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Abstract

The inability of humans to generate and remember strong
secrets makes it difficult for people to manage crypto-
graphic keys. To address this problem, numerous pro-
posals have been suggested to enable a human to repeat-
ably generate a cryptographic key from her biometrics,
where the strength of the key rests on the assumption
that the measured biometrics have high entropy across
the population. In this paper we show that, despite the
fact that several researchers have examined the security
of BKGs, the common techniques used to argue the se-
curity of practical systems are lacking. To address this
issue we reexamine two well known, yet sometimes mis-
understood, security requirements. We also present an-
other that we believe has not received adequate attention
in the literature, but is essential for practical biometric
key generators. To demonstrate that each requirement
has significant importance, we analyze three published
schemes, and point out deficiencies in each. For exam-
ple, in one case we show that failing to meet a require-
ment results in a construction where an attacker has a
22% chance of finding ostensibly 43-bit keys on her first
guess. In another we show how an attacker who com-
promises a user’s cryptographic key can then infer that
user’s biometric, thus revealing any other key generated
using that biometric. We hope that by examining the pit-
falls that occur continuously in the literature, we enable
researchers and practitioners to more accurately analyze
proposed constructions.

1 Introduction

While cryptographic applications vary widely in terms of
assumptions, constructions, and goals, all require crypto-
graphic keys. In cases where a computer should not be
trusted to protect cryptographic keys—as in laptop file
encryption, where keeping the key on the laptop obvi-
ates the utility of the file encryption—the key must be

input by its human operator. It is well known, however,
that humans have difficulty choosing and remembering
strong secrets (e.g., [2, 14]). As a result, researchers have
devoted significant effort to finding input that has suffi-
cient unpredictability to be used in cryptographic appli-
cations, but that remains easy for humans to regenerate
reliably. One of the more promising suggestions in this
direction are biometrics—characteristics of human phys-
iology or behavior. Biometrics are attractive as a means
for key generation as they are easily reproducible by the
legitimate user, yet potentially difficult for an adversary
to guess.

There have been numerous proposals for generating
cryptographic keys from biometrics (e.g., [33, 34, 28]).
At a high level, these Biometric Cryptographic Key Gen-
erators, or BKGs, follow a similar design: during an en-
rollment phase, biometric samples from a user are col-
lected; statistical functions, or features, are applied to the
samples; and some representation of the output of these
features is stored in a data structure called a biometric
template. Later, the same user can present another sam-
ple, which is processed with the stored template to repro-
duce a key. A different user, however, should be unable
to produce that key. Since the template itself is generally
stored where the key is used (e.g., in a laptop file encryp-
tion application, on the laptop), a template must not leak
any information about the key that it is used to recon-
struct. That is, the threat model admits the capture of the
template by the adversary; otherwise the template could
be the cryptographic key itself, and biometrics would not
be needed to reconstruct the key at all.

Generally, one measures the strength of a crypto-
graphic key by its entropy, which quantifies the amount
of uncertainty in the key from an adversary’s point of
view. If one regards a key generator as drawing an ele-
ment uniformly at random from a large set, then the en-
tropy of the keys can be easily computed as the base-two
logarithm of the size of the set. Computing the entropy of
keys output by a concrete instantiation of a key genera-



62 17th USENIX Security Symposium USENIX Association

tor, however, is non-trivial because “choosing uniformly
at random” is difficult to achieve in practice. This is in
part due to the fact that the key generator’s source of ran-
domness may be based on information that is leaked by
external sources. For instance, an oft-cited flaw in Ker-
beros version 4 allowed adversaries to guess ostensibly
56-bit DES session keys in only 220 guesses [13]. The
problem stemmed from the fact that the seeding infor-
mation input to the key generator was related to infor-
mation that could be easily inferred by an adversary. In
other words, this auxiliary information greatly reduced
the entropy of the key space.

In the case of biometric key generators, where the ran-
domness used to generate the keys comes from a user’s
biometric and is a function of the particular features used
by the system, the aforementioned problems are com-
pounded by several factors. For instance, in the case of
certain biometric modalities, it is known that population
statistics can be strong indicators of a specific user’s bio-
metric [10, 36, 3]. In other words, depending on the type
of biometric and the set of features used by the BKG,
access to population statistics can greatly reduce the en-
tropy of a user’s biometric, and consequently, reduce the
entropy of her key. Moreover, templates could also leak
information about the key. To complicate matters, in the
context of biometric key generation, in addition to eval-
uating the strength of the key, one must also consider
the privacy implications associated with using biomet-
rics. Indeed, the protection of a user’s biometric infor-
mation is crucial, not only to preserve privacy, but also
to enable that user to reuse the biometric key generator
to manage a new key. We argue that this concern for pri-
vacy mandates not only that the template protect the bio-
metric, but also that the keys output by a BKG not leak
information about the biometric. Otherwise, the compro-
mise of a key might render the user’s biometric unusable
for key generation thereafter.

The goal of this work is to distill the seemingly inter-
twined and complex security requirements of biometric
key generators into a small set of requirements that fa-
cilitate practical security analyses by designers. Specifi-
cally, the contributions of this paper are:

I. The specification of three practical requirements
that allow designers to ensure that a BKG ensures
the privacy of a user’s biometric and generates keys
that are suitable for cryptographic applications.

II. The analyses of three published BKGs. These are
contributions in their own right, but more impor-
tantly serve as concrete evidence of the importance
of the requirements.

III. The description of Guessing Distance, a new heuris-
tic measure that, given empirical data, can quickly
estimate the security afforded by a BKG.

IV. Discussion of common pitfalls and subleties in cur-
rent standards for empirical evaluation.

Throughout this paper we focus on the importance of
considering adversaries who have access to public in-
formation, such as templates, when performing security
evaluations. We hope that our observations will pro-
mote critical analyses of BKGs and temper the spread
of flawed (or incorrectly evaluated) proposals.

2 Related Work

To our knowledge, Soutar and Tomko [34] were the first
to propose biometric key generation. Davida et al. [9]
proposed an approach that uses iris codes, which are be-
lieved to have the highest entropy of all commonly-used
biometrics. However, iris code collection can be consid-
ered somewhat invasive and the use of majority-decoding
for error correction—a central ingredient of the Davida
et al. approach—has been argued to have limited use in
practice [16].

Monrose et al. proposed the first practical BKG that
exploits behavioral (versus physiological) biometrics for
key generation [29]. Their technique uses keystroke la-
tencies to increase the entropy of standard passwords.
Their construction yields a key at least as secure as the
password alone, and an empirical analysis showed that
their approach increases the workload of an attacker by a
multiplicative factor of up to 215. A similar approach was
used to generate cryptographic keys from voice [28, 27].
Many constructions followed those of Monrose et al., us-
ing biometrics such as face [15], fingerprints [33, 39],
handwriting [40, 17] and iris codes [16, 45]. Unfortu-
nately, many are susceptible to attacks. Hill-climbing at-
tacks have been leveraged against fingerprint, face, and
handwriting-based biometric systems [1, 37, 43] by ex-
ploiting information leaked during the reconstruction of
the key from the biometric template.

There has also been an emergence of generative at-
tacks against biometrics [5, 23], which use auxiliary in-
formation such as population statistics along with limited
information about a target user’s biometric. The attacks
we present in this paper are different from generative at-
tacks because we assume that adversaries only have ac-
cess to templates and auxiliary information. Our attacks,
therefore, capture much more limited, and arguably more
realistic, adversaries. Despite such limited information,
we show how an attacker can recover a target user’s key
with high likelihood.

There has also been recent theoretical work to for-
malize particular aspects of biometric key generators.
The idea of fuzzy cryptography was first introduced by
Juels and Wattenberg [21], who describe a commitment
scheme that supports noise-tolerant decommitments. In
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Section 7 we provide a concrete analysis of a pub-
lished construction that highlights the pitfalls of using
fuzzy commitments as biometric key generators. Fur-
ther work included a fuzzy vault [20], which was later
analyzed as an instance of a secure-sketch that can be
used to build fuzzy extractors [11, 6, 12, 22]. Fuzzy
extractors treat biometric features as non-uniformly dis-
tributed, error-prone sources and apply error-correction
algorithms and randomness extractors [18, 30] to gener-
ate random strings.

Fuzzy cryptography has made important contributions
by specifying formal security definitions with which
BKGs can be analyzed. Nevertheless, there remains a
gap between theoretical soundness and practical systems.
For instance, while fuzzy extractors can be effectively
used as a component in a larger biometric key generation
system, they do not capture all the practical requirements
of a BKG. In particular, it is unclear whether known con-
structions can correct the kinds of errors typically gen-
erated by humans, especially in the case of behavioral
biometrics. Moreover, fuzzy extractors require biometric
inputs with high min-entropy but do not address how to
select features that achieve this requisite level of entropy.
Since this is an inherently empirical question, much of
our work is concerned with how to experimentally eval-
uate the entropy available in a biometric.

Lastly, Jain et al. enumerate possible attacks against
biometric templates and discuss several practical ap-
proaches that increase template security [19]. Similarly,
Mansfield and Wayman discuss a set of best practices
that may be used to measure the security and usability of
biometric systems [24]. While these works describe spe-
cific attacks and defenses against systems, they do not
address biometric key generators and the unique require-
ments they demand.

3 Biometric Key Generators

Before we can argue about how to accurately assess bio-
metric key generators (BKGs), we first define the algo-
rithms and components associated with a BKG. These
definitions are general enough to encompass most pro-
posed BKGs.

BKGs are generally composed of two algorithms, an
enrollment algorithm (Enroll) and a key-generation algo-
rithm (KeyGen):

• Enroll(B1, . . . ,Bℓ): The enroll algorithm is a prob-
abilistic algorithm that accepts as input a number
of biometric samples (B1, . . . ,Bℓ), and outputs a
template (T ) and a cryptographic key (K). In the
event that B1, . . . ,Bℓ do not meet some predeter-
mined criteria, the enroll algorithm might output the
failure symbol ⊥.

• KeyGen(B, T ): The key generation algorithm ac-
cepts as input one biometric sample (B), and a tem-
plate (T ). The algorithm outputs either a crypto-
graphic key (K), or the failure symbol ⊥ if B cannot
be used to create a key.

The enrollment algorithm estimates the variation in-
herent to a particular user’s biometric reading and com-
putes information needed to error-correct a new sample
that is sufficiently close to the enrollment samples. Enroll

encodes this information into a template and outputs the
template and the associated key. The key-generation al-
gorithm uses the template output by the enrollment al-
gorithm and a new biometric sample to output a key. If
the provided sample is sufficiently similar to those pro-
vided during enrollment, then KeyGen and Enroll output
the same keys.

Generally speaking, there are four classes of informa-
tion associated with a BKG.

• The Biometric (B): A biometric is a measurement
of a person’s behavior or physiology. A BKG ex-
tracts B as algorithmically interpretable representa-
tions (e.g., a set of signals). The BKG typically ap-
plies statistical functions, or features (φ1, . . . , φn),
to the representations, and uses the output to either
derive [17, 41] or lock [33, 16, 38] a cryptographic
key.

• A Template (T ): A template is any piece of in-
formation that is stored on the system for the pur-
pose of re-generating the cryptographic key. Tem-
plates are generally created during an enrollment
process and stored so that a user can easily recre-
ate her key. For all practical purposes, templates
must be considered publicly available. Note that
this assumption implies that more standard biomet-
ric templates, which are typically employed for au-
thentication purposes and are simply the encoding
of a biometric [42], cannot be used securely in this
setting.

• The Key (K): A cryptographic key that is derived
from (or locked by) one or more biometric samples
during an enrollment phase. The key may later be
regenerated using another biometric sample that is
“close” to the original samples and the template that
was also output during enrollment.

• Auxiliary Information (A): Auxiliary information
encompasses any public information not intended
to be used for key-derivation purposes but that is
still readily available to an adversary. Auxiliary in-
formation is specified with respect to one user and
includes any biometric, template, or key other than
those associated with the user in question. It could
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also include any other information about the envi-
ronment that might leak information about the bio-
metric, or results of using the key.

For the remainder of the paper if a component of a
BKG is associated with a specific user, then we subscript
the information with the user’s unique identifier. So, for
example, Bu, is u’s biometric and Aū is auxiliary infor-
mation derived from all users u′ �= u.

3.1 Evaluation Recommendations

At a high level, the evaluation of a BKG requires design-
ers to show that two properties hold: correctness and se-
curity. Intuitively, a scheme that achieves correctness is
one that is usable for a high percentage of the population.
That is, the biometric of choice can be reliably extracted
to within some threshold of tolerance, and when com-
bined with the template the correct key is output with
high probability. As correctness is well understood, and
is always presented when discussing the feasibility of a
proposed BKG, we do not address it further.

In the context of biometric key generation, security is
not as easily defined as correctness. Loosely speaking,
a secure BKG outputs a key that “looks random” to any
adversary that cannot guess the biometric. In addition,
the templates and keys derived by the BKG should not
leak any information about the biometric that was used
to create them. We enumerate a set of three security
requirements for biometric key generators, and examine
the components that should be analyzed mathematically
(i.e., the template and key) and empirically (i.e., the bio-
metric and auxiliary information). While the necessity of
the first two requirements has been understood to some
degree, we will highlight and analyze how previous eval-
uations of these requirements are lacking. Additionally,
we discuss a requirement that is often overlooked in the
practical literature, but one which we believe is necessary
for a secure and practical BKG.

We consider a BKG secure if it meets the following
three requirements for each enrollable user in a popula-
tion:

• Key Randomness (REQ-KR): The keys output by a
BKG appear random to any adversary who has ac-
cess to auxiliary information and the template used
to derive the key. For instance, we might require
that the key be statistically or computationally in-
distinguishable from random.

• Weak Biometric Privacy (REQ-WBP): An adver-
sary learns no useful information about a biometric
given auxiliary information and the template used
to derive the key. For instance, no computationally
bounded adversary should be able to compute any
function of the biometric.

• Strong Biometric Privacy (REQ-SBP): An adver-
sary learns no useful information about a biomet-
ric given auxiliary information, the template used to
derive the key, and the key itself. For instance, no
computationally bounded adversary should be able
to compute any function of the biometric.

The necessity of REQ-KR and REQ-WBP is well
known, and indeed many proposals make some sort
of effort to argue security along these lines (see, e.g.,
[29, 11]). However, many different approaches are used
to make these arguments. Some take a cryptographi-
cally formal approach, whereas others provide an empiri-
cal evaluation aimed at demonstrating that the biometrics
and the generated keys have high entropy. Unfortunately,
the level of rigor can vary between works, and differ-
ences in the ways REQ-KR and REQ-WBP are typically
argued make it difficult to compare approaches. Also,
it is not always clear that the empirical assumptions re-
quired by the cryptographic algorithms of the BKG can
be met in practice.

Even more problematic is that many approaches for
demonstrating biometric security merely provide some
sort of measure of entropy of a biometric (or key) based
on variation across a population. For example, one com-
mon approach is to compute biometric features for each
user in a population, and compute the entropy over the
output of these features. However, such analyses are
generally lacking on two counts. For one, if the corre-
lation between features is not accounted for, the reported
entropy of the scheme being evaluated could be much
higher than what an adversary must overcome in prac-
tice. Second, such techniques fail to compute entropy
as a function of the biometric templates, which we ar-
gue should be assumed to be publicly available. Con-
sequently, such calculations would declare a BKG “se-
cure” even if, say, the template leaked information about
the derived key. For example, suppose that a BKG uses
only one feature and simply quantizes the feature space,
outputting as a key the region of the feature space that
contains the majority of the measurements of a specific
user’s feature. The quantization is likely to vary between
users, and so the partitioning information would need to
be stored in each user’s template. Possession of the tem-
plate thus reduces the set of possible keys, as it defines
how the feature space is partitioned.

As far as we know, the notion of Strong Biometric
Privacy (REQ-SBP) has only been considered recently,
and only in a theoretical setting [12]. Even the origi-
nal definitions of fuzzy extractors [11, Definition 3] do
not explicitly address this requirement. Unfortunately,
REQ-SBP has also largely been ignored by the designers
of practical systems. Perhaps this oversight is due to lack
of perceived practical motivation—it is not immediately
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clear that a key could be used to reveal a user’s biomet-
ric. Indeed, to our knowledge, there have been few, if
any, concrete attacks that have used keys and templates
to infer a user’s biometric. We observe, however, that it
is precisely practical situations that motivate such a re-
quirement; keys output by a BKG could be revealed for
any number of reasons in real systems (e.g., side-channel
attacks against encryption keys, or the verification of a
MAC). If a key can be used to derive the biometric that
was used to generate the key, then key recovery poses
a severe privacy concern. Moreover, key compromise
would then preclude a user from using this biometric in
a BKG ever again, as the adversary would be able to
recreate any key the user makes thereafter. Therefore,
in Section 7 we provide specific practical motivation for
this requirement by describing an attack against a well-
accepted BKG. The attack combines the key and a tem-
plate to infer a user’s biometric.

In what follows, we provide practical motivation for
the importance of each of our three requirements by an-
alyzing three published BKGs. It is not our goal to fault
specific constructions, but instead to critique evaluation
techniques that have become standard practice in the
field. We chose to analyze these specific BKGs because
each was argued to be secure using “standard” tech-
niques. However, we show that since these techniques do
not address important requirements, each of these con-
structions exhibit significant weaknesses despite security
arguments to the contrary.

4 Biometrics and “Entropy”

Before continuing further, we note that analyzing the se-
curity of a biometric key generator is a challenging task.
A comprehensive approach to biometric security should
consider sources of auxiliary information, as well as the
impact of human forgers. Though it may seem imprac-
tical to consider the latter as a potential threat to a stan-
dard key generator, skilled humans can be used to gener-
ate initial forgeries that an algorithmic approach can then
leverage to undermine the security of the BKG.

To this point, research has accepted this “adversar-
ial multiplicity” without examining the consequences in
great detail. Many works (e.g., [33, 29, 17, 15, 40, 16])
report both False Accept Rates (i.e., how often a human
can forge a biometric) and an estimate of key entropy
(i.e., the supposed difficulty an algorithm must over-
come in order to guess a key) without specifically iden-
tifying the intended adversary. In this work, we focus
on algorithmic adversaries given their importance in of-
fline guessing attacks, and because we have already ad-
dressed the importance of considering human-aided forg-
eries [4, 5]. While our previous work did not address

biometric key generators specifically, those lessons ap-
ply equally to this case.

The security of biometric key generators in the face of
algorithmic adversaries has been argued in several dif-
ferent ways, and each approach has advantages and dis-
advantages. Theoretical approaches (e.g., [11, 6]) be-
gin by assuming that the biometrics have high adversar-
ial min-entropy (i.e., conditioned on all the auxiliary in-
formation available to an adversary, the entropy of the
biometric is still high) and then proceed to distill this
entropy into a key that is statistically close to uniform.
However, in practice, it is not always clear how to esti-
mate the uncertainty of a biometric. In more practical
settings, guessing entropy [25] has been used to mea-
sure the strength of keys (e.g., [29, 27, 10]), as it is
easily computed from empirical data. Unfortunately, as
we demonstrate shortly, guessing entropy is a summary
statistic and can thus yield misleading results when com-
puted over skewed distributions. Yet another common
approach (e.g., [31, 7, 16, 41, 17]), which has lead to
somewhat misleading views on security, is to argue key
strength by computing the Shannon entropy of the key
distribution over a population. More precisely, if we con-
sider a BKG that assigns the key Ku to a user u in a pop-
ulation P , then it is considered “secure” if the entropy of
the distribution P(K) = |{u ∈ P : Ku = K}|/|P | is
high. We note, however, that the entropy of the previous
distribution measures only key uniqueness and says noth-
ing about how difficult it is for an adversary to guess the
key. In fact, it is not difficult to design BKGs that output
keys with maximum entropy in the previous sense, but
whose keys are easy for an adversary to guess; setting
Ku = u is a trivial example.

To address these issues, we present a new measure that
is easy to compute empirically and that estimates the dif-
ficulty an adversary will have in guessing the output of
a distribution given some related auxiliary distribution.
It can be used to empirically estimate the entropy of a
biometric for any adversary that assumes the biomet-
ric is distributed similarly to the auxiliary distribution.
Our proposition, Guessing Distance, involves determin-
ing the number of guesses that an adversary must make
to identify a biometric or key, and how the number of
guesses are reduced in light of various forms of auxiliary
information.

4.1 Guessing Distance

We assume that a specific user u induces a distribution
U over a finite, n-element set Ω. We also assume that
an adversary has access to population statistics that also
induce a distribution, P , over Ω. P could be computed
from the distributions of other users u′

�= u. We seek to
quantify how useful P is at predicting U . The specifica-
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tion of Ω varies depending on the BKG being analyzed;
Ω could be a set of biometrics, a set of possible feature
outputs, or a set of keys. It is up to system designers to
use the specification of Ω that would most likely be used
by an adversary. For instance, if the output of features
are easier to guess than a biometric, then Ω should be de-
fined as the set of possible feature outputs. Although at
this point we keep the definition of P and U abstract, it is
important when assessing the security of a construction
to take as much auxiliary information as possible into ac-
count when estimating P . We return in Section 5 with an
example of such an analysis.

We desire a measure that estimates the number of
guesses that an adversary will make to find the high-
probability elements of U , when guessing by enumerat-
ingΩ starting with the most likely elements as prescribed
by P . That is, our measure need not precisely capture the
distance between U and P (as might, say, L1-distance
or Relative Entropy), but rather must capture simply P’s
ability to predict the most likely elements as described by
U

1. Given a user’s distribution U , and two (potentially
different) population distributions P1 and P2, we would
like the distance between U and P1 and U and P2 to be
the same if and only if P1 and P2 prescribe the same
guessing strategy for a random variable distributed ac-
cording to U . For example, consider the distributions U ,
P1 and P2, and the element ω ∈ Ω such that P1(ω) = .9,
P2(ω) = .8, and U(ω) = 1. Here, an adversary with ac-
cess to P1 would require the same number of guesses to
find ω as an adversary with access to P2 (one). Thus, we
would like the distance between U and P1 and between
U and P2 to be the same.

Guessing Distance. Let ω∗ = argmaxω∈Ω
U(ω). Let

L
P
= (ω1, . . . , ωn) be the elements of Ω ordered such

that P(ωi) ≥ P(ωi+1) for all i ∈ [1, n − 1]. Define
t− and t+ to be the smallest index and largest index i
such that |P(ωi)− P(ω∗)| ≤ δ. The Guessing Distance
between U and P with tolerance δ is defined as:

GDδ(U ,P) = log
t− + t+

2

Guessing Distance measures the number of guesses that
an adversary who assumes that U ≈ P makes before
guessing the most likely element as prescribed by U (that
is, ω∗)2. We take the average over t− and t+ as it may
be the case that several elements may have similar prob-
ability masses under P . In such a situation, the ordering
of L

P
may be ambiguous, so we report an average mea-

sure across all equivalent orderings. As U and P will
typically be empirical estimates, we use a tolerance δ to
offset small measurement errors when grouping elements
of similar probability masses. The subscript δ is ignored
if δ = 0.

Discussion. Intuitively, one can see that this definition
makes sense by considering the following three cases:
(1) P is a good indicator of U (i.e., ω∗ = ω1); (2)
P is uniform; and (3) P is a poor indicator of U (i.e.,
ω∗ = ωn). In case (1) the adversary clearly benefits
from using P to guess ω∗, and this relation is captured
as GD(U ,P) = log 1 = 0. In case (2), the adversary
learns no information about U from P and thus would
be expected to search half of Ω before guessing the cor-
rect value; indeed GD(U ,P) = log 1+n

2
. Finally, in case

(3), a search algorithm based on P would need to enu-
merate all of Ω before finding ω∗, and this is reflected by
GD(U ,P) = log n+n

2
= log |Ω|.

An important characteristic of GD is that it compares
two probability distributions. This allows for a more
fine-tuned evaluation as one can compute GD for each
user in the population. To see the overall strength of a
proposed approach, one might report a CDF of the GD’s
for each user, or report the minimum over all GD’s in the
population.

Guessing Distance is superficially similar to Guessing
Entropy [25], which is commonly used to compute the
expected number of guesses it takes to find an average
element in a set assuming an optimal guessing strategy
(i.e., first guessing the element with the highest likeli-
hood, followed by guessing the element with the second
highest likelihood, etc.) Indeed, one might view Guess-
ing Distance as an extension of Guessing Entropy (see
Appendix A); however, we prefer Guessing Distance as
a measure of security as it provides more information
about non-uniform distributions over a key space. For
such distributions, Guessing Entropy is increased by the
elements that have a low probability, and thus might not
provide as conservative an estimate of security as de-
sired. Guessing Distance, on the other hand, can be com-
puted for each user, which brings to light the insecurity
afforded by a non-uniform distribution. We provide a
concrete example of such a case in Appendix A.

5 The Impact of Public Information on
Key Randomness

We now show why templates play a crucial role in the
computation of key entropy (REQ-KR from Section 3).
Our analysis brings to light two points: first that tem-
plates, and in particular, error-correction information,
can indeed leak a substantial amount of information
about a key, and thus must be considered when com-
puting key entropy. Second, we show how standard ap-
proaches to computing key entropy, even if they were
to take templates into account, must be conducted with
care to avoid common pitfalls. Through our analysis we
demonstrate the flexibility and utility of Guessing Dis-
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tance. While we focus here on a specific proposal by
Vielhauer and Steinmetz [40, 41], we argue that our re-
sults are generally applicable to a host of similar propos-
als (see, e.g., [44, 7, 35, 17]) that use per-user feature-
space quantization for error correction. This complicates
the calculation of entropy and brings to light common
pitfalls.

The construction works as follows. Given 50 fea-
tures φ1, . . . , φ50 [40] that map biometric samples to
the set of non-negative integers, and ℓ enrollment sam-
ples B1, . . . ,Bℓ, let ∆i be the difference between the
minimum and maximum value of φi(B1), . . . , φi(Bℓ),
expanded by a small tolerance. The scheme partitions
the output range of φi into ∆i-length segments. The
key is derived by letting Li be the smallest integer in
the segment that contains the user’s samples, comput-
ing Γi = Li mod ∆i, and setting the ith key element

ci =
�

φi(B1)−Γi

∆i

�
. The key is K = c1|| . . . ||c50, and the

template T is composed of {(∆1,Γ1), . . . , (∆50,Γ50)}.
To later extract K given a biometric sample B

′, and a

template T , set c′i =
�

φi(B
′)−Γi

∆i

�
and output K

′ =

c′1|| . . . ||c
′
50. We refer the reader to [41] for details on

correctness.

As is the case in many other proposals, Vielhauer et al.
perform an analysis that addresses requirement REQ-KR

by arguing that given that the template leaks only error
correcting information (i.e., the partitioning of the fea-
ture space) it does not indicate the values ci. To support
this argument, they conduct an empirical evaluation to
measure the Shannon entropy of each ci. For each user
u they derive Ku from Tu and Bu, then compute the en-
tropy of each element ci across all users. This analysis
is a standard estimate of entropy. To see why this is in-
accurate, consider two different users a and b such that
a outputs consistent values on feature φ and b does not.
Then the partitioning over φ’s range differs for each user.
Thus, even if the mean value of φ is the same when mea-
sured over both a’s and b’s samples, this mean will be
mapped to different partitions in the feature space, and
thus, a different key. This implies that computing entropy
over the ci overestimates security because the mapping
induced by the templates artificially amplifies the entropy
of the biometrics. A more realistic estimate of the util-
ity afforded an adversary by auxiliary information can
be achieved by fixing a user’s template, and using that
template to error-correct every other user’s samples to
generate a list of keys, then measuring how close those
keys are to the target user’s key. By conditioning the esti-
mate on the target users template we are able to eliminate
the artificial inflation of entropy and provide a better es-
timate of the security afforded by the construction.

Analysis. We implemented the construction and tested
the technique using all of the passphrases in the data
set we collected in [3], which consists of over 9,000
writing samples from 47 users. Each user wrote the
same five passphrases 10-20 times. In our analysis we
follow the standard approach to isolate the entropy as-
sociated with the biometric: we compute various en-
tropy measures using each user’s rendering of the same
passphrase [29, 5, 36] (this approach is justified as
user selected passphrases are assumed to have low en-
tropy). Tolerance values were set such that the approach
achieved a False Reject Rate (FRR) of 0.1% (as reported
in [40]) and all outliers and samples from users who
failed to enroll [24] were removed.

Figure 1 shows three different measures of key uncer-
tainty. The first measure, denoted Standard, is the com-
mon measure of interpersonal variation as reported in the
literature (e.g., [17, 7]) using the data from our exper-
iments. Namely, if the key element ci has entropy Hi

across the entire population, then the entropy of the key
space is computed as H =

�50
i=1 Hi. We also show

two estimates of guessing distance, the first (GD(U ,P),
plotted as GD-P) does not take a target user’s template
into account and P is just the distribution over all other
users’s keys in the population (the techniques we use to
compute these estimates are described in Appendix B).
The second (GD(U ,P[Tu]), plotted as GD-U) takes the
user’s template into account, computing P[Tu] by taking
the biometrics from all other users in the population, and
generating keys using Tu, then computing the distribu-
tion over these keys.

Figure 1 shows the CDF of the number of guesses
that one would expect an adversary to make to find each
user’s key. There are several important points to take
away from these results. The first is the common pitfalls
associated with computing key entropy. The difference
between GD(U ,P) and the standard measurement indi-
cates that the standard measurement of entropy (43 bits
in this case) is clearly misleading—under this view one
would expect an adversary to make 242 guesses on av-
erage before finding a key. However, from GD(U ,P) it
is clear that an adversary can do substantially better than
this. The difference in estimates is due to the fact that
GD takes into account conditional information between
features whereas a more standard measure does not.

The second point is the impact of a user’s template
on computing GD. We can see by examining GD(U ,P)
that if we take the usual approach of just computing en-
tropy over the keys, and ignore each user’s template, we
would assume only a small probability of guessing a key
in fewer than 221 attempts. On the other hand, since the
templates reduce the possible key space for each user, the
estimate GD(U ,P[Tu]) provides a more realistic mea-
surement. In fact, an adversary with access to population
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Figure 1: CDF of the guesses required by an adversary to find a key. We compare the Standard metric to two estimates
of GD, one that uses the target user’s template (GD-U), and one that uses each individual user’s template (GD-P).

statistics has a 50% chance of guessing a user’s key in
fewer than 222 attempts, and 15.5% chance guessing a
key in a single attempt!

These results also shed light on another pitfall worth
mentioning—namely, that of reporting an average case
estimate of key strength. If we take the target user’s tem-
plate into account in the current construction, 15.5% of
the keys can be guessed in one attempt despite the es-
timated Guessing Entropy being approximately 222. In
summary, this analysis highlights the importance of con-
ditioning entropy estimates on publicly available tem-
plates, and how several common entropy measures can
result in misleading estimates of security.

6 The Impact of Public Information on
Weak Biometric Privacy

Recall that a scheme that achieves Weak Biometric Pri-
vacy uses templates that do not leak information about
the biometrics input during enrollment. A standard ap-
proach to arguing that a scheme achieves REQ-WBP is
to show (1) auxiliary information leaks little useful in-
formation about the biometrics, and (2) templates do not
leak information about a biometric. This can be problem-
atic as the two steps are generally performed in isolation.
In our description of REQ-WBP, however, we argue that
step (2) should actually show that an adversary with ac-
cess to both templates and auxiliary information should
learn no information about the biometric. The key dif-
ference here is that auxiliary information is used in both
steps (1) and (2). This is essential as it is not difficult to

create templates that are secure when considered in iso-
lation, but are insecure once we consider knowledge de-
rived from other users (e.g., population-wide statistics).
In what follows we shed light on this important consid-
eration by examining the scheme of Hao and Wah [17].
While our analysis focuses on their construction, it is per-
tinent to any BKG that stores partial information about
the biometric in the template [43, 26].

For completeness, we briefly review the construction.
The BKG generates DSA signing keys from n dynamic
features associated with handwriting (e.g., pen tip veloc-
ity or writing time). The range of each feature is quan-
tized based on a user’s natural variation over the feature.
Each partition of a feature’s range is assigned a unique
integer; let pi be the integer that corresponds to the par-
tition containing the output of feature φi when applied
to the user’s biometric. The signing key is computed as
K = SHA1(p1|| . . . ||pn). The template stores informa-
tion that describes the partitions for each feature, as well
as the (x, y) coordinates that define the pen strokes of
the enrollment samples, and the verification key corre-
sponding to K. The (x, y) coordinates of the enrollment
samples are used as input to the Dynamic Time Warp-
ing [32] algorithm during subsequent key generation; if
the provided sample diverges too greatly from the orig-
inal samples, it is immediately rejected and key genera-
tion aborted.

Hao et al. performed a typical analysis of
REQ-WBP [17]. First, they compute the entropy
of the features over the entire population of users to
show that auxiliary information leaks little information
that could be used to discern the biometric. Second, the
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Figure 2: Search results against the BKG proposed by Hao et al. [17]. Our search algorithm has a 22% chance of
finding a user’s key on the first guess.

template is argued to be secure by making the following
three observations. First, since the template only
specifies the partitioning of the range of each feature, the
template only leaks the variation in each feature, not the
output. Second, for a computationally bound adversary,
a DSA verification key leaks no information about
the DSA signing key. Third, since the BKG employs
only dynamic features, the static (x, y) coordinates
leak no relevant information. Note that in this analysis
the template is analyzed without considering auxiliary
information. Unfortunately, while by themselves the
auxiliary information and the templates seem to be
of little use to an adversary, when taken together, the
biometric can be easily recovered.

Analysis. To demonstrate this, we apply the techniques
of [3] to generate guesses of the user’s biometric sam-
ples. In [3] we describe a set of statistical measures that
can be computed using population statistics, and map
these spatial measures 3 to the most likely pen speed.
In that work we assume limited knowledge of the target
user’s biometric, and compose static samples from the
user to create a partial forgery, then infer timing informa-
tion to make a complete forgery. In the current approach,
we need not assume access to the target user’s biometric
because the (x, y) coordinates of the enrollment samples
are stored in the template. Thus, we apply our approach
from [3], to make a guess at the user’s biometric. Then,
we use an intelligent search algorithm that enumerates
other biometrics that are “close” to the first guess. The
algorithm focuses the bulk of its work searching for the
outputs of the features that exhibit high variance across

the population, and reduces the search space by exploit-
ing conditioning between features.

To empirically evaluate our attack, we used the same
data set as in Section 5. Our implementation of the BKG
had a FRR of 29.2% and a False Accept Rate (FAR) of
1.7%, which is inline with the FRR/FAR of 28%/1.2%
reported in [17]. Moreover, if we follow the computation
of inter-personal variation as described in [17], then we
would incorrectly conclude that the scheme creates keys
with over 40 bits of entropy with our data set, which is
the same estimate provided in [17]. However, this is not
the case (see Figure 2). In particular, the fact that the
template leaks information about the biometric enables
an attack that successfully recreates the key 22% of the
time on the first try; approximately 50% of the keys are
correctly identified after making fewer than 215 guesses.
In summary, the significance of this analysis does not lie
in the effectiveness of the described attack, but more so
in the fact that the original analysis failed to take auxil-
iary information into consideration when evaluating the
security of the template.

7 The Impact of Key Compromise on
Strong Biometric Privacy

Lastly, we highlight the importance of quantifying the
privacy of a user’s biometric against adversaries who
have access to the cryptographic key (i.e., REQ-SBP

from Section 3). We examine a BKG proposed by Hao et
al. [16].4 The construction generates a random key and
then “locks” it with a user’s iris code. The construction
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uses a cryptographic hash function h : {0, 1}∗ → {0, 1}s

and a “concatenated” error correction code consisting of
an encoding algorithm C : {0, 1}140

→ {0, 1}2048, and
the corresponding decoding algorithm D : {0, 1}2048

→

{0, 1}140. This error correction code is the composition
of a Reed-Solomon and Hadamard code [16, Section 3].
Iris codes are elements in {0, 1}2048 [8].

The BKG works as follows: given a user’s iris code B,
select a random string K ∈ {0, 1}140, and derive the tem-
plate T = �h(K),B ⊕ C(K)�, and output T and K. To
later derive the key given an iris code B′ and the template
T = �t1, t2�, compute K

′ = D(t2 ⊕ B
′). If h(K′) = t1,

then output K′, otherwise, fail. If B and B
′ are “close”

to one another, then t2 ⊕ B
′ is “close” to C(K), perhaps

differing in only a few bits. The error correcting code
handles these errors, yielding K

′ = K.
Hao et al. provide a security analysis arguing require-

ment REQ-KR using both cryptographic reasoning and a
standard estimate of entropy of the input biometric. That
is, they provide empirical evidence that auxiliary infor-
mation cannot be used to guess a target user’s biometric,
and a cryptographic argument that, assuming the former,
the template and auxiliary information cannot be used to
guess a key. They conservatively estimate the entropy
of K to be 44 bits. Moreover, the authors note that if
the key is ever compromised, the system can be used to
“lock” a new key, since K is selected at random and is
not a function of the biometric.

Unfortunately, given the current construction, com-
promise of K, in addition to the public information
T = �t1, t2�, allows one to completely reconstruct
B = C(K) ⊕ t2. Thus, even if a user were to create a
new template and key pair, an adversary could use the
old template and key to derive the biometric, and then
use the biometric to unlock the new key. The signifi-
cance of this is worth restating: because this BKG fails
to meet REQ-SBP, the privacy of a user’s biometric is
completely undermined once any key for that user is ever
compromised.

8 Conclusion

In this paper, we examine a series of requirements, pit-
falls, and subtleties that are commonly overlooked in the
evaluation of biometric key generators. Our goal is to
encourage rigorous empirical evaluations that consider
the impact of publicly available data to show that a BKG
(I.) ensures the privacy of a user’s biometric, and (II.)
outputs keys that are suitable for cryptographic applica-
tions. Our exposition brings to the forefront practical
ways of thinking about existing requirements that help
elucidate subtle nuances that are commonly overlooked
in regards to biometric security. As we demonstrate,

failure to consider these requirements may result in es-
timates that overstate the security of proposed schemes.

To underscore the practical significance of each of
these requirements, we present analyses of three pub-
lished systems. While we point out weaknesses in spe-
cific constructions, it is not our goal to fault the those spe-
cific works. Instead, we aim to bring to light flaws in the
standard approaches that were followed in each setting.
In one case we exploit auxiliary information to show that
an attacker can guess 15% of the keys on her first attempt.
In another case, we highlight the importance of ensuring
biometric privacy by exploiting the information leaked
by templates to yield a 22% chance of guessing a user’s
key in one attempt. Lastly, we show that subtleties in
BKG design can lead to flaws that allow an adversary to
derive a user’s biometric given a compromised key and
template, thereby completely undermining the security
of the scheme.

We hope that our work encourages designers and eval-
uators to analyze BKGs with a degree of skepticism, and
to question claims of security that overlook the require-
ments presented herein. To facilitate this type of ap-
proach, we not only ensure that our requirements can
be applied to real systems, but also introduce Guessing
Distance—a heuristic measure that estimates the uncer-
tainty of the outputs of a BKG given access to population
statistics.
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Notes

1Typically, U is computed over error-corrected values, and so the
most likely element will also be the only element that has any proba-
bility mass.

2We note that Guessing Distance is not a distance metric as it does
not necessarily satisfy symmetry or the triangle inequality.

3These measures can be reproduced given the (x, y) coordinates of
handwriting.

4This BKG is technically an instance of the fuzzy commitment pro-
posed by Juels and Wattenberg [21], which was later shown to be an
instance of a secure sketch [11].

A Guessing Distance and Guessing En-
tropy

Guessing Entropy [25] is commonly used for measuring
the expected number of guesses it takes to find an average
element in a set assuming an optimal guessing strategy
(i.e., first guessing the element with the highest likeli-
hood, followed by guessing the element with the second
highest likelihood, etc.). Given a distribution P over Ω
and the convention that P(ωi) ≥ P(ωi+1), Guessing En-
tropy is computed as G(P) =

�n
i=1

iP(ωi).
Guessing Entropy is commonly used to determine how

many guesses an adversary will take to guess a key. At
first, Guessing Entropy and Guessing Distance appear to
be quite similar. However, there is one important dif-
ference: Guessing Entropy is a summary statistic and

Guessing Distance is not. While Guessing Entropy pro-
vides an intuitive and accurate estimate over distributions
that are close to uniform, the fact that there is one mea-
sure of strength for all users in the population may result
in somewhat misleading results when Guessing Entropy
is computed over skewed distributions.

To see why this is the case, consider the following dis-
tribution: let P be defined over Ω = {ω1, . . . , ωn} as
P(ω1) =

1

2
, and P(ωi) =

1

2(n−1)
for i ∈ [2, n]. That is,

one element (or key) is output by 50% of the users and
the remaining elements are output with equal likelihood.
The Guessing Entropy of P is:
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Thus, although the expected number of guesses to cor-
rectly select ω is approximately n

4
, over half of the pop-

ulation’s keys are correctly guessed on the first attempt
following the optimal strategy. To contrast this, consider
an analysis of Guessing Distance with threshold δ = 1

N
.

(Assume for exposition that distributions are estimated
from a population of N = 2(n−1) users.) To do so, eval-
uate each user in the population independently. Given a
population of users, first remove a user to compute U and
use the remaining users to compute P . Repeat this pro-
cess for the entire population.

In the case of our pathological distribution, we may
consider only two users without loss of generality: a user
with distribution U1 who outputs key ω1, and user with
distribution U2 who outputs key ω2. In the first case, we
have GDδ(U1,P) = log 1 = 0, because the majority of
the mass according to P is assigned to ω1, which is the
most likely element according to U1. For U2, we have
t− = 2 and t+ = n, and thus GDδ(U2,P) = log

n+2

2
.

Taking the minimum value (or even reporting a CDF)
shows that for a large proportion of the population (all
users with distribution U1), this distribution offers no
security—a fact that is immediately lost if we only con-
sider a summary statistic. However, it is comforting to
note, that if we compute the average of 2GD over all users,
we obtain estimates that are identical to that of guessing
entropy for sets that are sufficiently large:
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1

N

�

(U,P)

2GDδ(U,P) =
1

N

�
N

2
2log 1 +

N

2
2log

n+2

2

�

=
1

2
+
1

2

�
n+ 2

2

�

≈

n

4

B Estimating GD

As noted in Section 5, it is difficult to obtain a meaning-
ful estimate of probability distributions over large sets,
e.g., N

50. In order to quantify the security defined by a
system, it is necessary to find techniques to derive mean-
ingful estimates. This Appendix discusses how we esti-
mate GD. The estimate also implicitely defines an algo-
rithm that can be used to guess keys.

For convenience we use φ to denote both a biomet-
ric feature and the random variable that is defined using
population statistics over φ (taken over the set Ωφ). If
a distribution is not subscripted, it is understood to be
taken over the key space Ω = Ωφ1

× · · · × Ωφn
. Our

estimate uses of several tools from information theory:

Entropy. The entropy of a random variable X defined
over the set Ω is

H(X) = −

�

ω∈Ω

Pr [X = ω] log Pr [X = ω]

Mutual Information. The amount of information
shared between two random variables X and Y defined
over the domains ΩX and ΩY is measured as

I(X,Y ) =
�

x∈Ωx

�

y∈Ωy

Pr [X=x ∧ Y =y] log
Pr [X=x ∧ Y =y]

Pr [X=x]Pr [Y =y]

We use the notation I(X;Y,Z) to denote the mutual in-
formation between the random variable X and the ran-
dom variable defined by the joint distribution between
the random variables Y and Z.

The Estimate. Let GDδ(Uφi
,Pφi

|ui−1, . . . , u1) be the
guessing distance between the user’s and population’s
distribution over φi conditioned on the even that φi−1=
ui−1, . . . , φ1 = u1. In particular, let L

Pφi
=

(ω1, . . . , ωn) be the elements of Ωφi
ordered such that

Pφi
(ωj |φi−1=ui−1, . . . , φ1=u1) ≥

Pφi
(ωj+1|φi−1=ui−1, . . . , φ1 = u1)

As before, let ω∗ = argmaxω∈Ωφi
Uφi
(ω), and t− and

t+ be the smallest and largest indexes j such that

|Pφi
(ωj |φi−1=ui−1, . . . , φ1=u1)−

Pφi
(ω∗

|φi−1=ui−1, . . . , φ1=u1)| ≤ δ

Then, GDδ(Uφi
,Pφi

| ui−1, . . . , u1) = log(t
−+t+)−1.

In other words, if an adversary assumes that a target user
is distributed according to the population and fixes the
values of certain features, this is the number of guesses
she will need to make to guess another feature. Unfortu-
nately, this quantity is also infeasible to compute in light
of data constraints so we endeavor to find an easily com-
putable estimate. To this end, define the weight (di) of
an element in ω ∈ Ωφi

as:

di(ω | ui−1, . . . , u1) =
i−1�

h=1

i−1�

j=1

I(φi;φh, φj) Pφi
(ω | φh = uh ∧ φj = uj)

The weights of elements that are more likely to occur
given the values of other features will be larger than the
weights that are less likely to occur. Intuitively, each of
the values (u) has an influence on di(ω) and those values
that correspond to features that have a higher correlation
with φi have more influence. We also note that we only
use two levels of conditional probabilities, which are rel-
atively easy to compute, instead of conditioning over the
entire space. Now, we use the weights to estimate the
probability distributions as:

P̂φi
(ωj | ui−1, . . . , u1) =

di(ωj | ui−1, . . . , u1)/
�

ω∈Ωφi

di(ω | ui−1, . . . , u1)

Note that while this technique may not provide a perfect
estimate of each probability, our goal is to discover the
relative magnitude of the probabilities because they will
be used to estimate Guessing Distance. We believe that
this approach achieves this goal.

We are almost ready to provide an estimate of GD.
First, we specify an ordering for the features. The or-
dering will be according to an ordering measure (M(φ))
such that features with a larger measure have a low en-
tropy (and are therefore easier to guess) and have a high
correlation with other features. An adversary could then
use this ordering to reduce the number of guesses in a
search by first guessing features with a higher measure.
Define the feature-ordering measure for φi as:

M(φi) =
�

i�=j

�
1 +

H(φj)

H(φi)

�1+I(φi,φj)
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Finally, we reindex the features such that M(φi) ≥

M(φi+1) for all i ∈ [1, 50], and estimate the guessing
distance for a specific user with φi = xi as:

�GD(U ,P) =

log



1+
50�

i=1




�
2GD(Uφi

,P̂φi
|xi−1,...,x1)

−1
� 50�

j=i+1

|Ωφj
|









This estimate helps in modeling an adversary that per-
forms a brute-force search over all of the features by
starting with the features that are easiest to guess and
using those features to reduce the uncertainty about fea-
tures that are more difficult to guess. For each feature,
the adversary will need to make 2GD(Uφi

,P̂φi
|ui−1,...,u1)

guesses to find the correct value. Since each incorrect
guess (2GD(Uφi

,P̂φi
|ui−1,...,u1)

− 1 of them) will cause a
fruitless enumeration of the rest of the features, we mul-
tiply the number of incorrect guesses by the sizes of the
ranges of the remaining features. Finally, we take the log
to represent the number of guesses as bits.

Section 5 uses this estimation technique to measure
GD of a user versus the population ( �GD(U ,P)), and for
a user versus the population conditioned on the user’s
template ( �GD(U ,P[Tu])). The only way in which the es-
timation technique differs between the two settings is the
definition of Pφi

. In the case of �GD(U ,P), Pφi
is com-

puted by measuring the ith key element for every other
user in the population. In the case of �GD(U ,P[Tu]), Pφi

is computed using all of the other user’s samples in con-
juction with the target user’s template to derive a set of
keys and taking the distribution over the ith element of
the keys.




