
 Security Analysis of
 Network Protocols

John Mitchell
Stanford University

Usenix Security Symposium, 2008

Many Protocols
Authentication and key exchange
 SSL/TLS, Kerberos, IKE, JFK, IKEv2,

Wireless and mobile computing
 Mobile IP, WEP, 802.11i

Electronic commerce
 Contract signing, SET, electronic cash, …

And more
 Web services, …

Mobile IPv6 Architecture

IPv6

Mobile Node (MN)

Corresponding Node (CN)

Home Agent (HA)

Direct connection via
binding update

Authentication is a
requirement
Early proposals weak

Supplicant
UnAuth/UnAssoc
802.1X Blocked
No Key

802.11 Association

802.11i Wireless Authentication

MSK
EAP/802.1X/RADIUS Authentication

4-Way Handshake

Group Key Handshake

Data Communication

Supplicant
Auth/Assoc
802.1X UnBlocked
PTK/GTK

TLS protocol layer over
TCP/IP

Network interface

Transport (TCP)

Physical layer

Internet (IP)

Applicationtelnet

http ftp

nntp

SSL/TLS

IKE subprotocol from IPSEC

A, (ga mod p)

 B, (gb mod p)

Result: A and B share secret gab mod p

A B

m1

m2
 , signB(m1,m2)

signA(m1,m2)

Analysis involves probability, modular exponentiation,
complexity, digital signatures, communication networks

Protocol Attacks
Kerberos [Scederov et. Al.]
 Public key version - lack of identity in message causes

authentication failure

WLAN 802.11i [He , Mitchell]
 Lack of authentication in msg causes dos vulnerability
 Proved correct using PCL [Datta , Derek, Sundararajan]

GDOI [meadows – Pavlovic]
 Authorization failure

SSL [Mitchell – Shmatikov]
 Version roll-back attack, authenticator confusion between

main and resumption protocol

Needham-Schroeder [Lowe]
 We will look at this today

Kerberos Protocol

Client

Client

Client

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

Used for
network
authentication

Microsoft Security Bulletin MS05-042
Vulnerabilities in Kerberos Could Allow Denial of Service,
Information Disclosure, and Spoofing (899587)
Published: August 9, 2005

Affected Software:
• Microsoft Windows 2000 Service Pack 4
• Microsoft Windows XP Service Pack 1 and
 Microsoft Windows XP Service Pack 2
• Microsoft Windows XP Professional x64 Edition
• Microsoft Windows Server 2003 and
 Microsoft Windows Server 2003 Service Pack 1
• Microsoft Windows Server 2003 for Itanium-based Systems and
 Microsoft Windows Server 2003 with SP1 for Itanium-based Systems
• Microsoft Windows Server 2003 x64 Edition

Credit: Cervesato,
Jaggard, Scedrov,
Tsay, Walstad

 Attack found in PKINIT-25; fixed in PKINIT-27
 Used in Windows and Linux (called Heimdal)
 Also in implementation by CableLabs (for cable boxes)

C

C

I

I K

K

CertC, [tC, n2]skC, C, T, n1

CertI, [tC, n2]skI, I, T, n1

{[k, n2]skK}pkC, C, TGT, {AK, …}k

{[k, n2]skK}pkI, I, TGT, {AK, …}k

I

I

Attack on PKINIT (basic idea)

Data signed by
KDC does not
include name of
client

C

C

I

I K

K

CertC, [tC, n2]skC, C, T, n1

CertI, [tC, n2]skI, I, T, n1

{[k, n2]skK}pkC, C, TGT, {AK, …}k

{[k, n2]skK}pkI, I, TGT, {AK, …}k

I

I

K signs k, cksum
instead of k, n2

Repair

Main points of this talk
Widely used protocols central to security
 Worth designing correctly
 Worth analyzing for bugs
 Worth proving them correct

 All methods use some simplifying assumptions
 Diversity and overlap of methods is a good thing

Develop basic science and engineering
 New protocols are being developed
 Methods can be used for other systems

Run of a protocol

A

B
Initiate

Respond

C

D

Correct if no security violation in any run

Attacker

Protocol analysis methods
Cryptographic reductions
 Bellare-Rogaway, Shoup, many others
 UC [Canetti et al], Simulatability [BPW]
 Prob poly-time process calculus [LMRST…]

Symbolic methods
 Model checking

 FDR [Lowe, Roscoe, …], Murphi [M, Shmatikov, …], …

 Symbolic search
 NRL protocol analyzer [Meadows], …

 Theorem proving
 Isabelle [Paulson …], Specialized logics [BAN, …]

Protocol analysis spectrum

Low High

H
ig

h
Lo

w

M
o

d
el

in
g

 d
et

ai
l

Protocol complexity

Murϕ

FDR

 NRL
Athena

Hand proofs

Paulson

Strand spaces

BAN logic

Spi-calculus

Poly-time calculus

Model checking

Multiset rewriting with ∃

Protocol logic

“The” Symbolic Model
Messages are algebraic expressions
 Nonce, Encrypt(K,M), Sign(K,M), …

Adversary
 Nondeterministic
 Observe, store, direct all communication

 Break messages into parts
 Encrypt, decrypt, sign only if it has the key

 Example: 〈K1, Encrypt(K1, “hi”) 〉
 fi K1, Encrypt(K1, “hi”) fi “hi”

 Send messages derivable from stored parts

Many formulations
Word problems [Dolev-Yao, Dolev-Even-Karp, …]
 Protocol step is symbolic function from input message to output

Rewrite systems [CDLMS, …]
 Protocol step is symbolic function from state and input message to

state and output message
Logic programming [Meadows NRL Analyzer]
 Each protocol step can be defined by logical clauses
 Resolution used to perform reachability search

Constraint solving [Amadio-Lugiez, …]
 Write set constraints defining messages known at step i

Strand space model [MITRE]
 Partial order (Lamport causality), reasoning methods

Process calculus [CSP, Spi-calculus, applied π, …)
 Each protocol step is process that reads, writes on channel
 Spi-calculus: use ν for new values, private channels, simulate crypto

Automated tools based on the symbolic model detect important,
nontrivial bugs in practical, deployed, and standardized protocols

Explicit Intruder Method

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Automated Finite-State Analysis

Define finite-state system
 Bound on number of steps
 Finite number of participants
 Nondeterministic adversary with finite options

Pose correctness condition
 Can be simple: authentication and secrecy
 Can be complex: contract signing

Exhaustive search using “verification” tool
 Error in finite approximation fi Error in protocol
 No error in finite approximation fi ???

Limitations
System size with current methods
 2-6 participants

Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS

 3-6 steps in protocol
 May need to optimize adversary

Adversary model
 Cannot model randomized attack
 Do not model adversary running time

State Reduction on N-S Protocol

1 7 0 6

1 7 2 7 7

514550

9 8 0

6 9 8 1

155709

5 8
2 2 2

3 2 6 3

1

10

100

1000

10000

100000

1000000

1 init
1 resp

2 init
1 resp

2 init
2 resp

Base: hand
optimization
of model

CSFW:
eliminate
net, max
knowledge
Merge
intrud send,
princ reply

Security Protocols in Murϕ
Standard “benchmark” protocols
 Needham-Schroeder, TMN, …
 Kerberos

Study of Secure Sockets Layer (SSL)
 Versions 2.0 and 3.0 of handshake protocol
 Include protocol resumption

Tool optimization
Additional protocols
 Contract-signing
 Wireless networking
 … ADD YOUR PROJECT HERE …

 Tool by Dill et al.

Rational Reconstruction (TLS)
 Begin with simple, intuitive protocol
 Ignore client authentication
 Ignore verification messages at the end of the

handshake protocol
 Model only essential parts of messages (e.g.,

ignore padding)

Execute the model checker and find a bug
Add a piece of TLS to fix the bug and repeat
 Better understand the design of the protocol

Summary of Incremental Protocols

A = Basic protocol
B = A + version consistency check
D = B + certificates for both public keys

 Authentication for client + Authentication for server

E = D + verification (Finished) messages
 Prevention of version and crypto suite attacks

F = E + nonces
 Prevention of replay attacks

G = “Correct” subset of SSL
 Additional crypto considerations (black art) give SSL 3.0

Anomaly (Protocol F)

C S

… SuiteC …

… SuiteS …

…

Switch to negotiated cipher

Finished Finished

data data

Anomaly (Protocol F)

C S

… SuiteC …

… SuiteS …

…

Switch to negotiated cipher

Finished Finished

data data
X X

Modify

Modify

Protocol Resumption

C S

SessionId, VerC= 3.0, NC, ...

Finished Finished

data data

VerS= 3.0, NS, ...

Version Rollback Attack

C S

SessionId, VerC= 2.0, NC, ...

Finished Finished

data data

VerS= 2.0, NS, ...

XX
{ NS } SecretKey { NC } SecretKey

SSL 2.0 Finished messages do not include version numbers or cryptosuites

Contract Signing

Both parties want to sign a contract
Neither wants to commit first

Immunity
•deal

Seller advertises and receives bids
Buyer may have several choices

Another example: stock trading

Willing to sell stock at price X

Ok, willing to buy at price X

stock broker customer

υ Why signed contract?
• Suppose market price changes
• Buyer or seller may want proof of agreement

A general protocol outline

Trusted third party can force contract
 Third party can declare contract binding if

presented with first two messages.

A B

I am going to sign the contract

I am going to sign the contract

Here is my signature

Here is my signature

Refined protocol outline

Trusted third party can force contract
 Third party can declare contract binding by signing

first two messages.

A B

sign(A, 〈contract, hash(rand_A)〉)

sign(B, 〈contract, hash(rand_B)〉)

rand_A

rand_B

BA

m1= sign(A, 〈c, hash(r_A)〉)
sign(B, 〈m1, hash(r_B)〉)

r_A

r_B

Agree

A B
Network

T

Abort

???

Resolve Attack?

BA Net

T sigT (m1, m2)

m1

???

m2 A

T

Asokan-Shoup-Waidner protocol

 If not already
resolved

 a1

sigT (a1,abort)

Contract Consistency Attack

M

r2 = sigT (m1, m2)

m1 = sigA (... hash(RA))

m2 = sigB (m1, hash(RB))

m3 = RA

T

r1 = m1, m2

secret QK, m2

sigT (m1, m2) m1, RM, m2, QK

contracts are
inconsistent!

Later ...

sigM (PKA, PKB, T, text, hash(RA))

B

Replay Attack

Intruder causes B
to commit to old
contract with A

sigK (m1, hash(QB))

RA

QB

A B
RA

sigA (… hash(RA))

RB

 sigB (... hash(RB))

Fixing the Protocol

A B

Input:
PKA, T, text

Input:
PKB, T, text

m1 = sigA (PKA, PKB, T, text, hash(RA))

m2 = sigB (m1, hash(RB))

m3 = RA

m4 = RB

m1, RA, m2, RB

 sigA (, hash(RB))

XOM Processor Hardware

Cache

Register File
XOM
Tags

XOM
Tags

Crypto Units
Plain Text in
Processor

Encrypted
Text in
Memory

Memory Data Hash

XOM Provides Isolation

Secure XOM Machine

Compartments

Ownership
Tags

Program 2

Tag 2Data

Register 2

???Data

Register 3

Program 1

Tag 1Data

Register 1

Tag 2Data

Register 3

Tag 1Data

Register 3

Program 1

Tag 1Data

Register 1

!

Model Checking XOM
XOM Model is a state machine:
 State Vector

 A set of all things on the chip that can hold state
 Based on the Processor Hardware

 Next-State Functions
 A set of state transitions that the hardware can have
 Derived from the instructions that can be executed on the

processor

 Invariants
 Define the correct operation of the XOM processor
 Two Goals: Prevent observation and modification

No Observation Invariant
1. Program data cannot be read by adversary

 XOM machine performs tag check on every access
 Make sure that owner of data always matches the tag

if ri.data is user data then
 check that: ri.tag = user
else
 check that: ri.tag = adversary

Adversary Data Adversary Tag

User Data User Tag

No Modification Invariant
2. Adversary cannot modify the program without detection

 Adversary may modify state by copying or moving user data
 Need a “ideal” correct model to check against

For Memory:
if xom.mi.data = user data then
 check that: ideal.mi.data = xom.mi.data

Adversary

Program

XOM
Model

Ideal
Model=

Checking for Correctness
Model checker helped us find bugs and correct them
 2 old errors were found
 2 new errors were found and corrected

Example:
 Case where it’s possible to replay a memory location
 This was due to the write to memory and hash of the

memory location not being atomic

Reducing Complexity
Fewer operations makes logic simpler
Exhaustively remove actions from the next-state functions
 If a removed action does not result in a violation of an invariant

then the action is extraneous
 Example:

Data Tag

Secure Load: Tag
and Data is copied
from cache

Tag Check: Make
sure the tag
matches the user

Data Tag

Caches Registers

Register Use: Check
that tag matches user

Check
Happens
Anyways!

Basic Pattern for Doing Your Project
Read and understand protocol specification
 Typically an RFC or a research paper
 We’ll put a few on the website: take a look!

Choose a tool
 Murj or other tool

Start with a simple (possibly flawed) model
 Rational reconstruction to understand how

protocol works and why

Give careful thought to security conditions
 This is often the most interesting part!

CS259 Term Projects - 2008
Mobile IPv6 Binding
Update

Fast Handover Key
Distribution Using
SEND in Mobile IPv6

Bluetooth v2.1 + EDR
Pairing Authentication
Protocol

BitTorrent OpenID 2.0 Handoffs in 802.16g

HIPAA online
compliance auditor

TCG Remote
Attestation

Direct Anonymous
Attestation (DAA)
Protocol

Pynchon Gate
Protocol:

http://www.stanford.edu/class/cs259/

CS259 Term Projects - 2006
Security Analysis of
OTRv2

Formalization of
HIPAA

Security analysis of
SIP

Onion Routing Analysis of ZRTP
MOBIKE - IKEv2
Mobility and
Multihoming Protocol

802.16e Multicast-
Broadcast Key
Distribution Protocols

Short-Password Key
Exchange Protocol

Analysis of the IEEE
802.16e 3-way
handshake

Analysis of Octopus
and Related Protocols

http://www.stanford.edu/class/cs259/

CS259 Term Projects - 2004
iKP protocol family Electronic voting XML Security

IEEE 802.11i wireless
handshake protocol

Onion Routing Electronic Voting

Secure Ad-Hoc
Distance Vector
Routing

An Anonymous Fair
Exchange
E-commerce Protocol

Key Infrastructure

Secure Internet Live
Conferencing

Windows file-sharing
protocols

http://www.stanford.edu/class/cs259/

Protocol composition logic

Alice’s information
 Protocol
 Private data
 Sends and receives

Honest Principals,
Attacker

Send

Receive

Protocol

Private
Data

Logic has
symbolic and
computational

semantics

Goals of PCL
PCL is an evolving research framework for
approaching this basic question:
 Is it possible to prove security properties of current practical

protocols using compositional, direct reasoning that does not
mention the actions of the attacker?

Example
 If the client and server exchange hashes of the messages

they have seen, encrypted under a shared key, then they
must have matching conversations

 Can such ordinary conversational arguments be proved
sound and used for practical examples?

Logic: Background
Logic
 Syntax Formulas

 p, p ∨ q, ¬(p ∨ q), p fi q
 Semantics Truth

 Model, M = {p = true, q = false}
M |= p ∨ q

Proof System
 Axioms and proof rules Provability

ω p fi (q fi p) p p fi q
 q

 Soundness Theorem
 Provability implies truth
 Axioms and proof rules hold in all “relevant” models

Protocol logic: Actions
 send t; send a term t
 receive x; receive a term into variable x
 new n; generate nonce n

A program is a sequence of actions

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{“r”, m, x, A}};
send A, X, sigA{“i”, m, x, X}};

]A

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{“r”, y, n, Y}};
receive Y, B, sigY{“i”, y, n, B}};

]B

Execution Model
Initial Configuration, IC
 Set of principals and keys
 Assignment of ≥ 1 role to each principal

Run
 Interleaving of actions of honest principals and

attacker starting from IC

new x send {x}B

receive {x}B

A

B

C

Position in run

receive {z}B

new z send {z}B

Formulas true at a position in run
Action formulas
a ::= Send(P,t) | Receive (P,t) | New(P,t)
 | Decrypt (P,t) | Verify (P,t)

Formulas
ϕ ::= a | Has(P,t) | Fresh(P,t) | Honest(N)
 | Contains(t1, t2) | ¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ
 | a < a

Modal formula
ϕ [actions] P ϕ

Example
Has(X, secret) … (X = A ∨ X = B)

Specifies secrecy

Challenge-Response Property
 Specifying authentication for Responder

CR |= true [RespCR(A)] B Honest(A) … (

 Send(A, {A,B,m}) < Receive(B, {A,B,m}) ∧

 Receive(B, {A,B,m}) < Send(B, {B,A,{n, sigB {“r”,m, n, A}}}) ∧

 Send(B, {B,A,{n, sigB {“r”,m, n, A}}}) < Receive(A, {B,A,{n, sigB {“r”,m, n, A}}}) ∧

 Receive(A, {B,A,{n, sigB {“r”,m, n, A}}}) < Send(A, {A,B,{sigA{“i”,m,n,B}}}) ∧

 Send(A, {A,B,{sigA{“i”,m,n,B}}} < Receive(B, {A,B,{sigA{“i”,m,n,B}}}))

)

Authentication as “matching conversations” [Bellare-Rogaway93]

Proof System
Goal: Formally prove security properties
Axioms
 Simple formulas about actions, etc.

Inference rules
 Proof steps

Theorem
 Formula obtained from axioms by

application of inference rules

Sample axioms
Actions
true [send m]P Send(P,m)

Public key encryption
Honest(X) ∧ Decrypt(Y, encX{m}) … X=Y

Signature
Honest(X) ∧ Verify(Y, sigX{m})
 … Sign(X, sigX{m})

Correctness of CR – step 1

1. B reasons about his own action
CR |- true [RespCR(B)] B Verify(B, sigA {“i”, m, n, A})

2. Use signature axiom
CR |- true [RespCR(B)] B Sign(A, sigA{“i”, m, n, A})

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{“r”, m, x, A}};
send A, X, sigA{“i”, m, x, X}};

]A

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{“r”, y, n, Y}};
receive Y, B, sigY{“i”, y, n, B}};

]B

Proving Invariants
We want to prove

ν Γ Ú Honest(X) → ϕ,
where ϕ Ú
(Sign(X, sigX(“i”, m, n, Y) → Receive(Y, n, sigY(“r”, m, n, X)))

“ϕ holds at all pausing states of all traces”
 Since the fragment of honest party action between

pausing states is a protocol segment, the propagation of
ϕ looks like:

ν ϕ --- actions of A --- ϕ ---- actions of B --- ϕ --- attacker
actions -- ϕ ---- actions of B --- ϕ -- …

Proving Invariants (2)
Rule for establishing Γ:
 Prove ϕ holds when threads have started
 Prove, for all protocol segments, if ϕ held

at the beginning, it holds at the end

Correctness of CR – step 2
So far
 CR |- true [RespCR(B)]B Sign(A, sigA{“i”, m, n, A})

Use invariant Γ to prove:
 CR |- true [RespCR(B)]B Receive(A, n, sigB{“r”, m, n, A})

Reason from B’s point of view to prove:
 CR |- true [RespCR(B)]B FirstSend(B, n, (n, sigB{“r”, m, n, A})))

Apply Nonce freshness axiom to prove:
 CR |- true [RespCR(B)]B Receive(A, (n, sigB{“r”, m, n, A})) <

Send(B, sigB{“r”, m, n, A})

A few similar steps leads to the full proof!

Sample PCL studies
Wireless 802.11i
 Model checking to find errors, improve
 PCL proof of correctness, including TLS

Kerberos
 Including variants “PK-Init” and “DH-init”

Extensible Authentication Protocol (EAP)
 Model check to find errors, improve
 PCL proof of correctness, identify subtleties

Mesh Security Architecture (IEEE 802.11s)
 Motorola group added some axioms, found

problems, identified invariants, proved correctness

DH Honest(X) … …

Γ Γ’

Γ |- Secrecy Γ’ |- Authentication

Γ∪Γ’ |- Secrecy Γ∪Γ’ |- Authentication

Γ∪Γ’ |- Secrecy ∧ Authentication [additive]

DH • CR Γ∪Γ’ [nondestructive]

 ISO Secrecy ∧ Authentication

=
CR Honest(X) … …

Composing protocols

STS family

m=gx, n=gy

k=gxy

STS0H

STSa STSaH

STSHSTS

STS0

STSPH

JFK1

distribute
certificates

cookie

open
responder

JFK0

symmetric
hash

JFK

protect
identities

RFK

STSP

PCL → Computational PCL

PCL

Syntax

Proof System

Symbolic model

Semantics

Computational PCL

Syntax ± D

Proof System ± D

Complexity-theoretic model

Semantics

Analysis of Kerberos

Client1

Client2

Client3

KAS

TGS

Server

AS-REQ

AS-REP

TGS-REQ

TGS-REP

AP-REQ

AP-REP

Q1

Q2

Q3

θ2

θ3

θ1

CPCL analysis of Kerberos V5
 Kerberos has a staged architecture
 1: generate nonce and send it encrypted
 2: use as key to encrypt another nonce
 3: use 2nd nonce to encrypt other msgs

 Our proof shows “GoodKey”-ness of
both the nonces
 Authentication properties are proved
assuming that the encryption scheme
provides ciphertext integrity

 Modular proofs are made possible by
composition theorems.

Foundational results
Computational PCL
 Symbolic logic for proving security properties of

network protocols using public-key encryption
Soundness Theorem:
 If a property is provable in CPCL, then property holds

in computational model with overwhelming
asymptotic probability.

Benefits
 Symbolic proofs about computational model
 Computational reasoning in soundness proof (only!)
 Different axioms rely on different crypto assumptions

Challenges for computational
reasoning

More complicated adversary
 Actions of computational adversary do not have a simple

inductive characterization
More complicated messages
 Computational messages are arbitrary sequences of bits,

without an inductively defined syntactic structure
Different scheduler
 Simpler “non-preemptive” scheduling is typically used in

computational models (change symbolic model for equiv)
Power of induction ?
 Indistinguishability, other non-trace-based properties appear

unsuitable as inductive hypotheses
 Solution: prove trace property inductively and derive secrecy

Automation
Prolog-based method for checking
sufficient conditions for provability of
invariants

Conclusion
Practical protocols may contain errors
 Tools find bugs, reveal req., guarantees

Variety of tools
 Model checking can find errors
 Proof method can show correctness

for specific model of execution and attack

Closing gap between logic and crypto
 Symbolic reasoning sound for statements about

probability, complexity
 Does not require strong crypto assumptions

Credits
Collaborators
 M. Backes, A. Datta, A. Derek, N. Durgin, C. He,
 R. Kuesters, D. Pavlovic, A. Ramanathan, A. Roy,
 A. Scedrov, V. Shmatikov, M. Sundararajan, V. Teague,
 M. Turuani, B. Warinschi, …

More information
 Protocol model-checking web page

 http://crypto.stanford.edu/protocols/mc.html

 Protocol Composition Logic
 http://crypto.stanford.edu/protocols/

Science is a social process

