

Enterprise Security in the Brave New (Virtual) World

Tal GarfinkelVMware Advanced Development

The VMware Market Perspective

100% of Fortune 100 91% of Fortune 1000

Other perspectives as well

Many Business/Deployment Models

In House

Managed Outsourcing

Cloud (Local/Remote)

Adoption Drivers/Use Cases

Test and Development – Rapidly provision test configurations; libraries of pre-configured test machines, high volume cross platform testing

Server Consolidation and Dynamic Resource Managment – Increased utilization, decreased hardware cost, dynamic load balancing, dynamic power management

Business Continuity – Disaster recovery, consolidated backup, high availability

Enterprise Desktop Management – Remote display, managed mobile desktops

Overview

What is Virtualization

From Virtual Machines To Virtual Infrastructure

Security Challenges and Opportunities

Emerging Technologies

What is Virtualization?

vir•tu•al (adj): existing in essence or effect, though not in actual fact

Virtual systems

- Abstract physical components using logical objects
- Dynamically bind logical objects to physical configurations

Examples

- Network Virtual LAN (VLAN), Virtual Private Network (VPN)
- Storage Storage Area Network (SAN), LUN
- Computer Virtual Machine (VM), simulator

VMMs Past

From IBM VM/370 product announcement, ca. 1972

An Old Idea

- Hardware-level VMs since '60s
- CP/CMS, IBM S/360 and VM/370 mainframes
- Timeshare multiple single-user OS instances on expensive hardware

Classical VMM

- Run VM directly on hardware
- Vendors had vertical control over proprietary hardware, operating systems, VMM

VMMs Present

VMware Fusion for Mac OS X running WinXP, 2006

Renewed Interest

- Academic research since '90s
- VMs for commodity systems
- Broad range of IT applications

VMM for x86

- Industry-standard hardware, from laptops to datacenter
- Commodity guest operating systems

Not your father's VMM

Modern Divergence

Old World

- Machine centric view
- VMs relatively static
- Focus on logical partitioning
- Mainframe

New World

- Resource centric view
- VMs highly mobile
- Focus on IT automation
- Multitude of uses
 - Consolidation
 - IT automation engine
 - OS independent technology platform
 - Server to Desktop

VMM Platform Types

Hosted Architecture (what most people know)

- Install as application on existing x86 "host" OS, e.g. Windows, Linux, OS X
- Small context-switching driver
- Leverage host I/O stack and resource management
- Examples: VMware Workstation and Fusion, Parallels

Bare-Metal Architecture (what most companies use)

- "Hypervisor" installs directly on hardware
- Dominant architecture for enterprise servers
- Does its own resource management
- Examples: VMware ESX Server, Xen, Microsoft Hyper-V

Starting Point: A Physical Machine

Physical Hardware

- Processors, memory, chipset,
 I/O bus and devices, etc.
- Physical resources often underutilized

Properties

- OS Tightly coupled to hardware
- Single active OS image
- OS controls hardware
- OS Abstractions focus on sharing

What is a Virtual Machine?

Hardware-Level Process Abstraction: CPU, memory, chipset, I/O devices, etc.

- Virtual NIC instead of sockets
- Virtual disk instead of file system
- Hardware state becomes software state

Virtualization Software

- Hardware and software decoupled
- Abstractions focus on isolation

VM Compatibility

Hardware-Independent interface

- Emulate common set of devices (lowest common denominator), SCSI, E1000
- Standard paravirt interface (common case)

Create Once, Run Anywhere

- No configuration issues
- Migrate VMs between hosts (sort of)

VM becomes common image format

 no worries about upgrades, hardware diversity, driver hell, etc.

VM Isolation

Multiplexing

- Run multiple VMs on single physical host
- Processor hardware isolates VMs, e.g. MMU + protection rings

Security and Fault Isolation

 Software bugs, crashes, malicious code

Performance Isolation

- Partition system resources
- Example: VMware controls for reservation, limit, shares

VM Encapsulation

Entire VM is a File

- OS, applications, data
- Memory and device state

Snapshots and Clones

- Capture VM state on the fly and restore to point-in-time
- Rapid system provisioning, backup, remote mirroring

Easy Content Distribution

- Pre-configured apps, demos
- Virtual appliances

OS Independent state abstraction

VM Hot Migration(aka VMotion)

"Hot" migrate VM across hosts

- Transparent to guest OS, apps
- Minimal downtime (sub-second)

Details

- Pre-copy iteration sends modified pages
- Repeatedly pre-copy "diff" until converge

Zero down time hardware maintenance

Compare to traditional process migration...

The Virtual Machine Monitor

(Operating system that runs operating systems)

Lots of unique problems

Fair accounting (similar to realtime)

Co-scheduling (similar to MPP or cluster)

- VM level
- core level

Efficient Memory management

- Multi-level overcommit
- · Content based sharing

10

- Many VMs
- Incoming traffic/Cross Traffic
- Multi-pathing (fate sharing)

Commodity VMM is a myth

- Same interface
- · Different performance, reliability, fairness

Overview

What is Virtualization

From Virtual Machines To Virtual Infrastructure

Security Challenges and Opportunities

Emerging Technologies

Virtual Infrastructure (Distributed system with VMs)

Data center scale resource management

- Virtual CPU, storage, networks, etc.
- Independent of OS and physical infrastructure

Engine for IT workflow automation (SAP for IT)

- VMM's + storage deal with data
- Management infrastructure deals with metadata

One way to manage everything

- Image management, backup, remote display, etc.
- Desktops, servers, laptops
- Can drop VMs on the metal when sensible

The Decoupled Datacenter (Physical configuration as Metadata)

Virtual

Physical (traditional)

Server Consolidation

The basic idea

e scales with #VMs

Consolidation Ratio's imply cost savings

- 2x more VMs
- 2x fewer machines
- 2x + c less power

Consolidation In the Real World

Note Change in Storage Configuration...

Brainpower Consolidation

Who manages your virtual infrastructure?

 IT guy?, network guy?, storage guy? Applications guys?

Power in unified/simplified abstractions

- Virtual switches, VMFS
- OS independence => orthogonal management plane

IT Process Automation (Lifecycle Managment)

IT Process Automation(Staging)

Overview

Virtualization Overview

From Virtual Machines To Virtual Infrastructure

Security Challenges and Opportunities

Emerging Technologies

Traditional IT

Static

• Homogenous, static, manual ad-hoc

Slow Scaling

- # machines limited by capital equipment budget
- growth limited by physical/process constraints

Diversity

Support wide range of uses

- Ease upgrade cycle (multiple OS versions concurrently)
- Different OS versions for testing
- Task specific VMs (build environment/demo), VMs as a script (infrequent use/specialized)
- Application specific OSes
- OS independant primitivites (HA, backup)

Kills traditional management infrastructure

- N versions of everything
- Lack of admin control
- Infrequent use provides less incentive to break stuff with maintenance

Transience

Normal Environment

- Machines generally on
- Relatively low churn
 - exceptions: laptops,dual boot
- Unused machines cost money

Virtual Environment

- Snapshots, suspend/resume
- Rapid/low cost VM creation
- Potentially large transient population
- Unused machines free

Engineering Network Infection Profile(Circa 2003)

Impact of Transience

Loss of visibility

- Patch updates
- Vulnerability scans
- Infection symptoms

Startup Lag (unhappy AV)

- Patch updates
- Virus Scans

Time Dilation (unhappy people)

- Key Aging
- Password Expiration

Coping With Transience

Reconsider how and when to...

Patch, Scan, Update

Lots of points in design space...

- Loopback file system (offline/out of band)
- Sandbox (online/in-band)
- Scheduling
 - Periodic
 - •On demand (e.g. NAC)

Mobility

Traditional Environments

- Static hosts the common case (Desktop/Data Center)
- Mobility = Laptop (or someone switches offices)
- Most machines live in a place (port 5 on building B switch), with a person

Ownership & Accountability Implicit

- Who can get new machines, Who approves it, who owns it
- Who do I blame, where do I pull the plug

Virtual Environments

- Copy VMs with scp, CIFS, NFS
- Put them on a USB drive
- Hot migrate them.

Mobility in the network

Todays networks not built w/ mobility in mind

- Static firewall rules/ACLs, etc. don't like mobility
- Stateful security elements (DPI,NIPS) don't like mobility

Exploit VLANs for mobility?

Topologies get stupid quickly

Alternatives:

- Migrate per-connection state
- Migrate virtual enforcement elements
- Making routing smarter

Mobility Ownership and Accountability

Lack of traditional identity

Office #, port #, mac address

No intrinsic notion of ownership

- Box owner != virtual machine owner
- No ownership history
- When one VM goes bad, penalize whole box?

Mobility and the TCB

Expanded/Fluid TCB

• Where has your VM been?

Data Lifetime

• Where did it get left?

Virtual Time

Traditional time: sequential and montonic

Virtual Time: Not always so monotonic

Virtual Time: Not always so sequential

Virtual Time(Real Problems)

Many practical things don't like being rolled back

- AV Signature files
- Patches
- Firewall and Other network configuration state
- Access Controls
- Passwords/User account information

Potential Solutions

- VM config management
- Move state or entire function out of VM
 - Virtualization aware filesystems: Monotonic files
 - Extra-VM state store
 - Carry out certain tasks in seperate/dedicated VM
 e.g. patch management

Virtual Time (math problems)

Many protocols assume a given transaction has not been seen before.

Unfortunately, we can't rollback an attackers memory

Trivial Example: One-time passwords (e.g. S/Key), attacker can easily replay old passwords

Virtual Time(more math problems)

Anything that relies on a "fresh" random number R breaks.

- Break a stream cipher (if R is the session key)
- Allow TCP hijacking (if R is the initial sequence number)
- Leak the secret signing key in DSS (if R is used to generate signatures)
- And more...

Virtualizing Network Security (challenges)

Does analysis scale out or up?

How do we deal with inter-VM traffic?

Virtualizing Network Security (Opportunities)

Overview

Virtualization Overview

From Virtual Machines To Virtual Infrastructure

Security Challenges and Opportunities

Emerging Technologies

Virtual Machine Introspection

Traditional Host IDS

- OK visibility (previously great...)
- Poor Isolation

Traditional NIDS/NIPS

- Great Isolation
- Poor visibility

Virtual Machine Introspection (lift IDS out of Host)

- Very good isolation
- excellent visibility

VMI Example (Livewire)

Virtual Machine Introspection Benefits

Simplifies approaches like crossview detection

Eases opportunities for cooperation (see CloudAV)

Eliminates need for modifying OS (see patch guard)

Combine host and network knowledge:

end-2-end crypto not your friend in the enterprise

Not a Panacea

If something is compromised, soundness is out!

Defender has the upper hand, but its still just HID/HIP

- all the same tools
- many rehashes of old themes

General intuition about arms race

- Pin hardware invariants, work your way up.
- IDTR -> system call table -> system call text -> system call data structures ...

Virtual Machine Record/Replay

Basic Mechanism

- Capture Snapshot
- Replay all non-deterministic input
 - net, keyboard, timing

Capture all of execution

• about 56Kbps + 5-15% cpu

What does replay give you

Complete dynamic execution state

every memory location/register value/disk block and every step

Ability to decouple analysis from execution

• analyze now in parallel, later offline

Decoupling Analysis and Execution (offline)

Completeness

• Full history for auditing, logging, forensics, analysis

Analysis can be arbitrarily expensive offline

Analysis can be done when needed/when possible.

Decoupling Analysis and Execution (online)

Dawdle behind the running VM

almost realtime IDS

Provide synchronization points (e.g. sync on output)

- Only need to synchronize for containment
- VM Rollback for remediation

Summary

Virtualization is becoming ubiquitous

Virtualization substantially changing the way we design systems, existing security architectures must adapt

Virtualization provides many cool new mechanisms and degree's of freedom -- lots of space to innovate

Questions?

Extra slides

Architectures

Xen 3.0 Architecture

Assurance

What matters for assurance

Attack Surface

- Code size is overrated
- VMMs lend themselves to narrow/stable attack surface (so far)

Unhealthy fixations on assurance

- 1 remote exploit in XP since SP2
- In real world, airgaps aren't generally airgaps
- likely that sky isn't falling
- Amdahl's law, not just for performance
- Real world problems mostly stem from misconfiguration
- Security just one parameter in the design space