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Abstract
In User-Based Network Services (UBNS), the process
servicing requests from user U runs under U ’s ID. This
enables (operating system) access controls to tailor ser-
vice authorization toU . Like privilege separation, UBNS
partitions applications into processes in such a way that
each process’ permission is minimized. However, be-
cause UBNS fundamentally affects the structure of an
application, it is best performed early in the design pro-
cess.

UBNS depends on other security mechanisms, most
notably authentication and cryptographic protections.
These seemingly straightforward needs add considerable
complexity to application programming. To avoid this
complexity, programmers regularly ignore security is-
sues at the start of program construction. However, after
the application is constructed, UBNS is difficult to ap-
ply since it would require significant structural changes
to the application code.

This paper describes easy-to-use security mechanisms
supporting UBNS, and thus significantly reducing the
complexity of building UBNS applications. This sim-
plification enables much earlier (and hence more effec-
tive) use of UBNS. It focuses the application developer’s
attention on the key security task in application develop-
ment, partitioning applications so that least privilege can
be effectively applied. It removes vulnerabilities due to
poor application implementation or selection of security
mechanisms. Finally, it enables significant control to be
externally exerted on the application, increasing the abil-
ity of system administrators to control, understand, and
secure such services.

1 Introduction

Computer networking was designed in a different era, in
which computers were kept in locked rooms and com-
munication occurred over leased lines, isolating systems

from external attackers. Then, physical security went a
long way in ensuring adequate computer security. To-
day, however, attackers can remotely target a computer
system from anywhere in the world over the Internet.

Given that physical separation is no longer an alterna-
tive, securing networked applications requires isolation
of a different form, including in general:

1. authentication of both users and hosts;

2. protection of communication confidentiality and in-
tegrity; and

3. authorization (also known as access controls) using
least privilege [32].

The first two tasks are typically provided for within the
application, for example by using SSL [12] or Kerberos
[38]. The last task is ideally enforced by the Operating
System (OS), since then failures in the application (e.g.,
a buffer overflow) do not bypass authorization.

But (1) and (2) are complicated by Application Pro-
gram Interfaces (APIs) which are both difficult and te-
dious to use; for example, in addition to the basic au-
thentication mechanism, it is necessary to communicate
information from client to server (perhaps using GSSAPI
[24]), interface to PAM [33], and the OS. The application
programmer must choose from a large variety of authen-
tication techniques (e.g., password or public-key), and
compensate for their weaknesses. Since complexity is
the enemy of security, it is especially important to avoid
complexity in security critical code. And authentication
is often attacked, for example, password dictionary at-
tacks against SSH1, as well as the implementations of
authentication2.

Consider the dovecot IMAP server. Over 9,000 lines
are devoted to (1) and (2), consuming 37% of the IMAP
service code (see Section 6 for details). Clearly, this is a
large burden on application developers, and as we shall
show, unnecessary. In contrast, the partitioning of the
application into processes, and their attendant privileges,
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is a concern of application programmers since it is fun-
damental to program structure. The impact of this parti-
tioning includes the number and purposes of processes,
the privileges associated with processes, the communica-
tion between processes, the organization of data the pro-
cesses access, the data and operations which must be per-
formed within a process, the sequencing of operations,
and the security vulnerabilities. For a general discussions
of these issues, see [4].

One important way of partitioning network services is
by the remote user U they serve. That is, a server process
which receives requests from U runs under U ’s user ID,
so that its “ownership” is visible to, and limited by, exter-
nal authorization. Although this scheme is widely used,
we don’t know a term for it, so we shall call it User-
Based Network Services (UBNS). UBNS is used, for ex-
ample, in dovecot, SSH, and qmail. It prevents a user’s
private data from being commingled with other user’s
data and provides the basis for OS authorization. The lat-
ter enables system administrators to be able to configure
secure services easily. Given the many sources of service
code—and frequent releases of the services—it is highly
desirable to move the security configuration and enforce-
ment outside the service. This minimizes the harm that
errant services can do, reduces the need to understand
(often poorly documented) application security, enables
strong protections independent of service code, is more
resilient in the presence of security holes, and vastly in-
creases the effectiveness of validating service security.

Despite the advantages of UBNS, authentication is of-
ten performed in a service-specific way or not at all.
A prime example is the Apache web server (and most
other web servers). In Apache, the users are not visible
to the OS. The crucial independent check provided by
OS-based authorization is lost. And application devel-
opers often avoid service-specific authentication, due to
the complexity it engenders. Hence, an application’s ini-
tial design often forgoes security concerns which then
must be retrofitted after the fact [13]. But retrofitting
UBNS requires restructuring and re-implementing sub-
stantial portions of the application. And since it is diffi-
cult to restructure existing applications, the service may
never be made into a UBNS.

If UBNS were easier to implement at the application
level, it could be integrated from the beginning of system
design. Application complexity would be decreased and
security would be improved. In this paper, we describe
how to radically reduce complexity in UBNS service us-
ing netAuth—our network authentication and authoriza-
tion framework. In netAuth, a service requires only 4
lines of code to implement authentication and 0 for en-
cryption and authorization. Hence, netAuth

1. allows authenticated services to be easily integrated
and

2. enables requests for the same user to be directed to
the same back-end server.

The first is essential to support UBNS. The second makes
it easier to re-use per user processes, removing the need
for concurrent programming while increasing system ef-
ficiency. In addition, these mechanisms enable more
modular construction of applications.

We describe NetAuth APIs and the implementations
it gives rise to. By making these mechanisms almost
entirely transparent, an application developer adds only
minimal code to use these mechanisms. We describe
sufficient networking interfaces to support UBNS and
describe their implementations. These mechanisms are
quite simple and thus are easy to use. The protections
provided are also considerably stronger than those in
most applications. We then describe a port of a UBNS
service, dovecot to netAuth, and the substantial savings
of code, simplifications to process structure, and reduced
attack surface of this port.

The remainder of the paper is organized as follows:
Section 2 describes related work. Section 3 describes the
overview of our system. We then describe our system in
more depth: Section 4 describes how our authentication
mechanism can be used to write application. Section 5
describes briefly our implementation and some perfor-
mance numbers. In Section 6, we describe the experi-
ence of porting dovecot to netAuth. Section 7 discusses
the security achieved and finally we conclude.

2 Related work

UBNS is not the only way to partition a service into mul-
tiple processes. Another complementary way is privi-
lege separation [29]—in which an application is parti-
tioned into two processes, one privileged and one un-
privileged. For example, the listening part of the ser-
vice which performs generic processing—initialization,
waiting for new connections, etc. is often run as root
(i.e., with administrative privileges) because some ac-
tions need these privileges (for example, to read the file
containing hashed passwords or to bind to a port). Un-
fortunately, exploiting a security hole in a root level pro-
cess fully compromises the computer. By splitting the
server into two processes, the exposure of a root level
process is minimized. In contrast to UBNS, retrofitting
privilege separation is not difficult, and there exists both
libraries [20] and compiler techniques [6] to do it. Both
UBNS and privilege separation are design strategies to
maximize the value of least privilege [32].

SSH is a widely used UBNS service [42, 29], but is ill-
suited to implement UBNS services—such as mail, cal-
endaring, source control systems, remote file systems—
because of the way network services are built. In the
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network case, the listening process exists before the con-
nection is made and must at connect time know what user
is associated with the service. SSH’s port forwarding3

performs user authentication at the service host—but not
at the service—and hence, to the service the users of a
host are undifferentiated4. As a result, traditional UBNS
services use authentication mechanisms such as SSL or
passwords and OS mechanisms such as setuid which are
awkward to program and may not be secure. In contrast,
netAuth both authenticates and authorizes the user on a
per service basis, so that the service runs only with the
permission of the user. Unlike SSH, netAuth provides
end-to-end securing from client to service.

Distributed Firewalls [5] (based on Keynote [5]) in
contrast to SSH, implements per user authorization for
services by adding this semantics to the connect and
accept APIs. While Distributed Firewalls sit in front
of the service, and thus are not integrated with the ser-
vice, Virtual Private Services are integrated and thus can
provide UBNS services [16]. In DisCFS [27], an inter-
esting scheme is used to extend the set of users on the
fly by adding their public keys; although we have not yet
implemented it, we intend to use this mechanism to al-
low anonymous access (assuming authorization allows it
for a service) thus combining the best of authenticated
and public services.

Shamon [25, 17] is a distributed access control system
which runs on Virtual Machines (VMs). It “knits” to-
gether the access control specifications for different sys-
tems, and ensures the integrity of the resulting system
using TPM and attestation techniques. Its communica-
tion, like netAuth, is implemented in IPsec and uses a
modified xinetd to perform the authorization. Shamon
implements a very comprehensive mechanism for autho-
rization (targeted for very tightly integrated systems), in
contrast to netAuth’s less complete but simpler service-
by-service authorization.

We do not describe the authorization part of netAuth
in this paper for two reasons. First, there is not suf-
ficient space. Second, the authentication mechanism
can be used with any authorization model. For exam-
ple, even POSIX authorization, privilege separation, and
VMs could be combined to provide a reasonable base for
UBNS. The most value for authorization is gained when
privileges are based both on the executable and the user
of the process, increasing the value of privilege separa-
tion. Such separation is essential to allow multiple priv-
ilege separated services to run on the same OS. Exam-
ples of such mechanisms include SELinux [34], AppAr-
mor [9], and KernelSec [30]. Janus[15], MAPBox[2],
Ostia[14] and systrace[28, 22] are examples of sandbox-
ing mechanisms which attenuate privileges.

SANE/Ethane [8, 7] has a novel method of autho-
rizing traffic in the network. An authorizing controller

intercepts traffic and—based on user authentication for
that host—determines whether to allow or deny the net-
work flow. This enables errant hosts or routers to be
isolated. However, the authentication information avail-
able to Ethane using traditional OS mechanisms is coarse
grain (it cannot distinguish individual users or appli-
cations). Ethane and netAuth are complementary ap-
proaches, which could be combined to provide network-
based authentication with fine-grained authentication.

Distributed authentication consist of two components:
a mechanism to authenticate the remote user and a means
to change the ownership of a process. Traditionally,
UNIX performs user authentication in a (user space)
process and then sets the User ID by calling setuid.
The process doing setuid needs to run as the supe-
ruser (administrative mode in Windows) [39]. To reduce
the dangers of exploits using such highly privileged pro-
cesses, Compartmented Mode Workstations divided root
privileges into about 30 separate capabilities [3], includ-
ing a SETUID capability. These capabilities were also
adopted by the POSIX 1e draft standard [1], which was
widely implemented, including in Linux.

To limit the setuid privileges further, Plan9 uses an
even finer grain one-time-use capability [10], which al-
lows a process owned by U1 to change its owner to U2.
NetAuth takes a further step in narrowing this privilege
since it is limited to a particular connection and is non-
transferable; but a more important effect is that it is stat-
ically declared and thus enhances information assurance
whether manually or automatically performed.

The traditional mechanism to provide user authenti-
cation in distributed systems is passwords. Such pass-
words are subject to dictionary and other types of at-
tacks, and are regularly compromised. Even mechanisms
like SSL typically use password based authentication for
users [12] even though they can support public key en-
cryption.

Kerberos [38] performs encryption using private key
cryptography. Kerberos has a single point of failure if
the KDC is compromised; private key also means that
there is no non-repudiation to prove that the user did au-
thenticate against a server; and requires that the KDC be
trusted by both parties. Microsoft Window’s primary au-
thentication mechanism is Kerberos.

Plan9 uses a separate (privilege-separated) process
called factotum, to hold authentication information
and verify authentication. The factotum process asso-
ciated with the server is required to create the change-of-
owner capability. But factotum is invoked by the ser-
vice, and hence can be bypassed allowing unauthenti-
cated users to access the service. Of course, it is in prin-
ciple possible to examine the source code for the service
to determine whether authentication is bypassed, but this
is an error prone process and must be done anew each
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time an application is modified. NetAuth, enforces au-
thentication and authorization which cannot be bypassed
and is easier to analyze.

The OKWS web server [21], built on top of the As-
bestos OS [11] does a per user demultiplex, so that each
web server process is owned by a single user. This in
turn is based on HTTP-based connections, in which there
can be multiple connections per user, tied together via
cookies. It uses the web-specific mechanism for sharing
authentication across multiple connections. OKWS was
an inspiration for netAuth, which allows multiple con-
nections from a user to go to the same server. NetAuth
works by unambiguously naming the connection so that
it works with any TCP/IP connection; and hence is much
broader than web-based techniques.

3 System overview

NetAuth is modular, so that the different implementa-
tions and algorithms can be used for each of the follow-
ing three components:

1. User authentication is triggered by new network
APIs which (a) transparently perform cryptographic
(public key) authentication over the network and
(b) provide OS-based ownership of processes. Part
(b) inherently requires an authorization mechanism
which controls the conditions under which the user
of a process can be changed.

2. Encrypted communication between authenti-
cated hosts ensures that confidentiality and in-
tegrity of communications are maintained, and also
performs host authentication. This encryption is
provided by the system and requires no application
code.

3. Authorization is used to determine if a process can
(a) change ownership, (b) authenticate as a client,
(c) perform network operations to a given address,
and (d) access files (and other OS objects). In
UBNS this ideally depends on both the service and
the user. Thus, the authentication mechanism es-
sentially labels server processes with the user on
whose behalf the service is being performed so that
external authorization can be done effectively. It is
highly desirable that the authorization system pre-
vent attacks on one service spilling over to other
services.

Due to space limitations, this paper focuses on user
authentication. Authentication may seem trivial, but it
requires significant amount of code in applications, so
much so, that this mechanism is justified solely to im-
prove authentication (without also improving authoriza-
tion). Our server implementation is in the Linux kernel,

but our client is user-space code which can be ported to
any OS, including proprietary ones.

For encryption we require that hosts be authenticated
and that cryptographic protections be set up transparently
between hosts. Host authentication is important since if
the end computer is owned by an attacker then security
is lost. Such end devices can be highly portable devices
such as cellphones. (For less important application one
can use untrusted hosts.) Encryption can be triggered ei-
ther in the network stack or by a standalone process. Cur-
rently, we are using IPsec [19, 18] for this purpose as re-
cent standards for IPsec have made it significantly more
attractive as it allows for one of the hosts to be NATed
[40]. But we expect to replace it with a new suite being
developed which will be far less complex and faster.

The netAuth API can be used with any authorization
model, which would need to control both change of own-
ership and client authentication, perhaps using simple
configuration files [20] as well as networking and file
systems to some extent. NetAuth’s authorization model
controls who may bind, accept, and connect to re-
mote services on a per user basis as well as fine-grain
support for the user and services which can access a file.
NetAuth’s authorization model is fully implemented, and
we will describe it in a forthcoming paper.

A central tenet of our design is a clear separation be-
tween administration and use of our system. Even when
the same person is performing both roles, this separa-
tion enables allowed actions to be determined in advance,
instead of being interrupted in mid-task with authoriza-
tion questions (e.g., “do you accept this certificate?”).
It also supports a model of dedicated system adminis-
trators; further partitioning of the system administration
task is possible, for example to allow outsourcing of parts
of the policy.

In netAuth, user processes never have access to cryp-
tographic keys and cryptographic keys can only be used
in authorized ways. Hence, from the authorization con-
figuration the system administrator can easily determine
which users are allowed to use a service and how services
can interact with each other.

NetAuth enables successive connections by the same
user to be directed to a single process dedicated to that
user. We shall see that this has both programming and
efficiency advantages. In addition to its uses in tradi-
tional network services, it can be used to easily set up
back ends on the same system, and thus allow for further
opportunities for UBNS.

We next give an overview of network authentication
and UBNS mechanisms in netAuth.

Network authentication netAuth enables the owner of
a process to be changed upon successful network authen-
tication. Authentication is implemented as follows:
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• the server system administrator must enable UBNS
change-of-ownership by specifying the netAuthen-
ticate privilege for the service.

• the client process requests the OS to create a con-
nection and a time-limited connection-specific dig-
itally signed authenticator5 [31].

• the server process explicitly requests the OS to per-
form network authentication. The user authentica-
tion is only usable by the designated server process
(it is non-transferable).

This mechanism requires that the client-side system ad-
ministrator enable the client to use netAuth authentica-
tion, and the server-side administrator provide the ne-
tAuthenticate privilege. As we shall see, application
code changes to support authentication are trivial on both
client and server sides.

Because public key signatures are used for authenti-
cation, the log containing these signed exchanges proves
that the client requested user authentication. This prop-
erty both helps to debug the mechanism and to ensure
that even the server administrator cannot fake a user au-
thentication. Lastly, since no passwords are used over the
network, this scheme is impervious to password guessing
attacks.

UBNS netAuth has a built-in mechanism to support
UBNS. All connections to a specified service from user
Ui can be served by a single server process pi unique
to that user. For users Uj , for which there does not ex-
ist a corresponding process pj , a listening process p pre-
accepts (see Section 4) the connection and creates a new
process pj6. Figure 1(a) shows two types of queues of
unaccepted connections maintained by netAuth (one for
new users and the other for users for which there exists a
user process).

Per user server processes are created on demand for
efficiency and flexibility. Successive connections for Ui

will reuse server process pi. NetAuth can also support
other commonly used methods such as pre-forking pro-
cesses or forking a process per connection.

This mechanism provides a very clean programming
model as it is trivial to create back-end services for each
user on demand. For example, Figure 1(b) shows a cal-
endar proxy which caches a user’s local and remote cal-
endars (and no one else’s) and provide feeds to a desk
planner, email to calendar appointment program, a re-
minder system, etc. The reminder mechanism might
know where the user is currently located and where the
appointment is, so that reminders can be given with suit-
able lead times. As the user’s connections are always
to the same process, requests are serialized for that user
preventing race condition (and the need to synchronize)

and enable easy adding of calendar applications without
configuring for security (since the configuration is in the
proxy). Such a model also allows different parts of the
application to execute on different systems. For example,
a user interface component could run on a notebook, and
a backend store could run on an always available server.

We next look at the uses of NetAuth in more detail.

4 NetAuth Application Programming In-
terface

There are several ways to set the owner of a network ser-
vice: (1) the service can be configured to run as a pseudo
user (e.g., apache) with enough privileges to satisfy any
request. (2) the service may need user authentication to
ensure that it is a valid user (e.g., for mail relay), but
all users are treated identically. This service too can be
owned by a pseudo user. (3) the service provided de-
pends on the user, who therefore must be authenticated—
it is usually appropriate that the service process be owned
by its user (i.e., UBNS).

A UBNS service (a process run under the user’s ID)
performs the following steps: (a) it accepts a connection,
(b) performs user authentication to identify the user re-
questing the service, (c) creates a new process, and (d)
changes the ownership of the process to the authenticated
user. Once the ownership of the process is changed to the
user, it cannot be used by anyone else.

We next examine how this general paradigm is per-
formed in Unix and then in netAuth.

Figure 2(a) shows the call sequence for implementing
a user authenticated service using UNIX socket APIs.
The client creates a socket (socket), connects to the
server (connect), and then does a series of sends and
receives (send/recv), and when its done closes the
socket.

The server creates a socket (socket), associates it
with a network address on the server (bind), allocates a
pending queue of connection requests (listen), waits
for a new connection request to arrive (accept). To per-
form UBNS, it spawns a process (fork), and after de-
termining the user via network messages (not shown) it
then changes the owner of the process (setuid). At this
point the newly created service process is operating as
the user. It communicates back and forth with the client
and then closes the connection. Since there is typically
no way to reuse the process after it closes the socket, it
exits.

Figure 2(b) shows the equivalent sequencing for ne-
tAuth. On the client side, the only programming change
needed to adapt to netAuth is to replace connect with
connect by user (of course, the application-level
authentication must be removed).
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On the server side, netAuth basically splits the accept
for a new connection into two phases:

• The first phase is called the pre accept, which
determines when a new user (one that does not have
a service process) arrives. Hence, the pre accept
blocks until there is a waiting connection for some
user U without a corresponding service process
owned by U . (To prevent race conditions, a process
which has a temporary reservation for U by virtue
of having done a pre accept but not yet having
changed the owner is reserved by U .)

• The second phase is the accept by user to ac-
tually accept the connection, after having created a
process owned by the new user.

The accept is split into two APIs because there are now
two actions (1) determining that there is an unaccepted
connection for a new user (so that a new process can
be created) and (2) completing the accept by a (child)
process owned by the new user. (2) ensures that the ac-
cepted socket can be read or written (since the process is
owned by the user). Hence, the split accept ensures that
the accept by user only succeeds if the owner of the
process is the authenticated user on the connection.

The change of ownership of the process is performed
by set net user. The set net user changes the
owner of the process to the authenticated user and con-
sumes the netAuthenticate privilege for that pro-
cess. Thus, set net user serves as a highly restricted
version of setuid, and is far safer to use.

5 Implementation

In this section, we describe the netAuth architecture, the
protocol for user authentication, and the implementation.
We then describe some performance numbers.

5.1 Architecture
The design of netAuth emphasizes the separation of au-
thentication, authorization, and cryptographic mecha-
nisms away from the application.

The overall architecture is shown in Figure 3. Appli-
cations communicate with each other using APIs which
emphasize process authentication—the one component
of netAuth which must be visible to networked applica-
tion code. There are two types of communications, both
of which flow over an IPsec tunnel between the hosts:

• the application’s protocol (or data, for performing
its function) and

• the netAuth authentication information.

The authentication information is managed by two ne-
tAuth daemons—netAuthClient and netAuthServer—
which perform both the public key operations for user
authentication and enable the process’ change of owner-
ship.

5.2 Authentication protocol

Because IPsec is used for communication, IPsec per-
forms host authentication. This means that the remote
service is authenticated, because the service type is deter-
mined by port and the IP is verified using IPsec’s public
key host authentication.

Before application communication is established, user
authentication is performed:

netAuthClient signs an authenticator which describes
the connection.

netAuthServer receives the authenticator and verifies
its signature.

Public-key cryptographic operations can be considerably
more expensive than symmetric key algorithms. For-
tunately, signing (which is done on the relatively idle
client) takes significantly longer than verifying (on a
busy server). For example, RSA public key signing times
(client) and verification times (server) for 1024 and 2048
bit keys are shown in Table 17.

Once the netAuthClient has proved that it can
sign the authenticator, successive signings prove little
(since from the first signing we know that the netAu-
thClient has the requisite private key). Hence, succes-
sive connects for that user employ a quick authentication
based on hash chains [23].

We use a separate connection to send our authen-
ticator, rather than the more traditional mechanism of
piggybacking authentication on the application connec-
tion. This is done both to increase the flexibility of
communications and to allow connections to be re-
authenticated periodically. Re-authentication determines
whether the user’s account is still active, and hence a
re-authentication failure disables the user’s account and
stops their processes, something that is difficult to do
with other protocols. We re-authenticate using the same
hash chain scheme as for successive connects for the
same user.

key size signing verifying
1024 680 µs 40 µs
2048 2,780 µs 80 µs

Table 1: RSA signing/verification times in µseconds
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Figure 3: Architecture of netAuth

5.3 kernel-based implementation

The first NetAuth implementation has been integrated
into the Linux kernel. Our implementation has three key
components:

• kernel extensions (code integrated into the main-
line kernel) implementing networking support for
processes with per-user privileges and providing the
new system calls pre accept, set net user
and accept by user.

• a loadable kernel module implementing netAuth
authorizations, uses the Linux Security Module
(LSM) framework [41].

The LSM framework segregates the placement of
hooks (scattered through the Linux kernel) from the
enforcement of access controls (centralized in an
LSM module). Thus changes in the mainline ker-
nel (mostly) do not affect LSM modules.

• Three user-space daemons which (1) download
the networking policy into the kernel using the
netlink facility (2) sign authenticators and (3)
verify authenticators.

The kernel implementation currently consists of about
3,700 lines of C code (∼3,000 in the kernel module and
∼700 in the kernel extensions).

5.4 Performance

We now report on NetAuth’s performance. All the ex-
periments were run using a server—an AMD 4200+ (2.2
GHz) machine with 2GB RAM—and a client—an AMD
4600+ (2.2 GHz) machine with 1GB RAM. Both com-
puters ran Linux kernel v2.6.17, used gigabit network-
ing, and were connected by a crossover cable8. We mea-
sured elapse times (from the applications) in all cases.

We performed two types of performance tests to
measure latency. First, we measured the overhead
of netAuth authorization and compared it to unmodi-
fied Linux, for the cases of the bind, connect and
connect-send-recv operations. Second, we mea-
sured latency for netAuth’s per-user services. For the
second part, there is no comparable Linux scenario and
hence we report absolute times there.

UNIX NetAuth Overhead
(µs) (µs)

bind 6.00 6.75 12.5%
connect 28.00 32.00 14.28%
connect-send-
recv (Unix style)

145.00 157.00 8.27%

Table 2: Elapse times for the micro-benchmarks and the
Unix-style concurrent server (see Section 3). No authen-
tication is performed in any of these cases. The time
specified are all in micro seconds.

5.4.1 System call overhead (no authentication)

Our first measurements determine the authorization over-
heads for netAuth, by using a light weight authentication
with minimal overhead. The authorization mechanism
limits which users can use the service, it is implemented
outside of application.

The measurements are given in Table 2, are of netAuth
vs. unmodified Linux:

• the time to perform a bind by a server increased
by 12.5% due to the overhead of doing the autho-
rization checks.

• the time to complete a connect (as measured) on
the client-side increased by 14.28%, due to client-
side and server-side authorization checks. The
elapsed time includes a round trip packet time.

• the time to do a connect-send-recv
(as measured) on the client is considered
next. (The server must do a accept-
fork-setuid-recv-send). The send
and recv are 128 bytes of data. For the UNIX case,
the total time was about 145 µ seconds while for the
NetAuth case the time was about 157 µ seconds, an
overhead of 8.27%. The most costly operation is
the fork performed at the server to create a new
per-user process.

We note that these overheads are best case [26], normally
latency issues are higher. Moreover, no performance tun-
ing has yet been done on the netAuth implementation.

5.4.2 Using netAuth authentication

This section describes the case of a server in which the
process for user Ui satisfies all of the requests from Ui,
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for a particular service (as described in Section 5). There
does not exist a comparable scenario in UNIX. Hence,
we report the latencies observed on the client side in Ta-
ble 3.

Connection netAuth Linux
(with auth.) (w/o auth.)

first 4200 µs 147 µs
successive 67 µs 147 µs

Table 3: Elapse times observed on the client side to per-
form a connect-send-recv. The netAuth connec-
tions are established with user authentication. Successive
netAuth connections are to the same per-user server pro-
cess created by the first connection on the server. The
UNIX connections are established without user authenti-
cation.

For the first connection, using netAuth authentication
mechanisms, a new connection results in the following
set of actions: (1) on the client, the kernel requests an
authenticator from the user-space daemon; (2) the client
generates the authenticator and sends it to the server
where it is verified; (3) there is a RTT for sending the au-
thenticator to the server and receiving response from the
server; (4) there may be context-switch times (between
client process and authentication daemon); and (5) there
may scheduling delays. The costliest operation by far is
the cryptographic signing of the authenticator.

All subsequent connections on behalf of the same user
run much faster because they re-use the same server pro-
cess and fast authentications. In comparison, the elapse
time for the UNIX case is the same for all cases because
there are no schemes for a client to re-use a previously
created per-user process. The values for UNIX shown in
the Table are without authentication overhead.

5.4.3 Server throughput

We next consider server throughput in terms of new con-
nections. In netAuth, although the first authentication
must be signed, successive authentications require only a
very fast cryptographic hash. From table 1, the service-
based verification of signatures takes only 80µseconds.
Hence, a single core can perform authentication for
45,000,000 users per hour assuming authentications are
cached for one hour. We believe that such performance
levels eliminate the need to consider weaker authentica-
tion mechanisms, even for very high volume services.

5.5 Alternative implementations
Our first implementation, which is described here, is a
kernel-level implementation. Of course, we would like
the APIs described here to be available on other systems

without kernel modifications, particularly for those OSes
for which the source code is not available.

We consider here only the client side issues as we
would like netAuth services to be usable from any op-
erating system. (Server OS, on the other hand, is under
the control of the service provider.) In section 6.2 we
describe a proxy implementation which uses netAuth,
but which could be easily extended into one which im-
plemented netAuth at the protocol level from user space
rather than using netAuth APIs.

6 Porting applications to netAuth

To show the effectiveness of netAuth we ported a UBNS
service. We have not yet attempted to port a service
which is not UBNS organized (such as Apache), as that
is a far more difficult problem. We chose an applica-
tion, dovecot, which supports both privilege separation
and UBNS.

Process name executable name user ID
master dovecot root
auth dovecot-auth root
login imap-login dovecot

pop3-login dovecot
imap imap U

Table 4: Dovecot processes and their respective user
ID’s. Here U refers to the user ID of the (remote) user
whose is accessing her mail.

Dovecot is an open source IMAP and POP mail server
(and is included in Linux distributions such as Debian
and Ubuntu). Users can access dovecot-based services
remotely using a Mail Viewer Agent (MVA) such as Thun-
derbird or Outlook. The MVA on the client communicates
with dovecot using the IMAP or POP protocols over SSL
or unencrypted connections.

Dovecot was built with security as a primary goal.
Since January 2006, its developer has offered an as-yet-
uncollected reward of 1000C for the first provable se-
curity hole9. To support both privilege separation and
UBNS, dovecot has four process types, running under
root, dovecot pseudo user, and the user U retrieving her
mail, as shown in Table 4.

Table 5, shows the code organization of the dovecot
distribution supporting IMAP (v1.0.9)10. Dovecot also
uses pam, crypto, and ssl libraries which are not included
in these line counts. The source distribution to support
IMAP is 24,628 lines of code, of which 9,30711 (37.8%)
are associated with authentication and encryption. The
port consisted of removing this code, and copying over
less than 1,000 lines from master (configuration and
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the concurrent server loop) and login (the initial hand-
shake code) to imap.

The port reduces the number of process types from
four to one. With a traditional Unix authorization model,
the port still requires root to bind to port 143 and to do
setuid; but unlike the pre-port version, our imap process
never reads user input while running as root and thus is
not subject as root to buffer overflow attack. (The privi-
leges can be still reduced further using netAuth’s autho-
rization model).

When implementing a imap service from scratch,
only 4 netAuth specific lines would be needed to pro-
vide authentication and encryption over that required for
an unauthenticated service.

6.1 Dovecot before and after
The standard version of dovecot is more complex be-
cause of the privilege separation mechanism and espe-
cially the complexity of using standard authentication
and cryptographic mechanisms. We describe first the
processes and then later the operations needed to retrieve
IMAP mail in standard dovecot.

6.1.1 Standard dovecot

The dovecot distribution is composed of the following
processes:

master process starts the auth process and n (by de-
fault, 3) login processes. The master process is
also responsible for the creation of an imap process
after a successful authentication.

auth process authenticates new users for the login
process (over a UNIX socket). The auth pro-
cess also verifies successful authentications to the
master before it creates a mail process.

login process listens on the appropriate port (e.g., 143
for IMAP) for new connections. Once a connec-
tion is established it negotiates with the MVA pro-
cess to initialize the connection (sending server ca-
pabilities, setting up SSL, etc.) and requests authen-
tication of the user. Upon successful authentication,
the login process requests the master process to
create a new imap process and then exits.

imap process receives the socket descriptor over a
UNIX socket from the login process. The imap
process then communicates with the remote MVA to
access the user’s mailbox on the server.

Figure 4 shows the sequence of events that are nec-
essary to create a new imap process to service requests
from the MVA.

1. Messages 1a and 1b establish the initial connection
between the MVA and dovecot. During this step,
the MVA requests and receives the server capabili-
ties (not shown in the figure).

2. authentication step (shown as messages 2a-2e and
action 2f). (a) The MVA sends the user’s authentica-
tion information as part of a LOGIN message. (b)
In response, the login process requests the auth
process to authenticate the user (c) The login
process request the auth process to authenticate,
(d) on successful authentication the login process
sends a response back to the MVA and (e) requests
the master process to create a new imap pro-
cess. (f) the master, after verifying a successful
authentication with the auth process, creates the
new mail process running on behalf of user Uk.

3. The imap process then services the MVA’s future
requests.

6.1.2 Porting dovecot to netAuth

The porting of dovecot to netAuth consists of (a) remov-
ing code, (b) moving some code into the imap process
and (c) removing three of the four processes. A dove-
cot process ported to netAuth is not expected to per-
form the following functions: message encryption us-
ing OpenSSL, GNU-TLS or the like; user authentication;
performing the complex setuid() operation and re-
lated code to ensure that the process does not have any
privileged left-overs (in the form of file descriptors) in
the unprivileged process. Hence, code for these secu-
rity sensitive operations need not be implemented by the
dovecot executable and can be removed. Thus, summa-
rizing the dovecot port to netAuth:

• the auth process (and its code) is eliminated com-
pletely as the user authentication is performed by
the OS as part of connection establishment.

• from the master process, only the code to bind to
the privileged port and to configure a new mail pro-
cess with the appropriate set of environment vari-
ables is retained. (Dovecot passes configuration in-
formation to the imap process as environment vari-
ables)

• from the login process, only the initialization of a
new connection (1a and 1b in Figure 4) is retained.

• the core functionality of accessing and maintaining
mailboxes in the imap process is retained.

Thus, the dovecot port to netAuth runs as a single pro-
cess type (following the design for a concurrent server
implementation shown in Figure 2). The master, auth
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directory total lines
of code

master 2,460
auth 5,469
imap-login 484
imap 3,456
lib-auth 490
lib 6,268
login-common 1,138
lib-imap 1,069
lib-settings 101
lib-ntlm 304
lib-sql 882
lib-dict 470
lib-storage 574
lib-mail 1,463
total 24,628

process dovecot’s libraries
used

total lines
of code

dynamic
libraries

master lib 8,728
auth lib, lib-settings, 13,024 pam

lib-ntlm, lib-sql crypto
login lib, login-common, 9,449 ssl

lib-auth, lib-imap crypt
imap lib, lib-dict, lib-mail,

lib-imap, lib-storage
13,300 ssl

Table 5: Table with lines of code in the various directories in dovecot. The command ‘cat *.c *.h | grep
";" | wc -l’ was used to determine this count.
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Figure 4: The processes that comprise standard dovecot and their interaction to authenticate a user. Solid arrows
indicate message exchange while dashed ones represent process actions. Message exchange across system boundaries
use a network socket while those within the same system use UNIX sockets.
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imap

dovecot

imap

U1

imap

Uk

Mail
Viewer
Agent

1a: SYN

1c: OK Dovecot Ready.

1b:fork,set net user

2:access mailbox

Figure 5: The message exchanges between the ported netAuth dovecot and the MVA.

and login processes are eliminated after taking a small
amount code from them.

The resulting imap code performs the following
steps:

• initializes a socket to listen for new connections. It
performs a bind on the privileged port, a listen,
sets the accept mode to acceptByUser and blocks on
pre accept waiting for a connection from a user
for which there is no imap process.

• when a connection from a new user arrives, the pro-
cess returns from pre acceptwith the new user’s
information. The process forks a child process to
handle the user and returns to waiting for a new user.

• the child process changes the user by executing
set net user with the user information from the
pre accept call. The child process runs as the
new user. This process can now accept the connec-
tions (for that user) and process the MVA’s requests.

The user is authenticated as part of the processing
in the network stack to accept a connection Hence,
pre accept returns only for authenticated users. Con-
nection requests of users that fail to successfully authen-
tication are dropped (with a RST sent back).

6.2 Client side modifications

To test out the server-side modifications it was necessary
to produce a netAuth-enabled MVA. Rather than port an
existing MVA, such as Thunderbird, we instead built a
netAuth proxy. This has several advantages, including
portability to systems which do not allow kernel modi-
fications and ability to support a wide variety of MVAs
without doing multiple ports. The proxy presented the
least invasive approach.

The proxy binds to the IMAP (or POP) port on the
localhost. The events to setup a new connection:

• proxy binds to the privileged IMAP port and waits
blocking for connection request.

• when a new connection request comes in from the
MVA, the proxy authenticates the MVA. Once authen-
ticated, the proxy initiates communication with the
dovecot server using the connect by user sys-
tem call.

• Once connected, the proxy just forwards messages
to and from the MVA.

Multiple dovecot servers It is not unusual for a user
to have multiple mailboxes maintained at more than one
server. In this case, the proxy maintains a system-wide
mapping (common to all users) from non-routable local
IP addresses in the range 127.0.0.0/8 to the well-known
routable IP address of the remote host running the dove-
cot server. All the MVA’s on the client are then configured
to use IP addresses in this range (published by the proxy)
to refer their respective hosts.

The proxy binds and listens for connection requests on
all the published local interfaces (i.e., all the 127.0.0.0/8
IP addresses configured for the proxy). A request on a
given IP address corresponds to a particular remote host
(known to the proxy). The proxy can then follow the
scheme outlined above to authenticate the user and es-
tablish the connection.

7 Security achieved

The user never has access to his private keys, and in fact
needs permission to authenticate using the private keys.
This mechanism can be expanded to allow different pri-
vate keys for different uses, although we do not yet sup-
port that. One use of such a facility is to allow the user to
perform personal chores, such as banking with one key
and to perform business functions with another key.

Only the specified users can connect to the service,
since they must be authorized. This authorization is in-
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dependent of a service; if the service is designated as
an authenticated and authorized service, there is nothing
the service can do (either deliberately or accidentally) to
evade this mechanisms. The process may avoid actually
setting the user ID, but the mechanism pairs user authen-
tication with the connection, so that it can only be used
by the process which accepts that connection and it is
necessary to authenticate before reading or writing to the
connection.

Because the authorization and authentication of user
services are totally declarative, it is possible to automat-
ically analyze them. (In contrast, this is not possible in
general, due to decidability problems, when these func-
tions are performed by application code.) We are plan-
ning on extending our previous work in DAC and MAC
access controls to automatically analyze authorization
properties across computer systems [36, 35, 37].

8 Conclusion

UBNS requires a mechanism for (1) authentication of
users over the network and (2) allowing server processes
to change the user on whose behalf they execute. Imple-
menting the cryptographic mechanisms for user authen-
tication as part of the application is complex and error
prone, and as we showed, requires a substantial amount
of code. Moving the authentication and cryptographic
mechanisms outside the application makes the applica-
tion independent of these mechanism, and application
programmers are usually not skilled in this area. More-
over, the OS mechanisms for change of process owner-
ship are also dangerous as such privileges are among the
strongest in a computer system, since changing a user
typically allows the privileges of any user to be appropri-
ated.

And hence, programmers typically defer such consid-
erations, ignoring them during initial design. But UBNS
affects the very structure of programs and when its con-
sideration is delayed, it becomes increasingly expensive
to retrofit. Thus many applications will not be structured
as UBNS and the design will not satisfy the property of
least privilege.

NetAuth is a simple mechanism to invoke network au-
thentication and process change-of-ownership, thus en-
couraging the design of UBNS. It builds on the work of
Kerberos, SSH, and Plan9 but seeks to do so with the
style of mandatory access controls and to provide better
information assurance. It

• Requires only four lines of code for authenticated
and cryptographically protected communications
vs. a (concurrent) service which neither authenti-
cates nor encrypts traffic.

• Enables the application developer to focus on the
key task of partitioning the application into pro-
cesses early in the design process.

• Remove the need for privileged processes to receive
external input, and thus guards against a range of
attacks including buffer overflow.

• Makes application code independent of the authen-
tication method, thus enabling changes in the au-
thentication methods without affecting either source
or binary code.

• Externalizes authorization, making it independent
of application failures.

While the authentication mechanism and APIs described
here can be used with any authorization model, we have
also built an authorization model (to be described else-
where) which has a highly analyzable configuration in
which strong properties can be understood independently
of the application code.

NetAuth integrates public key and a fast re-
authentication mechanism to achieve high performance
authentications with the strongest possible properties.
Further increases in performance are enabled by the re-
use of processes for the same user, saving system over-
head. This simplifies the structure of such applications,
and makes it much easier to build UBNS. Such an easy-
to-use mechanism will encourage programmers to inte-
grate security from the start, and thus construct more se-
cure applications.

Not only do these mechanisms enable the construction
of more secure services but also provide significant ad-
vantages for system administration. These mechanisms
enable strong controls to be imposed on services without
resorting to application specific configuration and with-
out analyzing application code.
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Notes
1http://www.securityfocus.com/infocus/1876
2http://www.dovecot.org/security.html
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3Alternatively, SSH allows a remote executable to be invoked, but
that remote executable is not connected to as a network service.

4hg-login http://www.selenic.com/mercurial/wiki/
index.cgi/SharedSSH, as used in Mercurial, performs remote
authentication using SSH, but execs a new program rather than con-
nect to a running network service.

5We are using a simplified, and easily customized, certificate rather
than the complex X.509 certificates.

6The application code forks the new process pj . This explicit struc-
ture allows also non-privilege-separated iterative and concurrent ser-
vice, although these exist largely for legacy applications.

7Source http://www.cryptopp.com/
benchmarks-amd64.html, for an AMD Opeteron 2.4 GHz
processor

8The server has an nVidia 570 chipset and the client an nVidia 430
chipset. They both run the open source forcedeth driver.

9The webpage at http://www.dovecot.org/security.html displays a
list of security holes found in dovecot since the announcement of the
award. The dovecot developer (maintainer of the webpage) claims that
these holes cannot be exploited under reasonable circumstance stated
as a set of rules on the same page.

10Dovecot also supports POP, which we ignore for this comparison.
11Code from the directories: auth, imap-login, login-common, lib-

auth and master (except the configuration code).
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