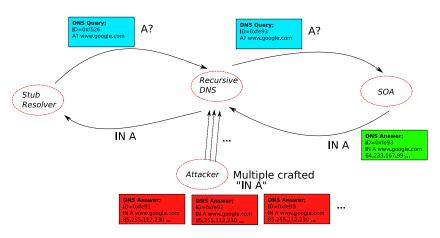
DNS Poisoning: Developments, Attacks and Research Directions

Suggestions for the Idle and Curious Researcher

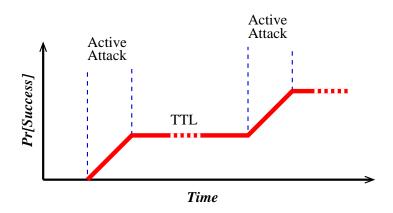
David Dagon¹

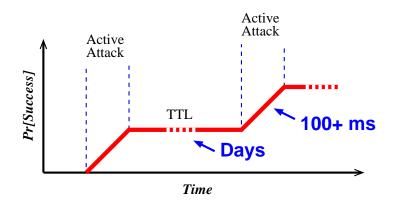
¹Georgia Institute of Technology Atlanta, Georgia

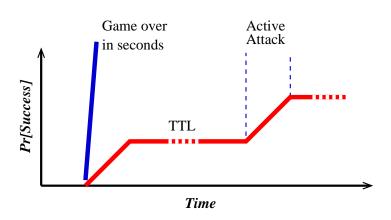
USENIX 08 DNS Panel - July 31 2008



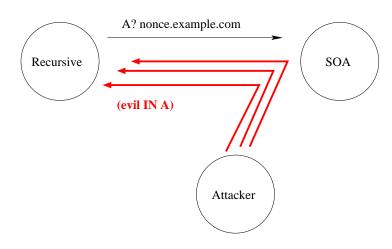
Objectives: Identify Research Opportunities

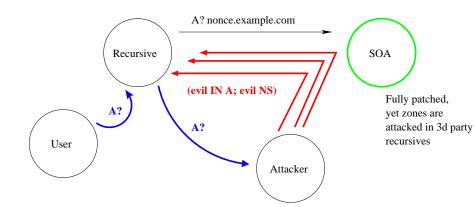

- More than ever, the research community is needed
- Recent DNS exploits present a broad threat, and opportunities
- These notes present an overview of new DNS poisoning techniques
- Open questions are presented in red
 - The panel discussion may identify interesting research topics
- The research community is urged to respond to this problem


Basic Poisoning Model

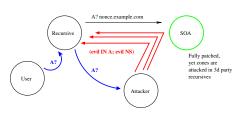

Poisoning Overview: Time-to-Success

Poisoning Overview: Time-to-Success


Kaminsky-Class Poisoning

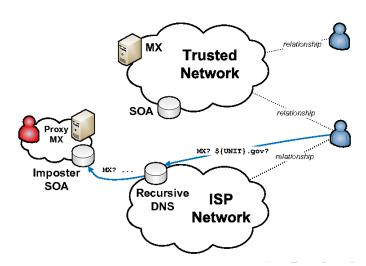

Kaminsky-Class Poisoning

- Can start anytime; now waiting for old good cached entries to expire
- No "wait penalty" for poisoning failure: TTL no longer a factor
- Generally, the attack is only bandwidth limited
- Deterministic march to cache manipulation
- Full consideration of attack dimensions at Kaminsky's upcoming BlackHat talk

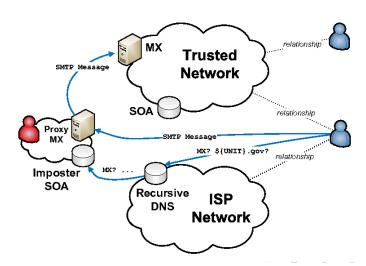

Dramatis Personae

Dramatis Personae

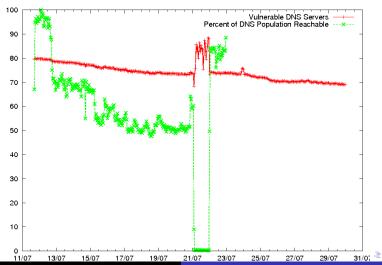
Dramatis Personae: Implications

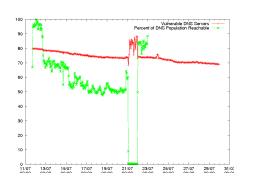


- Note the diverse threat:
 - Recursive's risk: DNS reputation; integrity of service
 - Authority's risk: Visitors at risk, domain brand
 - User's risk: all DNS-aware applications


Attack Scenarios

- Why, then, is this an important exploit?
- There are countless trivial exploits built on top of this single vulnerability disclosure.
- One example now being seen:
 - Message interception
- High risk/high yield: HTTP to HTTPS sites
- Numerous other scenarios... see Dan Kaminsky's talk for more.

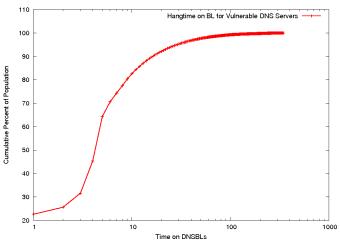

Attack Scenario: Mail Intercept


Attack Scenario: Mail Intercept

DNS Patch Rates Over Time

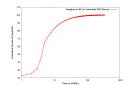
DNS Patch Rates Over Time

Salient points:


- Some 398,270 unique DNS servers probed over days, post VU-800113
- Slight decrease in vulnerable rate
- ... however, we also fail to reach many of the DNS servers originally identified (as much as half)
- Why? Many are dynamic hosts

DNS Patch Rates: Current

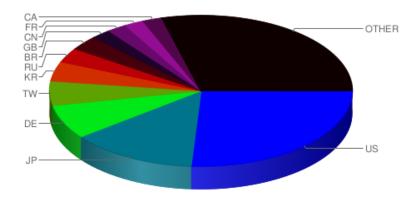
- Current rates of patching:
- Based on a subsample of tens of thousands of DNS resolvers
- 50% by number are unpatched
- 40% by popularity remain unpatched
- Research Need: Understand the patch agility of networks, applications, and services.


DNS Server BL Listing Periods

DNS Server BL Listing Periods

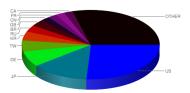
Salient points:

- Why were so many DNS servers no longer reachable after the initial probes?
- Some (34K, or ≈ 9%) are listed in the XBL, suggesting: an open recursive SOHO device, NAT'ing traffic for infected hosts at home (diurnal pattern masked where epoch is 86400).
- The graph shows the portion of population that persisted on the XBL, in days.
 - Thus, 80% of the "infected" hosts running DNS servers remained infected for 10 days or less.
 20% are highly recidivist.


Vulnerable DNS Server Profiles

- How far behind in patches are the vulnerable servers?
- We can use 'fpdns -f' to estimate...

```
40% ISC BIND 9.2.3rc1 -- 9.4.0a0
15% No match found
10% TIMEOUT id unavailable
9% ISC BIND 9.2.0rc7 -- 9.2.2-P3
0.6% Microsoft Windows DNS 2000
...
1 instance: ''Dan Kaminsky nomde
DNS tunnel''
```


• Research Need: How to better characterize the quality of DNS service?

Where Are The Vulnerable Servers?

Where Are The Vulnerable Servers?

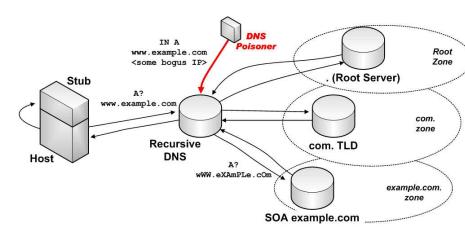
- Every security talk ever given has a pie chart showing IPs by country.
- This is that slide.

- What's the take-away?
- Research Need: A more relevant, actionable, insightful analysis of IP reputation systems.

Remedy #1: Source Port Randomization

- Vendor patches are available
- General direction: port randomization with cache logic enhancements
- Research Need: High performance techniques to randomize ports, without impacting resources

Remedy #2: DNS-0x20


- DNS messages often preserve the query formatting
- DNS-0x20 is an anti-poisoning technique that uses mixed-case queries
- We can run the dig command to test:

```
dig @a.iana-servers.net www.EXamPLE.cOM
; <<>> DiG 9.5.0-P1 <<>> @a.iana-servers.net www
...
;; Got answer:
...
;; QUESTION SECTION:
;www.EXamPLE.cOM. IN A
...
;; ANSWER SECTION:
www.EXamPLE.com. 172800 IN A
```

Remedy #2: DNS-0x20

- DNS signaling preserves qname formatting.
- This allows provides addition bits for transaction processing.
- Thus, attacks have to guess not only the ID and src port, but also the DNS-0x20 encoding of the gname

DNS-0x20 Conceptual Use

Where to learn more:

IETF draft at:

- Unbound DNS server uses; BIND releasing shortly
- 99.7% of authority servers can handle DNS-0x20; the non-compliant zones can be forwarded
- Note: Kaminsky-class poisoning can affect TLDs, which have few 0x20-capable bits
- Research Need: Additional light-weight enhancements for forgery resistance

Remedy #3: You and Your Lab

- Research Needs:
- The research community needs to describe this poisoning attack, scenarios, and create a new threat model.
 - Enumerate capabilities of attackers and defenders
 - Identify invariants
 - Rethink old assumptions (e.g., domain whitelistings)
- Merging of IDS/DNS technologies
- Better understanding of control-plane monitoring
 - How to determine if "wrong" DNS answers are malicious
 - Engineering problems; data collection problems; anonymity problems

Remedy #4: SIE Monitoring

- SIE (among other things) is a large, diverse DNS traffic sharing system.
 - ISC hosted; 60 Mb/s traffic
 - Numerous US ISPs, Universities contributing
 - Data sharing; data amplification
 - More details at https://sie.isc.org/
- Research Need: Leveraging SIE data for analysis of traffic reveals attacks, trends, flux, bots, spam, ... everything.