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Abstract
Botnets are now the key platform for many Internet
attacks, such as spam, distributed denial-of-service
(DDoS), identity theft, and phishing. Most of the current
botnet detection approaches work only on specific
botnet command and control (C&C) protocols (e.g.,
IRC) and structures (e.g., centralized), and can become
ineffective as botnets change their C&C techniques. In
this paper, we present a general detection framework that
is independent of botnet C&C protocol and structure,
and requires no a priori knowledge of botnets (such as
captured bot binaries and hence the botnet signatures,
and C&C server names/addresses). We start from the
definition and essential properties of botnets. We define
a botnet as a coordinated group of malware instances
that are controlled via C&C communication channels.
The essential properties of a botnet are that the bots
communicate with some C&C servers/peers, perform
malicious activities, and do so in a similar or correlated
way. Accordingly, our detection framework clusters
similar communication traffic and similar malicious
traffic, and performs cross cluster correlation to identify
the hosts that share both similar communication patterns
and similar malicious activity patterns. These hosts
are thus bots in the monitored network. We have
implemented our BotMiner prototype system and
evaluated it using many real network traces. The results
show that it can detect real-world botnets (IRC-based,
HTTP-based, and P2P botnets including Nugache and
Storm worm), and has a very low false positive rate.

1 Introduction
Botnets are becoming one of the most serious threats to
Internet security. A botnet is a network of compromised
machines under the influence of malware (bot) code. The
botnet is commandeered by a “botmaster” and utilized as
“resource” or “platform” for attacks such as distributed
denial-of-service (DDoS) attacks, and fraudulent activi-
ties such as spam, phishing, identity theft, and informa-

tion exfiltration.
In order for a botmaster to command a botnet, there

needs to be a command and control (C&C) channel
through which bots receive commands and coordinate
attacks and fraudulent activities. The C&C channel is
the means by which individual bots form a botnet. Cen-
tralized C&C structures using the Internet Relay Chat
(IRC) protocol have been utilized by botmasters for a
long time. In this architecture, each bot logs into an IRC
channel, and seeks commands from the botmaster. Even
today, many botnets are still designed this way. Quite a
few botnets, though, have begun to use other protocols
such as HTTP [8, 14, 24, 39], probably because HTTP-
based C&C communications are more stealthy given
that Web traffic is generally allowed in most networks.
Although centralized C&C structures are effective, they
suffer from the single-point-of-failure problem. For ex-
ample, if the IRC channel (or the Web server) is taken
down due to detection and response efforts, the botnet
loses its C&C structure and becomes a collection of
isolated compromised machines. Recently, botmasters
began using peer-to-peer (P2P) communication to avoid
this weakness. For example, Nugache [28] and Storm
worm [18, 23] (a.k.a. Peacomm) are two representative
P2P botnets. Storm, in particular, distinguishes itself
as having infected a large number of computers on the
Internet and effectively becoming one of the “world’s top
super-computers” [27] for the botmasters.

Researchers have proposed a few approaches [7, 17,
19, 20, 26, 29, 35, 40] to detect the existence of botnets
in monitored networks. Almost all of these approaches
are designed for detecting botnets that use IRC or HTTP
based C&C [7, 17, 26, 29, 40]. For example, Rishi [17]
is designed to detect IRC botnets using known IRC bot
nickname patterns as signatures. In [26, 40], network
flows are clustered and classified according to IRC-like
traffic patterns. Another more recent system, BotSniffer,
[20] is designed mainly for detecting C&C activities
with centralized servers (with protocols such as IRC
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and HTTP1). One exception is perhaps BotHunter [19],
which is capable of detecting bots regardless of the C&C
structure and network protocol as long as the bot be-
havior follows a pre-defined infection life cycle dialog
model.

However, botnets are evolving and can be quite flexi-
ble. We have witnessed that the protocols used for C&C
evolved from IRC to others (e.g., HTTP [8, 14, 24, 39]),
and the structure moved from centralized to distributed
(e.g., using P2P [18, 28]). Furthermore, a botnet dur-
ing its lifetime can also change its C&C server address
frequently, e.g., using fast-flux service networks [22].
Thus, the aforementioned detection approaches designed
for IRC or HTTP based botnets may become ineffective
against the recent/new botnets. Even BotHunter may fail
as soon as botnets change their infection model(s).

Therefore, we need to develop a next generation botnet
detection system, which should be independent of the
C&C protocol, structure, and infection model of botnets,
and be resilient to the change of C&C server addresses.
In addition, it should require no a priori knowledge of
specific botnets (such as captured bot binaries and hence
the botnet signatures, and C&C server names/addresses).

In order to design such a general detection system that
can resist evolution and changes in botnet C&C tech-
niques, we need to study the intrinsic botnet communi-
cation and activity characteristics that remain detectable
with the proper detection features and algorithms. We
thus start with the definition and essential properties of a
botnet. We define a botnet as:

“A coordinated group of malware instances that are
controlled via C&C channels”.

The term “malware” means these bots are used to
perform malicious activities. According to [44], about
53% of botnet activity commands observed in thousands
of real-world IRC-based botnets are related to scan (for
the purpose of spreading or DDoS2), and about 14.4%
are related to binary downloading (for the purpose of
malware updating). In addition, most of HTTP-based
and P2P-based botnets are used to send spam [18, 39].
The term “controlled” means these bots have to con-
tact their C&C servers to obtain commands to carry out
activities, e.g., to scan. In other words, there should
be communication between bots and C&C servers/peers
(which can be centralized or distributed). Finally, the
term “coordinated group” means that multiple (at least
two) bots within the same botnet will perform similar or
correlated C&C communications and malicious activi-

1BotSniffer could be extended to support other protocol based
C&C, if the corresponding protocol matchers are added.

2For spreading, the scans usually span many different hosts (within
a subnet) indicated by the botnet command. For DDoS, usually there
are numerous connection attempts to a specific host. In both cases, the
traffic can be considered as scanning related.

ties. If the botmaster commands each bot individually
with a different command/channel, the bots are nothing
but some isolated/unrelated infections. That is, they do
not function as a botnet according to our definition and
are out of the scope of this work3.

We propose a general detection framework that is
based on these essential properties of botnets. This
framework monitors both who is talking to whom that
may suggest C&C communication activities and who is
doing what that may suggest malicious activities, and
finds a coordinated group pattern in both kinds of activi-
ties. More specifically, our detection framework clusters
similar communication activities in the C-plane (C&C
communication traffic), clusters similar malicious activ-
ities in the A-plane (activity traffic), and performs cross
cluster correlation to identify the hosts that share both
similar communication patterns and similar malicious
activity patterns. These hosts, according to the botnet
definition and properties discussed above, are bots in the
monitored network.

This paper makes the following main contributions.

• We develop a novel general botnet detection frame-
work that is grounded on the definition and essential
properties of botnets. Our detection framework
is thus independent of botnet C&C protocol and
structure, and requires no a priori knowledge (e.g.,
C&C addresses/signatures) of specific botnets. It
can detect both centralized (e.g., IRC,HTTP) and
current (and possibly future) P2P based botnets.

• We define a new “aggregated communication flow”
(C-flow) record data structure to store aggregated
traffic statistics, and design a new layered clustering
scheme with a set of traffic features measured on
the C-flow records. Our clustering scheme can
accurately and efficiently group similar C&C traffic
patterns.

• We build a BotMiner prototype system based on our
general detection framework, and evaluate it with
multiple real-world network traces including nor-
mal traffic and several real-world botnet traces that
contain IRC, HTTP and P2P-based botnet traffic
(including Nugache and Storm). The results show
that BotMiner has a high detection rate and a low
false positive rate.

The rest of the paper is organized as follows. In
Section 2, we describe the assumptions, objectives, ar-
chitecture of our BotMiner detection framework, and its

3One can still use our complementary system, BotHunter [19], to
detect individual bots. In this paper, we focus on the detection of a
botnet. We further clarify our assumptions in Section 2.1 and address
limitations in Section 4.
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detection algorithms and implementation. In Section 3,
we describe our evaluation on various real-world net-
work traces. In Section 4, we discuss current limitations
and possible solutions. We review the related work in
Section 5 and conclude in Section 6.

2 BotMiner Detection Framework and Im-
plementation

2.1 Problem Statement and Assumptions

According to the definition given above, a botnet is char-
acterized by both a C&C communication channel (from
which the botmaster’s commands are received) and ma-
licious activities (when commands are executed). Some
other forms of malware (e.g., worms) may perform mali-
cious activities, but they do not connect to a C&C chan-
nel. On the other hand, some normal applications (e.g.,
IRC clients and normal P2P file sharing software) may
show communication patterns similar to a botnet’s C&C
channel, but they do not perform malicious activities.

Figure 1 illustrates two typical botnet structures,
namely centralized and P2P. The bots receive commands
from the botmaster using a push or pull mechanism [20]
and execute the assigned tasks.

The operation of a centralized botnet is relatively easy
and intuitive [20], whereas this is not necessarily true
for P2P botnets. Therefore, here we briefly illustrate an
example of a typical P2P-based botnet, namely Storm
worm [18, 23]. In order to issue commands to the bots,
the botmaster publishes/shares command files over the
P2P network, along with specific search keys that can
be used by the bots to find the published command
files. Storm bots utilize a pull mechanism to receive
the commands. Specifically, each bot frequently contacts
its neighbor peers searching for specific keys in order to
locate the related command files. In addition to search
operations, the bots also frequently communicate with
their peers and send keep-alive messages.

In both centralized and P2P structures, bots within
the same botnet are likely to behave similarly in terms
of communication patterns. This is largely due to the
fact that bots are non-human driven, pre-programmed to
perform the same routine C&C logic/communication as
coordinated by the same botmaster. In the centralized
structure, even if the address of the C&C server may
change frequently (e.g., by frequently changing the A
record of a Dynamic DNS domain name), the C&C
communication patterns remain unchanged. In the case
of P2P-based botnets, the peer communications (e.g., to
search for commands or to send keep-alive messages)
follow a similar pattern for all the bots in the botnet,
although each bot may have a different set of neighbor
peers and may communicate on different ports.

Regardless of the specific structure of the botnet (cen-

tralized or P2P), members of the same botnet (i.e., the
bots) are coordinated through the C&C channel. In gen-
eral, a botnet is different from a set of isolated individual
malware instances, in which each different instance is
used for a totally different purpose. Although in an
extreme case a botnet can be configured to degenerate
into a group of isolated hosts, this is not the common
case. In this paper, we focus on the most typical and
useful situation in which bots in the same botnet perform
similar/coordinated activities. To the best of our knowl-
edge, this holds true for most of the existing botnets
observed in the wild.

To summarize, we assume that bots within the same
botnet will be characterized by similar malicious activ-
ities, as well as similar C&C communication patterns.
Our assumption holds even in the case when the bot-
master chooses to divide a botnet into sub-botnets, for
example by assigning different tasks to different sets of
bots. In this case, each sub-botnet will be characterized
by similar malicious activities and C&C communications
patterns, and our goal is to detect each sub-botnet. In
Section 4 we provide a detailed discussion on possible
evasive botnets that may violate our assumptions.

2.2 Objectives

The objective of BotMiner is to detect groups of compro-
mised machines within a monitored network that are part
of a botnet. We do so by passively analyzing network
traffic in the monitored network.

Note that we do not aim to detect botnets at the very
moment when victim machines are compromised and
infected with malware (bot) code. In many cases these
events may not be observable by passively monitoring
network traffic. For example, an already infected lap-
top may be carried in and connected to the monitored
network, or a user may click on a malicious email at-
tachment and get infected. In this paper we are not
concerned with the way internal hosts become infected
(e.g., by malicious email attachments, remote exploiting,
and Web drive-by download). We focus on the detection
of groups of already compromised machines inside the
monitored network that are part of a botnet.

Our detection approach meets several goals:

• it is independent of the protocol and structure used
for communicating with the botmaster (the C&C
channel) or peers, and is resistant to changes in the
location of the C&C server(s).

• it is independent of the content of the C&C com-
munication. That is, we do not inspect the content
of the C&C communication itself, because C&C
could be encrypted or use a customized (obscure)
protocol.
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Figure 1: Possible structures of a botnet: (a) centralized; (b) peer-to-peer.
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Figure 2: Architecture overview of our BotMiner detection framework.

• it generates a low number of false positives and false
negatives.

• the analysis of network traffic employs a reasonable
amount of resources and time, making detection
relatively efficient.

2.3 Architecture of BotMiner Detection Framework

Figure 2 shows the architecture of our BotMiner detec-
tion system, which consists of five main components:
C-plane monitor, A-plane monitor, C-plane clustering
module, A-plane clustering module, and cross-plane cor-
relator.

The two traffic monitors in C-plane and A-plane can
be deployed at the edge of the network examining traffic
between internal and external networks, similar to BotH-
unter [19] and BotSniffer [20]4. They run in parallel
and monitor the network traffic. The C-plane monitor
is responsible for logging network flows in a format
suitable for efficient storage and further analysis, and

4All these tools can also be deployed in LANs.

the A-plane monitor is responsible for detecting suspi-
cious activities (e.g., scanning, spamming, and exploit
attempts). The C-plane clustering and A-plane clustering
components process the logs generated by the C-plane
and A-plane monitors, respectively. Both modules ex-
tract a number of features from the raw logs and apply
clustering algorithms in order to find groups of machines
that show very similar communication (in the C-plane)
and activity (in the A-plane) patterns. Finally, the cross-
plane correlator combines the results of the C-plane and
A-plane clustering and makes a final decision on which
machines are possibly members of a botnet. In an ideal
situation, the traffic monitors should be distributed on the
Internet, and the monitor logs are reported to a central
repository for clustering and cross-plane analysis.

In our current prototype system, traffic monitors are
implemented in C for the purpose of efficiency (working
on real-time network traffic). The clustering and corre-
lation analysis components are implemented mainly in
Java and R (http://www.r-project.org/), and
they work offline on logs generated from the monitors.

The following sections present the details of the design
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and implementation of each component of the detection
framework.

2.4 Traffic Monitors

C-plane Monitor. The C-plane monitor captures net-
work flows and records information on who is talking to
whom. Many network routers support the logging of net-
work flows, e.g., Cisco (www.cisco.com) and Juniper
(www.juniper.net) routers. Open source solutions
like Argus (Audit Record Generation and Utilization
System, http://www.qosient.com/argus) are
also available. We adapted an efficient network flow cap-
ture tool developed at our research lab, i.e., fcapture
5, which is based on the Judy library (http://judy.
sourceforge.net/). Currently, we limit our inter-
est to TCP and UDP flows. Each flow record contains the
following information: time, duration, source IP, source
port, destination IP, destination port, and the number of
packets and bytes transfered in both directions. The main
advantage of our tool is that it works very efficiently
on high speed networks (very low packet loss ratio on
a network with 300Mbps traffic), and can generate very
compact flow records that comply with the requirement
for further processing by the C-plain clustering mod-
ule. As a comparison, our flow capturing tool generates
compressed records ranging from 200MB to 1GB per
day from the traffic in our academic network, whereas
Argus generates around 36GB of compressed binary flow
records per day on average (without recording any pay-
load information). Our tool makes the storage of several
weeks or even months of flow data feasible.

A-plane Monitor. The A-plane monitor logs informa-
tion on who is doing what. It analyzes the outbound
traffic through the monitored network and is capable
of detecting several malicious activities that the internal
hosts may perform. For example, the A-plane monitor
is able to detect scanning activities (which may be used
for malware propagation or DoS attacks), spamming,
binary downloading (possibly used for malware update),
and exploit attempts (used for malware propagation or
targeted attacks). These are the most common and “use-
ful” activities a botmaster may command his bots to
perform [9, 33, 44].

Our A-plane monitor is built based on Snort [36], an
open-source intrusion detection tool, for the purpose of
convenience. We adapted existing intrusion detection
techniques and implemented them as Snort pre-processor
plug-ins or signatures. For scan detection we adapted
SCADE (Statistical sCan Anomaly Detection Engine),
which is a part of BotHunter [19] and available at [11].
Specifically, we mainly use two anomaly detection mod-
ules: the abnormally-high scan rate and weighted failed

5This tool will be released in open source soon.

connection rate. We use an OR combination rule, so
that an event detected by either of the two modules
will trigger an alert. In order to detect spam-related
activities, we developed a new Snort plug-in. We focused
on detecting anomalous amounts of DNS queries for
MX records from the same source IP and the amount
of SMTP connections initiated by the same source to
mail servers outside the monitored network. Normal
clients are unlikely to act as SMTP servers and therefore
should rely on the internal SMTP server for sending
emails. Use of many distinct external SMTP servers for
many times by the same internal host is an indication
of possible malicious activities. For the detection of
PE (Portable Executable) binary downloading we used
an approach similar to PEHunter [42] and BotHunter’s
egg download detection method [19]. One can also use
specific exploit rules in BotHunter to detect internal hosts
that attempt to exploit external machines. Other state-of-
the-art detection techniques can be easily added to our
A-plane monitoring to expand its ability to detect typical
botnet-related malicious activities.

It is important to note that A-plane monitoring alone
is not sufficient for botnet detection purpose. First of
all, these A-plane activities are not exclusively used in
botnets. Second, because of our relatively loose design
of A-plane monitor (for example, we will generate a
log whenever there is a PE binary downloading in the
network regardless of whether the binary is malicious or
not), relying on only the logs from these activities will
generate a lot of false positives. This is why we need to
further perform A-plane clustering analysis as discussed
shortly in Section 2.6.

2.5 C-plane Clustering

C-plane clustering is responsible for reading the logs
generated by the C-plane monitor and finding clusters
of machines that share similar communication patterns.
Figure 3 shows the architecture of the C-plane clustering.

First of all, we filter out irrelevant (or uninterest-
ing) traffic flows. This is done in two steps: basic-
filtering and white-listing. It is worth noting that these
two steps are not critical for the proper functioning of the
C-plane clustering module. Nonetheless, they are useful
for reducing the traffic workload and making the actual
clustering process more efficient. In the basic-filtering
step, we filter out all the flows that are not directed from
internal hosts to external hosts. Therefore, we ignore the
flows related to communications between internal hosts6

and flows initiated from external hosts towards internal
hosts (filter rule 1, denoted as F1). We also filter out
flows that are not completely established (filter rule 2,

6If the C-plane monitor is deployed at the edge router, these traffic
will not be seen. However, if the monitor is deployed/tested in a LAN,
then this filtering can be used.
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Figure 3: C-plane clustering.

denoted as F2), i.e., those flows that only contain one-
way traffic. These flows are mainly caused by scanning
activity (e.g., when a host sends SYN packets without
completing the TCP hand-shake). In white-list filtering,
we filter out those flows whose destinations are well
known as legitimate servers (e.g., Google, Yahoo!)
that will unlikely host botnet C&C servers. This filter
rule is denoted as F3. In our current evaluation, the white
list is based on the US top 100 and global top 100 most
popular websites from Alexa.com.

After basic-filtering and white-listing, we further re-
duce the traffic workload by aggregating related flows
into communication flows (C-flows) as follows. Given
an epoch E (typically one day), all m TCP/UDP flows
that share the same protocol (TCP or UDP), source IP,
destination IP and port, are aggregated into the same
C-flow ci = {fj}j=1..m, where each fj is a single
TCP/UDP flow. Basically, the set {ci}i=1..n of all the
n C-flows observed during E tells us “who was talking
to whom”, during that epoch.

2.5.1 Vector Representation of C-flows

The objective of C-plane clustering is to group hosts
that share similar communication flows. This can be
accomplished by clustering the C-flows. In order to
apply clustering algorithms to C-flows we first need to
translate them in a suitable vector representation. We
extract a number of statistical features from each C-flow
ci, and translate them into d-dimensional pattern vectors
�pi ∈ R

d. We can describe this task as a projection
function F : C-plane → R

d. The projection function F

is defined as follows. Given a C-flow ci, we compute the
discrete sample distribution of (currently) four random
variables:

1. the number of flows per hour (fph). fph is computed
by counting the number of TCP/IP flows in ci that
are present for each hour of the epoch E.

2. the number of packets per flow (ppf). ppf is com-
puted by summing the total number of packets sent
within each TCP/UDP flow in ci.

3. the average number of bytes per packets (bpp). For
each TCP/UDP flow fj ∈ ci we divide the overall

number of bytes transfered within fj by the number
of packets sent within fj .

4. the average number of bytes per second (bps). bps
is computed as the total number of bytes transfered
within each fj ∈ ci divided by the duration of fj .

An example of the results of this process is shown in
Figure 4, where we select a random client from a real
network flow log (we consider a one-day epoch) and il-
lustrate the features extracted from its visits to Google.

Given the discrete sample distribution of each
of these four random variables, we compute an
approximate version of it by means of a binning
technique. For example, in order to approximate the
distribution of fph we divide the x-axis in 13 intervals
as [0, k1], (k1, k2], ..., (k12,∞). The values k1, .., k12

are computed as follows. First, we compute the overall
discrete sample distribution of fph considering all the
C-flows in the traffic for an epoch E. Then, we compute
the quantiles7 q5%, q10%, q15%, q20%, q25%, q30%, q40%,
q50%, q60%, q70%, q80%, q90%, of the obtained
distribution, and we set k1 = q5%, k2 = q10%,
k3 = q15%, etc. Now, for each C-flow we can describe
its fph (approximate) distribution as a vector of 13
elements, where each element i represents the number
of times fph assumed a value within the corresponding
interval (ki−1, ki]. We also apply the same algorithm for
ppf, bpp, and bps, and therefore we map each C-flow
ci into a pattern vector �pi of d = 52 elements. Figure
5 shows the scaled visiting pattern extracted form the
same C-flow shown in Figure 4.

2.5.2 Two-step Clustering

Since bots belonging to the same botnet share simi-
lar behavior (from both the communication and activity
points of view) as we discussed before, our objective is
to look for groups of C-flows that are similar to each
other. Intuitively, pattern vectors that are close to each
other in R

d represent C-flows with similar communi-
cation patterns in the C-plane. For example, suppose
two bots of the same botnet connect to two different

7The quantile ql% of a random variable X is the value q for which
P (X < q) = l%.
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Figure 4: Visit pattern (shown in distribution) to Google from a randomly chosen normal client.
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Figure 5: Scaled visit pattern (shown in distribution) to Google for the same client in Figure 4.

C&C servers (because some botnets use multiple C&C
servers). Although the connections from both bots to
the C&C servers will be in different C-flows because
of different source/destination pairs, their C&C traffic
characteristics should be similar. That is, in R

d, these
C-flows should be found as being very similar. In order
to find groups of hosts that share similar communication
patterns, we apply clustering techniques on the dataset
D = {�pi = F (ci)}i=1..n of the pattern vector rep-
resentations of C-flows. Clustering techniques perform
unsupervised learning. Typically, they aim at finding
meaningful groups of data points in a given feature space
F. The definition of “meaningful clusters” is application-
dependent. Generally speaking, the goal is to group the
data into clusters that are both compact and well sepa-
rated from each other, according to a suitable similarity
metric defined in the feature space F [25].

Clustering C-flows is a challenging task because |D|,
the cardinality of D, is often large even for moderately
large networks, and the dimensionality d of the feature
space is also large. Furthermore, because the percentage
of machines in a network that are infected by bots is
generally small, we need to separate the few botnet-
related C-flows from a large number of benign C-flows.
All these make clustering of C-flows very expensive.

In order to cope with the complexity of clustering of
D, we solve the problem in several steps (currently in two
steps), as shown in a simple form in Figure 6. At the first
step, we perform coarse-grained clustering on a reduced
feature space R

d�

, with d� < d, using a simple (i.e., non-
expensive) clustering algorithm (we will explain below
how we perform dimensionality reduction). The results

Figure 6: Two-step clustering of C-flows.

of this first-step clustering is a set {C�
i}i=1..γ1 of γ1

relatively large clusters. By doing so we subdivide the
dataset D into smaller datasets (the clusters C�

i) that
contain “clouds” of points that are not too far from each
other.

Afterwards, we refine this result by performing a
second-step clustering on each different dataset C�

i

using a simple clustering algorithm on the complete
description of the C-flows in R

d (i.e., we do not perform
dimensionality reduction in the second-step clustering).
This second step generates a set of γ2 smaller and more
precise clusters {C��

i }i=1..γ2 .

We implement the first- and second-step clustering
using the X-means clustering algorithm [31]. X-means
is an efficient algorithm based on K-means [25], a very
popular clustering algorithm. Different from K-means,
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the X-means algorithm does not require the user to
choose the number K of final clusters in advance.
X-means runs multiple rounds of K-means internally
and performs efficient clustering validation using the
Bayesian Information Criterion [31] in order to compute
the best value of K . X-means is fast and scales well
with respect to the size of the dataset [31].

For the first-step (coarse-grained) clustering, we first
reduce the dimensionality of the feature space from d =
52 features (see Section 2.5.1) into d� = 8 features by
simply computing the mean and variance of the distribu-
tion of fph, ppf, bpp, and bps for each C-flow. Then we
apply the X-means clustering algorithm on the obtained
representation of C-flows to find the coarse-grained clus-
ters {C�

i}i=1..γ1 . Since the size of the clusters {C�
i}i=1..γ1

generated by the first-step clustering is relatively small,
we can now afford to perform a more expensive analysis
on each C�

i. Thus, for the second-step clustering, we use
all the d = 52 available features to represent the C-flows,
and we apply the X-means clustering algorithm to refine
the results of the first-step clustering.

Of course, since unsupervised learning is a notoriously
difficult task, the results of this two-step clustering algo-
rithm may still be not perfect. As a consequence, the
C-flows related to a botnet may be grouped into some
distinct clusters, which basically represent sub-botnets.
Furthermore, a cluster that contains mostly botnet or
benign C-flows may also contain some “noisy” benign
or botnet C-flows, respectively. However, we would like
to stress the fact that these problems are not necessarily
critical and can be alleviated by performing correlation
with the results of the activity-plane (A-plane) clustering
(see Section 2.7).

Finally, we need to note that it is possible to bootstrap
the clustering from A-plane logs. For example, one may
apply clustering to only those hosts that appear in the A-
plane logs (i.e., the suspicious activity logs). This may
greatly reduce the workload of the C-plane clustering
module, if speed is the main concern. Similarly, one
may bootstrap the A-plane correlation from C-plane logs,
e.g., by monitoring only clients that previously formed
communication clusters, or by giving monitoring pref-
erence to those clients that demonstrate some persistent
C-flow communications (assuming botnets are used for
long-term purpose).

2.6 A-plane Clustering

In this stage, we perform two-layer clustering on ac-
tivity logs. Figure 7 shows the clustering process in
A-plane. For the whole list of clients that perform at
least one malicious activity during one day, we first
cluster them according to the types of their activities
(e.g., scan, spam, and binary downloading). This is
the first layer clustering. Then, for each activity type,
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activity
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to activity type scan activity

spam activity
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exploit
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…
…
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Scan cluster n
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Figure 7: A-plane clustering.

we further cluster clients according to specific activity
features (the second layer clustering). For scan activity,
features could include scanning ports, that is, two clients
could be clustered together if they are scanning the same
ports. Another candidate feature could be the target
subnet/distribution, e.g., whether the clients are scanning
the same subnet. For spam activity, two clients could be
clustered together if their SMTP connection destinations
are highly overlapped. This might not be robust when
the bots are configured to use different SMTP servers
in order to evade detection. One can further consider
the spam content if the whole SMTP traffic is captured.
To cluster spam content, one may consider the similarity
of embedded URLs that are very likely to be similar
with the same botnet [43], SMTP connection frequency,
content entropy, and the normalized compression dis-
tance (NCD [5, 41]) on the entire email bodies. For
outbound exploit activity, one can cluster two clients if
they send the same type of exploit, indicated by the Snort
alert SID. For binary downloading activity, two clients
could be clustered together if they download similar
binaries (because they download from the same URL
as indicated in the command from the botmaster). A
distance function between two binaries can be any string
distance such as DICE used in [20] 8.

In our current implementation, we cluster scanning
activities according to the destination scanning ports.
For spam activity clustering, because there are very few
hosts that show spamming activities in our monitored
network, we simply cluster hosts together if they perform
spamming (i.e., using only the first layer clustering here).
For binary downloading, we configure our binary down-
loading monitor to capture only the first portion (packet)
of the binary for efficiency reasons (if necessary, we
can also capture the entire binary). We simply compare

8In an extreme case that bots update their binaries from different
URLs (and the binaries are packed to be polymorphic thus different
from each other), one should unpack the binary using tools such as
Polyunpack [37] before calculating the distance. One may also directly
apply normalized compression distance (NCD [5, 41]) on the original
(maybe packed) binaries.
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whether these early portions of the binaries are the same
or not. In other words, currently, our A-plane clustering
implementation utilizes relatively weak cluster features.
In the future, we plan to implement clustering on more
complex feature sets discussed above, which are more
robust against evasion. However, even with the current
weak cluster features, BotMiner already demonstrated
high accuracy with a low false positive rate as shown in
our later experiments.

2.7 Cross-plane Correlation

Once we obtain the clustering results from A-plane (ac-
tivities patterns) and C-plane (communication patterns),
we perform cross-plane correlation. The idea is to cross-
check clusters in the two planes to find out intersections
that reinforce evidence of a host being part of a botnet. In
order to do this, we first compute a botnet score s(h) for
each host h on which we have witnessed at least one kind
of suspicious activity. We filter out the hosts that have
a score below a certain detection threshold θ, and then
group the remaining most suspicious hosts according to
a similarity metric that takes into account the A-plane
and C-plane clusters these hosts have in common.

We now explain how the botnet score is computed for
each host. Let H be the set of hosts reported in the output
of the A-plane clustering module, and h ∈ H . Also, let
A(h) = {Ai}i=1..mh

be the set of mh A-clusters that
contain h, and C(h) = {Ci}i=1..nh

be the set of nh C-
clusters that contain h. We compute the botnet score for
h as

s(h) =
�
i,j
j>i

t(Ai)�=t(Aj )

w(Ai)w(Aj)
|Ai ∩ Aj |

|Ai ∪ Aj |
+

�
i,k

w(Ai)
|Ai ∩ Ck|

|Ai ∪ Ck|
,

(1)

where Ai, Aj ∈ A(h) and Ck ∈ C(h), t(Ai) is the type of
activity cluster Ai refers to (e.g., scanning or spamming),
and w(Ai) � 1 is an activity weight assigned to Ai.
w(Ai) assigns higher values to “strong” activities (e.g.,
spam and exploit) and lower values to “weak” activities
(e.g., scanning and binary download).

h will receive a high score if it has performed multiple
types of suspicious activities, and if other hosts that
were clustered with h also show the same multiple types
of activities. For example, assume that h performed
scanning and then attempted to exploit a machine outside
the monitored network. Let A1 be the cluster of hosts
that were found to perform scanning and were grouped
with h in the same cluster. Also, let A2 be a cluster
related to exploit activities that includes h and other
hosts that performed similar activities. A larger overlap
between A1 and A2 would result in a higher score being
assigned to h. Similarly, if h belongs to A-clusters that
have a large overlap with C-clusters, then it means that
the hosts clustered together with h share similar activities
as well as similar communication patterns.

Given a predefined detection threshold θ, we consider
all the hosts h ∈ H with s(h) > θ as (likely) bots,
and filter out the hosts whose scores do not exceed θ.
Now, let B ⊆ H be the set of detected bots, A(B) =
{Ai}i=1..mB

be the set of A-clusters that each contains at
least one bot h ∈ B, and C(B) = {Ci}i=1..nB

be the set
of C-clusters that each contains at least one bot h ∈ B.
Also, let K(B) = A(B) ∪ C(B) = {K

(B)
i }i=1..(mB+nB)

be an ordered union/set of A- and C-clusters. We then
describe each bot h ∈ B as a binary vector b(h) ∈

{0, 1}|K
(B)|, whereby the i-th element bi = 1 if h ∈

K
(B)
i , and bi = 0 otherwise. Given this representation,

we can define the following similarity between bots hi

and hj as

sim(hi, hj) =

mB�
k=1

I(b
(i)
k

= b
(j)
k

) + I(

mB+nB�
k=mB+1

I(b
(i)
k

= b
(j)
k

) ≥ 1),

(2)

where we use b(i) = b(hi) and b(j) = b(hj), for the sake
of brevity. I(X) is the indication function, which equals
to one when the boolean argument X is true, and equals
to zero when X is false. The intuition behind this metric
is that if two hosts appear in the same activity clusters
and in at least one common C-cluster, they should be
clustered together.

This definition of similarity between hosts gives us the
opportunity to apply hierarchical clustering. This allows
us to build a dendrogram, i.e., a tree like graph (see
Figure 8) that encodes the relationships among the bots.
We use the Davies-Bouldin (DB) validation index [21]
to find the best dendrogram cut, which produces the
most compact and well separated clusters. The obtained
clusters group bots in (sub-) botnets. Figure 8 shows
a (hypothetical) example. Assuming that the best cut
suggested by the DB index is the one at height 90,
we would obtain two botnets, namely {h8, h3, h5}, and
{h4, h6, h9, h2, h1, h7}.
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Figure 8: Example of hierarchical clustering for botnet
detection.

In our current implementation, we simply set weight
w(Ai) = 1 for all i and θ = 0, which essentially
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means that we will consider all hosts that appear in two
different types of A-clusters and/or in both A- and C-
clusters as suspicious candidates for further hierarchical
clustering.

3 Experiments
To evaluate our BotMiner detection framework and pro-
totype system, we have tested its performance on several
real-world network traffic traces, including both (pre-
sumably) normal data from our campus network and
collected botnet data.

3.1 Experiment Setup and Data Collection

We set up traffic monitors to work on a span port mir-
roring a backbone router at the campus network of the
College of Computing at Georgia Tech. The traffic rate
is typically 200Mbps-300Mbps at daytime. We ran the
C-plane and A-plane monitors for a continuous 10-day
period in late 2007. A random sampling of the net-
work trace shows that the traffic is very diverse, contain-
ing many normal application protocols, such as HTTP,
SMTP, POP, FTP, SSH, NetBios, DNS, SNMP, IM
(e.g., ICQ, AIM), P2P (e.g., Gnutella, Edonkey,
bittorrent), and IRC. This serves as a good back-
ground to test the false positives and detection perfor-
mance on a normal network with rich application proto-
cols.

We have collected a total of eight different botnets
covering IRC, HTTP and P2P. Table 1 lists the basic
information about these traces.

We re-used two IRC and two HTTP botnet traces
introduced in [20], i.e., V-Spybot, V-Sdbot,
B-HTTP-I, and B-HTTP-II. In short, V-Spybot
and V-Sdbot are generated by executing modified bot
code (Spybot and Sdbot [6]) in a fully controlled virtual
network. They contain four Windows XP/2K IRC
bot clients, and last several minutes. B-HTTP-I and
B-HTTP-II are generated based on the description of
Web-based C&C communications in [24, 39]. Four bot
clients communicate with a controlled server and execute
the received command (e.g., spam). In B-HTTP-I,
the bot contacts the server periodically (about every
five minutes) and the whole trace lasts for about 3.6
hours. In B-HTTP-II, we have a more stealthy C&C
communication where the bot waits a random time
between zero to ten minutes each time before it visits
the server, and the whole trace lasts for 19 hours. These
four traces are renamed as Botnet-IRC-spybot,
Botnet-IRC-sdbot, Botnet-HTTP-1, and
Botnet-HTTP-2, respectively. In addition, we also
generated a new IRC botnet trace that lasts for a longer
time (a whole day) using modified Rbot [3] source code.
Again this is generated in a controlled virtual network
with four Windows clients and one IRC server. This

trace is labeled as Botnet-IRC-rbot.

We also obtained a real-world IRC-based botnet C&C
trace that was captured in the wild in 2004, labeled as
Botnet-IRC-N. The trace contains about 7-minute
IRC C&C communications, and has hundreds of bots
connected to the IRC C&C server. The botmaster set
the command “.scan.startall” in the TOPIC of
the channel. Thus, every bot would begin to propagate
through scanning once joining the channel. They report
their successful transfer of binary to some machines, and
also report the machines that have been exploited. We
believe this could be a variant of Phatbot [6]. Although
we obtained only the IRC C&C traffic, we hypothesize
that the scanning activities are easy to detect given the
fact that bots are performing scanning commands in
order to propagate. Thus, we assume we have an A-plane
cluster with the botnet members because we want to see
if we can still capture C-plane clusters and obtain cross-
plane correlation results.

Finally, we obtained a real-world trace containing two
P2P botnets, Nugache [28] and Storm [18,23]. The trace
lasts for a whole day, and there are 82 Nugache bots and
13 Storm bots in the trace. It was captured from a group
of honeypots running in the wild in late 2007. Each
instance is running in Wine (an open source implementa-
tion of the Windows API on top of Unix/Linux) instead
of a virtual or physical machine. Such a set-up is known
as winobot [12] and is used by researchers to track bot-
nets. By using a lightweight emulation environment
(Wine), winobots can run hundreds and thousands of
black-box instances of a given malware. This allows one
to participate in a P2P botnet en mass. Nugache is a TCP-
based P2P bot that performs encrypted communications
on port 8. Storm, originating in January of 2007, is
one of the very few known UDP based P2P bots. It
is based on the Kademlia [30] protocol and makes use
of the Overnet network [2] to locate related data (e.g.,
commands). Storm is well-known as a spam botnet with
a huge number of infected hosts [27]. In the implemen-
tation of winobot, several malicious capabilities such as
sending spam are disabled for legality reason, thus we
can not observe spam traffic from the trace. However,
we ran a full version of Storm on a VM-based honeypot
(instead of Wine environment) and easily observed that
it kept sending a huge amount of spam traffic, which
makes the A-plane monitoring quite easy. Similarly,
when running Nugache on a VM-based honeypot, we
observed scanning activity to port 8 because it attempted
to connect to its seeding peers but failed a lot of times
(because the peers may not be available). Thus, we
can detect and cluster A-plane activities for these P2P
botnets.
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Trace Size Duration Pkt TCP/UDP flows Botnet clients C&C server
Botnet-IRC-rbot 169MB 24h 1,175,083 180,988 4 1
Botnet-IRC-sdbot 66KB 9m 474 19 4 1
Botnet-IRC-spybot 15MB 32m 180,822 147,945 4 1
Botnet-IRC-N 6.4MB 7m 65,111 5635 259 1
Botnet-HTTP-1 6MB 3.6h 65,695 2,647 4 1
Botnet-HTTP-2 37MB 19h 395,990 9,716 4 1
Botnet-P2P-Storm 1.2G 24h 59,322,490 5,495,223 13 P2P
Botnet-P2P-Nugache 1.2G 24h 59,322,490 5,495,223 82 P2P

Table 1: Collected botnet traces, covering IRC, HTTP and P2P based botnets. Storm and Nugache share the same
file, so the statistics of the whole file are reported.

Trace Pkts Flows Filtered by F1 Filtered by F2 Filtered by F3 Flows after filtering C-flows (TCP/UDP)
Day-1 5,178,375,514 23,407,743 20,727,588 939,723 40,257 1,700,175 66,981 / 132,333
Day-2 7,131,674,165 29,632,407 27,861,853 533,666 25,758 1,211,130 34,691 / 96,261
Day-3 9,701,255,613 30,192,645 28,491,442 513,164 24,329 1,163,710 39,744 / 94,081
Day-4 14,713,667,172 35,590,583 33,434,985 600,901 33,958 1,520,739 73,021 / 167,146
Day-5 11,177,174,133 56,235,380 52,795,168 1,323,475 40,016 2,076,721 57,664 / 167,175
Day-6 9,950,803,423 75,037,684 71,397,138 1,464,571 51,931 2,124,044 59,383 / 176,210
Day-7 10,039,871,506 109,549,192 105,530,316 1,614,158 56,688 2,348,030 55,023 / 150,211
Day-8 11,174,937,812 96,364,123 92,413,010 1,578,215 60,768 2,312,130 56,246 / 179,838
Day-9 9,504,436,063 62,550,060 56,516,281 3,163,645 30,581 2,839,553 25,557 / 164,986
Day-10 11,071,701,564 83,433,368 77,601,188 2,964,948 27,837 2,839,395 25,436 / 154,294

Table 2: C-plane traffic statistics, basic results of filtering, and C-flows.

3.2 Evaluation Results

Table 2 lists the statistics for the 10 days of network
data we used to validate our detection system. For
each day there are around 5-10 billion packets (TCP
and UDP) and 30-100 million flows. Table 2 shows
the results of several steps of filtering. The first step of
filtering (filter rule F1) seems to be the most effective
filter in terms of data volume reduction. F1 filters out
those flows that are not initiated from internal hosts to
external hosts, and achieves about 90% data volume
reduction. The is because most of the flows are within
the campus network (i.e., they are initiated from internal
hosts towards other internal hosts). F2 further filters
out around 0.5-3 million of non-completely-established
flows. F3 further reduces the data volume by filtering
out another 30,000 flows. After applying all the three
steps of filtering, there are around 1 to 3 million flows
left per day. We converted these remaining flows into C-
flows as described in Section 2.5, and obtained around
40,000 TCP C-flows and 130,000 UDP C-flows per day.

We then performed two-step clustering on C-flows as
described in Section 2.5. Table 3 shows the clustering
results and false positives (number of clusters that are
not botnets). The results for the first 5 days are related to
both TCP and UDP traffic, whereas in the last 5 days we
focused on only TCP traffic.

It is easy to see from Table 3 that there are thousands
of C-clusters generated each day. In addition, there
are several thousand activity logs generated from A-
plane monitors. Since we use relatively weak monitor
modules, it is not surprising that we have this many ac-
tivity logs. Many logs report binary downloading events
or scanning activities. We cluster these activity logs

according to their activity features. As explained early,
we are interested in groups of machines that perform
activities in a similar/coordinated way. Therefore, we
filter out the A-clusters that contain only one host. This
simple filtering rule allows us to obtain a small number
of A-clusters and reduce the overall false positive rate of
our botnet detection system.

Afterwards, we apply cross-plane correlation. We
assume that the traffic we collected from our campus
network is normal. In order to verify this assumption
we used state-of-the-art botnet detection techniques like
BotHunter [19] and BotSniffer [20]. Therefore, any
cluster generated as a result of the cross-plane correlation
is considered as a false positive cluster. It is easy to see
from Table 3 that there are very few such false positive
clusters every day (from zero to four). Most of these
clusters contain only two clients (i.e., they induce two
false positives). In three out of ten days no false positive
was reported. In both Day-2 and Day-3, the cross-
correlation produced one false positive cluster containing
two hosts. Two false positive clusters were reported in
each day from Day-5 to Day-8. In Day-4, the cross-plane
correlation produced four false positive clusters.

For each day of traffic, the last column of Table 3
shows the false positive rate (FP rate), which is calcu-
lated as the fraction of IP addresses reported in the false
positive clusters over the total number of distinct normal
clients appearing in that day. After further analysis we
found that many of these false positives are caused by
clients performing binary downloading from websites
not present in our whitelist. In practice, the number
of false positives may be reduced by implementing a
better binary downloading monitor and clustering mod-
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Trace Step-1 C-clusters Step-2 C-clusters A-plane logs A-clusters False Positive Clusters FP Rate
Day-1 (TCP/UDP) 1,374 4,958 1,671 1 0 0 (0/878)
Day-2 (TCP/UDP) 904 2,897 5,434 1 1 0.003 (2/638)
Day-3 (TCP/UDP) 1,128 2,480 4,324 1 1 0.003 (2/692)
Day-4 (TCP/UDP) 1,528 4,089 5,483 4 4 0.01 (9/871)
Day-5 (TCP/UDP) 1,051 3,377 6,461 5 2 0.0048 (4/838)
Day-6 (TCP) 1,163 3,469 6,960 3 2 0.008 (7/877)
Day-7 (TCP) 954 3,257 6,452 5 2 0.006 (5/835)
Day-8 (TCP) 1,170 3,226 8,270 4 2 0.0091 (8/877)
Day-9 (TCP) 742 1,763 7,687 2 0 0 (0/714)
Day-10 (TCP) 712 1,673 7,524 0 0 0 (0/689)

Table 3: C-plane and A-plane clustering results.

Botnet Number of Bots Detected? Clustered Bots Detection Rate False Positive Clusters/Hosts FP Rate
IRC-rbot 4 YES 4 100% 1/2 0.003
IRC-sdbot 4 YES 4 100% 1/2 0.003
IRC-spybot 4 YES 3 75% 1/2 0.003
IRC-N 259 YES 258 99.6% 0 0
HTTP-1 4 YES 4 100% 1/2 0.003
HTTP-2 4 YES 4 100% 1/2 0.003
P2P-Storm 13 YES 13 100% 0 0
P2P-Nugache 82 YES 82 100% 0 0

Table 4: Botnet detection results using BotMiner.

ule, e.g., by capturing the entire binary and performing
content inspection (using either anomaly-based detection
systems [38] or signature-based AV tools).

In order to validate the detection accuracy of Bot-
Miner, we overlaid botnet traffic to normal traffic. We
consider one botnet trace at a time and overlay it to
the entire normal traffic trace of Day-2. We simulate a
near-realistic scenario by constructing the test dataset as
follows. Let n be the number of distinct bots in the botnet
trace we want to overlay to normal traffic. We randomly
select n distinct IP addresses from the normal traffic trace
and map them to the n IP addresses of the bots. That is,
we replace an IPi of a normal machine with the IPi of
a bot. In this way, we obtain a dataset of mixed normal
and botnet traffic where a set of n machines show both
normal and botnet-related behavior. Table 4 reports the
detection results for each botnet.

Table 4 shows that BotMiner is able to detect all eight
botnets. We verified whether the members in the reported
clusters are actually bots or not. For 6 out of 8 botnets,
we obtained 100% detection rate, i.e., we successfully
identified all the bots within the 6 botnets. For example,
in the case of P2P botnets (Botnet-P2P-Nugache
and Botnet-P2P-Storm), BotMiner correctly
generated a cluster containing all the botnet members.
In the case of Botnet-IRC-spybot, BotMiner
correctly detected a cluster of bots. However, one of
the bots belonging to the botnet was not reported in
the cluster, which means that the detector generated
a false negative. Botnet-IRC-N contains 259 bot
clients. BotMiner was able to identify 258 of the bots in
one cluster, whereas one of the bots was not detected.
Therefore, in this case BotMiner had a detection rate of
99.6%.

There were some cases in which BotMiner also gener-
ated a false positive cluster containing two normal hosts.
We verified that these two normal hosts in particular were
also responsible for the false positives generated during
the analysis of the Day-2 normal traffic (see Table 3).

As we can see, BotMiner performs quite well in our
experiments, showing a very high detection rate with rel-
atively few false positives in real-world network traces.

4 Limitations and Potential Solutions
Like any intrusion/anomaly detection system, BotMiner
is not perfect or complete. It is likely that once ad-
versaries know our detection framework and implemen-
tation, they might find some ways to evade detection,
e.g., by evading the C-plane and A-plane monitoring
and clustering, or the cross-plane correlation analysis.
We now address these limitations and discuss possible
solutions.

4.1 Evading C-plane Monitoring and Clustering

Botnets may try to utilize a legitimate website (e.g.,
Google) for their C&C purpose in attempt to evade
detection. Evasion would be successful in this case if
we whitelisted such legitimate websites to reduce the
volume of monitored traffic and improve the efficiency of
our detection system. However, if a legitimate website,
say Google, is used as a means to locate a secondary
URL for actual command hosting or binary download-
ing, botnets may not be able to hide this secondary
URL and the corresponding communications. Therefore,
clustering of network traffic towards the server pointed
by this secondary URL will likely allow us to detect the
bots. Also, whitelisting is just an optional operation. One
may easily choose not to use whitelisting to avoid such
kind of evasion attempts (of course, in this case one may
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face the trade-off between accuracy and efficiency).
Botnet members may attempt to intentionally manip-

ulate their communication patterns to evade our C-plane
clustering. The easiest thing is to switch to multiple C&C
servers. However, this does not help much to evade our
detection because such peer communications could still
be clustered together just like how we cluster P2P com-
munications. A more advanced way is to randomize each
individual communication pattern, for example by ran-
domizing the number of packets per flow (e.g., by inject-
ing random packets in a flow), and the number of bytes
per packet (e.g., by padding random bytes in a packet).
However, such randomization may introduce similarities
among botnet members if we measure the distribution
and entropy of communication features. Also, this ran-
domization may raise suspicion because normal user
communications may not have such randomized patterns.
Advanced evasion may be attempted by bots that try
to mimic the communication patterns of normal hosts,
in a way similar to polymorphic blending attacks [15].
Furthermore, bots could use covert channes [1] to hide
their actual C&C communications. We acknowledge
that, generally speaking, communication randomization,
mimicry attacks and covert channel represent limitations
for all traffic-based detection approaches, including Bot-
Miner’s C-plane clustering technique. By incorporating
more detection features such as content inspection and
host level analysis, the detection system may make eva-
sion more difficult.

Finally, we note that if botnets are used to perform
multiple tasks (in A-plane), we may still detect them
even when they can evade C-plane monitoring and anal-
ysis. By using the scoring algorithm described in Section
2.7, we can perform cross clustering analysis among
multiple activity clusters (in A-plane) to accumulate the
suspicious score needed to claim the existence of bot-
nets. Thus, we may even not require C-plane analysis if
there is already a strong cross-cluster correlation among
different types of malicious activities in A-plane. For
example, if the same set of hosts involve several types
of A-plane clusters (e.g., they send spams, scan others,
and/or download the same binaries), they can be reported
as botnets because those behaviors, by themselves, are
highly suspicious and most likely indicating botnets be-
haviors [19, 20].

4.2 Evading A-plane Monitoring and Clustering

Malicious activities of botnets are unlikely or relatively
hard to change as long as the botmaster wants the botnets
to perform “useful” tasks. However, the botmaster can
attempt to evade BotMiner’s A-plane monitoring and
clustering in several ways.

Botnets may perform very stealthy malicious activities
in order to evade the detection of A-plane monitors. For

example, they can scan very slowly (e.g., send one scan
per hour), send spam very slowly (e.g., send one spam
per day). This will evade our monitor sensors. However,
this also puts a limit on the utility of bots.

In addition, as discussed above, if the botmaster com-
mands each bot randomly and individually to perform
different task, the bots are not different from previous
generations of isolated, individual malware instances.
This is unlikely the way a botnet is used in practice. A
more advanced evasion is to differentiate the bots and
avoid commanding bots in the same monitored network
the same way. This will cause additional effort and
inconvenience for the botmaster. To defeat such an eva-
sion, we can deploy distributed monitors on the Internet
to cover a larger monitored space.

Note, if the botmaster takes the extreme action of
randomizing/individualizing both the C&C communica-
tions and attack activities of each bots, then these bots
are probably not part of a botnet according to our spe-
cific definition because the bots are not performing sim-
ilar/coordinated commanded activities. Orthogonal to
the horizontal correlation approaches such as BotMiner
to detect a botnet, we can always use complementary
systems like BotHunter [19] that examine the behavior
history of distinct host for a dialog or vertical correlation
based approach to detect individual bots.

4.3 Evading Cross-plane Analysis

A botmaster can command the bots to perform an ex-
tremely delayed task (e.g., delayed for days after re-
ceiving commands). Thus, the malicious activities and
C&C communications are in different days. If only
using one day’s data, we may not be able to yield cross-
plane clusters. As a solution, we may use multiple-
day data and cross check back several days. Although
this has the hope of capturing these botnets, it may also
suffer from generating more false positives. Clearly,
there is a trade-off. The botmaster also faces the trade-
off because a very slow C&C essentially impedes the
efficiency in controlling/coordinating the bot army. Also,
a bot infected machine may be disconnected from the
Internet or be powered off by the users during the delay
and become unavailable to the botmaster.

In summary, while it is possible that a botmaster can
find a way to exploit the limitations of BotMiner, the
convenience or the efficiency of botnet C&C and the
utility of the botnet also suffer. Thus, we believe that
our protocol- and structure-independent detection frame-
work represents a significant advance in botnet detec-
tion.

5 Related Work
To collect and analyze bots, researchers widely utilize
honeypot techniques [4, 16, 32]. Freiling et al. [16] used
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honeypots to study the problem of botnets. Nepenthes [4]
is a special honeypot tool for automatic malware sam-
ple collection. Rajab et al. [32] provided an in-depth
measurement study of the current botnet activities by
conducting a multi-faceted approach to collect bots and
track botnets. Cooke et al. [10] conducted several basic
studies of botnet dynamics. In [13], Dagon et al. pro-
posed to use DNS sinkholing technique for botnet study
and pointed out the global diurnal behavior of botnets.
Barford and Yegneswaran [6] provided a detailed study
on the code base of several common bot families. Collins
et al. [9] presented their observation of a relationship
between botnets and scanning/spamming activities.

Several recent papers proposed different approaches to
detect botnets. Ramachandran et al. [34] proposed using
DNSBL counter-intelligence to find botnet members that
generate spams. This approach is useful for just certain
types of spam botnets. In [35], Reiter and Yen proposed
a system TAMD to detect malware (including botnets)
by aggregating traffic that shares the same external des-
tination, similar payload, and that involves internal hosts
with similar OS platforms. TAMD’s aggregation method
based on destination networks focuses on networks that
experience an increase in traffic as compared to a histor-
ical baseline. Different from BotMiner that focuses on
botnet detection, TAMD aims to detect a broader range
of malware. Since TAMD’s aggregation features are
different from BotMiner’s (in which we cluster similar
communication patterns and similar malicious activity
patterns), TAMD and BotMiner can complement each
other in botnet and malware detection. Livadas et al.
[29,40] proposed a machine learning based approach for
botnet detection using some general network-level traffic
features of chat-like protocols such as IRC. Karasaridis
et al. [26] studied network flow level detection of IRC
botnet controllers for backbone networks. The above two
are similar to our work in C-plane clustering but different
in many ways. First, they are used to detect IRC-based
botnet (by matching a known IRC traffic profile), while
we do not have the assumption of known C&C protocol
profiles. Second, we use a different feature set on a
new communication flow (C-flow) data format instead
of traditional network flow. Third, we consider both
C-plane and A-plane information instead of just flow
records.

Rishi [17] is a signature-based IRC botnet detection
system by matching known IRC bot nickname patterns.
Binkley and Singh [7] proposed combining IRC statistics
and TCP work weight for the detection of IRC-based
botnets. In [19], we described BotHunter, which is a
passive bot detection system that uses dialog correla-
tion to associate IDS events to a user-defined bot infec-
tion dialog model. Different from BotHunter’s dialog
correlation or vertical correlation that mainly examines

the behavior history associated with each distinct host,
BotMiner utilizes a horizontal correlation approach that
examines correlation across multiple hosts. BotSniffer
[20] is an anomaly-based botnet C&C detection system
that also utilizes horizontal correlation. However, it
is used mainly for detecting centralized C&C activities
(e.g., IRC and HTTP).

The aforementioned systems are mostly limited to
specific botnet protocols and structures, and many of
them work only on IRC-based botnets. BotMiner is a
novel general detection system that does not have such
limitations and can greatly complement existing detec-
tion approaches.

6 Conclusion & Future Work
Botnet detection is a challenging problem. In this pa-
per, we proposed a novel network anomaly-based botnet
detection system that is independent of the protocol and
structure used by botnets. Our system exploits the essen-
tial definition and properties of botnets, i.e., bots within
the same botnet will exhibit similar C&C communication
patterns and similar malicious activities patterns. In
our experimental evaluation on many real-world network
traces, BotMiner shows excellent detection accuracy on
various types of botnets (including IRC-based, HTTP-
based, and P2P-based botnets) with a very low false
positive rate on normal traffic.

It is likely that future botnets (especially P2P botnets)
may utilize evasion techniques to avoid detection, as
discussed in Section 4. In our future work, we will
study new techniques to monitor/cluster communication
and activity patterns of botnets, and these techniques
are intended to be more robust to evasion attempts. In
addition, we plan to further improve the efficiency of the
C-flow converting and clustering algorithms, combine
different correlation techniques (e.g., vertical correlation
and horizontal correlation), and develop new real-time
detection systems based on a layered design using sam-
pling techniques to work in very high speed and very
large network environments.
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