
USENIX Association 18th USENIX Security Symposium 51

Baggy Bounds Checking: An Efficient and Backwards-Compatible Defense
against Out-of-Bounds Errors

Periklis Akritidis,� Manuel Costa,† Miguel Castro,† Steven Hand�

�Computer Laboratory
University of Cambridge, UK
{pa280,smh22}@cl.cam.ac.uk

†Microsoft Research
Cambridge, UK

{manuelc,mcastro}@microsoft.com

Abstract
Attacks that exploit out-of-bounds errors in C and C++
programs are still prevalent despite many years of re-
search on bounds checking. Previous backwards compat-
ible bounds checking techniques, which can be applied to
unmodified C and C++ programs, maintain a data struc-
ture with the bounds for each allocated object and per-
form lookups in this data structure to check if pointers
remain within bounds. This data structure can grow large
and the lookups are expensive.

In this paper we present a backwards compatible bounds
checking technique that substantially reduces perfor-
mance overhead. The key insight is to constrain the sizes
of allocated memory regions and their alignment to en-
able efficient bounds lookups and hence efficient bounds
checks at runtime. Our technique has low overhead in
practice—only 8% throughput decrease for Apache—
and is more than two times faster than the fastest pre-
vious technique and about five times faster—using less
memory—than recording object bounds using a splay
tree.

1 Introduction

Bounds checking C and C++ code protects against a wide
range of common vulnerabilities. The challenge has been
making bounds checking fast enough for production use
and at the same time backwards compatible with binary
libraries to allow incremental deployment. Solutions us-
ing fat pointers [24, 18] extend the pointer representation
with bounds information. This enables efficient bounds
checks but breaks backwards compatibility because in-
creasing the pointer size changes the memory layout of
data structures. Backwards compatible bounds checking
techniques [19, 30, 36, 15] use a separate data structure
to lookup bounds information. Initial attempts incurred a
significant overhead [19, 30, 36] (typically 2x–10x) be-

Figure 1: Allocated memory is often padded to a partic-
ular alignment boundary, and hence can be larger than
the requested object size. By checking allocation bounds
rather than object bounds, we allow benign accesses to the
padding, but can significantly reduce the cost of bounds
lookups at runtime.

cause looking up bounds is expensive and the data struc-
ture can grow large. More recent work [15] has applied
sophisticated static pointer analysis to reduce the number
of bounds lookups; this managed to reduce the runtime
overhead on the Olden benchmarks to 12% on average.

In this paper we present baggy bounds checking, a back-
wards compatible bounds checking technique that re-
duces the cost of bounds checks. We achieve this by
enforcing allocation bounds rather than precise object
bounds, as shown in Figure 1. Since memory allocators
pad object allocations to align the pointers they return,
there is a class of benign out-of-bounds errors that violate
the object bounds but fall within the allocation bounds.
Previous work [4, 19, 2] has exploited this property in a
variety of ways.

Here we apply it to efficient backwards compatible
bounds checking. We use a binary buddy allocator to en-
able a compact representation of the allocation bounds:
since all allocation sizes are powers of two, a single byte
is sufficient to store the binary logarithm of the allocation

52 18th USENIX Security Symposium USENIX Association

size. Furthermore, there is no need to store additional in-
formation because the base address of an allocation with
size s can be computed by clearing the log2(s) least sig-
nificant bits of any pointer to the allocated region. This
allows us to use a space and time efficient data struc-
ture for the bounds table. We use a contiguous array
instead of a more expensive data structure (such as the
splay trees used in previous work). It also provides us
with an elegant way to deal with common cases of tem-
porarily out-of-bounds pointers. We describe our design
in more detail in Section 2.

We implemented baggy bounds checking as a compiler
plug-in for the Microsoft Phoenix [22] code genera-
tion framework, along with additional run time com-
ponents (Section 3). The plug-in inserts code to check
bounds for all pointer arithmetic that cannot be statically
proven safe, and to align and pad stack variables where
necessary. The run time component includes a binary
buddy allocator for heap allocations, and user-space vir-
tual memory handlers for growing the bounds table on
demand.

In Section 4 we evaluate the performance of our sys-
tem using the Olden benchmark (to enable a direct com-
parison with Dhurjati and Adve [15]) and SPECINT
2000. We compare our space overhead with a version
of our system that uses the splay tree implementation
from [19, 30]. We also verify the efficacy of our sys-
tem in preventing attacks using the test suite described
in [34], and run a number of security critical COTS com-
ponents to confirm its applicability.

Section 5 describes our design and implementation for
64-bit architectures. These architectures typically have
“spare” bits within pointers, and we describe a scheme
that uses these to encode bounds information directly in
the pointer rather than using a separate lookup table. Our
comparative evaluation shows that the performance ben-
efit of using these spare bits to encode bounds may not in
general justify the additional complexity; however using
them just to encode information to recover the bounds
for out-of-bounds pointers may be worthwhile.

Finally we survey related work (Section 6), discuss limi-
tations and possible future work (Section 7) and conclude
(Section 8).

2 Design

2.1 Baggy Bounds Checking

Our system shares the overall architecture of backwards
compatible bounds checking systems for C/C++ (Fig-

Figure 2: Overall system architecture, with our contribu-
tion highlighted within the dashed box.

ure 2). It converts source code to an intermediate repre-
sentation (IR), finds potentially unsafe pointer arithmetic
operations, and inserts checks to ensure their results are
within bounds. Then, it links the generated code with
our runtime library and binary libraries—compiled with
or without checks—to create a hardened executable.

We use the referent object approach for bounds checking
introduced by Jones and Kelly [19]. Given an in-bounds
pointer to an object, this approach ensures that any de-
rived pointer points to the same object. It records bounds
information for each object in a bounds table. This ta-
ble is updated on allocation and deallocation of objects:
this is done by the malloc family of functions for heap-
based objects; on function entry and exit for stack-based
objects; and on program startup for global objects.

The referent object approach performs bounds checks on
pointer arithmetic. It uses the source pointer to lookup
the bounds in the table, performs the operation, and
checks if the destination pointer remains in bounds. If
the destination pointer does not point to the same object,
we mark it out-of-bounds to prevent any dereference (as
in [30, 15]). However we permit its use in further pointer
arithmetic, since it may ultimately result in an in-bounds
pointer. The marking mechanism is described in detail in
Section 2.4.

Baggy bounds checking uses a very compact repre-

USENIX Association 18th USENIX Security Symposium 53

sentation for bounds information. Previous techniques
recorded a pointer to the start of the object and its size in
the bounds table, which requires at least eight bytes. We
pad and align objects to powers of two and enforce allo-
cation bounds instead of object bounds. This enables us
to use a single byte to encode bounds information. We
store the binary logarithm of the allocation size in the
bounds table:

e = log2(size);

Given this information, we can recover the allocation
size and a pointer to the start of the allocation with:

size = 1 << e;

base = p & ˜(size-1);

To convert from an in-bounds pointer to the bounds for
the object we require a bounds table. Previous solutions
based on the referent object approach (such as [19, 30,
15]) have implemented the bounds table using a splay
tree.

Baggy bounds, by contrast, implement the bounds table
using a contiguous array. The table is small because each
entry uses a single byte. Additionally, we partition mem-
ory into aligned slots with slot size bytes. The bounds
table has an entry for each slot rather than an entry per
byte. So the space overhead of the table is 1/slot size,
and we can tune slot size to balance memory waste be-
tween padding and table size. We align objects to slot
boundaries to ensure that no two objects share a slot.

Accesses to the table are fast. To obtain a pointer to the
entry corresponding to an address, we right-shift the ad-
dress by the constant log2(slot size) and add the con-
stant table base. We can use this pointer to retrieve the
bounds information with a single memory access, instead
of having to traverse and splay a splay tree (as in previous
solutions).

Note that baggy bounds checking permits benign out-
of-bounds accesses to the memory padding after an ob-
ject. This does not compromise security because these
accesses cannot write or read other objects. They cannot
be exploited for typical attacks such as (a) overwriting a
return address, function pointer or other security critical
data; or (b) reading sensitive information from another
object, such as a password.

We also defend against a less obvious attack where the
program reads values from the padding area that were
originally written to a deleted object that occupied the
same memory. We prevent this attack by clearing the
padding on memory allocation.

Pointer arithmetic operation:
p’ = p + i

Explicit bounds check:
size = 1 << table[p>>slot_size]
base = p & ˜(size-1)

p’ >= base && p’ - base < size

Optimized bounds check:
(pˆp’)>>table[p>>slot_size] == 0

Figure 3: Baggy bounds enables optimized bounds
checks: we can verify that pointer p’ derived from
pointer p is within bounds by simply checking that p and
p’ have the same prefix with only the e least significant
bits modified, where e is the binary logarithm of the allo-
cation size.

2.2 Efficient Checks

In general, bounds checking the result p’ of pointer
arithmetic on p involves two comparisons: one against
the lower bound and one against the upper bound, as
shown in Figure 3.

We devised an optimized bounds check that does not
even need to compute the lower and upper bounds. It
uses the value of p and the value of the binary logarithm
of the allocation size, e, retrieved from the bounds table.
The constraints on allocation size and alignment ensure
that p’ is within the allocation bounds if it differs from
p only in the e least significant bits. Therefore, it is suf-
ficient to shift pˆp’ by e and check if the result is zero,
as shown in Figure 3.

Furthermore, for pointers p’ where
sizeof(*p’) > 1, we also need to check that
(char *) p’ + sizeof(*p’) - 1 is within
bounds to prevent a subsequent access to *p’ from
crossing the allocation bounds. Baggy bounds checking
can avoid this extra check if p’ points to a built-in
type. Aligned accesses to these types cannot overlap
an allocation boundary because their size is a power of
two and is less than slot size. When checking pointers
to structures that do not satisfy these constraints, we
perform both checks.

2.3 Interoperability

Baggy bounds checking works even when instrumented
code is linked against libraries that are not instrumented.

54 18th USENIX Security Symposium USENIX Association

The library code works without change because it per-
forms no checks but it is necessary to ensure that instru-
mented code works when accessing memory allocated in
an uninstrumented library. This form of interoperabil-
ity is important because some libraries are distributed in
binary form.

We achieve interoperability by using the binary loga-
rithm of the maximum allocation size as the default value
for bounds table entries. Instrumented code overwrites
the default value on allocations with the logarithm of the
allocation size and restores the default value on deallo-
cations. This ensures that table entries for objects al-
located in uninstrumented libraries inherit the default
value. Therefore, instrumented code can perform checks
as normal when accessing memory allocated in a library,
but checking is effectively disabled for these accesses.
We could intercept heap allocations in library code at
link time and use the buddy allocator to enable bounds
checks on accesses to library-allocated memory, but this
is not done in the current prototype.

2.4 Support for Out-Of-Bounds Pointers

A pointer may legally point outside the object bounds in
C. Such pointers should not be dereferenced but can be
compared and used in pointer arithmetic that can eventu-
ally result in a valid pointer that may be dereferenced by
the program.

Out-of-bounds pointers present a challenge for the ref-
erent object approach because it relies on an in-bounds
pointer to retrieve the object bounds. The C standard
only allows out-of-bounds pointers to one element past
the end of an array. Jones and Kelly [19] support these
legal out-of-bounds pointers by padding objects with one
byte. We did not use this technique because it interacts
poorly with our constraints on allocation sizes: adding
one byte to an allocation can double the allocated size in
the common case where the requested allocation size is a
power of two.

Many programs violate the C standard and generate ille-
gal but harmless out-of-bounds pointers that they never
dereference. Examples include faking a base one array
by decrementing the pointer returned by malloc and
other equally tasteless uses. CRED [30] improved on the
Jones and Kelly bounds checker [19] by tracking such
pointers using another auxiliary data structure. We did
not use this approach because it adds overhead on deal-
locations of heap and local objects: when an object is
deallocated the auxiliary data structure must be searched
to remove entries tracking out-of-bounds pointers to the
object. Additionally, entries in this auxiliary data struc-

Figure 4: We can tell whether a pointer that is out-
of-bounds by less than slot size/2 is below or above
an allocation. This lets us correctly adjust it to get a
pointer to the object by respectively adding or subtract-
ing slot size.

ture may accumulate until their referent object is deallo-
cated.

We handle out-of-bounds pointers within slot size/2
bytes from the original object as follows. First, we mark
out-of-bounds pointers to prevent them from being deref-
erenced (as in [15]). We use the memory protection hard-
ware to prevent dereferences by setting the most signifi-
cant bit in these pointers and by restricting the program
to the lower half of the address space (this is often al-
ready the case for user-space programs). We can recover
the original pointer by clearing the bit.

The next challenge is to recover a pointer to the referent
object from the out-of-bounds pointer without resorting
to an additional data structure. We can do this for the
common case when out-of-bounds pointers are at most
slot size/2 bytes before or after the allocation. Since
the allocation bounds are aligned to slot boundaries, we
can find if a marked pointer is below or above the alloca-
tion by checking whether it lies in the top or bottom half
of a memory slot respectively, as illustrated in Figure 4.
We can recover a pointer to the referent object by adding
or subtracting slot size bytes. This technique cannot
handle pointers that go more than slot size/2 bytes out-
side the original object. In Section 5.2, we show how
to take advantage of the spare bits in pointers on 64 bit
architectures to increase this range, and in Section 7 we
discuss how we could add support for arbitrary out-of-
bounds pointers while avoiding some of the problems of
previous solutions.

It is not necessary to instrument pointer dereferences.
Similarly, there is no need to instrument pointer equal-
ity comparisons because the comparison will be correct
whether the pointers are out-of-bounds or not. But we
need to instrument inequality comparisons to support

USENIX Association 18th USENIX Security Symposium 55

comparing an out-of-bounds pointer with an in-bounds
one: the instrumentation must clear the high-order bit of
the pointers before comparing them. We also instrument
pointer differences in the same way.

Like previous bounds checking solutions [19, 30, 15], we
do not support passing an out-of-bounds pointer to unin-
strumented code. However, this case is rare. Previous
work [30] did not encounter this case in several million
lines of code.

2.5 Static Analysis

Bounds checking has relied heavily on static analysis to
optimize performance [15]. Checks can be eliminated if
it can be statically determined that a pointer is safe, i.e.
always within bounds, or that a check is redundant due to
a previous check. Furthermore, checks or just the bounds
lookup can be hoisted out of loops. We have not imple-
mented a sophisticated analysis and, instead, focused on
making checks efficient.

Nevertheless, our prototype implements a simple intra-
procedural analysis to detect safe pointer operations.
We track allocation sizes and use the compiler’s vari-
able range analysis to eliminate checks that are statically
shown to be within bounds. We also investigate an ap-
proach to hoist checks out of loops that is described in
Section 3.

We also use static analysis to reduce the number of local
variables that are padded and aligned. We only pad and
align local variables that are indexed unsafely within the
function, or whose address is taken, and therefore pos-
sibly leaked from the function. We call these variables
unsafe.

3 Implementation

We used the Microsoft Phoenix [22] code generation
framework to implement a prototype system for x86 ma-
chines running Microsoft Windows. The system consists
of a plug-in to the Phoenix compiler and a runtime sup-
port library. In the rest of this section, we describe some
implementation details.

3.1 Bounds Table

We chose a slot size of 16 bytes to avoid penalizing
small allocations. Therefore, we reserve 1/16th of the
address space for the bounds table. Since pages are al-
located to the table on demand, this increases memory

utilization by only 6.25%. We reserve the address space
required for the bounds table on program startup and in-
stall a user space page fault handler to allocate missing
table pages on demand. All the bytes in these pages are
initialized by the handler to the value 31, which encom-
passes all the addressable memory in the x86 (an alloca-
tion size of 231 at base address 0). This prevents out-of-
bounds errors when instrumented code accesses memory
allocated by uninstrumented code.

3.2 Padding and Aligning

We use a binary buddy allocator to satisfy the size and
alignment constraints on heap allocations. Binary buddy
allocators provide low external fragmentation but suffer
from internal fragmentation because they round alloca-
tion sizes to powers of two. This shortcoming is put to
good use in our system. Our buddy allocator implemen-
tation supports a minimum allocation size of 16 bytes,
which matches our slot size parameter, to ensure that
no two objects share the same slot.

We instrument the program to use our version of
malloc-style heap allocation functions based on the
buddy allocator. These functions set the corresponding
bounds table entries and zero the padding area after an
object. For local variables, we align the stack frames of
functions that contain unsafe local variables at runtime
and we instrument the function entry to zero the padding
and update the appropriate bounds table entries. We also
instrument function exit to reset table entries to 31 for
interoperability when uninstrumented code reuses stack
memory. We align and pad static variables at compile
time and their bounds table entries are initialized when
the program starts up.

Unsafe function arguments are problematic because
padding and aligning them would violate the calling con-
vention. Instead, we copy them on function entry to ap-
propriately aligned and padded local variables and we
change all references to use the copies (except for uses
of va_list that need the address of the last explicit ar-
gument to correctly extract subsequent arguments). This
preserves the calling convention while enabling bounds
checking for function arguments.

The Windows runtime cannot align stack objects to more
than 8K nor static objects to more than 4K (configurable
using the /ALIGN linker switch). We could replace
these large stack and static allocations with heap alloca-
tions to remove this limitation but our current prototype
sets the bounds table entries for these objects to 31.

Zeroing the padding after an object can increase space
and time overhead for large padding areas. We avoid this

56 18th USENIX Security Symposium USENIX Association

overhead by relying on the operating system to zero al-
located pages on demand. Then we track the subset of
these pages that is modified and we zero padding areas in
these pages on allocations. Similar issues are discussed
in [9] and the standard allocator uses a similar technique
for calloc. Our buddy allocator also uses this tech-
nique to avoid explicitly zeroing large memory areas al-
located with calloc.

3.3 Checks

We add checks for each pointer arithmetic and array in-
dexing operation but, following [15], we do not instru-
ment accesses to scalar fields in structures and we do not
check pointer dereferences. This facilitates a direct com-
parison with [15]. We could easily modify our imple-
mentation to perform these checks, for example, using
the technique described in [14].

We optimize bounds checks for the common case of in-
bounds pointers. To avoid checking if a pointer is marked
out-of-bounds in the fast path, we set all the entries in the
bounds table that correspond to out-of-bounds pointers
to zero. Since out-of-bounds pointers have their most
significant bit set, we implement this by mapping all the
virtual memory pages in the top half of the bounds table
to a shared zero page. This ensures that our slow path
handler is invoked on any arithmetic operation involving
a pointer marked out-of-bounds.

bounds
lookup

mov eax, buf
shr eax, 4
mov al, byte ptr [TABLE+eax]

pointer
arithmetic

char *p = buf[i];

bounds
check

mov ebx, buf
xor ebx, p
shr ebx, al
jz ok

p = slowPath(buf, p)
ok:

Figure 5: Code sequence inserted to check unsafe pointer
arithmetic.

Figure 5 shows the x86 code sequence that we insert be-
fore an example pointer arithmetic operation. First, the
source pointer, buf, is right shifted to obtain the index of
the bounds table entry for the corresponding slot. Then
the logarithm of the allocation size e is loaded from the
bounds table into register al. The result of the pointer
arithmetic, p, is xored with the source pointer, buf, and
right shifted by al to discard the bottom bits. If buf
and p are both within the allocation bounds they can only

differ in the log2e least significant bits (as discussed be-
fore). So if the zero flag is set, p is within the allocation
bounds. Otherwise, the slowPath function is called.

The slowPath function starts by checking if buf has
been marked out-of-bounds. In this case, it obtains the
referent object as described in 2.4, resets the most sig-
nificant bit in p, and returns the result if it is within
bounds. Otherwise, the result is out-of-bounds. If the
result is out-of-bounds by more than half a slot, the func-
tion signals an error. Otherwise, it marks the result
out-of-bounds and returns it. Any attempt to derefer-
ence the returned pointer will trigger an exception. To
avoid disturbing register allocation in the fast path, the
slowPath function uses a special calling convention
that saves and restores all registers.

As discussed in Section 3.3, we must add sizeof(*p)
to the result and perform a second check if the pointer
is not a pointer to a built-in type. In this case, buf is a
char*.

Similar to previous work, we provide bounds check-
ing wrappers for Standard C Library functions such as
strcpy and memcpy that operate on pointers. We re-
place during instrumentation calls to these functions with
calls to their wrappers.

3.4 Optimizations

Typical optimizations used with bounds checking in-
clude eliminating redundant checks, hoisting checks out
of loops, or hoisting just bounds table lookups out of
loops. Optimization of inner loops can have a dramatic
impact on performance. We experimented with hoisting
bounds table lookups out of loops when all accesses in-
side a loop body are to the same object. Unfortunately,
performance did not improve significantly, probably be-
cause our bounds lookups are inexpensive and hoisting
can adversely effect register allocation.

Hoisting the whole check out of a loop is preferable when
static analysis can determine symbolic bounds on the
pointer values in the loop body. However, hoisting out
the check is only possible if the analysis can determine
that these bounds are guaranteed to be reached in every
execution. Figure 6 shows an example where the loop
bounds are easy to determine but the loop may terminate
before reaching the upper bound. Hoisting out the check
would trigger a false alarm in runs where the loop exits
before violating the bounds.

We experimented with an approach that generates two
versions of the loop code, one with checks and one with-
out. We switch between the two versions on loop entry.

USENIX Association 18th USENIX Security Symposium 57

In the example of Figure 6, we lookup the bounds of p
and if n does not exceed the size we run the unchecked
version of the loop. Otherwise, we run the checked ver-
sion.

for (i = 0; i < n; i++) {
if (p[i] == 0) break;
ASSERT(IN_BOUNDS(p, &p[i]));
p[i] = 0;

}

↓

if (IN_BOUNDS(p, &p[n-1])) {
for (i = 0; i < n; i++) {

if (p[i] == 0) break;
p[i] = 0;

}
} else {

for (i = 0; i < n; i++) {
if (p[i] == 0) break;
ASSERT(IN_BOUNDS(p, &p[i]));
p[i] = 0;

}
}

Figure 6: The compiler’s range analysis can determine
that the range of variable i is at most 0 . . . n−1. However,
the loop may exit before i reaches n−1. To prevent erro-
neously raising an error, we fall back to an instrumented
version of the loop if the hoisted check fails.

4 Experimental Evaluation

In this section we evaluate the performance of our sys-
tem using CPU intensive benchmarks, its effectiveness
in preventing attacks using a buffer overflow suite, and
its usability by building and measuring the performance
of real world security critical code.

4.1 Performance

We evaluate the time and peak memory overhead of
our system using the Olden benchmarks and SPECINT
2000. We chose these benchmarks in part to allow a
comparison against results reported for some other so-
lutions [15, 36, 23]. In addition, to enable a more de-
tailed comparison with splay-tree-based approaches—
including measuring their space overhead—we imple-
mented a variant of our approach which uses the splay
tree code from previous systems [19, 30]. This imple-
mentation uses the standard allocator and is lacking sup-
port for illegal out-of-bounds pointers, but is otherwise
identical to our system. We compiled all benchmarks
with the Phoenix compiler using /O2 optimization level

and ran them on a 2.33 GHz Intel Core 2 Duo processor
with 2 GB of RAM.

From SPECINT 2000 we excluded eon since it uses
C++ which we do not yet support. For our splay-tree-
based implementation only we did not run vpr due to
its lack of support for illegal out-of-bounds pointers. We
also could not run gcc because of code that subtracted
a pointer from a NULL pointer and subtracted the result
from NULL again to recover the pointer. Running this
would require more comprehensive support for out-of-
bounds pointers (such as that described in [30], as we
propose in Section 7).

We made the following modifications to some of
the benchmarks: First, we modified parser from
SPECINT 2000 to fix an overflow that triggered a bound
error when using the splay tree. It did not trigger an
error with baggy bounds checking because in our runs
the overflow was entirely contained in the allocation, but
should it overlap another object during a run, the baggy
checking would detect it. The unchecked program also
survived our runs because the object was small enough
for the overflow to be contained even in the padding
added by the standard allocator.

Then, we had to modifyperlbmk by changing two lines
to prevent an out-of-bounds arithmetic whose result is
never used and gap by changing 5 lines to avoid an out-
of-bounds pointer. Both cases can be handled by the ex-
tension described in Section 5, but are not covered by the
small out-of-bounds range supported by our 32-bit im-
plementation and the splay-tree-based implementation.

Finally, we modified mst from Olden to disable a cus-
tom allocator that allocates 32 Kbyte chunks of mem-
ory at a time that are then broken down to 12 byte ob-
jects. This increases protection at the cost of memory
allocation overhead and removes an unfair advantage for
the splay tree whose time and space overheads are mini-
mized when the tree contains just a few nodes, as well as
baggy space overhead that benefits from the power of two
allocation. This issue, shared with other systems offering
protection at the memory block level [19, 30, 36, 15, 2],
illustrates a frequent situation in C programs that may re-
quire tweaking memory allocation routines in the source
code to take full advantage of checking. In this case
merely changing a macro definition was sufficient.

We first ran the benchmarks replacing the standard allo-
cator with our buddy system allocator to isolate its ef-
fects on performance, and then we ran them using our
full system. For the Olden benchmarks, Figure 7 shows
the execution time and Figure 8 the peak memory usage.

In Figure 7 we observe that some benchmarks in the
Olden suite (mst, health) run significantly faster with

58 18th USENIX Security Symposium USENIX Association

Figure 7: Execution time for the Olden benchmarks us-
ing the buddy allocator and our full system, normalized
by the execution time using the standard system allocator
without instrumentation.

Figure 8: Peak memory use with the buddy allocator
alone and with the full system for the Olden benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

the buddy allocator than with the standard one. These
benchmarks are memory intensive and any memory sav-
ings reflect on the running time. In Figure 8 we can
see that the buddy system uses less memory for these
than the standard allocator. This is because these bench-
marks contain numerous small allocations for which the
padding to satisfy alignment requirements and the per-
allocation metadata used by the standard allocator ex-
ceed the internal fragmentation of the buddy system.

This means that the average time overhead of the full sys-
tem across the entire Olden suite is actually zero, because
the positive effects of using the buddy allocator mask the
costs of checks. The time overhead of the checks alone
as measured against the buddy allocator as a baseline is
6%. The overhead of the fastest previous bounds check-
ing system [15] on the same benchmarks and same pro-
tection (modulo allocation vs. object bounds) is 12%,
but their system also benefits from the technique of pool
allocation which can also be used independently. Based
on the breakdown of results reported in [15], their over-
head measured against the pool allocation is 15%, and it
seems more reasonable to compare these two numbers,

Figure 9: Execution time for SPECINT 2000 benchmarks
using the buddy allocator and our full system, normalized
by the execution time using the standard system allocator
without instrumentation.

Figure 10: Peak memory use with the buddy allocator
alone and with the full system for SPECINT 2000 bench-
marks, normalized by peak memory using the standard
allocator without instrumentation.

as both the buddy allocator and pool allocation can be in
principle applied independently on either system.

Next we measured the system using the SPECINT 2000
benchmarks. Figures 9 and 10 show the time and space
overheads for SPECINT 2000 benchmarks.

We observe that the use of the buddy system has little
effect on performance in average. The average runtime
overhead of the full system with the benchmarks from
SPECINT 2000 is 60%. vpr has the highest overhead
of 127% because its frequent use of illegal pointers to
fake base-one arrays invokes our slow path. We observed
that adjusting the allocator to pad each allocation with 8
bytes from below, decreases the time overhead to 53%
with only 5% added to the memory usage, although in
general we are not interested in tuning the benchmarks
like this. Interestingly, the overhead for mcf is a mere
16% compared to the 185% in [36] but the overhead of
gzip is 55% compared to 15% in [36]. Such differences
in performance are due to different levels of protection
such as checking structure field indexing and checking
dereferences, the effectiveness of different static analy-
sis implementations in optimizing away checks, and the

USENIX Association 18th USENIX Security Symposium 59

Figure 11: Execution time of baggy bounds checking ver-
sus using a splay tree for the Olden benchmark suite, nor-
malized by the execution time using the standard system
allocator without instrumentation. Benchmarks mst and
health used too much memory and thrashed so their
execution times are excluded.

Figure 12: Execution time of baggy bounds checking ver-
sus using a splay tree for SPECINT 2000 benchmarks,
normalized by the execution time using the standard sys-
tem allocator without instrumentation.

different compilers used.

To isolate these effects, we also measured our system us-
ing the standard memory allocator and the splay tree im-
plementation from previous systems [19, 30]. Figure 11
shows the time overhead for baggy bounds versus using a
splay tree for the Olden benchmarks. The splay tree runs
out of physical memory for the last two Olden bench-
marks (mst, health) and slows down to a crawl, so
we exclude them from the average of 30% for the splay
tree. Figure 12 compares the time overhead against us-
ing a splay tree for the SPECINT 2000 benchmarks. The
overhead of the splay tree exceeds 100% for all bench-
marks, with an average of 900% compared to the average
of 60% for baggy bounds checking.

Perhaps the most interesting result of our evaluation was
space overhead. Previous solutions [19, 30, 15] do not
report on the memory overheads of using splay trees, so
we measured the memory overhead of our system using
splay trees and compared it with the memory overhead
of baggy bounds. Figure 13 shows that our system had

Figure 13: Peak memory use of baggy bounds checking
versus using a splay tree for the Olden benchmark suite,
normalized by peak memory using the standard allocator
without instrumentation.

Figure 14: Peak memory use of baggy bounds checking
versus using a splay tree for SPECINT 2000 benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

negligible memory overhead for Olden, as opposed to the
splay tree version’s 170% overhead. Clearly Olden’s nu-
merous small allocations stress the splay tree by forcing
it to allocate an entry for each.

Indeed, we see in Figure 14 that its space overhead for
most SPECINT 2000 benchmarks is very low. Neverthe-
less, the overhead of 15% for baggy bounds is less than
the 20% average of the splay tree. Furthermore, the po-
tential worst case of double the memory was not encoun-
tered for baggy bounds in any of our experiments, while
the splay tree did exhibit greater than 100% overhead for
one benchmark (twolf).

The memory overhead is also low, as expected, compared
to approaches that track meta data for each pointer. Xu
et al. [36] report 331% for Olden, and Nagarakatte et
al. [23] report an average of 87% using a hash-table (and
64% using a contiguous array) over Olden and a subset
of SPECINT and SPECFP, but more than about 260%
(or about 170% using the array) for the pointer intensive
Olden benchmarks alone. These systems suffer memory
overheads per pointer in order to provide optional tem-
poral protection [36] and sub-object protection [23] and

60 18th USENIX Security Symposium USENIX Association

Figure 15: Throughput of Apache web server for varying
numbers of concurrent requests.

Figure 16: Throughput of NullHTTPD web server for
varying numbers of concurrent requests.

it is interesting to contrast with them although they are
not directly comparable.

4.2 Effectiveness

We evaluated the effectiveness of our system in pre-
venting buffer overflows using the benchmark suite
from [34]. The attacks required tuning to have any
chance of success, because our system changes the stack
frame layout and copies unsafe function arguments to lo-
cal variables, but the benchmarks use the address of the
first function argument to find the location of the return
address they aim to overwrite.

Baggy bounds checking prevented 17 out of 18 buffer
overflows in the suite. It failed, however, to prevent the
overflow of an array inside a structure from overwriting a
pointer inside the same structure. This limitation is also
shared with other systems that detect memory errors at
the level of memory blocks [19, 30, 36, 15].

4.3 Security Critical COTS Applications

Finally, to verify the usability of our approach, we built
and measured a few additional larger and security critical

Program KSLOC
openssl-0.9.8k 397
Apache-2.2.11 474
nullhttpd-0.5.1 2

libpng-1.2.5 36
SPECINT 2000 309

Olden 6
Total 1224

Table 1: Source lines of code in programs successfully
built and run with baggy bounds.

COTS applications. Table 1 lists the total number of lines
compiled in our experiments.

We built the OpenSSL toolkit version 0.9.8k [28] com-
prised of about 400 KSLOC, and executed its test suite
measuring 10% time and 11% memory overhead.

Then we built and measured two web servers,
Apache [31] and NullHTTPD [27]. Running Null-
HTTPD revealed three bounds violations similar to, and
including, the one reported in [8]. We used the Apache
benchmark utility with the keep-alive option to com-
pare the throughput over a LAN connection of the in-
strumented and uninstrumented versions of both web
servers. We managed to saturate the CPU by using the
keep-alive option of the benchmarking utility to reuse
connections for subsequent requests. We issued repeated
requests for the servers’ default pages and varied the
number of concurrent clients until the throughput of the
uninstrumented version leveled off (Figures 15 and 16).
We verified that the server’s CPU was saturated at this
point, and measured a throughput decrease of 8% for
Apache and 3% for NullHTTPD.

Finally, we built libpng, a notoriously vulnerability
prone library that is widely used. We successfully ran
its test program for 1000 PNG files between 1–2K found
on a desktop machine, and measured an average runtime
overhead of 4% and a peak memory overhead of 3.5%.

5 64-bit Architectures

In this section we verify and investigate ways to optimize
our approach on 64 bit architectures. The key observa-
tion is that pointers in 64 bit architectures have spare bits
to use. In Figure 17 (a) and (b) we see that currentmodels
of AMD64 processors use 48 out of 64 bits in pointers,
and Windows further limit this to 43 bits for user space
programs. Thus 21 bits in the pointer representation are
not used. Next we describe two uses for these spare bits,
and present a performance evaluation on AMD64.

USENIX Association 18th USENIX Security Symposium 61

Figure 17: Use of pointer bits by AMD64 hardware, Win-
dows applications, and baggy bounds tagged pointers.

5.1 Size Tagging

Since baggy bounds occupy less than a byte, they can fit
in a 64 bit pointer’s spare bits, removing the need for a
separate data structure. These tagged pointers are similar
to fat pointers in changing the pointer representation but
have several advantages.

First, tagged pointers retain the size of regular pointers,
avoiding fat pointers’ register and memory waste. More-
over, their memory stores and loads are atomic, unlike fat
pointers that break code relying on this. Finally, they pre-
serve the memory layout of structures, overcoming the
main drawback of fat pointers that breaks their interop-
erability with uninstrumented code.

For interoperability, we must also enable instrumented
code to use pointers from uninstrumented code and vice
versa. We achieve the former by interpreting the de-
fault zero value found in unused pointer bits as maxi-
mal bounds, so checks on pointers missing bounds suc-
ceed. The other direction is harder because we must
avoid raising a hardware exception when uninstrumented
code dereferences a tagged pointer.

We solved this using the paging hardware to map all ad-
dresses that differ only in their tag bits to the same mem-
ory. This way, unmodified binary libraries can use tagged
pointers, and instrumented code avoids the cost of clear-
ing the tag too.

As shown in Figure 17(c), we use 5 bits to encode the
size, allowing objects up to 232 bytes. In order to use the
paging hardware, these 5 bits have to come from the 43
bits supported by the operating system, thus leaving 38

bits of address space for programs.

With 5 address bits used for the bounds, we need to
map 32 different address regions to the same mem-
ory. We implemented this entirely in user space using
the CreateFileMapping and MapViewOfFileEx
Windows API functions to replace the process image,
stack, and heap with a file backed by the system paging
file and mapped at 32 different locations in the process
address space.

We use the 5 bits effectively ignored by the hardware to
store the size of memory allocations. For heap alloca-
tions, our malloc-style functions set the tags for point-
ers they return. For locals and globals, we instrument the
address taking operator “&” to properly tag the resulting
pointer. We store the bit complement of the size log-
arithm enabling interoperability with untagged pointers
by interpreting their zero bit pattern as all bits set (repre-
senting a maximal allocation of 232).

extract
bounds

�

mov rax, buf
shr rax, 26h
xor rax, 1fh

pointer
arithmetic

char *p = buf[i];

bounds
check

mov rbx, buf
xor rbx, p
shr rbx, al
jz ok

p = slowPath(buf, p)
ok:

Figure 18: AMD64 code sequence inserted to check un-
safe arithmetic with tagged pointers.

With the bounds encoded in pointers, there is no need for
a memory lookup to check pointer arithmetic. Figure 18
shows the AMD64 code sequence for checking pointer
arithmetic using a tagged pointer. First, we extract the
encoded bounds from the source pointer by right shifting
a copy to bring the tag to the bottom 8 bits of the register
and xoring them with the value 0x1f to recover the size
logarithm by inverting the bottom 5 bits. Then we check
that the result of the arithmetic is within bounds by xor-
ing the source and result pointers, shifting the result by
the tag stored in al, and checking for zero.

Similar to the table-based implementation of Section 3,
out-of-bounds pointers trigger a bounds error to simplify
the common case. To cause this, we zero the bits that
were used to hold the size and save them using 5 more
bits in the pointer, as shown in Figure 17(d).

62 18th USENIX Security Symposium USENIX Association

Figure 19: Normalized execution time on AMD64 with
Olden benchmarks.

Figure 20: Normalized execution time on AMD64 with
SPECINT 2000 benchmarks.

5.2 Out-Of-Bounds Offset

The spare bits can also store an offset that allows us to
adjust an out-of-bounds pointer to recover the address of
its referent object. We can use 13 bits for this offset, as
shown in Figure 17(d). These bits can count slot or even
allocation size multiples, increasing the supported out-
of-bounds range to at least 216 bytes above or below an
allocation.

This technique does not depend on size tagging and can
be used with a table instead. When looking up a pointer
in the table, however, the top bits have to be masked off.

5.3 Evaluation

We evaluated baggy bounds checking on AMD64 using
the subset of benchmarks from Section 4.1 that run un-
modified on 64 bits. We measured the system using a
contiguous array against the system using tagged point-
ers (Baggy and Tag in the figure legends respectively).
We also measured the overhead using the buddy alloca-
tor only.

The multiple memory mappings complicated measuring
memory use because Windows counts shared memory

Figure 21: Normalized peak memory use on AMD64
with Olden benchmarks.

Figure 22: Normalized peak memory use on AMD64
with SPECINT 2000 benchmarks.

multiple times in peak memory reports. To overcome
this, we measured memory use without actually tagging
the pointers, to avoid touching more than one address
for the same memory, but with the memory mappings in
place to account for at least the top level memory man-
agement overheads.

Figures 19 and 20 show the time overhead. The average
using a table on 64-bits is 4% for Olden and 72% for
SPECINT 2000—close to the 32-bit results of Section 3.
Figures 21 and 22 show the space overhead. The average
using a table is 21% for Olden and 11% for SPECINT
2000. Olden’s space overhead is higher than the 32-bit
version; unlike the 32-bit case, the buddy allocator con-
tributes to this overhead by 14% on average.

Tagged pointers are 1–2% faster on average than the
table, and use about 5% less memory for most bench-
marks, except a few ones such as power and crafty.
These exceptions are because our prototype does not map
pages to different addresses on demand, but instead maps
32 30-bit regions of virtual address space on program
startup. Hence the fixed overhead is notable for these
benchmarks because their absolute memory usage is low.

While we successfully implemented mapping multiple
views entirely in user-space, a robust implementation
would probably require kernel mode support. We feel

USENIX Association 18th USENIX Security Symposium 63

that the gains are too small to justify the complex-
ity. However, using the spare bits to store an out-of-
bounds offset is a good solution for tracking out-of-
bounds pointers when using the referent object approach
of Jones and Kelly [19].

6 Related Work

Many techniques have been proposed to detect mem-
ory errors in C programs. Static analysis techniques,
e.g., [33, 21, 7], can detect defects before software ships
and they do not introduce runtime overhead, but they can
miss defects and raise false alarms.

Since static techniques do not remove all defects, they
have been complemented with dynamic techniques. De-
bugging tools such as Purify [17] and Annelid [25] can
find memory errors during testing. While these tools
can be used without source code, they typically slow-
down applications by a factor of 10 or more. Some
dynamic techniques detect specific errors such as stack
overflows [13, 16, 32] or format string exploits [12];
they have low overhead but they cannot detect all spa-
tial memory errors. Techniques such as control-flow in-
tegrity [20, 1] or taint tracking (e.g. [10, 26, 11, 35]) de-
tect broad classes of errors, but they do not provide gen-
eral protection from spatial memory errors.

Some systems provide probabilistic protection from
memory errors [5]. In particular, DieHard [4] increases
heap allocation sizes by a random amount to make more
out-of-bounds errors benign at a low performance cost.
Our system also increases the allocation size but enforces
the allocation bounds to prevent errors and also pro-
tects stack-allocated objects in addition to heap-allocated
ones.

Several systems prevent all spatial memory errors in C
programs. Systems such as SafeC [3], CCured [24],
Cyclone [18], and the technique in Xu et al. [36] asso-
ciate bounds information with each pointer. CCured [24]
and Cyclone [18] are memory safe dialects of C. They
extend the pointer representation with bounds informa-
tion, i.e., they use a fat pointer representation, but this
changes memory layout and breaks binary compatibil-
ity. Moreover, they require a significant effort to port
applications to the safe dialects. For example, CCured
required changing 1287 out of 6000 lines of code for the
Olden benchmarks [15], and an average of 10% of the
lines of code have to be changed when porting programs
from C to Cyclone [34]. CCured has 28% average run-
time overhead for the Olden benchmarks, which is sig-
nificantly higher than the baggy bounds overhead. Xu
et al. [36] track pointers to detect spatial errors as well

as temporal errors with additional overhead, thus their
space overhead is proportional to the number of point-
ers. The average time overhead for spatial protection on
the benchmarks we overlap is 73% versus 16% for baggy
bounds with a space overhead of 273% versus 4%.

Other systems map any memory address within an al-
located object to the bounds information for the object.
Jones and Kelly [19] developed a backwards compatible
bounds checking solution that uses a splay tree to map
addresses to bounds. The splay tree is updated on allo-
cation and deallocation, and operations on pointers are
instrumented to lookup the bounds using an in-bounds
pointer. The advantage over previous approaches using
fat pointers is interoperability with code that was com-
piled without instrumentation. They increase the allo-
cation size to support legal out-of-bounds pointers one
byte beyond the object size. Baggy bounds checking
offers similar interoperability with less time and space
overhead, which we evaluated by using their implemen-
tation of splay trees with our system. CRED [30] im-
proves on the solution of Jones and Kelly by adding sup-
port for tracking out-of-bounds pointers and making sure
that they are never dereferenced unless they are brought
within bounds again. Real programs often violate the
C standard and contain such out-of-bounds pointers that
may be saved to data structures. The performance over-
head for programs that do not have out-of-bounds point-
ers is similar to Jones and Kelly if the same level of run-
time checking is used, but the authors recommend only
checking strings to lower the overhead to acceptable lev-
els. For programs that do contain such out-of-bounds
pointers the cost of tracking them includes scanning a
hash-table on every dereference to remove entries for
out-of-bounds pointers. Our solution is more efficient,
and we propose ways to track common cases of out-of-
bounds pointers that avoid using an additional data struc-
ture.

The fastest previous technique for bounds checking by
Dhurjati et al. [15] is more than two times slower than
our prototype. It uses inter-procedural data structure
analysis to partition allocations into pools statically and
uses a separate splay tree for each pool. They can
avoid inserting some objects in the splay tree when the
analysis finds that a pool is size-homogeneous. This
should significantly reduce the memory usage of the
splay tree compared to previous solutions, but unfortu-
nately they do not report memory overheads. This work
also optimizes the handling of out-of-bounds pointers in
CRED [30] by relying on hardware memory protection
to detect the dereference of out-of-bounds pointers.

The latest proposal, SoftBound [23], tracks bounds for
each pointer to achieve sub-object protection. Sub-object

64 18th USENIX Security Symposium USENIX Association

protection, however, may introduce compatibility prob-
lems with code using pointer arithmetic to traverse struc-
tures. SoftBound maintains interoperability by storing
bounds in a hash table or a large contiguous array. Stor-
ing bounds for each pointer can lead to a worst case
memory footprint as high as 300% for the hash-table
version or 200% for the contiguous array. The average
space overhead across Olden and a subset of SPECINT
and SPECFP is 87% using a hash-table and 64% for the
contiguous array, and the average runtime overhead for
checking both reads and writes is 93% for the hash ta-
ble and 67% for the contiguous array. Our average space
overhead over Olden and SPECINT is 7.5% with an av-
erage time overhead of 32%.

Other approaches associate different kinds of metadata
with memory regions to enforce safety properties. The
technique in [37] detects some invalid pointers derefer-
ences by marking all writable memory regions and pre-
venting writes to non-writable memory; it reports an
average runtime overhead of 97%. DFI [8] computes
reaching definitions statically and enforces them at run-
time. DFI has an average overhead of 104% on the SPEC
benchmarks. WIT [2] computes the approximate set of
objects written by each instruction and dynamically pre-
vents writes to objects not in the set. WIT does not
protect from invalid reads, and is subject to the preci-
sion of a points-to analysis when detecting some out-of-
bounds errors. On the other hand, WIT can detect ac-
cesses to deallocated/unallocated objects and some ac-
cesses through dangling pointers to re-allocated objects
in different analysis sets. WIT is six times faster than
baggy bounds checking for SPECINT 2000, so it is also
an attractive point in the error coverage/performance de-
sign space.

7 Limitations and Future Work

Our system shares some limitations with other solutions
based on the referent object approach. Arithmetic on in-
tegers holding addresses is unchecked, casting an inte-
ger that holds an out-of-bounds address back to a pointer
or passing an out-of-bounds pointer to unchecked code
will break the program, and custom memory allocators
reduce protection.

Our system does not address temporal memory safety
violations (accesses through “dangling pointers” to re-
allocated memory). Conservative garbage collection for
C [6] is one way to address these but introduces its own
compatibility issues and unpredictable overheads.

Our approach cannot protect from memory errors in sub-
objects such as structure fields. To offer such protection,

a system must track the bounds of each pointer [23] and
risk false alarms for some legal programs that use point-
ers to navigate across structure fields.

In Section 4 we found two programs using out-of-bounds
pointers beyond the slot size/2 bytes supported on 32-
bits and one beyond the 216 bytes supported on 64-bits.
Unfortunately the real applications built in Section 4.3
were limited to software we could readily port to the
Windows toolchain; wide use will likely encounter occa-
sional problems with out-of-bounds pointers, especially
on 32-bit systems. We plan to extended our system to
support all out-of-bounds pointers using the data struc-
ture from [30], but take advantage of the more efficient
mechanisms we described for the common cases. To
solve the delayed deallocation problem discussed in Sec-
tion 6 and deallocate entries as soon as the out-of-bounds
pointer is deallocated, we can track out-of-bounds point-
ers using the pointer’s address instead of the pointer’s
referent object’s address. (Similar to the approach [23]
takes for all pointers.) To optimize scanning this data
structure on every deallocation we can use an array with
an entry for every few memory pages. A single mem-
ory read from this array on deallocation (e.g. on func-
tion exit) is sufficient to confirm the data structure has
no entries for a memory range. This is the common
case since most out-of-bounds pointers are handled by
the other mechanisms we described in this paper.

Our prototype uses a simple intra-procedural analysis to
find safe operations and does not eliminate redundant
checks. We expect that integrating state of the art analy-
ses to reduce the number of checks will further improve
performance.

Finally, our approach tolerates harmless bound viola-
tions making it less suitable for debugging than slower
techniques that can uncover these errors. On the other
hand, being faster makes it more suitable for production
runs, and tolerating faults in production runs may be de-
sired [29].

8 Conclusions

Attacks that exploit out-of-bounds errors in C and C++
continue to be a serious security problem. We presented
baggy bounds checking, a backwards-compatible bounds
checking technique that implements efficient bounds
checks. It improves the performance of bounds checks
by checking allocation bounds instead of object bounds
and by using a binary buddy allocator to constrain the
size and alignment of allocations to powers of 2. These
constraints enable a concise representation for allocation
bounds and let baggy bounds checking store this infor-

USENIX Association 18th USENIX Security Symposium 65

mation in an array that can be looked up and maintained
efficiently. Our experiments show that replacing a splay
tree, which was used to store bounds information in pre-
vious systems, by our array reduces time overhead by an
order of magnitude without increasing space overhead.

We believe baggy bounds checking can be used in prac-
tice to harden security-critical applications because it has
low overhead, it works on unmodified C and C++ pro-
grams, and it preserves binary compatibility with unin-
strumented libraries. For example, we were able to com-
pile the Apache Web server with baggy bounds checking
and the throughput of the hardened version of the server
decreases by only 8% relative to an unistrumented ver-
sion.

Acknowledgments

We thank our shepherd R. Sekar, the anonymous review-
ers, and the members of the Networks and Operating
Systems group at Cambridge University for comments
that helped improve this paper. We also thank Dinakar
Dhurjati and Vikram Adve for their communication.

References

[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and
Jay Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security (CCS), 2005.

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu,
Manuel Costa, and Miguel Castro. Preventing
memory error exploits with WIT. In Proceedings
of the 2008 IEEE Symposium on Security and Pri-
vacy, 2008.

[3] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient detection of all pointer and array
access errors. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 1994.

[4] Emery D. Berger and Benjamin G. Zorn. DieHard:
probabilistic memory safety for unsafe languages.
In Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implemen-
tation (PLDI), 2006.

[5] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVar-
ney. Efficient techniques for comprehensive protec-
tion from memory error exploits. In Proceedings of
the 14th USENIX Security Symposium, 2005.

[6] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. In
Software Practice & Experience, 1988.

[7] William R. Bush, Jonathan D. Pincus, and David J.
Sielaff. A static analyzer for finding dynamic pro-
gramming errors. In Software Practice & Experi-
ence, 2000.

[8] Miguel Castro, Manuel Costa, and Tim Harris. Se-
curing software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[9] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel
Rosenblum. Shredding your garbage: reducing
data lifetime through secure deallocation. In Pro-
ceedings of the 14th USENIX Security Symposium,
2005.

[10] Manuel Costa, Jon Crowcroft, Miguel Castro,
AntonyRowstron, Lidong Zhou, Lintao Zhang, and
Paul Barham. Can we contain Internet worms? In
Proceedings of the Third Workshop on Hot Topics
in Networks (HotNets-III), 2004.

[11] Manuel Costa, Jon Crowcroft, Miguel Castro,
AntonyRowstron, Lidong Zhou, Lintao Zhang, and
Paul Barham. Vigilante: end-to-end containment of
internet worms. In Proceedings of the 20th ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), 2005.

[12] Crispin Cowan, Matt Barringer, Steve Beattie, Greg
Kroah-Hartman, Mike Frantzen, and Jamie Lokier.
FormatGuard: automatic protection from printf for-
mat string vulnerabilities. In Proceedings of the
10th USENIX Security Symposium, 2001.

[13] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
StackGuard: automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings
of the 7th USENIX Security Symposium, 1998.

[14] John Criswell, Andrew Lenharth, Dinakar Dhur-
jati, and Vikram Adve. Secure virtual architec-
ture: a safe execution environment for commod-
ity operating systems. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), 2007.

[15] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible array bounds checking for C with very
low overhead. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE),
2006.

66 18th USENIX Security Symposium USENIX Association

[16] Hiroaki Etoh and Kunikazu Yoda. Pro-
tecting from stack-smashing attacks.
http://www.trl.ibm.com/projects/
security/ssp/main.html.

[17] Reed Hasting and Bob Joyce. Purify: Fast detection
of memory leaks and access errors. In Proceedings
of the Winter USENIX Conference, 1992.

[18] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of C. In Proceed-
ings of the General Track of the USENIX Annual
Conference, 2002.

[19] Richard W. M. Jones and Paul H. J. Kelly.
Backwards-compatible bounds checking for arrays
and pointers in C programs. In Proceedings of the
3rd International Workshop on Automatic Debug-
ging (AADEBUG), 1997.

[20] Vladimir Kiriansky, Derek Bruening, and Saman P.
Amarasinghe. Secure execution via program shep-
herding. In Proceedings of the 11th USENIX Secu-
rity Symposium, 2002.

[21] David Larochelle and David Evans. Statically de-
tecting likely buffer overflow vulnerabilities. In
Proceedings of the 10th USENIX Security Sympo-
sium, 2001.

[22] Microsoft. Phoenix compiler framework. http:
//connect.microsoft.com/Phoenix.

[23] Santosh Nagarakatte, Jianzhou Zhao, Milo Martin,
and Steve Zdancewic. SoftBound: Highly compat-
ible and complete spatial memory safety for C. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), 2009.

[24] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy
code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL), 2002.

[25] Nicholas Nethercote and Jeremy Fitzhardinge.
Bounds-checking entire programs without recom-
piling. In Informal Proceedings of the Second
Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management
(SPACE), 2004.

[26] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis and sig-
nature generation of exploits on commodity soft-
ware. In Proceedings of the 12th Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[27] NullLogic. Null HTTPd. http://
nullwebmail.sourceforge.net/httpd.

[28] OpenSSL Toolkit. http://www.openssl.
org.

[29] Martin Rinard, Cristian Cadar, Daniel Dumitran,
Daniel M. Roy, Tudor Leu, and William S. Bee-
bee, Jr. Enhancing server availability and security
through failure-oblivious computing. In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), 2004.

[30] Olatunji Ruwase and Monica S. Lam. A practical
dynamic buffer overflow detector. In Proceedings
of the 11th Network and Distributed System Secu-
rity Symposium (NDSS), 2004.

[31] The Apache Software Foundation. The
Apache HTTP Server Project. http:
//httpd.apache.org.

[32] Vendicator. StackShield. http://www.
angelfire.com/sk/stackshield.

[33] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A first step towards auto-
mated detection of buffer overrun vulnerabilities.
In Proceedings of the 7th Network and Distributed
System Security Symposium (NDSS), 2000.

[34] John Wilander and Mariam Kamkar. A comparison
of publicly available tools for dynamic buffer over-
flow prevention. In Proceedings of the 10th Net-
work and Distributed System Security Symposium
(NDSS), 2003.

[35] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-
enhanced policy enforcement: a practical approach
to defeat a wide range of attacks. In Proceedings of
the 15th USENIX Security Symposium, 2006.

[36] Wei Xu, Daniel C. DuVarney, and R. Sekar. An
efficient and backwards-compatible transformation
to ensure memory safety of C programs. In Pro-
ceedings of the 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (SIGSOFT/FSE), 2004.

[37] Suan Hsi Yong and Susan Horwitz. Protecting C
programs from attacks via invalid pointer derefer-
ences. In Proceedings of the 11th ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2003.

USENIX Association 18th USENIX Security Symposium 67

Dynamic Test Generation To Find Integer Bugs in x86 Binary Linux
Programs

David Molnar
UC Berkeley

Xue Cong Li
UC Berkeley

David A. Wagner
UC Berkeley

Abstract
Recently, integer bugs, including integer overflow, width
conversion, and signed/unsigned conversion errors, have
risen to become a common root cause for serious security
vulnerabilities. We introduce new methods for discover-
ing integer bugs using dynamic test generation on x86
binaries, and we describe key design choices in efficient
symbolic execution of such programs. We implemented
our methods in a prototype tool SmartFuzz, which we
use to analyze Linux x86 binary executables. We also
created a reporting service, metafuzz.com, to aid in
triaging and reporting bugs found by SmartFuzz and the
black-box fuzz testing tool zzuf. We report on experi-
ments applying these tools to a range of software appli-
cations, including the mplayer media player, the exiv2
image metadata library, and ImageMagick convert. We
also report on our experience using SmartFuzz, zzuf,
and metafuzz.com to perform testing at scale with the
Amazon Elastic Compute Cloud (EC2). To date, the
metafuzz.com site has recorded more than 2, 614 test
runs, comprising 2, 361, 595 test cases. Our experiments
found approximately 77 total distinct bugs in 864 com-
pute hours, costing us an average of $2.24 per bug at cur-
rent EC2 rates. We quantify the overlap in bugs found by
the two tools, and we show that SmartFuzz finds bugs
missed by zzuf, including one program where Smart-
Fuzz finds bugs but zzuf does not.

1 Introduction
Integer overflow bugs recently became the second most
common bug type in security advisories from OS ven-
dors [10]. Unfortunately, traditional static and dynamic
analysis techniques are poorly suited to detecting integer-
related bugs. In this paper, we argue that dynamic test
generation is better suited to finding such bugs, and we
develop new methods for finding a broad class of inte-
ger bugs with this approach. We have implemented these
methods in a new tool, SmartFuzz, that analyzes traces
from commodity Linux x86 programs.

Integer bugs result from a mismatch between machine
arithmetic and mathematical arithmetic. For example,
machine arithmetic has bounded precision; if an expres-
sion has a value greater than the maximum integer that
can be represented, the value wraps around to fit in ma-
chine precision. This can cause the value stored to be
smaller than expected by the programmer. If, for exam-
ple, a wrapped value is used as an argument to malloc,
the result is an object that is smaller than expected, which
can lead to a buffer overflow later if the programmer is
not careful. This kind of bug is often known as an integer
overflow bug. In Section 2 we describe two other classes
of integer bugs: width conversions, in which converting
from one type of machine integer to another causes un-
expected changes in value, and signed/unsigned conver-
sions, in which a value is treated as both a signed and an
unsigned integer. These kinds of bugs are pervasive and
can, in many cases, cause serious security vulnerabili-
ties. Therefore, eliminating such bugs is important for
improving software security.

While new code can partially or totally avoid integer
bugs if it is constructed appropriately [19], it is also im-
portant to find and fix bugs in legacy code. Previous
approaches to finding integer bugs in legacy code have
focused on static analysis or runtime checks. Unfortu-
nately, existing static analysis algorithms for finding in-
teger bugs tend to generate many false positives, because
it is difficult to statically reason about integer values with
sufficient precision. Alternatively, one can insert runtime
checks into the application to check for overflow or non-
value-preserving width conversions, and raise an excep-
tion if they occur. One problem with this approach is
that many overflows are benign and harmless. Throwing
an exception in such cases prevents the application from
functioning and thus causes false positives. Furthermore,
occasionally the code intentionally relies upon overflow
semantics; e.g., cryptographic code or fast hash func-
tions. Such code is often falsely flagged by static analysis
or runtime checks. In summary, both static analysis and

68 18th USENIX Security Symposium USENIX Association

runtime checking tend to suffer from either many false
positives or many missed bugs.

In contrast, dynamic test generation is a promising ap-
proach for avoiding these shortcomings. Dynamic test
generation, a technique introduced by Godefroid et al.
and Engler et al. [13, 7], uses symbolic execution to gen-
erate new test cases that expose specifically targeted be-
haviors of the program. Symbolic execution works by
collecting a set of constraints, called the path condition,
that model the values computed by the program along a
single path through the code. To determine whether there
is any input that could cause the program to follow that
path of execution and also violate a particular assertion,
we can add to the path condition a constraint represent-
ing that the assertion is violated and feed the resulting set
of constraints to a solver. If the solver finds any solution
to the resulting constraints, we can synthesize a new test
case that will trigger an assertion violation. In this way,
symbolic execution can be used to discover test cases that
cause the program to behave in a specific way.

Our main approach is to use symbolic execution to
construct test cases that trigger arithmetic overflows,
non-value-preserving width conversions, or dangerous
signed/unsigned conversions. Then, we run the program
on these test cases and use standard tools that check for
buggy behavior to recognize bugs. We only report test
cases that are verified to trigger incorrect behavior by the
program. As a result, we have confidence that all test
cases we report are real bugs and not false positives.

Others have previously reported on using dynamic test
generation to find some kinds of security bugs [8, 15].
The contribution of this paper is to show how to extend
those techniques to find integer-related bugs. We show
that this approach is effective at finding many bugs, with-
out the false positives endemic to prior work on static
analysis and runtime checking.

The ability to eliminate false positives is important,
because false positives are time-consuming to deal with.
In slogan form: false positives in static analysis waste
the programmer’s time; false positives in runtime check-
ing waste the end user’s time; while false positives in
dynamic test generation waste the tool’s time. Because
an hour of CPU time is much cheaper than an hour of
a human’s time, dynamic test generation is an attractive
way to find and fix integer bugs.

We have implemented our approach to finding inte-
ger bugs in SmartFuzz, a tool for performing symbolic
execution and dynamic test generation on Linux x86 ap-
plications. SmartFuzz works with binary executables di-
rectly, and does not require or use access to source code.
Working with binaries has several advantages, most no-
tably that we can generate tests directly from shipping
binaries. In particular, we do not need to modify the
build process for a program under test, which has been

a pain point for static analysis tools [9]. Also, this allows
us to perform whole-program analysis: we can find bugs
that arise due to interactions between the application and
libraries it uses, even if we don’t have source code for
those libraries. Of course, working with binary traces in-
troduces special challenges, most notably the sheer size
of the traces and the lack of type information that would
be present in the source code. We discuss the challenges
and design choices in Section 4.

In Section 5 we describe the techniques we use to gen-
erate test cases for integer bugs in dynamic test gener-
ation. We discovered that these techniques find many
bugs, too many to track manually. To help us prioritize
and manage these bug reports and streamline the pro-
cess of reporting them to developers, we built Metafuzz, a
web service for tracking test cases and bugs (Section 6).
Metafuzz helps minimize the amount of human time re-
quired to find high-quality bugs and report them to de-
velopers, which is important because human time is the
most expensive resource in a testing framework. Finally,
Section 7 presents an empirical evaluation of our tech-
niques and discusses our experience with these tools.

The contributions of this paper are the following:

• We design novel algorithms for finding
signed/unsigned conversion vulnerabilities us-
ing symbolic execution. In particular, we develop
a novel type inference approach that allows us to
detect which values in an x86 binary trace are used
as signed integers, unsigned integers, or both. We
discuss challenges in scaling such an analysis to
commodity Linux media playing software and our
approach to these challenges.

• We extend the range of integer bugs that can be
found with symbolic execution, including integer
overflows, integer underflows, width conversions,
and signed/unsigned conversions. No prior sym-
bolic execution tool has included the ability to de-
tect all of these kinds of integer vulnerabilities.

• We implement these methods in SmartFuzz, a tool
for symbolic execution and dynamic test generation
of x86 binaries on Linux. We describe key chal-
lenges in symbolic execution of commodity Linux
software, and we explain design choices in Smart-
Fuzz motivated by these challenges.

• We report on the bug finding performance of Smart-
Fuzz and compare SmartFuzz to the zzuf black
box fuzz testing tool. The zzuf tool is a simple,
yet effective, fuzz testing program which randomly
mutates a given seed file to find new test inputs,
without any knowledge or feedback from the tar-
get program. We have tested a broad range of com-
modity Linux software, including the media players

2

USENIX Association 18th USENIX Security Symposium 69

mplayer and ffmpeg, the ImageMagick convert
tool, and the exiv2 TIFF metadata parsing library.
This software comprises over one million lines of
source code, and our test cases result in symbolic
execution of traces that are millions of x86 instruc-
tions in length.

• We identify challenges with reporting bugs at scale,
and introduce several techniques for addressing
these challenges. For example, we present evidence
that a simple stack hash is not sufficient for group-
ing test cases to avoid duplicate bug reports, and
then we develop a fuzzy stack hash to solve these
problems. Our experiments find approximately 77
total distinct bugs in 864 compute hours, giving us
an average cost of $2.24 per bug at current Amazon
EC2 rates. We quantify the overlap in bugs found
by the two tools, and we show that SmartFuzz finds
bugs missed by zzuf, including one program where
SmartFuzz finds bugs but zzuf does not.

Between June 2008 and November 2008, Metafuzz
has processed over 2,614 test runs from both SmartFuzz
and the zzuf black box fuzz testing tool [16], comprising
2,361,595 test cases. To our knowledge, this is the largest
number of test runs and test cases yet reported for dy-
namic test generation techniques. We have released our
code under the GPL version 2 and BSD licenses1. Our
vision is a service that makes it easy and inexpensive for
software projects to find integer bugs and other serious
security relevant code defects using dynamic test gener-
ation techniques. Our work shows that such a service is
possible for a large class of commodity Linux programs.

2 Integer Bugs
We now describe the three main classes of integer bugs
we want to find: integer overflow/underflow, width con-
versions, and signed/unsigned conversion errors [2]. All
three classes of bugs occur due to the mismatch between
machine arithmetic and arithmetic over unbounded inte-
gers.

Overflow/Underflow. Integer overflow (and underflow)
bugs occur when an arithmetic expression results in a
value that is larger (or smaller) than can be represented
by the machine type. The usual behavior in this case is
to silently “wrap around,” e.g. for a 32-bit type, reduce
the value modulo 232. Consider the function badalloc
in Figure 1. If the multiplication sz * n overflows, the
allocated buffer may be smaller than expected, which can
lead to a buffer overflow later.

Width Conversions. Converting a value of one integral
type to a wider (or narrower) integral type which has a

1http://www.sf.net/projects/catchconv

char *badalloc(int sz, int n) {

return (char *) malloc(sz * n);

}

void badcpy(Int16 n, char *p, char *q) {

UInt32 m = n;

memcpy(p, q, m);

}

void badcpy2(int n, char *p, char *q) {

if (n > 800)

return;

memcpy(p, q, n);

}

Figure 1: Examples of three types of integer bugs.

different range of values can introduce width conversion
bugs. For instance, consider badcpy in Figure 1. If the
first parameter is negative, the conversion from Int16 to
UInt32 will trigger sign-extension, causing m to be very
large and likely leading to a buffer overflow. Because
memcpy’s third argument is declared to have type size t
(which is an unsigned integer type), even if we passed
n directly to memcpy the implicit conversion would still
make this buggy. Width conversion bugs can also arise
when converting a wider type to a narrower type.

Signed/Unsigned Conversion. Lastly, converting a
signed integer type to an unsigned integer type of the
same width (or vice versa) can introduce bugs, because
this conversion can change a negative number to a large
positive number (or vice versa). For example, consider
badcpy2 in Figure 1. If the first parameter n is a negative
integer, it will pass the bounds check, then be promoted
to a large unsigned integer when passed to memcpy.
memcpy will copy a large number of bytes, likely lead-
ing to a buffer overflow.

3 Related Work
An earlier version of SmartFuzz and the Metafuzz web
site infrastructure described in this paper were used for
previous work that compares dynamic test generation
with black-box fuzz testing by different authors [1]. That
previous work does not describe the SmartFuzz tool, its
design choices, or the Metafuzz infrastructure in detail.
Furthermore, this paper works from new data on the ef-
fectiveness of SmartFuzz, except for an anecdote in our
“preliminary experiences” section. We are not aware of
other work that directly compares dynamic test gener-
ation with black-box fuzz testing on a scale similar to
ours.

The most closely related work on integer bugs is
Godefroid et al. [15], who describe dynamic test genera-
tion with bug-seeking queries for integer overflow, un-
derflow, and some narrowing conversion errors in the
context of the SAGE tool. Our work looks at a wider

3

70 18th USENIX Security Symposium USENIX Association

range of narrowing conversion errors, and we consider
signed/unsigned conversion while their work does not.
The EXE and KLEE tools also use integer overflow to
prioritize different test cases in dynamic test generation,
but they do not break out results on the number of bugs
found due to this heuristic [8, 6]. The KLEE system also
focuses on scaling dynamic test generation, but in a dif-
ferent way. While we focus on a few “large” programs
in our results, KLEE focuses on high code coverage for
over 450 smaller programs, as measured by trace size and
source lines of code. These previous works also do not
address the problem of type inference for integer types in
binary traces.

IntScope is a static binary analysis tool for finding in-
teger overflow bugs [28]. IntScope translates binaries to
an intermediate representation, then it checks lazily for
potentially harmful integer overflows by using symbolic
execution for data that flows into “taint sinks” defined by
the tool, such as memory allocation functions. Smart-
Fuzz, in contrast, eagerly attempts to generate new test
cases that cause an integer bug at the point in the pro-
gram where such behavior could occur. This difference
is due in part to the fact that IntScope reports errors to
a programmer directly, while SmartFuzz filters test cases
using a tool such as memcheck. As we argued in the
Introduction, such a filter allows us to employ aggres-
sive heuristics that may generate many test cases. Fur-
thermore, while IntScope renders signed and unsigned
comparisons in their intermediate representation by us-
ing hints from the x86 instruction set, they do not explic-
itly discuss how to use this information to perform type
inference for signed and unsigned types, nor do they ad-
dress the issue of scaling such inference to traces with
millions of instructions. Finally, IntScope focuses only
on integer overflow errors, while SmartFuzz covers un-
derflow, narrowing conversion, and signed/unsigned con-
version bugs in addition.

The dynamic test generation approach we use was in-
troduced by Godefroid et al. [13] and independently by
Cadar and Engler [7]. The SAGE system by Godefroid
et al. works, as we do, on x86 binary programs and
uses a generational search, but SAGE makes several dif-
ferent design choices we explain in Section 4. Lanzi
et al. propose a design for dynamic test generation of
x86 binaries that uses static analysis of loops to assist
the solver, but their implementation is preliminary [17].
KLEE, in contrast, works with the intermediate repre-
sentation generated by the Low-Level Virtual Machine
target for gcc [6]. Larson and Austin applied symbolic
range analysis to traces of programs to look for potential
buffer overflow attacks, although they did not attempt to
synthesize crashing inputs [18]. The BitBlaze [5] infras-
tructure of Song et al. also performs symbolic execution
of x86 binaries, but their focus is on malware and signa-

ture generation, not on test generation.

Other approaches to integer bugs include static anal-
ysis and runtime detection. The Microsoft Prefast tool
uses static analysis to warn about intraprocedural integer
overflows [21]. Both Microsoft Visual C++ and gcc can
add runtime checks to catch integer overflows in argu-
ments to malloc and terminate a program. Brumley et
al. provide rules for such runtime checks and show they
can be implemented with low overhead on the x86 ar-
chitecture by using jumps conditioned on the overflow
bit in EFLAGS [4]. Both of these approaches fail to
catch signed/unsigned conversion errors. Furthermore,
both static analysis and runtime checking for overflow
will flag code that is correct but relies on overflow se-
mantics, while our approach only reports test cases in
case of a crash or a Valgrind error report.

Blexim gives an introduction to integer bugs [3]. Fuzz
testing has received a great deal of attention since its
original introduction by Miller et al [22]. Notable pub-
lic demonstrations of fuzzing’s ability to find bugs in-
clude the Month of Browser Bugs and Month of Kernel
Bugs [23, 20]. DeMott surveys recent work on fuzz test-
ing, including the autodafe fuzzer, which uses libgdb
to instrument functions of interest and adjust fuzz testing
based on those functions’ arguments [11, 27].

Our Metafuzz infrastructure also addresses issues not
treated in previous work on test generation. First, we
make bug bucketing a first-class problem and we intro-
duce a fuzzy stack hash in response to developer feedback
on bugs reported by Metafuzz. The SAGE paper reports
bugs by stack hash, and KLEE reports on using the line
of code as a bug bucketing heuristic, but we are not aware
of other work that uses a fuzzy stack hash. Second, we
report techniques for reducing the amount of human time
required to process test cases generated by fuzzing and
improve the quality of our error reports to developers;
we are not aware of previous work on this topic. Such
techniques are vitally important because human time is
the most expensive part of a test infrastructure. Finally,
Metafuzz uses on-demand computing with the Amazon
Elastic Compute Cloud, and we explicitly quantify the
cost of each bug found, which was not done in previous
work.

4 Dynamic Test Generation

We describe the architecture of SmartFuzz, a tool for dy-
namic test generation of x86 binary programs on Linux.
Dynamic test generation on x86 binaries—without ac-
cess to source code—raises special challenges. We dis-
cuss these challenges and motivate our fundamental de-
sign choices.

4

USENIX Association 18th USENIX Security Symposium 71

Figure 2: Dynamic test generation includes four stages:
symbolic execution, solving to obtain new test cases,
then triage to determine whether to report a bug or score
the test case for addition to the pool of unexplored test
cases.

4.1 Architecture
The SmartFuzz architecture is as follows: First, we add
one or more test cases to a pool. Each test case in the
pool receives a score given by the number of new basic
blocks seen when running the target program on the test
case. By “new” we mean that the basic block has not
been observed while scoring any previous test case; we
identify basic blocks by the instruction pointer of their
entry point.

In each iteration of test generation, we choose a high-
scoring test case, execute the program on that input, and
use symbolic execution to generate a set of constraints
that record how each intermediate value computed by the
program relates to the inputs in the test case. SmartFuzz
implements the symbolic execution and scoring compo-
nents using the Valgrind binary analysis framework, and
we use STP [12] to solve constraints.

For each symbolic branch, SmartFuzz adds a con-
straint that tries to force the program down a differ-
ent path. We then query the constraint solver to see
whether there exists any solution to the resulting set of
constraints; if there is, the solution describes a new test
case. We refer to these as coverage queries to the con-
straint solver.

SmartFuzz also injects constraints that are satisfied if
a condition causing an error or potential error is satis-
fied (e.g., to force an arithmetic calculation to overflow).
We then query the constraint solver; a solution describes
a test case likely to cause an error. We refer to these
as bug-seeking queries to the constraint solver. Bug-
seeking queries come in different types, depending on
the specific error they seek to exhibit in the program.

Both coverage and bug-seeking queries are explored
in a generational search similar to the SAGE tool [14].
Each query from a symbolic trace is solved in turn, and
new test cases created from successfully solved queries.
A single symbolic execution therefore leads to many cov-
erage and bug-seeking queries to the constraint solver,
which may result in many new test cases.

We triage each new test case as it is generated, i.e. we

determine if it exhibits a bug. If so, we report the bug;
otherwise, we add the test case to the pool for scoring and
possible symbolic execution. For triage, we use Valgrind
memcheck on the target program with each test case,
which is a tool that observes concrete execution looking
for common programming errors [26]. We record any
test case that causes the program to crash or triggers a
memcheck warning.

We chose memcheck because it checks a variety of
properties, including reads and writes to invalid mem-
ory locations, memory leaks, and use of uninitialized
values. Re-implementing these analyses as part of the
SmartFuzz symbolic execution tool would be wasteful
and error-prone, as the memcheck tool has had the bene-
fit of multiple years of use in large-scale projects such as
Firefox and OpenOffice. The memcheck tool is known
as a tool with a low false positive rate, as well, making
it more likely that developers will pay attention to bugs
reported by memcheck. Given a memcheck error report,
developers do not even need to know that associated test
case was created by SmartFuzz.

We do not attempt to classify the bugs we find as ex-
ploitable or not exploitable, because doing so by hand
for the volume of test cases we generate is impracti-
cal. Many of the bugs found by memcheck are mem-
ory safety errors, which often lead to security vulnerabil-
ities. Writes to invalid memory locations, in particular,
are a red flag. Finally, to report bugs we use the Metafuzz
framework described in Section 6.

4.2 Design Choices
Intermediate Representation. The sheer size and com-
plexity of the x86 instruction set poses a challenge for
analyzing x86 binaries. We decided to translate the un-
derlying x86 code on-the-fly to an intermediate repre-
sentation, then map the intermediate representation to
symbolic formulas. Specifically, we used the Valgrind
binary instrumentation tool to translate x86 instructions
into VEX, the Valgrind intermediate representation [24].
The BitBlaze system works similarly, but with a different
intermediate representation [5]. Details are available in
an extended version of this paper2.

Using an intermediate representation offers several ad-
vantages. First, it allows for a degree of platform inde-
pendence: though we support only x86 in our current
tool, the VEX library also supports the AMD64 and Pow-
erPC instruction sets, with ARM support under active de-
velopment. Adding support for these additional architec-
tures requires only adding support for a small number of
additional VEX instructions, not an entirely new instruc-
tion set from scratch. Second, the VEX library generates
IR that satisfies the single static assignment property and

2http://www.cs.berkeley.edu/~dmolnar/

usenix09-full.pdf

5

72 18th USENIX Security Symposium USENIX Association

performs other optimizations, which makes the transla-
tion from IR to formulas more straightforward. Third,
and most importantly, this choice allowed us to outsource
the pain of dealing with the minutae of the x86 instruc-
tion set to the VEX library, which has had years of pro-
duction use as part of the Valgrind memory checking
tool. For instance, we don’t need to explicitly model
the EFLAGS register, as the VEX library translates it
to boolean operations. The main shortcoming with the
VEX IR is that a single x86 instruction may expand to
five or more IR instructions, which results in long traces
and correspondingly longer symbolic formulas.
Online Constraint Generation. SmartFuzz uses online
constraint generation, in which constraints are generated
while the program is running. In contrast, SAGE (an-
other tool for dynamic test generation) uses offline con-
straint generation, where the program is first traced and
then the trace is replayed to generate constraints [14].
Offline constraint generation has several advantages: it
is not sensitive to concurrency or nondeterminism in sys-
tem calls; tracing has lower runtime overhead than con-
straint generation, so can be applied to running systems
in a realistic environment; and, this separation of con-
cerns makes the system easier to develop and debug,
not least because trace replay and constraint generation
is reproducible and deterministic. In short, offline con-
straint generation has important software engineering ad-
vantages.

SmartFuzz uses online constraint generation primarily
because, when the SmartFuzz project began, we were not
aware of an available offline trace-and-replay framework
with an intermediate representation comparable to VEX.
Today, O’Callahan’s chronicle-recorder could pro-
vide a starting point for a VEX-based offline constraint
generation tool [25].
Memory Model. Other symbolic execution tools such
as EXE and KLEE model memory as a set of symbolic
arrays, with one array for each allocated memory object.
We do not. Instead, for each load or store instruction,
we first concretize the memory address before access-
ing the symbolic heap. In particular, we keep a map M
from concrete memory addresses to symbolic values. If
the program reads from concrete address a, we retrieve
a symbolic value from M(a). Even if we have recorded
a symbolic expression a associated with this address, the
symbolic address is ignored. Note that the value of a is
known at constraint generation time and hence becomes
(as far as the solver is concerned) a constant. Store in-
structions are handled similarly.

While this approach sacrifices precision, it scales bet-
ter to large traces. We note that the SAGE tool adopts
a similar memory model. In particular, concretizing ad-
dresses generates symbolic formulas that the constraint
solver can solve much more efficiently, because the

solver does not need to reason about aliasing of point-
ers.
Only Tainted Data is Symbolic. We track the taint sta-
tus of every byte in memory. As an optimization, we
do not store symbolic information for untainted memory
locations, because by definition untainted data is not de-
pendent upon the untrusted inputs that we are trying to
vary. We have found that only a tiny fraction of the data
processed along a single execution path is tainted. Con-
sequently, this optimization greatly reduces the size of
our constraint systems and reduces the memory overhead
of symbolic execution.
Focus on Fuzzing Files. We decided to focus on single-
threaded programs, such as media players, that read a file
containing untrusted data. Thus, a test case is simply the
contents of this file, and SmartFuzz can focus on gen-
erating candidate files. This simplifies the symbolic ex-
ecution and test case generation infrastructure, because
there are a limited number of system calls that read from
this file, and we do not need to account for concurrent
interactions between threads in the same program. We
know of no fundamental barriers, however, to extending
our approach to multi-threaded and network-facing pro-
grams.

Our implementation associates a symbolic input vari-
able with each byte of the input file. As a result, Smart-
Fuzz cannot generate test cases with more bytes than are
present in the initial seed file.
Multiple Cooperating Analyses. Our tool is imple-
mented as a series of independent cooperating analyses
in the Valgrind instrumentation framework. Each analy-
sis adds its own instrumentation to a basic block during
translation and exports an interface to the other analyses.
For example, the instrumentation for tracking taint flow,
which determines the IR instructions to treat as symbolic,
exports an interface that allows querying whether a spe-
cific memory location or temporary variable is symbolic.
A second analysis then uses this interface to determine
whether or not to output STP constraints for a given IR
instruction.

The main advantage of this approach is that it makes
it easy to add new features by adding a new analysis,
then modifying our core constraint generation instrumen-
tation. Also, this decomposition enabled us to extract our
taint-tracking code and use it in a different project with
minimal modifications, and we were able to implement
the binary type inference analysis described in Section 5,
replacing a different earlier version, without changing
our other analyses.
Optimize in Postprocessing. Another design choice
was to output constraints that are as “close” as possible to
the intermediate representation, performing only limited
optimizations on the fly. For example, we implement the
“related constraint elimination,” as introduced by tools

6

USENIX Association 18th USENIX Security Symposium 73

such as EXE and SAGE [8, 14], as a post-processing
step on constraints created by our tool. We then leave it
up to the solver to perform common subexpression elim-
ination, constant propagation, and other optimizations.
The main benefit of this choice is that it simplifies our
constraint generation. One drawback of this choice is
that current solvers, including STP, are not yet capable
of “remembering” optimizations from one query to the
next, leading to redundant work on the part of the solver.
The main drawback of this choice, however, is that while
after optimization each individual query is small, the to-
tal symbolic trace containing all queries for a program
can be several gigabytes. When running our tool on a
32-bit host machine, this can cause problems with maxi-
mum file size for a single file or maximum memory size
in a single process.

5 Techniques for Finding Integer Bugs
We now describe the techniques we use for finding inte-
ger bugs.
Overflow/Underflow. For each arithmetic expression
that could potentially overflow or underflow, we emit a
constraint that is satisfied if the overflow or underflow
occurs. If our solver can satisfy these constraints, the
resulting input values will likely cause an underflow or
overflow, potentially leading to unexpected behavior.
Width Conversions. For each conversion between inte-
ger types, we check whether it is possible for the source
value to be outside the range of the target value by adding
a constraint that’s satisfied when this is the case and then
applying the constraint solver. For conversions that may
sign-extend, we use the constraint solver to search for a
test case where the high bit of the source value is non-
zero.
Signed/Unsigned Conversions. Our basic approach is
to try to reconstruct, from the x86 instructions executed,
signed/unsigned type information about all integral val-
ues. This information is present in the source code but
not in the binary, so we describe an algorithm to infer
this information automatically.

Consider four types for integer values: “Top,”
“Signed,” “Unsigned,” or “Bottom.” Here, “Top” means
the value has not been observed in the context of a signed
or unsigned integer; “Signed” means that the value has
been used as a signed integer; “Unsigned” means the
value has been used as an unsigned integer; and “Bot-
tom” means that the value has been used inconsistently
as both a signed and unsigned integer. These types form
a four-point lattice. Our goal is to find symbolic program
values that have type “Bottom.” These values are can-
didates for signed/unsigned conversion errors. We then
attempt to synthesize an input that forces these values to
be negative.

We associate every instance of every temporary vari-

int main(int argc, char** argv) {

char * p = malloc(800);

char * q = malloc(800);

int n;

n = atol(argv[1]);

if (n > 800)

return;

memcpy(p, q, n);

return 0;

}

Figure 3: A simple test case for dynamic type infer-
ence and query generation. The signed comparison n >
800 and unsigned size t argument to memcpy assign the
type “Bottom” to the value associated with n. When we
solve for an input that makes n negative, we obtain a test
case that reveals the error.

able in the Valgrind intermediate representation with a
type. Every variable in the program starts with type Top.
During execution we add type constraints to the type of
each value. For x86 binaries, the sources of type con-
straints are signed and unsigned comparison operators:
e.g., a signed comparison between two values causes
both values to receive the “Signed” type constraint. We
also add unsigned type constraints to values used as the
length argument of memcpy function, which we can de-
tect because we know the calling convention for x86 and
we have debugging symbols for glibc. While the x86 in-
struction set has additional operations, such as IMUL that
reveal type information about their operands, we do not
consider these; this means only that we may incorrectly
under-constrain the types of some values.

Any value that has received both a signed and un-
signed type constraint receives the type Bottom. After
adding a type constraint, we check to see if the type of
a value has moved to Bottom. If so, we attempt to solve
for an input which makes the value negative. We do this
because negative values behave differently in signed and
unsigned comparisons, and so they are likely to exhibit
an error if one exists. All of this information is present in
the trace without requiring access to the original program
source code.

We discovered, however, that gcc 4.1.2 inlines
some calls to memcpy by transforming them to rep
movsb instructions, even when the -O flag is not present.
Furthermore, the Valgrind IR generated for the rep
movsb instruction compares a decrementing counter
variable to zero, instead of counting up and executing an
unsigned comparison to the loop bound. As a result, on
gcc 4.1.2 a call to memcpy does not cause its length argu-
ment to be marked as unsigned. To deal with this prob-
lem, we implemented a simple heuristic to detect the IR
generated for rep movsb and emit the appropriate con-

7

74 18th USENIX Security Symposium USENIX Association

straint. We verified that this heuristic works on a small
test case similar to Figure 3, generating a test input that
caused a segmentation fault.

A key problem is storing all of the information re-
quired to carry out type inference without exhausting
available memory. Because a trace may have several mil-
lion instructions, memory usage is key to scaling type
inference to long traces. Furthermore, our algorithm re-
quires us to keep track of the types of all values in the
program, unlike constraint generation, which need con-
cern itself only with tainted values. An earlier version
of our analysis created a special “type variable” for each
value, then maintained a map from IR locations to type
variables. Each type variable then mapped to a type.
We found that in addition to being hard to maintain, this
analysis often led to a number of live type variables that
scaled linearly with the number of executed IR instruc-
tions. The result was that our analysis ran out of memory
when attempting to play media files in the mplayer me-
dia player.

To solve this problem, we developed a garbage-
collected data structure for tracking type information.
To reduce memory consumption, we use a union-find
data structure to partition integer values into equivalence
classes where all values in an equivalence class are re-
quired to have the same type. We maintain one type for
each union-find equivalence class; in our implementation
type information is associated with the representative
node for that equivalence class. Assignments force the
source and target values to have the same types, which is
implemented by merging their equivalence classes. Up-
dating the type for a value can be done by updating its
representative node’s type, with no need to explicitly up-
date the types of all other variables in the equivalence
class.

It turns out that this data structure is acyclic, due to the
fact that VEX IR is in SSA form. Therefore, we use ref-
erence counting to garbage collect these nodes. In addi-
tion, we benefit from an additional property of the VEX
IR: all values are either stored in memory, in registers, or
in a temporary variable, and the lifetime of each tempo-
rary variable is implicitly limited to that of a single basic
block. Therefore, we maintain a list of temporaries that
are live in the current basic block; when we leave the
basic block, the type information associated with all of
those live temporaries can be deallocated. Consequently,
the amount of memory needed for type inference at any
point is proportional to the number of tainted (symbolic)
variables that are live at that point—which is a significant
improvement over the naive approach to type inference.
The full version of this paper contains a more detailed
specification of these algorithms3.

3http://www.cs.berkeley.edu/~dmolnar/

usenix09-full.pdf

6 Triage and Reporting at Scale
Both SmartFuzz and zzuf can produce hundreds to thou-
sands of test cases for a single test run. We designed
and built a web service, Metafuzz, to manage the volume
of tests. We describe some problems we found while
building Metafuzz and techniques to overcoming these
problems. Finally, we describe the user experience with
Metafuzz and bug reporting.

6.1 Problems and Techniques
The Metafuzz architecture is as follows: first, a Test Ma-
chine generates new test cases for a program and runs
them locally. The Test Machine then determines which
test cases exhibit bugs and sends these test cases to Meta-
fuzz. The Metafuzz web site displays these test cases to
the User, along with information about what kind of bug
was found in which target program. The User can pick
test cases of interest and download them for further in-
vestigation. We now describe some of the problems we
faced when designing Metafuzz, and our techniques for
handling them. Section 7 reports our experiences with
using Metafuzz to manage test cases and report bugs.
Problem: Each test run generated many test cases, too
many to examine by hand.
Technique: We used Valgrind’s memcheck to automate
the process of checking whether a particular test case
causes the program to misbehave. Memcheck looks for
memory leaks, use of uninitialized values, and memory
safety errors such as writes to memory that was not allo-
cated [26]. If memcheck reports an error, we save the test
case. In addition, we looked for core dumps and non-
zero program exit codes.
Problem: Even after filtering out the test cases that
caused no errors, there were still many test cases that do
cause errors.
Technique: The metafuzz.com front page is a HTML
page listing all of the potential bug reports. showing all
potential bug reports. Each test machine uploads infor-
mation about test cases that trigger bugs to Metafuzz.
Problem: The machines used for testing had no long-
term storage. Some of the test cases were too big to at-
tach in e-mail or Bugzilla, making it difficult to share
them with developers.
Technique: Test cases are uploaded directly to Meta-
fuzz, providing each one with a stable URL. Each test
case also includes the Valgrind output showing the Val-
grind error, as well as the output of the program to
stdout and stderr.
Problem: Some target projects change quickly. For ex-
ample, we saw as many as four updates per day to the
mplayer source code repository. Developers reject bug
reports against “out of date” versions of the software.
Technique: We use the Amazon Elastic Compute Cloud
(EC2) to automatically attempt to reproduce the bug

8

USENIX Association 18th USENIX Security Symposium 75

against the latest version of the target software. A button
on the Metafuzz site spawns an Amazon EC2 instance
that checks out the most recent version of the target soft-
ware, builds it, and then attempts to reproduce the bug.
Problem: Software projects have specific reporting re-
quirements that are tedious to implement by hand. For
example, mplayer developers ask for a stack backtrace,
disassembly, and register dump at the point of a crash.
Technique: Metafuzz automatically generates bug re-
ports in the proper format from the failing test case. We
added a button to the Metafuzz web site so that we can
review the resulting bug report and then send it to the tar-
get software’s bug tracker with a single click.
Problem: The same bug often manifests itself as many
failing test cases. Reporting the same bug to developers
many times wastes developer time.
Technique: We use the call stack to identify multiple
instances of the same bug. Valgrind memcheck reports
the call stack at each error site, as a sequence of instruc-
tion pointers. If debugging information is present, it also
reports the associated filename and line number informa-
tion in the source code.

Initially, we computed a stack hash as a hash of the se-
quence of instruction pointers in the backtrace. This has
the benefit of not requiring debug information or sym-
bols. Unfortunately, we found that a naive stack hash has
several problems. First, it is sensitive to address space
layout randomization (ASLR), because different runs of
the same program may load the stack or dynamically
linked libraries at different addresses, leading to differ-
ent hash values for call stacks that are semantically the
same. Second, even without ASLR, we found several
cases where a single bug might be triggered at multiple
call stacks that were similar but not identical. For exam-
ple, a buggy function can be called in several different
places in the code. Each call site then yields a different
stack hash. Third, any slight change to the target soft-
ware can change instruction pointers and thus cause the
same bug to receive a different stack hash. While we do
use the stack hash on the client to avoid uploading test
cases for bugs that have been previously found, we found
that we could not use stack hashes alone to determine if
a bug report is novel or not.

To address these shortcomings, we developed a fuzzy
stack hash that is forgiving of slight changes to the call
stack. We use debug symbol information to identify the
name of the function called, the line number in source
code (excluding the last digit of the line number, to allow
for slight changes in the code), and the name of the object
file for each frame in the call stack. We then hash all of
this information for the three functions at the top of the
call stack.

The choice of the number of functions to hash deter-
mines the “fuzzyness” of the hash. At one extreme, we

could hash all extant functions on the call stack. This
would be similar to the classic stack hash and report
many semantically same bugs in different buckets. On
the other extreme, we could hash only the most recently
called function. This fails in cases where two seman-
tically different bugs both exhibit as a result of calling
memcpy or some other utility function with bogus ar-
guments. In this case, both call stacks would end with
memcpy even though the bug is in the way the arguments
are computed. We chose three functions as a trade-off
between these extremes; we found this sufficient to stop
further reports from the mplayer developers of dupli-
cates in our initial experiences. Finding the best fuzzy
stack hash is interesting future work; we note that the
choice of bug bucketing technique may depend on the
program under test.

While any fuzzy stack hash, including ours, may acci-
dentally lump together two distinct bugs, we believe this
is less serious than reporting duplicate bugs to develop-
ers. We added a post-processing step on the server that
computes the fuzzy stack hash for test cases that have
been uploaded to Metafuzz and uses it to coalesce dupli-
cates into a single bug bucket.
Problem: Because Valgrind memcheck does not termi-
nate the program after seeing an error, a single test case
may give rise to dozens of Valgrind error reports. Two
different test cases may share some Valgrind errors but
not others.
Technique: First, we put a link on the Metafuzz site to
a single test case for each bug bucket. Therefore, if two
test cases share some Valgrind errors, we only use one
test case for each of the errors in common. Second, when
reporting bugs to developers, we highlight in the title the
specific bugs on which to focus.

7 Results
7.1 Preliminary Experience
We used an earlier version of SmartFuzz and Metafuzz in
a project carried out by a group of undergraduate students
over the course of eight weeks in Summer 2008. When
beginning the project, none of the students had any train-
ing in security or bug reporting. We provided a one-week
course in software security. We introduced SmartFuzz,
zzuf, and Metafuzz, then asked the students to gener-
ate test cases and report bugs to software developers. By
the end of the eight weeks, the students generated over
1.2 million test cases, from which they reported over 90
bugs to software developers, principally to the mplayer
project, of which 14 were fixed. For further details, we
refer to their presentation [1].

7.2 Experiment Setup
Test Programs. Our target programs were mplayer
version SVN-r28403-4.1.2, ffmpeg version

9

76 18th USENIX Security Symposium USENIX Association

mplayer ffmpeg exiv2 gzip bzip2 convert
Coverage 2599 14535 1629 5906 12606 388

ConversionNot32 0 3787 0 0 0 0
Conversion32to8 1 26 740 2 10 116
Conversion32to16 0 16004 0 0 0 0

Conversion16Sto32 0 121 0 0 0 0
SignedOverflow 1544 37803 5941 24825 9109 49

SignedUnderflow 3 4003 48 1647 2840 0
UnsignedOverflow 1544 36945 4957 24825 9104 35

UnsignedUnderflow 0 0 0 0 0 0
MallocArg 0 24 0 0 0 0

SignedUnsigned 2568 21064 799 7883 17065 49

Figure 5: The number of each type of query for each test
program after a single 24-hour run.

SVN-r16903, exiv2 version SVN-r1735, gzip
version 1.3.12, bzip2 version 1.0.5, and ImageMagick
convert version 6.4.8 − 10, which are all widely
used media and compression programs. Table 4 shows
information on the size of each test program. Our test
programs are large, both in terms of source lines of code
and trace lengths. The percentage of the trace that is
symbolic, however, is small.
Test Platform. Our experiments were run on the Ama-
zon Elastic Compute Cloud (EC2), employing a “small”
and a “large” instance image with SmartFuzz, zzuf, and
all our test programs pre-installed. At this writing, an
EC2 small instance has 1.7 GB of RAM and a single-
core virtual CPU with performance roughly equivalent
to a 1GHz 2007 Intel Xeon. An EC2 large instance has
7 GB of RAM and a dual-core virtual CPU, with each
core having performance roughly equivalent to a 1 GHz
Xeon.

We ran all mplayer runs and ffmpeg runs on EC2
large instances, and we ran all other test runs with EC2
small instances. We spot-checked each run to ensure
that instances successfully held all working data in mem-
ory during symbolic execution and triage without swap-
ping to disk, which would incur a significant perfor-
mance penalty. For each target program we ran Smart-
Fuzz and zzuf with three seed files, for 24 hours per
program per seed file. Our experiments took 288 large
machine-hours and 576 small machine-hours, which at
current EC2 prices of $0.10 per hour for small instances
and $0.40 per hour for large instances cost $172.80.
Query Types. SmartFuzz queries our solver with the fol-
lowing types of queries: Coverage, ConversionNot32,
Conversion32to8, Conversion32to16,
SignedOverflow, UnsignedOverflow,
SignedUnderflow, UnsignedUnderflow,
MallocArg, and SignedUnsigned. Coverage queries
refer to queries created as part of the generational search
by flipping path conditions. The others are bug-seeking
queries that attempt to synthesize inputs leading to
specific kinds of bugs. Here MallocArg refers to a

Queries Test Cases Bugs
Coverage 588068 31121 19

ConversionNot32 4586 0 0
Conversion32to8 1915 1377 3
Conversion32to16 16073 67 4

Conversion16Sto32 206 0 0
SignedOverflow 167110 0 0

SignedUnderflow 20198 21 3
UnsignedOverflow 164155 9280 3

MallocArg 30 0 0
SignedUnsigned 125509 6949 5

Figure 6: The number of bugs found, by query type, over
all test runs. The fourth column shows the number of
distinct bugs found from test cases produced by the given
type of query, as classified using our fuzzy stack hash.

set of bug-seeking queries that attempt to force inputs
to known memory allocation functions to be negative,
yielding an implicit conversion to a large unsigned
integer, or force the input to be small.
Experience Reporting to Developers. Our original
strategy was to report all distinct bugs to developers and
let them judge which ones to fix. The mplayer devel-
opers gave us feedback on this strategy. They wanted to
focus on fixing the most serious bugs, so they preferred
seeing reports only for out-of-bounds writes and double
free errors. In contrast, they were not as interested in
out-of-bound reads, even if the resulting read caused a
segmentation fault. This helped us prioritize bugs for re-
porting.

7.3 Bug Statistics
Integer Bug-Seeking Queries Yield Bugs. Figure 6 re-
ports the number of each type of query to the constraint
solver over all test runs. For each type of query, we re-
port the number of test files generated and the number
of distinct bugs, as measured by our fuzzy stack hash.
Some bugs may be revealed by multiple different kinds
of queries, so there may be overlap between the bug
counts in two different rows of Figure 6.

The table shows that our dynamic test generation
methods for integer bugs succeed in finding bugs
in our test programs. Furthermore, the queries for
signed/unsigned bugs found the most distinct bugs out
of all bug-seeking queries. This shows that our novel
method for detecting signed/unsigned bugs (Section 5) is
effective at finding bugs.
SmartFuzz Finds More Bugs Than zzuf, on mplayer.
For mplayer, SmartFuzz generated 10,661 test cases
over all test runs, while zzuf generated 11,297 test cases;
SmartFuzz found 22 bugs while zzuf found 13. There-
fore, in terms of number of bugs, SmartFuzz outper-
formed zzuf for testing mplayer. Another surprising
result here is that SmartFuzz generated nearly as many
test cases as zzuf, despite the additional overhead for

10

USENIX Association 18th USENIX Security Symposium 77

SLOC seedfile type and size Branches x86 instrs IRStmts asserts queries
mplayer 723468 MP3 (159000 bytes) 20647045 159500373 810829992 1960 36
ffmpeg 304990 AVI (980002 bytes) 4147710 19539096 115036155 4778690 462346
exiv2 57080 JPG (22844 bytes) 809806 6185985 32460806 81450 1006
gzip 140036 TAR.GZ (14763 bytes) 24782 161118 880386 95960 13309
bzip 26095 TAR.BZ2 (618620 bytes) 107396936 746219573 4185066021 1787053 314914

ImageMagick 300896 PNG (25385 bytes) 98993374 478474232 2802603384 583 81

Figure 4: The size of our test programs. We report the source lines of code for each test program and the size of one
of our seed files, as measured by David A. Wheeler’s sloccount. Then we run the test program on that seed file and
report the total number of branches, x86 instructions, Valgrind IR statements, STP assert statements, and STP query
statements for that run. We ran symbolic execution for a maximum of 12 hours, which was sufficient for all programs
except mplayer, which terminated during symbolic execution.

symbolic execution and constraint solving. This shows
the effect of the generational search and the choice of
memory model; we leverage a single expensive symbolic
execution and fast solver queries to generate many test
cases. At the same time, we note that zzuf found a seri-
ous InvalidWrite bug, while SmartFuzz did not.

A previous version of our infrastructure had prob-
lems with test cases that caused the target program to
run forever, causing the search to stall. Therefore, we
introduced a timeout, so that after 300 CPU seconds,
the target program is killed. We manually examined
the output of memcheck from all killed programs to de-
termine whether such test cases represent errors. For
gzip we discovered that SmartFuzz created six such test
cases, which account for the two out-of-bounds read (In-
validRead) errors we report; zzuf did not find any hang-
ing test cases for gzip. We found no other hanging test
cases in our other test runs.
Different Bugs Found by SmartFuzz and zzuf. We
ran the same target programs with the same seed files
using zzuf. Figure 7 shows bugs found by each type of
fuzzer. With respect to each tool, SmartFuzz found 37
total distinct bugs and zzuf found 59 distinct bugs. We
found some overlap between bugs as well: 19 bugs were
found by both fuzz testing tools, for a total of 77 distinct
bugs. This shows that while there is overlap between the
two tools, SmartFuzz finds bugs that zzuf does not and
vice versa. Therefore, it makes sense to try both tools
when testing software.

Note that we did not find any bugs for bzip2 with ei-
ther fuzzer, so neither tool was effective on this program.
This shows that fuzzing is not always effective at find-
ing bugs, especially with a program that has already seen
attention for security vulnerabilities. We also note that
SmartFuzz found InvalidRead errors in gzip while zzuf
found no bugs in this program. Therefore gzip is a case
where SmartFuzz’s directed testing is able to trigger a
bug, but purely random testing is not.
Block Coverage. We measured the number of basic
blocks in the program visited by the execution of the

seed file, then measured how many new basic blocks
were visited during the test run. We discovered zzuf
added a higher percentage of new blocks than Smart-
Fuzz in 13 of the test runs, while SmartFuzz added a
higher percentage of new blocks in 4 of the test runs
(the SmartFuzz convert-2 test run terminated prema-
turely.) Table 8 shows the initial basic blocks, the num-
ber of blocks added, and the percentage added for each
fuzzer. We see that the effectiveness of SmartFuzz varies
by program; for convert it is particularly effective, find-
ing many more new basic blocks than zzuf.
Contrasting SmartFuzz and zzuf Performance. De-
spite the limitations of random testing, the blackbox fuzz
testing tool zzuf found bugs in four out of our six test
programs. In three of our test programs, zzuf found
more bugs than SmartFuzz. Furthermore, zzuf found
the most serious InvalidWrite errors, while SmartFuzz
did not. These results seem surprising, because Smart-
Fuzz exercises directed testing based on program behav-
ior while zzuf is a purely blackbox tool. We would ex-
pect that SmartFuzz should find all the bugs found by
zzuf, given an unbounded amount of time to run both
test generation methods.

In practice, however, the time which we run the meth-
ods is limited, and so the question is which bugs are dis-
covered first by each method. We have identified possi-
ble reasons for this behavior, based on examining the test
cases and Valgrind errors generated by both tools4. We
now list and briefly explain these reasons.
Header parsing errors. The errors we observed are often
in code that parses the header of a file format. For exam-
ple, we noticed bugs in functions of mplayer that parse
MP3 headers. These errors can be triggered by simply
placing “wrong” values in data fields of header files. As
a result, these errors do not require complicated and un-
likely predicates to be true before reaching buggy code,
and so the errors can be reached without needing the full
power of dynamic test generation. Similarly, code cov-

4We have placed representative test cases from each method at
http://www.metafuzz.com/example-testcases.tgz

11

78 18th USENIX Security Symposium USENIX Association

mplayer ffmpeg exiv2 gzip convert
SyscallParam 4 3 2 3 0 0 0 0 0 0

UninitCondition 13 1 1 8 0 0 0 0 3 8
UninitValue 0 3 0 3 0 0 0 0 0 2

Overlap 0 0 0 1 0 0 0 0 0 0
Leak DefinitelyLost 2 2 2 4 0 0 0 0 0 0
Leak PossiblyLost 2 1 0 2 0 1 0 0 0 0

InvalidRead 1 2 0 4 4 6 2 0 1 1
InvalidWrite 0 1 0 3 0 0 0 0 0 0

Total 22 13 5 28 4 7 2 0 4 11
Cost per bug $1.30 $2.16 $5.76 $1.03 $1.80 $1.03 $3.60 NA $1.20 $0.65

Figure 7: The number of bugs, after fuzzy stack hashing, found by SmartFuzz (the number on the left in each column)
and zzuf (the number on the right). We also report the cost per bug, assuming $0.10 per small compute-hour, $0.40
per large compute-hour, and 3 runs of 24 hours each per target for each tool.

erage may be affected by the style of program used for
testing.
Difference in number of bytes changed. The two differ-
ent methods change a vastly different number of bytes
from the original seed file to create each new test case.
SmartFuzz changes exactly those bytes that must change
to force program execution down a single new path or
to violate a single property. Below we show that in our
programs there are only a small number of constraints on
the input to solve, so a SmartFuzz test case differs from
its seed file by only a small number of bytes. In contrast,
zzuf changes a fixed fraction of the input bytes to ran-
dom other bytes; in our experiments, we left this at the
default value of 0.004.

The large number of changes in a single fuzzed test
case means that for header parsing or other code that
looks at small chunks of the file independently, a sin-
gle zzuf test case will exercise many different code
paths with fuzzed chunks of the input file. Each path
which originates from parsing a fuzzed chunk of the in-
put file is a potential bug. Furthermore, because Val-
grind memcheck does not necessarily terminate the pro-
gram’s execution when a memory safety error occurs,
one such file may yield multiple bugs and correspond-
ing bug buckets.

In contrast, the SmartFuzz test cases usually change
only one chunk and so explore only one “fuzzed” path
through such code. Our code coverage metric, unfortu-
nately, is not precise enough to capture this difference be-
cause we measured block coverage instead of path cov-
erage. This means once a set of code blocks has been
covered, a testing method receives no further credit for
additional paths through those same code blocks.
Small number of generations reached by SmartFuzz. Our
24 hour experiments with SmartFuzz tended to reach a
small number of generations. While previous work on
whitebox fuzz testing shows that most bugs are found
in the early generations [14], this feeds into the pre-
vious issue because the number of differences between
the fuzzed file and the original file is proportional to the

generation number of the file. We are exploring longer-
running SmartFuzz experiments of a week or more to ad-
dress this issue.
Loop behavior in SmartFuzz. Finally, SmartFuzz deals
with loops by looking at the unrolled loop in the dynamic
program trace, then attempting to generate test cases for
each symbolic if statement in the unrolled loop. This
strategy is not likely to create new test cases that cause
the loop to execute for vastly more iterations than seen
in the trace. By contrast, the zzuf case may get lucky by
assigning a random and large value to a byte sequence
in the file that controls the loop behavior. On the other
hand, when we looked at the gzip bug found by Smart-
Fuzz and not by zzuf, we discovered that it appears to be
due to an infinite loop in the inflate dynamic routine
of gzip.

7.4 SmartFuzz Statistics
Integer Bug Queries Vary By Program. Table 5 shows
the number of solver queries of each type for one of our
24-hour test runs. We see that the type of queries varies
from one program to another. We also see that for bzip2
and mplayer, queries generated by type inference for
signed/unsigned errors account for a large fraction of all
queries to the constraint solver. This results from our
choice to eagerly generate new test cases early in the pro-
gram; because there are many potential integer bugs in
these two programs, our symbolic traces have many inte-
ger bug-seeking queries. Our design choice of using an
independent tool such as memcheck to filter the resulting
test cases means we can tolerate such a large number of
queries because they require little human oversight.
Time Spent In Each Task Varies By Program. Fig-
ure 9 shows the percentage of time spent in symbolic
execution, coverage, triage, and recording for each run
of our experiment. We also report an “Other” category,
which includes the time spent in the constraint solver.
This shows us where we can obtain gains through fur-
ther optimization. The amount of time spent in each
task depends greatly on the seed file, as well as on the

12

USENIX Association 18th USENIX Security Symposium 79

Initial basic blocks Blocks added by tests Ratio of prior two columns
Test run SmartFuzz zzuf SmartFuzz zzuf SmartFuzz zzuf

mplayer-1 7819 7823 5509 326 70% 4%
mplayer-2 11375 11376 908 1395 7% 12%
mplayer-3 11093 11096 102 2472 0.9% 22%
ffmpeg-1 6470 6470 592 20036 9.14% 310%
ffmpeg-2 6427 6427 677 2210 10.53% 34.3%
ffmpeg-3 6112 611 97 538 1.58% 8.8%
convert-1 8028 8246 2187 20 27% 0.24%
convert-2 8040 8258 2392 6 29% 0.073%
convert-3 NA 10715 NA 1846 NA 17.2%
exiv2-1 9819 9816 2934 3560 29.9% 36.3%
exiv2-2 9811 9807 2783 3345 28.3% 34.1%
exiv2-3 9814 9810 2816 3561 28.7% 36.3%
gzip-1 2088 2088 252 334 12% 16%
gzip-2 2169 2169 259 275 11.9% 12.7%
gzip-3 2124 2124 266 316 12% 15%

bzip2-1 2779 2778 123 209 4.4% 7.5%
bzip2-2 2777 2778 125 237 4.5% 8.5%
bzip2-3 2823 2822 115 114 4.1% 4.0%

Figure 8: Coverage metrics: the initial number of basic blocks, before testing; the number of blocks added during
testing; and the percentage of blocks added.

Total SymExec Coverage Triage Record Other
gzip-1 206522s 0.1% 0.06% 0.70% 17.6% 81.6%
gzip-2 208999s 0.81% 0.005% 0.70% 17.59% 80.89%
gzip-3 209128s 1.09% 0.0024% 0.68% 17.8% 80.4%
bzip2-1 208977s 0.28% 0.335% 1.47% 14.0% 83.915%
bzip2-2 208849s 0.185% 0.283% 1.25% 14.0% 84.32%
bzip2-3 162825s 25.55% 0.78% 31.09% 3.09% 39.5%

mplayer-1 131465s 14.2% 5.6% 22.95% 4.7% 52.57%
mplayer-2 131524s 15.65% 5.53% 22.95% 25.20% 30.66%
mplayer-3 49974s 77.31% 0.558% 1.467% 10.96% 9.7%
ffmpeg-1 73981s 2.565% 0.579% 4.67% 70.29% 21.89%
ffmpeg-2 131600s 36.138% 1.729% 9.75% 11.56% 40.8%
ffmpeg-3 24255s 96.31% 0.1278% 0.833% 0.878% 1.8429%
convert-1 14917s 70.17% 2.36% 24.13% 2.43% 0.91%
convert-2 97519s 66.91% 1.89% 28.14% 2.18% 0.89%
exiv2-1 49541s 3.62% 10.62% 71.29% 9.18% 5.28%
exiv2-2 69415s 3.85% 12.25% 65.64% 12.48% 5.78%
exiv2-3 154334s 1.15% 1.41% 3.50% 8.12% 85.81%

Figure 9: The percentage of time spent in each of the
phases of SmartFuzz. The second column reports the to-
tal wall-clock time, in seconds, for the run; the remaining
columns are a percentage of this total. The “other” col-
umn includes the time spent solving STP queries.

target program. For example, the first run of mplayer,
which used a mp3 seedfile, spent 98.57% of total time
in symbolic execution, and only 0.33% in coverage, and
0.72% in triage. In contrast, the second run of mplayer,
which used a mp4 seedfile, spent only 14.77% of time in
symbolic execution, but 10.23% of time in coverage, and
40.82% in triage. We see that the speed of symbolic ex-
ecution and of triage is the major bottleneck for several
of our test runs, however. This shows that future work
should focus on improving these two areas.

7.5 Solver Statistics
Related Constraint Optimization Varies By Program.
We measured the size of all queries to the constraint
solver, both before and after applying the related con-
straint optimization described in Section 4. Figure 10
shows the average size for queries from each test pro-
gram, taken over all queries in all test runs with that
program. We see that while the optimization is effective
in all cases, its average effectiveness varies greatly from
one test program to another. This shows that different
programs vary greatly in how many input bytes influence
each query.
The Majority of Queries Are Fast. Figure 10 shows the
empirical cumulative distribution function of STP solver
times over all our test runs. For about 70% of the test
cases, the solver takes at most one second. The maxi-
mum solver time was about 10.89 seconds. These results
reflect our choice of memory model and the effectiveness
of the related constraint optimization. Because of these,
the queries to the solver consist only of operations over
bitvectors (with no array constraints), and most of the
sets of constraints sent to the solver are small, yielding
fast solver performance.

8 Conclusion
We described new methods for finding integer bugs
in dynamic test generation, and we implemented these
methods in SmartFuzz, a new dynamic test generation
tool. We then reported on our experiences building the
web site metafuzz.com and using it to manage test case
generation at scale. In particular, we found that Smart-
Fuzz finds bugs not found by zzuf and vice versa, show-
ing that a comprehensive testing strategy should use both

13

80 18th USENIX Security Symposium USENIX Association

average before average after ratio (before/after)
mplayer 292524 33092 8.84
ffmpeg 350846 83086 4.22
exiv2 81807 10696 7.65
gzip 348027 199336 1.75

bzip2 278980 162159 1.72
convert 2119 1057 2.00

Figure 10: On the left, average query size before and af-
ter related constraint optimization for each test program.
On the right, an empirical CDF of solver times.

white-box and black-box test generation tools.
Furthermore, we showed that our methods can find in-

teger bugs without the false positives inherent to static
analysis or runtime checking approaches, and we showed
that our methods scale to commodity Linux media play-
ing software. The Metafuzz web site is live, and we have
released our code to allow others to use our work.

9 Acknowledgments
We thank Cristian Cadar, Daniel Dunbar, Dawson En-
gler, Patrice Godefoid, Michael Levin, and Paul Twohey
for discussions about their respective systems and dy-
namic test generation. We thank Paul Twohey for helpful
tips on the engineering of test machines. We thank Chris
Karlof for reading a draft of our paper on short notice.
We thank the SUPERB TRUST 2008 team for their work
with Metafuzz and SmartFuzz during Summer 2008. We
thank Li-Wen Hsu and Alex Fabrikant for their help
with the metafuzz.com web site, and Sushant Shankar,
Shiuan-Tzuo Shen, and Mark Winterrowd for their com-
ments. We thank Erinn Clark, Charlie Miller, Prateek
Saxena, Dawn Song, the Berkeley BitBlaze group, and
the anonymous Oakland referees for feedback on ear-
lier drafts of this work. This work was generously sup-
ported by funding from DARPA and by NSF grants CCF-
0430585 and CCF-0424422.

References
[1] ASLANI, M., CHUNG, N., DOHERTY, J.,

STOCKMAN, N., AND QUACH, W. Comparison of
blackbox and whitebox fuzzers in finding software
bugs, November 2008. TRUST Retreat Presenta-
tion.

[2] BLEXIM. Basic integer overflows. Phrack 0x0b
(2002).

[3] BLEXIM. Basic integer overflows. Phrack
0x0b, 0x3c (2002). http://www.phrack.org/
archives/60/p60-0x0a.txt.

[4] BRUMLEY, D., CHIEH, T., JOHNSON, R., LIN,
H., AND SONG, D. RICH : Automatically protect-
ing against integer-based vulnerabilities. In NDSS
(Symp. on Network and Distributed System Secu-
rity) (2007).

[5] BRUMLEY, D., NEWSOME, J., SONG, D., WANG,
H., AND JHA, S. Towards automatic generation of
vulnerability-based signatures. In Proceedings of
the 2006 IEEE Symposium on Security and Privacy
(2006).

[6] CADAR, C., DUNBAR, D., AND ENGLER, D.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In
Proceedings of OSDI 2008 (2008).

[7] CADAR, C., AND ENGLER, D. EGT: Execution
generated testing. In SPIN (2005).

[8] CADAR, C., GANESH, V., PAWLOWSKI, P. M.,
DILL, D. L., AND ENGLER, D. R. EXE: Auto-
matically Generating Inputs of Death. In ACM CCS
(2006).

[9] CHEN, K., AND WAGNER, D. Large-scale analy-
sis of format string vulnerabilities in debian linux.
In PLAS - Programming Languages and Analysis
for Security (2007). http://www.cs.berkeley.
edu/~daw/papers/fmtstr-plas07.pdf.

[10] CORPORATION, M. Vulnerability Type Distribu-
tions in CVE, May 2007. http://cve.mitre.
org/docs/vuln-trends/index.html.

[11] DEMOTT, J. The evolving art of fuzzing. In DEF
CON 14 (2006). http://www.appliedsec.com/
files/The_Evolving_Art_of_Fuzzing.odp.

[12] GANESH, V., AND DILL, D. STP: A deci-
sion procedure for bitvectors and arrays. CAV
2007, 2007. http://theory.stanford.edu/

~vganesh/stp.html.

[13] GODEFROID, P., KLARLUND, N., AND SEN, K.
DART: Directed Automated Random Testing. In
Proceedings of PLDI’2005 (ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementation) (Chicago, June 2005), pp. 213–
223.

14

USENIX Association 18th USENIX Security Symposium 81

[14] GODEFROID, P., LEVIN, M., AND MOLNAR,
D. Automated Whitebox Fuzz Testing. In
Proceedings of NDSS’2008 (Network and Dis-
tributed Systems Security) (San Diego, Febru-
ary 2008). http://research.microsoft.com/
users/pg/public_psfiles/ndss2008.pdf.

[15] GODEFROID, P., LEVIN, M. Y., AND MOLNAR,
D. Active Property Checking. Tech. rep., Mi-
crosoft, 2007. MSR-TR-2007-91.

[16] HOCEVAR, S. zzuf, 2007. http://caca.zoy.
org/wiki/zzuf.

[17] LANZI, A., MARTIGNONI, L., MONGA, M.,
AND PALEARI, R. A smart fuzzer for x86
executables. In Software Engineering for Se-
cure Systems, 2007. SESS ’07: ICSE Workshops
2007 (2007). http://idea.sec.dico.unimi.
it/~roberto/pubs/sess07.pdf.

[18] LARSON, E., AND AUSTIN, T. High Coverage
Detection of Input-Related Security Faults. In
Proceedings of 12th USENIX Security Symposium
(Washington D.C., August 2003).

[19] LEBLANC, D. Safeint 3.0.11, 2008. http://www.
codeplex.com/SafeInt.

[20] LMH. Month of kernel bugs, November 2006.
http://projects.info-pull.com/mokb/.

[21] MICROSOFT CORPORATION. Prefast, 2008.

[22] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An
empirical study of the reliability of UNIX utilities.
Communications of the Association for Computing
Machinery 33, 12 (1990), 32–44.

[23] MOORE, H. Month of browser bugs, July 2006.
http://browserfun.blogspot.com/.

[24] NETHERCOTE, N., AND SEWARD, J. Valgrind: A
framework for heavyweight dynamic binary instru-
mentation. In PLDI - Programming Language De-
sign and Implementation (2007).

[25] O’CALLAHAN, R. Chronicle-recorder,
2008. http://code.google.com/p/
chronicle-recorder/.

[26] SEWARD, J., AND NETHERCOTE, N. Using val-
grind to detect undefined memory errors with bit
precision. In Proceedings of the USENIX An-
nual Technical Conference (2005). http://www.
valgrind.org/docs/memcheck2005.pdf.

[27] VUAGNOUX, M. Autodafe: An act of soft-
ware torture. In 22nd Chaos Communications
Congress, Berlin, Germany (2005). autodafe.
sourceforge.net.

[28] WANG, T., WEI, T., LIN, Z., AND ZOU, W.
Intscope: Automatically detecting integer overflow
vulnerability in x86 binary using symbolic execu-
tion. In Network Distributed Security Symposium
(NDSS) (2009).

15

USENIX Association 18th USENIX Security Symposium 83

Memory Safety for Low-Level Software/Hardware Interactions

John Criswell
University of Illinois
criswell@uiuc.edu

Nicolas Geoffray
Université Pierre et Marie Curie

INRIA/Regal
nicolas.geoffray@lip6.fr

Vikram Adve
University of Illinois
vadve@uiuc.edu

Abstract
Systems that enforce memory safety for today’s oper-
ating system kernels and other system software do not
account for the behavior of low-level software/hardware
interactions such as memory-mapped I/O, MMU config-
uration, and context switching. Bugs in such low-level
interactions can lead to violations of the memory safety
guarantees provided by a safe execution environment and
can lead to exploitable vulnerabilities in system software.
In this work, we present a set of program analysis and
run-time instrumentation techniques that ensure that er-
rors in these low-level operations do not violate the as-
sumptions made by a safety checking system. Our de-
sign introduces a small set of abstractions and interfaces
for manipulating processor state, kernel stacks, memory
mapped I/O objects, MMU mappings, and self modify-
ing code to achieve this goal, without moving resource
allocation and management decisions out of the kernel.
We have added these techniques to a compiler-based vir-
tual machine called Secure Virtual Architecture (SVA),
to which the standard Linux kernel has been ported previ-
ously. Our design changes to SVA required only an addi-
tional 100 lines of code to be changed in this kernel. Our
experimental results show that our techniques prevent re-
ported memory safety violations due to low-level Linux
operations and that these violations are not prevented by
SVA without our techniques. Moreover, the new tech-
niques in this paper introduce very little overhead over
and above the existing overheads of SVA. Taken together,
these results indicate that it is clearly worthwhile to add
these techniques to an existing memory safety system.

1 Introduction

Most modern system software, including commodity op-
erating systems and virtual machine monitors, are vul-
nerable to a wide range of security attacks because they
are written in unsafe languages like C and C++. In

fact, there has been an increase in recent years of at-
tack methods against the operating system (OS) kernel.
There are reported vulnerabilities for nearly all commod-
ity OS kernels (e.g., [2, 28, 43]). One recent project went
so far as to present one OS kernel bug every day for a
month for several different open source and commercial
kernels [26] (several of these bugs are exploitable vul-
nerabilities). Preventing these kinds of attacks requires
protecting the core kernel and not just device drivers:
many of the vulnerabilities are in core kernel compo-
nents [19, 40, 41, 43, 46].
To counter these threats, there is a growing body

of work on using language and compiler techniques to
enforce memory safety (defined in Section 2) for OS
code. These include new OS designs based on safe
languages [4, 18, 22, 33], compiler techniques to en-
force memory safety for commodity OSs in unsafe lan-
guages [10], and instrumentation techniques to isolate
a kernel from extensions such as device drivers [45,
47, 51]. We use the term “safe execution environment”
(again defined in Section 2) to refer to the guarantees
provided by a system that enforces memory safety for
operating system code. Singularity, SPIN, JX, JavaOS,
SafeDrive, and SVA are examples of systems that en-
force a safe execution environment.
Unfortunately, all these memory safety techniques

(even implementations of safe programming languages)
make assumptions that are routinely violated by low-
level interactions between an OS kernel and hardware.
Such assumptions include a static, one-to-one mapping
between virtual and physical memory, an idealized pro-
cessor whose state is modified only via visible program
instructions, I/O operations that cannot overwrite stan-
dard memory objects except input I/O targets, and a pro-
tected stack modifiable only via load/store operations
to local variables. For example, when performing type
checking on a method, a safe language like Java or
Modula-3 or compiler techniques like those in SVA as-
sume that pointer values are only defined via visible pro-

84 18th USENIX Security Symposium USENIX Association

gram operations. In a kernel, however, a buggy kernel
operation might overwrite program state while it is off-
processor and that state might later be swapped in be-
tween the definition and the use of the pointer value, a
buggyMMUmapping might remap the underlying phys-
ical memory to a different virtual page holding data of a
different type, or a buggy I/O operation might bring cor-
rupt pointer values into memory.
In fact, as described in Section 7.1, we have injected

bugs into the Linux kernel ported to SVA that are capa-
ble of disabling the safety checks that prevented 3 of the 4
exploits in the experiments reported in the original SVA
work [10]: the bugs modify the metadata used to track
array bounds and thus allow buffer overruns to go un-
detected. Similar vulnerabilities can be introduced with
other bugs in low-level operations. For example, there
are reported MMU bugs [3, 39, 42] in previous versions
of the Linux kernel that are logical errors in the MMU
configuration and could lead to kernel exploits.
A particularly nasty and very recent example is an in-

sidious error in the Linux 2.6 kernel (not a device driver)
that led to severe (and sometimes permanent) corruption
of the e1000e network card [9]. The kernel was over-
writing I/O device memory with the x86 cmpxchg in-
struction, which led to corrupting the hardware. This bug
was caused by a write through a dangling pointer to I/O
device memory. This bug took weeks of debugging by
multiple teams to isolate. A strong memory safety sys-
tem should prevent or constrain such behavior, either of
which would have prevented the bug.
All these problems can, in theory, be prevented by

moving some of the kernel-hardware interactions into a
virtual machine (VM) and providing a high-level inter-
face for the OS to invoke those operations safely. If an
OS is co-designed with a virtual machine implementing
the underlying language, e.g., as in JX [18], then elimi-
nating such operations from the kernel could be feasible.
For commodity operating systems such as Linux, Mac
OS X, and Windows, however, reorganizing the OS in
such a way may be difficult or impossible, requiring, at
a minimum, substantial changes to the OS design. For
example, in the case of SVA, moving kernel-hardware
interactions into the SVA VM would require extensive
changes to any commodity system ported to SVA.
Virtual machine monitors (VMMs) such as VMWare

or Xen [16] do not solve this problem. They provide suf-
ficiently strong guarantees to enforce isolation and fair
resource sharing between different OS instances (i.e.,
different “domains”) but do not enforce memory safety
within a single instance of an OS. For example, a VMM
prevents one OS instance from modifying memory map-
pings for a different instance but does not protect an OS
instance from a bug that maps multiple pages of its own
to the same physical page, thus violating necessary as-

sumptions used to enforce memory safety. In fact, a
VMM would not solve any of the reported real-world
problems listed above.
In this paper, we present a set of novel techniques to

prevent low-level kernel-hardware interactions from vi-
olating memory safety in an OS executing in a safe ex-
ecution environment. There are two key aspects to our
approach: (1) we define carefully a set of abstractions
(an API) between the kernel and the hardware that en-
ables a lightweight run-time checker to protect hardware
resources and their behaviors; and (2) we leverage the
existing safety checking mechanisms of the safe execu-
tion environment to optimize the extra checks that are
needed for this monitoring. Some examples of the key
resources that are protected by our API include processor
state in CPU registers; processor state saved in memory
on context-switches, interrupts, or system calls; kernel
stacks; memory-mapped I/O locations; and MMU con-
figurations. Our design also permits limited versions of
self-modifying code that should suffice for most kernel
uses of the feature. Most importantly, our design pro-
vides these assurances while leaving essentially all the
logical control over hardware behavior in the hands of
the kernel, i.e., no policy decisions or complex mecha-
nisms are taken out of the kernel. Although we focus
on preserving memory safety for commodity operating
systems, these principles would enable any OS to reduce
the likelihood and severity of failures due to bugs in low-
level software-hardware interactions.
We have incorporated these techniques in the SVA

prototype and correspondinglymodified the Linux 2.4.22
kernel previously ported to SVA [10]. Our new tech-
niques required a significant redesign of SVA-OS, which
is the API provided by SVA to a kernel for control-
ling hardware and using privileged hardware operations.
The changes to the Linux kernel were generally simple
changes to use the new SVA-OS API, even though the
newAPI providesmuchmore powerful protection for the
entire kernel. We had to change only about 100 lines in
the SVA kernel to conform to the new SVA-OS API.
We have evaluated the ability of our system to prevent

kernel bugs due to kernel-hardware interactions, both
with real reported bugs and injected bugs. Our system
prevents two MMU bugs in Linux 2.4.22 for which ex-
ploit code is available. Both bugs crash the kernel when
run under the original SVA. Moreover, as explained in
Section 7.1, we would also prevent the e1000e bug in
Linux 2.6 if that kernel is run on our system. Finally,
the system successfully prevents all the low-level kernel-
hardware interaction errors we have tried to inject.
We also evaluated the performance overheads for two

servers and three desktop applications (two of which per-
form substantial I/O). Compared with the original SVA,
the new techniques in this paper add very low or negligi-

USENIX Association 18th USENIX Security Symposium 85

ble overheads. Combined with the ability to prevent real-
world exploits that would be missed otherwise, it clearly
seems worthwhile to add these techniques to an existing
memory safety system.
To summarize, the key contributions of this work are:

• We have presented novel mechanisms to ensure that
low-level kernel-hardware interactions (e.g., con-
text switching, thread creation, MMU changes, and
I/O operations) do not violate assumptions used to
enforce a safe execution environment.

• We have prototyped these techniques and shown
that they can be used to enforce the assumptions
made by a memory safety checker for a commodity
kernel such as Linux. To our knowledge, no pre-
vious safety enforcement technique provides such
guarantees to commodity system software.

• We have evaluated this system experimentally and
shown that it is effective at preventing exploits in
the above operations in Linux while incurring little
overhead over and above the overhead of the under-
lying safe execution environment of SVA.

2 Breaking Memory Safety with Low-
Level Kernel Operations

Informally, a program is type-safe if all operations in
the program respect the types of their operands. For
the purposes of this work, we say a program is mem-
ory safe if every memory access uses a previously initial-
ized pointer variable; accesses the same object to which
the pointer pointed initially;1 and the object has not been
deallocated. Memory safety is necessary for type safety
(conversely, type safety implies memory safety) because
dereferencing an uninitialized pointer, accessing the tar-
get object out of bounds, or dereferencing a dangling
pointer to a freed object, can all cause accesses to un-
predictable values and hence allow illegal operations on
those values.
A safe programming language guarantees type safety

and memory safety for all legal programs [34]; these
guarantees also imply a sound operational semantics
for programs in the language. Language implementa-
tions enforce these guarantees through a combination
of compile-time type checking, automatic memory man-
agement (e.g., garbage collection or region-based mem-
ory management) to prevent dangling pointer references,
and run-time checks such as array bounds checks and
null pointer checks.
Four recent compiler-based systems for C, namely,

CCured [30], SafeDrive [51], SAFECode [15], and
1Note that we permit a pointer to “leave” its target object and later

return, as long as it is not accessed while it is out of bounds [32].

SVA [10] enforce similar, but weaker, guarantees for C
code. Their guarantees are weaker in two ways: (a) they
provide type safety for only a subset of objects, and (b)
three of the four systems — SafeDrive, SAFECode and
SVA — permit dangling pointer references (use-after-
free) to avoid the need for garbage collection. Unlike
SafeDrive, however, SAFECode and SVA guarantee that
dangling pointer references do not invalidate any of the
other safety properties, i.e., partial type safety, memory
safety, or a sound operational semantics [14, 15]. We re-
fer to all these systems – safe languages or safety check-
ing compilers – as providing a safe execution environ-
ment.
All of the above systems make some fundamental as-

sumptions regarding the run-time environment in enforc-
ing their safety guarantees. In particular, these systems
assume that the code segment is static; control flow can
only be altered through explicit branch instructions, call
instructions, and visible signal handling; and that data
is stored either in a flat, unchanging address space or in
processor registers. Furthermore, data can only be read
and written by direct loads and stores to memory or di-
rect changes to processor registers.
Low-level system code routinely violates these as-

sumptions. Operating system kernels, virtual machine
monitors, language virtual machines such as a JVM or
CLR, and user-level thread libraries often perform op-
erations such as context switching, direct stack manip-
ulation, memory mapped I/O, and MMU configuration,
that violate these assumptions. More importantly, as ex-
plained in the rest of this section, perfectly type-safe code
can violate many of these assumptions (through logical
errors), i.e., such errors will not be prevented by the lan-
guage in the first place. This is unacceptable for safe lan-
guage implementations and, at least, undesirable for sys-
tem software because these violations can compromise
safety and soundness and thus permit the vulnerabilities
a safe language was designed to prevent, such as buffer
overflows or the creation of illegal pointer values.
There are, in fact, a small number of root causes (or

categories of root causes) of all these violations. This
section enumerates these root causes, and the next sec-
tion describes the design principles by which these root
causes can be eliminated. We assume throughout this
discussion that a safety checker (through some com-
bination of static and run-time checking) enforces the
language-level safety guarantees of a safe execution en-
vironment, described above, for the kernel.2 This allows
us to assume that the run-time checker itself is secure,
and that static analysis can be used soundly on kernel
code [15]. Our goal is to ensure the integrity of the as-
2This work focuses on enforcing memory safety for the kernel. The

same techniques could be applied to protect user-space threads from
these violations.

86 18th USENIX Security Symposium USENIX Association

sumptions made by this safety checker. We refer to the
extensions that enforce these assumptions as a verifier.
Briefly, the fundamental categories of violations are:

• corrupting processor state when held in registers or
memory;

• corrupting stack values for kernel threads;

• corrupting memory mapped I/O locations;

• corrupting code pages in memory;

• other violations that can corrupt arbitrary memory
locations, including those listed above.

Unlike the last category, the first four above are errors
that are specific to individual categories of memory.

2.1 Corrupting Processor State
Corrupting processor state can corrupt both data and con-
trol flow. The verifier must first ensure that processor
state cannot be corrupted while on the processor itself,
i.e., preventing arbitrary changes to processor registers.
In addition, however, standard kernels save processor
state (i.e., data and control registers) in memory where it
is accessible by standard (even type-safe) load and store
instructions. Any (buggy) code that modifies this state
before restoring the state to the processor can alter con-
trol flow (the program counter, stack pointer, return ad-
dress register, or condition code registers) or data val-
ues. In safe systems that permit dangling pointer refer-
ences, processor state can also be corrupted if the mem-
ory used to hold saved processor state (usually located on
the heap [5]) is freed and reallocated for other purposes.
Note that there are cases where the kernel makes ex-

plicit, legal, changes to the interrupted state of user-space
code. For example, during signal handler dispatch, the
kernel modifies interrupted program state that has been
saved to memory, including the interrupted program’s
program counter and stack pointer [5]. Also, returning
from a signal handler requires undoing the modifications
made by signal delivery. The verifier must be able to dis-
tinguish legal from illegal changes to saved state.

2.2 Corrupting Stack State
The kernel directly manages the stacks of both user and
kernel threads; it allocates and deallocates memory to
hold them, sets up initial stack frames for new threads
and signal handlers, and switches between stacks during
a context switch or interrupt/system call return.
Memory for the stack is obtained from some standard

memory allocation. Several safety violations are possible
through this allocated memory. First, the memory for the

stack should only be used for stack frames created during
normal function calls and not directly modified via arbi-
trary stores;3 such stores could corrupt the stack frames
and thus compromise safety. Second, the memory for the
stack must not be deallocated and reused for other mem-
ory objects while the stack is still in use. Third, a context
switch must switch to a stack and its corresponding saved
processor state as a pair; a context switch should not load
processor state with the wrong stack or with a stack that
has been deallocated. Fourth, after a stack is deallocated,
live pointers to local variables allocated on the stack must
not be dereferenced (the exiting thread may have stored
pointers to such objects into global variables or the heap
where they are accessible by other threads).

2.3 Corrupting Memory-Mapped I/O
Most systems today use memory-mapped I/O for con-
trolling I/O devices and either memory-mapped I/O or
DMA for performing data transfers. Many hardware ar-
chitectures treat regular memory and memory-mapped
I/O device memory (hereafter called I/O memory) iden-
tically, allowing a single set of hardware instructions to
access both. From a memory safety perspective, how-
ever, it is better to treat regular memory and I/O memory
as disjoint types of memory that are accessed using dis-
tinct instructions. First, I/O memory is not semantically
the same as regular memory in that a load may not re-
turn the value last stored into the location; program anal-
ysis algorithms (used to enforce and optimize memory
safety [15]) are not sound when applied to such mem-
ory. Second, I/O memory creates side-effects that regu-
lar memory does not. While erroneously accessing I/O
memory instead of regular memory may not be a mem-
ory safety violation per se, it is still an error with po-
tentially dire consequences. For example, the e1000e
bug [9] caused fatal damage to hardware when an in-
struction (cmpxchg) that was meant to write to mem-
ory erroneously accessed memory-mapped I/O registers,
which has undefined behavior. Therefore, for soundness
of regular memory safety and for protection against a se-
rious class of programming errors, it is best to treat reg-
ular memory and I/O memory as disjoint.

2.4 Corrupting Code
Besides the general memory corruption violations de-
scribed below, there are only two ways in which the con-
tents of code pages can be (or appear to be) corrupted.
One is through self-modifying code (SMC); the other is
through incorrect program loading operations (for new
code or loadable kernel modules).
3An exception is when Linux stores the process’s task structure at

the bottom of the stack.

USENIX Association 18th USENIX Security Symposium 87

Self-modifying code directly modifies the sequence of
instructions executed by the program. This can modify
program behavior in ways not predicted by the compiler
and hence bypass any of its safety checking techniques.
For these reasons, most type-safe languages prohibit self-
modifying code (which is distinct from “self-extending”
behaviors like dynamic class loading). However, mod-
ern kernels use limited forms of self-modifying code
for operations like enabling and disabling instrumenta-
tion [9] or optimizing synchronization for a specific ma-
chine configuration [8]. To allow such optimizations, the
verifier must define limited forms of self-modifying code
that do not violate the assumptions of the safety checker.
Second, the verifier must ensure that any program

loading operation is implemented correctly. For ex-
ample, any such operation, including new code, self-
modifying code, or self-extending code (e.g., loadable
kernel modules) requires flushing the instruction cache.
Otherwise, cached copies of the old instructions may be
executed out of the I-cache (and processors with split in-
struction/data caches may even execute old instructions
with fresh data). This may lead to arbitrary memory
safety violations for the kernel or application code.

2.5 General Memory Corruption
Finally, there are three kinds of kernel functionality that
can corrupt arbitrary memory pages: (1) MMU configu-
ration; (2) page swapping; and (3) DMA. Note that errors
in any of these actions are generally invisible to a safety
checking compiler and can violate the assumptions made
by the compiler, as follows.
First, the kernel can violate memory safety with di-

rect operations on virtual memory. Fundamentally, most
of these are caused by creating an incorrect virtual-to-
physical page mapping. Such errors include modifying
mappings in the range of kernel stack memory, mapping
the same physical page into two virtual pages (uninten-
tionally), and changing a virtual-to-physicalmapping for
a live virtual page. As before, any of these errors can
occur even with a type-safe language.
A second source of errors is in page swapping. When

a page of data is swapped in on a page fault, memory
safety can be violated if the data swapped in is not iden-
tical to the data swapped out from that virtual page. For
example, swapping in the wrong data can cause invalid
data to appear in pointers that are stored in memory.
Finally, a third source of problems is DMA. DMA

introduces two problems. First, a DMA configuration
error, device driver error, or device firmware error can
cause a DMA transfer to overwrite arbitrary physical
memory, violating type-safety assumptions. Second,
even a correct DMA transfer may bring in unknown data
which cannot be used in a type-safe manner, unless spe-

cial language support is added to enable that, e.g., to
prevent such data being used as pointer values, as in the
SPIN system [21].

3 Design Principles

We now describe the general design principles that a
memory safe system can use to prevent the memory er-
rors described in Section 2. As described earlier, we as-
sume a safety checker already exists that creates a safe
execution environment; the verifier is the set of exten-
sions to the safety checker that enforces the underlying
assumptions of the checker. Examples of safety checkers
that could benefit directly from such extensions include
SVA, SafeDrive, and XFI. We also assume that the kernel
source code is available for modification.
Processor State: Preventing the corruption of proces-
sor state involves solving several issues. First, the veri-
fier must ensure that the kernel does not make arbitrary
changes to CPU registers. Most memory safe systems
already do this by not providing instructions for such
low-level modifications. Second, the verifier must en-
sure that processor state saved by a context switch, in-
terrupt, trap, or system call is not accessed by mem-
ory load and store instructions. To do this, the verifier
can allocate the memory used to store processor state
within its own memory and allow the kernel to manipu-
late that state via special instructions that take an opaque
handle (e.g., a unique integer) to identify which saved
state buffer to use. For checkers like SVA and SafeDrive,
the safety checker itself prevents the kernel from manu-
facturing and using pointers to these saved state buffers
(e.g., via checks on accesses that use pointers cast from
integers). Additionally, the verifier should ensure that
the interface for context switching leaves the system in a
known state, meaning that a context switch should either
succeed completely or fail.
There are operations in which interrupted program

state needs to be modified by the kernel (e.g., signal han-
dler dispatch). The verifier must provide instructions
for doing controlled modifications of interrupted pro-
gram state; for example, it can provide an instruction
to push function call frames on to an interrupted pro-
gram’s stack [11]. Such instructions must ensure that
either their modifications cannot break memory safety
or that they only modify the saved state of interrupted
user-space programs (modifying user-space state cannot
violate the kernel’s memory safety).
Stack State: The memory for a kernel stack and for the
processor state object (the in-memory representation of
processor state) must be created in a single operation (in-
stead of by separate operations), and the verifier should
ensure that the kernel stack and processor state object

88 18th USENIX Security Symposium USENIX Association

are always used and deallocated together. To ease imple-
mentation, it may be desirable to move some low-level,
error-prone stack and processor state object initialization
code into the verifier. The verifier must also ensure that
memory loads and stores do not modify the kernel stack
(aside from accessing local variables) and that local vari-
ables stored on the stack can no longer be accessed when
the kernel stack is destroyed.

Memory-mapped I/O: The verifier must require that
all I/O object allocations be identifiable in the kernel
code, (e.g., declared via a pseudo-allocator). It should
also ensure that only special I/O read and write instruc-
tions can access I/O memory (these special instructions
can still be translated into regular memory loads and
stores for memory-mapped I/O machines) and that these
special instructions cannot read or write regular mem-
ory objects. If the verifier uses type-safety analysis to
optimize run-time checks, it should consider I/O objects
(objects analogous to memory objects but that reside in
memory-mapped I/O pages) to be type-unsafe as the de-
vice’s firmware may use the I/Omemory in a type-unsafe
fashion. Since it is possible for a pointer to point to both
I/O objects and memory objects, the verifier should place
run-time checks on such pointers to ensure that they are
accessing the correct type of object (memory or I/O), de-
pending upon the operation in which the pointer is used.

Kernel Code: The verifier must not permit the kernel
to modify its code segment. However, it can support a
limited version of self-modifying code that is easy to im-
plement and able to support the uses of self-modifying
code found in commodity kernels. In our design, the
kernel can specify regions of code that can be enabled
and disabled. The verifier will be responsible for replac-
ing native code with no-op instructions when the ker-
nel requests that code be disabled and replacing the no-
ops with the original code when the kernel requests the
code to be re-enabled. When analyzing code that can be
enabled and disabled, the verifier can use conservative
analysis techniques to generate results that are correct
regardless of whether the code is enabled or disabled.
For example, our pointer analysis algorithm, like most
other inter-procedural ones used in production compil-
ers, computes a may-points-to result [24], which can be
computed with the code enabled; it will still be correct,
though perhaps conservative, if the code is disabled.
To ensure that the instruction cache is properly

flushed, our design calls for the safety checker to handle
all translation to native code. The safety checker already
does this in JVMs, safe programming languages, and in
the SVA system [10]. By performing all translation to
native code, the verifier can ensure that all appropriate
CPU caches are flushed when new code is loaded into
the system.

General Memory Corruption: The verifier must im-
plement several types of protection to handle the general
memory corruption errors in Section 2.5.
MMU configuration: To prevent MMU misconfigu-

ration errors, the verifier must be able to control ac-
cess to hardware page tables or processor TLBs and vet
changes to the MMU configuration before they are ap-
plied. Implementations can use para-virtualization tech-
niques [16] to control the MMU. The verifier must pre-
vent pages containing kernel memory objects from be-
ing made accessible to non-privileged code and ensure
that pages containing kernel stack frames are not mapped
to multiple virtual addresses (i.e., double mapped) or
unmapped before the kernel stack is destroyed.4 Veri-
fiers optimizing memory access checks must also pro-
hibit double mappings of pages containing type known
objects; this will prevent data from being written into
the page in a way that is not detected by compiler anal-
ysis techniques. Pages containing type-unknown mem-
ory objects can be mapped multiple times since run-time
checks already ensure that the data within them does not
violate any memory safety properties. The verifier must
also ensure that MMUmappings do not violate any other
analysis results upon which optimizations depend.
Page swapping: For page swapping, the kernel must

notify the verifier before swapping a page out (if not, the
verifier will detect the omission on a subsequent physical
page remapping operation). The verifier can then record
any metadata for the page as well as a checksum of the
contents and use these when the page is swapped back in
to verify that the page contents have not changed.
DMA: The verifier should prevent DMA transfers from

overwriting critical memory such as the kernel’s code
segment, the verifier’s code and data, kernel stacks (aside
from local variables), and processor state objects. Im-
plementation will require the use of IOMMU techniques
like those in previous work [17, 36]. Additionally, if the
verifier uses type information to optimize memory safety
checks, it must consider the memory accessible via DMA
as type-unsafe. This solution is strictly stronger than pre-
vious work (like that in SPIN [21]): it allows pointer val-
ues in input data whereas they do not (and they do not
guarantee type safety for other input data).

Entry Points: To ensure control-flow integrity, the ker-
nel should not be entered in the middle of a function.
Therefore, the verifier must ensure that all interrupt, trap,
and system call handlers registered by the kernel are the
initial address of a valid function capable of servicing the
interrupt, trap, or system call, respectively.

4We assume the kernel does not swap stack pages to disk, but the
design can be extended easily to allow this.

USENIX Association 18th USENIX Security Symposium 89

4 Background: Secure Virtual
Architecture

The Secure Virtual Architecture (SVA) system (Figure 1)
places a compiler-based virtual machine between the
processor and the traditional software stack [10, 11]. The
virtual machine (VM) presents a virtual instruction set
to the software stack and translates virtual instructions
to the processor’s native instruction set either statically
(the default) or dynamically. The virtual instruction set
is based on the LLVM code representation [23], which is
designed to be low-level and language-independent, but
still enables sophisticated compiler analysis and transfor-
mation techniques. This instruction set can be used for
both user-space and kernel code [11].
SVA optionally provides strong safety guarantees for

C/C++ programs compiled to its virtual instruction set,
close to that of a safe language. The key guarantees are:

1. Partial type safety: Operations on a subset of data
are type safe.

2. Memory safety: Loads and stores only access the
object to which the dereferenced pointer initially
pointed, and within the bounds of that object.

3. Control flow integrity: The kernel code only follows
execution paths predicted by the compiler; this ap-
plies to both branches and function calls.

4. Tolerating dangling pointers: SVA does not detect
uses of dangling pointers but guarantees that they
are harmless, either via static analysis (for type-
safe data) or by detecting violations through run-
time checks (for non-type safe data).

5. Sound operational semantics: SVA defines a virtual
instruction set with an operational semantics that is
guaranteed not to be violated by the kernel code;
sound program analysis or verification tools can be
built on this semantics.

Briefly, SVA provides these safety guarantees as fol-
lows. First, it uses a pointer analysis called Data Struc-
ture Analysis (DSA) [24] to partition memory into logi-
cal partitions (“points to sets”) and to check which parti-
tions are always accessed or indexed with a single type.
These partitions are called “type-known” (TK); the rest
are “type-unknown” (TU). SVA then creates a run-time
representation called a “metapool” for each partition.
It maintains a lookup table in each metapool of mem-
ory objects and their bounds to support various run-time
checks. Maintaining a table per metapool instead of a
single global table greatly improves the performance of
the run-time checks [14].
Compile-time analysis with DSA guarantees that all

TK partitions are type-safe. Moreover, all uses of data

Figure 1: System Organization with SVA [10]

and function pointers loaded out of TK partitions are
type safe. SVA simply has to ensure that dangling pointer
references to TK metapools cannot create a type vio-
lation by enforcing two constraints: (a) objects in TK
metapools are aligned identically; and (b) freed mem-
ory from such a metapool is never used for a different
metapool until the former is destroyed. These constraints
are enforced by modifying the kernel allocators manu-
ally during the process of porting the kernel to SVA; this
means that the allocators are effectively trusted and not
checked. To enforce these constraints for stack objects
belonging to TK metapools, SVA automatically modifies
the kernel code to allocate such objects on the heap. To-
gether, these guarantee that a pointer to a freed object and
a new object (including array elements) access values of
identical type [15].
At run-time, the SVA VM (thereafter called VM) per-

forms a number of additional checks and operations.
All globals and allocated objects are registered in the
metapool to which they belong (derived from the target
partition of the return pointer). Loads and stores that use
pointers loaded from TU metapools are checked by look-
ing up the target address in the metapool lookup table.
Note that this works whether or not the pointer value
is a dangling pointer, and even for pointers “manufac-
tured” by casting arbitrary integers. Similarly, it checks
function pointers obtained from TU metapools to ensure
that they only access one of the target functions of that
pointer predicted by DSA. Run-time checks also ensure
that pointers to TK objects that are loaded from TUmem-
ory objects are checked since a TU object may have an
invalid value for the TK pointer. All array indexing oper-
ations for TK or TUmetapools are checked in the lookup
table, which records the bounds for each object [14]5.
Note that the VM relies on the safe execution environ-

5Note that we permit a pointer to “leave” its target object and later
return, as long as it is not accessed while it is out of bounds [32].

90 18th USENIX Security Symposium USENIX Association

ment to protect the VM code and data memory instead of
using the MMU and incurring the cost of switching page
tables on every VM invocation. Since the environment
prevents access to unregistered data objects or outside
the bounds of legal objects, we can simply monitor all
run-time kernel object registrations and ensure that they
do not reside in VM code or data pages.
A subset of the SVA instruction set, SVA-OS, provides

instructions designed to support an operating system’s
special interaction with the hardware [10, 11]. These in-
clude instructions for loading from/storing to I/O mem-
ory, configuring the MMU, and manipulating program
state. An important property is that a kernel ported to
SVA using the SVA-OS instructions contains no assem-
bly code; this simplifies the compiler’s task of safety
checking within SVA. Nevertheless, these instructions
provide low-level hardware interactions that can gener-
ate all the problems described in Section 2 if used incor-
rectly; it is very difficult for the compiler to check their
correct use in the original design. In particular, the VM
does not perform any special checks for processor state
objects, direct stack manipulation, memory mapped I/O
locations, MMU configuration changes, or DMA opera-
tions. Also, it disallows self-modifying code.
For example, we tested two [39, 42] of the three re-

ported low-level errors we found for Linux 2.4.22, the
kernel version ported to SVA (we could not try the
third [3] for reasons explained in Section 7.1). Although
both are memory safety violations, neither of them was
detected or prevented by the original SVA.

5 Design
Our design is an extension of the original Secure Virtual
Architecture (SVA) described in Section 4. SVA pro-
vides strong memory safety guarantees for kernel code
and an abstraction of the hardware that is both low-level
(e.g., context switching, I/O, and MMU configuration
policies are still implemented in the kernel), yet easy to
analyze (because the SVA-OS instructions for interact-
ing with hardware are slightly higher level than typical
processor instructions). Below, we describe our exten-
sions to provide memory safety in the face of errors in
kernel-hardware interactions.

5.1 Context Switching
Previously, the SVA system performed context switch-
ing using the sva load integer and sva save -
integer instructions [10], which saved from and
loaded into the processor the processor state (named In-
teger State). These instructions stored processor state in
a kernel allocated memory buffer which could be later
modified by memory-safe store instructions or freed by

the kernel deallocator. Our new design calls a single in-
struction namedsva swap integer (see Table 1) that
saves the old processor state and loads the new state in a
single operation.
This design has all of the necessary features to pre-

serve memory safety when context switching. The
sva swap integer instruction allocates the memory
buffer to hold processor state within the VM’s memory
and returns an opaque integer identifier which can be
used to re-load the state in a subsequent call to sva -
swap integer. Combined with SVA’s original pro-
tections against manufactured pointers, this prevents the
kernel from modifying or deallocating the saved proces-
sor state buffer. The design also ensures correct deal-
location of the memory buffer used to hold processor
state. The VM tracks which identifiers are mapped to al-
located state buffers created by sva swap integer;
these memory buffer/identifier pairs are kept alive until
the state is placed back on the processor by another call
to sva swap integer. Once state is placed back on
the processor, the memory buffer is deallocated, and the
identifier invalidated to prevent the kernel from trying to
restore state from a deallocated state buffer.
Finally, sva swap integer will either succeed to

context switch and return an identifier for the saved pro-
cessor state, or it will fail, save no processor state, and
continue execution of the currently running thread. This
ensures that the kernel stack and the saved processor state
are always synchronized.

5.2 Thread Management
A thread of execution consists of a stack and a saved
processor state that can be used to either initiate or con-
tinue execution of the thread. Thread creation is there-
fore comprised of three operations: allocating memory
for the new thread’s stack, initializing the new stack, and
creating an initial state that can be loaded on to the pro-
cessor using sva swap integer.
The VM needs to know where kernel stacks are lo-

cated in order to prevent them from being written by
load and store instructions. We introduce a new SVA in-
struction, sva declare stack, which a kernel uses
to declare that a memory object will be used as a
stack. During pointer analysis, any pointers passed
to sva declare stack and pointers that alias with
such pointers are marked with a special DeclaredStack
flag; this flag indicates that run-time checks are needed
on stores via such pointers to ensure that they are not
writing into a kernel stack. The compiler, on seeing
an sva declare stack instruction, will also verify,
statically (via pointer analysis) if possible but at run-time
if necessary, that the memory object used for the new
stack is either a global or heap object; this will prevent

USENIX Association 18th USENIX Security Symposium 91

Name Description
sva swap integer Saves the current processor state into an internal memory buffer, loads previously saved

state referenced by its ID, and returns the ID of the new saved state.
sva declare stack Declares that a memory object is to be used as a new stack.
sva release stack Declares that a memory object is no longer used as a stack.
sva init stack Initializes a new stack.

Table 1: SVA Instructions for Context Switching and Thread Creation.

stacks from being embedded within other stacks. After
this check is done, sva declare stack will unregis-
ter the memory object from the set of valid memory ob-
jects that can be accessed via loads and stores and record
the stack’s size and location within the VM’s internal
data structures as a valid kernel stack.
To initialize a stack and the initial processor state

that will use the memory as a stack, we introduce
sva init stack; this instruction will initialize the
stack and create a new saved Integer State which can
be used in sva swap integer to start executing
the new thread. The sva init stack instruction
verifies (either statically or at run-time) that its argu-
ment has previously been declared as a stack using
sva declare stack. When the new thread wakes
up, it will find itself runningwithin the function specified
by the call to sva init stack; when this function re-
turns, it will return to user-space at the same location as
the original thread entered.
Deleting a thread is composed of two operations. First,

the memory object containing the stack must be deal-
located. Second, any Integer State associated with the
stack that was saved on a context switch must be in-
validated. When the kernel wishes to destroy a thread,
it must call the sva release stack instruction; this
will mark the stack memory as a regular memory object
so that it can be freed and invalidates any saved Integer
State associated with the stack.
When a kernel stack is deallocated, there may be

pointers in global or heap objects that point to mem-
ory (i.e., local variables) allocated on that stack. SVA
must ensure that dereferencing such pointers does not
violate memory safety. Type-unsafe stack allocated ob-
jects are subject to load/store checks and are registered
with the SVA virtual machine [10]. In order for the
sva release stack instruction to invalidate such
objects when stack memory is reclaimed, the VM records
information on stack object allocations and associates
this information with the metadata about the stack in
which the object is allocated. In this way, when a stack is
deallocated, any live objects still registered with the vir-
tual machine are automatically invalidated as well; run-
time checks will no longer consider these stack allocated
objects to be valid objects. Type-known stack allocated
objects can never be pointed to by global or heap objects;
SVA already transforms such stack allocations into heap

allocations [15, 10] to make dangling pointer dereferenc-
ing to type-known stack allocated objects safe [15].

5.3 Memory Mapped I/O
To ensure safe use of I/O memory, our system must be
able to identify where I/O memory is located and when
the kernel is legitimately accessing it.
Identifying the location of I/O memory is straightfor-

ward. In most systems, I/O memory is located at (or
mapped into) known, constant locations within the sys-
tem’s address space, similar to global variables. In some
systems, a memory-allocator-like function may remap
physical page frames corresponding to I/O memory to
a virtual memory address [5]. The insight is that I/O
memory is grouped into objects just like regular mem-
ory; in some systems, such I/O objects are even allocated
and freed like heap objects (e.g., Linux’s ioremap()
function [5]). To let the VM know where I/O memory
is located, we must modify the kernel to use a pseudo-
allocator that informs the VM of global I/O objects; we
can also modify the VM to recognize I/O “allocators”
like ioremap() just like it recognizes heap allocators
like Linux’s kmalloc() [5].
Given this information, the VM needs to determine

which pointers may point to I/O memory. To do so,
we modified the SVA points-to analysis algorithm [24]
to mark the target (i.e., the “points-to set”) of a pointer
holding the return address of the I/O allocator with a spe-
cial I/O flag. This also flags other pointers aliased to
such a pointer because any two aliased pointers point to
a common target [24].
We also modified the points-to analysis to mark I/O

memory as type-unknown. Even if the kernel accesses
I/O memory in a type-consistent fashion, the firmware
on the I/O device may not. Type-unknown memory in-
curs additional run-time checks but allows kernel code
to safely use pointer values in such memory as pointers.
We also extended SVA to record the size and virtual

address location of every I/O object allocation and deal-
location by instrumenting every call to the I/O allocator
and deallocator functions. At run-time, the VM records
these I/O objects in a per-metapool data structure that
is disjoint from the structure used to record the bounds
of regular memory objects. The VM also uses new run-
time checks for checking I/O load and store instructions.

92 18th USENIX Security Symposium USENIX Association

Since I/O pointers can be indexed like memory point-
ers (an I/O device may have an array of control regis-
ters), the bounds checking code must check both regu-
lar memory objects and I/O memory objects. Load and
store checks on regular memory pointers without the I/O
flag remain unchanged; they only consider memory ob-
jects. New run-time checks are needed on both mem-
ory and I/O loads and stores for pointers that have both
the I/O flag and one or more of the memory flags (heap,
stack, global) to ensure that they only access regular or
I/O memory objects, respectively.

5.4 Safe DMA
We assume the use of an IOMMU for preventing DMA
operations from overflowing object bounds or writing to
the wrongmemory address altogether [13]. The SVA vir-
tual machine simply has to ensure that the I/O MMU is
configured so that DMA operations cannot write to the
virtual machine’s internal memory, kernel code pages,
pages which contain type-safe objects, and stack objects.
We mark all memory objects that may be used for

DMA operations as type-unsafe, similar to I/O memory
that is accessed directly. We assume that any pointer that
is stored into I/O memory is a potential memory buffer
for DMA operations. We require alias analysis to iden-
tify such stores; it simply has to check that the target ad-
dress is in I/O memory and the store value is of pointer
type. We then mark the points-to set of the store value
pointer as type-unknown.

5.5 Virtual Memory
Our system must control the MMU and vet changes to its
configuration to prevent safety violations and preserve
compiler-inferred analysis results. Below, we describe
the mechanism by which our system monitors and con-
trols MMU configuration and then discuss how we use
this mechanism to enforce several safety properties.

5.5.1 Controlling MMU Configuration

SVA provides different MMU interfaces for hardware
TLB processors and software TLB processors [11]. For
brevity, we describe only the hardware TLB interface and
how our design uses it to control MMU configuration.
The SVA interface for hardware TLB systems (given

in Table 2) is similar to those used in VMMs like
Xen [16] and is based off the paravirtops inter-
face [50] found in Linux 2.6. The page table is a 3-
level page table, and there are instructions for chang-
ing mappings at each level. In this design, the OS first
tells the VM which memory pages will be used for the
page table (it must specify at what level the page will

appear in the table); the VM then takes control of these
pages by zeroing them (to prevent stale mappings from
being used) and marking them read-only to prevent the
OS from accessing them directly. The OS must then
use special SVA instructions to update the translations
stored in these page table pages; these instructions al-
low SVA to first inspect and modify translations before
accepting them and placing them into the page table.
The sva load pagetable instruction selects which
page table is in active use and ensures that only page
tables controlled by SVA are ever used by the proces-
sor. This interface, combined with SVA’s control-flow
integrity guarantees [10], ensure that SVAmaintains con-
trol of all page mappings on the system.

5.5.2 Memory Safe MMU Configuration

For preventing memory safety violations involving the
MMU, the VM needs to track two pieces of information.
First, the VM must know the purpose of various ranges
of the virtual address space; the kernel must provide the
virtual address ranges of user-space memory, kernel data
memory, and I/O object memory. This information will
be used to prevent physical pages from being mapped
into the wrong virtual addresses (e.g., a memory mapped
I/O device being mapped into a virtual address used by a
kernel memory object). A special instruction permits the
kernel to communicate this information to the VM.
Second, the VM must know how physical pages are

used, how many times they are mapped into the virtual
address space, and whether any MMU mapping makes
them accessible to unprivileged (i.e., user-space) code.
To track this information, the VM associates with each
physical page a set of flags and counters. The first set
of flags are mutually exclusive and indicate the purpose
of the page; a page can be marked as: L1 (Level-1 page
table page), L2 (Level-2 page table page), L3 (Level-
3 page table page), RW (a standard kernel page hold-
ing memory objects), IO (a memory mapped I/O page),
stack (kernel stack), code (kernel or SVA code), or
svamem (SVA data memory). A second flag, the TK
flag, specifies whether a physical page contains type-
known data. The VM also keeps a count of the number
of virtual pages mapped to the physical page and a count
of the number of mappings that make the page accessible
to user-space code.
The flags are checked and updated by the VM when-

ever the kernel requests a change to the page tables
or performs relevant memory or I/O object allocation.
Calls to the memory allocator are instrumented to set
the RW and, if appropriate, the TK flag on pages
backing the newly allocated memory object. On sys-
tem boot, the VM sets the IO flag on physical pages
known to be memory-mapped I/O locations. The stack

USENIX Association 18th USENIX Security Symposium 93

Name Description
sva end mem init End of the virtual memory boot initialization. Flags all page table pages, and mark them read-only.
sva declare l1 page Zeroes the page and flags it read-only and L1.
sva declare l2 page Zeroes the page and flags it read-only and L2.
sva declare l3 page Puts the default mappings in the page and flags it read-only and L3.
sva remove l1 page Unflags the page read-only and L1.
sva remove l2 page Unflags the page read-only and L2.
sva remove l3 page Unflags the page read-only and L3.
sva update l1 mapping Updates the mapping if the mapping belongs to an L1 page and the page is not already mapped for a

type known pool, sva page, code page, or stack page.
sva update l2 mapping Updates the mapping if the mapping belongs to an L2 page and the new mapping is for an L1 page.
sva update l3 mapping Updates the mapping if the mapping belongs to an L3 page and the new mapping is for an L2 page.
sva load pagetable Check that the physical page is an L3 page and loads it in the page table register.

Table 2: MMU Interface for a Hardware TLB Processor.

flag is set and cleared by sva declare stack and
sva release stack, respectively. Changes to the
page table via the instructions in Table 2 update the coun-
ters and the L1, L2, andL3 flags.
The VM uses all of the above information to detect,

at run-time, violations of the safety requirements in Sec-
tion 3. Before inserting a new page mapping, the VM
can detect whether the new mapping will create multi-
ple mappings to physical memory containing type-known
objects, map a page into the virtual address space of the
VM or kernel code segment, unmap or double map a
page that is part of a kernel stack, make a physical page
containing kernel memory accessible to user-space code,
or map memory-mapped I/O pages into a kernel mem-
ory object (or vice-versa). Note that SVA currently trusts
the kernel memory allocators to (i) return different vir-
tual addresses for every allocation, and (ii) not to move
virtual pages from one metapool to another until the orig-
inal metapool is destroyed.

5.6 Self-modifying Code
The new SVA system supports the restricted version of
self-modifying code described in Section 3: OS kernels
can disable and re-enable pre-declared pieces of code.
SVA will use compile-time analysis carefully to ensure
that replacing the code with no-op instructions will not
invalidate the analysis results.
We define four new instructions to support self-

modifying code. The first two instructions, sva -
begin alt and sva end alt enclose the code re-
gions that may be modified at runtime. They must
be properly nested and must be given a unique iden-
tifier. The instructions are not emitted in the native
code. The two other instructions, sva disable code
and sva enable code execute at runtime. They take
the identifier given to the sva begin alt and sva -
end alt instructions. sva disable code saves the
previous code and inserts no-ops in the code, and sva -
enable code restores the previous code.

With this approach, SVA can support most uses of
self-modifying code in operating systems. For instance,
it supports the alternatives6 framework in Linux
2.6 [8] and Linux’s ftrace tracing support [9] which
disables calls to logging functions at run-time.

5.7 Interrupted State
On an interrupt, trap, or system call, the original SVA
system saves processor state within the VM’s internal
memory and permits the kernel to use specialized in-
structions to modify the state via an opaque handle called
the interrupt context [10, 11]. These instructions, which
are slightly higher-level than assembly code, are used by
the kernel to implement operations like signal handler
dispatch and starting execution of user programs. Since
systems such as Linux can be interrupted while running
kernel code [5], these instructions can violate the ker-
nel’s memory safety if used incorrectly on interrupted
kernel state. To address these issues, we introduce sev-
eral changes to the original SVA design.
First, we noticed that all of the instructions that manip-

ulate interrupted program state are either memory safe
(e.g., the instruction that unwinds stack frames for ker-
nel exception handling [11]) or only need to modify the
interrupted state of user-space programs. Hence, all in-
structions that are not intrinsically memory safe will ver-
ify that they are modifying interrupted user-space pro-
gram state. Second, the opaque handle to the interrupt
context will be made implicit so that no run-time checks
are needed to validate it when it is used. We have ob-
served that the Linux kernel only operates upon the most
recently created interrupt context; we do not see a need
for other operating systems of similar design to do so, ei-
ther. Without an explicit handle to the interrupt context’s
location in memory, no validation code is needed, and
the kernel cannot create a pointer to the saved program
state (except for explicit integer to pointer casts, uses of
which will be caught by SVA’s existing checks) [10].
6Linux 2.6, file include/asm-x86/alternative.h

94 18th USENIX Security Symposium USENIX Association

5.8 Miscellaneous
To ensure control-flow integrity requirements, the VM
assumes control of the hardware interrupt descriptor ta-
ble; the OS kernel must use special instructions to asso-
ciate a function with a particular interrupt, trap, or sys-
tem call [11, 29]. Similar to indirect function call checks,
SVA can use static analysis and run-time checks to en-
sure that only valid functions are registered as interrupt,
trap, or system call handlers.
SVA provides two sets of atomic memory instructions:

sva fetch and phi where phi is one of several in-
teger operations (e.g., add), and sva compare and -
swapwhich performs an atomic compare and swap. The
static and run-time checks that protect regular memory
loads and stores also protect these operations.

6 Modifications to the Linux Kernel

We implemented our design by improving and extend-
ing the original SVA prototype and the SVA port of
the Linux 2.4.22 kernel [10]. The previous section de-
scribed how we modified the SVA-OS instructions. Be-
low, we describe how we modified the Linux kernel
to use these new instructions accordingly. We modi-
fied less than 100 lines from the original SVA kernel
to port our kernel to the new SVA-OS API; the origi-
nal port of the i386 Linux kernel to SVA modified 300
lines of architecture-independent code and 4,800 lines of
architecture-dependent code [10].

6.1 Changes to Baseline SVA
The baseline SVA system in our evaluation (Section 7) is
an improved version of the original SVA system [10] that
is suitable for determining the extra overhead incurred by
the run-time checks necessitated by the design in Sec-
tion 5. First, we fixed several bugs in the optimization of
run-time checks. Second, while the original SVA system
does not analyze and protect the whole kernel, there is no
fundamental reason why it cannot. Therefore, we chose
to disable optimizations which apply only to incomplete
kernel code for the experiments in Section 7. Third, the
new baseline SVA system recognizes ioremap() as an
allocator function even though it does not add run-time
checks for I/O loads and stores. Fourth, we replaced
most uses of the get free pages() page allocator
with kmalloc() in code which uses the page alloca-
tor like a standard memory allocator; this ensures that
most kernel allocations are performed in kernel pools
(i.e., kmem cache ts) which fulfill the requirements
for allocators as described in the original SVAwork [10].
We also modified the SVA Linux kernel to use the new

SVA-OS instruction set as described below. This ensured

that the only difference between our baseline SVA sys-
tem and our SVA systemwith the low-level safety protec-
tions was the addition of the run-time checks necessary
to ensure safety for context switching, thread manage-
ment, MMU, and I/O memory safety.

6.2 Context Switching/Thread Creation
The modifications needed for context switching were
straightforward. We simply modified the switch to
macro in Linux [5] to use the sva swap integer in-
struction to perform context switching.
Some minor kernel modifications were needed to use

the new thread creation instructions. The original i386
Linux kernel allocates a single memory object which
holds both a thread’s task structure and the kernel stack
for the thread [5], but this cannot be done on our system
because sva declare stack requires that a stack
consumes an entire memory object. For our prototype,
we simply modified the Linux kernel to perform separate
allocations for the kernel stack and the task structure.

6.3 I/O
As noted earlier, our implementation enhances the
pointer analysis algorithm in SVA (DSA [24]) to mark
pointers that may point to I/O objects. It does this by
finding calls to the Linux ioremap() function. To
make implementation easier, we modified ioremap()
and ioremap nocache() in the Linux source to be
macros that call ioremap().
Our test system’s devices do not use global I/O mem-

ory objects, so we did not implement a pseudo allocator
for identifying them. Also, we did not modify DSA to
mark memory stored into I/O device memory as type-
unknown. The difficulty is that Linux casts pointers into
integers before writing them into I/O device memory.
The DSA implementation does not have solid support for
tracking pointers through integers i.e., it does not con-
sider the case where an integer may, in fact, be pointing
to a memory object. Implementing these changes to pro-
vide DMA protection is left as future work.

6.4 Virtual Memory
We implemented the new MMU instructions and run-
time checks described in Section 5.5 and ported the SVA
Linux kernel to use the new instructions. Linux already
contains macros to allocate, modify and free page table
pages. We modified these macros to use our new API
(which is based on the paravirtops interface from
Linux 2.6). We implemented all of the run-time checks
except for those that ensure that I/O device memory isn’t

USENIX Association 18th USENIX Security Symposium 95

mapped into kernel memory objects. These checks re-
quire that the kernel allocate all I/O memory objects
within a predefined range of the virtual address space,
which our Linux kernel does not currently do.

7 Evaluation and Analysis

Our evaluation has two goals. First, we wanted
to determine whether our design for low-level soft-
ware/hardware interaction was effective at stopping se-
curity vulnerabilities in commodity OS kernels. Second,
we wanted to determine how much overhead our design
would add to an already existing memory-safety system.

7.1 Exploit Detection
We performed three experiments to verify that our sys-
tem catches low-level hardware/software errors: First,
we tried two different exploits on our system that were
reported on Linux 2.4.22, the Linux version that is ported
to SVA. The exploits occur in the MMU subsystem; both
give an attacker root privileges. Second, we studied the
e1000e bug [9]. We could not duplicate the bug because
it occurs in Linux 2.6, but we explain why our design
would have caught the bug if Linux 2.6 had been ported
to SVA. Third, we inserted many low-level operation er-
rors inside the kernel to evaluate whether our design pre-
vents the safety violations identified in Section 2.

Linux 2.4.22 exploits. We have identified three re-
ported errors for Linux 2.4.22 caused by low-level
kernel-hardware interactions [3, 39, 42]. Our experi-
ment is limited to these errors because we needed hard-
ware/software interaction bugs that were in Linux 2.4.22.
Of these, we could not reproduce one bug due to a lack
of information in the bug report [3]. The other two errors
occur in the mremap system call but are distinct errors.
The first exploit [42] is due to an overflow in a count

of the number of times a page is mapped. The exploit
code overflows the counter by calling fork, mmap, and
mremap a large number of times. It then releases the
page, giving it back to the kernel. However, the exploit
code still has a reference to the page; therefore, if the
page is reallocated for kernel use, the exploit code can
read and modify kernel data. Our system catches this
error because it disallows allocating kernel objects in a
physical page mapped in user space.
The second exploit [39] occurs because of a missing

error check in mremap which causes the kernel to place
page table pages with valid page table entries into the
page table cache. However, the kernel assumes that page
table pages in the page table cache do not contain any
entries. The exploit uses this vulnerability by calling
mmap, mremap and munmap to release a page table

page with page entries that contain executable memory.
Then, on an exec system call, the linker, which exe-
cutes with root privileges, allocates a page table page,
which happens to be the previously released page. The
end result is that the linker jumps to the exploit’s exe-
cutable memory and executes the exploit code with root
privileges. The SVA VM prevents this exploit by always
zeroing page table pages when they are placed in a page
directory so that no new, unintended, memory mappings
are created for existing objects.

The e1000e bug. The fundamental cause of the e1000e
bug is a memory load/store (the x86 cmpxchg instruc-
tion) on a dangling pointer, which happens to point
to an I/O object. The cmpxchg instruction has non-
deterministic behavior on I/O device memory and may
corrupt the hardware. The instruction was executed by
the ftrace subsystem, which uses self-modifying code
to trace the kernel execution. It took many weeks for
skilled engineers to track the problem. With our new
safety checks, SVA would have detected the bug at its
first occurrence. The self-modifying code interface of
SVA-OS only allows enabling and disabling of code;
writes to what the kernel (incorrectly) thought was its
code is not possible. SVA actually has a second line of
defense if (hypothetically) the self-modifying code inter-
face did not detect it: SVA would have prevented the I/O
memory from being mapped into code pages, and thus
prevented this corruption. (And, hypothetically again, if
a dangling pointer to a data object had caused the bug,
SVA would have detected any ordinary reads and writes
trying to write to I/O memory locations.)

Kernel error injection. To inject errors, we added new
system calls into the kernel; each system call triggers a
specific kind of kernel/hardware interaction error that ei-
ther corrupts memory or alters control flow. We inserted
four different errors. The first error modifies the saved
Integer State of a process so that an invalid Integer State
is loaded when the process is scheduled. The second
error creates a new MMU mapping of a page contain-
ing type-known kernel memory objects and modifies the
contents of the page. The third error modifies the MMU
mappings of pages in the stack range. The fourth error
modifies the internal metadata of SVA to set incorrect
bounds for all objects. This last error shows that with the
original design, we can disable the SVA memory safety
checks that prevent Linux exploits; in fact, it would not
be difficult to do so with this bug alone for three of the
four kernel exploits otherwise prevented by SVA [10].
All of the injected errors were caught by the new

SVA implementation. With the previous implementation,
these errors either crash the kernel or create undefined
behavior. This gives us confidence about the correctness
of our new design and implementation of SVA. Note that

96 18th USENIX Security Symposium USENIX Association

we only injected errors that our design addresses because
we believe that our design is “complete” in terms of the
possible errors due to kernel-hardware interactions. Nev-
ertheless, the injection experiments are useful because
they validate that the design and implementation actu-
ally solve these problems.

7.2 Performance
To determine the impact of the additional run-time
checks on system performance, we ran several experi-
ments with applications typically used on server and end-
user systems. We ran tests on the original Linux 2.4.22
kernel (marked i386 in the figures and tables), the same
kernel with the original SVA safety checks [10] (marked
SVA), and the SVA kernel with our safety checks for low-
level software/hardware interactions (marked SVA-OS).
It is important to note that an underlying memory

safety system like SVA can incur significant run-time
overhead for C code, especially for a commodity ker-
nel like Linux that was not designed for enforcement of
memory safety. Such a system is not the focus of this
paper. Although we present our results relative to the
original (unmodified) Linux/i386 system for clarity, we
focus the discussion on the excess overheads introduced
by SVA-OS beyond those of SVA since the new tech-
niques in SVA-OS are the subject of the current work.
We ran these experiments on a dual-processor AMD

Athlon 2100+ at 1,733 MHz with 1 GB of RAM and a 1
Gb/s network card. We configured the kernel as an SMP
kernel but ran it in on a single processor since the SVA
implementation is not yet SMP safe. Network experi-
ments used a dedicated 1 Gb/s switch. We ran our exper-
iments in single-user mode to prevent standard system
services from adding noise to our performance numbers.
We used several benchmarks in our experiments: the

thttpd Web server, the OpenSSH sshd encrypted file
transfer service, and three local applications – bzip2 for
file compression, the lame MP3 encoder, and a perl in-
terpreter. These programs have a range of different de-
mands on kernel operations. Finally, to understand why
some programs incur overhead while others do not, we
used a set of microbenchmarks including the HBench-
OS microbenchmark suite [6] and two new tests we
wrote for the poll and select system calls.
Application Performance First, we used
ApacheBench to measure the file-transfer band-
width of the thttpd web server [31] serving static HTML
pages. We configured ApacheBench to make 5000
requests using 25 simultaneous connections. Figure 2
shows the results of both the original SVA kernel and
the SVA kernel with the new run-time checks described
in Section 5. Each bar is the average bandwidth of 3
runs of the experiment; the results are normalized to the

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128 256 512 1024

Ba
nd

w
id

th
 (N

or
m

al
iz

ed
 to

 L
in

ux
 2

.4
.2

2)

File Size (KB)

SVA Checks SVA-OS Checks

Figure 2: Web Server Bandwidth (Linux/i386 = 1.0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8 32 128 512

Ba
nd

w
id

th
 (N

or
m

al
iz

ed
 to

 L
in

ux
 2

.4
.2

2)

File Size (MB)

SVA Checks SVA-OS Checks

Figure 3: SSH Server Bandwidth (Linux/i386 = 1.0)

original i386 Linux kernel. For small files (1 KB - 32
KB) in which the original SVA system adds significant
overhead, our new run-time checks incur a small amount
of additional overhead (roughly a 9% decrease in
bandwidth relative to the SVA kernel). However, for
larger file sizes (64 KB or more), the SVA-OS checks
add negligible overhead to the original SVA system.
We also measured the performance of sshd, a login

server offering encrypted file transfer. For this test, we
measured the bandwidth of transferring several large files
from the server to our test client; the results are shown in
Figure 3. For each file size, we first did a priming run
to bring file system data into the kernel’s buffer cache;
subsequently, we transfered the file three times. Figure 3
shows the mean of the receive bandwidth of the three
runs normalized to the mean receive bandwidth mea-

USENIX Association 18th USENIX Security Symposium 97

Benchmark i386 (s) SVA (s) SVA-OS (s) % Increase from
i386 to SVA-OS

Description

bzip2 18.7 (0.47) 18.3 (0.47) 18.0 (0.00) 0.0% Compressing 64 MB file
lame 133.3 (3.3) 132 (0.82) 126.0 (0.82) -0.1% Converting 206 MB WAV file to MP3
perl 22.3 (0.47) 22.3 (0.47) 22.3 (0.47) 0.0% Interpreting scrabbl.pl from SPEC 2000

Table 3: Latency of Applications. Standard Deviation Shown in Parentheses.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 8 16 32 64 128 256 512 102420484096

Ba
nd

w
id

th
 (M

B/
s)

File Size (KB)

i386
SVA Checks

SVA-OS Checks

Figure 4: File System Bandwidth

Benchmark i386 (s) SVA (s) SVA-OS (s)
bzip2 41 40 40
lame 203 202 202
perl 24 23 23

Table 4: Latency of Applications During Priming Run.

sured on the original i386 kernel; note that the units on
the X-axis are MB. Our results indicate that there is no
significant decrease in bandwidth due to the extra run-
time checks added by the original SVA system or the new
run-time checks presented in this paper. This outcome is
far better than thttpd, most likely due to the large file
sizes we transfered via scp. For large file sizes, the net-
work becomes the bottleneck: transferring an 8 MB file
takes 62.5 ms on a Gigabit network, but the overheads for
basic system calls (shown in Table 5) show overheads of
only tens of microseconds.
To see what effect our system would have on end-

user application performance, we ran experiments on the
client-side programs listed in Table 3. We tested bzip2
compressing a 64 MB file, the LAMEMP3 encoder con-
verting a 206 MB file fromWAV to MP3 format, and the
perl interpreter running the training input from the SPEC
2000 benchmark suite. For each test, we ran the program
once to prime any caches within the operating system and
then ran each program three times. Table 3 shows the av-
erage of the execution times of the three runs and the

percent overhead that the applications experienced exe-
cuting on the SVA-OS kernel relative to the original i386
Linux kernel. The results show that our system adds vir-
tually no overhead for these applications, even though
some of the programs (bzip2 and lame) perform substan-
tial amounts of I/O. Table 4 shows the latency of the ap-
plications during their priming runs; our kernel shows no
overhead even when the kernel must initiate I/O to re-
trieve data off the physical disk.

Microbenchmark Performance To better understand
the different performance behaviors of the applications,
we used microbenchmarks to measure the overhead our
system introduces for primitive kernel operations. For
these experiments, we configured HBench-OS to run
each test 50 times.
Our results for basic system calls (Table 5) indicate

that the original SVA system adds significant overhead
(on the order of tens of microseconds) to individual sys-
tem calls. However, the results also show that our new
safety checks only add a small amount of additional over-
head (25% or less) to the original SVA system.
We also tested the file system bandwidth, shown in

Figure 4. The results show that the original SVA system
reduces file system bandwidth by about 5-20% for small
files but that the overhead for larger files is negligible.
Again, however, the additional checks for low-level ker-
nel operations add no overhead.
Themicrobenchmark results provide a partial explana-

tion for the application performance results. The appli-
cations in Table 3 experience no overhead because they
perform most of their processing in user-space; the over-
head of the kernel does not affect themmuch. In contrast,
the sshd and thttpd servers spend most of their time ex-
ecuting in the kernel (primarily in the poll(), select(), and
write() system calls). For the system calls that we tested,
our new safety checks add less than severalmicroseconds
of overhead (as shown in Table 5). For a small network
transfer of 1 KB (which takes less than 8 µs on a Giga-
bit network), such an overhead can affect performance.
However, for larger files sizes (e.g., an 8 MB transfer that
takes 62.5 ms), this overhead becomes negligible. This
effect shows up in our results for networked applications
(thttpd and sshd): smaller file transfers see significant
overhead, but past a certain file size, the overhead from
the run-time safety checks becomes negligible.

98 18th USENIX Security Symposium USENIX Association

Benchmark i386 (µs) SVA (µs) SVA-OS
(µs)

% Increase from
SVA to SVA-OS

Description

getpid 0.16 (0.001) 0.37 (0.000) 0.37 (0.006) 0.0% Latency of getpid() syscall
openclose 1.10 (0.009) 11.1 (0.027) 12.1 (0.076) 9.0% Latency of opening and closing a file
write 0.25 (0.001) 1.87 (0.012) 1.86 (0.010) -0.4% Latency of writing a single byte to /dev/null
signal handler 1.59 (0.006) 6.88 (0.044) 8.49 (0.074) 23% Latency of calling a signal handler
signal install 0.34 (0.001) 1.56 (0.019) 1.95 (0.007) 25% Latency of installing a signal handler
pipe latency 2.74 (0.014) 30.5 (0.188) 35.9 (0.267) 18% Latency of ping-ponging one byte message be-

tween two processes
poll 1.16 (0.043) 6.47 (0.080) 7.03 (0.014) 8.7% Latency of polling both ends of a pipe for reading

and writing. Data is always available for reading.
select 1.00 (0.019) 8.18 (0.133) 8.81 (0.020) 7.7% Latency of testing both ends of a pipe for reading

and writing. Data is always available for reading.

Table 5: Latency of Kernel Operations. Standard Deviation Shown in Parentheses.

8 Related Work

Previous work has explored several approaches to pro-
viding greater safety and reliability for operating sys-
tem kernels. Some require complete OS re-design, e.g.,
capability-based operating systems [37, 38] and micro-
kernels [1, 25]. Others use isolation (or “sandboxing”)
techniques, including device driver isolation within the
OS [35, 44, 45, 51] or the hypervisor [17]. While ef-
fective at increasing system reliability, none of these ap-
proaches provide the memory safety guarantees provided
by our system, e.g., none of these prevent corruption of
memory mapped I/O devices, unsafe context switching,
or improper configuration of the MMU by either kernel
or device driver code. In fact, none of these approaches
could protect against the Linux exploits or device cor-
ruption cases described in Section 7. In contrast, our
system offers protection from all of these problems for
both driver code and core kernel code.
The EROS [38] and Coyotos [37] systems provide a

form of safe (dynamic) typing for abstractions, e.g., ca-
pabilities, at their higher-level OS (“node and page”)
layer. This type safety is preserved throughout the de-
sign, even across I/O operations. The lower-level layer,
which implements these abstractions, is written in C/C++
and is theoretically vulnerable to memory safety errors
but is designed carefully to minimize them. The design
techniques used here are extremely valuable but difficult
to retrofit to commodity systems.
Some OSs written in type-safe languages, including

JX [18], SPIN [21], Singularity [22], and others [20] pro-
vide abstractions that guarantee that loads and stores to
I/O devices do not access main memory, and main mem-
ory accesses do not access I/O device memory. However,
these systems either place context switching and MMU
management within the virtual machine run-time (JX) or
provide no guarantee that errors in these operations can-
not compromise the safety guarantees of the language in
which they are written.
Another approach that could provide some of the guar-

antees of our work is to add annotations to the C lan-
guage. For example, SafeDrive’s annotation system [51]
could be extended to provide our I/Omemory protections
and perhaps some of our other safety guarantees. Such
an approach, however, would likely require changes to
every driver and kernel module, whereas our approach
only requires a one-time port to the SVA instruction set
and very minor changes to machine-independent parts of
the kernel.
The Devil project [27] defines a safe interface to hard-

ware devices that enforces safety properties. Devil could
ensure that writes to the device’s memory did not ac-
cess kernel memory, but not vice versa. Our SVA ex-
tensions also protect I/O memory from kernel memory
and provide comprehensive protection for other low-
level hardware interactions, such as MMU changes, con-
text switching, and thread management.
Mondrix [49] provides isolation between memory

spaces within a kernel using a word-granularity mem-
ory isolation scheme implemented in hardware [48]. Be-
cause Mondrix enables much more fine-grained isolation
(with acceptable overhead) than the software supported
isolation schemes discussed earlier, it may be able to pre-
vent some or all of the memory-related exploits we dis-
cuss. Nevertheless, it cannot protect against other errors
such as control flow violations or stack manipulation.
A number of systems provide Dynamic Information

Flow Tracking or “taint tracking” to enforce a wide range
of security policies, including memory safety, but most
of these have only reported results for user-space appli-
cations. Raksha [12] employed fine-grain information
flow policies, supported by special hardware, to prevent
buffer overflow attacks on the Linux kernel by ensur-
ing that injected values weren’t dereferenced as point-
ers. Unlike our work, it does not protect against attacks
that inject non-pointer data nor does it prevent use-after-
free errors of kernel stacks and other state buffers used in
low-level kernel/hardware interaction. Furthermore, this
system does not work on commodity hardware.

USENIX Association 18th USENIX Security Symposium 99

The CacheKernel [7] partitions its functionality into an
application-specific OS layer and a common “cache ker-
nel” that handles context-switching, memory mappings,
etc. The CacheKernel does not aim to provide memory
safety, but its two layers are conceptually similar to the
commodity OS and the virtual machine in our approach.
A key design difference, however, is that our interface
also attempts to make kernel code easier to analyze. For
example, state manipulation for interrupted programs is
no longer an arbitrary set of loads/stores to memory but
a single instruction with a semantic meaning.
Our system employs techniques from VMMs. The

API provided by SVA for configuring the MMU securely
is similar to that presented by para-virtualized hypervi-
sors [16, 50]. However, unlike VMMs, our use of these
mechanisms is to provide fine-grain protection internal
to a single domain, including isolation between user and
kernel space and protection of type-safe main memory,
saved processor state, and the kernel stack. For exam-
ple, hypervisors would not be able to guard against [42],
which our system does prevent, even though it is an
MMU error. Also, a hypervisor that uses binary rewrit-
ing internally, e.g., for instrumenting itself, could be vul-
nerable to [9], just as the Linux kernel was. We believe
VMMs could be a useful target for our work.
SecVisor [36] is a hypervisor that ensures that only

approved code is executed in the processor’s privileged
mode. In contrast, our system does not ensure that kernel
code meets a set of requirements other than being mem-
ory safe. Unlike SVA, SecVisor does not ensure that the
approved kernel code is memory safe.

9 Conclusion
In this paper, we have presented new mechanisms to en-
sure that low-level kernel operations such as processor
state manipulation, stack management, memory mapped
I/O, MMU updates, and self-modifying code do not vio-
late the assumptions made by memory safety checkers.
We implemented our design in the Secure Virtual Ar-
chitecture (SVA) system, a safe execution environment
for commodity operating systems, and its corresponding
port of Linux 2.4.22. Only around 100 lines of code were
added or changed to the SVA-ported Linux kernel for the
new techniques. To our knowledge, this is the first paper
that (i) describes a design to prevent bugs in low-level
kernel operations from compromising memory safe op-
erating systems, including operating systems written in
safe or unsafe languages; and (ii) implements and evalu-
ates a system that guards against such errors.
Our experiments show that the additional runtime

checks add little overhead to the original SVA prototype
and were able to catch multiple real-world exploits that
would otherwise bypass the memory safety guarantees

provided by the original SVA system. Taken together,
these results indicate that it is clearly worthwhile to add
these techniques to an existing memory safety system.

Acknowledgments

We wish to thank our shepherd, Trent Jaeger, and the
anonymous reviewers for their helpful and insightful
feedback.

References
[1] ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,

RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A
new kernel foundation for unix development. In Proc. USENIX
Annual Technical Conference (Atlanta, GA, USA, July 1986),
pp. 93–113.

[2] APPLE COMPUTER, INC. Apple Mac OS X kernel semop
local stack-based buffer overflow vulnerability, April 2005.
http://www.securityfocus.com/bid/13225.

[3] ARCANGELI, A. Linux kernel mremap lo-
cal privilege escalation vulnerability, May 2006.
http://www.securityfocus.com/bid/18177.

[4] BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
BECKER, D., FIUCZYNSKI, M., CHAMBERS, C., AND EG-
GERS, S. Extensibility, Safety and Performance in the SPIN
Operating System. In Proc. ACM SIGOPS Symp. on Op. Sys.
Principles (Copper Mountain, CO, USA, 1995), pp. 267–284.

[5] BOVET, D. P., AND CESATI, M. Understanding the LINUX Ker-
nel, 2nd ed. O’Reilly, Sebastopol, CA, 2003.

[6] BROWN, A. A Decompositional Approach to Computer System
Performance. PhD thesis, Harvard College, April 1997.

[7] CHERITON, D. R., AND DUDA, K. J. A caching model of oper-
ating system kernel functionality. In Proc. USENIX Symp. on Op.
Sys. Design and Impl. (Monterey, CA, USA, November 1994),
pp. 179–193.

[8] CORBET. SMP alternatives, December 2005.
http://lwn.net/Articles/164121.

[9] CORBET, J. The source of the e1000e corruption bug, October
2008. http://lwn.net/Articles/304105.

[10] CRISWELL, J., LENHARTH, A., DHURJATI, D., AND ADVE, V.
Secure Virtual Architecture: A Safe Execution Environment for
Commodity Operating Systems. In Proc. ACM SIGOPS Symp.
on Op. Sys. Principles (Stevenson, WA, USA, October 2007),
pp. 351–366.

[11] CRISWELL, J., MONROE, B., AND ADVE, V. A virtual instruc-
tion set interface for operating system kernels. In Workshop on
the Interaction between Operating Systems and Computer Archi-
tecture (Boston, MA, USA, June 2006), pp. 26–33.

[12] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Real-world
buffer overflow protection for userspace & kernelspace. In Pro-
ceedings of the USENIX Security Symposium (San Jose, CA,
USA, 2008), pp. 395–410.

[13] DEVICES, A. M. AMD64 architecture programmer’s manual
volume 2: System programming, September 2006.

[14] DHURJATI, D., AND ADVE, V. Backwards-compatible array
bounds checking for C with very low overhead. In Proc. of
the Int’l Conf. on Software Engineering (Shanghai, China, May
2006), pp. 162–171.

100 18th USENIX Security Symposium USENIX Association

[15] DHURJATI, D., KOWSHIK, S., AND ADVE, V. SAFECode: En-
forcing alias analysis for weakly typed languages. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI) (Ottawa, Canada, June 2006), pp. 144–157.

[16] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
PRATT, I., WARFIELD, A., BARHAM, P., AND NEUGEBAUER,
R. Xen and the art of virtualization. In Proc. ACM SIGOPS
Symp. on Op. Sys. Principles (Bolton Landing, NY, USA, Octo-
ber 2003), pp. 164–177.

[17] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMS, M. Safe hardware access
with the xen virtual machine monitor. In Proceedings of the First
Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure (Boston, MA, USA, October 2004).

[18] GOLM, M., FELSER, M., WAWERSICH, C., AND KLEINODER,
J. The JX Operating System. In Proc. USENIX Annual Technical
Conference (Monterey, CA, USA, June 2002), pp. 45–58.

[19] GUNINSKI, G. Linux kernel multiple local vulnerabilities, 2005.
http://www.securityfocus.com/bid/11956.

[20] HALLGREN, T., JONES, M. P., LESLIE, R., AND TOLMACH,
A. A principled approach to operating system construction in
haskell. In Proc. ACM SIGPLAN Int’l Conf. on Functional Pro-
gramming (Tallin, Estonia, September 2005), pp. 116–128.

[21] HSIEH, W., FIUCZYNSKI, M., GARRETT, C., SAVAGE, S.,
BECKER, D., AND BERSHAD, B. Language support for exten-
sible operating systems. In Workshop on Compiler Support for
System Software (Arizona, USA, February 1996).

[22] HUNT, G. C., LARUS, J. R., ABADI, M., AIKEN, M.,
BARHAM, P., FHNDRICH, M., HODSON, C. H. O., LEVI, S.,
MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T.,
AND ZILL, B. An overview of the Singularity project. Tech. Rep.
MSR-TR-2005-135, Microsoft Research, October 2005.

[23] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis and transformation. In Proc. Conf.
on Code Generation and Optimization (San Jose, CA, USA, Mar
2004), pp. 75–88.

[24] LATTNER, C., LENHARTH, A. D., AND ADVE, V. S. Making
context-sensitive points-to analysis with heap cloning practical
for the real world. In Proc. ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI) (San Diego,
CA, USA, June 2007), pp. 278–289.

[25] LIEDTKE, J. On micro-kernel construction. SIGOPS Oper. Syst.
Rev. 29, 5 (1995), 237–250.

[26] LMH. Month of kernel bugs (MoKB) archive, 2006.
http://projects.info-pull.com/mokb/.

[27] MÉRILLON, F., RÉVEILLÈRE, L., CONSEL, C., MARLET, R.,
AND MULLER, G. Devil: an IDL for hardware programming.
In USENIX Symposium on Operating System Deisgn and Imple-
mentation (San Diego, CA, USA, October 2000), pp. 17–30.

[28] MICROSYSTEMS, S. Sun solaris sysinfo system call
kernel memory reading vulnerability, October 2003.
http://www.securityfocus.com/bid/8831.

[29] MONROE, B. M. Measuring and improving the performance of
Linux on a virtual instruction set architecture. Master’s thesis,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2005.

[30] NECULA, G. C., CONDIT, J., HARREN, M., MCPEAK, S.,
AND WEIMER, W. Ccured: type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Languages and Sys-
tems (2005).

[31] POSKANZE, J. thttpd - tiny/turbo/throttling http server, 2000.
http://www.acme.com/software/thttpd.

[32] RUWASE, O., AND LAM, M. A practical dynamic buffer
overflow detector. In In Proceedings of the Network and Dis-
tributed System Security (NDSS) Symposium (San Diego, CA,
USA, 2004), pp. 159–169.

[33] SAULPAUGH, T., AND MIRHO, C. Inside the JavaOS Operating
System. Addison-Wesley, Reading, MA, USA, 1999.

[34] SCOTT, M. L. Programming Language Pragmatics. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 2001.

[35] SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing with disaster: Surviving misbehaved kernel extensions.
In USENIX Symposium on Operating System Deisgn and Imple-
mentation (Seattle, WA, October 1996), pp. 213–227.

[36] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity OSes. SIGOPS Oper. Syst. Rev. 41, 6 (2007), 335–350.

[37] SHAPIRO, J., DOERRIE, M. S., NORTHUP, E., SRIDHAR, S.,
AND MILLER, M. Towards a verified, general-purpose operat-
ing system kernel. In 1st NICTA Workshop on Operating System
Verification (Sydney, Australia, October 2004).

[38] SHAPIRO, J. S., AND ADAMS, J. Design evolution of the EROS
single-level store. In Proceedings of the USENIX Annual Techni-
cal Conference (Berkeley, CA, USA, June 2002), pp. 59–72.

[39] STARSETZ, P. Linux kernel do mremap function vma
limit local privilege escalation vulnerability, February 2004.
http://www.securityfocus.com/bid/9686.

[40] STARZETZ, P. Linux kernel elf core dump local buffer overflow
vulnerability. http://www.securityfocus.com/bid/13589.

[41] STARZETZ, P. Linux kernel IGMP multiple vulnerabilities, 2004.
http://www.securityfocus.com/bid/11917.

[42] STARZETZ, P., AND PURCZYNSKI, W. Linux kernel
do mremap function boundary condition vulnerability, January
2004. http://www.securityfocus.com/bid/9356.

[43] STARZETZ, P., AND PURCZYNSKI, W. Linux kernel setsock-
opt MCAST MSFILTER integer overflow vulnerability, 2004.
http://www.securityfocus.com/bid/10179.

[44] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improv-
ing the reliability of commodity operating systems. ACM Trans.
Comput. Syst 23, 1 (2005), 77–110.

[45] ÚLFAR ERLINGSSON, ABADI, M., VRABLE, M., BUDIU, M.,
AND NECULA, G. C. XFI: Software guards for system address
spaces. In USENIX Symposium on Operating System Deisgn and
Implementation (Seattle, WA, USA, November 2006), pp. 75–88.

[46] VAN SPRUNDEL, I. Linux kernel bluetooth signed buffer index
vulnerability. http://www.securityfocus.com/bid/12911.

[47] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. ACM SIGOPS
Operating Systems Review 27, 5 (1993), 203–216.

[48] WITCHEL, E., CATES, J., AND ASANOVIC., K. Mondrian
memory protection. In Proc. Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(San Jose, CA, USA, October 2002), pp. 304–316.

[49] WITCHEL, E., RHEE, J., AND ASANOVIC, K. Mondrix: Mem-
ory isolation for linux using mondriaan memory protection. In
Proc. ACM SIGOPS Symp. on Op. Sys. Principles (Brighton, UK,
October 2005), pp. 31–44.

[50] WRIGHT, C. Para-virtualization interfaces, 2006.
http://lwn.net/Articles/194340.

[51] ZHOU, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., EN-
NALS, R., HARREN, M., NECULA, G., AND BREWER, E.
Safedrive: Safe and recoverable extensions using language-
based techniques. In USENIX Symposium on Operating Sys-
tem Deisgn and Implementation (Seattle, WA, USA, November
2006), pp. 45–60.

