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Abstract

Passive RFID tags harvest their operating energy from
an interrogating reader, but constant energy shortfalls
severely limit their computational and storage capabili-
ties. We proposeCryptographic Computational Contin-
uation Passing(CCCP), a mechanism that amplifies pro-
grammable passive RFID tags’ capabilities by exploiting
an often overlooked, plentiful resource: low-power radio
communication. While radio communication is more en-
ergy intensive than flash memory writes in many embed-
ded devices, we show that the reverse is true for passive
RFID tags. A tag can use CCCP to checkpoint its com-
putational state to an untrusted reader using less energy
than an equivalent flash write, thereby allowing it to de-
vote a greater share of its energy to computation.

Security is the major challenge in such remote check-
pointing. Using scant and fleeting energy, a tag must
enforce confidentiality, authenticity, integrity, and data
freshness while communicating with potentially untrust-
worthy infrastructure. Our contribution synthesizes well-
known cryptographic and low-power techniques with a
novel flash memory storage strategy, resulting in a secure
remote storage facility for an emerging class of devices.

Our evaluation of CCCP consists of energy measure-
ments of a prototype implementation on the batteryless,
MSP430-based WISP platform. Our experiments show
that—despite cryptographic overhead—remote check-
pointing consumes less energy than checkpointing to
flash for data sizes above roughly 64 bytes. CCCP en-
ables secure and flexible remote storage that would oth-
erwise outstrip batteryless RFID tags’ resources.

1 Introduction

Research involving low-energy computing systems has
long treated radio as an energy-hungry resource to
be used sparingly. Our work uncovers a key re-
source in which programmable passive RFID tags differ

from higher-powered wireless embedded devices such as
motes:radio communication consumes less energy than
persistent local storage.We exploit radio as a resource to
amplify the storage capabilities of an emerging class of
batteryless, programmable devices calledcomputational
RFIDs(CRFIDs) [7, 26, 27].

The main idea of this paper is that a CRFID can
securely use radio communication as a less energy-
intensive alternative to local, flash-based storage. The
smaller energy requirements of radio allow the CRFID
either to devote more energy to computation or to ac-
complish the same tasks using less energy, which may
translate into a longer operating range. We use estab-
lished cryptographic mechanisms to protect against un-
trustworthy RFID readers that could attempt to violate
the confidentiality, authenticity, integrity, and freshness
of the data on a CRFID. However, the cryptographic
overhead threatens to eliminate the energy advantage of
remote storage. Thus, the main challenge is to design an
energy-saving remote storage system that provides secu-
rity under the constraints of passive RFID systems.

This paper uses computational state checkpointing as
an example of an application that benefits from our
techniques.Cryptographic Computational Continuation
Passing(CCCP) enables CRFIDs to perform sophisti-
cated computations despite limited energy and continual
interruptions of power that lead to complete loss of the
contents of RAM. CCCP extends the Mementos architec-
ture [26] for execution checkpointing by securely storing
a CRFID’s computational state on the untrusted RFID
reader infrastructure that powers the CRFID, thereby
making program execution on CRFIDs robust against
loss of power. The design of CCCP is motivated by (1) a
desire to minimize the amount of energy devoted to flash
memory writes and (2) the observation that a CRFID’s
backscatter transmission is surprisingly efficient com-
pared to alternatives such as active radio (like that found
in motes) or flash memory writes.

Our contribution in this paper is the synthesis of sev-



eral existing ideas with techniques that are specifically
applicable to computational RFIDs:

• We describe the design and implementation of
CCCP, asecure remote storage protocol that suits
the characteristics and constraints of CRFIDs, and
we show how this protocol can be used in the con-
texts of execution checkpointing and external data
storage on an untrusted RFID reader infrastructure
(Sections 3, 4).
• Motivated by a desire to save energy when storing

CCCP’s numeric counters to nonvolatile memory,
we introducehole punching(Section 3.4.4), a unary
encoding technique that allows a counter stored in
flash memory to be updated economically, mini-
mizing energy- and time-intensive flash erase op-
erations. For a CRFID, less frequent flash erasure
means more energy available for computation.

Since CCCP involves communication with a poten-
tially untrustworthy RFID reader, it must ensure the
integrity, confidentiality, and data freshness of check-
pointed messages. For message integrity, CCCP employs
UMAC [4], a Message Authentication Code (MAC)
scheme based on universal hash functions (UHF) that
involves the application of a cryptographically secure
pseudorandom pad. Remotely stored messages in CCCP
are encrypted for confidentiality using a simple stream
cipher. CCCP’s frequent use of key material motivates
the use of opportunistic precomputation: when a CRFID
is receiving abundant energy, CCCP generates and stores
keystream bits in flash memory for later consumption.
CCCP maintains a small amount of its own state in lo-
cal nonvolatile memory, including a counter that must be
updated during checkpoint operations when energy may
be low. To minimize the energy required to update the
counter, CCCP employs hole punching.

Conventional passive RFID tags perform rudimen-
tary computation, often in extremely tight real-time
constraints using nonprogrammable finite state ma-
chines [1], but CRFIDs offer true general-purpose com-
putational capabilities, broadening the range of their pos-
sible applications (Section 6). Although CRFIDs offer
more flexibility, they present challenging resource con-
straints. While sensor motes, which rely on batteries for
power, often have an active lifetime measured in weeks
or months, a CRFID may be able to compute for less
than a second given a burst of energy, and may receive
such bursts in quick succession—putting CRFIDs in an
entirely different class with regard to energy constraints.
Moreover, although CRFIDs have a small amount of
flash memory available as nonvolatile storage, writing to
this flash memory is energy intensive (Section 2).

Because CRFIDs are new and prototypes are not yet
widely available for use in the laboratory, there is lit-

tle previous work describing their applications or lim-
itations; Section 7 summarizes relevant work that has
appeared to date. CCCP extends a recent execution
checkpointing system called Mementos [26] by adding
remote, rather than local flash-based, storage capabili-
ties to CRFIDs. While systems such as Mementos in-
vestigate how to effectively store checkpoints locally in
trusted flash memory to achieve computational progress
on CRFIDs despite power interruptions, CCCP focuses
on using external,untrustedresources to increase tag
storage capacity in a secure and energy-efficient manner.

2 Computational RFIDs: Background,
Observations, Challenges

Consistent with the usage of RFID terminology, the term
Computational RFID(CRFID) has two meanings: the
modelunder which passively powered computers oper-
ate in concert with an RFID reader infrastructure, and
the passively powered computers themselves. CRFIDs
represent a class of programmable, batteryless comput-
ers [7, 26, 27]. The small size and low maintenance
requirements of CRFIDs make them especially appeal-
ing for adding computational capabilities to contexts in
which placing or maintaining a conventional computer
would be infeasible or impossible. However, CRFID sys-
tems require that nearby, actively powered RFID readers
provide energy whenever computation is to occur, a re-
quirement that may not suit all applications.

The components of a CRFID are: a low-power micro-
controller; onboard RAM; flash memory (on or off the
microcontroller); energy harvesting circuitry tuned to a
certain frequency (e.g., 913 MHz for EPC Gen 2 RFID);
an antenna; a transistor between the antenna and the
microcontroller to modulate the antenna’s impedance; a
capacitor for storage of harvested energy; one or more
analog-to-digital converters; and optional sensors for
physical phenomena such as acceleration, heat, or light.
The first working example of a CRFID is the Wireless
Identification and Sensing Platform, or WISP [29], a pro-
totype device slightly smaller than a postage stamp (dis-
counting its inches-long antenna). The WISP is built
around an off-the-shelf TI MSP430 microcontroller.

Like passive RFID tags but unlike sensor motes,
CRFIDs are powered solely by harvested RF energy and
lack active radio components. Instead, such CRFIDs use
backscattercommunication: in the presence of incom-
ing radio waves, a CRFID electrically modulates its an-
tenna’s impedance using a transistor, encoding binary in-
formation by varying the antenna’s reflectivity. While the
omission of active radio circuitry saves energy, it gives
up the tag’s autonomy; a CRFID can send and receive
information only at the command of an RFID reader.



A CRFID’s lack of autonomy is one of the factors that
makes it difficult to protect.

2.1 Frequent Power Loss on Tags, but
Plentiful External Resources

Several key observations motivate the development of se-
cure remote storage for computational RFIDs.

Frequent loss of power may interrupt computation.
The CRFID model posits computing devices that are pri-
marily powered by RF energy harvesting, a mechanism
that is naturally finicky because of its dependence on
physical conditions. Any change to a CRFID’s phys-
ical situation—such as its position or the introduction
of an occluding body—may affect its ability to harvest
energy. Existing systems that use RF harvesting typ-
ically counteract the effect of physical conditions by
placing stringent requirements on use. For example, an
RFID transit card reader presented with a card may be-
have in an undefined way unless the card is within 1 cm
for at least 300 ms, parameters designed to ensure that
the card’s computation finishes while it is still near the
reader. CRFID applications may preclude such a strat-
egy: programs on general-purpose CRFIDs may not of-
fer convenient execution time horizons, and communica-
tion distances may not be easily controlled. Without any
guarantees of energy availability, it may be unreasonable
to mandate that programs running on CRFIDs complete
within a single energy lifecycle. As an extension of the
Mementos system [26], CCCP aims to address the prob-
lem of suspending and resuming computations to facili-
tate spreading work across multiple energy lifecycles.

Storing remotely may require less energy than stor-
ing locally. Some amount of onboard nonvolatile mem-
ory exists on a CRFID, so an obvious approach to sus-
pension and resumption is simply to use this local mem-
ory for state storage. However, to implement non-
volatile storage, current microcontrollers use flash mem-
ory, which imports several undesirable properties. While
reading from flash consumes energy comparable to read-
ing from volatile RAM, the other two flash operations—
writing and erasing—require orders of magnitude more
energy per datum (Table 3). Our measurements of a
CRFID prototype reveal that the energy consumption of
storing a datum locally in flash can in fact exceed the
energy consumption of transmitting the same datum via
backscatter communication.

To illustrate the difference between flash and radio
storage on a CRFID and to show how the relationship
is different on a sensor mote, we offer Figure 1. The fig-
ure helps explain why designers of mote-based systems
choose to minimize radio communication; similarly, it
justifies our exploration of radio-based storage as an al-
ternative to flash-based storage on CRFIDs.

It should be noted that CCCP, although its primary
data storage mechanism is the communication link be-
tween CRFIDs and readers, still requiressomeflash
writes during storage operations: CCCP maintains a
counter in flash to ensure that key material is not
reused. However, because CCCP employs hole punch-
ing (Section 3.4.4) to maintain the counter, the amount
of data written for counter updates is small compared
to the amount of data that can be stored at once—small
enough not to obviate the energy advantage of radio-
based storage—and counter updates do not frequently
necessitate erasures.

EPC Gen 2 RFID readers are typically not stan-
dalone devices.Rather, they are connected to networks
or other systems (for, e.g., control or logging) that can
offer computing resources such as storage. The benefit
to CRFIDs that communicate with such a reader infras-
tructure is access to effectively limitless storage. Several
kilobytes of onboard flash memory is minuscule com-
pared to the potentially vast amount of storage available
to networked RFID readers. While unlimited external
storage is not obviously helpful for saving computational
state—a CRFID cannot save or restore more state than it
can hold locally—its usefulness as general-purpose long-
term storage is analogous to the usefulness of networked
storage for PCs.

RFID protocols allow arbitrary payloads. While the
EPC Gen 2 protocol imposes constraints on the trans-
missions between RFID tags and RFID readers—for ex-
ample, the maximum upstream data rate from tag to
reader is 640 Kbps [13]—it also offers sufficient flexi-
bility that CCCP can be implemented on top. In partic-
ular, the Gen 2 protocol permits a reader to issue aRead
command to which a tag can respond with an arbitrary
amount of data. Previous versions of the EPC RFID stan-
dard mandated a small response size that would have im-
posed severe communication overhead on large upstream
transmissions.

CRFID is not married to EPC Gen 2 as an underlying
protocol, but the existence of a widespread RFID reader
infrastructure and the availability of commodity reader
hardware makes for easy prototyping.

2.2 Challenges Due to Energy Scarcity

Several energy-related considerations limit the resources
available for computation on CRFIDs, limiting the util-
ity of CRFIDs as a general-purpose computing platform.
Ransford et al. [26] discuss the difficulty of effectively
utilizing a storage capacitor and enumerate the draw-
backs of using capacitors for energy storage; Buettner
et al. [7] discuss how energy limitations bear on the de-
ployment of a CRFID-based system. Two key design fea-
tures of CRFIDs pose energy challenges to a system like
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Figure 1: Per-component maximum power consumption of two embedded devices. Radio communication on the WISP requires
less power than writes to flash memory. The relative magnitudes of the power requirements means that a sensor mote favors shifting
storage workloads to local flash memory instead of remote storage via radio, while a computational RFID favors radio overflash.
The numbers for the mote are calculated based on the current consumption numbers given by Fonseca et al. [15]. For the CRFID,
we measured three operations (radio transmit, flash write, and register-to-register move) for a 128-byte payload.

CCCP: first, the voltage and current requirements of flash
memory constrain the design of flash-bearing CRFIDs
and limit the portion of a CRFID’s energy lifecycle that is
usable for computation. Second, a CRFID’s reliance on
energy harvesting and backscatter communication means
that a CRFID cannot compute or communicate without
reader contact.

Flash memory limitations. Microcontrollers that in-
corporate flash typically have separate threshold volt-
ages: one threshold for computation, and a higher thresh-
old for flash writes and erases. Because of this differ-
ence, flash writes cannot be executed at arbitrary times
during computation on a CRFID; they require sufficient
voltage on the storage capacitor. Without a constant sup-
ply of energy, capacitor voltage declines with time and
computation, so waiting until the end of a computation
to record its output to nonvolatile memory may be risky.

The size of a CRFID’s storage capacitor imposes an-
other basic limitation. Flash writes, which owe their
durability to a process that effects significant physical
changes, require more current and time (and therefore
energy) than much simpler RAM or register writes. Per-
datum measurements show that, on a WISP’s microcon-
troller, writing to flash consumes roughly 400 times as
much energy as writing to a register [26]. Such outflow
from the storage capacitor can dramatically shorten the
device’s energy lifecycles.

Non-autonomous operation.Backscatter communi-
cation involves modulating an antenna’s impedance to
reflect radio waves—an operation that, for the sender,
involves merely toggling a transistor to transmit bi-
nary data. Such communication cannot occur without
a signal to reflect; CRFIDs, like other passive RFIDs,
are therefore constrained to communicate only when a
reader within range is transmitting. Computation may
occur during times of radio silence, but only if suffi-
cient energy remains in the CRFID’s storage capacitor.
Unlike battery-powered platforms that can operate au-
tonomously between beacon messages from other enti-
ties, a CRFID may completely lose power between in-

teractions with an RFID reader. Our experience shows
that, lacking a source of harvestable energy, the storage
capacitor on a WISP (Revision 4.0) can support roughly
one second of steady computation before its voltage falls
below the microcontroller’s operating threshold. Such
limitations constrain the design space of applications that
can run on CRFIDs. For example, without autonomy, an
application cannot plan to perform an action at a specific
time in the future.

Unsteady energy supply. A key challenge CRFIDs
face is that their supply of energy can be unsteady and
unpredictable, especially under changing physical con-
ditions. RFID readers may not broadcast continuously
or even at regular intervals, and they do not promise any
particular energy delivery schedule to tags. In our exper-
iments, even within inches of an RFID reader that emit-
ted RF energy at a steady known rate, the voltage on a
CRFID’s storage capacitor did not appear qualitatively
easy to predict despite the fixed conditions. A CRFID’s
storage capacitor must buffer a potentially unsteady sup-
ply of RF energy without the ability to predict future en-
ergy availability.

3 Design of CCCP

CCCP’s primary design goal is to furnish computational
RFIDs with a mechanism for secure outsourced storage
that facilitates the suspension and resumption of pro-
grams. This section describes how CCCP is designed
to meet that goal and several others. Refer to Section 4
for a discussion of CCCP’s implementation, and refer to
Section 5 for an evaluation of CCCP’s design choices
and security; in particular, Section 5.3.1 discusses the
overhead imposed by cryptographic operations.

Given a chunk of serialized computational state on a
CRFID, CCCP sends the state to the reader infrastructure
for storage. (CCCP is designed to work independently
of the state serialization method, and does not prescribe
a specific method.) In a subsequent energy lifecycle, an
RFID reader that establishes communication with the tag



Design goal Approach
Computational progress Communicating checkpoints via radio to untrusted RFID readers
Security: authentication, integrity UHF-based MAC
Security: data freshness Key non-reuse; counter stored by hole punching in nonvolatile memory
Security: confidentiality Symmetric encryption with keystream precomputation

Table 1: CCCP’s design goals and techniques for accomplishing each of them.

sends back the state, CCCP performs appropriate checks,
and the CRFID resumes computation where it left off.
CCCP provides several operating modes that allow an
application designer to increase security—by adding au-
thentication alone, or authentication and encryption—at
the cost of additional per-checkpoint energy consump-
tion. Table 1 describes how CCCP meets each of the
goals discussed in this section.

3.1 Design Goal: Computational Progress
on CRFIDs

CCCP remotely checkpoints computational state to make
long-running operations robust against power loss—
i.e., to enable theircomputational progress. We de-
fine computational progress as change of computational
state toward a goal (e.g., the completion of a loop).
While CRFIDs are able to finish short computations in
a small number of energy lifecycles (e.g., symmetric-
key challenge-response protocols [9, 19]), the challenges
described in Section 2 make it difficult for a CRFID to
guarantee the computational progress of longer-running
computations.

If a CRFID loses power before it completes a com-
putation, all volatile state involved in the computation is
lost and must be recomputed in the next cycle. If en-
ergy availability is similarly inadequate in subsequent
cycles, the CRFID may never obtain enough energy to
finish its computation or even to checkpoint its state to
flash memory. We refer to such vexatious computations
asSisyphean tasks. (Sisyphus was condemned to roll a
large stone up a hill, but was doomed to drop the stone
and repeat hopelessly forever [20].) A major goal of
CCCP is to prevent tasks from becoming Sisyphean by
shifting energy use away from flash operations and to-
ward less energy-intensive radio communication.

3.2 Checkpointing Strategies: Local vs.
Remote

We consider two strategies for the nonvolatile storage of
serialized checkpointed state. The first, writing the state
to flash memory, involves finding an appropriately sized
region of erased flash memory or creating one via erase
operations. The second strategy, using CCCP, requires

a CRFID to perform zero or more cryptographic opera-
tions (depending on the operating mode) and then trans-
mit the result via backscatter communication.

The obvious advantage of flash memory is that its
proximity to the CRFID makes it readily accessible. On-
chip flash has the further advantage that it may be in-
accessible to an attacker. However, the operating re-
quirements of flash are onerous in many situations. With
unlimited energy, a CRFID could use flash freely and
avoid the complexity of a radio protocol such as CCCP.
Unfortunately, energy is limited in ways described else-
where in this paper, and several disadvantages of flash
memory diminish its appeal as a store for checkpointed
state. The most obvious disadvantage is an imbalance
between the requirements for reading and writing. Write
and erase operations require more time and energy per bit
than reading (Table 3); additionally, the minimum volt-
age and current requirements are higher. For example, in
the case of the MSP430F2274, read operations are sup-
ported at the microcontroller’s minimum operating volt-
age of 1.8 V, but write and erase operations require 2.2 V.
Finally, flash memory (both NOR and NAND types) gen-
erally imposes the requirement that memory segments
be erased before they are written: if a bit acquires a
zero value, the entire segment that contains it must be
erased for that bit to return to its default value of 1.
Aside from burdening the application programmer with
inconvenience, erase-before-write semantics complicate
considerations of energy requirements. These disadvan-
tages are minor afflictions for higher-powered systems,
but they pose serious threats to the utility of flash mem-
ory on CRFIDs.

Backscatter transmission, since it involves modulating
only a single transistor to encode data, requires signifi-
cantly less energy than transmission via active radio. In
fact, our measurements (Figure 4) show that backscatter
transmission of an authenticated, encrypted state check-
point (plus a small amount of bookkeeping in flash)
can require less energy than exclusively writing to flash
memory, even after including the energy cost of encrypt-
ing and hashing the checkpointed state. Because of its
consistent behavior throughout the microcontroller’s op-
erating voltage range, backscatter transmission is an es-
pecially attractive option when the CRFID receives radio
contact frequently but cannot harvest energy efficiently,



in which case writing to flash may be infeasible because
of insufficient energy in the storage capacitor. These cir-
cumstances may occur far from the reader, or in the pres-
ence of radio occlusions, or when a computation uses
energy quickly as soon as the CRFID wakes up.

Despite its advantages over flash storage and active
radio, CCCP’s reliance on backscatter transmission has
drawbacks. Bitrate limitations in the EPC Gen 2 proto-
col cause CCCP’s transmissions to require up to twice
as much time per datum as flash storage on some work-
loads. The best choice of storage strategy depends on an
application’s ability to tolerate delay and the necessity of
saving energy.

3.3 Threat Model

We define CCCP’s threat model as a superset of the at-
tacks that typically threaten RFID systems [21]. The
most obvious way an attacker can disrupt the operation of
a CRFID is to starve it of energy by jamming, interrupt-
ing, or simply never providing RF energy for the CRFID
to harvest. Because they depend entirely on harvestable
energy, CRFIDs cannot defend against such denial-of-
service (DoS) attacks, so we consider these attacks as a
problem to be dealt with at a higher system level. We
instead focus on two types of attacks that a CRFID can
use its resources to address: (1) active and passive radio
attacks and (2) attacks by an untrusted storage facility.

An adversary may attempt to:

• Eavesdrop on radio communication in both direc-
tions between a CRFID and reader.

• Masquerade as a legitimate RFID reader in order
to collect checkpointed state from CRFIDs. Be-
cause CRFIDs do not trust reader infrastructure,
such an attack should allow an attacker to collect
only ciphertext.

• Masquerade as a legitimate RFID reader in order
to send corrupted data or old data (e.g., a previ-
ous computational state) to the CRFID. Such invalid
data should not trick the CRFID into executing ar-
bitrary or inappropriate code.

• Masquerade as a specific legitimate CRFID in or-
der to retrieve that CRFID’s stored state from the
reader. This state should be useless without ac-
cess to the keystream material that encrypted it—
keystream material that is stored in the legitimate
owner’s nonvolatile memory and never transmitted.

We additionally assume that an adversary cannot physi-
cally inspect the contents of a CRFID’s memory.

3.4 Secure Storage in CCCP

Because computational RFIDs depend on RFID read-
ers for energy—if a CRFID is awake, there is probably
a reader nearby—readers are a natural choice for stor-
ing information. But a reader trusted to provide energy
should not necessarily be trusted with sensitive informa-
tion such as checkpointed state.

CCCP involves communication with untrusted reader
infrastructure, so we establish several security goals:

• Authenticity: a CRFID that stores information on
external infrastructure will eventually attempt to re-
trieve that information, and the authenticity of that
information must be cryptographically guaranteed.
Under CCCP, the only party that ever needs to ver-
ify the authenticity of a CRFID’s stored information
is the CRFID itself.
• Integrity: an untrusted reader may attempt to im-

pede a CRFID’s computational progress by pro-
viding data from which the CRFID cannot resume
computation (e.g., random junk). While CCCP
cannot prevent a denial of service attack in which
a reader provides only junk, it guarantees that
CRFIDs will compute only on data they recognize.
• Data freshness: just as a reader can provide cor-

rupted data instead of usable data, it can replay
old state in an attempt to hinder the computational
progress of a computation. Under CCCP, a CRFID
recognizes and rejects old state.
• Confidentiality: in certain applications, the leaking

of intermediate computational state might be a crit-
ical security flaw. For other applications, confiden-
tiality may not be necessary.

3.4.1 Keystream Precomputation

Because CCCP’s threat model assumes a powerful ad-
versary that can intercept all transmissions, CCCP never
reuses keystream material when encrypting data or com-
puting MACs. We use CCCP’s refreshable pool of
pseudorandom bits (a circular buffer in the CRFID’s non-
volatile memory) as a cryptographic keystream to pro-
vide confidentiality and authentication.

CCCP stores keystream material on the CRFID be-
cause we assume that the CRFID trusts only itself; a
CRFID cannot extract trustworthy keystream material
from a reader it does not trust, nor from any observ-
able external phenomenon (which, in our threat model,
an attacker would be able to observe equally well). Be-
cause a CRFID can reserve only finite storage for stor-
age of keystream material, the material must be period-
ically refreshed. CCCP opportunistically refreshes the
keystream material with pseudorandom bits, following
Algorithm 3.



To provide unique keystream bits to cryptographic op-
erations (encryption and MAC), CCCP uses an exist-
ing implementation [9] of the RC5 block cipher [28] in
counter mode to generate pseudorandom bits and store
them to flash. The choice of a block cipher in counter
mode means that the resulting MAC and ciphertext are
secure against a computationally bounded adversary [6].
A stream cipher would work equally well in principle,
but in implementing CCCP, we found that those under
consideration required a large amount of internal read-
write state. For example, the stream cipher ARC4 re-
quires at least 256 bytes of RAM [30], whereas RC5 re-
quires only an 8-byte counter. The RC5 key schedule
is preloaded into flash memory the first time the device
is programmed, and the keystream materials are gen-
erated during periods of excess energy (orpower sea-
sons; see§ 3.5). One such period of excess energy is
the CRFID’s initial programming, at which time the en-
tire keystream buffer is filled with keystream bits. To
avoid reusing keystream bits, CCCP maintains several
variables in nonvolatile memory. Table 2 summarizes the
variables CCCP stores in nonvolatile memory.

Variable Description
chkpt counter Counter representing the number of

checkpoints completed; used to cal-
culate the location of the first un-
used keystream material; updated
each time keystream material is con-
sumed; unary representation

kstr end Pointer to the end of the last
chunk of unused keystream bits in
keystream memory; updated during
key refreshment

rc5counter Incrementing counter used as an in-
put to RC5 while filling keystream
memory with pseudorandom data;
updated during key refreshment

Table 2: Variables CCCP stores in nonvolatile memory.

3.4.2 UHF-based MAC for Authentication and In-
tegrity

CCCP uses a MAC scheme based on universal hash func-
tions (UHF) [8] to provide authentication and integrity.
CCCP constructs the MAC by first hashing the message
and then XORing the 80-bit hash with a precomputed
cryptographic keystream. Because of the resource con-
straints of CRFIDs, it is critical to use a scheme that
consumes minimal energy, and according to recent liter-
ature [4, 14], UHF-based MACs are potentially an order
of magnitude faster than MACs based on cryptographic

hash functions. We chose UMAC [4] as the MAC func-
tion after evaluating several alternatives. Our experi-
ments on WISP (Revision 4.0) CRFIDs determined that
UMAC takes on average 18.38 ms and requires 28.79µJ
of energy given a 64-byte input.

3.4.3 Stream Cipher for Confidentiality

To provide confidentiality, a CRFID simply XORs its
computational state with a precomputed cryptographic
keystream. This encryption scheme is low-cost in terms
of computation and energy, but it relies on using each
keystream bit at most once. CCCP ensures that the
encryption and MAC functions never reuse keystream
bits by keeping track of the beginning and end of fresh
keystream material in flash memory. The keystream
pool is represented as a circular buffer. The address
of the first unused keystream material is derived from
the value ofchkpt counter(Table 2), and the last unused
keystream material ends just before the address pointed
to bykstr end.

If the application using CCCP demands confidentiality
at all times, then if CCCP cannot satisfy a request for un-
used keystream bits, it pauses its work to generate more
keystream bits. This behavior is inspired by that of the
blockingrandom device in Linux [17].

3.4.4 Hole Punching for Counters Stored in Flash

To avoid reusing keystream material, CCCP maintains a
counter (chkpt counter) from which the address of the
first unused keystream bits can be derived. The counter
is stored in flash memory because it is used for state
restoration after power loss. However, incrementing a
counter stored in binary representation always requires
changing a 0 bit into a 1 bit (Figure 2(a)). On segmented
flash memories, changing a single bit to 1 requires the
erasure (setting to 1) of the entire segment that contains
it—at least 128 bytes on the MSP430F2274—before the
new value can be written. An additional cost that varies
among flash cells is that they wear out with repeated era-
sure and writing [18].

To avoid energy-intensive erasures and minimize the
energy cost of writing counter updates, CCCP represents
chkpt counterin complemented unary instead of binary.
CCCP interprets the value of such a counter as the num-
ber of 0 bits therein. Because 1 bits can be changed to
0 bits without erasure, incrementing a counter requires
a relatively small write, with erasures necessary only if
the unary counter must be extended into unerased mem-
ory. We call this techniquehole punchingafter the visual
effect of turning 1 bits into 0 bits. Sincechkptcounter
is simply incremented at each remote checkpoint, updat-
ing the counter generally requires writing only a single



00000111 2 (=710)

00001000 2 (=810)

11111111 2 (erase)

…111000000001 (=810)

…111100000001 (=710)

(a) Binary counter (b) Unary counter

Figure 2: Illustration of hole punching. While incrementing
a binary counter (a) in flash memory may require an energy-
intensive erase operation, complemented unary representation
((b), with the number of zeros, or “holes,” representing the
counter value) allows for incrementing without erasure at acost
of space efficiency.

word. Table 3 illustrates the energy cost of erasing an
entire segment and the energy cost of writing a single
word.

Operation Seg. erase Write Read Write
Size (bytes) 128 128 128 2
Energy (µJ) 46.81 56.97 0.64 0.96

Table 3: Comparison of energy required for flash operations on
an MSP430F2274. Hole punching often allows CCCP to use a
single-word write (2 bytes on the MSP430) instead of a seg-
ment erase when incrementing a complemented unary counter.

To minimize the length of the unarychkpt counter’s
representation and to facilitate simple computation of
offsets, CCCP assumes a fixed size for checkpointed
state; in practice an application designer can choose an
appropriate value for the fixed checkpoint size.

3.4.5 Extension for Long-Term Storage

Under CCCP, readers can act not only as outsourced stor-
age for computational state, but also as long-term exter-
nal storage. Because of their ultra-low-power microcon-
trollers, CRFIDs are likely to have only a small amount
of flash available for data storage. Moreover, since flash
operations are energy intensive, depending exclusively
on flash memory as a storage medium is undesirable.
CCCP could enable a CRFID to instead use the reader
infrastructure as an external storage facility with effec-
tively limitless space.

Long-term storage requires a different key manage-
ment strategy than checkpointing data. With a tempo-
rary checkpointing system, the CRFID needs access only
to the keystream material used to prepare the last check-
point sent to a reader. However, in the case of long-term
storage, the CRFID may require access to all of the data it
has ever stored on the reader and therefore must remem-
ber all of the cryptographic keys from those stores. To
avoid this unrealistic requirement, a potential extension

to CCCP allows the CRFID to generate keys on demand
when long-term storage is required.

There are two operations that CCCP can provide to a
CRFID application for this purpose:

• To satisfy a STORE(data) request, CCCP provides
a keystream generator in the form of a block ci-
pher in counter mode; this requires a monoton-
ically increasing counter in addition to CCCP’s
chkpt counter. CCCP XORs the given data with the
generated keystream and then constructs a MAC,
then sends the ciphertext and MAC to the reader for
storage. CCCP then sends the counter value back to
the application.

• To satisfy a RETRIEVE(index) request, CCCP asks
the RFID reader for the data at the given index.
CCCP then generates the same keystream it used
to encrypt the data by passing the index to the block
cipher. Finally, CCCP verifies the MAC provided
by the reader and returns the decrypted data to the
application.

3.5 Power Seasons

If a CRFID could predict future energy availability, then
it would be able to schedule its generation of keystream
bits and ensure that it never exhausted its supply of pseu-
dorandomness during normal operation. However, be-
cause CRFIDs lack autonomy and cannot depend on
RFID reader infrastructure to provide a steady energy
supply, we roughly classify the energy availability sce-
narios a CRFID faces into twoseasons. We assume that
the general case is awinter season, in which a CRFID
cannot consistently harvest enough energy to perform
all of its tasks. During winter, the CRFID must fo-
cus on minimizing checkpoints and wasted energy. The
other season issummer, during which harvested energy
is plentiful and the CRFID can afford to perform energy-
intensive operations such as precomputation and storage
of keystream material for later use.

CCCP can identify a summer season if one of two con-
ditions is true. First, the CRFID may find itself awake
with no computations left to complete, for example after
it has finished a sensor reading. Second, the CRFID may
find itself communicating with a reader that does not un-
derstand CCCP and simply provides harvestable energy.

4 Implementation

The components of CCCP span two environments:
CRFIDs and RFID readers. On a CRFID, CCCP accepts
data from an application and uses the CRFID’s backscat-
ter mechanism to ship the data to a reader. The reader



(which we consider as an RFID reader plus a control-
ling computer) is programmed to participate in the CCCP
protocol and return computational state where necessary.
This section describes the CRFID-side components, the
reader-side components, and the protocol that ties them
together.

The CRFID side of CCCP is implemented in
the C programming language on WISP (Revi-
sion 4.0) prototypes. At its core are three pri-
mary routines, which we present in pseudocode:
CHECKPOINT (Algorithm 1), RESUME (Algorithm 2),
and KEY-REFRESH (Algorithm 3). CHECKPOINT and
RESTORE refer to a counter calledchkpt counter from
which CCCP derives the address of the first unused
keystream material. For routines that require radio
communication, we borrow radio code from Intel’s
WISP firmware version 1.4. Note that, since a CRFID
cannot assume that a reader is listening at an arbitrary
time, the TRANSMIT subroutine waits for an interrupt
indicating that the CRFID has received a go-ahead
message from the reader.

The RFID reader side of CCCP consists only of
code to drive the reader appropriately for communica-
tion events. Because of the Gen 2 protocol’s complexity,
we have not completely implemented the reader side of
the CCCP protocol. Rather than write a large amount of
code for the reader, we chose to use simple control pro-
grams for the reader and inspect the exchanged messages
manually, a strategy that allowed us to concentrate on
the more resource-constrained CRFID side of the system
while avoiding porting applications from one proprietary
reader to another. (The WISP [Revision 4.0] is nominally
compatible with only the Alien ALR-9800 and Impinj
Speedway readers; we chose to use a desktop PC to pro-
gram these readers for the sake of simplicity and porta-
bility.) A full implementation of the reader side would
properly parse each message received from the CRFID
and manage storage for checkpointed state.

4.1 Communication Protocol

The CRFID model places a number of restrictions on
communication. The only communication hardware on
a CRFID is a backscatter circuit involving an antenna
and a modulating transistor; an active radio would re-
quire significantly more energy. Since backscatter sim-
ply reflects an incoming carrier signal, a prerequisite for
communication is that the reader emits an appropriate
carrier signal. In our experiments, we used two differ-
ent EPC Gen 2-compatible RFID readers that are readily
available as off-the-shelf products; we used no nonstan-
dard reader hardware or antennas.

CCCP’s communication protocol is based on primi-
tives provided by the EPC Gen 2 RFID protocol (the

RFID protocol the WISP understands). Specifically,
CCCP makes use of three EPC Gen 2 commands:

• A reader issues aQuery command to a specific
tag (in our case, a CRFID). TheQuerycommand
comprises a 4-tuple:〈action, membank, pointer,
length〉. While a conventional RFID tag may re-
quire reasonable values for all four tuple members,
a CRFID need examine only the fourth member to
learn the maximum reply length the reader will ac-
cept. The reader can use the other three fields to en-
code meta-information such as whether the reader
wants to offer checkpointed state to the CRFID.

• A reader issues aReadcommand to a specific tag to
request an arbitrary amount of data from an RFID
tag’s memory. A CRFID can respond to a coordi-
natedReadcommand with a chunk of checkpointed
state.

• A reader issues aWrite command to send data
for storage in a specific tag’s memory. Because
RFID tags tend to have fewer resources even than
CRFIDs, Write commands transmit only a small
amount (16 bits) of data. A CRFID can request a se-
ries ofWrite commands from the reader to retrieve
checkpointed state, then reassemble the results in
memory and restore its state from the checkpoint.

Figure 3 gives an overview of CCCP’s message types
and their ordering. CCCP does not require protocol
changes to the EPC Gen 2 standard, but it requires that
an RFID reader be controlled by an application that un-
derstands CCCP. While a proprietary radio protocol for
CCCP could be more efficient than one built atop an ex-
isting RFID protocol, a goal of CCCP—inherited from
the design goals of the WISP CRFID—is to maintain
compatibility with existing RFID readers.

5 System Evaluation

This section justifies our design choices and offers ev-
idence for our previous claims. We evaluate the secu-
rity properties of four distinct checkpointing strategies—
three based on CCCP’s radio transmission and one on
local flash storage—and describe how CCCP provides
data integrity with or without confidentiality. We de-
scribe our experimental setup and methods, then provide
empirical evidence that CCCP’s radio-based checkpoint-
ing requires less energy per checkpoint than a flash-based
strategy. Finally, we characterize the overhead incurred
by CCCP’s cryptographic operations in terms of both en-
ergy and the keystream material that they consume.



Algorithm 1 The CHECKPOINT routine encrypts, MACs, and transmits a fixed-size (STATESIZE, selected by the
application designer) chunk of computational state.〈A,B〉 means the concatenation ofA andB with a delimiter in
between. 80 bits is the fixed output size of NH, the hash function used by UMAC. For arithmetic simplicity, this
pseudocode treats thekeystreampool as an infinite array.

CHECKPOINT(state,keystream,chkpt counter)

1 ≻ Compute the (constant) amount of keystream material that will be used in this invocation
2 chkpt size= STATESIZE+LENGTH(〈state,chkpt counter〉)+80 bits
3
4 k← chkpt counter×chkpt size ≻ keystream[k] holds unused keystream material
5 chkpt counter← chkpt counter+1 ≻ Updatechkpt counterin nonvolatile memory
6
7 C← state⊕keystream[k. . .k+STATESIZE−1] ≻ Encryptstateby XORing with keystream material
8 k← k+STATESIZE ≻ . . . and advancek
9

10 H← NH(〈C,k〉,keystream[k. . .k+ LENGTH(〈C,k〉)−1]) ≻ Hash the encrypted state
11 k← k+ LENGTH(〈C,k〉) ≻ . . . and advancek
12
13 M←H⊕keystream[k. . .k+ LENGTH(H)−1] ≻ Construct an 80-bit MAC
14
15 TRANSMIT(C,M) ≻ Note: TRANSMIT blocks until a reader is detected

5.1 Security Semantics

CCCP trades the physical security of local storage for
the energy savings of remote storage, but its use of radio
communications introduces different security properties.
We consider CCCP’s four operating modes in increasing
order of cryptographic complexity. Note that the algo-
rithm listings (Algorithms 1–3) describe the most com-
putationally intensive operating mode; the other modes
involve subsets of its operations.

• Under CCCP’s threat model, storing checkpointed
state only in local flash memory is the most secure
option, since it involves no radio transmission at all.
However, for reasons detailed elsewhere in this pa-
per, writing to flash memory is not always possible
or desirable. We call the flash-only approachMe-
mentosafter the system [26] that inspired CCCP.

• In a mode calledCCCP/NoSec, a CRFID sends
computational state in plaintext. Under CCCP’s
threat model, CCCP/NoSec allows an attacker to in-
tercept computational state and trivially recover the
information it contains.

• In a mode calledCCCP/Auth, the CRFID com-
putes a message authentication code (MAC), at-
taches it to plaintext computational state, and trans-
mits both. To trick a CRFID into accepting il-
legitimate state, an attacker must craft a message
that incorporates a MAC that the CRFID can verify.
However, since CCCP’s MAC routine incorporates

keystream material that is local to the CRFID, the
attacker must guess the contents of a chunk of the
CRFID’s keystream memory, which requires brute
force under our threat model.

• In a mode calledCCCP/AuthConf, CCCP encrypts
computational state, computes a MAC, and trans-
mits both (Algorithm 1). As with CCCP/Auth, an
attacker who wants to trick a CRFID into accepting
illegitimate state must find a hash collision; how-
ever, part of her colliding input must be a validen-
cryptedcomputational state from which the CRFID
would be able to resume. Since CCCP does not
reuse keystream material, the attacker is limited to
brute-force search to find such an encrypted state.

5.2 Experimental Setup & Methods

We used a consistent experimental setup to obtain timing
and energy measurements for a prototype CRFID. We
programmed a WISP with a task (e.g., a flash write) and
set a GPIO pin to toggle immediately before and after the
task. We then charged the WISP’s capacitor to 4.5 V us-
ing a DC power supply, disconnected the power supply
so that the storage capacitor was the only source of en-
ergy for the WISP, and observed the task’s execution and
storage capacitor’s voltage on an oscilloscope. We deliv-
ered energy directly from a DC power supply when tak-
ing measurements because the alternative, providing an
RF energy supply, results in unpredictable and unsteady



Algorithm 2 The RESUME routine receives an encrypted checkpointC and a message authentication codeM from a
reader, then restores the computational state of the CRFID if the received data pass an authenticity test.chkptcounter
is the value stored in nonvolatile memory at the beginning ofCHECKPOINT (Algorithm 1). We assume that, sincek
andchkpt counterare both numbers, their in-memory representations have thesame length. As in Algorithm 1, this
pseudocode treats thekeystreampool as an infinite array for arithmetic simplicity.〈A,B〉 means the concatenation of
A andB with a delimiter in between. 80 bits is the fixed output size ofNH, the hash function used by UMAC.

RESUME(C,M,keystream,chkpt counter)

1 ≻ Find the first unused keystream material, then backtrack to find the keystream material CHECKPOINT used to
hash and MAC the ciphertext

2 chkpt size= STATESIZE+LENGTH(〈C,chkpt counter〉)+80 bits ≻ N.b.: STATESIZE= LENGTH(C)
3 k← chkpt counter×chkpt size
4 k← k− (LENGTH(〈C,k〉)+80 bits)
5
6 H← NH(〈C,k〉,keystream[k. . .k+ LENGTH(〈C,k〉)−1]) ≻ Compute the ciphertext’s hash
7 k← k+ LENGTH(〈C,k〉) ≻ . . . and advancek to point to the MAC
8
9 if M = H⊕keystream[k. . .k+ LENGTH(H)−1] ≻ If the MAC is OK, then. . .

10 then k← k− (LENGTH(C)+ LENGTH(〈C,k〉)) ≻ backtrack further . . .
11 state= C⊕keystream[k. . .k+ LENGTH(C)−1] ≻ and decryptC to yieldstate
12 RESTORE-STATE(state)
13 else ≻ Do nothing

charge accumulation, making it difficult to shut off the
energy supply at a precise capacitor voltage.

After watching the GPIO pin signal the beginning and
end of the task, we calculated the task’s duration and
the corresponding change in the storage capacitor’s volt-
age. When an operation completed too quickly to ob-
serve clearly on the oscilloscope, we repeated it in an
unrolled loop and divided our measurements by the num-
ber of repetitions. Finally, we calculated per-bit energy
values by subtracting the baseline energy consumption
of the WISP with its MSP430 microcontroller in the
LPM3 low-power (sleep) mode. We subtract the WISP’s
baseline energy consumption in order to discount the ef-
fects of omnipresent consumers such as RAM and CPU
clocks. For all measurements that we present, we give
the average of five trials.

5.3 Performance

Figure 4 shows that, for data sizes greater than 16 bytes,
a checkpoint operation under CCCP/NoSec requires
less energy than a checkpoint to flash. Under
CCCP/AuthConf, which adds encryption and MAC op-
erations, a similar threshold exists between 64 and
128 bytes. Checkpointing via flash has an additional
cost: if the checkpointing mechanism needs to overwrite
existing data (e.g., old checkpoints) in flash memory, it
must erase the corresponding flash segments and poten-

tially replace whatever data it did not overwrite. Even if
a flash write does not necessitate an immediate erasure, it
makes less space available in the flash memory and there-
fore increases the probability that a long-running appli-
cation will eventually need to erase the data it wrote—
that is, it incurs anenergy debt. In the ideal case, an ap-
plication can pay its energy debt easily if erasures happen
to occur only when energy is abundant—i.e., in summer
power seasons. However, since CCCP is designed to ad-
dress scenarios in which energy availability fluctuates,
we consider the case in which each write incurs an en-
ergy debt. Factoring in debt, we characterize the energy
cost of a write of sizedsizeas

Cost∗(write(dsize)) = Cost(seg. erase)×
dsize

Size(seg.)
+ Cost(write(dsize)).

In practice, because some erasures will likely occur in
summer power seasons and some in winter power sea-
sons, the energy cost of a flash write of sizedsize
falls between Cost(write(dsize)) (the ideal cost) and
Cost∗(write(dsize)) (the worst-case cost), inclusive.

The energy measurements we present in this paper
(e.g., in Figure 4) fail in some cases to strongly support
the hypothesis that radio-based checkpointing is consis-
tently less energy intensive than flash-based checkpoint-
ing. The imbalance is due to a missed opportunity for
optimization on the WISP prototype. The transistor used



Algorithm 3 The KEY-REFRESHreplaces used keystream material with new keystream material in nonvolatile mem-
ory. Unlike in CHECKPOINT and RESUME, this pseudocode treats thekeystreampool as a fixed-size circular buffer.
This allows us to treat keystream material betweenk andkstr end as unused, and the rest—betweenkstr end and
k—as used. This pseudocode omits two subtleties for simplicity: first, the routine must not erase keystream ma-
terial that is waiting to be used by RESUME. Second, because flash erasure affects entire segments at once, the
ERASE-MEMORY-RANGE routine must sometimes restore data that should not have been erased.

KEY-REFRESH(keystream,kstr end,chkpt counter, rc5counter)

1 ≻ Find the first unused keystream material in the circularkeystreambuffer
2 chkpt size= STATESIZE+(STATESIZE+LENGTH(〈null,chkpt counter〉))+80 bits
3 k← chkpt counter×chkpt size(mod LENGTH(keystream)/chkpt size)
4
5 ≻ Erase all used keystream memory, then write pseudorandom data to it
6 ERASE-MEMORY-RANGE(keystream[kstr end. . .k])
7 i← kstr end
8 while (i < k)
9 do rc5counter← rc5counter+1 ≻ Update counter in nonvolatile memory

10 keystream[i]← RC5(rc5counter−1) ≻Write keystream material into nonvolatile memory
11 kstr end← i +1 ≻ Updatekstr endin nonvolatile memory
12 i← i +1
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Figure 3: Application-level view of the CCCP protocol. The CRFID sends a request to checkpoint state while in the presence of a
reader, and the reader specifies the maximum size of each message. The CRFID then prepares the checkpoint and transmits itin a
series of appropriately sized messages. The reader stores the checkpoint data for later retrieval by the CRFID. All messages from
the reader to the CRFID also supply power to the CRFID if the latter is within range.

for backscatter modulation on the WISP (Revision 4.0)
draws 500µW of power, far more than is typical of
a comparable mechanism on a conventional RFID tag.
Alien’s Higgs 3, a conventional RFID tag, draws only
15.8 µW of power [2] (total) during operation—an or-
der of magnitude difference that supports an alternative
design choice for future CRFIDs.

5.3.1 System Overhead

An application on a CRFID can balance energy con-
sumption against security by choosing one of CCCP’s
operating modes:

• CCCP/NoSec imposes the least overhead because it
does not encrypt data or compute a MAC; it requires

no computation and consumes no keystream mate-
rial. However, CCCP/NoSec imposes a time over-
head to receive computational state from a reader
at power-up and to transmit new state at checkpoint
time.
• CCCP/Auth avoids encryption overhead (like

CCCP/NoSec) but requires time, energy, and
keystream bits to compute a MAC over the plain-
text checkpoint. However, it requires no energy or
keystream bits for encryption because it does not
encrypt the plaintext checkpoint.
• CCCP/AuthConf offers the most security, since it

adds confidentiality to CCCP/Auth, but the extra se-
curity comes at the expense of time, energy, and
keystream bits. In this mode, CCCP encrypts the
computational state before computing a MAC and
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Figure 4: Energy consumption measurements from a WISP (Revision 4.0) prototype for all considered checkpointing strategies.
Under our experimental method, we are unable to execute flashwrites larger than 256 bytes on current hardware because larger
data sizes exhaust the maximum amount of energy available ina single energy lifecycle. The average and maximum percent error
of the measurements are 5.85% and 14.08% respectively.

transmitting both. It requires as much keystream
material as the size of the state plus a constant
amount for authentication.

6 Applications

The outsourced memory introduced by CCCP expands
the design space for applications on a computational
RFID. This section offers some illustrative example ap-
plications.

CRFIDs as low-maintenance sensors.Consider a
cold-chain monitoringapplication for pharmaceutical
supplies, in which a CRFID carries an attached temper-
ature sensor and stores in flash memory a temperature
reading each time it is scanned. To prevent exhaustion
of its flash memory, the CRFID periodically computes
aggregate statistics on, then discards, stored readings.
Some statistical computations (e.g., computation of quar-
tiles) require memory-intensive manipulation of the data
set. If the flash memory on the CRFID considerably ex-
ceeds the size of RAM, computation of such statistics
would require many writes to flash, an energy-intensive
operation. An alternative is to use outsourced memory
for the computation. (In the case of cold-chain monitor-
ing, maintaining privacy of harvested data with respect
to the reader may be unessential, but theintegrity of the
statistical computation is important.)

RFID sensor networks. Recent work [7] de-
scribes RFID sensor networks(RSNs) that combine
RFID reader infrastructure with sensor-equipped com-
putational RFIDs. RSNs do not simply replace tradi-
tional sensor networks because of several limitations.
First, they require an infrastructure of readers that pro-
vide power to sensor nodes. Second, they are constrained
by the distances (several meters) at which CRFIDs cur-

rently operate. Third, because RFID communication is
asymmetric, the nodes of an RSN cannot exchange in-
formation with each other except through a more pow-
erful reader. However, there are applications for which
short-range networks of batteryless sensors would be ap-
propriate; Yeager et al. offer several examples [34].

Computational RFIDs as smartcards. Some pas-
sive RFID tags are capable of executing strong crypto-
graphic primitives. For example, various models of the
Mifare DESfire can perform triple-DES or AES, while
other RFID devices can compute elliptic-curve and RSA
signatures, such as the RF360 introduced by Texas In-
struments [32]. The RF360 is designed to allow public-
key authentication in RFID-enabled identification docu-
ments, such as e-passports.

The RF360 incorporates an MSP430, but also includes
a cryptographic co-processor, and is designed to operate
at relatively short range as a high-frequency, ISO 14443
device. As we show in this paper, CCCP creates the pos-
sibility of a more lightweight device. Such a “CCCP
smartcard” has two notable benefits: (1) a CCCP smart-
card eliminates the cost of cryptography-specific hard-
ware; and (2) a CCCP smartcard can operate in a mode
compatible with EPC Gen 2 and achieve read ranges be-
yond those of a high-frequency device like the RF360.

Some smartcards are capable of performing bio-
metric authentication—generally fingerprint verification.
Match-on-card, i.e., verification of the validity of a
fingerprint through computation exclusively within the
smartcard, has long stood as a technical challenge. The
U.S. National Institute of Standards and Technology
(NIST) recently conducted an evaluation of a range of
such algorithms in contactless cards [11]. CCCP is a
promising tool for expanding the class of radio devices
for which match-on-card is feasible. While CCCP does



not follow a strict match-in-device paradigm—given that
it outsources data to a reader—it nonetheless provides
comparable security assurances.

Trusted computing: outsourcing computation via
TPMs. CCCP permits a computational RFID to use ex-
ternal memory via an RFID reader. It can support an even
broader design space if we use CCCP instead for secure
outsourcing not of memory, but ofcomputational tasks.

Trusted platform modules(TPMs) [3, 33] offer sup-
port for such outsourcing. A TPM is a hardware device,
standard in the CPUs of modern PCs and servers, that
can provide a secure attestation to the software config-
uration of the computing platform on which it operates.
Briefly stated, an attestation takes the form of a digital
signature on a digest of the software components loaded
onto the device. (An attestation does not provide assur-
ance against hardware tampering or subversion of run-
ning software.)

A computational RFID can in principle make use of a
TPM-enabled reader—or platform communicating with
the reader—to gain secure access to a more powerful ex-
ternal computer. The process for such use of a TPM is
subtle. The operations of verifying a TPM attestation and
creating a secure session are both cryptographic opera-
tions that require computationally intensive modular ex-
ponentiation. Hence the computational outsourcing pro-
cess requires CCCP as a bootstrapping mechanism.

7 Related Work

CCCP is closely related to Mementos [26] in that both
systems provide checkpointing of program execution on
CRFIDs. Whereas Mementos relies purely on flash
memory and focuses on finding optimal checkpoint fre-
quencies via static and dynamic analysis, CCCP relies
primarily on untrusted remote storage via radio and fo-
cuses on low-power cryptographic protections to ensure
that remotely stored data is as secure as if it were stored
locally.

Several systems share CCCP’s goal of exploiting prop-
erties of RFID systems to enhance security and privacy.
For instance, Shamir’s SQUASH hash algorithm [31] ex-
ploits the underutilized radio link between a tag and a
reader to reduce the amount of cryptographic computa-
tion necessary on a tag. While number-theoretic hash
functions typically require significant computational re-
sources for modular arithmetic, the SQUASH function
eliminates costly modular reductions and produces large
(unreduced) hash outputs that a tag can send directly
to a reader. Tags can thus use the SQUASH func-
tion to engage in secure challenge-response protocols
with minimal computational resources on the tag. The
scheme is provably as one-way as Rabin encryption.
Like SQUASH, CCCP exploits the relatively low cost

of radio communication between a tag and a reader to
increase security. While SQUASH increases radio com-
munication to reduce computation, CCCP increases ra-
dio communication to reduce writes to flash memory.

CCCP uses cryptographic techniques from past work
on secure file systems and secure content distribution.
CFS [5], the SFS read-only file system [16], and Plu-
tus [22] investigated how to provide secure storage lay-
ered on various degrees of untrusted infrastructure. The
key generation techniques in secure file systems help
CCCP to precompute keystream materials during power
seasons. While scalability and throughput are the main
challenges in such file systems, CCCP primarily ad-
dresses energy and memory constraints. The semantics
of CCCP storage are similar to the semantics of secure
file systems. None of the systems explicitly and directly
prevent denial of service. Storing information on un-
trusted RFID readers trades off the gain in storage capac-
ity and energy conservation versus the risk of losing data
due to compromise or destruction of the external stor-
age. To mitigate the risk against denial of service, CCCP
could choose to replicate data as do secure file systems.

CCCP shares some goals with power-aware encryp-
tion systems such as that proposed by Chandramouli
et al. [10]. Both systems are designed to consume lit-
tle energy while offering the security of well-known
cryptographic primitives and both are motivated by a
study of power profiling results, but they have different
goals. Chandramouli et al. focus on deriving an energy
consumption model and establishing a relationship be-
tween energy consumption and security, and they offer
an encryption scheme that might allow CCCP to con-
sume less energy during its precomputation of keystream
bits. However, CCCP’s opportunistic precomputation
occurs during periods of abundant energy, when the
choice of encryption scheme is not of the utmost im-
portance. CCCP’s precomputation allows it to use time-
and energy-efficient XOR operations at checkpoint time,
when energy is low; an alternative encryption scheme
would have to save time or energy over simple XOR op-
erations to be useful when energy consumption matters.

CCCP shares a number of properties with systems
built for sensor networks. Storage-centric sensor net-
works [12, 24] have focused on reducing radio communi-
cation and increasing writes to flash memory to conserve
energy. One of our motivating observations is that this
relationship is inverted in the CRFID model: CCCP re-
duces writes to flash memory in favor of increasing ra-
dio communication. Performing cryptography is hard
on both a CRFID and its elder cousin the sensor mote.
Previous systems, such as SPINS [25] and TinySec [23]
for sensor networks, have faced design choices similar
to CCCP’s. SPINS and TinySec use RC5 because of its
small code size and efficiency, but the battery-powered



platform underlying these systems differs in fundamen-
tal ways from batteryless computational RFIDs. For a
side-by-side comparison of such embedded systems, see
Table 1 of Chae et al. [9].

CCCP provides secure storage for CRFIDs, and
CRFIDs are closely related to existing passively powered
RFID tags conforming to the EPC Gen 2 standard [13].
At times the RFID and sensor world fuse together. Buet-
tner et al. [7] proposeRFID sensor networks(RSNs) as
a replacement for wireless sensor networks in applica-
tions where batteries are inconvenient, and the authors
describe RSNs built on WISP CRFIDs. However, the
RSN work does not consider remote storage options for
CRFIDs.

8 Future Work

Our future work includes enhancements to the CCCP
protocol. Most pressingly, the protocol currently
suffers from a potential atomicity problem. In
CHECKPOINT (Algorithm 1), chkpt counter is updated
before the checkpointed state is transmitted, so that even
if the transmission fails,chkpt counterwill point to un-
used keystream material the next time CHECKPOINT

runs. However, if CHECKPOINT updates the offset but
terminates before transmission succeeds, then the next
RESUME operation will see a value ofchkptcounter
from which its normal backtracking operation will not
find the correct keystream material. CCCP cannot cur-
rently recover from such a mismatch.

An unacceptable solution is for CHECKPOINT to up-
datechkpt counter aftera successful transmission; such
a strategy opens the possibility that, if power loss oc-
curred between the transmission and the counter update,
CCCP would reuse keystream material. A more reason-
able solution (which we have not implemented) is to use
a separatecommit bit that is set in nonvolatile mem-
ory after both thechkpt counterupdate and the trans-
mission; this solution avoids both problems mentioned
above. Minimizing the energy cost of maintaining a
commit bit is an opportunity for hardware optimization.

A number of implementation enhancements are also
future work. For instance, shortfalls in over-the-air RFID
protocols and a lack of drivers on the WISP make the
restore procedure unnecessarily complicated and diffi-
cult to implement. We also plan to extend the borders
of CCCP from checkpointing towards long-term storage
as described in Section 3.4.5. Key management makes
long-term storage more challenging than checkpointing.
Another area for further investigation is modifying the
checkpoint function to operate at lower voltages. Writ-
ing the counter value to flash memory restricts check-
points to periods where the available energy can support
at least one write to flash memory. Our future work seeks

to circumvent these minimum voltages in order to ac-
complish secure remote storage for CRFIDs whenever
their processors have sufficient energy to compute. Fi-
nally, for simplicity, CCCP’s communication protocol
currently addresses only the scenario in which a single
tag communicates with a single reader. We plan to dis-
card that simplifying assumption during further testing
in multi-reader infrastructures.

9 Conclusion

CRFIDs enable pervasive computing in places where
batteries are difficult to maintain. However, the high en-
ergy necessary to erase and write to flash memory makes
storage difficult without a constant energy source. CCCP
extends Mementos [26] by exploiting the backscatter
transmission common on passive RFID systems to re-
motely store checkpoints on an untrusted RFID reader
infrastructure. CCCP protects data with UHF-based
MACs, opportunistic precomputation of keystream ma-
terial for symmetric cryptography, and hole punching to
store a counter used to enforce data freshness. Our mea-
surements of a prototype implementation of CCCP on the
WISP tag shows that radio-based, remote checkpoints re-
quire less energy than local, flash-based checkpoints—
despite the overhead of the cryptography to restore the
security semantics of local, trusted storage. CCCP gives
a CRFID increased storage capacity at low energy cost
and enables long-running computations to make progress
despite continual power interruptions that destroy the
contents of RAM. Moreover, the abstraction provided by
CCCP allows application developers to focus on com-
putation rather than space, energy, and security man-
agement. Flash memory generally requires a coarse-
grained, high-power erase operation before writing a new
value. Our hole punching technique allows CCCP to par-
tially reuse unerased flash memory, thus reducing the fre-
quency with which flash memory must be erased.
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