
Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms

Ralf Hund Thorsten Holz Felix C. Freiling

Laboratory for Dependable Distributed Systems
University of Mannheim, Germany

hund@uni-mannheim.de, {holz,freiling}@informatik.uni-mannheim.de

Abstract

Protecting the kernel of an operating system against at-
tacks, especially injection of malicious code, is an impor-
tant factor for implementing secure operating systems.
Several kernel integrity protection mechanism were pro-
posed recently that all have a particular shortcoming:
They cannot protect against attacks in which the attacker
re-uses existing code within the kernel to perform mali-
cious computations. In this paper, we present the design
and implementation of a system that fully automates the
process of constructing instruction sequences that can be
used by an attacker for malicious computations. We eval-
uate the system on different commodity operating sys-
tems and show the portability and universality of our
approach. Finally, we describe the implementation of a
practical attack that can bypass existing kernel integrity
protection mechanisms.

1 Introduction

Motivation. Since it is hard to prevent users from run-
ning arbitrary programs within their own account, all
modern operating systems implement protection con-
cepts that protect the realm of one user from another.
Furthermore, it is necessary to protect the kernel itself
from attacks. The basis for such mechanisms is usu-
ally called reference monitor [2]. A reference monitor
controls all accesses to system resources and only grants
them if they are allowed. While reference monitors are
an integral part of any of today’s mainstream operating
systems, they are of limited use: because of the sheer
size of a mainstream kernel, the probability that some
system call, kernel driver or kernel module contains a
vulnerability rises. Such vulnerabilities can be exploited
to subvert the operating system in arbitrary ways, giv-
ing rise to so called rootkits, malicious software running
without the user’s notice.

In recent years, several mechanism to protect the in-
tegrity of the kernel were introduced [6, 9, 15, 19, 22],
as we now explain. The main idea behind all of these
approaches is that the memory of the kernel should be
protected against unauthorized injection of code, such as
rootkits. Note that we focus in this work on kernel in-
tegrity protection mechanisms and not on control-flow
integrity [1, 7, 14, 18] or data-flow integrity [5] mech-
anisms, which are orthogonal to the techniques we de-
scribe in the following.

1.1 Kernel Integrity Protection Mecha-
nisms

Kernel Module Signing. Kernel module signing is a
simple approach to achieve kernel code integrity. When
kernel module signing is enabled, every kernel module
should contain an embedded, valid digital signature that
can be checked against a trusted root certification author-
ity (CA). If this check fails, loading of the code fails, too.
This technique has been implemented most notably for
Windows operating systems since XP [15] and is used in
every new Windows system.

Kernel module signing allows to establish basic secu-
rity guidelines that have to be followed by kernel code
software developers. But the security of the approach
rests on the assumption that the already loaded kernel
code, i.e., the kernel and all of its modules, does not
have a vulnerability which allows for execution of un-
signed kernel code. It is thus insufficient to check for
kernel code integrity only upon loading.

W⊕X. W⊕X is a general approach which aims at pre-
venting the exploitation of software vulnerabilities at
runtime. The idea is to prevent execution of injected
code by enforcing the W⊕X property on all, or certain,
page tables of the virtual address space: A memory page
must never be writable and executable at the same time.
Since injected code execution always implies previous

instruction writes in memory, the integrity of the code
can be guaranteed. The W⊕X technique first appeared in
OpenBSD 3.3; similar implementations are available for
other operating systems, including the PaX [28] and Exec
Shield patches for Linux, and PaX for NetBSD. Data Ex-
ecution Prevention (DEP) [16] is a technology from Mi-
crosoft that relies on W⊕X for preventing exploitation of
software vulnerabilities and has been implemented since
Windows XP Service Pack 2 and Windows Server 2003.

The effectiveness of W⊕X relies on the assumption
that the attacker wishes to modify and execute code in
kernel space. In practice, however, an attacker usually
first gains userspace access which implies the possibil-
ity to alter page-wise permission in the userspace por-
tion of the virtual address space. Due to the fact that
the no-executable bit in the page-table is not fine-grained
enough, it is not possible to mark a memory page to be
executably only in user mode. So an attacker may simply
prepare her instructions in userspace and let the vulnera-
ble code jump there.

NICKLE. NICKLE [19] is a system which allows for
lifetime kernel code integrity, and thus rootkit preven-
tion, by exploiting a technology called memory shadow-
ing. NICKLE is implemented as virtual machine moni-
tor (VMM) which maintains a separate so-called shadow
memory. The shadow memory is not accessible from
within the VM guest and contains copies of certain por-
tions of the VM guest’s main memory. Newly executing
code, i.e., code that is executed for the first time, is au-
thenticated using a simple cryptographic hash value com-
parison and then copied to the shadow memory trans-
parently by NICKLE. Since the VMM is trusted in this
model, it is guaranteed that no unauthenticated modifica-
tions to the shadow memory can be applied as executing
guest code can never access the privileged shadow mem-
ory. Therefore, any attempt to execute unauthenticated
code can be foiled in the first place. Another positive
aspect of this approach is that it can be implemented in
a rather generic fashion, meaning that it is perfectly ap-
plicable to both open source and commodity operating
systems. Of course, NICKLE itself has to make certain
assumptions about underlying file format of executable
code, e.g., driver files, since it needs to understand the
loading of these files. Currently, NICKLE supports Win-
dows 2000, Windows XP, as well as Linux 2.4 and 2.6
based kernels. So far, NICKLE has been implemented
for QEMU, VMware, and VirtualBox hypervisors. The
QEMU source code is publicly available [20].

The isolation of the VMM from the VM Guest allows
for a comparably unrestrictive threat model. In the given
system, an attacker may have gained the highest level of
privilege within the VM guest and may access the en-
tire memory space of the VM. In other words, an ad-

versary may compromise arbitrary system entities, e.g.,
files, processes, etc., as long as the compromise happens
only inside the VM.

SecVisor. SecVisor [22] is a software solution that con-
sist of a general, operating system independent approach
to enforce W⊕X based on a hypervisor and memory vir-
tualization. In the threat model for SecVisor an attacker
can control everything but the CPU, the memory con-
troller, and kernel memory. Furthermore, an attacker
can have the knowledge of kernel exploits, i.e., she can
exploit a vulnerability in kernel mode. In this setting,
SecVisor “protects the kernel against code injection at-
tacks such as kernel rootkits” [22]. This is achieved by
implementing a hypervisor that restricts what code can
be executed by a (modified) Linux kernel. The hyper-
visor virtualizes the physical memory and the MMU to
set page-table-based memory protections. Furthermore,
SecVisor verifies certain properties on kernel mode en-
try and exit, e.g., all kernel mode exits set the privilege
level of the CPU to that of user mode or the instruction
pointer points to approved code at kernel entry. Franklin
et al. showed that these properties are prone to attacks
and successfully injected code in a SecVisor-protected
Linux kernel [8], but afterwards also corrected the errors
found.

1.2 Bypassing Integrity Protection Mecha-
nisms

Based on earlier programming techniques like return-to-
libc [17, 21, 27], Shacham [23] introduced the technique
of return-oriented programming. This technique allows
to execute arbitrary programs in privileged mode with-
out adding code to the kernel. Roughly speaking, it mis-
uses the system stack to “re-use” existing code fragments
(called gadgets) of the kernel (we explain this technique
in more detail in Section 2). Shacham analyzed the GNU
Linux libc of Fedora Core 4 on an Intel x86 machine
and showed that executing one malicious instruction in
system mode is sufficient to construct arbitrary computa-
tions from existing code. No malicious code is needed,
so most of the integrity protection mechanisms fail to
stop this kind of attack.

Buchanan et al. [4] recently extended the approach to
the Sparc architecture. They investigated the Solaris 10
C library, extracted code gadgets and wrote a compiler
that can produce Sparc machine programs that are made
up entirely of the code from the identified gadgets. They
concluded that it is not sufficient to prevent introduction
of malicious code; we must rather prevent introduction
of malicious computations.

2

Attacker Model. Like the mentioned literature, we
base our work on the following reasonable attacker
model. We assume that the attacker has full access to
the user’s address space in normal mode (local attacker)
and that there exists at least one vulnerability within a
system call such that it is possible to point the control
flow to an address of the attacker’s choice at least once
while being in privileged mode. In practice, a vulnerable
driver or kernel module is sufficient to satisfy these as-
sumptions. Our attack model also covers the typical “re-
mote compromise” attack scenario in network security
where attackers first achieve local user access by guess-
ing a weak password and then escalate privileges.

Contributions. In this paper, we take the obvious next
step to show the futility of current kernel integrity pro-
tection techniques. We make the following research con-
tributions:

• While previous work [4, 21, 23] was based on man-
ual analysis of machine language code to create
gadgets, we present a system that fully automates
the process of constructing gadgets from kernel
code and translating arbitrary programs into return-
oriented programs. Our automatic system can use
any kernel code (not only libc, but also drivers for
example) even on commodity operating systems.

• Using our automatic system, we construct a
portable rootkit for Windows systems that is en-
tirely based on return-oriented-programming. It
therefore is able to bypass even the most sophisti-
cated integrity checking mechanism known today
(for example NICKLE [19] or SecVisor [22]).

• We evaluate the performance of return-oriented pro-
grams and show that the runtime overhead of this
programming technique is significant: In our tests
we measured a slowdown factor of more than 100
times in sorting algorithms. However, for exploit-
ing a system this slowdown might not be important.

Outline. The paper is structured as follows. In Sec-
tion 2 we provide a brief introduction to the technique of
return-oriented-programming. In Section 3 we introduce
in detail our framework for automating the gadget con-
struction and translating arbitrary programs into return-
oriented programs. We present evaluation results for our
framework in Section 4: Using ten different machines,
we confirm the portability and universality of our ap-
proach. We present the design and implementation of a
return-oriented rootkit in Section 5 and finally conclude
the paper in Section 6 with a discussion of future work.

2 Background: Return-Oriented Pro-
gramming

The idea behind a return-to-libc attack [17, 27] is that the
attacker can use a buffer overflow to overwrite the return
address on the stack with the address of a legitimate in-
struction which is located in a library, e.g., within the C
runtime libc on UNIX-style systems. Furthermore, the
attacker places the arguments to this function to another
portion of the stack, similar to classical buffer overflow
attacks. This approach can circumvent some buffer over-
flow protection techniques, e.g., non-executable stack.

The technique of return-oriented programming was
introduced by Shacham et al. [4, 23]. It generalizes
return-to-libc attacks by chaining short new instructions
streams (“useful instructions”) that then return. Several
instructions can be combined to a gadget, the basic block
within return-oriented programs that for example com-
putes the AND of two operands or performs a compar-
ison. Gadgets are self-contained and perform one well-
defined step of a computation. The attacker uses these
gadgets to cleverly craft stack frames that can then per-
form arbitrary computations. Fig. 1 illustrates the pro-
cess of return-oriented programming. First, the attacker
identifies useful instructions that are followed by a ret
instruction (e.g., instruction sequences A, B and C in
Fig. 1). These are then chained to gadgets to perform
a certain operation. For example, instruction sequences
A and B are chained together to gadget 1 in Fig. 1. On
the stack, the attacker places the appropriate return ad-
dresses to these instruction sequences. In the example
of Fig. reffig:rop the return addresses on the stack will
cause the executions of gadget 1 and then gadget 2. The
stack pointer ESP determines which instruction to fetch
and execute, i.e., within return-oriented programming the
stack pointer adopts the role of the instruction pointer
(IP): Note that the processor does not automatically in-
crement the stack pointer, but the ret instruction at the
end of each useful instruction does.

The authors showed that both the libc library of Linux
running on the x86 architecture (CISC) as well as the libc
library of Solaris running on a SPARC (RISC) contain
enough useful instructions to construct meaningful gad-
gets. They manually analyzed the libc of both environ-
ments and constructed a library of gadgets that is Turing-
complete. We extend their work by presenting the design
and implementation of a fully automated return-oriented
framework that can be used on commodity operating sys-
tems. Furthermore, we describe an actual attack against
kernel integrity protection systems by implementing a
return-oriented rootkit.

3

0x00000000

0xFFFFFFFF

0x80000000

User address space

Kernel address space

Stack

Heap

C

B

A ESP

instruction a
retA

gadget 2
instruction b

retB

instruction c
ret C

gadget 1

Figure 1: Schematic overview of return-oriented pro-
gramming on the Windows platform

3 Automating Return-Oriented Program-
ming

In order to be able to create and execute return-oriented
programs in a generic way, we created our own, modu-
lar toolset which enables one to abstract from the vary-
ing concrete conditions one faces in this context. Ad-
ditionally, our system greatly simplifies the development
of return-oriented programs by providing high-level con-
structs to accomplish certain tasks. Figure 2 provides a
schematic overview of our system; it is partitioned into
three core components:

• Constructor. The Constructor scans a given set of
files containing executable code, spots useful in-
struction sequences and builds return-oriented gad-
gets in an automatic fashion. These well-defined
gadgets serve as a low-level abstraction and inter-
face to the Compiler.

• Compiler. The Compiler provides a comparatively
high-level language for programming in a return-
oriented way. It takes the output of the Construc-
tor along with a source file written in a dedicated
language to produce the final memory image of the
program.

• Loader. As the Compiler’s output is position inde-
pendent, it is the task of the Loader to resolve rela-
tive memory addresses to absolute addresses. This
component is implemented as library that is sup-
posed to be linked against by an exploit.

All components have been implemented in C++ and
currently we support Windows NT-based operating sys-
tems running on an IA-32 architecture. In the following
paragraphs, we give more details on each component’s
inner workings.

3.1 Automated Gadget Construction
One of the most essential parts of our system is the auto-
mated construction of return-oriented gadgets, thus en-
abling us to abstract from a concrete set of executable
code being exploited for our purposes. This is in con-
trast to previous work [4, 23], which focused on concrete
versions of a C library instead. Our system works on an
arbitrary set of files containing valid x86 machine code
instructions; we will henceforth refer to these files as the
codebase.

Our framework implements the creation of gadgets in
the so-called Constructor, which performs three subse-
quent jobs: First, it scans the codebase to find useful
instruction sequences, i.e., instructions preceding a re-
turn (ret) instruction. These instructions can then be
used to implement a return-oriented program by concate-
nating the sequences in a specific way. Our current im-
plementation targets machines running an arbitrary Win-
dows version as operating system and thus we use all
driver executables and the kernel as codebase in the scan-
ning phase. In the second step, our algorithm chains the
instruction sequences together to form gadgets that per-
form basic operations. We define the term gadget analog
to Shacham [23], i.e., gadgets comprise composite useful
instruction sequences to accomplish a well-defined task
(e.g., perform an AND operation or check a boolean con-
dition). More precisely, when we talk of concrete gad-
gets, we mean the corresponding stack allocation, i.e.,
the contents (return-addresses, constants, etc.) of the
memory area the stack register points to. Gadgets rep-
resent an intermediate abstraction layer whose elements
are the basic units subsequently used by the Compiler for
building the final return-oriented program. Gadgets be-
ing written to the Constructor’s final output file are called
final gadgets. In the third step, the Constructor searches
for exported symbols in the codebase and saves these in
the output file for later use by the Compiler.

3.1.1 Finding Useful Instruction Sequences

The first decision that has do be made is describing
the basic instruction sequences being the very core of a
return-oriented program. As previously mentioned, these
instructions occur prior to a ret x86 assembler instruc-
tion. We have to decide how many instructions preced-
ing a return are considered. For instance, the Construc-
tor might look for sequences such as mov eax, ecx;
add eax, edx; ret, and incorporate these in the
subsequent gadget construction. An easier approach,
however, is to consider only a single instruction before a
return instruction. Of course, the former attempt has the
advantage of being more comprehensive, along with the
drawback of requiring additional overhead. This stems
from the fact that one has to take every instruction’s pos-

4

0xFFFFFFFF

0x80000000

Kernel address space

Constructor

win32k.sys

ntfs.sys

ntoskrnl.exe

hal.dll

. . .
. . .

Useful Instructions Gadgets

Compiler

Source Code

Return-oriented
Program

Loaderexploit

Figure 2: Schematic system overview

sible side-effects on registers and memory into account.
In our work, we have thus chosen to implement the lat-
ter approach. Rudimentary research has shown that the
additional value of using longer instruction sequences
hardly justifies the imposed overhead since the effect of
the former is not very significant in practice: We have
observed that the high density of the x86 instructions en-
coding does not introduce substantial surplus concerning
additional instruction sequences. We would also like to
stress that this simplified approach has not turned out to
be problematic in our work so far since the codebase of
every system we evaluated held sufficient instruction se-
quences to implement arbitrary return-oriented programs
(see Section 4 for details). However, our system might
still be extended in the future in order to support more
than one instruction preceding a return instruction.

To scan the codebase for useful instruction sequences,
the Constructor first enumerates all sections of the PE
file that contain executable code and scans these for x86
ret opcodes. In addition to the standard ret instruc-
tion, which has the opcode 0xC3, we are also interested
in return instructions that add an immediate value to the
stack, represented by opcode 0xC2 and followed by the
16bit immediate offset. The former are favorable to the
latter as they induce less memory consumption in the
stack allocation since we need to append effectively un-
used memory before the next instruction.

Having found all available return instructions, the
Constructor then bytewise disassembles the sequence
backwards, thereby building a trie. This works analo-
goulsy to the method already described by Shacham [23].
In order to disassemble encoded x86 instructions, our
program uses the distorm library [10].

3.1.2 Building Gadgets

The next logical step is chaining together instruction se-
quences to form structured gadgets that perform basic
operations. Gadgets built by the Constructor form the
very basic entities that are chained together by the Com-
piler for building the program stack allocation. Due to
the clear separation of the Constructor and the Com-
piler, final gadgets are independent of each other. There-
fore, each final gadget constitutes an autonomous piece
of return-oriented code: Final gadgets take a set of source
operands, perform a well-defined operation on these, and
then write the result into a destination operand. In our
model, source and destination operands are always mem-
ory variable addresses. For example, an addition gad-
get takes two source operands, i.e., memory addresses to
both input variables, as input, adds both values, and then
writes back the result to the memory address pointed to
by the destination operand. There are certain exceptions
to this rule, namely final gadgets that perform very spe-
cific tasks for certain situations, e.g., manipulating the
stack register directly. Final gadgets are designed to be
fine-grained with respect to the constraints imposed by
the operand model. They can be separated into three
classes: Arithmetic, logical and bitwise operations; con-
trol flow manipulations (static and dynamic); and stack
register manipulations.

The crucial point in gadget construction concerns the
algorithm that is deployed to spot appropriate useful in-
structions and the rules in which they are chained to-
gether. We consider completeness, memory consump-
tion, and runtime to be the three dominating properties.
By completeness, we mean the algorithm’s fundamental
ability to construct gadgets even in a minimal codebase,

5

EAX ECX

EDX

direct

directindirect (ECX)

1.

1.2.

Figure 3: MOV connection graph: Chained instructions
can be used to emulate other instructions.

where minimal indicates a codebase with a theoretically
minimal set of instruction sequences to allow for corre-
sponding gadget computations. By memory consump-
tion, we denote that the constructed gadgets should be
preferably small in size. By runtime, we mean that the
algorithm should terminate within a reasonable period
of time. Due to the CISC nature of x86 and the corre-
sponding complexity of the machine language, we con-
sider the completeness property to be the most difficult
one to achieve. The many subtle details of this platform
make it hard to find all possible combinations of useful
instruction performing a given operation.

In the following, we provide a deeper look into our
gadget construction algorithm. As with every modern
CPU, x86 is a register-based architecture. This observa-
tions drives the starting point of our algorithm in that its
first step is to define a set of general purpose registers
that are allowed to be used, i.e., read from or written to,
by gadget computations. This also has the positive side-
effect that it enables an easy way to control which reg-
isters are modified by the return-oriented program. We
will henceforth call these registers working registers.

Basic Gadgets. Starting from this point, we gradually
construct lists of gadgets performing a related task for
each working register. More precisely, the first step
is to check which register can be loaded with fixed
values, an operation that can easily be achieved with
a pop <register>; ret sequence (register-based
constant load gadgets). Afterwards, the Constructor
searches for unary instructions sequences, e.g., not
or neg, that take working registers as their operands
(register-based unary operation gadgets). Subsequently,
the algorithm checks which working registers are con-
nected by binary instruction sequences, e.g., mov, add,
and, and the like (register-based binary operation gad-
gets). In order to find indirectly connected registers,
we build a directed graph for each operation whereas a
node represents a register and an edge depicts an oper-
ation from the source register to the destination register

(also always being a source operand on x86). Then, we
traverse all paths in the graph for each node. For ex-
ample, let us assume the following situation: The given
codebase allows for the execution of mov ecx, eax;
ret and mov edx, ecx; ret sequences, but does
not supply mov edx, eax sequences. We can easily
find the corresponding path in our graph and hence con-
struct a gadget that moves the content of eax to edx by
chaining together both sequences (see Fig. 3). Since x86
is not a load-store-architecure, i.e., most instructions may
take direct memory operands, we also search for memory
operand based instructions (register-based memory load-
/operation gadgets). This also allows us to check which
working registers can be loaded with memory contents,
for instance, mov eax, [ecx]; ret easily allows
us to load an arbitrary memory location into eax by
preparing ecx accordingly. The result of this first stage
of the algorithm are lists of internal gadgets being bound
to working registers and performing certain operations
on these.

In the next stage, our algorithm merges working
register-based gadgets to form new, final gadgets that
perform certain operations, e.g., addition, multiplication,
bitwise OR, and so on (final unary/binary operation gad-
gets). Therefore, it generates every possible combina-
tion of according register-based load/store and operation
gadgets to choose the one being minimal with respect to
consumed memory space. In the construction, we have
to take into account possibly emerging side-effects when
connecting instruction sequences. We say that a gadget
has a side-effect on a given register when it is modified
during execution. For instance, if we wish to build a gad-
get that loads two memory addresses into eax and ecx
and appends an and eax, ecx; ret sequence, we
have to make sure that both load gadgets do not have
side-effects on each other’s working register.

Control Flow Alteration Gadgets. Afterwards, the al-
gorithm constructs final gadgets that allow for static and
dynamic control flow alterations in a return-oriented pro-
gram (final comparison and dynamic control flow gad-
gets). Therefore, we must first compare two operands
with either a cmp or sub instruction, both have the same
impact on the eflags registers which holds the condi-
tion flags. The main problem in this context is gaining
access to the CPU’s flag registers as this is only possible
with a limited set of instructions. As already pointed out
by Shacham [23], a straightforward solution is to search
for the lahf instruction, which stores the lower part of
the eflags register into ah. Another possibility is to
search for setCC instructions, which store either one or
zero depending on whether the condition is true or not.
Thereby, CC can be any condition known to the CPU,
e.g., equal, less than, greater or equal, and so on. Once

6

we have stored the result of the comparison (where 1
means true and 0 means false) the natural way to pro-
ceed is to multiply this value by four and add it to a jump
table pointer. Then, we simply move the stack register to
the value being pointed at.

Additional Gadgets. Finally, the Constructor builds
some special gadgets that enable very specific tasks,
such as, e.g., pointer dereferencing (final dereferencing
gadgets), and direct stack or base register manipulation
(stack register manipulation gadgets). The latter are re-
quired in certain situation as described in the next sec-
tion. The final output of the Constructor is an XML file
that describes the finals gadgets along with a list of ex-
ported symbols from the codebase.

Turing Completeness. Gadgets are used within
return-oriented programming as the basis blocks of each
computation. An interesting question is now which kind
of gadgets are needed such that return-oriented pro-
gramming is Turing complete, i.e., it can compute every
Turing-computable function [30]. We construct gadgets
to load/store variables (including pointer dereferencing),
branch instructions, and also gadgets for arithmetic
operations (i.e., addition and not). This set of gadgets is
minimal in the sense that we can construct from these
gadgets any program: Our return-oriented framework
can implement so called GOTO languages, which are
Turing complete [12].

3.2 Compiler

The Compiler is the next building block of our return-
oriented framework: This tool takes the final gadgets
constructed by the Constructor along with a high-level
language source file as input to produce the stack allo-
cation for the return-oriented program. The Compiler
acts as an abstraction of the concrete codebase so that
developers do not have to mess with the intricacies of
the codebase on the lowest layer; moreover, it provides a
comparatively easy and abstract way to formulate a com-
plex task to be realized in a return-oriented fashion. The
Compiler’s output describes the stack allocation as well
as additional memory areas serving a specific purpose
in a position independent way, i.e., it only contains rel-
ative memory addresses. This stems from the fact that
the Compiler cannot be aware of the final code locations
since drivers may be relocated in kernel memory due to
address conflicts. Moreover, the program memory’s base
location may be unknown at this stage. It is hence the
task of the Loader to resolve these relative addresses to
absolute addresses (see next section).

3.2.1 Dedicated Language

Naturally, one of the first considerations in compiler
development concerns the programming language em-
ployed. One possibility is to build the Compiler on top of
an already existing language, ideally one that is designed
the accomplish low-level tasks, such as C. However, this
also introduces a profound overhead as all the language’s
peculiarities, e.g., the entire type system, must be imple-
mented in a correct manner. Due to our very specific
needs, we have found none of the existing language to be
suited for our purpose and thus decided to create a dedi-
cated language. It bears certain resemblance to many ex-
isting languages, specifically C. Our dedicated language
provides the following code constructs:

• subroutines and recursive subroutine calls,

• a basic type-system that consists of two variable
types,

• all arithmetic bitwise, logical and pointer operators
known to the C language with some minor devia-
tions, and

• nested dynamic control flow decisions and nested
conditional looping.

Additionally, we also supports external subroutine calls
which enables one to dispatch operations to exported
symbols from drivers or the kernel; this gives us more
flexibility, greatly simplifies the development of return-
oriented programs, and also substantially decreases stack
allocation memory consumption.

Two basic variable types are supported: Integers and
character arrays, the former being 32bit long while in
case of the latter, strings are zero-terminated just as in C.
Along with the ability to call external subroutines, this
enables us to use standard C library functions exported
by the kernel to process strings within the program. We
do not need support for short and char integers for now
as we do not consider these to be substantially relevant
for our needs. Short integer operations thus must be em-
ulated by the return-oriented program when needed.

The Compiler has been implemented in C++ using the
ANTLR compiler generation framework [29]. Source
code examples for our dedicated programming language
are introduced in Section 5.4 and in Appendix B.

3.2.2 Memory Layout

Just as the Constructor chains together instruction se-
quences, the Compiler chains together gadgets to build
a program performing the semantics imposed by the
source code. Apart from that, it also defines the memory
layout and assigns code and data to memory locations.
By code, we henceforth mean the stack allocation of the

7

Backup Code

ESA (emulated stack area)

Data

Code

ICA (import call area)
addresses

Figure 4: Memory layout of program image within our
return-oriented framework

sum of all gadgets of a program (mostly return addresses
to instruction sequences); this must not be confused with
real CPU code, i.e., the code as we defined does not need
any executable memory, but appears like usual data to
the processor. This is the key concept in bypassing ker-
nel integrity protection mechanisms: We do not need to
inject code since we re-use existing code within the ker-
nel during an exploit.

When we use the term data, we henceforth mean the
memory area composed by the program’s variables and
temporary internal data required by computations. We
then constitute the memory layout to consist of a lin-
ear memory space we hereafter call the program image,
which is shown in Fig. 4. Furthermore, some regions of
this space serve special purposes we describe later on. In
total, we separate the program image into five sections:
Code, data, ICA, ESA and backup code.

The so-called import call area (ICA) resides at the
very beginning, i.e., the lowest address, of the address
space. When executing external function calls, the pro-
gram prepares the call to be dispatched with the stack
pointer esp pointing at the end (the highest address)
of the ICA. Therefore, it first prepares this region by
copying the arguments and return addresses to point to
specific stack manipulation gadgets. Special care has
to be taken concerning the imposed calling convention
of the callee. We support both relevant conventions,
namely stdcall, i.e., the callee cleans up the stack,
and cdecl, i.e., the caller cleans up the stack. The
need for such a dedicated section stems from the fact
that, upon entry, the callee considers all memory regions
below esp to be available to hold its local variables,
hence overwriting return-oriented code that might still
be needed at a later stage, i.e., when a jump back occurs.

Following the ICA, the Compiler places the code, i.e.,
return addresses and constant values to be popped into
registers, followed by the data section which holds the

actual explicit variables as well as some implicit tem-
porary variables that are mandatory during computation.
After that, the emulated stack area (ESA) resides, which
is used to emulate a “stack in the stack” to allow for re-
cursive subroutine calls in the return-oriented program.
The program image is terminated by an optional backup
of the code section, a necessity that arises from a pecu-
liarity of the Windows operating system we discuss later
on in Section 5.2.

3.2.3 Miscellaneous

We also provide special language constructs enabling
one to retransfer the CPU control flow to a non-return
oriented source. For instance, in the typical case of an ex-
ploit and subsequent execution of return-oriented code,
we might wish to return to the vulnerable code to allow
for a continuation of execution. Therefore, we must re-
store the esp register to point to its original value. Our
language hence provides appropriate primitives to tam-
per with the stack.

3.3 Loader

The final building block of our system consists of
the Loader whose main task is to resolve the pro-
gram image’s relative addresses to absolute addresses.
Therefore, it must first enumerate all loaded drivers in
the system and retrieve their base addresses. Luck-
ily, Windows provides a function by the name of
EnumDeviceDrivers that lets us accomplish this
task even in usermode.

For the sake of flexibility, the Loader is implemented
as a dynamic link library (DLL). The actual exploit trans-
fers the task of building the final program image to the
Loader and then adjusts the exploit to modify the instruc-
tion pointer eip to a gadget that modifies the stack (e.g.,
pop esp; ret) to start the execution of the return-
oriented program. It is therefore sufficient for the exploit
to be able to modify eight subsequent bytes in the stack
frame: The first four bytes are a return address (of the se-
quence pop esp; ret) that is executed upon the next
ret in the current control flow; the last four bytes point
to the entry point of the program image to which control
will flow after the execution of the next ret.

4 Evaluation Results

We implemented the system we described in the pre-
vious section in the C++ programming language. The
Constructor consists of about 3,400 lines of code (LOC),
whereas the Compiler is implemented in about 3,200
LOC. The loader only needs 700 LOC.

8

In the following, we present evaluation results for the
individual components of our framework. We first show
measurement results for the Constructor and Compiler
and then provide several examples of the gadgets con-
structed by our tools. Finally we also measure the run-
time overhead of return-oriented programs.

4.1 Constructor and Compiler

4.1.1 Evaluation of Useful Instructions and Gadget
Construction

One goal of our work is to fully automate the process
of constructing gadgets from kernel code on different
platforms without the need of manual analysis of ma-
chine language code. We thus tested the Constructor on
ten different machines running different versions of Win-
dows as operating system: Windows 2003 Server, Win-
dows XP, and Windows Vista were considered in differ-
ent service pack versions to assess a wide variety of plat-
forms. On each tested platform the Constructor was able
to find enough useful instructions to construct all impor-
tant gadgets that are needed by the Compiler, i.e., on each
platform we are able to compile arbitrary return-oriented
programs. This substantiates our claim that our frame-
work is general and portable.

Table 1 provides an overview of the results for the gad-
get construction algorithm for six of the ten test config-
urations. We omitted the remaining four test results for
the sake of brevity; the results for these machines are
very similar to the listed ones. The table contains test
results for two scenarios: On the one hand, we list the
number of return instructions and trie leaves when us-
ing any kernel code, e.g., all drivers and kernel com-
ponents. On the other hand, we list in the restricted
column (res.) the results when using only the main
kernel component (ntoskrnl.exe) and the Win32-
subsystem (win32k.sys) for extracting useful instruc-
tions. These two components are available in any Win-
dows environment and thus constitute a memory region
an attacker can always use to build gadgets.

The number of return instructions found varies with
the platform and is influenced by many factors, mainly
OS version/service pack and hardware configuration. Es-
pecially the hardware configuration can significantly en-
large the number of available return instructions since the
installed drivers add a large codebase to the system: We
found that often graphic card drivers add thousands of
instructions that can be used by an attacker. For the com-
plete codebase we found that on average every 162nd in-
struction is a return. Therefore an attacker typically finds
tens of thousands of instructions she can use.

If the attacker restricts herself to using only the core
kernel components, she is still able to find enough re-

turn instructions to be able to construct all necessary gad-
gets: We found that on average every 153rd instruction
is a return, indicating a more dense structure within the
core kernel components. These returns and the preced-
ing instructions could be used to construct the gadgets
in all tested environments. This result indicates that on
Window-based systems an attacker can implement an ar-
bitrary return-oriented program since all important gad-
gets can be built.

The most common instruction preceding a return is
pop ebp: On average across all tested systems, this
instruction was found in about 72% of the cases. This
is no surprise since the sequence pop ebp; ret is
the standard exit sequence for C code. Other com-
mon instructions the Constructor finds are add esp,
<const> (12.2%), pop (eax|ecx|edx) (4.2%),
and xor eax, eax (3.7%). Other instructions can be
found rather seldom, but if a given instruction occurs at
least once the attacker can use it. For example, the in-
struction lahf, which is used to access the CPU’s flag
registers, was commonly found less than 10 times, but
nevertheless the attacker can take advantage of it.

4.1.2 Gadget Examples

In order to illustrate the gadgets constructed by our
framework, we present a few examples of gadgets in this
section. A full listing of all gadgets constructed during
the evaluation on ten different machines is available on-
line [13] such that our results can be verified.

Figure 5 shows the AND gadget constructed on two
different machines both running Windows XP SP2. In
each of the sub-figures, the left part displays the instruc-
tions that are actually used for the computation: Re-
member that our current implementation considers one
instruction preceding a return instruction, i.e., after each
of the displayed instructions one implicit ret instruction
is executed. The right part shows the memory locations
where the instruction is found within kernel memory (R),
or indicates the label name (L). Labels are memory vari-
able addresses.

The two gadgets each perform a logical AND of two
values. This is achieved by loading the two operands into
the appropriate registers (pop, mov sequence), then
performing the and instruction on the registers, and fi-
nally writing the result back to the destination address.
Although both programs are executed on Windows XP
SP2 machines, the resulting return-oriented code looks
completely different since useful instructions in different
kernel components are used by the Constructor.

Another example of a gadget constructed by our
framework is shown in Figure 6. The left example shows
a gadget for a machine running Windows Vista, while the
example on the right hand side is constructed on a ma-

9

Machine configuration # ret inst. # trie leaves # ret inst. (res) # trie leaves (res)
Native / XP SP2 118,154 148,916 22,398 25,968
Native / XP SP3 95,809 119,533 22,076 25,768
VMware / XP SP3 58,933 67,837 22,076 25,768
VMware / 2003 Server SP2 61,080 70,957 23,181 26,399
Native / Vista SP1 181,138 234,685 30,922 36,308
Bootcamp / Vista SP1 177,778 225,551 30,922 36,308

Table 1: Overview of return instructions found and generated trie leaves on different machines

pop ecx | R: ntkrnlpa.exe:0006373C
| L: <RightSourceAddress>+4

mov edx, [ecx-0x4] | R: vmx_fb.dll:00017CBD
pop eax | R: ntkrnlpa.exe:000436AE

| L: <LeftSourceAddress>
mov eax, [eax] | R: win32k.sys:000065D1
and eax, edx | R: win32k.sys:000ADAE6
pop ecx | R: ntkrnlpa.exe:0006373C

| L: <DestinationAddress>
mov [ecx], eax | R: win32k.sys:0000F0AC

pop ecx | R: nv4_mini.sys:00005A15
| L: <RightSourceAddress>-4

pop eax | R: nv4_mini.sys:00074EF2
| L: <LeftSourceAddress>

mov eax, [eax] | R: nv4_disp.dll:00125F30
and eax, [ecx+0x4] | R: sthda.sys:000024ED
pop ecx | R: nv4_mini.sys:00005A15

| L: <DestinationAddress>
mov [ecx], eax | R: nv4_disp.dll:000DE9DA

Figure 5: Example of two AND gadgets constructed on different machines running Windows XP SP2. The implicit
ret instruction after each instruction is omitted for the sake of brevity.

chine running Windows 2003 Server. Again, the mem-
ory locations of the gadget instructions are completely
different since the Constructor found different useful in-
struction sequences that are then used to build the gadget.

4.2 Runtime Overhead

The average runtime of the Constructor for the restricted
set of drivers that should be analyzed is 2,009 ms, thus
the time for finding and constructing the final gadgets is
rather small.

To assess the overhead of return-oriented program-
ming in real-world settings, we also measured the over-
head of an example program written within our frame-
work compared to a “native” implementation in C.
Therefore, we implemented two identical versions of
QuickSort, one in C and one in our dedicated return-
oriented language. The source code of the latter can be
seen in Appendix B.

Both algorithms sort an integer array of 500,000 ran-
domly selected elements and the evaluations were carried
out on an Intel Core 2 Duo T7500 based notebook run-
ning Windows XP SP3. The C code was compiled with
Microsoft Visual Studio 2008; in order to improve the
fundamental expressiveness of the comparison, all com-
piler optimizations were disabled. Each algorithm was
executed three times and we calculated the average of
the runtimes.

The return-oriented QuickSort took 21,752 ms on av-
erage compared to 161 ms for C QuickSort. The re-
sults clearly show that the overhead imposed by return-

oriented programs is significant; on average, they were
135 times slower than their C counterparts. We would
like to stress that we did not build our system with
speed optimizations in mind. Additionally, in our do-
main, return-oriented rootkits usually do not involve
time-intensive computations, thus the slowness might not
be a problem in practice. On the other hand, the overhead
might well be exploited by detection mechanisms that try
to find return-oriented programs.

5 Return-Oriented Rootkit

In order to evaluate our system in the presence of a kernel
vulnerability, we have implemented a dedicated driver
containing insecure code. Remember that our attack
model includes this situation. By this example, we show
that our systems allows us to implement a return-oriented
rootkit in an efficient and portable manner. This rootkits
bypasses kernel code integrity mechanisms like NICKLE
and SecVisor since we do not inject new code into the
kernel, but only execute code that is already available.
While the authors of NICKLE and SecVisor acknowl-
edge that such a vulnerability could exist [19, 22], we
are the first to actually show an implementation of an at-
tack against these systems. In the following, we first in-
troduce the different stages of the infection process and
afterwards describe the internals of our rootkit example.

10

’LoadEspPointer’ gadget:
pop ecx | R: nvlddmkm.sys:000156F5

| L: <Address>
mov eax, [ecx] | R: ntkrnlpa.exe:002D15C3
mov eax, [eax] | R: win32k.sys:000011AE
pop ecx | R: nvlddmkm.sys:000156F5

| L: &<LocalVar>
mov [ecx], eax | R: ntkrnlpa.exe:0002039B
pop esp | R: nvlddmkm.sys:00036A54

| L: <LocalVar>

’LoadEspPointer’ gadget:
pop eax | R: ntkrnlpa.exe:0001CD4F

| L: <Address>
mov eax, [eax] | R: win32k.sys:00087E17
mov eax, [eax] | R: win32k.sys:00087E17
pop ecx | R: ntkrnlpa.exe:00080A8D

| L: &<LocalVar>
mov [ecx], eax | R: win32k.sys:000A8DDB
pop esp | R: ntkrnlpa.exe:00081A67

| L: <LocalVar>

Figure 6: Example of gadget constructed on a machine running Windows Vista SP1 (left) and Windows 2003 Server
(right). Again, the implicit ret instruction after each instruction is omitted.

5.1 Experimental Setup

Vulnerability. As already stated, we assume the pres-
ence of a vulnerability in kernel code that enables an
exploit to corrupt the program flow in kernel mode.
More precisely, our dedicated driver contains a specially
crafted buffer overflow vulnerability that allows an at-
tacker to tamper with the kernel stack. The usual way
to implement driver-to-process communication is to pro-
vide a device file name being accessible from userspace.
The process hence opens this device file and may send
data to the driver by writing to it. Write requests trigger
so-called I/O request packets (IRP) at the driver’s call-
back routine. The driver then takes the input data from
userspace and copies it into its own local buffer with-
out validating its length. This leads to a classical buffer
overflow attack and enables us to write stack values of
arbitrary length.

Exploit. We exploit this vulnerability by writing an
oversized buffer to the device file, thereby replacing the
return value on the stack to point to a pop esp; ret
sequence, and the next stack value to point to the en-
trypoint of the return-oriented program. By overwriting
these eight bytes, we manage to modify the stack register
to point to the beginning of our return-oriented program.
Of course, the vulnerability itself may vary in its concrete
nature, however, any similar insecure code allows us to
mount our attack: A single vulnerability within the ker-
nel or any third-party driver is enough to attack a system
and start the return-oriented program.

The only question that remains is where to put the pro-
gram image. We basically have two options: First, the
exploit could overwrite the entire kernel stack with our
return-oriented program; in case of the above vulnerabil-
ity, this would be possible as there is no upper limit. In
case of Windows, the kernel stack size has a fixed limit
of 3 pages which heavily constrains this option. Second,
the exploit could, at least initially, keep the program im-
age in userspace memory. We prefer the latter approach

to implement our rootkit loader, although it has some im-
plications that need to be addressed as we now explain.

5.2 Intricacies in Practice

One of the main practical obstacles that we faced stems
from the way how Windows treats its kernel stack.
All current Windows operating systems separate ker-
nel space execution into several interrupt request lev-
els (IRQL). IRQLs introduce a priority mechanism into
kernel-level execution and are similar to user-level thread
priorities. Every interrupt is executed in a well-defined
IRQL; whenever such an interrupt occurs, it is compared
to the IRQL of the currently executing thread. In case
the current IRQL is above the requested one, the inter-
rupt is queued for later rescheduling. As a consequence,
an interrupt cannot suspend a computation running at
a higher IRQL. This has some implications concern-
ing accessing pageable memory in kernel mode since
page-access exceptions are being processed in a specific
IRQL (APC LEVEL, to be precise) while other interrupts
are handled at higher IRQLs. Hence, the kernel and
drivers must not access pageable memory areas at cer-
tain IRQLs.

Unfortunately, this leads to some problems due to a pe-
culiarity of Windows kernels: Whenever interrupts occur
and hence must be handled, the Windows kernel borrows
the current kernel stack to perform its interrupt handling.
Therefore, the interrupt handler allocates the memory
below the current value of esp as the handler’s stack
frame. While this is totally acceptable in common sit-
uations, it leads to undesirable implications in case of
return-oriented programs as the stack values below the
current stack pointer may indeed be needed in the sub-
sequent execution. As described in Section 3.1.2, con-
trol flow branches are stack register modifications: When
the program wants to jump backwards, it may fail at this
point since the prior code might have been overwritten
by the interrupt handler in the first place. To solve this
problem, the Compiler provides an option to dynamically
restore affected code areas: Whenever a return-oriented

11

control flow transition backwards occurs (which hence
could have been subject to unsolicited modifications), we
first prepare the ICA to perform a memcpy call that re-
stores the affected code from the backup code section and
subsequently performs the return-oriented jump. This
works since the ICA is located below the code section
and hence the code section cannot be overwritten during
the call. The data and backup section will never be over-
written as they are always on top of every possible value
of esp.

Furthermore, we will also run into IRQL problems in
case the program stack is located in pageable memory:
As soon as an interrupt is dispatched above APC LEVEL,
a blue-screen-of-death occurs. This problem should be
overcome by means of the VirtualLock function
which allows a process to lock a certain amount of pages
into physical memory, thereby eliminating the possibil-
ity of paging errors on access. However, due to reasons
which are yet not known to us, this does not always work
as intended for memory areas larger than one page. We
have frequently encountered paging errors in kernelmode
although the related memory pages have previously been
locked. We therefore introduce a workaround for this is-
sue in the next section.

5.3 Rootkit Loader
To overcome the paging IRQL problem, we have im-
plemented a pre-step in the loading phase. More pre-
cisely, in the first stage, we prepare a tiny return-oriented
rootkit loader that fits into one memory page and pre-
pares the entry of the actual return-oriented rootkit. It al-
locates memory from the kernel’s non-paged pool, which
is definitely never paged out, and copies the rootkit code
from userspace before performing a transition to the ac-
tual rootkit. This has proven to work reliably in practice
and we have not encountered any further IRQL prob-
lems. Again, the Rootkit Loader program image re-
sides in userspace, which limits the ability of kernel in-
tegrity protection mechanisms to prohibit the loading of
our rootkit.

5.4 Rootkit Implementation
To demonstrate our system’s capability, we have im-
plemented a return-oriented rootkit that is able to hide
certain system processes. This is achieved by an ap-
proach similar to the one introduced by Hoglund and
Butler [11]: Our rootkit cycles through Windows’ inter-
nal process block list to search for the process that should
be hidden and, if successful, then modifies the pointers in
the doubly-linked list accordingly to release the process’
block from the list. Since the operating system holds
a separate, independent scheduling list, the process will

int ListStartOffset =
&CurrentProcess−>process_list .Flink −
CurrentProcess ;

int ListStart =
&CurrentProcess−>process_list .Flink ;

int ListCurrent = ∗ListStart ;
while (ListCurrent != ListStart) {
struct EPROCESS ∗NextProcess =
ListCurrent − ListStartOffset ;

if (RtlCompareMemory (NextProcess−>ImageName ,
”Ghost .exe” , 9) == 9) {

break ;
}
ListCurrent = ∗ListCurrent ;

}

if (ListCurrent != ListStart) {
// process found, do some pointer magic
struct EPROCESS ∗GhostProcess =
ListCurrent − ListStartOffset ;

// Current->Blink->Flink = Current->Flink
GhostProcess−>process_list .Blink−>Flink =

GhostProcess−>process_list .Flink ;

// Current->Flink->Blink = Current->Blink
GhostProcess−>process_list .Flink−>Blink =
GhostProcess−>process_list .Blink ;

// Current->Flink = Current->Blink = Current
GhostProcess−>process_list .Flink =
ListCurrent ;

GhostProcess−>process_list .Blink =
ListCurrent ;

}

Figure 7: Rootkit source code snippet in dedicated lan-
guage for return-oriented programming that can be com-
piled with our Compiler.

still be running in the system, albeit not being present
in the results of process enumeration requests: The pro-
cess is hidden within Windows and not visible within
the Taskmanager. Figure 8 in Appendix A illustrates the
rootkit in practice.

Figure 7 shows an excerpt of the rootkit source code
written in our dedicated language. This snippet shows
the code for (a) finding the process to be hidden and (b)
hiding the process as explained above.

Once the process hiding is finished, the rootkit per-
forms a transition back to the vulnerable code to continue
normal execution. This seems to be complicated since
we have modified the stack pointer in the first place and
must hence restore its original value. However, in prac-
tice this turns out to be not problematic since this value is
available in the thread environment block that is always
located at a fixed memory location. Hence, we recon-
struct the stack and jump back to our vulnerable driver.
Besides process hiding, arbitrary data-driven attacks can
be implemented in the same way: The rootkit needs to

12

exploit the vulnerability repeatedly in order to gain con-
trol and can then execute arbitrary return-oriented pro-
grams that perform the desired operation [3].

We would like to mention at this point that more so-
phisticated rootkit functionality, e.g., file and socket hid-
ing, might demand more powerful constructs, namely
persistent return-oriented callback routines. Data-only
modifications as implemented by our current version of
the rootkit hence might not be sufficient in this case. In
contrast to Riley et al. [19], we do believe that this is
possible in the given environment by the use of specific
instruction sequences. However, we have not yet had the
time to prove our hypothesis and hence leave this topic
up to future work in this area.

The rootkit example works on Windows 2000, Win-
dows Server 2003 and Windows XP (including all ser-
vice packs). We did not port it to the Vista platform yet
as the publicly available information on the Vista kernel
is still limited. We also expect problems with the Vista
PatchGuard, a kernel patch protection system developed
by Microsoft to protect x64 editions of Windows against
malicious patching of the kernel. However, we would
like to stress that PatchGuard runs at the same privilege
level as our rootkit and hence could be defeated. In the
past, detailed reports showed how to circumvent Vista
PatchGuard in different ways [24, 26, 25].

6 Conclusion and Future Work

In this paper we presented the design and implementation
of a framework to automate return-oriented program-
ming on commodity operating systems. This system is
portable in the sense that the Constructor first enumerates
what instruction sequences can be used and then dynam-
ically generates gadgets that perform higher-level opera-
tions. The final gadgets are then used by the Compiler to
translate the source code of our dedicated programming
language into a return-oriented program. The language
we implemented resembles the syntax of the C program-
ming language which greatly simplifies developing pro-
grams within our framework. We confirmed the porta-
bility and universality of our framework by testing the
framework on ten different machines, providing deeper
insights into the mechanisms and constraints of return-
oriented programming. Finally we demonstrated how a
return-oriented rootkit can be implemented that circum-
vents kernel integrity protection systems like NICKLE
and SecVisor.

In the future, we want to investigate effective detec-
tion techniques for return-oriented rootkits. We also plan
to extend the research in two other important directions.
First, we plan to examine how the current rootkit can be
improved to also support persistent kernel modifications.
This change is necessary to implement rootkit functions

like hiding of files or network connections, which require
a persistent return-oriented callback routine. This change
would enhance the rootkit beyond the current data-driven
attacks. Second, we plan to analyze how the techniques
presented in this paper could be used to attack control-
flow integrity [1, 7, 14, 18] or data-flow integrity [5]
mechanisms. These mechanisms are orthogonal to the
kernel integrity protection mechanisms we covered in
this paper.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-Flow Integrity – Principles,
Implementations, and Applications. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security (CCS), November 2005.

[2] James P. Anderson. Computer Security Technol-
ogy Planning Study. Technical Report ESD-TR-73-
51, AFSC, Hanscom AFB, Bedford, MA, October
1972. AD-758 206, ESD/AFSC.

[3] Arati Baliga, Pandurang Kamat, and Liviu Iftode.
Lurking in the Shadows: Identifying Systemic
Threats to Kernel Data. In Proceedings of the 2007
IEEE Symposium on Security and Privacy, 2007.

[4] Erik Buchanan, Ryan Roemer, Hovav Shacham,
and Stefan Savage. When Good Instructions Go
Bad: Generalizing Return-Oriented Programming
to RISC. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security
(CCS), October 2008.

[5] Miguel Castro, Manuel Costa, and Tim Harris. Se-
curing software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[6] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating
Systems. In Proceedings of the 13th Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), May 2008.

[7] John Criswell, Andrew Lenharth, Dinakar Dhurjati,
and Vikram Adve. Secure Virtual Architecture: A
Safe Execution Environment for Commodity Op-
erating Systems. SIGOPS Oper. Syst. Rev., 41(6),
2007.

13

[8] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar
Chaki, and Anupam Datta. Attacking, Repairing,
and Verifying SecVisor: A Retrospective on the
Security of a Hypervisor. Technical Report Cy-
lab Technical Report CMU-CyLab-08-008, CMU,
June 2008.

[9] Tal Garfinkel and Mendel Rosenblum. A Virtual
Machine Introspection Based Architecture for In-
trusion Detection. In Proceedings of the 10th Net-
work and Distributed Systems Security Symposium
(NDSS), February 2003.

[10] Gil Dabah. diStorm64 - The ultimate disas-
sembler library. http://www.ragestorm.net/

distorm, 2009.

[11] Greg Hoglund and Jamie Butler. Rootkits : Sub-
verting the Windows Kernel. Addison-Wesley Pro-
fessional, July 2005.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley, 2006.

[13] Ralf Hund. Listing of gadgets constructed
on ten evaluation machines. http://pi1.

informatik.uni-mannheim.de/filepool/

projects/return-oriented-rootkit/

measurements-ro.tgz, May 2009.

[14] Vladimir Kiriansky, Derek Bruening, and Saman P.
Amarasinghe. Secure Execution via Program Shep-
herding. In Proceedings of the 11th USENIX Secu-
rity Symposium, pages 191–206, 2002.

[15] Microsoft. Digital Signatures for Ker-
nel Modules on Systems Running Win-
dows Vista. http://download.

microsoft.com/download/9/c/5/

9c5b2167-8017-4bae-9fde-d599bac8184a/

kmsigning.doc, July 2007.

[16] Microsoft. A detailed description of the Data Ex-
ecution Prevention (DEP) feature in Windows XP
Service Pack 2. http://support.microsoft.

com/kb/875352, 2008.

[17] Nergal. The advanced return-into-lib(c) exploits:
PaX case study. http://www.phrack.org/

issues.html?issue=58&id=4, 2001.

[18] Nick L. Petroni, Jr. and Michael Hicks. Automated
Detection of Persistent Kernel Control-Flow At-
tacks. In Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS),
pages 103–115, October 2007.

[19] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-
Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In Proceedings
of the 11th Symposium on Recent Advances in In-
trusion Detection (RAID), 2008.

[20] Ryan Riley, Xuxian Jiang, and Dongyan Xu.
NICKLE: No Instructions Creeping into Kernel
Level Executed. http://friends.cs.purdue.
edu/dokuwiki/doku.php?id=nickle, 2008.

[21] Sebastian Krahmer. x86-64 Buffer Overflow Ex-
ploits and the Borrowed Code Chunks Exploitation
Techniques. http://www.suse.de/˜krahmer/

no-nx.pdf, September 2005.

[22] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian
Perrig. SecVisor: A Tiny Hypervisor to Pro-
vide Lifetime Kernel Code Integrity for Commod-
ity OSes. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[23] Hovav Shacham. The Geometry of Innocent Flesh
on the Bone: Return-into-libc without Function
Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Se-
curity (CCS), October 2007.

[24] skape and Skywing. Bypassing PatchGuard on
Windows x64. Uninformed, 3, January 2006.

[25] Skywing. PatchGuard Reloaded: A Brief Analysis
of PatchGuard 3. Uninformed, 8, September 2007.

[26] Skywing. Subverting PatchGuard Version 2. Unin-
formed, 6, January 2007.

[27] Solar Designer. Getting around non-executable
stack (and fix). http://seclists.org/

bugtraq/1997/Aug/0063.html, 1997.

[28] PaX Team. Documentation for the PaX project -
overall description. http://pax.grsecurity.

net/docs/pax.txt, 2008.

[29] Terence Parr. ANTLR Parser Generator. http:

//www.antlr.org, 2009.

[30] A. M. Turing. On Computable Numbers, with an
application to the Entscheidungsproblem. Proc.
London Math. Soc., 2(42):230–265, 1936.

A Return-Oriented Rootkit in Practice

Figure 8 depicts the results of an attack using our return-
oriented rootkit: The process Ghost.exe (lower left win-
dow) is a simple application that periodically prints a sta-
tus message on the screen. The rootkit (upper left win-
dow) first exploits the vulnerability in the driver to start

14

Figure 8: Return-oriented rootkit in practice, hiding the process Ghost.exe.

the return-oriented program. This program then hides
the presence of Ghost.exe as explained in Section 5.4:
The process Ghost.exe is running, however, the rootkit
removed it from the list of running processes and it is not
visible in the Taskmanager.

B Return-Oriented QuickSort

The following listing shows an implementation of Quick-
Sort within our dedicated programming language. The
syntax is close to the C programming language, allow-
ing a programmer to implement a return-oriented pro-
gram without too much effort. The most notable ex-
ception from C’s syntax is related to importing of exter-
nal functions: Our language can import subroutine calls
from other libraries, enabling an easy way to call external
functions like printf() or srand(). However, each
function needs to be imported explicitly. Furthermore,
the language implements only a basic type-system con-
sisting of integers and character arrays, but this should
not pose a limitation.

import (”msvcrt .dll” , printf :cdecl ,
srand :cdecl ,
rand :cdecl ,
malloc :cdecl) ;

import (”kernel32 .dll” , GetCurrentProcess ,
TerminateProcess ,
GetTickCount) ;

int data ;
int size = 500000;

function partition (int left , int right ,
int pivot_index) {

int pivot = data [pivot_index] ;
int temp = data [pivot_index] ;
data [pivot_index] = data [right] ;
data [right] = temp ;
int store_index = left ;
int i = left ;

while (i < right) {
if (data [i] <= pivot) {

temp = data [i] ;
data [i] = data [store_index] ;
data [store_index] = temp ;
store_index = store_index + 1 ;

}
i = i + 1 ;

}

temp = data [store_index] ;
data [store_index] = data [right] ;
data [right] = temp ;

return store_index ;
}

15

function quicksort (int left , int right) {
if (left < right) {

int pivot_index = left ;
pivot_index = partition (left , right ,

pivot_index) ;
quicksort (left , pivot_index − 1) ;
quicksort (pivot_index + 1 , right) ;

}
}

function start () {
printf (”Welcome to ro−QuickSort\n ”) ;
data = malloc (4 ∗ size) ;
srand (GetTickCount ()) ;
int i = 0 ;
while (i < size) {

data [i] = rand () ;
i = i + 1 ;

}

int time_start = GetTickCount () ;
quicksort (0 , size − 1) ;
int time_end = GetTickCount () ;
printf (”Sorting completed in %u ms :\n” ,

time_end − time_start) ;
}

16

