Check out the new USENIX Web site.
USENIX, The Advanced Computing Systems Association

16th USENIX Security Symposium – Abstract

Pp. 239–256 of the Proceedings

Secretly Monopolizing the CPU Without Superuser Privileges

Dan Tsafrir, The Hebrew University of Jerusalem and IBM T.J. Watson Research Center; Yoav Etsion and Dror G. Feitelson, The Hebrew University of Jerusalem


We describe a “cheat” attack, allowing an ordinary process to hijack any desirable percentage of the CPU cycles without requiring superuser/administrator privileges. Moreover, the nature of the attack is such that, at least in some systems, listing the active processes will erroneously show the cheating process as not using any CPU resources: the “missing” cycles would either be attributed to some other process or not be reported at all (if the machine is otherwise idle). Thus, certain malicious operations generally believed to have required overcoming the hardships of obtaining root access and installing a rootkit, can actually be launched by non-privileged users in a straightforward manner, thereby making the job of a malicious adversary that much easier. We show that most major general-purpose operating systems are vulnerable to the cheat attack, due to a combination of how they account for CPU usage and how they use this information to prioritize competing processes. Furthermore, recent scheduler changes attempting to better support interactive workloads increase the vulnerability to the attack, and naive steps taken by certain systems to reduce the danger are easily circumvented. We show that the attack can nevertheless be defeated, and we demonstreate this by implementing a patch for Linux that eliminates the problem with negligible overhead.
  • View the full text of this paper in HTML and PDF. Listen to the presentation in MP3 format.
    Click here if you have forgotten your password Until August 2008, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2007 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.
To become a USENIX member, please see our Membership Information.

Last changed: 20 Sept. 2007 ac