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Abstract
The notion of blacklisting communication sources has
been a well-established defensive measure since the ori-
gins of the Internet community. In particular, the prac-
tice of compiling and sharing lists of the worst offenders
of unwanted traffic is a blacklisting strategy that has re-
mained virtually unquestioned over many years. But do
the individuals who incorporate such blacklists into their
perimeter defenses benefit from the blacklisting contents
as much as they could from other list-generation strate-
gies? In this paper, we will argue that there exist better
alternative blacklist generation strategies that can pro-
duce higher-quality results for an individual network.
In particular, we introduce a blacklisting system based
on a relevance ranking scheme borrowed from the link-
analysis community. The system produces customized
blacklists for individuals who choose to contribute data
to a centralized log-sharing infrastructure. The ranking
scheme measures how closely related an attack source is
to a contributor, using that attacker’s history and the con-
tributor’s recent log production patterns. The blacklisting
system also integrates substantive log prefiltering and a
severity metric that captures the degree to which an at-
tacker’s alert patterns match those of common malware-
propagation behavior. Our intent is to yield individual-
ized blacklists that not only produce significantly higher
hit rates, but that also incorporate source addresses that
pose the greatest potential threat. We tested our scheme
on a corpus of over 700 million log entries produced
from the DShield data center and the result shows that
our blacklists not only enhance hit counts but also can
proactively incorporate attacker addresses in a timely
fashion. An early form of our system have been fielded
to DShield contributors over the last year.

1 Introduction

A network address blacklist represents a collection of
source IP addresses that have been deemed undesirable,

where typically these addresses have been involved in
some previous illicit activities. For example, DShield (a
large-scale security-log sharing system) regularly com-
piles and posts a firewall-parsable blacklist of the most
prolific attack sources seen by its contributors [17]. With
more than 1700 contributing sources providing a daily
stream of 30 million security log entries, such daily
blacklists provide an informative view of those class C
subnets that are among the bane of the Internet with re-
spect to unwanted traffic. We refer to the blacklists that
are formulated by a large-scale alert repository and con-
sist of the most prolific sources in the repository’s col-
lection of data as the global worst offender list (GWOL).
Another strategy for formulating network address black-
lists is for an individual network to create a local blacklist
based entirely on its own history of incoming communi-
cations. Such lists are often culled from a network’s pri-
vate firewall log or local IDS alert store, and incorporate
the most repetitive addresses that appear within the logs.
We call this blacklist scheme the local worst offender list
(LWOL) method.

The GWOL and LWOL strategies have both strengths
and inherent weaknesses. For example, while GWOLs
provide networks with important information about
highly prolific attack sources, they also have the poten-
tial to exhaust the subscribers’ firewall filter sets with ad-
dresses that will simply never be encountered. Among
the sources that do target the subscriber, GWOLs may
miss a significant number of attacks, in particular when
the attack sources prefer to choose their targets more
strategically, focusing on a few known vulnerable net-
works [4]. Such attackers are not necessarily very pro-
lific and are hence elusive to GWOLs. The sources on an
LWOL have repetitively sent unwanted communications
to the local network and are likely to continue doing so.
However, LWOLs are limited by being entirely reactive –
they only capture attackers that have been pounding the
local network and hence cannot provide a potential for
the blacklist consumer to learn of attack sources before
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these sources reach their networks.
Furthermore, both types of lists suffer from the fact

that an attack source does not achieve candidacy until it
has produced a sufficient mass of communications. That
is, although it is desirable for firewall filters to include
an attacker’s address before it has saturated the network,
neither GWOL nor LWOL offer a solution that can pro-
vide such timely filters. This is a problem particularly
with GWOL. Even after an attacker has produced signif-
icant illicit traffic, it may not show up as a prolific source
within the security log repository, because the data con-
tributors of the repository are a very small set of networks
on the Internet. Even repositories such as DShield that
receive nearly 1 billion log entries per month represent
only a small sampling of Internet activity. Significant at-
tacker sources may elude incorporation into a blacklist
until they have achieved extensive saturation across the
Internet.

In summary, a high-quality blacklist that fortifies net-
work firewalls should achieve high hit rate, should incor-
porate addresses in a timely fashion, and should proac-
tively include addresses even when they have not been
encountered previously by the blacklist consumer’s net-
work. Toward this goal, we present a new blacklist gen-
eration system which we refer to as the highly predictive
blacklisting (HPB) system. The system incorporates 1)
an automated log prefiltering phase to remove unreliable
alert contents, 2) a novel relevance-based attack source
ranking phase in which attack sources are prioritized on
a per-contributor basis, and 3) a severity analysis phase
in which attacker priorities are adjusted to favor attack-
ers whose alerts mirror known malware propagation pat-
terns. The system constructs final individualized black-
lists for each DShield contributor by a weighted fusion
of the relevance and severity scores.

HPB’s underlying relevance-based ranking scheme
represents a significant departure from the long-standing
LWOL and GWOL strategies. Specifically, the HPB
scheme examines not just how many targets a source ad-
dress has attacked, but also which targets it has attacked.
In the relevance-based ranking phase, each source ad-
dress is ranked according to how closely related the
source is to the target blacklist subscriber. This relevance
measure is based on the attack source similarity patterns
that are computed across all members of the DShield
contributor pool (i.e., the amount of attacker overlap ob-
served between the contributors). Using a data correla-
tion strategy similar to hyper-text link analysis, such as
Google’s PageRank [2], the relationships among all the
contributors are iteratively explored to compute an indi-
vidual relevance value from each attacker to each con-
tributor.

We evaluated our HPB system using more than 720
million log entries produced by DShield contributors

from October to November 2007. We contrast the per-
formance of the system with that of the corresponding
GWOLs and LWOLs, using identical time windows, in-
put data, and blacklist lengths. Our results show that for
most contributors (more than 80%), our blacklist entries
exhibit significantly higher hit counts over a multiday
testing window than both GWOL and LWOL. Further
experiments show that our scheme can proactively incor-
porate attacker addresses into the blacklist before these
addresses reach the blacklist consumer network, and it
can do so in a timely fashion. Finally, our experiments
demonstrate that the hit count increase is consistent over
time, and the advantages of our blacklist remain stable
across various list lengths and testing windows.

The contribution of this paper is the introduction of the
highly predictive blacklisting system, which includes our
methodology for prefiltering, relevance-based ranking,
attacker severity ranking, and final blacklist construc-
tion. Ours is the first exploration of a link-analysis-based
scheme in the context of security filter production and to
quantify the predictive quality of the resulting data. The
HPB system is also one of the only new approaches we
are aware of for large-scale blacklist publication that has
been proposed in many years. However, our HPB sys-
tem is applicable only to those users who participate as
active contributors to collaborative security log data cen-
ters. Rather than a detriment, we hope that this fact pro-
vides some operators a tangible incentive to participate
in security log contributor pools. Finally, the system dis-
cussed in this paper, while still a research prototype, has
been fully implemented and deployed for nearly a year
as a free service on the Internet at DShield.org. Our ex-
perience to date leads us to believe that this approach is
both scalable and feasible for daily use.

The rest of the paper is organized as follows. Section 2
provides a background on previous work in blacklist gen-
eration and related topics. In Section 3 we provide a de-
tailed description of the Highly Predictive Blacklist sys-
tem. In Section 4 we present a performance evaluation
of HPBs, GWOLs, and LWOLS, including assessments
of the extent to which the above three desired blacklist
properties (hit rate, proactive appearance, and timely in-
clusion) are realized by these three blacklists. In Sec-
tion 5 we present a prototype implementation of the HPB
system that is freely available to DShield.org log contrib-
utors, and we summarize our key findings in Section 6.

2 Related Work

Network address and email blacklists have been around
since the early development of the Internet [6]. To-
day, sites such as DShield regularly compile and pub-
lish firewall-parsable filters of the most prolific attack
sources reported to its website [17]. DShield represents
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a centralized approach to blacklist formulation, provid-
ing a daily perspective of the malicious background ra-
diation that plagues the Internet [15, 20]. Other recent
examples of computer and network blacklists include IP
and DNS blacklists to help networks detect and block
unwanted web content, SPAM producers, and phishing
sites, to name a few [7, 8, 17, 18]. The HPB system pre-
sented here complements, but does not displace these re-
sources or their blacklisting strategies. In addition, HPBs
are only applicable to active log contributors (we hope
as an incentive), not as generically publishable one-size-
fits-all resources.

More agile forms of network blacklisting have also
been explored, with the intention of rapidly publishing
perimeter filters to control actively spreading malware
epidemics [1, 3, 12, 14]. For example, in [14] a peer-
to-peer blacklisting scheme is proposed, where each net-
work incorporates an address into its local blacklist when
a threshold number of peers have reported attacks from
this address. We separate our HPB system from these
malware defense schemes. While the HPB system does
incorporate a malware-oriented attacker severity metric
into its final blacklist selection, we have not contem-
plated nor propose HPBs for use in the context of dy-
namic quarantine defenses for malware epidemics.

One key insight that inspired the HPB relevance-based
ranking scheme was raised by Katti et al. [10], who iden-
tified the existence of stable correlations among the at-
tackers reported by security log contributors. Here we in-
troduce a relevance-based recommendation scheme that
selects candidate attack sources based on the attacker
overlaps found among peer contributors. This relevance-
based ranking scheme can be viewed as a random walk
on the correlation graph, going from one node to another
following the edges in the graph with the probability pro-
portional to the weight of the graph. This form of random
walk has been applied in link-analysis systems such as
Google’s PageRank [2], where it is used to estimate the
probability that a webpage may be visited. Similar link
analysis has been used to rank movies [13] and reading
lists [19].

The problem of predicting attackers has also been
recently considered in [24] using a Guassian process
model. However, [24] purely focused on developing sta-
tistical learning techniques for attacker prediction based
on collaborative filtering. In this paper, we present a
comprehensive blacklisting generation system that con-
siders many other characteristics of attackers. The pre-
diction part is only one component in our system. Fur-
thermore, the prediction model presented here is com-
pletely different from the one in [24] (Gaussian process
model in [24] and link analysis model here). By taking
some penalty in predictive power, the prediction model
presented here is much more scalable, which is of neces-

sity for implementing a deployable service (Section 5).
Finally, [23] provides a six-page summary of the earli-

est release of our DShield HPB service, including a high-
level description of an early ranking scheme. In this pa-
per we have substantially expanded this algorithm and
present its full description for the first time. This present
paper also introduces the integration of metrics to capture
attack source maliciousness in its final rank selection,
and presents the full blacklist construction system. We
also present our quantitative evaluation of multiple sys-
tem properties, and address several open questions that
have been raised over the past year since our initial pro-
totype.

3 Blacklisting System

We illustrate our blacklisting system in Figure 1. The
system constructs blacklists in three stages. First, the se-
curity alerts supplied by sensors across the Internet are
preprocessed. This removes known noises in the alert
collection. We call this the prefiltering stage. The pre-
processed data are then fed into two parallel engines.
One ranks, for each contributors, the attack sources ac-
cording to their relevance to that contributor. The other
scores the sources using a severity assessment that mea-
sures their maliciousness. The relevance ranking and the
severity score are combined at the last stage to generate
a final blacklist for each contributor.

We descibe the prefiltering process in Section 3.1, rel-
evance ranking in Section 3.2, severity score in Sec-
tion 3.3 and the final production of the blacklists in Sec-
tion 3.4.

3.1 Prefiltering Logs for Noise Reduction
One challenge to producing high-quality threat intelli-
gence for use in perimeter filtering is that of reducing
the amount of noise and erroneous data that may exist in
the input data that drives our blacklist construction algo-
rithm. That is, in addition to the unwanted port scans,
sweeps, and intrusion attempts reported daily within the
DShield log data, there are also commonly produced
log entries that arise from nonhostile activity, or activ-
ity from which useful filters cannot be reliably derived.
While it is not possible to separate attack from nonat-
tack data, the HPB system prefilters from consideration
logs that match criteria that we have been able to empiri-
cally identify as commonly occurring nonuseful input for
blacklist construction purposes.

As a preliminary step prior to blacklist construction,
we apply three filtering techniques to the DShield alert
logs. First, the HPB system removes from consideration
DShield logs produced from attack sources from invalid
or unassigned IP address space. Here we employ the



110	 17th	USENIX	Security	Symposium	 USENIX	Association

Figure 1: Blacklisting system architecture

bogon list created by the Cymru team that captures ad-
dresses that are reserved, not yet allocated, or delegated
by the Internet Assigned Number Authority [16]. Typi-
cally, such addresses should not be routed, but otherwise
do appear anyway in the DShield data. In addition, re-
served addresses such as the 10.x.x.x or 192.168.x.x may
also appear in misconfigured contributor logs that are not
useful for translating into blacklists.

Second, the system prefilters from consideration net-
work addresses from Internet measurement services, web
crawlers, or common software update sources. From ex-
perience, we have developed a whitelist of highly com-
mon sources that, while innocuous from an intrusion per-
spective, often generate alarms in DShield contributor
logs.

Finally, the HPB system applies heuristics to avoid
common false positives that arise from commonly timed-
out network services. Specifically, we exclude logs pro-
duced from source ports TCP 53 (DNS), 25 (SMTP), 80
(HTTP), and 443 (often used for secure web, IMAP, and
VPN), and from destination ports TCP 53 (DNS) and
25 (SMTP). Firewalls will commonly time out sessions
from these services when the server or client becomes
unresponsive or is slow. In practice, the combination of
these prefiltering steps provides approximately a 10% re-
duction in the DShield input stream prior delivery to the
blacklist generation system.

3.2 Relevance Ranking

Our notion of attacker relevance is a measure that in-
dicates how close the attacker is related to a particu-
lar blacklist consumer. It also reflects the likelihood to
which the attacker may come to the blacklist consumer
in the near future. Note that this relevance is orthogonal
to metrics that measure the severity (or benignness) of
the source, which we will discuss in the next section.

In our context, the blacklist consumers are the contrib-
utors that supply security logs to a log-sharing repository
such as DShield. Recent research has observed the exis-
tence of attacker overlap correlations between DShield

contributors [10], i.e., there are pairs of contributors that
share quite a few common attackers, where the common
attacker is defined as a source address that both contrib-
utors have logged and reported to the repository. This re-
search also found that this attacker overlap phenomenon
is not due to attacks that select targets randomly (as in a
random scan case). The correlations are long lived and
some of them are independent of address proximity. We
exploit these overlap relationships to measure attacker
relevance.

We first illustrate a simple concept of attacker rele-
vance. Consider a collection of security logs displayed
in a tabular form as shown in Table 1. We use the rows
of the table to represent attack sources and the columns
to represent contributors. We refer to the unique source
addresses that are reported within the log repository as
attackers, and use the terms “attacker” and “source” in-
terchangeably. Since the contributors are also the tar-
gets of the logged attacks, we refer to them as victims.
We will use the terms “contributor” and “victim” inter-
changeably. An asterisk “*” in the table cell indicates
that the corresponding source has reportedly attacked the
corresponding contributor.

v1 v2 v3 v4 v5

s1 * *
s2 * *
s3 * *
s4 * *
s5 *
s6 * *
s7 *
s8 * *

Table 1: Sample Attack Table

Let us assume that Table 1 represents a series of logs
contributed in the recent past by our five victims, v1

through v5. Now suppose we would like to calculate
the relevance of the sources for contributor v1 based on
these attack patterns. From the attack table we observe
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that contributors v1 and v2 share multiple common at-
tackers. v1 also shares one common attack source (s3)
with v3, but does not share attacker overlap with the other
contributors. Given this observation, between sources
s5 and s6, we would say that s5 has more relevance to
v1 than s6 because s5 has reportedly attacked v2, which
has recently experienced multiple attack source overlaps
with v1. But the victims of s6’s attacks share no overlap
with v1. Note that this relevance measure is quite differ-
ent from the measures based on how prolific the attack
source has been. The latter would favor s6 over s5, as s6
has attacked more victims than s5. In this sense, which
contributors a source has attacked is of greater signifi-
cance to our scheme than how many victims it has at-
tacked. Similarly, between s5 and s7, s5 is more rele-
vant, because the victim of s5 (v2) shares more common
attacks with v1 than the victim of s7 (v3). Finally, be-
cause s4 has attacked both v2 and v3, we would like to
say that it is the most relevant among s4, s5, s6, and s7.

To formalize the above intuition, we model the at-
tack correlation relationship between contributors us-
ing a correlation graph, which is a weighted undirected
graph G = (V,E). The nodes in the graph consist of the
contributors V = {v1, v2, . . .}. There is an edge between
node vi and vj if vi is correlated with vj . The weight on
the edge is determined by the strength of the correlation
(i.e., occurrences of attacker overlap) between the two
corresponding contributors. We now introduce some no-
tation for the relevance model.

Let n be the number of nodes (number of contributors)
in the correlation graph. We use W to denote the adja-
cency matrix of the correlation graph, where the entry
W(i,j) in this matrix is the weight of the edge between
node vj and vi. For a source s, we denote by T (s) the set
of contributors that have reported an attack from s. T (s)
can be written in a vector form bs = {bs

1, b
s
2, . . . , b

s
n}

such that bs
i = 1 if vi ∈ T (s) and bs

i = 0 otherwise.
We also associate with each source s a relevance vector
rs = {rs

1, r
s
2, . . . , r

s
n} such that rs

v is the relevance value
of attacker s with respect to contributor v. We use lower-
case boldface to indicate vectors and uppercase boldface
to indicate matrices. Table 2 summarizes our notation.

We now describe how to derive the matrix W from
the attack reports. Consider the following two cases. In
Case 1, contributor vi sees attacks from 500 sources and
vj sees 10 sources. Five of these sources attack both vi

and vj . In Case 2, there are also five common sources.
However, vi sees only 50 sources and vj sees 10. Al-
though the number of overlapping sources is the same
(i.e., 5 common sources), the strength of connection be-
tween vi and vj is different in the two cases. If a con-
tributor observes a lot of attacks, it is expected that there
should be more overlap between this contributor and the
others. Let mi be the number of sources seen by vi, mj

n # of contributors
vi i-th contributor
W Adjacency matrix of the correlation

graph
T (s) Set of contributors that have reported at-

tack(s) from source s
bs Attack vector for source s. bs

i = 1 if
vi ∈ T (s) and 0 otherwise

rs Relevance vector for source s. rs
v is the

relevance value of attacker s with re-
spect to contributor v

Table 2: Summary of Relevance Model Notations

the number seen by vj , and mij the number of common
attack sources. The ratio mij

mi
shows how important vi is

for vj while mij

mj
shows how important vj is for vi. Since

we want W(i,j) to reflect the strength of the connection
between vi and vj , we set W(i,j) = mij

mi
· mij

mj
. One may

view this new W as a standardized correlation matrix.
Figure 2 shows the matrix W for Table 1 constructed
using this method.




0 0.33 0.083 0 0
0.33 0 0.063 0 0
0.083 0.063 0 0.13 0

0 0 0.13 0 0.5
0 0 0 0.5 0




Figure 2: Standardized Correlation Matrix for Attack Ta-
ble 1

Given this correlation matrix, we follow the afore-
mentioned intuition and calculate the relevance as rs

i =
j∈T (s) W(i,j). This is to say that if the repository re-

ports that source s has attacked contributor vj , this fact
contributes a value of W(i,j) to the source’s relevance
with respect to the victim vi. Written in vector form, it
gives us

rs = W · bs. (1)

The above simple relevance calculation lacks certain
desired properties. For example, the simple relevance
value is calculated solely from the observed activities
from the source by the repository contributors. In some
cases, this observation does not represent the complete
view of the source’s activity. One reason is that the con-
tributors consist of only a very small set of networks in
the Internet. Before an attacker saturates the Internet
with malicious activity, it is often the case that only a
few contributors have observed the attacker. The attacker
may be at its early stage or it has attacked many places,
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most of which do not participate in the security log shar-
ing system. Therefore, one may want a relevance mea-
sure that has a “look-ahead” capability. That is, the rele-
vance calculation should take into consideration possible
future observations of the source and include these an-
ticipated observations from the contributors into the rel-
evance values.

Figure 3: Relevance Evaluation Considers Possible Fu-
ture Attacks

Figure 3 gives an example where one may apply this
“look-ahead” feature. (Examples here are independent
of the one shown in Table 1.) The correlation graph of
Figure 3 consists of four contributors numbered 1, 2, 3,
and 4. Contributor 2 reported an attack from source s
(represented by the star). Our goal is to evaluate how
relevant this attacker is to contributor 1 (double-circled
node). Using Equation 1, the relevance would be zero.
However, we observe that s has relevance 0.5 with re-
spect to contributor 3 and relevance 0.3 with respect to
contributor 4. Although at this time, contributors 3 and
4 have not observed s yet, there may be possible future
attacks from s. In anticipation of this, when evaluating
s’s relevance with respect to contributor 1, contributors
3 and 4 pass to contributor 1 their relevance values af-
ter multiplying them with the weights on their edges, re-
spectively. The attacker’s relevance value for contributor
1 then is 0.5*0.2+0.3*0.2 = 0.16. Note that, had s actu-
ally attacked contributors 3 and 4, the contributors would
have passed the relevance value 1 (again after multiply-
ing them with the weights on the edges) to contributor
1.

This can be viewed as a relevance propagation process.
If a contributor vi observed an attacker, we say that the
attacker has an initial relevance value 1 for that contribu-
tor. Following the edges that go out of the contributor, a
fraction of this relevance can be distributed to the neigh-
bors of the contributor in the graph. Each of vi’s neigh-
bors receives a share of relevance that is proportional to
the weight on the edge that connects the neighbor to vi.
Suppose vj is one of the neighbors. A fraction of the rele-
vance received by vj is then further distributed, in similar
fashion, to its neighbors. The propagation of relevance

continues until the relevance values for each contributor
reach a stable state.

This relevance propagation process has another benefit
besides the “look-ahead” feature. Consider the correla-
tion graph given in Figure 4 (a). The subgraph formed
by nodes 1, 2, 3, and 4 is very different from that formed
by nodes 1, 5, 6, and 7. The subgraph from nodes 1, 2,
3, and 4 is well connected (in fact it forms a clique). The
contributors in the subgraph are thus more tied together.
We call them a correlated group. (We use a dotted cir-
cle to indicate the correlated group in Figure 4.) There
may be certain intrinsic similarities between the mem-
bers in the correlated group (e.g., IP address proximity,
similar vulnerability). Therefore, it is natural to assign
more relevance to source addresses that have attacked
other contributors in the same correlated group. For ex-
ample, consider the sources s and s in Figure 4. They
both attacked three contributors. All the edges in the cor-
relation graph have the same weights. (Hence, we omit-
ted the weights in the figure.) We would like to say that s
is more relevant than s for contributor 1. If we calculate
the relevance value by Equation 1, the values would be
the same for the two attackers. Relevance propagation
helps to give more value to the attacker s because mem-
bers of the correlated group are well connected. There
are more paths in the subgraph that lead from the con-
tributors where the attack happened to the contributor for
which we are evaluating the attacker relevance. For ex-
ample, the relevance from contributor 2 can propagate to
contributor 3 and then to contributor 1. It can also go to
contributor 4 and then to contributor 1. This is effectively
the same as having an edge with larger weight between
the contributors 2 and 1. Therefore, relevance propaga-
tion can effectively discover and adapt to the structures
in the correlation graph. The relevance values assigned
then reflect certain intrinsic relationships among contrib-
utors.

We extend Equation 1 to employ relevance propaga-
tion. If we propagate the relevance values to the imme-
diate neighbors in the correlation graph, we obtain a rel-
evance vector W · bs that represents the propagated val-
ues. Now we propagate the relevance values one more
hop. This gives us W · W · bs = W2 · bs. The rele-
vance vector that reflects the total relevance value each
contributor receives is then W · bs + W2 · bs. If we
let the propagation process iterate indefinitely, the rele-
vance vector would become

∞
i=1 Wi · bs. There is a

technical detail in this process we need to resolve. Nat-
urally, we would like the relevance value to decay along
the path of propagation. The further it goes on the graph,
the smaller its contribution becomes. To achieve this,
we scale the matrix W by a constant 0 < α < 1 such
that the 2-norm of the new matrix αW becomes smaller
than one. With this modification, an attacker will have
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Figure 4: Attacks on Members in a Correlated Group Contribute More Relevance

only a negligible relevance value to contributors that are
far away in the correlation graph. Putting the above to-
gether, we compute the relevance vector by the following
equation:

rs =
∞

i=1

(αW)i · bs (2)

We observe that bs + rs is the solution for x in the
following system of linear equations:

x = bs + αW · x (3)

The linear system described by Equation 3 is exactly the
system used by Google’s PageRank [2]. PageRank ana-
lyzes the link structures of webpages to determine the
relevance of each webpage with respect to a keyword
query. In PageRank, bs is set to be an all-one vector and
W is determined by letting W(i,j) be 1/(# of outgoing
links on page j) if one of these outgoing links points
to webpage i, and W(i,j) = 0 otherwise. Therefore,
PageRank propagates relevance where every node pro-
vides an initial relevance value of one. In our relevance
calculation, only nodes whose corresponding contribu-
tors have reported the attacker are assigned one unit of
initial relevance. Similar to the PageRank values that re-
flect the link structures of the webpages, our relevance
values reflect the structure of the correlation graph that
captures intrinsic relationships among the contributors.

Equation 3 can be solved to give x = (I − αW)−1 ·
bs, where I is the identity matrix. Also, since x = rs +
bs, rs = (I−αW)−1 ·bs−bs = [(I−αW)−1−I] ·bs.
This gives the relevance vector for each attack source.
The sources are then ranked, for each contributor, ac-
cording to the relevance values. As each attack source
has a potentially different relevance value for each con-
tributor, the rank of a source with respect to different con-
tributors is different. Note that our concept of relevance
measure and relevance propagation does not depend on a
particular choice of the W matrix. As long as W reflects
the connection weight between the contributors, our rel-
evance measure applies.

3.3 Analyzing Attack Pattern Severity

We now consider the problem of measuring the degree
to which each attack source exhibits known patterns of
malicious behavior. In the next section, we will disuss
how this measure can be fused into our final blacklist
construction decisions. In this section we will describe
our model of malicious behavior and the attributes we
extract to map each attacker’s log production patterns to
this model.

Our model of malicious behavior, in this instance, fo-
cuses on identifying typical scan-and-infect malicious
software (or malware). We define our malware behav-
ior pattern as that of an attacker who conducts an IP
sweep to small sets of ports that are known to be as-
sociated with malware propagation or backdoor access.
This behavior pattern matches the malware behavior pat-
tern documented by Yegeneswaren et.al. in [20], as
well as our own most recent experiences (within the last
twelve months) of more than 20K live malware infec-
tions observed within our honeynet [21]. Other potential
malware behavior patterns may be applied, for exam-
ple, such as the scan-oriented malicious address detec-
tion schemes outlined in the context of dynamic signa-
ture generation [11] and malicious port scan analysis [9].
Regardless of the malware behavior model used, the de-
sign and integration of other severity metrics into the fi-
nal blacklist generation process can be carried out in a
similar fashion.

For the set of log entries over the relevance-calculation
time window, we calculate several attributes for each at-
tacker’s /24 network address. (Our blacklists are speci-
fied on a per /24 basis, meaning that a single malicious
address has the potential to induce a LAN-wide filter.
This is standard practice for DShield and other black-
lists.) For each attacker, we assign a score to target ports
associated with the attacker, assigning a different weight
depending on whether or not the port is associated with
known malware communications.

LetMP be the set of malware-associated ports, where
we currently uses the definition in Figure 5. This MP
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Figure 5: Malware Associated Ports

is derived from various AV lists and our honeynet ex-
periences. We do not argue that this list is complete
and can be expanded across the life of our HPB service.
However, our experiences in live malware analysis indi-
cate that the entries in MP are both highly common and
highly indicative of malware propagation.

Let the number of target ports that attacker s connects
to be cm, and the total number of unique ports connected
to be defined as cu. We associate a weighting (or impor-
tance) factor wm for all ports in MP , and a weighting
factor wu for all nonmalware ports. We then compute
a malware port score (PS) metric for each attacker as
follows:

PS(s) =
(wu × cu) + (wm × cm)

cu
(4)

Here, we intend wm to be of greater weight than wu,
and choose an initial default of wm = 4∗wu. PS has the
property that even if a large cm is found, if cu is also large
(as in a horizontal portscan), then PS will remain small.
Again, our intention is to promote a malware behavior
pattern in which malware propagation will tend to target
fewer specific ports, and is not associated with attackers
that engage in horizontal port sweeps.

Next, we compute the set of unique target IP addresses
connected to by attacker s. We refer to this count as
TC(s). A large TC represents confirmed IP sweep be-
havior, which we strongly associate with our malware
behavior model. TC is the exclusive prioritization met-
ric used by GWOL, whereas here we consider TC a sec-
ondary factor to PS in computing a final malware be-
havior score. We could also include metrics regarding
the number of DShield sensors (i.e., unique contributor
IDs) that have reported the attacker, which arguably rep-
resents the degree of consensus in the contributor pool
that the attack source is active across the Internet. How-
ever, the IP sweep pattern is of high interest, even when
the IP sweep experiences may have been reported only
by a smaller set of sensors.

Third, we compute an optional tertiary behavior met-
ric that captures the ratio of national to international ad-
dresses that are targeted by attacker s, IR(s). Within

the DShield repository we find many cases of sources
(such as from China, Russian, the Czech Republic) that
exclusively target international victims. However, this
may also illustrate a weakness in the DShield contributor
pool, as there may be very few contributors that operate
sensors within these countries. We incorporate a damp-
ening factor δ (0 ≤ δ ≤ 1) that allows the consumer
to express the degree to which the IR factor should be
nullified in computing the final severity score for each
attacker.

Finally, we compute a malware severity score MS(s)
for each candidate attacker that may appear in the set of
final blacklist entries:

MS(s) = PS(s) + log (TC(s)) + δ log (IR(s)) (5)

The three factors are computed in order of significance
in mapping to our malware behavior model. Logarithm
is used because in our model, the secondary metric (TC)
and the tertiary metric (IR) are less important than the
malware port score and we only care about their order of
magnitude.

3.4 Blacklist Production
For each attacker, we now have both its relevance ranking
and its severity score. We can combine them to generate
a final blacklist for each contributor.

For the final blacklist, we would like to include the
attackers that have strong relevance and discard the non-
relevant attackers. To generate a final list of length L, we
use the attacker’s relevance ranking to compile a candi-
date list of size c ·L. (We often set c = 2.) Then, we use
severity scores of the attackers on the candidate list to ad-
just its ranking and pick the L highest-ranked attackers
to form the final list. Intuitively, the adjustment should
promote the rank of an attacker if the severity assessment
indicates that it is very malicious. Toward this goal, we
define a final score that combines the attacker’s relevance
rank in the candidate list and its severity assessment. In
particular, let k be the relevance rank of the attacker s
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(i.e., s is the k-th entry in the candidate list). Recall from
last section MS(s) is the severity score of s. The final
score fin(s) is defined to be

fin(s) = k − L

2
· Φ(MS(s)) (6)

where
Φ(x) =

1
2
(1 + erf(

x− µ

d
))

where erf(·) is the “S” shaped Gaussian error function.
We plot Φ(x) in Figure 6 with µ = 4 and different d.
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Figure 6: Phi with different d value

Φ(MS(s)) promotes the rank of an attacker according
to its maliciousness. The larger the value of Φ(MS(s))
is, the more the attacker is moved above comparing to its
original rank. A Φ(MS(s)) of value 1 would then move
the attacker above for one half of the size of the final
list comparing to its original rank. The “S” shaped Φ(·)
transforms the severity assessment MS(s) into a value
between 0 and 1. The less-malicious attackers often give
an assessment score below 3. After transformation, they
will receive only small promotions. On the other hand,
malicious attackers that give an assessment score above
7 will be highly promoted.

To generate the final list, we sort the fin(s) values of
the attackers in the candidate list and then pick L of them
that have the smallest fin(s).

4 Experiment Results

We created an experimental HPB blacklist formulation
system. To evaluate the HPBs, we performed a battery
of experiments using the DShield.org security firewall
and IDS log repository. We examined a collection of
more than 720 million log entries produced by DShield
contributors from October to November 2007. Since our
relevance measure is based on correlations between con-
tributors, HPB production is not applicable to contribu-
tors that have submitted very few reports (DShield has
contributors that hand-select or sporadically contribute
logs, providing very few alerts). We therefore exclude

those contributors that we find effectively have no corre-
lation with the wider contributor pool or simply have too
few alerts to produce meaningful results. For this analy-
sis, we found that we could compute correlation relation-
ships for about 700 contributors, or 41% of the DShield
contributor pool.

To assess the performance of the HPB system,
we compare its performance relative to the standard
DShield-produced GWOL [17]. In addition, we compare
our HPB performance to that of LWOLs, which we com-
pute individually for all contributors in our comparison
set. For the purpose of our comparative assessment, we
fixed the length of all three competing blacklists to ex-
actly 1000 entries. However, after we present our com-
parative performance results, we will then continue our
investigation by analyzing how the blacklist length af-
fects the performance of the HPBs.

In the experiments, we generate GWOL, LWOL, and
HPBs using data for a certain time period and then test
the blacklists on data from the time window following
this period. We call the period used for producing black-
lists the training window and the period for testing the
prediction window. In practice, the training period repre-
sents a snapshot of the most recent history of the repos-
itory, used to formulate each blacklist for a contributor
that is then expected to use the blacklist for the length of
the prediction window. The sizes of these two windows
are not necessarily equal. We will first describe experi-
ments that use 5-day lengths for both the training window
and the prediction window. We then present experiments
that investigate the effects of the two windows’ lengths
on HPB quality.

4.1 Hit Count Improvement

DShield logs submitted during the prediction window
are used to determine how many sources included within
a contributor’s HPB are indeed encountered during that
prediction window. We call this value the blacklist hit
count. We view each blacklist address filter not encoun-
tered by the blacklist consumer as an opportunity cost to
have prevented the deployment of other filters that could
have otherwise blocked unwanted traffic. In this sense,
we view our hit count metric as an important measure
of the effectiveness of a blacklist formulation algorithm.
Note that our HPBs are formulated with severity analy-
sis while the other lists are not. As the severity analysis
prefers malicious activities, we expect that the hits on the
HPBs are more malicious.

To compare the three types of lists, we take 60 days of
data, divided into twelve 5-day windows. We repeat the
experiment 11 times using the i-th window as the training
window and the (i+1)-th window as the testing window.
In the training window, we construct HPB, LWOL, and
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Window GWOL total hit LWOL total hit HPB total hit HPB/GWOL HPB/LWOL
1 81937 85141 112009 1.36701 1.31557
2 83899 74206 115296 1.37422 1.55373
3 87098 96411 122256 1.40366 1.26807
4 80849 75127 115715 1.43125 1.54026
5 87271 88661 118078 1.353 1.33179
6 93488 73879 122041 1.30542 1.6519
7 100209 105374 133421 1.33143 1.26617
8 96541 91289 126436 1.30966 1.38501
9 94441 107717 128297 1.35849 1.19106
10 96702 94813 128753 1.33144 1.35797
11 97229 108137 131777 1.35533 1.21861

Average 90879 ± 6851 90978 ± 13002 123098 ± 7193 1.36 ± 0.04 1.37 ± 0.15

Table 3: Hit Number Comparison between HPB, LWOL and GWOL

Contributor Average Median StdDev Increase
Percentage Increase Increase Range

Improved vs. GWOL 90% 51 22 89 1 to 732
Poor vs. GWOL 7% -27 -7 47 -1 to -206

Improved vs. LWOL 95% 75 36 90 1 to 491
Poor vs. LWOL 4% -19 -9 28 -1 to -104

Table 4: Hit Count Performance, HPB vs. (GWOL and LWOL), Length 1000 Entries

GWOL. Then the three types of lists are tested on the
data in the testing window.

Table 3 shows the total number of hits summed over
the contributors for HPB, GWOL, and LWOL, respec-
tively. It also shows the ratio of HPB hits over that of
GWOL and LWOL. We see that in every window, HPB
has more hits than GWOL and LWOL. Overall, HPBs
predict 20-30% more hits than LWOL and GWOL. Note
that there are quite large variances among the number of
hits between time windows. Most of the variances, how-
ever, are not from our blacklist construction, rather they
are from the variance among the number of attackers the
networks experience in different testing windows.

Increase Increase Increase Increase
Average Median StdDev Range

vs. GWOL 129 78 124 40 to 732
vs. LWOL 183 188 93 59 to 491

Table 5: Top 200 Contributors’ Hit Count Increases
(Blacklist Length 1000)

The results in Table 3 show HPB’s hit improvement
over time windows. We now investigate the distribution
of the HPB’s hit improvement across contributors in one
time window. We use two quantities for comparison. The
first is the hit count improvement, which is simply the
HPB hit count minus the hit count of the other list. The
second comparative measure we used is the relative hit
count improvement (RI), which is the ratio in percentage
of the HPB hit count increase over the other blacklist hit
count. If the other list hit count is zero we define RI to be
100x the HPB hit count, and if both hit counts are zero
we set RI to 100.

Table 5 provides a summary of hit-count improvement
for the 200 contributors where HPBs perform the best.
The hit-count results for all the contributors are summa-
rized in Table 4.

Figure 7 compares HPB to GWOL. The left panel of
the figure plots the histogram showing the distribution of
the hit improvement across the contributors. The x-axis
indicates improvements, and the hight of the bars repre-
sents the number of contributors whose improvement fall
in the corresponding bin. Bars left to x = 0 represent
contributors for whom the HPB has worse performance
and bars on the right represent contributors for whom
HPBs performed better. For most contributors, the im-
provment is positive. The largest improvement reaches
732. For only a few contributors, HPB performs worse
in this time window.

The panel on the right of Figure 7 plots the RI (ratio %
of HPB’s hit count increase over GWOL’s hit count) dis-
tribution. We sort the RI values and plot them against the
contributors. We label the x-axis by cummulative per-
centage, i.e., a tick on x-axis represents the percentage
of contributors that lie to the left of the tick. For exam-
ple, the tick 20 means 20 percent of the contributors lie
left to this tick. There are contributors for which the RI
value can be more than 3900. Instead of showing such
large RI values, we cut off the plot at RI value 300. From
the plot, we see that there are about 20% of contributors
for which the HPBs achieve an RI more than 100, i.e.,
the HPB at least doubled the GWOL hit count. For about
half of the contributors, the HPBs have about 25% more
hits (an RI of 25). The HPBs have more hits than GWOL
for almost 90% of the contributors. Only for a few con-
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Figure 7: Hit Count Comparison of HPB and GWOL: Length 1000 Entries
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Figure 8: Hit Count Comparison of HPB and LWOL: Length 1000 Entries

tributors (about 7%), HPBs perform worse. (We discuss
the reasons why HPB may perform worse in Section 4.4.)

Figure 8 compares HPB hit counts to those of LWOL.
The data are plotted in the same way as in Figure 7.
Overall, HPBs demonstrate a performance advantage
over LWOL. The IV and RI values also exhibit similar
distributions. However, comparing Figures 8 and 7, we
see that HPB has more hit improvement comparing to
LWOL than to GWOL in this time window.

4.2 Prediction of New Attacks

One clear motivating assumption in secure collaborative
defense strategies is that participants have the potential
to prepare themselves from attacks that they have not yet
encountered. We will say that a new attack occurs when
a contributor produces a DShield log entry from a source
that this contributor has never before reported. In this ex-
periment, we show that HPB analysis provides contribu-
tors a potential to predict more new attacks than GWOL.
(LWOL is not considered, since by definition it includes
only attackers that are actively hitting the LWOL owner.)
For each contributor, we construct two new HPB and
GWOL lists with equal length of 1000 entries, such that
no entries have been reported by the contributor during
our training window. We call these lists HPB-local (HPB
minus local) and GWOL-local (GWOL minus local), re-
spectively. Figure 9 compares HPB-local and GWOL-

local on their ability to predict on new attack sources
for the local contributor. These hit number plots demon-
strate that HPB-local provides substantial improvement
over the predictive value of GWOL.

4.3 Timely Inclusion of Sources

By timely inclusion, we refer to the ability of a blacklist
to incorporate addresses relevant to the blacklist owner
before those addresses have saturated the Internet. To in-
vestigate the timeliness of the GWOL, LWOL, and the
HPB we examine how many contributors need to report
a particular attacker before it can be included into the re-
spective blacklists. We focus our attention on the set of
attackers within these blacklists that did carry out attacks
during the prediction window. And we use the number
of distinct victims (contributors) that a source attacked
in the training window to measure the extent to which
the source has saturated the Internet. Figure 10 plots
the distribution of the number of distinct victims across
different attackers on the three blacklists. As expected,
the attackers that get selected on the GWOL were the
most prolific in the training period. In particular, all the
sources on the GWOL have attacked more than 20 con-
tributors and almost 1/3 of them attacked more than 200
contributors. To some extent, these attackers have satu-
rated the Internet with their activities. (DShield sensors
are a very small sample of the Internet. A random at-
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Figure 9: HPB-local Predicts More New Attacks Than GWOL-local

tacker has to target many places to be picked up by the
sensors.) The LWOLs select attacker addresses that fo-
cused on the local networks. Most of these addresses
had attacked far fewer contributors. HPBs’s distribution
is close to that of the LWOL, hence allowing the incor-
poration of attackers that have not saturated the Internet.
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Figure 10: Cumulative Distribution of Distinct Victim
Numbers

4.4 Performance Consistency
The results in the above experiments show that the HPB
provides an increase in hit count performance across the
majority of all contributors. We now ask the follow-
ing question: is the HPB’s performance consistent for
a given contributor over time? In this experiment, we
investigate this consistency question.

We use a 60-day DShield dataset. We divide it into
12 time windows, T0, T1, . . . , T11. We generate black-
lists from data in time window Ti−1 and test the lists on
data in Ti. For each contributor v, we compare HPB with
GWOL and obtain eleven improvement values for win-
dow T0 to T10. We denote them
IV s(v) = {IV0(v), IV2(v), . . . IV10(v)}. We then de-
fine a consistency index (CI) for each contributor. If
IVi(v) ≥ 0, we say that the HPB performs well for v
in window i. Otherwise, we say that the HPB performs
worse. CI is the difference between the number of win-
dows in which HPB performs well and the ones in which

HPB performs poorly, i.e., CI(v) = |{p ∈ IV s(v) :
p ≥ 0}| − |{p ∈ IV s(v) : p < 0}|. If HPB con-
sistently performs better than GWOL for a contributor,
its CI(v) should be close to 11. If it consistently per-
forms worse, the CI value will be close to -11. How-
ever, if the HPB performance flip-flops, its CI value will
be close to zero. Figure 11 plots the sorted CI values
against the contributors. (Again, we label the x-axis by
cummulative percentage.) We see that for almost 70% of
the contributors, HPB’s performance is extremely con-
sistent. They all have a CI value of 11, meaning for the
eleven time windows, the HPB always predicts more hits
for them than GWOL. For more than 90% of the contrib-
utors, HPBs demonstrate fairly good consistency. With
few contributors does the performance switch back and
forth. Only 5 contributors show performance index be-
low -3.
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Figure 11: Cumulative Distribution of Consistency Index

The consistency investigation sheds some light on the
reason why there is a small percentage of contributors
for which the HPBs (sometimes) perform worse than the
other list. HPB construction is based on the relevance
measure. The relevance relates attack sources to contrib-
utors according to the past security logs collected by the
repository. If a contributor has relatively stable correla-
tions (stable for several days) with other contributors or it
experiences stable attack patterns, the relevance measure
can capture this and thus produce blacklists with more
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hits. Such HPBs will also be consistent in hit-count per-
formance. On the other hand, if the correlation is not
stable or the attacks exhibit few patterns, the relevance
measure will be less effective and may produce black-
lists with fewer hits. Such HPBs will not be consistent
in performance because sometimes they may guess right
and produce more hits and sometimes they may guess
wrong.

This can be seen in Figure 11. All the consistent HPBs
have CI value 11. These HPBs have both consistency
and better hit-count performance. There is no HPB that
shows CI value -11. HPB never performs consistently
worse.

This is particularly useful because the consistency of
an HPB’s performance can be used to indicate whether
the HPB user (the contributor) has stable correlations. If
so, HPBs can be better blacklists to use. The experiment
result suggests that most of the contributors have stable
correlations. In practice, given a few cycles of computing
HPB and GWOL for a DShield contributor, we can pro-
vide an informed recommendation as to which list that
contributor should adopt over a longer term.

4.5 Blacklist Length
In this experiment, we vary the length of the blacklists to
be 500, 1000, 5000 and 10000. We then compare the hit
counts of HPBs, GWOLs, and LWOLs. Because in all
the experiments, the improvements for different contrib-
utors display similar distributions, we will simply plot
the medians of the hit rates of these respective blacklists.
(Hit rate is the hit count divided by the blacklist length.)
Our results are illustrated in Figure 12, and show that
HPBs have the hit rate advantage for all these choices in
blacklist length. The relative amount of advantage is also
maintained across different lengths.
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Figure 12: Hit Rates of HPB, GWOL, and LWOL with
Different Lengths

Although the hit rate for the shorter lists is higher, the
number of hits are larger for the longer lists. This is so
for all three types of blacklists. It shows that the longer
the list is, the more entries on the list are wasted (in the

sense that they do not get hit). Therefore, it may not
always be desirable to use very long lists.

4.6 Training and Prediction Window Sizes

We now investigate how far into the future the HPB can
maintain its advantage over GWOL and LWOL, and how
different training window sizes affect an HPB’s hit count.
The former helps to determine how often we need to re-
compute the blacklist, and the latter helps to select the
right amount of history data as the input to our system.
The left panel of Figure 13 shows the median of the hit
count of HPB, GWOL, and LWOL on day 1, 2, 3, . . . , 20
for each individual day in the prediction window. All
lists are generated using data from a 5-day window prior
to the prediction window. For all blacklists, the num-
ber of hits decreases along time. The HPB maintains an
advantage over the entire duration of the prediction win-
dow. From this plot, we also see that the blacklists need
to be refreshed frequently. In particular, there may be an
almost 30% hit drop when the HPB is more than a week
old.

The right panel of Figure 13 plots hit-number medians
for four HPBs. These HPBs are generated in a slightly
different way from the HPBs we used so far. In previ-
ous experiments, to generate an HPB, we produce the
correlation matrix from a set of attack reports. Then the
sources in the same set of reports are selected into HPBs
based on their relevance. In this experiment, we con-
struct the correlation matrix using reports from training
windows of size 2, 5, 7, and 10 days. Then the sources
that are in the reports within the 5-day window right be-
fore the prediction (test) window are picked based on
their relevance. In this formulation, we exclude sources
that appear only in reports from distant history; we view
their extended silence to represent a significant loss in
relevance. The remainder of the test is performed in the
same way as the previous experiments, i.e., the hit counts
are obtained in the following 5-day prediction window.
The experiment result shows that there is a slight in-
crease in the hit counts going from a 2-day training win-
dow to a 5-day training window. The hit counts then
remain roughly the same for the other training-window
size. This indicates that for most of the contributors, the
correlation matrix can be quite stable over time.

5 An Example Blacklisting Service

In mid 2007, we deployed an initial prototype imple-
mentation of the HPB system, providing a subset of the
features described in this paper. This initial deploy-
ment was packaged as a free Internet blacklisting ser-
vice for DShield log contributors [22,23]. HPB blacklists
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Figure 13: Effect of Training Window and Prediction Window Size on HPB’s hit count

are constructed for all contributors daily, and each con-
tributor can download her individual HPB through her
DShield website account. To date, we have had a rela-
tive small pool of HPB downloaders (roughly 70 users
over the most 3 months). We now describe several as-
pects of fielding a practical and scalable implementation
of an HPB system based on our initial deployment expe-
riences. We present an assessment of the algorithm com-
plexity, the DShield service implementation, and discuss
some open questions raised from the open release of our
service.

5.1 Algorithm Complexity
Because HPBs are constructed from a relatively high-
volume corpus of security logs, our system must be pre-
pared to process well over 100M log entries per day
to process entries over the current 5-day training win-
dow. The bottleneck of the system is the relevance rank-
ing. Therefore, our complexity discussion focuses on the
ranking algorithm. There is always an amount of com-
plexity that is linear to the size of the alert data. That is,
let N(data) be the number of alerts in the data collec-
tion; we have a minimum complexity of O(N(data)).
Our discussion will focus on other complexities incurred
by the algorithm besides this linear-time requirement.

We denote by N(s) and N(v) the number of sources
in the data collection and the number of contributors to
the repository respectively. In practice, one can expect
N(v) to be in the order of thousands while N(s) is much
larger, typically in the tens of millions. We obtain W
and bs by going through the repository and doing simple
accounting. The adjacency matrix W requires the most
work to construct. To obtain this matrix, we record ev-
ery overlapped attack while going through the alert data
and then perform standardization. The latter steps re-
quire us to go through the whole matrix, which results in
O(N(v)2) complexity.

Besides going through the data, the most time-
consuming step in the relevance estimate process is the
computation that solves the linear equations in Equa-

tion 3. At first glance, because for each source s, we
have a linear system determined by Equation 3, it seems
that we need to solve N(s) linear systems. This can
be expensive as N(s) is very large. Further investi-
gation shows that while bs is different per source s,
the (I − W)−1 part of the solution to Equation 3 is
the same for all s. Therefore, we need to compute it
only once, which requires O(N(v)3) time by brute force
or O(N(v)2.376) using more sophisticated methods [5].
Because bs is sparse, once we have (I −W)−1, the to-
tal time to obtain the ranking scores for all the sources
and all the contributors is O(N(v) · N(data)). Assum-
ing N(v)2 is much smaller than N(data), the total com-
plexity to make relevance ranking is O(N(v) ·N(data)).
For a data set that contains a billion records contributed
by a thousand sensors, generating a thousand rankings
requires only several trillion operations (additions and
multiplications). This can be easily handled by modern
computers. In fact, in our experiments, with N(data)
in the high tens of millions and N(v) on the order of
one thousand, it takes less than 30 minutes to generate
all contributor blacklists on an Intel Xeon 3.6 GHz ma-
chine.

5.2 The DShield Implementation
The pragmatics of deploying an HPB service through the
DShield website are straightforward. DShield log con-
tributors are already provided private web accounts in
order to review their reports. However, to ease the auto-
matic retrieval of HPBs, users are not required to log in
via DShield’s standard web account procedure. Instead,
contributors wishing to access their individual HPBs can
create account-specific hexadecimal tokens, and can then
append this token to the HPB URL. This token has a
number of advantages, particularly for developing and
maintaining automated HPB retrieval scripts. That is, a
user account password may be changed regularly, but the
retrieval token (and script) will remain unaffected.

To provide further protection of the integrity and con-
fidentiality of an HPB the user may also pull the HPB via
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# DShield Customized Blocklist
# created 2007-01-19 12:13:14 UTC
# for userid 11111
# some rights reserved, DShield Inc., Creative Commons Share Alike License
# License and Usage Info: http://www.dshield.org/blocklist.html
1.1.1.1 255.255.255.0 test network
2.2.2.2 255.255.255.0 another test. This network does not exist
# End of list

Figure 14: A Sample Blocklist from DShield Implementation

https. A detached PGP signature can be retrieved in case
https is not available or not considered a sufficient proof
of authenticity.

HPBs are distributed using a simple tab-delimited for-
mat. The first column identifies the network address.
The second column provides the netmask. Additional
columns are used to provide more information about the
respective offender, such as the name of the network and
country of origin (or type of attacks seen). These ad-
ditional columns are intended for human review of the
HPB. Comments may be added to the blocklist. All com-
ments start with a # mark. A sample blocklist is shown
in Figure 14.

5.3 Gaming the System

As we have made efforts to implement, test, and adver-
tise early versions of the HPB system, several open ques-
tions have been raised regarding the ability of adversaries
to game the HPB system. That is, can an attacker con-
tribute data to DShield with the intention of manipulating
HPB production in ways that negatively harm HPB qual-
ity? Let us consider several questions that arise from the
fact that HPBs are derived from volunteer sources, which
may include dishonest contributors that are actively try-
ing to harm or negatively manipulate HPB results.

Can an attacker cause a consumer to incorporate an
unsuspecting victim address into a third party’s HPB?
Let us assume that attacker A participates as one or more
DShield contributors (A might register multiple IDs) and
knows that consumer C is also a DShield contributor and
an active HPB user. Furthermore, A would like to cause
address B to be inserted into consumer C’s HPB. There
are two potential strategies A can pursue to achieve this
goal. First, A can spoof attacks as address B, directing
these attacks to other contributors that are highly corre-
lated with A. However, C’s correlated contributor set is
neither readily available to A (unless A is a DShield in-
sider) or necessarily stable over time. More plausibly, A
could artificially cause his own contributor IDs to report
the same attacks as C. He can do this by attacking C with
a set of spoofed addresses, and then reporting similarly
spoofed logs from his contributor IDs. Once a sufficient

set of attack logs with identical spoofed attackers is re-
ported by C and A, C could then positively influence the
likelihood that address B will be inserted into A’s HPB.
While this is a possible threat, we also observe that simi-
lar attacks can be launched against GWOL and more triv-
ially against LWOL. Furthermore, in the case of GWOL,
B will be inserted in all consumers’ GWOLs, whereas
A must launch this attack individually against each HPB
consumer.

Can an attacker cause his own address to be excluded
from a specific third-party HPB? Let us assume that A
would like to guarantee that address B will not appear in
C’s HPB. This is very difficult for A to guarantee. While
A may cause artificial alignment between his and C’s
logs using the alert spoofing method discussed above, A
cannot control what other addresses may also align with
C. If B attacks other contributors that are aligned with
C, B has the potential to enter C’s HPB.

Can an attacker fully prevent or poison all HPB pro-
duction? In short, yes. Data poisoning is a fundamental
threat that arises in all volunteer contributor-based data
centers, and is an inherently difficult threat to overcome.
However, DShield does occasionally experience, and in-
corporate countermeasures for issues such as accidental
flooding and sensor misconfiguration. DDoS threats also
arise and are dealt with by DShield case by case.

HPB generation could also be specifically targeted by
a malicious contributor that attempts to artificially inflate
the number of attacker or victim addresses, which will in-
crease the values of s or v, as described in our complexity
analysis, Section 5.1. However, to sufficiently prohibit
HPB production, the contributor would necessarily pro-
duce highly anomalous volumes of attackers (or sources)
that would likely allow us to identify and (temporarily)
filter this contributor.

6 Conclusion

In this paper, we introduced a new system to generate
blacklists for contributors to a large-scale security-log
sharing infrastructure. The system employs a link anal-
ysis method similar to Google’s PageRank for black-
list formulation. It also integrates substantive log pre-
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filtering and a severity metric that captures the degree to
which an attacker’s alert patterns match those of com-
mon malware-propagation behavior. Experimenting on
a large corpus of real DShield data, we demonstrate that
our blacklists have higher attacker hit rates, better new
attacker prediction quality, and long-term performance
stability.

In April of 2007, we released a highly predictive
blacklist service at DShield.org. We view this service
as a first experimental step toward a new direction of
high-quality blacklist generation. We also believe that
this service offers a new argument to help motivate the
field of secure collaborative data sharing. In particular,
it demonstrates that people who collaborate in blacklist
formulation can share a greater understanding of attack
source histories, and thereby derive more informed filter-
ing policies. As future work, we will continue to evolve
the HPB blacklisting system as our experience grows
through managing the blacklist service.
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