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Abstract
Recently, integer bugs, including integer overflow, width
conversion, and signed/unsigned conversion errors, have
risen to become a common root cause for serious security
vulnerabilities. We introduce new methods for discover-
ing integer bugs using dynamic test generation on x86
binaries, and we describe key design choices in efficient
symbolic execution of such programs. We implemented
our methods in a prototype tool SmartFuzz, which we
use to analyze Linux x86 binary executables. We also
created a reporting service, metafuzz.com, to aid in
triaging and reporting bugs found by SmartFuzz and the
black-box fuzz testing tool zzuf. We report on experi-
ments applying these tools to a range of software appli-
cations, including the mplayer media player, the exiv2
image metadata library, and ImageMagick convert. We
also report on our experience using SmartFuzz, zzuf,
and metafuzz.com to perform testing at scale with the
Amazon Elastic Compute Cloud (EC2). To date, the
metafuzz.com site has recorded more than 2, 614 test
runs, comprising 2, 361, 595 test cases. Our experiments
found approximately 77 total distinct bugs in 864 com-
pute hours, costing us an average of $2.24 per bug at cur-
rent EC2 rates. We quantify the overlap in bugs found by
the two tools, and we show that SmartFuzz finds bugs
missed by zzuf, including one program where Smart-
Fuzz finds bugs but zzuf does not.

1 Introduction
Integer overflow bugs recently became the second most
common bug type in security advisories from OS ven-
dors [10]. Unfortunately, traditional static and dynamic
analysis techniques are poorly suited to detecting integer-
related bugs. In this paper, we argue that dynamic test
generation is better suited to finding such bugs, and we
develop new methods for finding a broad class of inte-
ger bugs with this approach. We have implemented these
methods in a new tool, SmartFuzz, that analyzes traces
from commodity Linux x86 programs.

Integer bugs result from a mismatch between machine
arithmetic and mathematical arithmetic. For example,
machine arithmetic has bounded precision; if an expres-
sion has a value greater than the maximum integer that
can be represented, the value wraps around to fit in ma-
chine precision. This can cause the value stored to be
smaller than expected by the programmer. If, for exam-
ple, a wrapped value is used as an argument to malloc,
the result is an object that is smaller than expected, which
can lead to a buffer overflow later if the programmer is
not careful. This kind of bug is often known as an integer
overflow bug. In Section 2 we describe two other classes
of integer bugs: width conversions, in which converting
from one type of machine integer to another causes un-
expected changes in value, and signed/unsigned conver-
sions, in which a value is treated as both a signed and an
unsigned integer. These kinds of bugs are pervasive and
can, in many cases, cause serious security vulnerabili-
ties. Therefore, eliminating such bugs is important for
improving software security.

While new code can partially or totally avoid integer
bugs if it is constructed appropriately [19], it is also im-
portant to find and fix bugs in legacy code. Previous
approaches to finding integer bugs in legacy code have
focused on static analysis or runtime checks. Unfortu-
nately, existing static analysis algorithms for finding in-
teger bugs tend to generate many false positives, because
it is difficult to statically reason about integer values with
sufficient precision. Alternatively, one can insert runtime
checks into the application to check for overflow or non-
value-preserving width conversions, and raise an excep-
tion if they occur. One problem with this approach is
that many overflows are benign and harmless. Throwing
an exception in such cases prevents the application from
functioning and thus causes false positives. Furthermore,
occasionally the code intentionally relies upon overflow
semantics; e.g., cryptographic code or fast hash func-
tions. Such code is often falsely flagged by static analysis
or runtime checks. In summary, both static analysis and



runtime checking tend to suffer from either many false
positives or many missed bugs.

In contrast, dynamic test generation is a promising ap-
proach for avoiding these shortcomings. Dynamic test
generation, a technique introduced by Godefroid et al.
and Engler et al. [13, 7], uses symbolic execution to gen-
erate new test cases that expose specifically targeted be-
haviors of the program. Symbolic execution works by
collecting a set of constraints, called the path condition,
that model the values computed by the program along a
single path through the code. To determine whether there
is any input that could cause the program to follow that
path of execution and also violate a particular assertion,
we can add to the path condition a constraint represent-
ing that the assertion is violated and feed the resulting set
of constraints to a solver. If the solver finds any solution
to the resulting constraints, we can synthesize a new test
case that will trigger an assertion violation. In this way,
symbolic execution can be used to discover test cases that
cause the program to behave in a specific way.

Our main approach is to use symbolic execution to
construct test cases that trigger arithmetic overflows,
non-value-preserving width conversions, or dangerous
signed/unsigned conversions. Then, we run the program
on these test cases and use standard tools that check for
buggy behavior to recognize bugs. We only report test
cases that are verified to trigger incorrect behavior by the
program. As a result, we have confidence that all test
cases we report are real bugs and not false positives.

Others have previously reported on using dynamic test
generation to find some kinds of security bugs [8, 15].
The contribution of this paper is to show how to extend
those techniques to find integer-related bugs. We show
that this approach is effective at finding many bugs, with-
out the false positives endemic to prior work on static
analysis and runtime checking.

The ability to eliminate false positives is important,
because false positives are time-consuming to deal with.
In slogan form: false positives in static analysis waste
the programmer’s time; false positives in runtime check-
ing waste the end user’s time; while false positives in
dynamic test generation waste the tool’s time. Because
an hour of CPU time is much cheaper than an hour of
a human’s time, dynamic test generation is an attractive
way to find and fix integer bugs.

We have implemented our approach to finding inte-
ger bugs in SmartFuzz, a tool for performing symbolic
execution and dynamic test generation on Linux x86 ap-
plications. SmartFuzz works with binary executables di-
rectly, and does not require or use access to source code.
Working with binaries has several advantages, most no-
tably that we can generate tests directly from shipping
binaries. In particular, we do not need to modify the
build process for a program under test, which has been

a pain point for static analysis tools [9]. Also, this allows
us to perform whole-program analysis: we can find bugs
that arise due to interactions between the application and
libraries it uses, even if we don’t have source code for
those libraries. Of course, working with binary traces in-
troduces special challenges, most notably the sheer size
of the traces and the lack of type information that would
be present in the source code. We discuss the challenges
and design choices in Section 4.

In Section 5 we describe the techniques we use to gen-
erate test cases for integer bugs in dynamic test gener-
ation. We discovered that these techniques find many
bugs, too many to track manually. To help us prioritize
and manage these bug reports and streamline the pro-
cess of reporting them to developers, we built Metafuzz, a
web service for tracking test cases and bugs (Section 6).
Metafuzz helps minimize the amount of human time re-
quired to find high-quality bugs and report them to de-
velopers, which is important because human time is the
most expensive resource in a testing framework. Finally,
Section 7 presents an empirical evaluation of our tech-
niques and discusses our experience with these tools.

The contributions of this paper are the following:

• We design novel algorithms for finding
signed/unsigned conversion vulnerabilities us-
ing symbolic execution. In particular, we develop
a novel type inference approach that allows us to
detect which values in an x86 binary trace are used
as signed integers, unsigned integers, or both. We
discuss challenges in scaling such an analysis to
commodity Linux media playing software and our
approach to these challenges.

• We extend the range of integer bugs that can be
found with symbolic execution, including integer
overflows, integer underflows, width conversions,
and signed/unsigned conversions. No prior sym-
bolic execution tool has included the ability to de-
tect all of these kinds of integer vulnerabilities.

• We implement these methods in SmartFuzz, a tool
for symbolic execution and dynamic test generation
of x86 binaries on Linux. We describe key chal-
lenges in symbolic execution of commodity Linux
software, and we explain design choices in Smart-
Fuzz motivated by these challenges.

• We report on the bug finding performance of Smart-
Fuzz and compare SmartFuzz to the zzuf black
box fuzz testing tool. The zzuf tool is a simple,
yet effective, fuzz testing program which randomly
mutates a given seed file to find new test inputs,
without any knowledge or feedback from the tar-
get program. We have tested a broad range of com-
modity Linux software, including the media players
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mplayer and ffmpeg, the ImageMagick convert
tool, and the exiv2 TIFF metadata parsing library.
This software comprises over one million lines of
source code, and our test cases result in symbolic
execution of traces that are millions of x86 instruc-
tions in length.

• We identify challenges with reporting bugs at scale,
and introduce several techniques for addressing
these challenges. For example, we present evidence
that a simple stack hash is not sufficient for group-
ing test cases to avoid duplicate bug reports, and
then we develop a fuzzy stack hash to solve these
problems. Our experiments find approximately 77
total distinct bugs in 864 compute hours, giving us
an average cost of $2.24 per bug at current Amazon
EC2 rates. We quantify the overlap in bugs found
by the two tools, and we show that SmartFuzz finds
bugs missed by zzuf, including one program where
SmartFuzz finds bugs but zzuf does not.

Between June 2008 and November 2008, Metafuzz
has processed over 2,614 test runs from both SmartFuzz
and the zzuf black box fuzz testing tool [16], comprising
2,361,595 test cases. To our knowledge, this is the largest
number of test runs and test cases yet reported for dy-
namic test generation techniques. We have released our
code under the GPL version 2 and BSD licenses1. Our
vision is a service that makes it easy and inexpensive for
software projects to find integer bugs and other serious
security relevant code defects using dynamic test gener-
ation techniques. Our work shows that such a service is
possible for a large class of commodity Linux programs.

2 Integer Bugs
We now describe the three main classes of integer bugs
we want to find: integer overflow/underflow, width con-
versions, and signed/unsigned conversion errors [2]. All
three classes of bugs occur due to the mismatch between
machine arithmetic and arithmetic over unbounded inte-
gers.

Overflow/Underflow. Integer overflow (and underflow)
bugs occur when an arithmetic expression results in a
value that is larger (or smaller) than can be represented
by the machine type. The usual behavior in this case is
to silently “wrap around,” e.g. for a 32-bit type, reduce
the value modulo 232. Consider the function badalloc
in Figure 1. If the multiplication sz * n overflows, the
allocated buffer may be smaller than expected, which can
lead to a buffer overflow later.

Width Conversions. Converting a value of one integral
type to a wider (or narrower) integral type which has a

1http://www.sf.net/projects/catchconv

char *badalloc(int sz, int n) {

return (char *) malloc(sz * n);

}

void badcpy(Int16 n, char *p, char *q) {

UInt32 m = n;

memcpy(p, q, m);

}

void badcpy2(int n, char *p, char *q) {

if (n > 800)

return;

memcpy(p, q, n);

}

Figure 1: Examples of three types of integer bugs.

different range of values can introduce width conversion
bugs. For instance, consider badcpy in Figure 1. If the
first parameter is negative, the conversion from Int16 to
UInt32 will trigger sign-extension, causing m to be very
large and likely leading to a buffer overflow. Because
memcpy’s third argument is declared to have type size t
(which is an unsigned integer type), even if we passed
n directly to memcpy the implicit conversion would still
make this buggy. Width conversion bugs can also arise
when converting a wider type to a narrower type.

Signed/Unsigned Conversion. Lastly, converting a
signed integer type to an unsigned integer type of the
same width (or vice versa) can introduce bugs, because
this conversion can change a negative number to a large
positive number (or vice versa). For example, consider
badcpy2 in Figure 1. If the first parameter n is a negative
integer, it will pass the bounds check, then be promoted
to a large unsigned integer when passed to memcpy.
memcpy will copy a large number of bytes, likely lead-
ing to a buffer overflow.

3 Related Work
An earlier version of SmartFuzz and the Metafuzz web
site infrastructure described in this paper were used for
previous work that compares dynamic test generation
with black-box fuzz testing by different authors [1]. That
previous work does not describe the SmartFuzz tool, its
design choices, or the Metafuzz infrastructure in detail.
Furthermore, this paper works from new data on the ef-
fectiveness of SmartFuzz, except for an anecdote in our
“preliminary experiences” section. We are not aware of
other work that directly compares dynamic test gener-
ation with black-box fuzz testing on a scale similar to
ours.

The most closely related work on integer bugs is
Godefroid et al. [15], who describe dynamic test genera-
tion with bug-seeking queries for integer overflow, un-
derflow, and some narrowing conversion errors in the
context of the SAGE tool. Our work looks at a wider
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range of narrowing conversion errors, and we consider
signed/unsigned conversion while their work does not.
The EXE and KLEE tools also use integer overflow to
prioritize different test cases in dynamic test generation,
but they do not break out results on the number of bugs
found due to this heuristic [8, 6]. The KLEE system also
focuses on scaling dynamic test generation, but in a dif-
ferent way. While we focus on a few “large” programs
in our results, KLEE focuses on high code coverage for
over 450 smaller programs, as measured by trace size and
source lines of code. These previous works also do not
address the problem of type inference for integer types in
binary traces.

IntScope is a static binary analysis tool for finding in-
teger overflow bugs [28]. IntScope translates binaries to
an intermediate representation, then it checks lazily for
potentially harmful integer overflows by using symbolic
execution for data that flows into “taint sinks” defined by
the tool, such as memory allocation functions. Smart-
Fuzz, in contrast, eagerly attempts to generate new test
cases that cause an integer bug at the point in the pro-
gram where such behavior could occur. This difference
is due in part to the fact that IntScope reports errors to
a programmer directly, while SmartFuzz filters test cases
using a tool such as memcheck. As we argued in the
Introduction, such a filter allows us to employ aggres-
sive heuristics that may generate many test cases. Fur-
thermore, while IntScope renders signed and unsigned
comparisons in their intermediate representation by us-
ing hints from the x86 instruction set, they do not explic-
itly discuss how to use this information to perform type
inference for signed and unsigned types, nor do they ad-
dress the issue of scaling such inference to traces with
millions of instructions. Finally, IntScope focuses only
on integer overflow errors, while SmartFuzz covers un-
derflow, narrowing conversion, and signed/unsigned con-
version bugs in addition.

The dynamic test generation approach we use was in-
troduced by Godefroid et al. [13] and independently by
Cadar and Engler [7]. The SAGE system by Godefroid
et al. works, as we do, on x86 binary programs and
uses a generational search, but SAGE makes several dif-
ferent design choices we explain in Section 4. Lanzi
et al. propose a design for dynamic test generation of
x86 binaries that uses static analysis of loops to assist
the solver, but their implementation is preliminary [17].
KLEE, in contrast, works with the intermediate repre-
sentation generated by the Low-Level Virtual Machine
target for gcc [6]. Larson and Austin applied symbolic
range analysis to traces of programs to look for potential
buffer overflow attacks, although they did not attempt to
synthesize crashing inputs [18]. The BitBlaze [5] infras-
tructure of Song et al. also performs symbolic execution
of x86 binaries, but their focus is on malware and signa-

ture generation, not on test generation.

Other approaches to integer bugs include static anal-
ysis and runtime detection. The Microsoft Prefast tool
uses static analysis to warn about intraprocedural integer
overflows [21]. Both Microsoft Visual C++ and gcc can
add runtime checks to catch integer overflows in argu-
ments to malloc and terminate a program. Brumley et
al. provide rules for such runtime checks and show they
can be implemented with low overhead on the x86 ar-
chitecture by using jumps conditioned on the overflow
bit in EFLAGS [4]. Both of these approaches fail to
catch signed/unsigned conversion errors. Furthermore,
both static analysis and runtime checking for overflow
will flag code that is correct but relies on overflow se-
mantics, while our approach only reports test cases in
case of a crash or a Valgrind error report.

Blexim gives an introduction to integer bugs [3]. Fuzz
testing has received a great deal of attention since its
original introduction by Miller et al [22]. Notable pub-
lic demonstrations of fuzzing’s ability to find bugs in-
clude the Month of Browser Bugs and Month of Kernel
Bugs [23, 20]. DeMott surveys recent work on fuzz test-
ing, including the autodafe fuzzer, which uses libgdb
to instrument functions of interest and adjust fuzz testing
based on those functions’ arguments [11, 27].

Our Metafuzz infrastructure also addresses issues not
treated in previous work on test generation. First, we
make bug bucketing a first-class problem and we intro-
duce a fuzzy stack hash in response to developer feedback
on bugs reported by Metafuzz. The SAGE paper reports
bugs by stack hash, and KLEE reports on using the line
of code as a bug bucketing heuristic, but we are not aware
of other work that uses a fuzzy stack hash. Second, we
report techniques for reducing the amount of human time
required to process test cases generated by fuzzing and
improve the quality of our error reports to developers;
we are not aware of previous work on this topic. Such
techniques are vitally important because human time is
the most expensive part of a test infrastructure. Finally,
Metafuzz uses on-demand computing with the Amazon
Elastic Compute Cloud, and we explicitly quantify the
cost of each bug found, which was not done in previous
work.

4 Dynamic Test Generation

We describe the architecture of SmartFuzz, a tool for dy-
namic test generation of x86 binary programs on Linux.
Dynamic test generation on x86 binaries—without ac-
cess to source code—raises special challenges. We dis-
cuss these challenges and motivate our fundamental de-
sign choices.
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Figure 2: Dynamic test generation includes four stages:
symbolic execution, solving to obtain new test cases,
then triage to determine whether to report a bug or score
the test case for addition to the pool of unexplored test
cases.

4.1 Architecture
The SmartFuzz architecture is as follows: First, we add
one or more test cases to a pool. Each test case in the
pool receives a score given by the number of new basic
blocks seen when running the target program on the test
case. By “new” we mean that the basic block has not
been observed while scoring any previous test case; we
identify basic blocks by the instruction pointer of their
entry point.

In each iteration of test generation, we choose a high-
scoring test case, execute the program on that input, and
use symbolic execution to generate a set of constraints
that record how each intermediate value computed by the
program relates to the inputs in the test case. SmartFuzz
implements the symbolic execution and scoring compo-
nents using the Valgrind binary analysis framework, and
we use STP [12] to solve constraints.

For each symbolic branch, SmartFuzz adds a con-
straint that tries to force the program down a differ-
ent path. We then query the constraint solver to see
whether there exists any solution to the resulting set of
constraints; if there is, the solution describes a new test
case. We refer to these as coverage queries to the con-
straint solver.

SmartFuzz also injects constraints that are satisfied if
a condition causing an error or potential error is satis-
fied (e.g., to force an arithmetic calculation to overflow).
We then query the constraint solver; a solution describes
a test case likely to cause an error. We refer to these
as bug-seeking queries to the constraint solver. Bug-
seeking queries come in different types, depending on
the specific error they seek to exhibit in the program.

Both coverage and bug-seeking queries are explored
in a generational search similar to the SAGE tool [14].
Each query from a symbolic trace is solved in turn, and
new test cases created from successfully solved queries.
A single symbolic execution therefore leads to many cov-
erage and bug-seeking queries to the constraint solver,
which may result in many new test cases.

We triage each new test case as it is generated, i.e. we

determine if it exhibits a bug. If so, we report the bug;
otherwise, we add the test case to the pool for scoring and
possible symbolic execution. For triage, we use Valgrind
memcheck on the target program with each test case,
which is a tool that observes concrete execution looking
for common programming errors [26]. We record any
test case that causes the program to crash or triggers a
memcheck warning.

We chose memcheck because it checks a variety of
properties, including reads and writes to invalid mem-
ory locations, memory leaks, and use of uninitialized
values. Re-implementing these analyses as part of the
SmartFuzz symbolic execution tool would be wasteful
and error-prone, as the memcheck tool has had the bene-
fit of multiple years of use in large-scale projects such as
Firefox and OpenOffice. The memcheck tool is known
as a tool with a low false positive rate, as well, making
it more likely that developers will pay attention to bugs
reported by memcheck. Given a memcheck error report,
developers do not even need to know that associated test
case was created by SmartFuzz.

We do not attempt to classify the bugs we find as ex-
ploitable or not exploitable, because doing so by hand
for the volume of test cases we generate is impracti-
cal. Many of the bugs found by memcheck are mem-
ory safety errors, which often lead to security vulnerabil-
ities. Writes to invalid memory locations, in particular,
are a red flag. Finally, to report bugs we use the Metafuzz
framework described in Section 6.

4.2 Design Choices
Intermediate Representation. The sheer size and com-
plexity of the x86 instruction set poses a challenge for
analyzing x86 binaries. We decided to translate the un-
derlying x86 code on-the-fly to an intermediate repre-
sentation, then map the intermediate representation to
symbolic formulas. Specifically, we used the Valgrind
binary instrumentation tool to translate x86 instructions
into VEX, the Valgrind intermediate representation [24].
The BitBlaze system works similarly, but with a different
intermediate representation [5]. Details are available in
an extended version of this paper2.

Using an intermediate representation offers several ad-
vantages. First, it allows for a degree of platform inde-
pendence: though we support only x86 in our current
tool, the VEX library also supports the AMD64 and Pow-
erPC instruction sets, with ARM support under active de-
velopment. Adding support for these additional architec-
tures requires only adding support for a small number of
additional VEX instructions, not an entirely new instruc-
tion set from scratch. Second, the VEX library generates
IR that satisfies the single static assignment property and

2http://www.cs.berkeley.edu/~dmolnar/

usenix09-full.pdf
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performs other optimizations, which makes the transla-
tion from IR to formulas more straightforward. Third,
and most importantly, this choice allowed us to outsource
the pain of dealing with the minutae of the x86 instruc-
tion set to the VEX library, which has had years of pro-
duction use as part of the Valgrind memory checking
tool. For instance, we don’t need to explicitly model
the EFLAGS register, as the VEX library translates it
to boolean operations. The main shortcoming with the
VEX IR is that a single x86 instruction may expand to
five or more IR instructions, which results in long traces
and correspondingly longer symbolic formulas.
Online Constraint Generation. SmartFuzz uses online
constraint generation, in which constraints are generated
while the program is running. In contrast, SAGE (an-
other tool for dynamic test generation) uses offline con-
straint generation, where the program is first traced and
then the trace is replayed to generate constraints [14].
Offline constraint generation has several advantages: it
is not sensitive to concurrency or nondeterminism in sys-
tem calls; tracing has lower runtime overhead than con-
straint generation, so can be applied to running systems
in a realistic environment; and, this separation of con-
cerns makes the system easier to develop and debug,
not least because trace replay and constraint generation
is reproducible and deterministic. In short, offline con-
straint generation has important software engineering ad-
vantages.

SmartFuzz uses online constraint generation primarily
because, when the SmartFuzz project began, we were not
aware of an available offline trace-and-replay framework
with an intermediate representation comparable to VEX.
Today, O’Callahan’s chronicle-recorder could pro-
vide a starting point for a VEX-based offline constraint
generation tool [25].
Memory Model. Other symbolic execution tools such
as EXE and KLEE model memory as a set of symbolic
arrays, with one array for each allocated memory object.
We do not. Instead, for each load or store instruction,
we first concretize the memory address before access-
ing the symbolic heap. In particular, we keep a map M
from concrete memory addresses to symbolic values. If
the program reads from concrete address a, we retrieve
a symbolic value from M(a). Even if we have recorded
a symbolic expression a associated with this address, the
symbolic address is ignored. Note that the value of a is
known at constraint generation time and hence becomes
(as far as the solver is concerned) a constant. Store in-
structions are handled similarly.

While this approach sacrifices precision, it scales bet-
ter to large traces. We note that the SAGE tool adopts
a similar memory model. In particular, concretizing ad-
dresses generates symbolic formulas that the constraint
solver can solve much more efficiently, because the

solver does not need to reason about aliasing of point-
ers.
Only Tainted Data is Symbolic. We track the taint sta-
tus of every byte in memory. As an optimization, we
do not store symbolic information for untainted memory
locations, because by definition untainted data is not de-
pendent upon the untrusted inputs that we are trying to
vary. We have found that only a tiny fraction of the data
processed along a single execution path is tainted. Con-
sequently, this optimization greatly reduces the size of
our constraint systems and reduces the memory overhead
of symbolic execution.
Focus on Fuzzing Files. We decided to focus on single-
threaded programs, such as media players, that read a file
containing untrusted data. Thus, a test case is simply the
contents of this file, and SmartFuzz can focus on gen-
erating candidate files. This simplifies the symbolic ex-
ecution and test case generation infrastructure, because
there are a limited number of system calls that read from
this file, and we do not need to account for concurrent
interactions between threads in the same program. We
know of no fundamental barriers, however, to extending
our approach to multi-threaded and network-facing pro-
grams.

Our implementation associates a symbolic input vari-
able with each byte of the input file. As a result, Smart-
Fuzz cannot generate test cases with more bytes than are
present in the initial seed file.
Multiple Cooperating Analyses. Our tool is imple-
mented as a series of independent cooperating analyses
in the Valgrind instrumentation framework. Each analy-
sis adds its own instrumentation to a basic block during
translation and exports an interface to the other analyses.
For example, the instrumentation for tracking taint flow,
which determines the IR instructions to treat as symbolic,
exports an interface that allows querying whether a spe-
cific memory location or temporary variable is symbolic.
A second analysis then uses this interface to determine
whether or not to output STP constraints for a given IR
instruction.

The main advantage of this approach is that it makes
it easy to add new features by adding a new analysis,
then modifying our core constraint generation instrumen-
tation. Also, this decomposition enabled us to extract our
taint-tracking code and use it in a different project with
minimal modifications, and we were able to implement
the binary type inference analysis described in Section 5,
replacing a different earlier version, without changing
our other analyses.
Optimize in Postprocessing. Another design choice
was to output constraints that are as “close” as possible to
the intermediate representation, performing only limited
optimizations on the fly. For example, we implement the
“related constraint elimination,” as introduced by tools
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such as EXE and SAGE [8, 14], as a post-processing
step on constraints created by our tool. We then leave it
up to the solver to perform common subexpression elim-
ination, constant propagation, and other optimizations.
The main benefit of this choice is that it simplifies our
constraint generation. One drawback of this choice is
that current solvers, including STP, are not yet capable
of “remembering” optimizations from one query to the
next, leading to redundant work on the part of the solver.
The main drawback of this choice, however, is that while
after optimization each individual query is small, the to-
tal symbolic trace containing all queries for a program
can be several gigabytes. When running our tool on a
32-bit host machine, this can cause problems with maxi-
mum file size for a single file or maximum memory size
in a single process.

5 Techniques for Finding Integer Bugs
We now describe the techniques we use for finding inte-
ger bugs.
Overflow/Underflow. For each arithmetic expression
that could potentially overflow or underflow, we emit a
constraint that is satisfied if the overflow or underflow
occurs. If our solver can satisfy these constraints, the
resulting input values will likely cause an underflow or
overflow, potentially leading to unexpected behavior.
Width Conversions. For each conversion between inte-
ger types, we check whether it is possible for the source
value to be outside the range of the target value by adding
a constraint that’s satisfied when this is the case and then
applying the constraint solver. For conversions that may
sign-extend, we use the constraint solver to search for a
test case where the high bit of the source value is non-
zero.
Signed/Unsigned Conversions. Our basic approach is
to try to reconstruct, from the x86 instructions executed,
signed/unsigned type information about all integral val-
ues. This information is present in the source code but
not in the binary, so we describe an algorithm to infer
this information automatically.

Consider four types for integer values: “Top,”
“Signed,” “Unsigned,” or “Bottom.” Here, “Top” means
the value has not been observed in the context of a signed
or unsigned integer; “Signed” means that the value has
been used as a signed integer; “Unsigned” means the
value has been used as an unsigned integer; and “Bot-
tom” means that the value has been used inconsistently
as both a signed and unsigned integer. These types form
a four-point lattice. Our goal is to find symbolic program
values that have type “Bottom.” These values are can-
didates for signed/unsigned conversion errors. We then
attempt to synthesize an input that forces these values to
be negative.

We associate every instance of every temporary vari-

int main(int argc, char** argv) {

char * p = malloc(800);

char * q = malloc(800);

int n;

n = atol(argv[1]);

if (n > 800)

return;

memcpy(p, q, n);

return 0;

}

Figure 3: A simple test case for dynamic type infer-
ence and query generation. The signed comparison n >
800 and unsigned size t argument to memcpy assign the
type “Bottom” to the value associated with n. When we
solve for an input that makes n negative, we obtain a test
case that reveals the error.

able in the Valgrind intermediate representation with a
type. Every variable in the program starts with type Top.
During execution we add type constraints to the type of
each value. For x86 binaries, the sources of type con-
straints are signed and unsigned comparison operators:
e.g., a signed comparison between two values causes
both values to receive the “Signed” type constraint. We
also add unsigned type constraints to values used as the
length argument of memcpy function, which we can de-
tect because we know the calling convention for x86 and
we have debugging symbols for glibc. While the x86 in-
struction set has additional operations, such as IMUL that
reveal type information about their operands, we do not
consider these; this means only that we may incorrectly
under-constrain the types of some values.

Any value that has received both a signed and un-
signed type constraint receives the type Bottom. After
adding a type constraint, we check to see if the type of
a value has moved to Bottom. If so, we attempt to solve
for an input which makes the value negative. We do this
because negative values behave differently in signed and
unsigned comparisons, and so they are likely to exhibit
an error if one exists. All of this information is present in
the trace without requiring access to the original program
source code.

We discovered, however, that gcc 4.1.2 inlines
some calls to memcpy by transforming them to rep
movsb instructions, even when the -O flag is not present.
Furthermore, the Valgrind IR generated for the rep
movsb instruction compares a decrementing counter
variable to zero, instead of counting up and executing an
unsigned comparison to the loop bound. As a result, on
gcc 4.1.2 a call to memcpy does not cause its length argu-
ment to be marked as unsigned. To deal with this prob-
lem, we implemented a simple heuristic to detect the IR
generated for rep movsb and emit the appropriate con-
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straint. We verified that this heuristic works on a small
test case similar to Figure 3, generating a test input that
caused a segmentation fault.

A key problem is storing all of the information re-
quired to carry out type inference without exhausting
available memory. Because a trace may have several mil-
lion instructions, memory usage is key to scaling type
inference to long traces. Furthermore, our algorithm re-
quires us to keep track of the types of all values in the
program, unlike constraint generation, which need con-
cern itself only with tainted values. An earlier version
of our analysis created a special “type variable” for each
value, then maintained a map from IR locations to type
variables. Each type variable then mapped to a type.
We found that in addition to being hard to maintain, this
analysis often led to a number of live type variables that
scaled linearly with the number of executed IR instruc-
tions. The result was that our analysis ran out of memory
when attempting to play media files in the mplayer me-
dia player.

To solve this problem, we developed a garbage-
collected data structure for tracking type information.
To reduce memory consumption, we use a union-find
data structure to partition integer values into equivalence
classes where all values in an equivalence class are re-
quired to have the same type. We maintain one type for
each union-find equivalence class; in our implementation
type information is associated with the representative
node for that equivalence class. Assignments force the
source and target values to have the same types, which is
implemented by merging their equivalence classes. Up-
dating the type for a value can be done by updating its
representative node’s type, with no need to explicitly up-
date the types of all other variables in the equivalence
class.

It turns out that this data structure is acyclic, due to the
fact that VEX IR is in SSA form. Therefore, we use ref-
erence counting to garbage collect these nodes. In addi-
tion, we benefit from an additional property of the VEX
IR: all values are either stored in memory, in registers, or
in a temporary variable, and the lifetime of each tempo-
rary variable is implicitly limited to that of a single basic
block. Therefore, we maintain a list of temporaries that
are live in the current basic block; when we leave the
basic block, the type information associated with all of
those live temporaries can be deallocated. Consequently,
the amount of memory needed for type inference at any
point is proportional to the number of tainted (symbolic)
variables that are live at that point—which is a significant
improvement over the naive approach to type inference.
The full version of this paper contains a more detailed
specification of these algorithms3.

3http://www.cs.berkeley.edu/~dmolnar/

usenix09-full.pdf

6 Triage and Reporting at Scale
Both SmartFuzz and zzuf can produce hundreds to thou-
sands of test cases for a single test run. We designed
and built a web service, Metafuzz, to manage the volume
of tests. We describe some problems we found while
building Metafuzz and techniques to overcoming these
problems. Finally, we describe the user experience with
Metafuzz and bug reporting.

6.1 Problems and Techniques
The Metafuzz architecture is as follows: first, a Test Ma-
chine generates new test cases for a program and runs
them locally. The Test Machine then determines which
test cases exhibit bugs and sends these test cases to Meta-
fuzz. The Metafuzz web site displays these test cases to
the User, along with information about what kind of bug
was found in which target program. The User can pick
test cases of interest and download them for further in-
vestigation. We now describe some of the problems we
faced when designing Metafuzz, and our techniques for
handling them. Section 7 reports our experiences with
using Metafuzz to manage test cases and report bugs.
Problem: Each test run generated many test cases, too
many to examine by hand.
Technique: We used Valgrind’s memcheck to automate
the process of checking whether a particular test case
causes the program to misbehave. Memcheck looks for
memory leaks, use of uninitialized values, and memory
safety errors such as writes to memory that was not allo-
cated [26]. If memcheck reports an error, we save the test
case. In addition, we looked for core dumps and non-
zero program exit codes.
Problem: Even after filtering out the test cases that
caused no errors, there were still many test cases that do
cause errors.
Technique: The metafuzz.com front page is a HTML
page listing all of the potential bug reports. showing all
potential bug reports. Each test machine uploads infor-
mation about test cases that trigger bugs to Metafuzz.
Problem: The machines used for testing had no long-
term storage. Some of the test cases were too big to at-
tach in e-mail or Bugzilla, making it difficult to share
them with developers.
Technique: Test cases are uploaded directly to Meta-
fuzz, providing each one with a stable URL. Each test
case also includes the Valgrind output showing the Val-
grind error, as well as the output of the program to
stdout and stderr.
Problem: Some target projects change quickly. For ex-
ample, we saw as many as four updates per day to the
mplayer source code repository. Developers reject bug
reports against “out of date” versions of the software.
Technique: We use the Amazon Elastic Compute Cloud
(EC2) to automatically attempt to reproduce the bug
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against the latest version of the target software. A button
on the Metafuzz site spawns an Amazon EC2 instance
that checks out the most recent version of the target soft-
ware, builds it, and then attempts to reproduce the bug.
Problem: Software projects have specific reporting re-
quirements that are tedious to implement by hand. For
example, mplayer developers ask for a stack backtrace,
disassembly, and register dump at the point of a crash.
Technique: Metafuzz automatically generates bug re-
ports in the proper format from the failing test case. We
added a button to the Metafuzz web site so that we can
review the resulting bug report and then send it to the tar-
get software’s bug tracker with a single click.
Problem: The same bug often manifests itself as many
failing test cases. Reporting the same bug to developers
many times wastes developer time.
Technique: We use the call stack to identify multiple
instances of the same bug. Valgrind memcheck reports
the call stack at each error site, as a sequence of instruc-
tion pointers. If debugging information is present, it also
reports the associated filename and line number informa-
tion in the source code.

Initially, we computed a stack hash as a hash of the se-
quence of instruction pointers in the backtrace. This has
the benefit of not requiring debug information or sym-
bols. Unfortunately, we found that a naive stack hash has
several problems. First, it is sensitive to address space
layout randomization (ASLR), because different runs of
the same program may load the stack or dynamically
linked libraries at different addresses, leading to differ-
ent hash values for call stacks that are semantically the
same. Second, even without ASLR, we found several
cases where a single bug might be triggered at multiple
call stacks that were similar but not identical. For exam-
ple, a buggy function can be called in several different
places in the code. Each call site then yields a different
stack hash. Third, any slight change to the target soft-
ware can change instruction pointers and thus cause the
same bug to receive a different stack hash. While we do
use the stack hash on the client to avoid uploading test
cases for bugs that have been previously found, we found
that we could not use stack hashes alone to determine if
a bug report is novel or not.

To address these shortcomings, we developed a fuzzy
stack hash that is forgiving of slight changes to the call
stack. We use debug symbol information to identify the
name of the function called, the line number in source
code (excluding the last digit of the line number, to allow
for slight changes in the code), and the name of the object
file for each frame in the call stack. We then hash all of
this information for the three functions at the top of the
call stack.

The choice of the number of functions to hash deter-
mines the “fuzzyness” of the hash. At one extreme, we

could hash all extant functions on the call stack. This
would be similar to the classic stack hash and report
many semantically same bugs in different buckets. On
the other extreme, we could hash only the most recently
called function. This fails in cases where two seman-
tically different bugs both exhibit as a result of calling
memcpy or some other utility function with bogus ar-
guments. In this case, both call stacks would end with
memcpy even though the bug is in the way the arguments
are computed. We chose three functions as a trade-off
between these extremes; we found this sufficient to stop
further reports from the mplayer developers of dupli-
cates in our initial experiences. Finding the best fuzzy
stack hash is interesting future work; we note that the
choice of bug bucketing technique may depend on the
program under test.

While any fuzzy stack hash, including ours, may acci-
dentally lump together two distinct bugs, we believe this
is less serious than reporting duplicate bugs to develop-
ers. We added a post-processing step on the server that
computes the fuzzy stack hash for test cases that have
been uploaded to Metafuzz and uses it to coalesce dupli-
cates into a single bug bucket.
Problem: Because Valgrind memcheck does not termi-
nate the program after seeing an error, a single test case
may give rise to dozens of Valgrind error reports. Two
different test cases may share some Valgrind errors but
not others.
Technique: First, we put a link on the Metafuzz site to
a single test case for each bug bucket. Therefore, if two
test cases share some Valgrind errors, we only use one
test case for each of the errors in common. Second, when
reporting bugs to developers, we highlight in the title the
specific bugs on which to focus.

7 Results
7.1 Preliminary Experience
We used an earlier version of SmartFuzz and Metafuzz in
a project carried out by a group of undergraduate students
over the course of eight weeks in Summer 2008. When
beginning the project, none of the students had any train-
ing in security or bug reporting. We provided a one-week
course in software security. We introduced SmartFuzz,
zzuf, and Metafuzz, then asked the students to gener-
ate test cases and report bugs to software developers. By
the end of the eight weeks, the students generated over
1.2 million test cases, from which they reported over 90
bugs to software developers, principally to the mplayer
project, of which 14 were fixed. For further details, we
refer to their presentation [1].

7.2 Experiment Setup
Test Programs. Our target programs were mplayer
version SVN-r28403-4.1.2, ffmpeg version

9



mplayer ffmpeg exiv2 gzip bzip2 convert
Coverage 2599 14535 1629 5906 12606 388

ConversionNot32 0 3787 0 0 0 0
Conversion32to8 1 26 740 2 10 116
Conversion32to16 0 16004 0 0 0 0

Conversion16Sto32 0 121 0 0 0 0
SignedOverflow 1544 37803 5941 24825 9109 49

SignedUnderflow 3 4003 48 1647 2840 0
UnsignedOverflow 1544 36945 4957 24825 9104 35

UnsignedUnderflow 0 0 0 0 0 0
MallocArg 0 24 0 0 0 0

SignedUnsigned 2568 21064 799 7883 17065 49

Figure 5: The number of each type of query for each test
program after a single 24-hour run.

SVN-r16903, exiv2 version SVN-r1735, gzip
version 1.3.12, bzip2 version 1.0.5, and ImageMagick
convert version 6.4.8 − 10, which are all widely
used media and compression programs. Table 4 shows
information on the size of each test program. Our test
programs are large, both in terms of source lines of code
and trace lengths. The percentage of the trace that is
symbolic, however, is small.
Test Platform. Our experiments were run on the Ama-
zon Elastic Compute Cloud (EC2), employing a “small”
and a “large” instance image with SmartFuzz, zzuf, and
all our test programs pre-installed. At this writing, an
EC2 small instance has 1.7 GB of RAM and a single-
core virtual CPU with performance roughly equivalent
to a 1GHz 2007 Intel Xeon. An EC2 large instance has
7 GB of RAM and a dual-core virtual CPU, with each
core having performance roughly equivalent to a 1 GHz
Xeon.

We ran all mplayer runs and ffmpeg runs on EC2
large instances, and we ran all other test runs with EC2
small instances. We spot-checked each run to ensure
that instances successfully held all working data in mem-
ory during symbolic execution and triage without swap-
ping to disk, which would incur a significant perfor-
mance penalty. For each target program we ran Smart-
Fuzz and zzuf with three seed files, for 24 hours per
program per seed file. Our experiments took 288 large
machine-hours and 576 small machine-hours, which at
current EC2 prices of $0.10 per hour for small instances
and $0.40 per hour for large instances cost $172.80.
Query Types. SmartFuzz queries our solver with the fol-
lowing types of queries: Coverage, ConversionNot32,
Conversion32to8, Conversion32to16,
SignedOverflow, UnsignedOverflow,
SignedUnderflow, UnsignedUnderflow,
MallocArg, and SignedUnsigned. Coverage queries
refer to queries created as part of the generational search
by flipping path conditions. The others are bug-seeking
queries that attempt to synthesize inputs leading to
specific kinds of bugs. Here MallocArg refers to a

Queries Test Cases Bugs
Coverage 588068 31121 19

ConversionNot32 4586 0 0
Conversion32to8 1915 1377 3
Conversion32to16 16073 67 4

Conversion16Sto32 206 0 0
SignedOverflow 167110 0 0

SignedUnderflow 20198 21 3
UnsignedOverflow 164155 9280 3

MallocArg 30 0 0
SignedUnsigned 125509 6949 5

Figure 6: The number of bugs found, by query type, over
all test runs. The fourth column shows the number of
distinct bugs found from test cases produced by the given
type of query, as classified using our fuzzy stack hash.

set of bug-seeking queries that attempt to force inputs
to known memory allocation functions to be negative,
yielding an implicit conversion to a large unsigned
integer, or force the input to be small.
Experience Reporting to Developers. Our original
strategy was to report all distinct bugs to developers and
let them judge which ones to fix. The mplayer devel-
opers gave us feedback on this strategy. They wanted to
focus on fixing the most serious bugs, so they preferred
seeing reports only for out-of-bounds writes and double
free errors. In contrast, they were not as interested in
out-of-bound reads, even if the resulting read caused a
segmentation fault. This helped us prioritize bugs for re-
porting.

7.3 Bug Statistics
Integer Bug-Seeking Queries Yield Bugs. Figure 6 re-
ports the number of each type of query to the constraint
solver over all test runs. For each type of query, we re-
port the number of test files generated and the number
of distinct bugs, as measured by our fuzzy stack hash.
Some bugs may be revealed by multiple different kinds
of queries, so there may be overlap between the bug
counts in two different rows of Figure 6.

The table shows that our dynamic test generation
methods for integer bugs succeed in finding bugs
in our test programs. Furthermore, the queries for
signed/unsigned bugs found the most distinct bugs out
of all bug-seeking queries. This shows that our novel
method for detecting signed/unsigned bugs (Section 5) is
effective at finding bugs.
SmartFuzz Finds More Bugs Than zzuf, on mplayer.
For mplayer, SmartFuzz generated 10,661 test cases
over all test runs, while zzuf generated 11,297 test cases;
SmartFuzz found 22 bugs while zzuf found 13. There-
fore, in terms of number of bugs, SmartFuzz outper-
formed zzuf for testing mplayer. Another surprising
result here is that SmartFuzz generated nearly as many
test cases as zzuf, despite the additional overhead for
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SLOC seedfile type and size Branches x86 instrs IRStmts asserts queries
mplayer 723468 MP3 (159000 bytes) 20647045 159500373 810829992 1960 36
ffmpeg 304990 AVI (980002 bytes) 4147710 19539096 115036155 4778690 462346
exiv2 57080 JPG (22844 bytes) 809806 6185985 32460806 81450 1006
gzip 140036 TAR.GZ (14763 bytes) 24782 161118 880386 95960 13309
bzip 26095 TAR.BZ2 (618620 bytes) 107396936 746219573 4185066021 1787053 314914

ImageMagick 300896 PNG (25385 bytes) 98993374 478474232 2802603384 583 81

Figure 4: The size of our test programs. We report the source lines of code for each test program and the size of one
of our seed files, as measured by David A. Wheeler’s sloccount. Then we run the test program on that seed file and
report the total number of branches, x86 instructions, Valgrind IR statements, STP assert statements, and STP query
statements for that run. We ran symbolic execution for a maximum of 12 hours, which was sufficient for all programs
except mplayer, which terminated during symbolic execution.

symbolic execution and constraint solving. This shows
the effect of the generational search and the choice of
memory model; we leverage a single expensive symbolic
execution and fast solver queries to generate many test
cases. At the same time, we note that zzuf found a seri-
ous InvalidWrite bug, while SmartFuzz did not.

A previous version of our infrastructure had prob-
lems with test cases that caused the target program to
run forever, causing the search to stall. Therefore, we
introduced a timeout, so that after 300 CPU seconds,
the target program is killed. We manually examined
the output of memcheck from all killed programs to de-
termine whether such test cases represent errors. For
gzip we discovered that SmartFuzz created six such test
cases, which account for the two out-of-bounds read (In-
validRead) errors we report; zzuf did not find any hang-
ing test cases for gzip. We found no other hanging test
cases in our other test runs.
Different Bugs Found by SmartFuzz and zzuf. We
ran the same target programs with the same seed files
using zzuf. Figure 7 shows bugs found by each type of
fuzzer. With respect to each tool, SmartFuzz found 37
total distinct bugs and zzuf found 59 distinct bugs. We
found some overlap between bugs as well: 19 bugs were
found by both fuzz testing tools, for a total of 77 distinct
bugs. This shows that while there is overlap between the
two tools, SmartFuzz finds bugs that zzuf does not and
vice versa. Therefore, it makes sense to try both tools
when testing software.

Note that we did not find any bugs for bzip2 with ei-
ther fuzzer, so neither tool was effective on this program.
This shows that fuzzing is not always effective at find-
ing bugs, especially with a program that has already seen
attention for security vulnerabilities. We also note that
SmartFuzz found InvalidRead errors in gzip while zzuf
found no bugs in this program. Therefore gzip is a case
where SmartFuzz’s directed testing is able to trigger a
bug, but purely random testing is not.
Block Coverage. We measured the number of basic
blocks in the program visited by the execution of the

seed file, then measured how many new basic blocks
were visited during the test run. We discovered zzuf
added a higher percentage of new blocks than Smart-
Fuzz in 13 of the test runs, while SmartFuzz added a
higher percentage of new blocks in 4 of the test runs
(the SmartFuzz convert-2 test run terminated prema-
turely.) Table 8 shows the initial basic blocks, the num-
ber of blocks added, and the percentage added for each
fuzzer. We see that the effectiveness of SmartFuzz varies
by program; for convert it is particularly effective, find-
ing many more new basic blocks than zzuf.
Contrasting SmartFuzz and zzuf Performance. De-
spite the limitations of random testing, the blackbox fuzz
testing tool zzuf found bugs in four out of our six test
programs. In three of our test programs, zzuf found
more bugs than SmartFuzz. Furthermore, zzuf found
the most serious InvalidWrite errors, while SmartFuzz
did not. These results seem surprising, because Smart-
Fuzz exercises directed testing based on program behav-
ior while zzuf is a purely blackbox tool. We would ex-
pect that SmartFuzz should find all the bugs found by
zzuf, given an unbounded amount of time to run both
test generation methods.

In practice, however, the time which we run the meth-
ods is limited, and so the question is which bugs are dis-
covered first by each method. We have identified possi-
ble reasons for this behavior, based on examining the test
cases and Valgrind errors generated by both tools4. We
now list and briefly explain these reasons.
Header parsing errors. The errors we observed are often
in code that parses the header of a file format. For exam-
ple, we noticed bugs in functions of mplayer that parse
MP3 headers. These errors can be triggered by simply
placing “wrong” values in data fields of header files. As
a result, these errors do not require complicated and un-
likely predicates to be true before reaching buggy code,
and so the errors can be reached without needing the full
power of dynamic test generation. Similarly, code cov-

4We have placed representative test cases from each method at
http://www.metafuzz.com/example-testcases.tgz
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mplayer ffmpeg exiv2 gzip convert
SyscallParam 4 3 2 3 0 0 0 0 0 0

UninitCondition 13 1 1 8 0 0 0 0 3 8
UninitValue 0 3 0 3 0 0 0 0 0 2

Overlap 0 0 0 1 0 0 0 0 0 0
Leak DefinitelyLost 2 2 2 4 0 0 0 0 0 0
Leak PossiblyLost 2 1 0 2 0 1 0 0 0 0

InvalidRead 1 2 0 4 4 6 2 0 1 1
InvalidWrite 0 1 0 3 0 0 0 0 0 0

Total 22 13 5 28 4 7 2 0 4 11
Cost per bug $1.30 $2.16 $5.76 $1.03 $1.80 $1.03 $3.60 NA $1.20 $0.65

Figure 7: The number of bugs, after fuzzy stack hashing, found by SmartFuzz (the number on the left in each column)
and zzuf (the number on the right). We also report the cost per bug, assuming $0.10 per small compute-hour, $0.40
per large compute-hour, and 3 runs of 24 hours each per target for each tool.

erage may be affected by the style of program used for
testing.
Difference in number of bytes changed. The two differ-
ent methods change a vastly different number of bytes
from the original seed file to create each new test case.
SmartFuzz changes exactly those bytes that must change
to force program execution down a single new path or
to violate a single property. Below we show that in our
programs there are only a small number of constraints on
the input to solve, so a SmartFuzz test case differs from
its seed file by only a small number of bytes. In contrast,
zzuf changes a fixed fraction of the input bytes to ran-
dom other bytes; in our experiments, we left this at the
default value of 0.004.

The large number of changes in a single fuzzed test
case means that for header parsing or other code that
looks at small chunks of the file independently, a sin-
gle zzuf test case will exercise many different code
paths with fuzzed chunks of the input file. Each path
which originates from parsing a fuzzed chunk of the in-
put file is a potential bug. Furthermore, because Val-
grind memcheck does not necessarily terminate the pro-
gram’s execution when a memory safety error occurs,
one such file may yield multiple bugs and correspond-
ing bug buckets.

In contrast, the SmartFuzz test cases usually change
only one chunk and so explore only one “fuzzed” path
through such code. Our code coverage metric, unfortu-
nately, is not precise enough to capture this difference be-
cause we measured block coverage instead of path cov-
erage. This means once a set of code blocks has been
covered, a testing method receives no further credit for
additional paths through those same code blocks.
Small number of generations reached by SmartFuzz. Our
24 hour experiments with SmartFuzz tended to reach a
small number of generations. While previous work on
whitebox fuzz testing shows that most bugs are found
in the early generations [14], this feeds into the pre-
vious issue because the number of differences between
the fuzzed file and the original file is proportional to the

generation number of the file. We are exploring longer-
running SmartFuzz experiments of a week or more to ad-
dress this issue.
Loop behavior in SmartFuzz. Finally, SmartFuzz deals
with loops by looking at the unrolled loop in the dynamic
program trace, then attempting to generate test cases for
each symbolic if statement in the unrolled loop. This
strategy is not likely to create new test cases that cause
the loop to execute for vastly more iterations than seen
in the trace. By contrast, the zzuf case may get lucky by
assigning a random and large value to a byte sequence
in the file that controls the loop behavior. On the other
hand, when we looked at the gzip bug found by Smart-
Fuzz and not by zzuf, we discovered that it appears to be
due to an infinite loop in the inflate dynamic routine
of gzip.

7.4 SmartFuzz Statistics
Integer Bug Queries Vary By Program. Table 5 shows
the number of solver queries of each type for one of our
24-hour test runs. We see that the type of queries varies
from one program to another. We also see that for bzip2
and mplayer, queries generated by type inference for
signed/unsigned errors account for a large fraction of all
queries to the constraint solver. This results from our
choice to eagerly generate new test cases early in the pro-
gram; because there are many potential integer bugs in
these two programs, our symbolic traces have many inte-
ger bug-seeking queries. Our design choice of using an
independent tool such as memcheck to filter the resulting
test cases means we can tolerate such a large number of
queries because they require little human oversight.
Time Spent In Each Task Varies By Program. Fig-
ure 9 shows the percentage of time spent in symbolic
execution, coverage, triage, and recording for each run
of our experiment. We also report an “Other” category,
which includes the time spent in the constraint solver.
This shows us where we can obtain gains through fur-
ther optimization. The amount of time spent in each
task depends greatly on the seed file, as well as on the

12



Initial basic blocks Blocks added by tests Ratio of prior two columns
Test run SmartFuzz zzuf SmartFuzz zzuf SmartFuzz zzuf

mplayer-1 7819 7823 5509 326 70% 4%
mplayer-2 11375 11376 908 1395 7% 12%
mplayer-3 11093 11096 102 2472 0.9% 22%
ffmpeg-1 6470 6470 592 20036 9.14% 310%
ffmpeg-2 6427 6427 677 2210 10.53% 34.3%
ffmpeg-3 6112 611 97 538 1.58% 8.8%
convert-1 8028 8246 2187 20 27% 0.24%
convert-2 8040 8258 2392 6 29% 0.073%
convert-3 NA 10715 NA 1846 NA 17.2%
exiv2-1 9819 9816 2934 3560 29.9% 36.3%
exiv2-2 9811 9807 2783 3345 28.3% 34.1%
exiv2-3 9814 9810 2816 3561 28.7% 36.3%
gzip-1 2088 2088 252 334 12% 16%
gzip-2 2169 2169 259 275 11.9% 12.7%
gzip-3 2124 2124 266 316 12% 15%
bzip2-1 2779 2778 123 209 4.4% 7.5%
bzip2-2 2777 2778 125 237 4.5% 8.5%
bzip2-3 2823 2822 115 114 4.1% 4.0%

Figure 8: Coverage metrics: the initial number of basic blocks, before testing; the number of blocks added during
testing; and the percentage of blocks added.

Total SymExec Coverage Triage Record Other
gzip-1 206522s 0.1% 0.06% 0.70% 17.6% 81.6%
gzip-2 208999s 0.81% 0.005% 0.70% 17.59% 80.89%
gzip-3 209128s 1.09% 0.0024% 0.68% 17.8% 80.4%
bzip2-1 208977s 0.28% 0.335% 1.47% 14.0% 83.915%
bzip2-2 208849s 0.185% 0.283% 1.25% 14.0% 84.32%
bzip2-3 162825s 25.55% 0.78% 31.09% 3.09% 39.5%

mplayer-1 131465s 14.2% 5.6% 22.95% 4.7% 52.57%
mplayer-2 131524s 15.65% 5.53% 22.95% 25.20% 30.66%
mplayer-3 49974s 77.31% 0.558% 1.467% 10.96% 9.7%
ffmpeg-1 73981s 2.565% 0.579% 4.67% 70.29% 21.89%
ffmpeg-2 131600s 36.138% 1.729% 9.75% 11.56% 40.8%
ffmpeg-3 24255s 96.31% 0.1278% 0.833% 0.878% 1.8429%
convert-1 14917s 70.17% 2.36% 24.13% 2.43% 0.91%
convert-2 97519s 66.91% 1.89% 28.14% 2.18% 0.89%
exiv2-1 49541s 3.62% 10.62% 71.29% 9.18% 5.28%
exiv2-2 69415s 3.85% 12.25% 65.64% 12.48% 5.78%
exiv2-3 154334s 1.15% 1.41% 3.50% 8.12% 85.81%

Figure 9: The percentage of time spent in each of the
phases of SmartFuzz. The second column reports the to-
tal wall-clock time, in seconds, for the run; the remaining
columns are a percentage of this total. The “other” col-
umn includes the time spent solving STP queries.

target program. For example, the first run of mplayer,
which used a mp3 seedfile, spent 98.57% of total time
in symbolic execution, and only 0.33% in coverage, and
0.72% in triage. In contrast, the second run of mplayer,
which used a mp4 seedfile, spent only 14.77% of time in
symbolic execution, but 10.23% of time in coverage, and
40.82% in triage. We see that the speed of symbolic ex-
ecution and of triage is the major bottleneck for several
of our test runs, however. This shows that future work
should focus on improving these two areas.

7.5 Solver Statistics
Related Constraint Optimization Varies By Program.
We measured the size of all queries to the constraint
solver, both before and after applying the related con-
straint optimization described in Section 4. Figure 10
shows the average size for queries from each test pro-
gram, taken over all queries in all test runs with that
program. We see that while the optimization is effective
in all cases, its average effectiveness varies greatly from
one test program to another. This shows that different
programs vary greatly in how many input bytes influence
each query.
The Majority of Queries Are Fast. Figure 10 shows the
empirical cumulative distribution function of STP solver
times over all our test runs. For about 70% of the test
cases, the solver takes at most one second. The maxi-
mum solver time was about 10.89 seconds. These results
reflect our choice of memory model and the effectiveness
of the related constraint optimization. Because of these,
the queries to the solver consist only of operations over
bitvectors (with no array constraints), and most of the
sets of constraints sent to the solver are small, yielding
fast solver performance.

8 Conclusion
We described new methods for finding integer bugs
in dynamic test generation, and we implemented these
methods in SmartFuzz, a new dynamic test generation
tool. We then reported on our experiences building the
web site metafuzz.com and using it to manage test case
generation at scale. In particular, we found that Smart-
Fuzz finds bugs not found by zzuf and vice versa, show-
ing that a comprehensive testing strategy should use both
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average before average after ratio (before/after)
mplayer 292524 33092 8.84
ffmpeg 350846 83086 4.22
exiv2 81807 10696 7.65
gzip 348027 199336 1.75
bzip2 278980 162159 1.72

convert 2119 1057 2.00

Figure 10: On the left, average query size before and af-
ter related constraint optimization for each test program.
On the right, an empirical CDF of solver times.

white-box and black-box test generation tools.
Furthermore, we showed that our methods can find in-

teger bugs without the false positives inherent to static
analysis or runtime checking approaches, and we showed
that our methods scale to commodity Linux media play-
ing software. The Metafuzz web site is live, and we have
released our code to allow others to use our work.
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