our

hijacker-locating algorithm. Only paths changed by the

hijack event should be supplied to the hijacker-locating

algorithm. Methods such as the one outlined in [45] help

separate real hijack induced path changes from changes

caused by other non-hijack reasons.

If the monitor-to-prefix path is obtained from the data

plane, then LOCK pre-processes the path in the follow-

ing way. The most common tool for acquiring IP for-

warding path in the data plane is the well known tracer-

oute program. This program sends out a series of trig-

gering packets with different initial TTL values to trig-

ger the routers en route to the destination to return ICMP

Timeout messages as soon as they observe a triggering

message’s TTL value reaching 0, hence revealing these

routers’ identities. These traceroute results are router-

level paths and they need to be converted to AS-level

paths. During this conversion, NULL entries in tracer-

oute results are simply discarded. This simplification

rarely has any effect on the resulted AS path because as

traceroute proceeds within a particular AS, only if all

routers in this AS failed to show up in traceroute results

our results may be affected, which we have found this

to be very rare. These resulting AS paths are known as

the “reported paths” by the monitors in the rest of the

section.

We use publicly available IP to AS mapping data pro-

vided by the iPlane services [15] to convert router IP ad-

dresses to their corresponding AS numbers. It is known

that accurately mapping IP addresses to AS numbers

is difficult due to problems such as Internet Exchange

Points (IXPs) and sibling ASes [6, 25]. We argue that

the impact of these mapping errors on the results of our

hijacker-locating algorithm is minor. Firstly the distribu-

tion of the nodes, either routers or ASes, that may cause

any mapping error in their corresponding Internet topolo-

gies, either router level or AS level, is sparse. If our paths

do not contain these problematic nodes, our results are

not affected by mapping errors. Secondly, it will become

apparent, as more of the details of the hijacker-locating

algorithm are described, that our algorithm is rather ro-

bust against such mapping errors. As long as these errors

do not occur when mapping nodes near the hijacker, they

will not affect the result of our algorithm. It is also worth-

while noting that the IP to AS mapping data do not need

to be obtained from realtime control plane data. That

is, the IP to AS mapping can be pre-computed and stored

since it usually does not change over short period of time.

It is also helpful to perform sanity checks on the AS

paths before we begin the hijacker-locating algorithm.

The hijacker may forge traceroute results if a traceroute

triggering message actually passes through the hijacker.

Since the prefix has been hijacked, triggering messages

with large enough initial TTL values, at least larger than

the hop distance between the probing monitor and the

hijacker, will inevitably pass through the hijacker. For a

sophisticated hijacker, this is a good opportunity to fabri-

cate responses to these triggering messages to conceal its

own identity. As a result, the AS paths mapped from such

a fake traceroute results may contain erroneous ASes as

well. It is easy to see that these “noises” only appear

in the later portion of a path because the portion that is

before the hijacker cannot be altered by the hijacker, –

the ICMP triggering messages do not reach the hijacker.

Hence if a node in a path is determined to be a fake

node, we really do not need to consider any nodes beyond

USENIX Association 18th USENIX Security Symposium 141

that point because this point must be already beyond the

hacker’s position in the path.

In the pre-processing part, we consider the duplicated

appearances of AS nodes. If a node appears more than

once in a path, any appearance beyond the first is consid-

ered fake. This is because real traceroute results should

not contain loops.

5.2 Basic Algorithm

We denote the set of monitors that have detected the hi-

jacking and reported their altered monitor-to-prefix paths

by M. For each monitor mi within M, there is an

AS level monitor-to-prefix path Pi, either computed by

pre-processing traceroute path or obtained directly from

BGP routes. We define the neighborhood set of a spe-

cific path Pi, denoted as N (Pi), as the union of all path

nodes and their one-hop neighbors. The target prefix’ AS

should be removed from all N (Pi). The reason is simple,

– it is not the hijacker AS. Note that LOCK computes the

neighborhood set based on AS topology inferred from

RouteView [3] before the hijacking is detected, rather

than real-time BGP data when the hijacking is ongoing.

Though the hijacker can try to pollute the AS topology

information before launching real hijacking attack on the

victim prefix, the impact of such evasion is minimal on

the neighborhood set computation because it is difficult

for hijacker to “remove” an observed true link from the

AS topology by announcing fake routes.

We are interested in the neighborhood sets of the AS

paths instead of just the AS paths themselves because

the hijacker may actually not show up in any of the AS

paths if it manipulates traceroute results. However, even

under this condition the ASes which are immediately

before the hijacker along the paths are real. Thus, the

union of all neighborhood sets of all reported AS paths,

H =
�

i
N (Pi), form our search space for the hijacker.

We denote each node in this search space as ak. The

hijacker-locating algorithm is essentially a ranking algo-

rithm which assigns each node in H a rank based on their

suspicious level of being the hijacker.

The LOCK algorithm ranks each AS node ak ∈ H
based on two values, covered count C(ak) and total dis-

tance to monitors D(ak). The covered count is simply

computed by counting ak appearing in how many path

neighborhood sets. For each neighborhood set N (Pi)
that ak is a member, we compute the distance between

ak and the monitor of the path mi, d(mi, ak). This dis-

tance equals to the AS-level hop count from mi to ak

along the path Pi if ak is on the path Pi. Otherwise,

d(mi, ak) equals to the distance from mi to ak’s neigh-

bor, who is both on Pi and the closest to mi, plus 1. If

ak is not a member of a path neighborhood set N (Pi),
the distance d(mi, ak) is set to 0. The total distance to

Algorithm 2: The pseudo-code of locating algorithm

Initializing1

set H, C, D empty;2

Updating3

foreach mi in the monitor set M4

foreach ak ∈ N (Pi)5

if ak ∈ H6

D(ak) += d(mi, ak);7

C(ak) += 1;8

else9

insert ak in H ;10

C(ak) = 0;11

D(ak) = d(mi, ak);12

Ranking13

sort ak ∈ H by C(ak);14

for ak with the same value of C(ak);15

sort ak by D(ak);16

monitors equals to the summation of all d(mi, ak).

After for each ak in H both covered count C(ak) and

total distance to monitors D(ak) are computed, we rank

all nodes in H firstly based on their covered count. The

greater the covered count a node ak has, the higher it is

ranked. Then for nodes having the same covered count,

ties are broken by ranking them based on their total

distance to monitors, –the lower the total distance, the

higher the rank. If there are still ties, node ranks are de-

termined randomly.

Hence, the final result of the locating algorithm is a list

of nodes ak, ordered based on how suspicious each node

is being the hijacker. The most suspicious AS appears

on the top of the list. The pseudo-code of the locating

algorithm is shown in Algorithm 2.

The ranking algorithm described here may seem

overly complicated for finding where the reported paths

converge. However it is designed specifically to be ro-

bust against various measurement errors and possible hi-

jacker countermeasures. One particular reason for this

design is to reduce the effect of individual false paths. If

a monitor-to-prefix path is changed due to reasons other

than being hijacked and the monitor falsely assesses the

situation as hijack, the path reported by this monitor may

cause confusion on where the paths converge. Since it

is difficult to distinguish this kind of paths beforehand,

our algorithm has adopted the approach as described

above to discredit the effect of these individual erroneous

paths. For similar reasons, our ranking algorithm is ro-

bust against the IP-to-AS mapping errors if any.

Another reason for outputting an ordered list is that

there are cases that hijacked paths converge before these

paths reach the hijacker (early converge). This is more

142 18th USENIX Security Symposium USENIX Association

likely to happen when the hijacker is located far away

from the Internet core where the connectivity is rich. In

this case the hijacked paths may converge at an upstream

provider of the hijacker in stead of the hijacker itself.

Although as we will show later these hijacking scenarios

typically have small impacts, in other words the portion

of the Internet that is affected by such hijacks is small;

still we wish to locate the hijacker. A list of suspects

ranked by level of suspicion is well suited for addressing

this issue.

5.3 Improvements

After the suspect list is computed, we can apply addi-

tional post-processing methods to further improve our re-

sults. The basic algorithm is very conservative in the way

that H includes all possible candidates. Now we look

into ways that H may be reduced. The hope is that with

a trimmed suspect set to begin with, the locating algo-

rithm can get more focused on the hijacker by increasing

the rate that the most suspicious node on the list is the hi-

jacker. Both improvements are designed to alleviate the

early converge problem we mentioned before. Note that

the improvements may exclude the real hijacker from the

suspect set, but the evaluation (in Section 6.3.5) shows

that chance is very small.

5.3.1 Improvement One: AS Relationship

In the basic algorithm, we have only taken AS topology

into account. In other words, all topological neighbors

of nodes on a reported AS path are added to the path’s

neighborhood set. In reality, not all physical connections

between ASes are actively used for carrying traffic. In

particular, some connections may be used only for traf-

fic of one direction but not the other. This is largely due

to profit-driven routing policies between different ISPs.

Internet paths have been found to follow the “valley-

free” property [10], i.e. after traversing a provider-to-

customer edge or a peer edge, a path will not traverse

another customer-to-provider path or another peer edge.

If we constrain our suspect set using this AS relationship

based property by removing the neighbors that do not

follow the “Valley-free” property from the neighborhood

set of each reported path, we are able to reduce the size

of the neighborhood set and further on the suspect set H.

One matter needs to be pointed out is that not all links

on the reported paths are necessarily real due to the hi-

jacker’s countermeasures. Since we do not know what

links are fabricated we should not trim the neighborhood

sets too aggressively. We only perform this improvement

on path links that we are reasonably certain that they are

real. In particular, as we know that an attacker cannot

forge path links that are before itself, thus we can rea-

sonably consider that on each reported path the links that

are before the node immediately before the most suspi-

cious node are real, and the trimming is only done on

neighbors of these links.

This AS relationship based improvement is incorpo-

rated into the basic algorithm in an iterative fashion.

We first pre-compute AS relationship information using

method proposed in [10]. Note that this is done offline

and does not require any real time access to the control

plane information because AS relationship rarely change

over time. After each execution of the basic algorithm

produces a ranked suspect list, we can assume that on

each path from the path’s reporting monitor to the node

immediately before the most suspicious node, all AS

paths are valid. Based on these valid links, we can fur-

ther infer the valid link in each neighborhood set. When

there is any change of neighborhood set, we run the lo-

cating algorithm again to update the suspicious list. The

iteration will stop if there is no change of suspicious list.

5.3.2 Improvement Two: Excluding Innocent ASes

The second improvement focuses on removing nodes

from the suspect set H of whose innocence we are rea-

sonably certain. One group of these nodes are the ones

that are on the reported paths that actually pass through

the most suspicious node and before the most suspicious

node. The reason for this exclusion is again that the at-

tacker cannot forge the identity of these nodes.

The second group of the innocent nodes are selected

based on the path disagreement test described in [45].

In path disagreement test, a reference point that is out-

side of the target prefix but topologically very close to

the prefix is selected and the path from a monitor to this

reference point and the path from same monitor to the

target prefix are compared. If they differ significantly it

is highly likely that the prefix has been hijacked. The

high accuracy of this test leads us to believe that nodes

on monitor-to-reference point paths are not likely to be

the hijacker. They can be excluded from the suspect set.

The second improvement is again incorporated into

the basic algorithm in an iterative fashion. After each ex-

ecution of the basic algorithm, the suspect set is reduced

by removing nodes of the two aforementioned innocent

groups. Then basic algorithm is executed again using the

reduced suspect set. The iteration is repeated until the

basic suspect set is stable.

6 Evaluation

We implemented and deployed LOCK on Planet-

Lab [31]. This is a necessary step to show that LOCK

is deployable in real world system. Also using the Plan-

etLab testbed, we evaluated the performance of LOCK

USENIX Association 18th USENIX Security Symposium 143

based on measurements of the deployed LOCK system.

In this section, we first present our measurement setup

and evaluation methodology. Then we evaluate the per-

formance of the monitor selection algorithm in LOCK,

and the effectiveness of LOCK against against syn-

thetic hijacks, reconstructed previously-known hijacking

events, and real hijacking attacks launched by us.

6.1 Measurement Setup

6.1.1 Candidate Monitors

In our experiments, we first chose a number of geograph-

ically diversified PlanetLab [31] nodes as candidate net-

work location monitors. We manually selected 73 Plan-

etLab nodes in 36 distinct ASes in different geographical

regions. More specifically, relying on their DNS names,

half of the nodes are in the U.S., covering both coasts

and the middle. The other half were selected from other

countries across multiple continents. Among these can-

didate monitors, a set of monitors were selected using the

algorithm presented in Section 4 to monitor each target

prefix.

6.1.2 Target Prefixes

We selected target prefixes from four different sources:

(i) Multiple Origin ASes (MOAS) prefixes, (ii) Single

Origin AS (SOAS) prefixes with large traffic volume,

(iii) prefixes of popular Web sites, and (vi) prefixes of

popular online social networks. To get prefixes from

sources (i) and (ii), we first use BGP tables obtained

from RouteViews [3] and RIPE [2] to identify the ini-

tial candidates of MOAS and SOAS prefixes. Then for

each candidate prefix, we tried to identify a small num-

ber (up to 4) of live (i.e. responsive to ping) IP addresses.

To avoid scanning the entire candidate prefixes for live IP

addresses, we mainly used the prefixes’ local DNS server

IP addresses to represent the prefix. If we failed to verify

any live IP address for a particular prefix, we discarded

this prefix from our experiments. Using this method, we

selected 253 MOAS prefixes. We also ranked all SOAS

prefixes based on “popularity” (i.e. traffic volume ob-

served at a Tier-1 ISP based on Netflow) of the prefix

and selected top 200 prefixes with live local DNS server

IP addresses.

We also selected prefixes that correspond to popular

applications on the Internet: Web and online social net-

works. In particular, we selected the top 100 popular

Web sites based on the Alex [5] ranking and obtain their

IP addresses and corresponding prefixes. We also ob-

tained IP addresses and prefixes of YouTube and 50 pop-

ular online social networks. Each of the selected online

social networks has at least 1 million registered users in

multiple countries. Combining prefixes from all above

four sources, we have a total of 451 target prefixes.

6.1.3 Measurement Data Gathering

In our experiments, each monitor measures its paths to all

selected IP addresses in all target prefixes via traceroute.

We also measured paths from each monitor to reference

points of target prefixes [45]. In addition, each moni-

tor also measures its paths to other monitors. We obtain

AS-level paths of above measured paths by mapping IP

addresses to their ASes based on the IP-to-AS mapping

published at iPlane [15].

The results presented here are based on monitoring

data collected from March 20th, 2008 to April 20th,

2008. In particular, we measured each path (from a mon-

itor to a target prefix) every 5 minutes.

In addition, we obtained the AS topology data during

the same time period from [16]. We also used the AS re-

lationship information captured for customer-to-provider

and peer links over 6 month (from June 2007 to Decem-

ber 2007) using the inferring technique described in [24].

6.2 Evaluation Methodology

We evaluated LOCK based on three sets of prefix hi-

jacking experiments: (i) synthetic prefix hijacking events

based on Internet measurement data; (ii) reconstructed

previously-known prefix hijacking events based on In-

ternet measurement data; and (iii) prefix hijacking events

launched by us on the Internet.

6.2.1 Simulating Synthetic Prefix Hijacking Events

We consider commonly used interdomain routing poli-

cies: “prefer customer routes” and “valley-free routing”.

In particular, an AS prefers routes announced from its

customer ASes over those announced from its peer ASes,

further over those announced from its provider ASes.

These policies are driven by financial profit of ASes. If

two routes have the same profit-based preference, then

the shorter route (i.e., fewer AS hop count) is preferred.

When the hijacker announces a fake prefix, we assume

that it does this to all its neighbors (i.e. providers, peers,

and customers) to maximize hijacking impact.

For each attack scenario, we simulated all three types

of hijacking scenarios, namely imposture, interception,

malicious, as shown in Figure 2 in Section 3. Each attack

scenario is simulated as follows. In each attack scenario,

we selected one PlanetLab node as the hijacker h and an-

other PlanetLab node as the target prefix t. The hijacking

is then observed from the monitors.

In the imposture scenario, the path from s to t will

become the path from s to h if s is polluted by h’s at-

tack. Otherwise, the path from s to t remains the same as

144 18th USENIX Security Symposium USENIX Association

before the attack. This was repeated for all possible se-

lections of h, t, and s, except for cases where t’s AS is on

the AS path from s to h because the hijack will never suc-

ceed in these cases. In addition, since some paths were

not traceroute-able, we had to discard combinations that

require these paths.

The setup for simulating interceptions and malicious

scenarios is similar to that of the imposture scenario. In

the interception scenario, the path from s to t will be

the concatenation of paths from s to h and from h to t
if s is polluted by h’s attack. However, we exclude the

cases that there is one or more common ASes between

these two paths. This is because the hijacker h cannot

successfully redirect the traffic back to the target prefix

t, i.e., the interception hijack fails.

In the malicious scenario, the hijacker h has counter-

measure against LOCK. The path from s to t will be the

path from s to h (the AS of h will not show up) with a

few random AS hops appended after h. The generation

of these random AS hops is kind of tricky. If h gener-

ates different noisy tails for different monitors, these tails

may not converge at all. In this case, it is easier for our

locating algorithm to locate the hijacker. In our simula-

tions, in anticipating that the hijacker may fill its replies

to traceroute probes with fake identities, we replaced the

node identities with random entries for all nodes that are

farther than the hijacker (inclusive) in the paths resulted

from running traceroute from different monitors.

6.2.2 Reconstructing Previously-Known Prefix Hi-

jacking Events

We obtained the list of previously-known prefix hijack-

ing events from the Internet Alert Registry [14]. IAR

provides the network operator community with the up

to date BGP (Border Gateway Protocol) routing security

information. Its discussion forum 3 posts suspicious hi-

jacking events. We chose 7 that had been verified and

confirmed to be prefix hijacking events, including some

famous victims such as YouTube and eBay, during a time

period from 2006 to 2008.

We reconstructed these 7 hijacking events using the

following method. First, we selected a traceroutable IP

in each victim AS as the probing target t, and a tracer-

outable IP in each hijacker AS as the hijacker h. Then

we collected the traceroute information from each mon-

itoring site s to these targets t and hijackers h. The

routing policy is based again on the profit driven model.

Since we don’t know what kind of behavior each hijacker

took (imposture, interception or malicious), We conser-

vatively assume that the hijacker will try to evade our

measurement. So it follows the malicious scenario we

mentioned before.

6.2.3 Launching Controlled Prefix Hijacking

Events

We conducted controlled prefix hijacking experiments on

the Internet using hosts under our control at four differ-

ent sites, namely Cornell, Berkeley, Seattle, and Pitts-

burgh. Each host ran the Quagga software router and

established eBGP sessions with different ISPs. Effec-

tively, this allowed us to advertise our dedicated prefix

(204.9.168.0/22) into the Internet through the BGP ses-

sions. The idea behind the experiments was to use our

prefix as the target prefix with one of the sites serving

as the owner of the prefix and the other three sites (sepa-

rately) serving as the geographically distributed attackers

trying to hijack the prefix. More implementation details

can be found in [6]. In our experiment, we focused on

the imposture scenario. There were 12 hijacking cases

by switching the role of each site. These attacks were

launched according to a pre-configured schedule during

period from May 2, 2008 to May 4, 2008.

6.2.4 Performance Metrics

LOCK identifies suspicious hijackers and ranks them

based on their likelihood of being the true hijacker. The

hijacker ranked at top one is most suspicious. We thus

define the top-n accuracy of LOCK as the percentage of

hijacking events that the true hijacker ranks as top n on

the suspect list, where n is a parameter. We use this pa-

rameterized definition because different operators might

have different preference. Some might prefer knowing

just the most suspicious hijacker, in which top-1 accu-

racy is most important. Others might not mind learning

a longer suspect list to increase the likelihood that the hi-

jacker is included in the suspect list. We will later show

that the top-2 accuracy is already very high.

In addition, we define impact of a hijacker h as the

fraction of the ASes from which the traffic to the target

prefix t is hijacked to h, similar to what is done in [23].

We will then study the correlation between LOCK’s lo-

cating accuracy of a given hijacker and the impact of its

attack.

6.3 Evaluation on Synthetic Prefix Hijack-

ing Events

In this section, we use the results of LOCK based on the

data plane measurement to illustrate our findings.

6.3.1 Monitor Selection

We compare the performance of the monitor selection al-

gorithm (referred as clustering and ranking) proposed in

Section 4 with the following three monitor selection al-

gorithms: (i) random: randomly selecting m monitors

USENIX Association 18th USENIX Security Symposium 145

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

T
o

p
-1

 a
c
c
u

ra
c
y

The number of mointors

Random
Clustering

Ranking
Clustering and ranking

(a) Imposture

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

T
o

p
-1

 a
c
c
u

ra
c
y

The number of mointors

Random
Clustering

Ranking
Clustering and ranking

(b) Interception

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

T
o

p
-1

 a
c
c
u

ra
c
y

The number of mointors

Random
Clustering

Ranking
Clustering and ranking

(c) Malicious

Figure 3: Performance of monitor selection algorithms

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7

C
D

F
 o

f
h

ija
c
k
in

g
 e

v
e

n
ts

 %

Ranking

All monitors
m=30
m=20
m=10

(a) Imposture

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7

C
D

F
 o

f
h

ija
c
k
in

g
 e

v
e

n
ts

 %

Ranking

All monitors
m=30
m=20
m=10

(b) Interception

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7

C
D

F
 o

f
h

ija
c
k
in

g
 e

v
e

n
ts

 %

Ranking

All monitors
m=30
m=20
m=10

(c) Malicious

Figure 4: The CDF of the rank of hijackers in synthetic attacks

from all M candidates. (ii) clustering: dividing M mon-

itors into clusters based on the clustering algorithm pro-

posed in Section 4.1, then randomly selecting one moni-

tor from each cluster; and (iii) ranking: ranking M mon-

itors based on the ranking algorithm proposed in Sec-

tion 4.2, then selecting the first m candidates.

Figure 3 shows the top-1 accuracy of different monitor

selection algorithms when varying the subsets of moni-

tors. We focused on synthetic attacks since the dataset

is much larger than previously-known hijacks and con-

trolled real hijacks. We find that: (i) There is always a

trade-off between the number of monitors selected and

hijacker-locating accuracy. Note that even using all 73

monitors, the accuracy is less than 92%. It is not sur-

prising because it is hard to detect the hijacking events

which have small impact [23]. (ii) The clustering and

ranking algorithm outperforms the rest. For example,

for imposture attacks, selecting 10 monitors based on the

ranking and clustering algorithm is enough for achiev-

ing 80% top-1 accuracy. This is only 1/3 of number of

monitors needed to reach the same top-1 accuracy with

either ranking or the clustering algorithm, or 1/6 if mon-

itors are selected randomly. Hence in our experiments in

the rest of the section, whenever we need to select moni-

tors, we use the clustering and ranking algorithm, unless

otherwise specified.

Moreover, we want to make sure that the monitor se-

lection algorithm does not overload any monitors by as-

signing too many target prefixes to it for monitoring. For

each target prefix we select m = 30 monitors from the

total pool of M = 73 candidate monitors using the mon-

itor selection algorithm described in Section 4. Individ-

ual monitor’s work load is computed as the number of

target prefixes assigned to it divided by the total number

of target prefixes. Ideally, the average work load, which

is the load each monitor gets if the monitoring tasks are

evenly across all monitors equally instead of assigning

prefixes to monitors that can monitor most effectively, is

m/M ≈ 0.4. As as comparison, we observe the real

workload ranges from 0.3 to 0.55. In addition, only 4

monitors out of 73 have load above 0.5, which means

that they monitor more than half of prefix targets.

6.3.2 Effectiveness of Basic Algorithm

The evaluations of two different aspects of the effective-

ness of the hijacker-locating algorithm are presented in

this section. We show how well the ranked list captures

the hijacker identity, as well as how well the ranked list

reflects the impact of the hijack events.

Figure 4 illustrates where the hijacker is ranked in the

suspect list produced by the basic algorithm, for different

number of monitors selected. Obviously, the higher the

hijacker is ranked, the better the basic algorithm is. From

this figure, we can see that:

146 18th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7

M
e

a
n

 I
m

p
a

c
t

V
a

lu
e

Ranking

all moniotrs
m=30

(a) Imposture

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7

M
e

a
n

 I
m

p
a

c
t

V
a

lu
e

Ranking

all moniotrs
m=30

(b) Interception

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7

M
e

a
n

 I
m

p
a

c
t

V
a

lu
e

Ranking

all moniotrs
m=30

(c) Malicious

Figure 5: Correlating the impact with the ranking value

• More than 80% of the time, our basic algorithm pin-

points the hijacker by ranking it as top 1 on the sus-

pect list, regardless what kind of attack and with

how many monitors, as long as more than the mini-

mum number of 10 monitors.

• Because of the early convergence problem de-

scribed in Section 5.2, the hijacker may not be

ranked the first. Therefore as we look into not only

the highest ranked node but even more nodes, the

chance that the hijacker is included in this selective

set increases. For example with 10 monitors, the

chance that an imposture hijacker is found among

the top three nodes is more than 94%, a 14% in-

crease from only looking at the highest ranked sus-

pect.

• The hijacker-locating algorithm performs best in

imposture scenarios. The reason is that imposture

paths are more likely to be straight without detour-

ing.

• Obviously the more monitors we employ, the bet-

ter the algorithm works. What is interesting is that

seemingly by having m = 30 we have reached

the point of diminishing return: having more than

30 monitors no longer improves the performance

much.

Next, we study the relationship between the impact of

a hijack event and where the hijacker is ranked in the sus-

pect list. This shows another aspect of the quality of our

hijacker-locating algorithm. That is, not only we want to

locate hijackers, we especially want to locate the hijack-

ers causing great damages. Figure 5 shows the ranking

(x-axis) vs the median impact of all hijackers with the

same ranking (Y-axis). All three plots in Figure 5 show

that there is a positive relationship between the hijacker’s

rank and the impact of its hijack attack. In other words,

the larger the impact caused by a hijacker, the more likely

our locating algorithm will rank the hijacker high in the

suspect list. This is mostly due to the fact that the early

converge problems occur mostly at where hijacks have

small impacts, near Internet edge.

6.3.3 Effectiveness of Improvements

Finally, we evaluate the quality of two improvements (I1

and I2) proposed in Section 5.3. In particular, we are not

only interested in the increase in top-1 accuracy these

improvements may bring, but also the false negative rate

(FNR), which is the ratio that the improvements mistak-

enly exclude a hijacker from the suspect list.

Table 1 shows both sets of numbers for different kinds

of attacks and different number of monitors. Different

combinations of the basic algorithm and the improve-

ments are shown in different rows of the table.

• I2 helps more. The reason is that for I1 we can only

trust the path before converges. But for I2, we have

more information provided by the reference point

traceroute.

• When combining I1 and I2, the accuracy can be fur-

ther improved. This is because the nodes that I1 and

I2 remove from the suspect list are typically not the

same.

• In general, LOCK (i.e., B+I1+I2) is able to pin-

point the prefix hijacker AS with an accuracy of

over 91%, up to 94.3%.

• The false negative ratio introduced by improve-

ments is relatively low. For example, when using

all monitors we can improve the accuracy by more

than 5% by applying both I1 and I2, while the false

negative ratio resulted from applying the improve-

ments is only 0.09%

6.3.4 Effectiveness on different AS-levels

We study the locating accuracy when the hijacker located

in different level in the AS hierarchy. We classify AS

nodes into three tiers: Tier-1 nodes, transit nodes, and

USENIX Association 18th USENIX Security Symposium 147

Table 1: The effectiveness of improvement
All monitors m=30

Algorithms Imposture Interception Malicious Imposture Interception Malicious

Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR

B 88.7% 0.00% 86.3% 0.00% 85.4% 0.00% 86.2% 0.00% 84.7% 0.00% 83.5% 0.00%

B+I1 89.8% 0.03% 90.3% 0.17% 88.6% 0.14% 86.4% 0.05% 85.3% 0.14% 84.6% 0.11%

B+I2 91.3% 0.09% 93.1% 0.16% 90.4% 0.10% 90.7% 0.14% 90.6% 0.18% 88.3% 0.20%

B+I1+I2 94.2% 0.09% 94.3% 0.24% 93.1% 0.18% 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%

Table 2: The effectiveness on different AS-levels
Category Imposture Interception Malicious

Accuracy FNR Accuracy FNR Accuracy FNR

All 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%

Transit 97.6% 0.04% 96.3% 0.07% 94.8% 0.14%

Stub 90.2% 0.18% 90.1% 0.21% 90.4% 0.35%

Table 3: The effectiveness on prevention after locating
Methods Initial Stop the origin Stop in Tier1

LOCK 23.43% 0.10% 2.31%

Simple Locating 23.43% 13.13% 21.90%

stub nodes like in [23]. 4 Our hijackers in planetlab be-

longs to transit nodes, or stub nodes. When using two

improvements and 30 monitors, we compare the accu-

racy and false negative ration for these two classes, in

Table 2. The hijackers on the higher level could be lo-

cated more easily. The hijackers on the edge is relatively

hard to locate. We can still achieve more than 90% accu-

racy.

6.3.5 Effectiveness of filtering after locating the hi-

jacker

After locating the AS, the next step is to filter the fake

AS announcement from it. We compare the average per-

centage of impacted (polluted) AS, before and after the

locating and filtering either stop on the origin or on the

Tier1 AS. As a comparison, we also select the last hop

of AS of the observed paths as a hijacker (simple locat-

ing approach) then do the same filtering. They are under

malicious case. Table 3 shows that Lock is more helpful

than simple locating method to prevent hijacks.

6.3.6 Remarks

We have shown that LOCK performs well using monitor-

to-prefix paths measured in the data plane. Similar ob-

servation would hold if control plane paths are used in

LOCK. In the non-malicious cases, the monitor-to-prefix

paths that observed in the control plane are the same as

those observed in the data plane. However, in the mali-

cious case, we have shown that the hijacker can employ

more sophisticated evasion technique in the data plane

than in the control plane. Therefore, our results shown

Table 4: Previously-Known prefix hijacking events
Victim AS Hijacker AS Date #monitors

3691 6461 March 15, 2008 16

36561 (YouTube) 17557 February 24, 2008 9

11643 (eBay) 10139 November 30, 2007 7

4678 17606 January 15, 2007 8

7018 31604 January 13, 2007 13

1299 9930 September 7, 2006 5

701, 1239 23520 June 7, 2006 12

in this section provide a lower bound of LOCK perfor-

mance against malicious hijackers.

6.4 Evaluation on Previous-Known At-

tacks

We reconstructed 7 previously known prefix hijacking

events. Table 4 shows the dates and ASes of the hijacker

and the target prefix (i.e., the victim) of these events. By

using all 73 monitors deployed on PlanetLab, LOCK is

able to accurately locate the hijacker ASes as the top-1

suspects for all these hijacking events, i.e., the true hi-

jackers are ranked first on the suspect lists. Using the

monitor selection algorithm (clustering and ranking) pre-

sented in Section 4, we also identified the minimum set

of monitors that were required by LOCK to accurately

locate the hijacker in each of these previously-known

events. The last column of Table 4 shows that all hijack-

ers could be correctly located as top-1 suspects by using

16 or fewer monitors. A detailed investigation shows that

these hijacks polluted majority of the monitors, resulting

in LOCK’s high locating accuracy.

6.5 Evaluation on Controlled Real Attacks

In this set of experiments, we launched real imposture

attacks using four sites under our control. The schedule

is shown in Table 5. During the experiments each LOCK

148 18th USENIX Security Symposium USENIX Association

Table 5: Locating hijackers in real Internet attacks
Victim Hijacker Launch Time Response Time Required

Site Site (EST) (minutes) monitors

Berkeley May 2 12:01:31 13 12

Cornell Seattle May 2 16:12:47 7 10

Pittsburgh May 2 17:34:39 9 9

Cornell May 2 19:32:09 13 14

Pittsburgh Berkeley May 2 22:50:25 11 15

Seattle May 3 02:26:26 12 15

Cornell May 3 11:20:42 9 8

Seattle Pittsburgh May 3 13:03:10 12 12

Berkeley May 3 19:16:16 8 18

Seattle May 3 22:35:07 13 14

Berkeley Pittsburgh May 4 00:01:01 12 16

Cornell May 4 11:19:20 11 10

monitor probed the target prefix 204.9.168.0/22 once ev-

ery 5 minutes. For the purpose of this experiment, we

used the detection scheme proposed in [45], which was

able to detect all the attacks launched from the controlled

sites. The hijackers in these experiments were “honest”,

i.e., no countermeasure was done by the hijackers. Thus

we observed that LOCK locates the hijackers as top-1

suspects in all the real imposture attacks.

In this real Internet experiment, we were able to eval-

uate the response time of LOCK in addition to its accu-

racy. The response time is defined as the latency from

the time the the attack is launched by the hijacker to the

time that LOCK locates the hijacker. The response time

highly depends on two major factors: the speed of prop-

agation of invalid route advertisement and the probing

rate employed by LOCK monitors. It usually takes up to

a few minutes for a route advertisement to spread across

the Internet. This is the latency that an attack takes be-

fore making full impact on the Internet. After a LOCK

monitor is impacted by an attack, it may also take a few

minutes for the monitor to detect and locate the hijacker

because the monitor probes target prefixes periodically.

There are also few minor factors that may affect the re-

sponse time. For example, there can be a few seconds

latency for LOCK monitors to get replies for each probe.

However, they are neglected in our evaluation because

they are orders of magnitude smaller than the above two

major factors.

We record the timestamp each attack is launched from

a control site and the timestamp LOCK locates the hi-

jacker (i.e., that controlled site). Both of which are syn-

chronized with a common reference time server. The

response time is computed by taking the difference be-

tween the above two timestamps. If alternative detection

scheme is used, the observed response time serves as a

conservative upper bound of the latency that LOCK takes

to locate the hijacker.

Table 5 shows the response time and minimum number

of required monitors for locating these real prefix hijack-

ing events. We observe that LOCK is able to locate the

hijacker within 7 ∼ 13 minutes. Given that the probe fre-

quency of LOCK monitors is 5 minutes, the results im-

plies that it takes LOCK at most 2 ∼ 3 rounds of probes

to detect and locate the hijacker. Moreover, all hijack-

ers are correctly located as top-1 suspects by using 18 or

fewer monitors.

7 Related Work

A number of solutions have been proposed to proactively

defend against prefix hijacking. They can be categorized

into two broad categories: crypto based and non-crypto

based. Crypto based solutions, such as [4,8,13,19,27,35,

36], require BGP routers to sign and verify the origin AS

and/or the AS path to detect and reject false routing mes-

sages. However, such solutions often require signature

generation and verification which have significant impact

on router performance. Non-crypto based proposals such

as [11,18,32,37,44] require changing router softwares so

that inter-AS queries are supported [11, 32], stable paths

are more preferred [18, 37], or additional attributes are

added into BGP updates to facilitate detection [44]. All

the above proposals are not easily deployable because

they all require changes in router software, router con-

figuration, or network operations, and some also require

public key infrastructures.

Recently, there has been increasing interest in solu-

tions for reactive detection of prefix hijacking [6, 12,

21, 22, 26, 34, 36, 45] because such solutions use passive

monitoring and thus are highly deployable. For exam-

ple, [43,45] monitor the data plane, [21,22,26,34] mon-

itor the control plane, and [6, 12, 36] monitor both con-

trol and data planes. LOCK is different from all these

approaches because LOCK locates the hijacker AS for

each prefix hijacking event, while the above approaches

only focus on detecting a hijacking event without further

revealing the location of the hijacker. In fact, LOCK can

be used together with any of the above hijacking detec-

USENIX Association 18th USENIX Security Symposium 149

tion algorithm for identifying hijacker AS because the

flexibility of LOCK on using either control plane or data

plane information in locating hijacker.

Measurement-based solutions often require careful se-

lection of monitors. In particular, LOCK selects mon-

itors based on their likelihood of observing hijacking

events, while [45] proposed an initial monitor selection

algorithm to detect hijacks without further evaluation,

and [23] tries to understand the impact of hijackers in

different locations. In addition, there have been a num-

ber of studies [7,9,40] on the limitations of existing BGP

monitoring systems (e.g. RouteView) and the impacts of

monitor placement algorithms [29] for collecting BGP

data for a boarder range of applications such as topol-

ogy discovery, dynamic routing behavior discovery and

network black hole discovery [20, 41].

Finally, existing works [38, 39, 42] proposed to mit-

igating prefix hijacking by using an alternative routing

path [38, 39], or by modifying AS SET [42]. Though

LOCK does not directly handle the mitigation of prefix

hijacking events, LOCK can provide the hijacker loca-

tion information required by these mitigation schemes.

8 Conclusion

In this paper, we propose a robust scheme named LOCK

for locating the prefix hijacker ASes based on distributed

AS path measurements. LOCK has several advantages:

1) LOCK is an unified scheme that locates hijackers in

the same fashion across different types of prefix hijack-

ing attacks; 2) LOCK is a distributed scheme with work-

load distributed among multiple monitors; 3) LOCK is

a robust scheme because multiple monitors help improv-

ing locating accuracy and discounting individual errors;

and 4) LOCK is a flexible scheme because it can use AS

path measurement data obtained either from data-plane

or from control-plane to locate the hijacker AS.

The performance of the LOCK scheme has been eval-

uated extensively through experiments in three kinds of

settings: test topology constructed based on real Inter-

net measurements, reconstructed known prefix hijack at-

tacks, and controlled prefix hijack attacks conducted on

the Internet. We have shown that the LOCK scheme is

very accurate, highly effective, and rapid reacting.

Acknowledgement

Tongqing Qiu and Jun Xu are supported in part by NSF
grants CNS-0519745, CNS-0626979, CNS-0716423,
and CAREER Award ANI-023831.

References

[1] http://www.ripe.net/news/

study-youtube-hijacking.html.

[2] RIPE RIS Raw Data. http://www.ripe.net/projects/

ris/rawdata.html.

[3] University of Oregon Route Views Archive Project. http://

www.routeview.org.

[4] AIELLO, W., IOANNIDIS, J., AND MCDANIEL, P. Origin Au-

thentication in Interdomain Routing. In Proc. of ACM CCS (Oct.

2003).

[5] Alexa. http://www.alexa.com/.

[6] BALLANI, H., FRANCIS, P., AND ZHANG, X. A Study of Prefix

Hijacking and Interception in the Internet. In Proc. ACM SIG-

COMM (Aug. 2007).

[7] BARFORD, P., BESTAVROS, A., BYERS, J., AND CROVELLA,

M. On the marginal utility of network topology measurements.

In IMW ’01 (New York, NY, USA, 2001), ACM, pp. 5–17.

[8] BUTLER, K., MCDANIEL, P., AND AIELLO, W. Optimizing

BGP Security by Exploiting Path Stability. In Proc. ACM CCS

(Nov. 2006).

[9] COHEN, R., AND RAZ, D. The Internet Dark Matter - on

the Missing Links in the AS Connectivity Map. In INFOCOM

(2006).

[10] GAO, L. On Inferring Autonomous System Relationships in the

Internet. IEEE/ACM Transactions on Networking (2001).

[11] GOODELL, G., AIELLO, W., GRIFFIN, T., IOANNIDIS, J., MC-

DANIEL, P., AND RUBIN, A. Working Around BGP: An Incre-

mental Approach to Improving Security and Accuracy of Inter-

domain Routing. In Proc. NDSS (Feb. 2003).

[12] HU, X., AND MAO, Z. M. Accurate Real-time Identification of

IP Prefix Hijacking. In Proc. IEEE Security and Privacy (May

2007).

[13] HU, Y.-C., PERRIG, A., AND SIRBU, M. SPV: Secure Path

Vector Routing for Securing BGP. In Proc. ACM SIGCOMM

(Aug. 2004).

[14] IAR. http://iar.cs.unm.edu/.

[15] iPlane. http://iplane.cs.washington.edu/.

[16] Internet topology collection. http://irl.cs.ucla.edu/

topology/.

[17] JOHNSON, S. Hierarchical Clustering Schemes. In Psychome-

trika (1967).

[18] KARLIN, J., FORREST, S., AND REXFORD, J. Pretty Good

BGP: Protecting BGP by Cautiously Selecting Routes. In Proc.

IEEE ICNP (Nov. 2006).

[19] KENT, S., LYNN, C., AND SEO, K. Secure Border Gateway

Protocol (S-BGP). IEEE JSAC Special Issue on Network Security

(Apr. 2000).

[20] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNO-

EREN, A. C. Detection and Localization of Network Black

Holes. In Proc. IEEE INFOCOM (2007).

[21] KRUEGEL, C., MUTZ, D., ROBERTSON, W., AND VALEUR,

F. Topology-based Detection of Anomalous BGP Messages. In

Proc. RAID (Sept. 2003).

[22] LAD, M., MASSEY, D., PEI, D., WU, Y., ZHANG, B., AND

ZHANG, L. PHAS: A Prefix Hijack Alert System. In Proc.

USENIX Security Symposium (Aug. 2006).

[23] LAD, M., OLIVEIRA, R., ZHANG, B., AND ZHANG, L. Under-

standing Resiliency of Internet Topology Against Prefix Hijack

Attacks. In Proc. IEEE/IFIP DSN (June 2007).

[24] MAO, Z. M., QIU, L., WANG, J., AND ZHANG, Y. On AS-Level

Path Inference. In Proc. ACM SIGMETRICS (2005).

150 18th USENIX Security Symposium USENIX Association

[25] MAO, Z. M., REXFORD, J., WANG, J., AND KATZ, R. Towards

an Accurate AS-level Traceroute Tool. In Proc. ACM SIGCOMM

(2003).

[26] RIPE myASn System. http://www.ris.ripe.net/myasn.html.

[27] NG, J. Extensions to BGP to Support Secure Origin

BGP. ftp://ftp-eng.cisco.com/sobgp/drafts/draft-ng-sobgp-bgp-

extensions-02.txt, April 2004.

[28] NORDSTROM, O., AND DOVROLIS, C. Beware of BGP At-

tacks. ACM SIGCOMM Computer Communications Review

(CCR) (Apr. 2004).

[29] OLIVEIRA, R., LAD, M., ZHANG, B., PEI, D., MASSEY, D.,

AND ZHANG, L. Placing BGP Monitors in the Internet. UW

Technical Report, 2006.

[30] OLIVEIRA, R., PEI, D., WILLINGER, W., ZHANG, B., AND

ZHANG, L. In Search of the elusive Ground Truth: The Internet’s

AS-level Connectivity Structure. In Proc. ACM SIGMETRICS

(2008).

[31] PlanetLab. http://www.planet-lab.org.

[32] QIU, S. Y., MONROSE, F., TERZIS, A., AND MCDANIEL, P. D.

Efficient Techniques for Detecting False Origin Advertisements

in Inter-domain Routing. In Proc. IEEE NPsec (Nov. 2006).

[33] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding the

Network-Level Behavior of Spammers. In Proceedings of ACM

SIGCOMM (2006).

[34] SIGANOS, G., AND FALOUTSOS, M. Neighborhood Watch for

Internet Routing: Can We Improve the Robustness of Internet

Routing Today? In Proc. IEEE INFOCOM (May 2007).

[35] SMITH, B. R., AND GARCIA-LUNA-ACEVES, J. J. Securing

the Border Gateway Routing Protocol. In Proc. Global Internet

(Nov. 1996).

[36] SUBRAMANIAN, L., ROTH, V., STOICA, I., SHENKER, S., AND

KATZ, R. H. Listen and Whisper: Security Mechanisms for

BGP. In Proc. USENIX NSDI (Mar. 2004).

[37] WANG, L., ZHAO, X., PEI, D., BUSH, R., MASSEY, D.,

MANKIN, A., WU, S., AND ZHANG, L. Protecting BGP Routes

to Top Level DNS Servers. In Proc. IEEE ICDCS (2003).

[38] XU, W., AND REXFORD., J. Don’t Secure Routing Protocols,

Secure Data Delivery. In Proc. ACM HotNets (2006).

[39] XU, W., AND REXFORD., J. MIRO: multi-path interdomain

routing. In Proc. ACM SIGCOMM (2006).

[40] ZHANG, B., LIU, R. A., MASSEY, D., AND ZHANG, L. Col-

lecting the Internet AS-level Topology. Computer Communica-

tion Review 35, 1 (2004), 53–61.

[41] ZHANG, Y., ZHANG, Z., MAO, Z. M., HU, Y. C., , AND

MAGGS, B. On the Impact of Route Monitor Selection. In Pro-

ceedings of ACM IMC (2007).

[42] ZHANG, Z., YANG, Y., HU, Y. C., AND MAO, Z. M. Practi-

cal Defenses Against BGP Prefix Hijacking. In Proc. of CoNext

(Dec. 2007).

[43] ZHANG, Z., ZHANG, Y., HU, Y., MAO, Z., AND BUSH, R.

iSPY: Detecting IP Prefix Hijacking on My Own. In Proc. ACM

SIGCOMM (Aug. 2008).

[44] ZHAO, X., PEI, D., WANG, L., MASSEY, D., MANKIN, A.,

WU, S., AND ZHANG, L. Dection of Invalid Routing Announce-

ment in the Internet. In Proc. IEEE/IFIP DSN (June 2002).

[45] ZHENG, C., JI, L., PEI, D., WANG, J., AND FRANCIS, P. A

Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks

in Real-Time. In Proc. ACM SIGCOMM (Aug. 2007).

Notes

1Note that some vendor implementation does not check whether

the neighbor has appended its own AS in the announcement , while

some vendor implementation does check (in which this hijack does not

succeed).
2The complexity is not a concern here because the number of clus-

ters is relatively small comparing to traditional clustering problem.
3Disscussion form: http://iar.cs.unm.edu/phpBB2/

viewforum.php?f=2
4To choose the set of Tier-1 nodes, we started with a well known

list, and added a few high degree nodes that form a clique with the

existing set. Nodes other than Tier-1s but provide transit service to

other AS nodes, are classified as transit nodes, and the remainder of

nodes are classified as stub nodes.

