
USENIX Association 17th USENIX Security Symposium 395

Real-World Buffer Overflow Protection for Userspace & Kernelspace

Michael Dalton, Hari Kannan, Christos Kozyrakis
Computer Systems Laboratory

Stanford University
{mwdalton, hkannan, kozyraki}@stanford.edu

Abstract
Despite having been around for more than 25 years,

buffer overflow attacks are still a major security threat for
deployed software. Existing techniques for buffer over-
flow detection provide partial protection at best as they
detect limited cases, suffer from many false positives, re-
quire source code access, or introduce large performance
overheads. Moreover, none of these techniques are easily
applicable to the operating system kernel.

This paper presents a practical security environment
for buffer overflow detection in userspace and ker-
nelspace code. Our techniques build upon dynamic in-
formation flow tracking (DIFT) and prevent the attacker
from overwriting pointers in the application or operat-
ing system. Unlike previous work, our technique does
not have false positives on unmodified binaries, protects
both data and control pointers, and allows for practi-
cal hardware support. Moreover, it is applicable to the
kernel and provides robust detection of buffer overflows
and user/kernel pointer dereferences. Using a full sys-
tem prototype of a Linux workstation (hardware and soft-
ware), we demonstrate our security approach in practice
and discuss the major challenges for robust buffer over-
flow protection in real-world software.

1 Introduction

Buffer overflows remain one of the most critical threats
to systems security, although they have been prevalent
for over 25 years. Successful exploitation of a buffer
overflow attack often results in arbitrary code execu-
tion, and complete control of the vulnerable application.
Many of the most damaging worms and viruses [8, 27]
use buffer overflow attacks. Kernel buffer overflows
are especially potent as they can override any protection
mechanisms, such as Solaris jails or SELinux access con-
trols. Remotely exploitable buffer overflows have been
found in modern operating systems including Linux [23],
Windows XP and Vista [48], and OpenBSD [33].

Despite decades of research, the available buffer over-
flow protection mechanisms are partial at best. These
mechanisms provide protection only in limited situa-
tions [9], require source code access [51], cause false
positives in real-world programs [28, 34], can be de-
feated by brute force [44], or result in high runtime over-
heads [29]. Additionally, there is no practical mechanism
to protect the OS kernel from buffer overflows or unsafe
user pointer dereferences.

Recent research has established dynamic information
flow tracking (DIFT) as a promising platform for detect-
ing a wide range of security attacks on unmodified bina-
ries. The idea behind DIFT is to tag (taint) untrusted data
and track its propagation through the system. DIFT as-
sociates a tag with every memory location in the system.
Any new data derived from untrusted data is also tagged.
If tainted data is used in a potentially unsafe manner,
such as dereferencing a tagged pointer, a security excep-
tion is raised. The generality of the DIFT model has led
to the development of several software [31, 32, 38, 51]
and hardware [5, 10, 13] implementations.

Current DIFT systems use a security policy based on
bounds-check recognition (BR) in order to detect buffer
overflows. Under this scheme, tainted information must
receive a bounds check before it can be safely deref-
erenced as a pointer. While this technique has been
used to defeat several exploits [5, 10, 10, 13], it suf-
fers from many false positives and false negatives. In
practice, bounds checks are ambiguously defined at best,
and may be completely omitted in perfectly safe situ-
ations [12, 13]. Thus, the applicability of a BR-based
scheme is limited, rendering it hard to deploy.

Recent work has proposed a new approach for pre-
venting buffer overflows using DIFT [19]. This novel
technique prevents pointer injection (PI) by the attacker.
Most buffer overflow attacks are exploited by corrupt-
ing and overwriting legitimate application pointers. This
technique prevents such pointer corruption and does not
rely on recognizing bounds checks, avoiding the false

396 17th USENIX Security Symposium USENIX Association

positives associated with BR-based analyses. However,
this work has never been applied to a large application,
or the operating system kernel. Moreover, this technique
requires hardware that is extremely complex and imprac-
tical to build.

This paper presents a practical approach for prevent-
ing buffer overflows in userspace and kernelspace using
a pointer injection-based DIFT analysis. Our approach
identifies and tracks all legitimate pointers in the appli-
cation. Untrusted input must be combined with a legiti-
mate pointer before being dereferenced. Failure to do so
will result in a security exception.

The specific contributions of this work are:

• We present the first DIFT policy for buffer overflow
prevention that runs on stripped, unmodified bina-
ries, protects both code and data pointers, and runs
on real-world applications such as GCC and Apache
without false positives.

• We demonstrate that the same policy is applicable to
the Linux kernel. It is the first security policy to dy-
namically protect the kernel code from buffer over-
flows and user-kernel pointer dereferences without
introducing false positives.

• We use a full-system DIFT prototype based on the
SPARC V8 processor to demonstrate the integra-
tion of hardware and software techniques for robust
protection against buffer overflows. Our results are
evaluated on a Gentoo Linux platform. We show
that hardware support requirements are reasonable
and that the performance overhead is minimal.

• We discuss practical shortcomings of our approach,
and discuss how flaws can be mitigated using addi-
tional security policies based on DIFT.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 summarizes
the Raksha architecture and our full-system prototype.
Section 4 presents our policy for buffer overflow protec-
tion for userspace applications, while Section 5 extends
the protection to the operating system kernel. Section 6
discusses weaknesses in our approach, and how they can
be mitigated with other buffer overflow prevention poli-
cies. Finally, Section 7 concludes the paper.

2 Related Work

Buffer overflow prevention is an active area of research
with decades of history. This section summarizes the
state of the art in buffer overflow prevention and the
shortcomings of currently available approaches.

2.1 Existing Buffer Overflow Solutions

Many solutions have been proposed to prevent pointer or
code corruption by untrusted data. Unfortunately, the so-
lutions deployed in existing systems have drawbacks that
prevent them from providing comprehensive protection
against buffer overflows.

Canary-based buffer overflow protection uses a ran-
dom, word-sized canary value to detect overwrites of
protected data. Canaries are placed before the begin-
ning of protected data and the value of the canary is ver-
ified each time protected data is used. A standard buffer
overflow attack will change the canary value before over-
writing protected data, and thus canary checks provide
buffer overflow detection. Software implementations of
canaries typically require source code access and have
been used to protect stack linking information [16] and
heap chunk metadata [39]. Related hardware canary im-
plementations [21, 46] have been proposed to protect the
stack return address and work with unmodified binaries.

However, buffer overflows may be exploited with-
out overwriting canary values in many situations. For
example, in a system with stack canaries, buffer over-
flows may overwrite local variables, even function point-
ers, because the stack canary only protects stack link-
ing information. Similarly, heap overflows can overwrite
neighboring variables in the same heap chunk without
overwriting canaries. Additionally, this technique may
change data structure layout by inserting canary words,
breaking compatibility with legacy applications. Canary-
based approaches also do not protect other memory re-
gions such as the global data segment, BSS or custom
heap allocation arenas.

Non-executable data protection prevents stack or
heap data from being executed as code. Modern hard-
ware platforms, including the x86, support this technique
by enforcing executable permissions on a per-page basis.
However, this approach breaks backwards compatibility
with legacy applications that generate code at runtime
on the heap or stack. More importantly, this approach
only prevents buffer overflow exploits that rely on code
injection. Rather than injecting new code, attackers can
take control of an application by using existing code in
the application or libraries. This form of attack, known
as a return-into-libc exploit, can perform arbitrary com-
putations and in practice is just as powerful as a code
injection attack [43].

Address space layout randomization (ASLR) is a
buffer overflow defense that randomizes the memory lo-
cations of system components [34]. In a system with
ASLR, the base address of each memory region (stack,
executable, libraries, heap) is randomized at startup. A
standard buffer overflow attack will not work reliably,
as the security-critical information is not easy to locate

USENIX Association 17th USENIX Security Symposium 397

in memory. ASLR has been adopted on both Linux
and Windows platforms. However, ASLR is not back-
wards compatible with legacy code, as it requires pro-
grams to be recompiled into position-independent exe-
cutables [49] and will break code that makes assump-
tions about memory layout. ASLR must be disabled for
the entire process if it is not supported by the executable
or any shared libraries. Real-world exploits such as the
Macromedia Flash buffer overflow attack [14] on Win-
dows Vista have trivially bypassed ASLR because the
vulnerable application or its third-party libraries did not
have ASLR support.

Moreover, attackers can easily circumvent ASLR on
32-bit systems using brute-force techniques [44]. On
little-endian architectures such as the x86, partial over-
write attacks on the least significant bytes of a pointer
have been used to bypass ASLR protection [3, 17]. Ad-
ditionally, ASLR implementations can be compromised
if pointer values are leaked to the attacker by techniques
such as format string attacks [3].

Overall, while existing defense mechanisms have
raised the bar, buffer overflow attacks remain a problem.
Real-world exploits such as [14] and [17] demonstrated
that a seasoned attacker can bypass even the combination
of ASLR, stack canaries, and non-executable pages.

2.2 Dynamic Information Flow Tracking

Dynamic Information Flow Tracking (DIFT) is a practi-
cal platform for preventing a wide range of security at-
tacks from memory corruptions to SQL injections. DIFT
associates a tag with every memory word or byte. The
tag is used to taint data from untrusted sources. Most op-
erations propagate tags from source operands to destina-
tion operands. If tagged data is used in unsafe ways, such
as dereferencing a tainted pointer or executing a tainted
SQL command, a security exception is raised.

DIFT has several advantages as a security mechanism.
DIFT analyses can be applied to unmodified binaries.
Using hardware support, DIFT has negligible overhead
and works correctly with all types of legacy applica-
tions, even those with multithreading and self-modifying
code [7, 13]. DIFT can potentially provide a solution
to the buffer overflow problem that protects all pointers
(code and data), has no false positives, requires no source
code access, and works with unmodified legacy binaries
and even the operating system. Previous hardware ap-
proaches protect only the stack return address [21, 46] or
prevent code injection with non-executable pages.

There are two major policies for buffer overflow pro-
tection using DIFT: bounds-check recognition (BR) and
pointer injection (PI). The approaches differ in tag prop-
agation rules, the conditions that indicate an attack, and

whether tagged input can ever be validated by applica-
tion code.

Most DIFT systems use a BR policy to prevent buffer
overflow attacks [5, 10, 13, 38]. This technique forbids
dereferences of untrusted information without a preced-
ing bounds check. A buffer overflow is detected when a
tagged code or data pointer is used. Certain instructions,
such as logical AND and comparison against constants,
are assumed to be bounds check operations that repre-
sent validation of untrusted input by the program code.
Hence, these instructions untaint any tainted operands.

Unfortunately, the BR policy leads to significant false
negatives [13, 19]. Not all comparisons are bounds
checks. For example, the glibc strtok() function com-
pares each input character against a class of allowed
characters, and stores matches in an output buffer. DIFT
interprets these comparisons as bounds checks, and thus
the output buffer is always untainted, even if the input
to strtok() was tainted. This can lead to false negatives
such as failure to detect a malicious return address over-
write in the atphttpd stack overflow [1].

However, the most critical flaw of BR-based policies
is an unacceptable number of false positives with com-
monly used software. Any scheme for input validation
on binaries has an inherent false positive risk. While the
tainted value that is bounds checked is untainted, none
of the aliases for that value in memory or other registers
will be validated. Moreover, even trivial programs can
cause false positives because not all untrusted pointer
dereferences need to be bounds checked [13]. Many
common glibc functions, such as tolower(), toupper(),
and various character classification functions (isalpha(),
isalnum(), etc.) index an untrusted byte into a 256 entry
table. This is completely safe, and requires no bounds
check. However, BR policies fail to recognize this in-
put validation case because the bounds of the table are
not known in a stripped binary. Hence, false positives
occur during common system operations such as com-
piling files with gcc and compressing data with gzip.
In practice, false positives occur only for data pointer
protection. No false positive has been reported on x86
Linux systems so long as only control pointers are pro-
tected [10]. Unfortunately, control pointer protection
alone has been shown to be insufficient [6].

Recent work [19] has proposed a pointer injection (PI)
policy for buffer overflow protection using DIFT. Rather
than recognize bounds checks, PI enforces a different in-
variant: untrusted information should never directly sup-
ply a pointer value. Instead, tainted information must
always be combined with a legitimate pointer from the
application before it can be dereferenced. Applications
frequently add an untrusted index to a legitimate base
address pointer from the application’s address space. On
the other hand, existing exploitation techniques rely on

398 17th USENIX Security Symposium USENIX Association

injecting pointer values directly, such as by overwriting
the return address, frame pointers, global offset table en-
tries, or malloc chunk header pointers.

To prevent buffer overflows, a PI policy uses two tag
bits per memory location: one to identify tainted data (T
bit) and the other to identify pointers (P bit). As in other
DIFT analyses, the taint bit is set for all untrusted in-
formation, and propagated during data movement, arith-
metic, and logical instructions. However, PI provides
no method for untainting data, nor does it rely on any
bounds check recognition. The P bit is set only for legiti-
mate pointers in the application and propagated only dur-
ing valid pointer operations such as adding a pointer to a
non-pointer or aligning a pointer to a power-of-2 bound-
ary. Security attacks are detected if a tainted pointer is
dereferenced and the P bit is not set. The primary ad-
vantage of PI is that it does not rely on bounds check
recognition, thus avoiding the false positive and negative
issues that plagued the BR-based policies.

The disadvantage of the PI policy is that it requires
legitimate application pointers to be identified. For dy-
namically allocated memory, this can be accomplished
by setting the P bit of any pointer returned by a memory-
allocating system call such as mmap or brk. However,
no such solution has been presented for pointers to stat-
ically allocated memory regions. The original proposal
requires that each add or sub instruction determines if
one of its untainted operands points into any valid virtual
address range [19] . If so, the destination operand has its
P bit set, even if the source operand does not. To support
such functionality, the hardware would need to traverse
the entire page table or some other variable length data-
structure that summarizes the allocated portions of the
virtual address space for every add or subtract instruction
in the program. The complexity and runtime overhead of
such hardware is far beyond what is acceptable in mod-
ern systems. Furthermore, while promising, the PI policy
has not been evaluated on a wide range of large applica-
tions, as the original proposal was limited to simulation
studies with performance benchmarks.

DIFT has never been used to provide buffer overflow
protection for the operating system code itself. The OS
code is as vulnerable to buffer overflows as user code,
and several such attacks have been documented [23, 33,
48]. Moreover, the complexity of the OS code represents
a good benchmark for the robustness of a security policy,
especially with respect to false positives.

3 DIFT System Overview

Our experiments are based on Raksha, a full-system pro-
totype with hardware support for DIFT [13]. Hardware-
assisted DIFT provides a number of advantages over
software approaches. Software DIFT relies on dynamic

Figure 1: The system stack for the Raksha DIFT platform.

binary translation and incurs significant overheads rang-
ing from 3× to 37× [31, 38]. Software DIFT does not
work with self-modifying code and leads to races for
multithreaded code that result in false positives and neg-
atives [7]. Hardware support addresses these shortcom-
ings, and allows us to apply DIFT analysis to the operat-
ing system code as well.

3.1 The Raksha Architecture
Raksha is a DIFT platform that includes hardware and
software components. It was the first DIFT system to
prevent both high-level attacks such as SQL injection
and cross-site scripting, and lower-level attacks such as
format strings and buffer overflows on unmodified bina-
ries [13]. Prior to this work, Raksha only supported a
BR-based policy for buffer overflow protection, and en-
countered the associated false positives and negatives.

Raksha extends each register and memory word by
four tag bits in hardware. Each bit supports an inde-
pendent security policy specified by software using a set
of policy configuration registers that define the rules for
propagating and checking the tag bits for untrusted data.
Tags and configuration registers are completely transpar-
ent to applications, which are unmodified binaries.

Tag operations: Hardware is extended to perform tag
propagation and checks in addition to the functionality
defined by each instruction. All instructions in the in-
struction set are decomposed into one or more primitive
operations such as arithmetic, logical, etc. Check and
propagate rules are specified by software at the gran-
ularity of primitive operations. This allows the secu-
rity policy configuration to be independent of instruction
set complexity (CISC vs RISC), as all instructions are
viewed as a sequence of one or more primitive opera-
tions. For example, the subtract-and-compare instruction
in the SPARC architecture is decomposed into an arith-
metic operation and a comparison operation. Hardware
first performs tag propagation and checks for the arith-

USENIX Association 17th USENIX Security Symposium 399

metic operation, followed by propagation and checks for
the comparison operation. In addition, Raksha allows
software to specify custom rules for a small number of
individual instructions. This enables handling corner
cases within a primitive operation class. For example,
”xor r1,r1,r1” is a commonly used idiom to reset regis-
ters, especially on x86 machines. Software can indicate
that such an instruction untaints its output operand.

The original Raksha hardware supported AND and
OR propagation modes when the tag information of two
input operands is combined to generate the tag for the
output operand. For this work, we found it necessary to
support a logical XOR mode for certain operations that
clear the output tag if both tags are set.

The Raksha hardware implements tags at word granu-
larity. To handle byte or halfword updates, the propaga-
tion rules can specify how to merge the new tag from the
partial update with the existing tag for the whole word.
Software can also be used to maintain accurate tags at
byte granularity, building upon the low overhead excep-
tion mechanism listed below. Nevertheless, this capabil-
ity was not necessary for this work, as we focus on pro-
tecting pointers which are required to be aligned at word
boundaries by modern executable file formats [41].

Security Exceptions: Failing tag checks result in se-
curity exceptions. These exceptions are implemented as
user-level exceptions and incur overhead similar to that
of a function call. As security exceptions do not require
a change in privilege level, the security policies can also
be applied to the operating system. A special trusted
mode provides the security exception handler with di-
rect access to tag bits and configuration registers. All
code outside the handler (application or OS code) runs
in untrusted mode, and may not access tags or config-
uration registers. We prevent untrusted code from ac-
cessing, modifying, or executing the handler code or data
by using one of the four available tag bits to implement
a sandboxing policy that prevents loads and stores from
untrusted code to reference monitor memory [13]. This
ensures handler integrity even during a memory corrup-
tion attack on the application.

At the software level, Raksha introduces a security
monitor module. The monitor is responsible for setting
the hardware configuration registers for check and prop-
agate rules based on the active security policies in the
system. It also includes the handler that is invoked on
security exceptions. While in some cases a security ex-
ception leads to immediate program termination, in other
cases the monitor invokes additional software modules
for further processing of the security issues. For exam-
ple, SQL injection protection raises a security exception
on every database query operation so that the security
monitor may inspect the current SQL query and verify
that it does not contain a tainted SQL command.

3.2 System Prototype
Figure 1 provides an overview of the Raksha system
along with the changes made to hardware and software
components. The hardware is based on the Leon SPARC
V8 processor, a 32-bit open-source synthesizable core
developed by Gaisler Research [22]. We modified Leon
to include the security features of Raksha and mapped
it to a Virtex-II Pro FPGA. Leon uses a single-issue, 7-
stage pipeline with first-level caches. Its RTL code was
modified to add 4-bit tags to all user-visible registers, and
cache and memory locations. In addition, Raksha’s con-
figuration and exception registers, as well as instructions
that directly access tags and manipulate the special reg-
isters, were added to the Leon. Overall, we added 9 in-
structions and 16 registers to the SPARC V8 ISA.

The resulting system is a full-featured SPARC Linux
workstation running Gentoo Linux with a 2.6 kernel.
DIFT policies are applied to all userspace applications,
which are unmodified binaries with no source code ac-
cess or debugging information. The security framework
is extensible through software, can track information
flow across address spaces, and can thwart attacks em-
ploying multiple processes. Since tag propagation and
checks occur in hardware and are parallel with instruc-
tion execution, Raksha has minimal impact on the ob-
served performance [13].

Although the following sections will discuss primarily
the hardware and software issues we observed with the
SPARC-based prototype, we also comment on the addi-
tional issues, differences, and solutions for other archi-
tectures such as the x86.

4 BOF Protection for Userspace

To provide comprehensive protection against buffer over-
flows for userspace applications, we use DIFT with
a pointer injection (PI) policy. In contrast to previ-
ous work [19], our PI policy has no false positives on
large Unix applications, provides reliable identification
of pointers to statically allocated memory, and requires
simple hardware support well within the capabilities of
proposed DIFT architectures such as Raksha.

4.1 Rules for DIFT Propagation & Checks
Tables 1 and 2 present the DIFT rules for tag propaga-
tion and checks for buffer overflow prevention. The rules
are intended to be as conservative as possible while still
avoiding false positives. Since our policy is based on
pointer injection, we use two tag bits per word of mem-
ory and hardware register. The taint (T) bit is set for
untrusted data, and propagates on all arithmetic, logical,
and data movement instructions. Any instruction with

400 17th USENIX Security Symposium USENIX Association

Operation Example Meaning Taint Propagation Pointer Propagation
Load ld r1+imm, r2 r2 = M[r1+imm] T[r2] = T[M[r1+imm]] P[r2] = P[M[r1+imm]]
Store st r2, r1+imm M[r1+imm] = r2 T[M[r1+imm]] = T[r2] P[M[r1+imm]] = P[r2]
Add/Subtract/Or add r1, r2, r3 r3 = r1 + r2 T[r3] = T[r1] ∨ T[r2] P[r3] = P[r1] ∨ P[r2]
And and r1, r2, r3 r3 = r1 ∧ r2 T[r3] = T[r1] ∨ T[r2] P[r3] = P[r1] ⊕ P[r2]
All other ALU xor r1,r2,r3 r3 = r1 ⊕ r2 T[r3] = T[r2] ∨ T[r1] P[r3] = 0
Sethi sethi imm, r1 r1 = imm T[r1] = 0 P[r1] = P[insn]
Jump jmpl r1+imm, r2 r2 = pc; pc = r1 + imm T[r2] = 0 P[r2] = 1

Table 1: The DIFT propagation rules for the taint and pointer bit. T[x] and P[x] refer to the taint (T) or pointer (P) tag bits respectively for memory
location, register, or instruction x.

a tainted source operand propagates taint to the destina-
tion operand (register or memory). The pointer (P) bit is
initialized for legitimate application pointers and prop-
agates during valid pointer operations such as pointer
arithmetic. A security exception is thrown if a tainted in-
struction is fetched or if the address used in a load, store,
or jump instruction is tainted and not a valid pointer.
In other words, we allow a program to combine a valid
pointer with an untrusted index, but not to use an un-
trusted pointer directly.

Our propagation rules for the P bit (Table 1) are de-
rived from pointer operations used in real code. Any
operation that could reasonably result in a valid pointer
should propagate the P bit. For example, we propagate
the P bit for data movement instructions such as load
and store, since copying a pointer should copy the P
bit as well. The and instruction is often used to align
pointers. To model this behavior, the and propagation
rule sets the P bit of the destination register if one source
operand is a pointer, and the other is a non-pointer. Sec-
tion 4.5 discusses a more conservative and propagation
policy that results in runtime performance overhead.

The P bit propagation rule for addition and subtrac-
tion instructions is more permissive than the policy used
in [19], due to false positives encountered in legitimate
code of several applications. We propagate the P bit if
either operand is a pointer as we encountered real-world
situations where two pointers are added together. For
example, the glibc function itoa word() is used to
convert integers to strings. When given a pointer argu-
ment, it indexes bits of the pointer into an array of dec-
imal characters on SPARC systems, effectively adding
two pointers together.

Moreover, we have found that the call and jmpl
instructions, which read the program counter (PC) into
a register, must always set the P bit of their destina-
tion register. This is because assembly routines such as
glibc memcpy() on SPARC contain optimized versions
of Duff’s device that use the PC as a pointer [15]. In
memcpy(), a call instruction reads PC into a register
and adds to it the (possibly tainted) copy length argu-
ment. The resulting value is used to jump into the mid-

Operation Example Security Check
Load ld r1+imm, r2 T[r1] ∧ ¬ P[r1]
Store st r2, r1+imm T[r1] ∧ ¬ P[r1]
Jump jmpl r1+imm, r2 T[r1] ∧ ¬ P[r1]
Instruction fetch - T[insn]

Table 2: The DIFT check rules for BOF detection. rxmeans register x.
A security exception is raised if the condition in the rightmost column
is true.

dle of a large block of copy statements. Unless the call
and jmpl set the destination P bit, this behavior would
cause a false positive. Similar logic can be found in the
memcmp() function in glibc for x86 systems.

Finally, we must propagate the P bit for instructions
that may initialize a pointer to a valid address in statically
allocated memory. The only instruction used to initialize
a pointer to statically allocated memory is sethi. The
sethi instruction sets the most significant 22 bits of a
register to the value of its immediate operand and clears
the least significant 10 bits. If the analysis described in
Section 4.2.2 determines that a sethi instruction is a
pointer initialization statement, then the P bit for this in-
struction is set at process startup. We propagate the P
bit of the sethi instruction to its destination register at
runtime. A subsequent or instruction may be used to ini-
tialize the least significant 10 bits of a pointer, and thus
must also propagate the P bit of its source operands.

The remaining ALU operations such as multiply or
shift should not be performed on pointers. These op-
erations clear the P bit of their destination operand. If a
program marshals or encodes pointers in some way, such
as when migrating shared state to another process [36],
a more liberal pointer propagation ruleset similar to our
rules for taint propagation rules may be necessary.

4.2 Pointer Identification

The PI-based policy depends on accurate identification
of legitimate pointers in the application code in order to
initialize the P bit for these memory locations. When
a pointer is assigned a value derived from an existing

USENIX Association 17th USENIX Security Symposium 401

pointer, tag propagation will ensure that the P bit is set
appropriately. The P bit must only be initialized for root
pointer assignments, where a pointer is set to a valid
memory address that is not derived from another pointer.
We distinguish between static root pointer assignments,
which initialize a pointer with a valid address in stati-
cally allocated memory (such as the address of a global
variable), and dynamic root pointer assignments, which
initialize a pointer with a valid address in dynamically
allocated memory.

4.2.1 Pointers to Dynamically Allocated Memory

To allocate memory at runtime, user code must use a
system call. On a Linux SPARC system, there are five
memory allocation system calls: mmap, mmap2, brk,
mremap, and shmat. All pointers to dynamically allo-
cated memory are derived from the return values of these
system calls. We modified the Linux kernel to set the P
bit of the return value for any successful memory alloca-
tion system call. This allows all dynamic root pointer as-
signments to be identified without false positives or neg-
atives. Furthermore, we also set the P bit of the stack
pointer register at process startup.

4.2.2 Pointers to Statically Allocated Memory

All static root pointer assignments are contained in the
data and code sections of an object file. The data section
contains pointers initialized to statically allocated mem-
ory addresses. The code section contains instructions
used to initialize pointers to statically allocated memory
at runtime. To initialize the P bit for static root pointer
assignments, we must scan all data and code segments of
the executable and any shared libraries at startup.

When the program source code is compiled to a re-
locatable object file, all references to statically allocated
memory are placed in the relocation table. Each relo-
cation table entry stores the location of the memory ref-
erence, the reference type, the symbol referred to, and
an optional symbol offset. For example, a pointer in the
data segment initialized to &x + 4 would have a reloca-
tion entry with type data, symbol x, and offset 4. When
the linker creates a final executable or library image from
a group of object files, it traverses the relocation table in
each object file and updates a reference to statically al-
located memory if the symbol it refers to has been relo-
cated to a new address.

With access to full relocation tables, static root pointer
assignments can be identified without false positives or
negatives. Conceptually, we set the P bit for each in-
struction or data word whose relocation table entry is
a reference to a symbol in statically allocated memory.
However, in practice full relocation tables are not avail-

able in executables or shared libraries. Hence, we must
conservatively identify statically allocated memory ref-
erences without access to relocation tables. Fortunately,
the restrictions placed on references to statically allo-
cated memory by the object file format allow us to detect
such references by scanning the code and data segments,
even without a relocation table. The only instructions
or data that can refer to statically allocated memory are
those that conform to an existing relocation entry format.

Like all modern Unix systems, our prototype uses the
ELF object file format [41]. Statically allocated memory
references in data segments are 32-bit constants that are
relocated using the R SPARC 32 relocation entry type.
Statically allocated memory references in code segments
are created using a pair of SPARC instructions, sethi
and or. A pair of instructions is required to construct
a 32-bit immediate because SPARC instructions have a
fixed 32-bit width. The sethi instruction initializes
the most significant 22 bits of a word to an immediate
value, while the or instruction is used to initialize the
least significant 10 bits (if needed). These instructions
use the R SPARC HI22 and R SPARC LO10 relocation
entry types, respectively.

Even without relocation tables, we know that stati-
cally allocated memory references in the code segment
are specified using a sethi instruction containing the
most significant 22 bits of the address, and any statically
allocated memory references in the data segment must
be valid 32-bit addresses. However, even this knowledge
would not be useful if the memory address references
could be encoded in an arbitrarily complex manner, such
as referring to an address in statically allocated memory
shifted right by four or an address that has been logically
negated. Scanning code and data segments for all pos-
sible encodings would be extremely difficult and would
likely lead to many false positives and negatives. For-
tunately, this situation does not occur in practice, as all
major object file formats (ELF [41], a.out, PE [26], and
Mach-O) restrict references to statically allocated mem-
ory to a single valid symbol in the current executable or
library plus a constant offset. Figure 2 presents a few C
code examples demonstrating this restriction.

Algorithm 1 summarizes our scheme initializing the
P bit for static root pointer assignments without reloca-
tion tables. We scan any data segments for 32-bit val-
ues that are within the virtual address range of the cur-
rent executable or shared library and set the P bit for any
matches. To recognize root pointer assignments in code,
we scan the code segment for sethi instructions. If the
immediate operand of the sethi instruction specifies a
constant within the virtual address range of the current
executable or shared library, we set the P bit of the in-
struction. Unlike the x86, the SPARC has fixed-length

402 17th USENIX Security Symposium USENIX Association

int x,y;
int * p = &x + 0x80000000; // symbol + any 32-bit offset is OK
int * p = &x; // symbol + no offset is OK
int * p = (int) &x + (int) &y; // cannot add two symbols, will not compile
int * p = (int) &x × 4; // cannot multiply a symbol, will not compile
int * p = (int) &x ⊕ -1; // cannot xor a symbol, will not compile

Figure 2: C code showing valid and invalid references to statically allocated memory. Variables x, y, and p are global variables.

Algorithm 1 Pseudocode for identifying static root pointer assignments in SPARC ELF binaries.

procedure CHECKSTATICCODE(ElfObject o, Word * w)
if ∗w is a sethi instruction then

x ← extract cst22(∗w) extract 22 bit constant from sethi, set least significant 10 bits to zero
if x >= o.obj start and x < o.obj end then

set p bit(w)
end if

end if
end procedure

procedure CHECKSTATICDATA(ElfObject o, Word * w)
if ∗w >= o.obj start and ∗w < o.obj end then

set p bit(w)
end if

end procedure

procedure INITSTATICPOINTER(ElfObject o)
for all segment s in o do

for all word w in segment s do
if s is executable then

CheckStaticCode(o, w)
end if
CheckStaticData(o, w) Executable sections may contain read-only data

end for
end for

end procedure

instructions, allowing for easy disassembly of all code
regions.

Modern object file formats do not allow executables
or libraries to contain direct references to another object
file’s symbols, so we need to compare possible pointer
values against only the current object file’s start and end
addresses, rather than the start and end addresses of all
executable and libraries in the process address space.
This algorithm is executed once for the executable at
startup and once for each shared library when it is ini-
tialized by the dynamic linker. As shown in Section 4.5,
the runtime overhead of the initialization is negligible.

In contrast with our scheme, pointer identification in
the original proposal for a PI-based policy is impracti-
cal. The scheme in [19] attempts to dynamically detect
pointers by checking if the operands of any instructions
used for pointer arithmetic can be valid pointers to the
memory regions currently used by the program. This re-

quires scanning the page tables for every add or subtract
instruction, which is prohibitively expensive.

4.3 Discussion

False positives and negatives due to P bit initializa-
tion: Without access to the relocation tables, our
scheme for root pointer identification could lead to false
positives or negatives in our security analysis. If an inte-
ger in the data segment has a value that happens to cor-
respond to a valid memory address in the current exe-
cutable or shared library, its P bit will be set even though
it is not a pointer. This misclassification can cause a
false negative in our buffer overflow detection. A false
positive in the buffer overflow protection is also possi-
ble, although we have not observed one in practice thus
far. All references to statically allocated memory are re-
stricted by the object file format to a single symbol plus

USENIX Association 17th USENIX Security Symposium 403

a constant offset. Our analysis will fail to identify a
pointer only if this offset is large enough to cause the
symbol+offset sum to refer to an address outside of the
current executable object. Such a pointer would be out-
side the bounds of any valid memory region in the exe-
cutable and would cause a segmentation fault if derefer-
enced.

DIFT tags at word granularity: Unlike prior
work [19], we use per-word tags (P and T bits) rather
than per-byte tags. Our policy targets pointer corrup-
tion, and modern ABIs require pointers to be naturally
aligned, 32-bit values, even on the x86 [41]. Hence, we
can reduce the memory overhead of DIFT from eight bits
per word to two bits per word.

As explained in Section 3, we must specify how to
handle partial word writes during byte or halfword stores.
These writes only update part of a memory word and
must combine the new tag of the value being written
to memory with the old tag of the destination memory
word. The combined value is then used to update the tag
of the destination memory word. For taint tracking (T
bit), we OR the new T bit with the old one in memory,
since we want to track taint as conservatively as possi-
ble. Writing a tainted byte will taint the entire word of
memory, and writing an untainted byte to a tainted word
will not untaint the word. For pointer tracking (P bit),
we must balance protection and false positive avoidance.
We want to allow a valid pointer to be copied byte-per-
byte into a word of memory that previously held an in-
teger and still retain the P bit. However, if an attacker
overwrites a single byte of a pointer [18], that pointer
should lose its P bit. To satisfy these requirements, byte
and halfword store instructions always set the destina-
tion memory word’s P bit to that of the new value being
written, ignoring the old P bit of the destination word.

Caching P Bit initialization: For performance rea-
sons, it is unwise to always scan all memory regions of
the executable and any shared libraries at startup to ini-
tialize the P bit. P bit initialization results can be cached,
as the pointer status of an instruction or word of data at
startup is always the same. The executable or library can
be scanned once, and a special ELF section containing
a list of root pointer assignments can be appended to the
executable or library file. At startup, the security monitor
could read this ELF section, initializing the P bit for all
specified addresses without further scanning.

4.4 Portability to Other Systems

We believe that our approach is portable to other archi-
tectures and operating systems. The propagation and
check rules reflect how pointers are used in practice and
for the most part are architecture neutral. However, our
pointer initialization rules must be ported when moving

to a new platform. Identifying dynamic root pointer as-
signments is OS-dependent, but requires only modest ef-
fort. All we require is a list of system calls that dynami-
cally allocate memory.

Identifying static root pointer assignments depends
on both the architecture and the object file format.
We expect our analysis for static pointer initializations
within data segments to work on all modern platforms.
This analysis assumes that initialized pointers within the
data segment are word-sized, naturally aligned variables
whose value corresponds to a valid memory address
within the executable. To the best of our knowledge, this
assumption holds for all modern object file formats, in-
cluding the dominant formats for x86 systems [26, 41].

Static root pointer assignments in code segments can
be complex to identify for certain architectures. Port-
ing to other RISC systems should not be difficult, as all
RISC architectures use fixed-length instructions and pro-
vide an equivalent to sethi. For instance, MIPS uses
the load-upper-immediate instruction to set the high 16
bits of a register to a constant. Hence, we just need to
adjust Algorithm 1 to target these instructions.

However, CISC architectures such as the x86 require a
different approach because they support variable-length
instructions. Static root pointer assignments are per-
formed using an instruction such as movl that initializes
a register to a full 32-bit constant. However, CISC object
files are more difficult to analyze, as precisely disassem-
bling a code segment with variable-length instructions is
undecidable. To avoid the need for precise disassembly,
we can conservatively identify potential instructions that
contain a reference to statically allocated memory.

A conservative analysis to perform P bit initialization
on CISC architectures would first scan the entire code
segment for valid references to statically allocated mem-
ory. A valid 32-bit memory reference may begin at any
byte in the code segment, as a variable-length ISA places
no alignment restrictions on instructions. For each valid
memory reference, we scan backwards to determine if
any of the bytes preceding the address can form a valid
instruction. This may require scanning a small number
of bytes up to the maximum length of an ISA instruction.
Disassembly may also reveal multiple candidate instruc-
tions for a single valid address. We examine each can-
didate instruction and conservatively set the P bit if the
instruction may initialize a register to the valid address.
This allows us to conservatively identify all static root
pointer assignments, even without precise disassembly.

4.5 Evaluation

To evaluate our security scheme, we implemented our
DIFT policy for buffer overflow prevention on the Rak-
sha system. We extended a Linux 2.6.21.1 kernel to set

404 17th USENIX Security Symposium USENIX Association

Program Vulnerability Attack Detected
polymorph [35] Stack overflow Overwrite frame pointer, return address
atphttpd [1] Stack overflow Overwrite frame pointer, return address
sendmail [24] BSS overflow Overwrite application data pointer
traceroute [42] Double free Overwrite heap metadata pointer
nullhttpd [30] Heap overflow Overwrite heap metadata pointer

Table 3: The security experiments for BOF detection in userpace.

Program PI (normal) PI (and emulation)
164.gzip 1.002x 1.320x
175.vpr 1.001x 1.000x
176.gcc 1.000x 1.065x
181.mcf 1.000x 1.010x
186.crafty 1.000x 1.000x
197.parser 1.000x 2.230x
254.gap 1.000x 2.590x
255.vortex 1.000x 1.130x
256.bzip2 1.000x 1.050x
300.twolf 1.000x 1.010x

Table 4: Normalized execution time after the introduction of the PI-
based buffer overflow protection policy. The execution time without
the security policy is 1.0. Execution time higher than 1.0 represents
performance degradation.

the P bit for pointers returned by memory allocation sys-
tem calls and to initialize taint bits. Policy configuration
registers and register tags are saved and restored during
traps and interrupts. We taint the environment variables
and program arguments when a process is created, and
also taint any data read from the filesystem or network.
The only exception is reading executable files owned by
root or a trusted user. The dynamic linker requires root-
owned libraries and executables to be untainted, as it
loads pointers and executes code from these files.

Our security monitor initializes the P bit of each li-
brary or executable in the user’s address space and han-
dles security exceptions. The monitor was compiled as
a statically linked executable. The kernel loads the mon-
itor into the address space of every application, includ-
ing init. When a process begins execution, control is
first transferred to the monitor, which performs P bit ini-
tialization on the application binary. The monitor then
sets up the policy configuration registers with the buffer
overflow prevention policy, disables trusted mode, and
transfers control to the real application entry point. The
dynamic linker was slightly modified to call back to the
security monitor each time a new library is loaded, so that
P bit initialization can be performed. All application and
library instructions in all userspace programs run with
buffer overflow protection.

No userspace applications or libraries, excluding the
dynamic linker, were modified to support DIFT analysis.
All binaries in our experiments are stripped, and contain

no debugging information or relocation tables. The secu-
rity of our system was evaluated by attempting to exploit
a wide range of buffer overflows on vulnerable, unmod-
ified applications. The results are presented in Table 3.
We successfully prevented both control and data pointer
overwrites on the stack, heap, and BSS. In the case of
polymorph, we also tried to corrupt a single byte or a
halfword of the frame pointer instead of the whole word.
Our policy detected the attack correctly as we do track
partial pointer overwrites (see Section 4.3).

To test for false positives, we ran a large number of
real-world workloads such as compiling applications like
Apache, booting the Gentoo Linux distribution, and run-
ning Unix binaries such as perl, GCC, make, sed, awk,
and ntp. No false positives were encountered, despite our
conservative tainting policy.

To evaluate the performance overhead of our policy,
we ran 10 integer benchmarks from the SPECcpu2000
suite. Table 4 (column titled “PI (normal)”) shows
the overall runtime overhead introduced by our security
scheme, assuming no caching of the P bit initialization.
The runtime overhead is negligible (<0.1%) and solely
due to the initialization of the P bit. The propagation and
check of tag bits is performed in hardware at runtime and
has no performance overhead [13].

We also evaluated the more restrictive P bit propaga-
tion rule for and instructions from [19]. The P bit of
the destination operand is set only if the P bit of the
source operands differ, and the non-pointer operand has
its sign bit set. The rationale for this is that a pointer will
be aligned by masking it with a negative value, such as
masking against −4 to force word alignment. If the user
is attempting to extract a byte from the pointer – an op-
eration which does not create a valid pointer, the sign bit
of the mask will be cleared.

This more conservative rule requires any and instruc-
tion with a pointer argument to raise a security excep-
tion, as the data-dependent tag propagation rule is too ex-
pensive to support in hardware. The security exception
handler performs this propagation in software for and
instructions with valid pointer operands. While we en-
countered no false positives with this rule, performance
overheads of up to 160% were observed for some SPEC-
cpu2000 benchmarks (see rightmost column in Table 4).

USENIX Association 17th USENIX Security Symposium 405

We believe this stricter and propagation policy provides
a minor improvement in security and does not justify the
increase in runtime overhead.

5 Extending BOF Protection to Ker-
nelspace

The OS kernel presents unique challenges for buffer
overflow prevention. Unlike userspace, the kernel shares
its address space with many untrusted processes, and
may be entered and exited via traps. Hardcoded con-
stant addresses are used to specify the beginning and
end of kernel memory maps and heaps. The kernel may
also legitimately dereference untrusted pointers in cer-
tain cases. Moreover, the security requirements for the
kernel are higher as compromising the kernel is equiva-
lent to compromising all applications and user accounts.

In this section, we extend our userspace buffer over-
flow protection to the OS kernel. We demonstrate our
approach by using the PI-based policy to prevent buffer
overflows in the Linux kernel. In comparison to prior
work [11], we do not require the operating system to be
ported to a new architecture, protect the entire OS code-
base with no real-world false positives or errors, support
self-modifying code, and have low runtime overhead.
We also provide the first comprehensive runtime detec-
tion of user-kernel pointer dereference attacks.

5.1 Entering and Exiting Kernelspace
The tag propagation and check rules described in Tables
1 and 2 for userspace protection are also used with the
kernel. The kernelspace policy differs only in the P and T
bit initialization and the rules used for handling security
exceptions due to tainted pointer dereferences.

Nevertheless, the system may at some point use dif-
ferent security policies for user and kernel code. To en-
sure that the proper policy is applied to all code execut-
ing within the operating system, we take advantage of
the fact that the only way to enter the kernel is via a trap,
and the only way to exit is by executing a return from
trap instruction. When a trap is received, trusted mode
is enabled by hardware and the current policy configu-
ration registers are saved to the kernel stack by the trap
handler. The policy configuration registers are then re-
initialized to the kernelspace buffer overflow policy and
trusted mode is disabled. Any subsequent code, such as
the actual trap handling code, will now execute with ker-
nel BOF protection enabled. When returning from the
trap, the configuration registers for the interrupted user
process must be restored.

The only kernel instructions that do not execute with
buffer overflow protection enabled are the instructions
that save and restore configuration registers during trap

entry and exit, a few trivial trap handlers written in as-
sembly which do not access memory at all, and the fast
path of the SPARC register window overflow/underflow
handler. We do not protect these handlers because they
do not use a runtime stack and do not access kernel mem-
ory unsafely. Enabling and disabling protection when
entering and exiting such handlers could adversely affect
system performance without improving security.

5.2 Pointer Identification in the Presence
of Hardcoded Addresses

The OS kernel uses the same static root pointer assign-
ment algorithm as userspace. At boot time, the kernel
image is scanned for static root pointer assignments by
scanning its code and data segments, as described in Sec-
tion 4. However, dynamic root pointer assignments must
be handled differently. In userspace applications, dy-
namically allocated memory is obtained via OS system
calls such as mmap or brk. In the operating system, a
variety of memory map regions and heaps are used to dy-
namically allocate memory. The start and end virtual ad-
dresses for these memory regions are specified by hard-
coded constants in kernel header files. All dynamically
allocated objects are derived from the hardcoded start
and end addresses of these dynamic memory regions.

In kernelspace, all dynamic root pointer assignments
are contained in the kernel code and data at startup.
When loading the kernel at system boot time, we scan
the kernel image for references to dynamically allocated
memory maps and heaps. All references to dynamically
allocated memory must be to addresses within the ker-
nel heap or memory map regions identified by the hard-
coded constants. To initialize the P bit for dynamic root
pointer assignments, any sethi instruction in the code
segment or word of data in the data segment that spec-
ifies an address within one of the kernel heap or mem-
ory map regions will have its P bit set. Propagation will
then ensure that any values derived from these pointers at
runtime will also be considered valid pointers. The P bit
initialization for dynamic root pointer assignments and
the initialization for static root pointer assignments can
be combined into a single pass over the code and data
segments of the OS kernel image at bootup.

On our Linux SPARC prototype, the only heap or
memory map ranges that should be indexed by untrusted
information are the vmalloc heap and the fixed address,
pkmap, and srmmu − nocache memory map regions.
The start and end values for these memory regions can
be easily determined by reading the header files of the
operating system, such as the vaddrs SPARC-dependent
header file in Linux. All other memory map and and heap
regions in the kernel are small private I/O memory map
regions whose pointers should never be indexed by un-

406 17th USENIX Security Symposium USENIX Association

trusted information and thus do not need to be identified
during P bit initialization to prevent false positives.

Kernel heaps and memory map regions have an inclu-
sive lower bound, but exclusive upper bound. However,
we encountered situations where the kernel would com-
pute valid addresses relative to the upper bound. In this
situation, a register is initialized to the upper bound of
a memory region. A subsequent instruction subtracts a
non-zero value from the register, forming a valid address
within the region. To allow for this behavior, we treat a
sethi constant as a valid pointer if its value is greater
than or equal to the lower bound of a memory region and
less than or equal to the upper bound of a memory re-
gion, rather than strictly less than the upper bound. This
issue was never encountered in userspace.

5.3 Untrusted Pointer Dereferences

Unlike userspace code, there are situations where the ker-
nel may legitimately dereference an untrusted pointer.
Many OS system calls take untrusted pointers from
userspace as an argument. For example, the second ar-
gument to the write system call is a pointer to a user
buffer.

Only special routines such as copy to user() in
Linux or copyin() in BSD may safely dereference a
userspace pointer. These routines typically perform a
simple bounds check to ensure that the user pointer does
not point into the kernel’s virtual address range. The un-
trusted pointer can then safely be dereferenced without
compromising the integrity of the OS kernel. If the ker-
nel does not perform this access check before derefer-
encing a user pointer, the resulting security vulnerability
allows an attacker to read or write arbitrary kernel ad-
dresses, resulting in a full system compromise.

We must allow legitimate dereferences of tainted
pointers in the kernel, while still preventing pointer cor-
ruption from buffer overflows and detecting unsafe user
pointer dereferences. Fortunately, the design of modern
operating systems allows us to distinguish between le-
gitimate and illegitimate tainted pointer dereferences. In
the Linux kernel and other modern UNIX systems, the
only memory accesses that should cause an MMU fault
are accesses to user memory. For example, an MMU
fault can occur if the user passed an invalid memory ad-
dress to the kernel or specified an address whose con-
tents had been paged to disk. The kernel must distin-
guish between MMU faults due to load/stores to user
memory and MMU faults due to bugs in the OS kernel.
For this purpose, Linux maintains a list of all kernel in-
structions that can access user memory and recovery rou-
tines that handle faults for these instructions. This list is
kept in the special ELF section ex table in the Linux
kernel image. When an MMU fault occurs, the kernel

searches ex table for the faulting instruction’s address.
If a match is found, the appropriate recovery routine is
called. Otherwise, an operating system bug has occurred
and the kernel panics.

We modified our security handler so that on a security
exception due to a load or store to an untrusted pointer,
the memory access is allowed if the program counter
(PC) of the faulting instruction is found in the ex table
section and the load/store address does not point into ker-
nelspace. Requiring tainted pointers to specify userspace
addresses prevents user/kernel pointer dereference at-
tacks. Additionally, any attempt to overwrite a kernel
pointer using a buffer overflow attack will be detected be-
cause instructions that access the corrupted pointer will
not be found in the ex table section.

5.4 Portability to Other Systems

We believe this approach is portable to other architec-
tures and operating systems. To perform P bit initializa-
tion for a new operating system, we would need to know
the start and end addresses of any memory regions or
heaps that would be indexed by untrusted information.
Alternatively, if such information was unavailable, we
could consider any value within the kernel’s virtual ad-
dress space to be a possible heap or memory map pointer
when identifying dynamic root pointer assignments at
system bootup.

Our assumption that MMU faults within the kernel oc-
cur only when accessing user addresses also holds for
FreeBSD, NetBSD, OpenBSD, and OpenSolaris. Rather
than maintaining a list of instructions that access user
memory, these operating systems keep a special MMU
fault recovery function pointer in the Process Control
Block (PCB) of the current task. This pointer is only
non-NULL when executing routines that may access user
memory, such as copyin(). If we implemented our
buffer overflow protection for these operating systems, a
tainted load or store would be allowed only if the MMU
fault pointer in the PCB of the current process was non-
NULL and the load or store address did not point into
kernelspace.

5.5 Evaluation

To evaluate our buffer overflow protection scheme with
OS code, we enabled our PI policy for the Linux ker-
nel. The SPARC BIOS was extended to initialize the P
bit for the OS kernel at startup. After P bit initializa-
tion, the BIOS initializes the policy configuration regis-
ters, disables trusted mode, and transfers control to the
entry point of the OS kernel with buffer overflow protec-
tion enabled.

USENIX Association 17th USENIX Security Symposium 407

Module Targeted Vulnerability Attack Detected
quotactl system call [52] User/kernel pointer Tainted pointer to kernelspace
i2o driver [52] User/kernel pointer Tainted pointer to kernelspace
sendmsg system call [2, 47] Heap overflow Overwrite heap metadata pointer

Stack Overflow Overwrite local data pointer
moxa driver [45] BSS Overflow Overwrite BSS data pointer
cm4040 driver [40] Heap Overflow Overwrite heap metadata pointer

Table 5: The security experiments for BOF detection in kernelspace.

When running the kernel, we considered any data re-
ceived from the network or disk to be tainted. Any data
copied from userspace was also considered tainted, as
were any system call arguments from a userspace system
call trap. As specified in Section 4.5, we also save/restore
policy registers and register tags during traps. The above
modifications were the only changes made to the ker-
nel. All other code, even optimized assembly copy rou-
tines, context switching code, and bootstrapping code at
startup, were left unchanged and ran with buffer over-
flow protection enabled. Overall, our extensions added
1774 lines to the kernel and deleted 94 lines, mostly in
architecture-dependent assembly files. Our extensions
include 732 lines of code for the security monitor, written
in assembly.

To evaluate the security of our approach, we exploited
real-world user/kernel pointer dereference and buffer
overflow vulnerabilities in the Linux kernel. Our re-
sults are summarized in Table 5. The sendmsg vulner-
ability allows an attacker to choose between overwriting
a heap buffer or stack buffer. Our kernel security pol-
icy was able to prevent all exploit attempts. For device
driver vulnerabilities, if a device was not present on the
FPGA-based prototype, we simulated sufficient device
responses to reach the vulnerable section of code and per-
form our exploit.

We evaluated the issue of false positives by run-
ning the kernel with our security policy enabled un-
der a number of system call-intensive workloads. We
compiled large applications from source, booted Gen-
too Linux, performed logins via OpenSSH, and served
web pages with Apache. Despite our conservative taint-
ing policy, we encountered only one issue, which ini-
tially seemed to be a false positive. However, we have
established it to be a bug and potential security vulner-
ability in the current Linux kernel on SPARC32 and
have notified the Linux kernel developers. This issue
occurred during the bzero() routine, which derefer-
enced a tainted pointer whose address was not found in
the ex table section. As user pointers may be passed
to bzero(), all memory operations in bzero()
should be in ex table. Nevertheless, a solitary block
of store instructions did not have an entry. A malicious
user could potentially exploit this bug to cause a local

denial-of-service attack, as any MMU faults caused by
these stores would cause a kernel panic. After fixing this
bug by adding the appropriate entry to ex table, no fur-
ther false positives were encountered in our system.

Performance overhead is negligible for most work-
loads. However, applications that are dominated by copy
operations between userspace and kernelspace may suf-
fer noticeable slowdown, up to 100% in the worst case
scenario of a file copy program. This is due to runtime
processing of tainted user pointer dereferences, which re-
quire the security exception handler to verify the tainted
pointer address and find the faulting instruction in the
ex table section.
We profiled our system and determined that almost

all of our security exceptions came from a single ker-
nel function, copy user(). To eliminate this overhead,
we manually inserted security checks at the beginning
of copy user() to validate any tainted pointers. After
the input is validated by our checks, we disable data
pointer checks until the function returns. This change re-
duced our performance overhead to a negligible amount
(<0.1%), even for degenerate cases such as copying files.
Safety is preserved, as the initial checks verify that the ar-
guments to this function are safe, and manual inspection
of the code confirmed that copy user() would never be-
have unsafely, so long as its arguments were validated.
Our control pointer protection prevents attackers from
jumping into the middle of this function. Moreover,
while checks are disabled while copy user() is execut-
ing, taint propagation is still on. Hence, copy user()
cannot be used to sanitize untrusted data.

6 Comprehensive Protection with Hybrid
DIFT Policies

The PI-based policy presented in this paper prevents at-
tackers from corrupting any code or data pointers. How-
ever, false negatives do exist, and limited forms of mem-
ory corruption attacks may bypass our protection. This
should not be surprising, as our policy focuses on a spe-
cific class of attacks (pointer overwrites) and operates on
unmodified binaries without source code access. In this

408 17th USENIX Security Symposium USENIX Association

section, we discuss security policies that can be used to
mitigate these weaknesses.

False negatives can occur if the attacker overwrites
non-pointer data without overwriting a pointer [6]. This
is a limited form of attack, as the attacker must use a
buffer overflow to corrupt non-pointer data without cor-
rupting any pointers. The application must then use the
corrupt data in a security-sensitive manner, such as an
array index or a flag determining if a user is authenti-
cated. The only form of non-pointer overwrite our PI
policy detects is code overwrites, as tainted instruction
execution is forbidden. Non-pointer data overwrites are
not detected by our PI policy and must be detected by a
separate, complementary buffer overflow protection pol-
icy.

6.1 Preventing Pointer Offset Overwrites

The most frequent way that non-pointers are used in a
security-sensitive manner is when an integer is used as
an array index. If an attacker can corrupt an array index,
the next access to the array using the corrupt offset will
be attacker-controlled. This indirectly allows the attacker
to control a pointer value. For example, if the attacker
wants to access a memory address y and can overwrite
an index into array x, then the attacker should overwrite
the index with the value y−x. The next access to x using
the corrupt index will then access y instead.

Our PI policy does not prevent this attack because no
pointer was overwritten. We cannot place restrictions on
array indices or other type of offsets without bounds in-
formation or bounds check recognition. Without source
code access or application-specific knowledge, it is dif-
ficult to formulate general rules to protect non-pointers
without false positives. If source code is available, the
compiler may be able to automatically identify security-
critical data, such as array offsets and authentication
flags, that should never be tainted [4].

A recently proposed form of ASLR [20] can be used
to protect against pointer offset overwrites. This novel
ASLR technique randomizes the relative offsets between
variables by permuting the order of variables and func-
tions within a memory region. This approach would
probabilistically prevent all data and code pointer offset
overwrites, as the attacker would be unable to reliably
determine the offset between any two variables or func-
tions. However, randomizing relative offsets requires ac-
cess to full relocation tables and may not be backwards
compatible with programs that use hardcoded addresses
or make assumptions about the memory layout. The re-
mainder of this section discusses additional DIFT poli-
cies to prevent non-pointer data overwrites without the
disadvantages of ASLR.

6.2 Protecting Offsets for Control Pointers

To the best of our knowledge, only a handful of reported
vulnerabilities allow control pointer offsets to be over-
written [25, 50]. This is most likely due to the relative
infrequency of large arrays of function pointers in real-
world code. A buffer overflow is far more likely to di-
rectly corrupt a pointer before overwriting an index into
an array of function pointers.

Nevertheless, DIFT platforms can provide control
pointer offset protection by combining our PI-based pol-
icy with a restricted form of BR-based protection. If BR-
based protection is only used to protect control point-
ers, then the false positive issues described in Section 2.2
do not occur in practice [10]. To verify this, we imple-
mented a control pointer-only BR policy and applied the
policy to userspace and kernelspace. This policy did not
result in any false positives, and prevented buffer over-
flow attacks on control pointers. Our policy classified
and instructions and all comparisons as bounds checks.

The BR policy has false negatives in different situa-
tions than the PI policy. Hence the two policies are com-
plementary. If control-pointer-only BR protection and
PI protection are used concurrently, then a false negative
would have to occur in both policies for a control pointer
offset attack to succeed. The attacker would have to find
a vulnerability that allowed a control pointer offset to be
corrupted without corrupting a pointer. The application
would then have to perform a comparison instruction or
an and instruction that was not a real bounds check on
the corrupt offset before using it. We believe this is very
unlikely to occur in practice. As we have observed no
false positives in either of these policies, even in ker-
nelspace, we believe these policies should be run con-
currently for additional protection.

6.3 Protecting Offsets for Data Pointers

Unfortunately, the BR policy cannot be applied to data
pointer offsets due to the severe false positive issues dis-
cussed in Section 1. However, specific situations may
allow for DIFT-based protection of non-pointer data. For
example, Red Zone heap protection prevents heap buffer
overflows by placing a canary or special DIFT tag at the
beginning of each heap chunk [37, 39]. This prevents
heap buffer overflows from overwriting the next chunk
on the heap and also protects critical heap metadata such
as heap object sizes.

Red Zone protection can be implemented by using
DIFT to tag heap metadata with a sandboxing bit. Ac-
cess to memory with the sandboxing bit set is forbidden,
but sandboxing checks are temporarily disabled when
malloc() is invoked. A modified malloc() is nec-
essary to maintain the sandboxing bit, setting it for newly

USENIX Association 17th USENIX Security Symposium 409

created heap metadata and clearing it when a heap meta-
data block is freed. The DIFT Red Zone heap protection
could be run concurrently with PI protection, providing
enhanced protection for non-pointer data on the heap.

We implemented a version of Red Zone protection that
forbids heap metadata from being overwritten, but allows
out-of-bounds reads. We then applied this policy to both
glibc malloc() in userspace and the Linux slab allocator
in kernelspace. No false positives were encountered dur-
ing any of our stress tests, and we verified that all of our
heap exploits from our userspace and kernelspace secu-
rity experiments were detected by the Red Zone policy.

6.4 Beyond Pointer Corruption
Not all memory corruption attacks rely on pointer or
pointer offset corruption. For example, some classes of
format string attacks use only untainted pointers and in-
tegers [12]. While these attacks are rare, we should still
strive to prevent them. Previous work on the Raksha sys-
tem provides comprehensive protection against format
string attacks using a DIFT policy [13]. The policy uses
the same taint information as our PI buffer overflow pro-
tection. All calls to the printf() family of functions
are interposed on by the security monitor, which veri-
fies that the format string does not contain tainted format
string specifiers such as %n.

For the most effective memory corruption protection
for unmodified binaries, DIFT platforms such as Rak-
sha should concurrently enable PI protection, control-
pointer-only BR protection, format string protection, and
Red Zone heap protection. This would prevent pointer
and control pointer offset corruption and provide com-
plete protection against format string and heap buffer
overflow attacks. We can support all these policies con-
currently using the four tag bits provided by the Raksha
hardware. The P bit and T bit are used for buffer overflow
protection and the T bit is also used to track tainted data
for format string protection. The sandboxing bit, which
prevents stores or code execution from tagged memory
locations, is used to protect heap metadata for Red Zone
bounds checking, to interpose on calls to the printf()
functions, and to protect the security monitor (see Sec-
tion 3.1). Finally, the fourth tag bit is used for control-
pointer-only BR protection.

7 Conclusions

We presented a robust technique for buffer overflow pro-
tection using DIFT to prevent pointer overwrites. In con-
trast to previous work, our security policy works with un-
modified binaries without false positives, prevents both
data and code pointer corruption, and allows for practi-
cal hardware support. Moreover, this is the first secu-

rity policy that provides robust buffer overflow preven-
tion for the kernel and dynamically detects user/kernel
pointer dereferences.

To demonstrate our proposed technique, we imple-
mented a full-system prototype that includes hardware
support for DIFT and a software monitor that manages
the security policy. The resulting system is a full Gentoo
Linux workstation. We show that our prototype prevents
buffer overflow attacks on applications and the operating
system kernel without false positives and has an insignif-
icant effect on performance. The full-system prototyp-
ing approach was critical in identifying and addressing
a number of practical issues that arise in large user pro-
grams and in the kernel code.

There are several opportunities for future research. We
plan to experiment further with the concurrent use of
complementary policies that prevent overwrites of non-
pointer data (see Section 6). Another promising direc-
tion is applying taint rules to system call arguments. Per-
application system call rules could be learned automati-
cally, restricting tainted arguments to security-sensitive
system calls such as opening files and executing pro-
grams.

Acknowledgments

We would like to thank Jiri Gaisler, Richard Pender, and
Gaisler Research for their invaluable assistance with our
prototype development. We would also like to thank Anil
Somayaji and the anonymous reviewers for their feed-
back. This work was supported NSF Awards number
0546060 and 0701607 and Stanford Graduate Fellow-
ships by Sequoia Capital and Cisco Systems.

References
[1] ATPHTTPD Buffer Overflow Exploit Code. http://www.

securiteam.com/exploits/6B00K003GY.html,
2001.

[2] Attacking the Core: Kernel Exploiting Notes. http://
phrack.org/issues.html?issue=64\&id=6, 2007.

[3] Bypassing PaX ASLR protection. http://www.phrack.
org/issues.html?issue=59\&id=9, 2002.

[4] M. Castro, M. Costa, and T. Harris. Securing Software by En-
forcing Data-flow Integrity. In Proceedings of the 7th conference
on Operating Systems Design and Implementation, 2006.

[5] S. Chen, J. Xu, et al. Defeating Memory Corruption Attacks via
Pointer Taintedness Detection. In Proceedings of the Intl. Con-
ference on Dependable Systems and Networks, 2005.

[6] S. Chen, J. Xu, et al. Non-Control-Data Attacks Are Realistic
Threats. In Proceedings of the 14th USENIX Security Symposium,
2005.

[7] J. Chung, M. Dalton, et al. Thread-Safe Dynamic Binary Transla-
tion using Transactional Memory. In Proceedings of the 14th Intl.
Symposium on High-Performance Computer Architecture, 2008.

[8] Computer Emergency Response Team. “Code Red” Worm Ex-
ploiting Buffer Overflow In IIS Indexing Service DLL. http:

410 17th USENIX Security Symposium USENIX Association

//www.cert.org/advisories/CA-2001-19.html,
2002.

[9] C. Cowan, C. Pu, et al. StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer-overflow Attacks. In Proceedings
of the 7th USENIX Security Symposium, 1998.

[10] J. R. Crandall and F. T. Chong. MINOS: Control Data Attack
Prevention Orthogonal to Memory Model. In Proceedings of the
37th Intl. Symposium on Microarchitecture, 2004.

[11] J. Criswell, A. Lenharth, et al. Secure Virtual Architecture: A
Safe Execution Environment for Commodity Operating Systems.
In Proceedings of the 21st Symposium on Operating System Prin-
ciples, Oct. 2007.

[12] M. Dalton, H. Kannan, and C. Kozyrakis. Deconstructing Hard-
ware Architectures for Security. In the 5th Annual Workshop on
Duplicating, Deconstructing, and Debunking, 2006.

[13] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible
Information Flow Architecture for Software Security. In Pro-
ceedings of the 34th Intl. Symposium on Computer Architecture,
2007.

[14] M. Dowd. Application-Specific Attacks: Leveraging the Action-
Script Virtual Machine. http://documents.iss.net/
whitepapers/IBM_X-Force_WP_final.pdf, 2008.

[15] Duff’s Device. http://www.lysator.liu.se/c/
duffs-device.html, 1983.

[16] H. Etoh. GCC Extension for Protecting Applications from
Stack-smashing Attacks. http://www.trl.ibm.com/
projects/security/ssp/.

[17] P. Ferrie. ANI-hilate This Week. In Virus Bulletin, Mar. 2007.
[18] The frame pointer overwrite. http://www.phrack.org/

issues.html?issue=55\&id=8, 1999.
[19] S. Katsunuma, H. Kuriyta, et al. Base Address Recognition with

Data Flow Tracking for Injection Attack Detection. In Proceed-
ings of the 12th Pacific Rim Intl. Symposium on Dependable Com-
puting, 2006.

[20] C. Kil, J. Jun, et al. Address Space Layout Permutation: Towards
Fine-Grained Randomization of Commodity Software. In Pro-
ceedings of 22nd Applied Computer Security Applications Con-
ference, 2006.

[21] R. Lee, D. Karig, et al. Enlisting Hardware Architecture to
Thwart Malicious Code Injection. In Proceedings of the Intl.
Conference on Security in Pervasive Computing, 2003.

[22] LEON3 SPARC Processor. http://www.gaisler.com.
[23] Linux Kernel Remote Buffer Overflow Vulnerabilities. http:

//secwatch.org/advisories/1013445/, 2006.
[24] M. Dowd. Sendmail Header Processing Buffer Overflow Vulner-

ability. http://www.securityfocus.com/bid/6991.
[25] Microsoft Excel Array Index Error Remote Code Exe-

cution. http://lists.virus.org/bugtraq-0607/
msg00145.html.

[26] Microsoft. Microsoft Portable Executable and Common Object
File Format Specification, 2006.

[27] D. Moore, V. Paxson, et al. Inside the Slammer Worm. IEEE
Security & Privacy, 23(4), July 2003.

[28] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM Sym-
posium on Principles of Programming Languages, 2002.

[29] N. Nethercote. Dynamic Binary Analysis and Instrumentation.
PhD thesis, University of Cambridge, November 2004.

[30] Netric Security Team. Null HTTPd Remote Heap Overflow
Vulnerability. http://www.securityfocus.com/bid/
5774, 2002.

[31] J. Newsome and D. X. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2005.

[32] A. Nguyen-Tuong, S. Guarnieri, et al. Automatically Hardening
Web Applications using Precise Tainting. In Proceedings of the

20th IFIP Intl. Information Security Conference, 2005.
[33] OpenBSD IPv6 mbuf Remote Kernel Buffer Overflow.

http://www.securityfocus.com/archive/1/
462728/30/0/threaded, 2007.

[34] The PaX project. http://pax.grsecurity.net.
[35] Polymorph Filename Buffer Overflow Vulnerability. http://

www.securityfocus.com/bid/7663, 2003.
[36] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege

Escalation. In Proceedings of the 12th USENIX Security Sympo-
sium, Aug. 2003.

[37] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory
for Detecting Memory Leaks and Memory Corruption During
Production Runs. In Proceedings of the 11th Intl. Symposium
on High-Performance Computer Architecture, 2005.

[38] F. Qin, C. Wang, et al. LIFT: A Low-Overhead Practical Infor-
mation Flow Tracking System for Detecting Security Attacks. In
Proceedings of the 39th the Intl. Symposium on Microarchitec-
ture, 2006.

[39] W. Robertson, C. Kruegel, et al. Run-time Detection of Heap-
based Overflows. In Proceedings of the 17th Large Installation
System Administration Conference, 2003.

[40] D. Roethlisberger. Omnikey Cardman 4040 Linux Drivers Buffer
Overflow. http://www.securiteam.com/unixfocus/
5CP0D0AKUA.html, 2007.

[41] Santa Cruz Operation. System V Application Binary Interface,
4th ed., 1997.

[42] P. Savola. LBNL Traceroute Heap Corruption Vulnerability.
http://www.securityfocus.com/bid/1739, 2000.

[43] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls. In Proceedings of the
14th ACM Conference on Computer Security, 2007.

[44] H. Shacham, M. Page, et al. On the Effectiveness of Address
Space Randomization. In Proceedings of the 11th ACM Confer-
ence on Computer Security, 2004.

[45] B. Spengler. Linux Kernel Advisories. http://lwn.net/
Articles/118251/, 2005.

[46] N. Tuck, B. Calder, and G. Varghese. Hardware and Binary Mod-
ification Support for Code Pointer Protection From Buffer Over-
flow, 2004.

[47] A. Viro. Linux Kernel Sendmsg() Local Buffer Overflow
Vulnerability. http://www.securityfocus.com/bid/
14785, 2005.

[48] Microsoft Windows TCP/IP IGMP MLD Remote Buffer Over-
flow Vulnerability. http://www.securityfocus.com/
bid/27100, 2008.

[49] O. Whitehouse. GS and ASLR in Windows Vista, 2007.
[50] F. Xing and B. Mueller. Macromedia Flash Player Array Index

Overflow. http://securityvulns.com/Fnews426.
html.

[51] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced Policy Enforce-
ment: A Practical Approach to Defeat a Wide Range of Attacks.
In Proceedings of the 15th USENIX Security Symposium, 2006.

[52] J. Yang. Potential Dereference of User Pointer Errors. http:
//lwn.net/Articles/26819/, 2003.

