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Abstract
In this paper we propose two new constructions for pro-

tecting the integrity of files in cryptographic file systems.

Our constructions are designed to exploit two charac-

teristics of many file-system workloads, namely low en-

tropy of file contents and high sequentiality of file block

writes. At the same time, our approaches maintain the

best features of the most commonly used algorithm to-

day (Merkle trees), including defense against replay of

stale (previously overwritten) blocks and a small, con-

stant amount of trusted storage per file. Via implementa-

tions in the EncFS cryptographic file system, we evalu-

ate the performance and storage requirements of our new

constructions compared to those of Merkle trees. We

conclude with guidelines for choosing the best integrity

algorithm depending on typical application workload.

1 Introduction

The growth of outsourced storage in the form of storage

service providers underlines the importance of develop-

ing efficient security mechanisms to protect files stored

remotely. Cryptographic file systems (e.g., [10, 6, 25,

13, 17, 23, 20]) provide means to protect file secrecy (i.e.,

prevent leakage of file contents) and integrity (i.e., detect

the unauthorized modification of file contents) against

the compromise of the file store and attacks on the net-

work while blocks are in transit to/from the file store.

Several engineering goals have emerged to guide the de-

sign of efficient cryptographic file systems. First, crypto-

graphic protections should be applied at the granularity

of individual blocks as opposed to entire files, since the
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latter requires the entire file to be retrieved to verify its

integrity, for example. Second, applying cryptographic

protections to a block should not increase the block size,

so as to be transparent to the underlying block store.

(Cryptographic protections might increase the number of

blocks, however.) Third, the trusted storage required by

clients (e.g., for encryption keys and integrity verifica-

tion information) should be kept to a minimum.
In this paper we propose and evaluate two new algo-

rithms for protecting file integrity in cryptographic file

systems. Our algorithms meet these design goals, and

in particular implement integrity using only a small con-

stant amount of trusted storage per file. (Of course, as

with any integrity-protection scheme, this trusted infor-

mation for many files could itself be written to a file

in the cryptographic file system, thereby reducing the

trusted storage costs for many files to that of only one.

The need for trusted information cannot be entirely elim-

inated, however.) In addition, our algorithms exploit two

properties of many file-system workloads to achieve effi-

ciencies over prior proposals. First, typical file contents

in many file-system workloads have low empirical en-

tropy; such is the case with text files, for example. Our

first algorithm builds on our prior proposal that exploits

this property [26] and uses tweakable ciphers [21, 15]

for encrypting file block contents; this prior proposal,

however, did not achieve constant trusted storage per file.

Our second algorithm reduces the amount of additional

storage needed for integrity by using the fact that low-

entropy block contents can be compressed enough to em-

bed a message-authentication code inside the block. The

second property that we exploit in our algorithms to re-

duce the additional storage needed for integrity is that

blocks of the same file are often written sequentially, a

characteristic that, to our knowledge, has not been previ-

ously utilized.
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By designing integrity mechanisms that exploit these

properties, we demonstrate more efficient integrity pro-

tections in cryptographic file systems than have previ-

ously been possible for many workloads. The measures

of efficiency that we consider include the amount of un-

trusted storage required by the integrity mechanism (over

and above that required for file blocks); the integrity

bandwidth, i.e., the amount of this information that must

be accessed (updated or read) when accessing a single

file block, averaged over all blocks in a file, all blocks in

all files, or all accesses in a trace (depending on context);

and the file write and read performance costs.
The standard against which we compare our algo-

rithms is the Merkle tree [24], which to date is the over-

whelmingly most popular method of integrity protection

for a file. Merkle trees can be implemented in crypto-

graphic file systems so as to meet the requirements out-

lined above, in particular requiring trusted storage per file

of only one output of a cryptographic hash function (e.g.,

20 bytes for SHA-1 [30]). They additionally offer an in-

tegrity bandwidth per file that is logarithmic in the num-

ber of file blocks. However, Merkle trees are oblivious

to file block contents and access characteristics, and we

show that by exploiting these, we can generate far more

efficient integrity mechanisms for some workloads.
We have implemented our integrity constructions and

Merkle trees in EncFS [14], an open-source user-level

file system that transparently provides file block encryp-

tion on top of FUSE [12]. We provide an evaluation of

the three approaches with respect to our measures of in-

terest, demonstrating how file contents, as well as file ac-

cess patterns, have a great influence on the performance

of the new integrity algorithms. Our experiments demon-

strate that there is not a clear winner among the three

constructions for all workloads, in that different integrity

constructions are best suited to particular workloads. We

thus conclude that a cryptographic file system should im-

plement all three schemes and give higher-level applica-

tions an option to choose the appropriate integrity mech-

anism.

2 Random Access Integrity Model

We consider the model of a cryptographic file system that

provides random access to files. Encrypted data is stored

on untrusted storage servers and there is a mechanism

for distributing the cryptographic keys to authorized par-

ties. A small (on the order of several hundred bytes),

fixed-size per file, trusted storage is available for authen-

tication data.
We assume that the storage servers are actively con-

trolled by an adversary. The adversary can adaptively

alter the data stored on the storage servers or perform

any other attack on the stored data, but it cannot modify

or observe the trusted storage. A particularly interesting

attack that the adversary can mount is a replay attack, in

which stale data is returned to read requests of clients.

Using the trusted storage to keep some constant-size in-

formation per file, and keeping more information per file

on untrusted storage, our goal is to design and evaluate

integrity algorithms that allow the update and verification

of individual blocks in files and that detect data modifi-

cation and replay attacks.

In our framework, a file F is divided into n fixed-size

blocks B1B2 . . . Bn (the last block Bn might be shorter

than the first n − 1 blocks), each encrypted individually

with the encryption key of the file and stored on the un-

trusted storage servers (n differs per file). The constant-

size, trusted storage for file F is denoted TSF . Addi-

tional storage for file F , which can reside in untrusted

storage, is denoted USF ; of course, USF can be written

to the untrusted storage server.

The storage interface provides two basic operations to

the clients: F.WriteBlock(i, C) stores content C at block

index i in file F and C ← F.ReadBlock(i) reads (en-

crypted) content from block index i in file F . An in-

tegrity algorithm for an encrypted file system consists of

five operations. In the initialization algorithm Init for

file F , the encryption key for the file is generated. In an

update operation Update(i, B) for file F , an authorized

client updates the i-th block in the file with the encryp-

tion of block content B and updates the integrity infor-

mation for the i-th block stored in TSF and USF . In

the check operation Check(i, C) for file F , an authorized

client first decrypts C and then checks that the decrypted

block content is authentic, using the additional storage

TSF and USF for file F . The check operation returns

the decrypted block if it concludes that the block content

is authentic and ⊥ otherwise. A client can additionally

perform an append operation Append(B) for file F , in

which a new block that contains the encryption of B is

appended to the encrypted file, and a Delete operation

that deletes the last block in a file and updates the in-

tegrity information for the file.

Using the algorithms we have defined for an integrity

scheme for an encrypted file, a client can read or write at

any byte offset in the file. For example, to write to a byte

offset that is not at a block boundary, the client first reads

the block to which the byte offset belongs, decrypts it

and checks its integrity using algorithm Check. Then, the

client constructs the new data block by replacing the ap-

propriate bytes in the decrypted block, and calls Update

to encrypt the new block and compute its integrity infor-

mation.
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In designing an integrity algorithm for a cryptographic

file system, we consider the following metrics. First is

the size of the untrusted storage USF ; we will always

enforce that the trusted storage TSF is of constant size,

independent of the number of blocks. Second is the in-

tegrity bandwidth for updating and checking individual

file blocks, defined as the number of bytes from USF ac-

cessed (updated or read) when accessing a block of file

F , averaged over either: all blocks in F when we speak

of a per-file integrity bandwidth; all blocks in all files

when we speak of the integrity bandwidth of the file sys-

tem; or all blocks accessed in a particular trace when we

speak of one trace. Third is the performance cost of writ-

ing and reading files.

3 Preliminaries

3.1 Merkle Trees

Merkle trees [24] are used to authenticate n data items

with constant-size trusted storage. A Merkle tree for

data items M1, . . . ,Mn, denoted MT(M1, . . . ,Mn), is

a binary tree that has M1, . . . ,Mn as leaves. An inte-

rior node of the tree with children CL and CR is the hash

of the concatenation of its children (i.e., h(CL||CR), for

h : {0, 1}∗ → {0, 1}s a second preimage resistant hash

function [29] that outputs strings of length s bits). If the

root of the tree is stored in trusted storage, then all the

leaves of the tree can be authenticated by reading from

the tree a number of hashes logarithmic in n.
We define the Merkle tree for a file F with n blocks

B1, . . . , Bn to be the binary tree MTF = MT(h(1||B1),
. . . , h(n||Bn)). A Merkle tree with a given set of leaves

can be constructed in multiple ways. We choose to ap-

pend a new block in the tree as a right-most child, so

that the tree has the property that all the left subtrees are

complete. We define several algorithms for a Merkle tree

T , for which we omit the implementation details, due to

space limitations.
- In the UpdateTree(R, i, hval) algorithm for tree T ,

the hash stored at the i-th leaf of T (counting from left

to right) is updated to hval. This triggers an update of

all the hashes stored on the path from the i-th leaf to the

root of the tree. It is necessary to first check that all the

siblings of the nodes on the path from the updated leaf

to the root of the tree are authentic. Finally, the updated

root of the tree is output in R.
- The CheckTree(R, i, hval) algorithm for tree T

checks that the hash stored at the i-th leaf matches hval.

All the hashes stored at the nodes on the path from the

i-th leaf to the root are computed and the root of T is

checked finally to match the value stored in R.

- Algorithm AppendTree(R, hval) for tree T appends

a new leaf u that stores the hash value hval to the tree,

updates the path from this new leaf to the root of the tree

and outputs the new root of the tree in R.

- The DeleteTree(R) algorithm for tree T deletes the

last leaf from the tree, updates the remaining path to the

root of the tree and outputs the new root of the tree in R.

3.2 Encryption Schemes and Tweakable

Ciphers

An encryption scheme consists of a key generation algo-

rithm Gen that outputs an encryption key, an encryption

algorithm Ek(M) that outputs the encryption of a mes-

sage M with secret key k and a decryption algorithm

Dk(C) that outputs the decryption of a ciphertext C with

secret key k. A widely used secure encryption scheme is

AES [2] in CBC mode [8].

A tweakable cipher [21, 15] is, informally, a length-

preserving encryption method that uses a tweak in both

the encryption and decryption algorithms for variability.

A tweakable encryption of a message M with tweak t

and secret key k is denoted Et
k(M) and, similarly, the

decryption of ciphertext C with tweak t and secret key

k is denoted Dt
k(C). The tweak is a public parameter,

and the security of the tweakable cipher is based only on

the secrecy of the encryption key. Tweakable ciphers can

be used to encrypt fixed-size blocks written to disk in a

file system. Suitable values of the tweak for this case

are, for example, block addresses or block indices in the

file. There is a distinction between narrow-block tweak-

able ciphers that operate on block lengths of 128 bits (as

regular block ciphers) and wide-block tweakable ciphers

that operate on arbitrarily large blocks (e.g., 512 bytes or

4KB). In this paper we use the term tweakable ciphers

to refer to wide-block tweakable ciphers as defined by

Halevi and Rogaway [15].

The security of tweakable ciphers implies an interest-

ing property, called non-malleability [15], that guaran-

tees that if only a single bit is changed in a valid cipher-

text, then its decryption is indistinguishable from a ran-

dom plaintext. Tweakable cipher constructions include

CMC [15] and EME [16].

3.3 Efficient Block Integrity Using Ran-

domness of Block Contents

Oprea et al. [26] provide an efficient integrity construc-

tion in a block-level storage system. This integrity con-

struction is based on the experimental observation that

contents of blocks written to disk usually are efficiently
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distinguishable from random blocks, i.e., blocks uni-

formly chosen at random from the set of all blocks of

a fixed length. Assuming that data blocks are encrypted

with a tweakable cipher, the integrity of the blocks that

are efficiently distinguishable from random blocks can be

checked by performing a randomness test on the block

contents. The non-malleability property of tweakable

ciphers implies that if block contents after decryption

are distinguishable from random, then it is very likely

that the contents are authentic. This idea permits a re-

duction in the trusted storage needed for checking block

integrity: a hash is stored only for those (usually few)

blocks that are indistinguishable from random blocks (or,

in short, random-looking blocks).
An example of a statistical test IsRand [26] that

can be used to distinguish block contents from ran-

dom blocks evaluates the entropy of a block and con-

siders random those blocks that have an entropy higher

than a threshold chosen experimentally. For a block B,

IsRand(B) returns 1 with high probability if B is a uni-

formly random block in the block space and 0, other-

wise. Oprea et al. [26] provide an upper bound on the

false negative rate of the randomness test that is used in

the security analysis of the scheme.
We use the ideas from Oprea et al. [26] as a start-

ing point for our first algorithm for implementing file

integrity in cryptographic file systems. The main chal-

lenge to construct integrity algorithms in our model is to

efficiently reduce the amount of trusted storage per file

to a constant value. Our second algorithm also exploits

the redundancy in file contents to reduce the additional

space for integrity, but in a different way, by embedding

a message authentication code (MAC) in file blocks that

can be compressed enough. Both of these schemes build

from a novel technique that is described in Section 4.1 for

efficiently tracking the number of writes to file blocks.

4 Write Counters for File Blocks

All the integrity constructions for encrypted storage de-

scribed in the next section use write counters for the

blocks in a file. A write counter for a block denotes the

total number of writes done to that block index. Coun-

ters are used to reduce the additional storage space taken

by encrypting with a block cipher in CBC mode, as de-

scribed in Section 4.2. Counters are also a means of dis-

tinguishing different writes performed to the same block

address and as such, can be used to prevent against replay

attacks.
We define several operations for the write counters of

the blocks in a file F . The UpdateCtr(i) algorithm ei-

ther initializes the value of the counter for the i-th block

in file F with 1, or it increments the counter for the i-

th block if it has already been initialized. The algorithm

also updates the information for the counters stored in

USF . Function GetCtr(i) returns the value of the counter

for the i-th block in file F . When counters are used to

protect against replay attacks, they need to be authenti-

cated with a small amount of trusted storage. For au-

thenticating block write counters, we define an algorithm

AuthCtr that modifies the trusted storage space TSF of

file F to contain the trusted authentication information

for the write counters of F , and a function CheckCtr that

checks the authenticity of the counters stored in USF us-

ing the trusted storage TSF for file F and returns true

if the counters are authentic and false, otherwise. Both

operations for authenticating counters are invoked by an

authorized client.

4.1 Storage and Authentication of Block

Write Counters

A problem that needs to be addressed in the design of the

various integrity algorithms described below is the stor-

age and authentication of the block write counters. If a

counter per file block were used, this would result in sig-

nificant additional storage for counters. Here we propose

a more efficient method of storing the block write coun-

ters, based on analyzing the file access patterns in NFS

traces collected at Harvard University [9].

Counter intervals. We performed experiments on the

NFS Harvard traces [9] in order to analyze the file access

patterns. We considered three different traces (LAIR,

DEASNA and HOME02) for a period of one week. The

LAIR trace consists of research workload traces from

Harvard’s computer science department. The DEASNA

trace is a mix of research and email workloads from the

division of engineering and applied sciences at Harvard.

HOME02 is mostly the email workload from the campus

general purpose servers.

Ellard et al. [9] make the observation that a large num-

ber of file accesses are sequential. This leads to the idea

that the values of the write counters for adjacent blocks

in a file might be correlated. To test this hypothesis, we

represent counters for blocks in a file using counter in-

tervals. A counter interval is defined as a sequence of

consecutive blocks in a file that all share the same value

of the write counter. For a counter interval, we need to

store only the beginning and end of the interval, and the

value of the write counter.

Table 1 shows the average storage per file used by the

two counter representation methods for the three traces.

We represent a counter using 2 bytes (as the maximum
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observed value of a counter was 9905) and we repre-

sent file block indices with 4 bytes. The counter inter-

val method reduces the average storage needed for coun-

ters by a factor of 30 for the LAIR trace, 26.5 for the

DEASNA trace and 7.66 for the HOME02 trace com-

pared to the method that stores a counter per file block.

This justifies our design choice to use counter inter-

vals for representing counter values in the integrity al-

gorithms presented in the next section.

LAIR DEASNA HOME02

Counter per block 547.8 bytes 1.46 KB 3.16 KB

Counter intervals 18.35 bytes 55.04 bytes 413.44 bytes

Table 1: Average storage per file for two counter repre-

sentation methods.

Counter representation. The counter intervals for file

F are represented by two arrays: IntStartF keeps the

block indices where new counter intervals start and

CtrValF keeps the values of the write counter for each

interval. The trusted storage TSF for file F includes ei-

ther the arrays IntStartF and CtrValF if they fit into TSF

or, for each array, a hash of all its elements (concate-

nated), otherwise. In the limit, to reduce the bandwidth

for integrity, we could build a Merkle tree to authenticate

each of these arrays and store the root of these trees in

TSF , but we have not seen in the Harvard traces files that

would warrant this. We omit here the implementation de-

tails for the UpdateCtr, GetCtr, AuthCtr and CheckCtr

operations on counters, due to space limitations.
If the counter intervals for a file get too dispersed, then

the size of the arrays IntStartF and CtrValF might in-

crease significantly. To keep the untrusted storage for

integrity low, we could periodically change the encryp-

tion key for the file, re-encrypt all blocks in the file, and

reset the block write counters to 0.

4.2 Length-Preserving Stateful Encryption

with Counters

Secure encryption schemes are usually not length-

preserving. However, one of our design goals stated in

the introduction is to add security (and, in particular, en-

cryption) to file systems in a manner transparent to the

storage servers. For this purpose, we introduce here the

notion of a length-preserving stateful encryption scheme

for a file F , an encryption scheme that encrypts blocks in

a way that preserves the length of the original blocks, and

stores any additional information in the untrusted storage

space for the file. We define a length-preserving stateful

encryption scheme for a file F to consist of a key gen-

eration algorithm Glen that generates an encryption key

for the file, an encryption algorithm Elen that encrypts

block content B for block index i with key k and out-

puts ciphertext C, and a decryption algorithm Dlen that

decrypts the encrypted content C of block i with key k

and outputs the plaintext B. Both the Elen and Dlen al-

gorithms also modify the untrusted storage space for the

file.

Tweakable ciphers are by definition length-preserving

stateful encryption schemes. A different construction on

which we elaborate below uses write counters for file

blocks. Let (Gen,E,D) be an encryption scheme con-

structed from a block cipher in CBC mode. To encrypt

an n-block message in the CBC encryption mode, a ran-

dom initialization vector is chosen. The ciphertext con-

sists of n+1 blocks, with the first being the initialization

vector. We denote by Ek(B, iv) the output of the encryp-

tion of B (excluding the initialization vector) using key

k and initialization vector iv, and similarly by Dk(C, iv)
the decryption of C using key k and initialization vector

iv.

We replace the random initialization vectors for en-

crypting a file block with a pseudorandom function ap-

plication of the block index concatenated with the write

counter for the block. This is intuitively secure because

different initialization vectors are used for different en-

cryptions of the same block, and moreover, the proper-

ties of pseudorandom functions imply that the initializa-

tion vectors are indistinguishable from random. It is thus

enough to store the write counters for the blocks of a file,

and the initialization vectors for the file blocks can be

easily inferred.

The Glen, Elen and Dlen algorithms for a file F are de-

scribed in Figure 1. Here PRF : KPRF×I → B denotes a

pseudorandom function family with key space KPRF, in-

put space I (i.e., the set of all block indices concatenated

with block counter values), and output space B (i.e., the

block space of E).

5 Integrity Constructions for Encrypted

Storage

In this section, we first present a Merkle tree integrity

construction for encrypted storage, used in file systems

such as Cepheus [10], FARSITE [1], and Plutus [17].

Second, we introduce a new integrity construction based

on tweakable ciphers that uses some ideas from Oprea

et al. [26]. Third, we give a new construction based on

compression levels of block contents. We evaluate the

performance of the integrity algorithms described here

in Section 7.
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Glen(F ): Elen
<k1,k2>(F, i, B): Dlen

<k1,k2>(F, i, C):

k1
R
←KPRF F.UpdateCtr(i) iv ← PRFk1

(i||F.GetCtr(i))
k2 ← Gen() iv ← PRFk1

(i||F.GetCtr(i)) B ← Dk2
(C, iv)

return <k1, k2> C ← Ek2
(B, iv) return B

return C

Figure 1: Implementing a length-preserving stateful encryption scheme with write counters.

F.Update(i, B): F.Check(i, C):

k ← F.enc key k ← F.enc key

MTF .UpdateTree(TSF , i, h(i||B)) Bi ← Dlen
k (F, i, C)

C ← Elen
k (F, i, B) if MTF .CheckTree(TSF , i, h(i||Bi)) = true

F.WriteBlock(i, C) return Bi

else
return⊥

F.Append(B): F.Delete():

k ← F.enc key n← F.blocks
n← F.blocks MTF .DeleteTree(TSF )
MTF .AppendTree(TSF , h(n + 1||B)) delete Bn from file F

C ← Elen
k (F, n + 1, B)

F.WriteBlock(n + 1, C)

Figure 2: The Update, Check, Append and Delete algorithms for the MT-EINT construction.

5.1 The Merkle Tree Construction

MT-EINT

In this construction, file blocks can be encrypted with

any length-preserving stateful encryption scheme and

they are authenticated with a Merkle tree. More pre-

cisely, if F is a file comprised of blocks B1, . . . , Bn,

then the untrusted storage for integrity for file F is

USF = MTF (h(1||B1), . . . , h(n||Bn)) (for h a second-

preimage resistant hash function), and the trusted storage

TSF is the root of this tree.
The algorithm Init runs the key generation algorithm

Glen of the length-preserving stateful encryption scheme

for file F . The algorithms Update, Check, Append and

Delete of the MT-EINT construction are given in Fig-

ure 2. We denote here by F.enc key the encryption key

for file F (generated in the Init algorithm) and F.blocks

the number of blocks in file F .
- In the Update(i, B) algorithm for file F , the i-th leaf

in MTF is updated with the hash of the new block con-

tent using the algorithm UpdateTree and the encryption

of B is stored in the i-th block of F .
- To append a new block B to file F with algorithm

Append(B), a new leaf is appended to MTF with the

algorithm AppendTree, and then an encryption of B is

stored in the (n + 1)-th block of F (for n the number of

blocks of F ).
- In the Check(i, C) algorithm for file F , block C

is decrypted, and its integrity is checked using the

CheckTree algorithm.
- To delete the last block from a file F with algorithm

Delete, the last leaf in MTF is deleted with the algorithm

DeleteTree.
The MT-EINT construction detects data modification

and block swapping attacks, as file block contents are

authenticated by the root of the Merkle tree for each file.

The MT-EINT construction is also secure against replay

attacks, as the tree contains the hashes of the latest ver-

sion of the data blocks and the root of the Merkle tree is

authenticated in trusted storage.

5.2 The Randomness Test Construction

RAND-EINT

Whereas in the Merkle tree construction any length-

preserving stateful encryption algorithm can be used to

individually encrypt blocks in a file, the randomness test

construction uses the observation from Oprea et al. [26]

that the integrity of the blocks that are efficiently dis-

tinguishable from random blocks can be checked with a

randomness test if a tweakable cipher is used to encrypt

them. As such, integrity information is stored only for

random-looking blocks.
In this construction, a Merkle tree per file that authen-

ticates the contents of the random-looking blocks is built.

The untrusted storage for integrity USF for file F com-

prised of blocks B1, . . . , Bn includes this tree RTreeF =
MT(h(i||Bi) : i ∈ {1, . . . , n} and IsRand(Bi) =
1), and, in addition, the set of block numbers that

are random-looking RArrF = {i ∈ {1, . . . , n} :
IsRand(Bi) = 1}, ordered the same as the leaves in

the previous tree RTreeF . The root of the tree RTreeF is

kept in the trusted storage TSF for file F .
To prevent against replay attacks, clients need to dis-

tinguish different writes of the same block in a file. A

simple idea [26] is to use a counter per file block that de-

notes the number of writes of that block, and make the
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F.Update(i, B) : F.Check(i, C):

k ← F.enc key k ← F.enc key
F.UpdateCtr(i) if F.CheckCtr() = false
F.AuthCtr() return⊥

if IsRand(B) = 0 Bi ← D
F.Tweak(i,F.GetCtr(i))
k

(C)
if i ∈ RArrF if IsRand(Bi) = 0

RTreeF .DelOffsetTree(TSF , RArrF , i) return Bi

else else
if i ∈ RArrF if i ∈ RArrF

j ← RArrF .SearchOffset(i) j ← RArrF .SearchOffset(i)
RTreeF .UpdateTree(TSF , j, h(i||B)) if RTreeF .CheckTree(TSF , j, h(i||Bi)) = true

else return Bi

RTreeF .AppendTree(TSF , h(i||B)) else
append i at end of RArrF return⊥

F.WriteBlock(i, E
F.Tweak(i,F.GetCtr(i))
k

(B)) else
return⊥

F.Append(B): F.Delete():

k ← F.enc key n← F.blocks
n← F.blocks if n ∈ RArrF
F.UpdateCtr(n + 1) RTreeF .DelOffsetTree(TSF , RArrF , n)
F.AuthCtr() delete Bn from file F

if IsRand(B) = 1
RTreeF .AppendTree(TSF , h(n + 1||B))
append n + 1 at end of RArrF

F.WriteBlock(n + 1, E
F.Tweak(n+1,F.GetCtr(n+1))
k

(B))

Figure 3: The Update, Check, Append and Delete algorithms for the RAND-EINT construction.

counter part of the encryption tweak. The block write

counters need to be authenticated in the trusted storage

space for the file F to prevent clients from accepting

valid older versions of a block that are considered not

random by the randomness test. To ensure that file blocks

are encrypted with different tweaks, we define the tweak

for a file block to be a function of the file, the block index

and the block write counter. We denote by F.Tweak the

tweak-generating function for file F that takes as input

a block index and a block counter and outputs the tweak

for that file block. The properties of tweakable ciphers

imply that if a block is decrypted with a different counter

(and so a different tweak), then it will look random with

high probability.

The algorithm Init selects a key at random from

the key space of the tweakable encryption scheme E.

The Update, Check, Append and Delete algorithms of

RAND-EINT are detailed in Figure 3. For the array

RArrF , RArrF .items denotes the number of items in the

array, RArrF .last denotes the last element in the array,

and the function SearchOffset(i) for the array RArrF
gives the position in the array where index i is stored

(if it exists in the array).

- In the Update(i, B) algorithm for file F , the write

counter for block i is incremented and the counter au-

thentication information from TSF is updated with the

algorithm AuthCtr. Then, the randomness test IsRand

is applied to block content B. If B is not random look-

ing, then the leaf corresponding to block i (if it exists)

has to be removed from RTreeF . This is done with the

algorithm DelOffsetTree, described in Figure 4. On the

other hand, if B is random-looking, then the leaf corre-

sponding to block i has to be either updated with the new

hash (if it exists in the tree) or appended in RTreeF . Fi-

nally, the tweakable encryption of B is stored in the i-th

block of F .

- To append a new block B to file F with n blocks

using the Append(B) algorithm, the counter for block

n + 1 is updated first with algorithm UpdateCtr. The

counter authentication information from trusted storage

is also updated with algorithm AuthCtr. Furthermore,

the hash of the block index concatenated with the block

content is added to RTreeF only if the block is random-

looking. In addition, index n+1 is added to RArrF in this

case. Finally, the tweakable encryption of B is stored in

the (n + 1)-th block of F .

- In the Check(i, C) algorithm for file F , the authenti-

cation information for the block counters is checked first.

Then block C is decrypted, and checked for integrity.

If the content of the i-th block is not random-looking,

then by the properties of tweakable ciphers we can infer

that the block is valid with high probability. Otherwise,

the integrity of the i-th block is checked using the tree

RTreeF . If i is not a block index in the tree, then the

integrity of block i is unconfirmed and the block is re-

jected.

- In the Delete algorithm for file F , the hash of the last

block has to be removed from the tree by calling the algo-

rithm DelOffsetTree (described in Figure 4), in the case

in which the last block is authenticated through RTreeF .

It is not necessary to authenticate in trusted storage the

array RArrF of indices of the random-looking blocks in
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T.DelOffsetTree(TSF , RArrF , i):

j ← RArrF .SearchOffset(i)
l← RArrF .last
if j 6= l

T.UpdateTree(TSF , j, h(l||Bl))
RArrF [j]← l

RArrF .items← RArrF .items− 1
T.DeleteTree(TSF )

Figure 4: The DelOffsetTree algorithm for a tree T

deletes the hash of block i from T and moves the last

leaf to its position, if necessary.

a file. The reason is that the root of RTreeF is authenti-

cated in trusted storage and this implies that an adversary

cannot modify the order of the leaves in RTreeF with-

out being detected in the AppendTree, UpdateTree or

CheckTree algorithms.

The construction RAND-EINT protects against unau-

thorized modification of data written to disk and block

swapping attacks by authenticating the root of RTreeF

in the trusted storage space for each file. By using write

counters in the encryption of block contents and authen-

ticating the values of the counters in trusted storage, this

construction provides defense against replay attacks and

provides all the security properties of the MT-EINT con-

struction.

5.3 The Compression Construction

COMP-EINT

This construction is again based on the intuition that

many workloads feature redundancy in file contents. In

this construction, the block is compressed before encryp-

tion. If the compression level of the block content is high

enough, then a message authentication code (i.e., MAC)

of the block can be stored in the block itself, reducing the

amount of storage necessary for integrity. The authenti-

cation information for blocks that can be compressed is

stored on untrusted storage, and consequently a MAC is

required. Like in the previous construction, a Merkle tree

RTreeF is built over the hashes of the blocks in file F that

cannot be compressed enough, and the root of the tree is

kept in trusted storage. In order to prevent replay attacks,

it is necessary that block write counters are included ei-

ther in the computation of the block MAC (in the case

in which the block can be compressed) or in hashing the

block (in the case in which the block cannot be com-

pressed enough). Similarly to scheme RAND-EINT, the

write counters for a file F need to be authenticated in the

trusted storage space TSF .

In this construction, file blocks can be encrypted

with any length-preserving encryption scheme, as de-

fined in Section 4.2. In describing the scheme, we need

compression and decompression algorithms such that

decompress(compress(m)) = m, for any message m.

We can also pad messages up to a certain fixed length

by using the pad function with an output of l bytes, and

unpad a padded message with the unpad function such

that unpad(pad(m)) = m, for all messages m of length

less than l bytes. We can use standard padding methods

for implementing these algorithms [4]. To authenticate

blocks that can be compressed, we use a message authen-

tication code H : KH × {0, 1}∗ → {0, 1}s that outputs

strings of length s bits.

The algorithm Init runs the key generation algorithm

Glen of the length-preserving stateful encryption scheme

for file F to generate key k1 and selects at random a key

k2 from the key space KH of H . It outputs the tuple

<k1, k2>. The Update, Append, Check and Delete al-

gorithms of the COMP-EINT construction are detailed in

Figure 5. Here Lc is the byte length of the largest plain-

text size for which the ciphertext is of length at most the

file block length less the size of a MAC function output.

For example, if the block size is 4096 bytes, HMAC [3]

with SHA-1 is used for computing MACs (whose output

is 20 bytes) and 16-byte AES is used for encryption, then

Lc is the largest multiple of the AES block size (i.e., 16
bytes) less than 4096 − 20 = 4076 bytes. The value of

Lc in this case is 4064 bytes.

- In the Update(i, B) algorithm for file F , the write

counter for block i is incremented and the counter au-

thentication information from TSF is updated with the

algorithm AuthCtr. Then block content B is compressed

to Bc. If the length of Bc (denoted |Bc|) is at most Lc,

then there is room to store the MAC of the block content

inside the block. In this case, the hash of the previous

block content stored at the same address is deleted from

the Merkle tree RTreeF , if necessary. The compressed

block is padded and encrypted, and then stored with its

MAC in the i-th block of F . Otherwise, if the block

cannot be compressed enough, then its hash has to be in-

serted into the Merkle tree RTreeF . The block content

B is then encrypted with a length-preserving stateful en-

cryption scheme using the key for the file and is stored in

the i-th block of F .

- To append a new block B to file F with n blocks us-

ing the Append(B) algorithm, the counter for block n+1
is updated first with algorithm UpdateCtr. The counter

authentication information from trusted storage is also

updated with algorithm AuthCtr. Block B is then com-

pressed. If it has an adequate compression level, then the

compressed block is padded and encrypted, and a MAC

is concatenated at the end of the new block. Otherwise, a

new hash is appended to the Merkle tree RTreeF and an

encryption of B is stored in the (n + 1)-th block of F .
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F.Update(i, B) : F.Check(i, C):

<k1, k2>← F.enc key <k1, k2>← F.enc key
F.UpdateCtr(i) if F.CheckCtr() = false
F.AuthCtr() return⊥
Bc ← compress(B) if i ∈ RArrF
if |Bc| ≤ Lc Bi ← Dlen

k1
(F, i, C)

if i ∈ RArrF j ← RArrF .SearchOffset(i)
RTreeF .DelOffsetTree(TSF , RArrF , i) if RTreeF .CheckTree(TSF , j,

C ← Elen
k1

(F, i, pad(Bc)) h(i||F.GetCtr(i)||Bi)) = true

F.WriteBlock(i, C||Hk2
(i||F.GetCtr(i)||B)) return Bi

else else
if i ∈ RArrF return⊥

j ← RArrF .SearchOffset(i) else

RTreeF .UpdateTree(TSF , j, h(i||F.GetCtr(i)||B)) parse C as C′||hval

else Bc
i ← unpad(Dlen

k1
(F, i, C′))

RTreeF .AppendTree(TSF , h(i||F.GetCtr(i)||B)) Bi ← decompress(Bc
i )

append i at end of RArrF if hval = Hk2
(i||F.GetCtr(i)||Bi)

C ← Elen
k1

(F, i, B) return Bi

F.WriteBlock(i, C) else
return⊥

F.Append(B) : F.Delete():

<k1, k2>← F.enc key n← F.blocks
n← F.blocks if n ∈ RArrF
F.UpdateCtr(n + 1) RTreeF .DelOffsetTree(TSF , RArrF , n)
F.AuthCtr() delete Bn from file F

Bc ← compress(B)
if |Bc| ≤ Lc

C ← Elen
k1

(F, n + 1, pad(Bc))

F.WriteBlock(i, C||Hk2
(n + 1||F.GetCtr(n + 1)||B))

else
RTreeF .AppendTree(TSF , h(n + 1||F.GetCtr(n + 1)||B))
append n + 1 at end of RArrF
C ← Elen

k1
(F, n + 1, B)

F.WriteBlock(n + 1, C)

Figure 5: The Update, Check, Append and Delete algorithms for the COMP-EINT construction.

- In the Check(i, C) algorithm for file F , the authen-

tication information from TSF for the block counters is

checked first. There are two cases to consider. First, if

the i-th block of F is authenticated through the Merkle

tree RTreeF , as indicated by RArrF , then the block is de-

crypted and algorithm CheckTree is called. Otherwise,

the MAC of the block content is stored at the end of

the block and we can thus parse the i-th block of F as

C ′||hval. C ′ has to be decrypted, unpadded and decom-

pressed, in order to obtain the original block content Bi.

The value hval stored in the block is checked to match

the MAC of the block index i concatenated with the write

counter for block i and block content Bi.

- In the Delete algorithm for file F , the hash of the last

block has to be removed from the tree by calling the algo-

rithm DelOffsetTree (described in Figure 4), in the case

in which the last block is authenticated through RTreeF .

The construction COMP-EINT prevents against re-

play attacks by using write counters for either comput-

ing a MAC over the contents of blocks that can be com-

pressed enough, or a hash over the contents of blocks

that cannot be compressed enough, and authenticating

the write counters in trusted storage. It meets all the se-

curity properties of MT-EINT and RAND-EINT.

6 Implementation

Our integrity algorithms are very general and they can

be integrated into any cryptographic file system in either

the kernel or user space. For the purpose of evaluat-

ing and comparing their performance, we implemented

them in EncFS [14], an open-source user-level file sys-

tem that transparently encrypts file blocks. EncFS uses

the FUSE [12] library to provide the file system interface.

FUSE provides a simple library API for implementing

file systems and it has been integrated into recent ver-

sions of the Linux kernel.
In EncFS, files are divided into fixed-size blocks

and each block is encrypted individually. Several

ciphers such as AES and Blowfish in CBC mode

are available for block encryption. We implemented

in EncFS the three constructions that provide in-

tegrity: MT-EINT, RAND-EINT and COMP-EINT.

While any length-preserving encryption scheme can be

used in the MT-EINT and COMP-EINT constructions,

RAND-EINT is constrained to use a tweakable cipher

for encrypting file blocks. We choose to encrypt file

blocks in MT-EINT and COMP-EINT with the length-

preserving stateful encryption derived from the AES ci-

pher in CBC mode (as shown in Section 4.2), and use the
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Figure 6: Prototype architecture.

CMC tweakable cipher [15] as the encryption method

in RAND-EINT. In our integrity algorithms, we use

the SHA-1 hash function and the message-authentication

code HMAC instantiated also with the SHA-1 hash func-

tion. For compressing and decompressing blocks in

COMP-EINT we use the zlib library.
Our prototype architecture is depicted in Figure 6. We

modified the user space of EncFS to include the CMC

cipher for block encryption and the new integrity al-

gorithms. The server uses the underlying file system

(i.e., reiserfs) for the storage of the encrypted files. The

Merkle trees for integrity RTreeF and the index arrays of

the random-looking blocks RArrF are stored with the en-

crypted files in the untrusted storage space on the server.

For faster integrity checking (in particular to improve

the running time of the SearchOffset algorithm used in

the Update and Check algorithms of the RAND-EINT

and COMP-EINT constructions), we also keep the array

RArrF for each file, ordered by indices. The roots of the

trees RTreeF , and the arrays IntStartF and CtrValF or

their hashes (if they are too large) are stored in a trusted

storage space. In our current implementation, we use

two extended attributes for each file F , one for the root

of RTreeF and the second for the arrays IntStartF and

CtrValF , or their hashes.
By default, EncFS caches the last block content writ-

ten to or read from the disk. In our implementation,

we cached the last arrays RArrF , IntStartF and CtrValF
used in a block update or check operation. Since these ar-

rays are typically small (a few hundred bytes), they easily

fit into memory. We also evaluate the effect of caching

of Merkle trees in our system in Section 7.1.

7 Performance Evaluation

In this section, we evaluate the performance of the new

randomness test and compression integrity constructions

for encrypted storage compared to that of Merkle trees.

We ran our experiments on a 2.8 GHz Intel D processor

machine with 1GB of RAM, running SuSE Linux 9.3

with kernel version 2.6.11. The hard disk used was an

80GB SATA 7200 RPM Maxtor.

The main challenge we faced in evaluating the pro-

posed constructions was to come up with representative

file system workloads. While the performance of the

Merkle tree construction is predictable independently of

the workload, the performance of the new integrity algo-

rithms is highly dependent on the file contents accessed,

in particular on the randomness of block contents. To

our knowledge, there are no public traces that contain file

access patterns, as well as the contents of the file blocks

read and written. Due to the privacy implications of re-

leasing actual users’ data, we expect it to be nearly im-

possible to get such traces from a widely used system.

However, we have access to three public NFS Harvard

traces [9] that contain NFS traffic from several of Har-

vard’s campus servers. The traces were collected at the

level of individual NFS operations and for each read and

write operation they contain information about the file

identifier, the accessed offset in the file and the size of

the request (but not the actual file contents).

To evaluate the integrity algorithms proposed in this

paper, we perform two sets of experiments. In the first

one, we strive to demonstrate how the performance of

the new constructions varies for different file contents.

For that, we use representative files from a Linux distri-

bution installed on one of our desktop machines, together

with other files from the user’s home directory, divided

into several file types. We identify five file types of in-

terest: text, object, executables, images, and compressed

files, and build a set of files for each class of interest.

All files of a particular type are first encrypted and the

integrity information for them is built; then they are de-

crypted and checked for integrity. We report the perfor-

mance results for the files with the majority of blocks

not random-looking (i.e., text, executable and object) and

for those with mostly random-looking blocks (i.e., image

and compressed). In this experiment, all files are written

and read sequentially, and as such the access pattern is

not a realistic one.

In the second set of experiments, we evaluate the ef-

fect of more realistic access patterns on the performance

of the integrity schemes, using the NFS Harvard traces.

As the Harvard traces do not contain information about

actual file block contents written to the disks, we gen-

erate synthetic block contents for each block write re-

quest. We define two types of block contents: low-

entropy and high-entropy, and perform experiments as-

suming that either all blocks are low-entropy or all are

high-entropy. These extreme workloads represent the

“best” and “worst”-case for the new algorithms, respec-

tively. We also consider a “middle”-case, in which a

block is random-looking with a 50% probability, and plot
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the performance results of the new schemes relative to

the Merkle tree integrity algorithm for the best, middle

and worst cases.

7.1 The Impact of File Block Contents on

Integrity Performance
File sets. We consider a snapshot of the file system

from one of our desktop machines. We gathered files

that belong to five classes of interest: (1) text files are

files with extensions .txt, .tex, .c, .h, .cpp, .java, .ps, .pdf;

(2) object files are system library files from the direc-

tory /usr/local/lib; (3) executable files are system exe-

cutable files from directory /usr/local/bin; (4) image files

are JPEG files and (5) compressed files are gzipped tar

archives. Several characteristics of each set, including

the total size, the number of files in each set, the mini-

mum, average and maximum file sizes and the fraction

of file blocks that are considered random-looking by the

entropy test are given in Table 2.

Experiments. We consider three cryptographic file

systems: (1) MT-EINT with CBC-AES for encrypting

file blocks; (2) RAND-EINT with CMC encryption; (3)

COMP-EINT with CBC-AES encryption. For each cryp-

tographic file system, we first write the files from each

set; this has the effect of automatically encrypting the

files, and running the Update algorithm of the integrity

method for each file block. Second, we read all files from

each set; this has the effect of automatically decrypting

the files, and running the Check algorithm of the integrity

method for each file block. We use file blocks of size

4KB in the experiments.

Micro-benchmarks. We first present a micro-

benchmark evaluation for the text and compressed file

sets in Figure 7. We plot the total time to write and

read the set of text and compressed files, respectively.

The write time for a set of files includes the time to

encrypt all the files in the set, create new files, write the

encrypted contents in the new files and build the integrity

information for each file block with algorithms Update

and Append. The read time for a set of files includes the

time to retrieve the encrypted files from disk, decrypt

each file from the set and check the integrity of each

file block with algorithm Check. We separate the total

time incurred by the write and read experiments into

the following components: encryption/decryption time

(either AES or CMC); hashing time that includes the

computation of both SHA-1 and HMAC; randomness

check time (either the entropy test for RAND-EINT or

compression/decompression time for COMP-EINT);

Merkle tree operations (e.g., given a leaf index, find its

index in inorder traversal or given an inorder index of

a node in the tree, find the inorder index of its sibling

and parent); the time to update and check the root of the

tree (the root of the Merkle tree is stored as an extended

attribute for the file) and disk waiting time.

The results show that the cost of CMC encryption and

decryption is about 2.5 times higher than that of AES en-

cryption and decryption in CBC mode. Decompression

is between 4 and 6 times faster than compression and this

accounts for the good read performance of COMP-EINT.

A substantial amount of the MT-EINT overhead is due

to disk waiting time (for instance, 39% at read for text

files) and the time to update and check the root of the

Merkle tree (for instance, 30% at write for compressed

files). In contrast, due to smaller sizes of the Merkle

trees in the RAND-EINT and COMP-EINT file systems,

the disk waiting time and the time to update and check

the root of the tree for text files are smaller. The results

suggests that caching of the hash values stored in Merkle

trees in the file system might reduce the disk waiting time

and the time to update the root of the tree and improve

the performance of all three integrity constructions, and

specifically that of the MT-EINT algorithm. We present

our results on caching next.

Caching Merkle trees. We implemented a global

cache that stores the latest hashes read from Merkle trees

used to either update or check the integrity of file blocks.

As an optimization, when we verify the integrity of a file

block, we compute all the hashes on the path from the

node up to the root of the tree until we reach a node that

is already in the cache and whose integrity has been val-

idated. We store in the cache only nodes that have been

verified and that are authentic. When a node in the cache

is written, all its ancestors on the path from the node to

the root, including the node itself, are evicted from the

cache.

We plot the total file write and read time in seconds

for the three cryptographic file systems as a function of

different cache sizes. We also plot the average integrity

bandwidth per block in a log-log scale. Finally, we plot

the cumulative size of the untrusted storage USF for all

files from each set. We show the combined graphs for

low-entropy files (text, object and executable files) in

Figure 8 and for high-entropy files (compressed and im-

age files) in Figure 9.

The results show that MT-EINT benefits mostly on

reads by implementing a cache of size 1KB, while the

write time is not affected greatly by using a cache. The

improvements for MT-EINT using a cache of 1KB are

as much as 25.22% for low-entropy files and 20.34% for

high-entropy files in the read experiment. In the follow-

ing, we compare the performance of the three construc-

tions for the case in which a 1KB cache is used.
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Total size No. files Min. file size Max. file size Avg. file size Fraction of random-looking blocks

Text 245 MB 808 27 bytes 34.94 MB 307.11 KB 0.0351

Objects 217 MB 28 15 bytes 92.66 MB 7.71 MB 0.0001

Executables 341 MB 3029 24 bytes 13.21 MB 112.84 KB 0.0009

Image 189 MB 641 17 bytes 2.24 MB 198.4 KB 0.502

Compressed 249 MB 2 80.44 MB 167.65 MB 124.05 MB 0.7812

Table 2: File set characteristics.
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Figure 7: Micro-benchmarks for text and compressed files.

Results for low-entropy files. For sets of files with a

low percent of random-looking blocks (text, object and

executable files), RAND-EINT outperforms MT-EINT

with respect to all the metrics considered. The perfor-

mance of RAND-EINT compared to that of MT-EINT

is improved by 31.77% for writes and 20.63% for reads.

The performance of the COMP-EINT file system is very

different in the write and read experiments due to the

cost difference of compression and decompression. The

write time of COMP-EINT is within 4% of the write time

of MT-EINT and in the read experiment COMP-EINT

outperforms MT-EINT by 25.27%. The integrity band-

width of RAND-EINT and COMP-EINT is 92.93 and

58.25 times, respectively, lower than that of MT-EINT.

The untrusted storage for integrity for RAND-EINT and

COMP-EINT is reduced 2.3 and 1.17 times, respectively,

compared to MT-EINT.

Results for high-entropy files. For sets of files with

a high percent of random-looking blocks (image and

compressed files), RAND-EINT adds a maximum per-

formance overhead of 4.43% for writes and 18.15%

for reads compared to MT-EINT for a 1KB cache.

COMP-EINT adds a write performance overhead of

38.39% compared to MT-EINT, and performs within

1% of MT-EINT in the read experiment. The aver-

age integrity bandwidth needed by RAND-EINT and

COMP-EINT is lower by 30.15% and 10.22%, respec-

tively, than that used by MT-EINT. The untrusted stor-

age for integrity used by RAND-EINT is improved by

9.52% compared to MT-EINT and that of COMP-EINT

is within 1% of the storage used by MT-EINT. The rea-

son that the average integrity bandwidth and untrusted

storage for integrity are still reduced in RAND-EINT

compared to MT-EINT is that in the set of high-entropy
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Figure 8: Evaluation for low-entropy files (text, object and executable files).

files considered only about 70% of the blocks have high

entropy. We would expect that for files with 100% high-

entropy blocks, these two metrics will exhibit a small

overhead with both RAND-EINT and COMP-EINT

compared to MT-EINT (this is actually confirmed in

the experiments from the next section). However, such

workloads with 100% high entropy files are very unlikely

to occur in practice.

7.2 The Impact of File Access Patterns on

Integrity Performance
File traces. We considered a subset of the three NFS

Harvard traces [9] (LAIR, DEASNA and HOME02),

each collected during one day. We show several charac-

teristics of each trace, including the number of files and

the total number of block write and read operations, in

Table 3. The block size in these traces is 4096 bytes and

we have implemented a 1KB cache for Merkle trees.

Number of files Number of writes Number of reads

LAIR 7017 66331 23281

DEASNA 890 64091 521

HOME02 183 89425 11815

Table 3: NFS Harvard trace characteristics.

Experiments. We replayed each of the three traces

with three types of block contents: all low-entropy, all

high-entropy and 50% high-entropy. For each experi-

ment, we measured the total running time, the average

integrity bandwidth and the total untrusted storage for

integrity for RAND-EINT and COMP-EINT relative to

MT-EINT and plot the results in Figure 10. We rep-

resent the performance of MT-EINT as the horizontal

axis in these graphs and the performance of RAND-EINT

and COMP-EINT relative to MT-EINT. The points

above the horizontal axis are overheads compared to

MT-EINT, and the points below the horizontal axis rep-

resent improvements relative to MT-EINT. The labels on

the graphs denote the percent of random-looking blocks

synthetically generated.

Results. The performance improvements of

RAND-EINT and COMP-EINT compared to MT-EINT

are as high as 56.21% and 56.85%, respectively, for the

HOME02 trace for low-entropy blocks. On the other

hand, the performance overhead for high-entropy blocks

are at most 54.14% for RAND-EINT (in the LAIR trace)

and 61.48% for COMP-EINT (in the DEASNA trace).

RAND-EINT performs better than COMP-EINT when

the ratio of read to write operations is small, as is the

case for the DEASNA and HOME02 trace. As this ratio

increases, COMP-EINT outperforms RAND-EINT.
For low-entropy files, both the average integrity band-

width and the untrusted storage for integrity for both

RAND-EINT and COMP-EINT are greatly reduced

compared to MT-EINT. For instance, in the DEASNA

trace, MT-EINT needs 215 bytes on average to update

or check the integrity of a block, whereas RAND-EINT

and COMP-EINT only require on average 0.4 bytes.
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Figure 9: Evaluation for high-entropy files (image and compressed files).
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Figure 10: Running time, average integrity bandwidth and storage for integrity of RAND-EINT and COMP-EINT

relative to MT-EINT. Labels on the graphs represent percentage of random-looking blocks.

The amount of additional untrusted storage for integrity

in the DEASNA trace is 2.56 MB for MT-EINT and

only 7 KB for RAND-EINT and COMP-EINT. The

maximum overhead added by both RAND-EINT and

COMP-EINT compared to MT-EINT for high-entropy

blocks is 30.76% for the average integrity bandwidth (in

the HOME02 trace) and 19.14% for the amount of un-

trusted storage for integrity (in the DEASNA trace).

7.3 Discussion

From the evaluation of the three constructions, it follows

that none of the schemes is a clear winner over the others

with respect to all the four metrics considered. Since the

performance of both RAND-EINT and COMP-EINT is

greatly affected by file block contents, it would be ben-

eficial to know the percentage of high-entropy blocks in

practical filesystem workloads. To determine statistics

on file contents, we have performed a user study on sev-

eral machines from our department running Linux. For

each user machine, we have measured the percent of

high-entropy blocks and the percent of blocks that can-

not be compressed enough from users’ home directories.

The results show that on average, 28% percent of file

blocks have high entropy and 32% percent of file blocks

cannot be compressed enough to fit a MAC inside.

The implications of our study are that, for crypto-

graphic file systems that store files similar to those in

users’ home directories, the new integrity algorithms im-

prove upon Merkle trees with respect to all four metrics

of interest. In particular, COMP-EINT is the best op-

tion for primarily read-only workloads when minimizing

read latency is a priority, and RAND-EINT is the best
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choice for most other workloads. On the other hand, for

an application in which the large majority of files have

high-entropy (e.g., a file sharing application in which

users transfer mostly audio and video files), the standard

MT-EINT still remains the best option for integrity. We

recommend that all three constructions be implemented

in a cryptographic file system. An application can choose

the best scheme based on its typical workload.
The new algorithms that we propose can be applied

in other settings in which authentication of data stored

on untrusted storage is desired. One example is check-

ing the integrity of arbitrarily-large memory in a secure

processor using only a constant amount of trusted stor-

age [5, 7]. In this setting, a trusted checker maintains a

constant amount of trusted storage and, possibly, a cache

of data blocks most recently read from the main memory.

The goal is for the checker to verify the integrity of the

untrusted memory using a small bandwidth overhead.
The algorithms described in this paper can be used

only in applications where the data that needs to be au-

thenticated is encrypted. However, the COMP-EINT

integrity algorithm can be easily modified to fit into a

setting in which data is only authenticated and not en-

crypted, and can thus replace Merkle trees in such ap-

plications. On the other hand, the RAND-EINT integrity

algorithm is only suitable in a setting in which data is en-

crypted with a tweakable cipher, as the integrity guaran-

tees of this algorithm are based on the security properties

of such ciphers.

8 Related Work

We have focused on Merkle trees as our point of compar-

ison, though there are other integrity protections used on

various cryptographic file systems that we have elided

due to their greater expense in various measures. For

example, a common integrity method used in crypto-

graphic file systems such as TCFS [6] and SNAD [25] is

to store a hash or message authentication code for each

file block for authenticity. However, these approaches

employ trusted storage linear in the number of blocks

in the file (either the hashes or a counter per block). In

systems such as SFS [22], SFSRO [11], Cepheus [10],

FARSITE [1], Plutus [17], SUNDR [20] and IBM Stor-

ageTank [23, 27], a Merkle tree per file is built and the

root of the tree is authenticated (by either digitally sign-

ing it or storing it in a trusted meta-data server). In SiR-

iUS [13], each file is digitally signed for authenticity, and

so in addition the integrity bandwidth to update or check

a block in a file is linear in the file size. Tripwire [19] is a

user-level tool that computes a hash per file and stores it

in trusted storage. While this approach achieves constant

trusted storage for integrity per file, the integrity band-

width is linear in the number of blocks in the file. For

journaling file systems, an elegant solution for integrity

called hash logging is provided by PFS [32]. The hashes

of file blocks together with the file system metadata are

stored in the file system log, a protected memory area.

However, in this solution the amount of trusted storage

for integrity for a file is linear in the number of blocks in

the file.
Riedel et al. [28] provides a framework for extensively

evaluating the security of storage systems. Wright et

al. [33] evaluates the performance of five cryptographic

file systems, focusing on the overhead of encryption.

Two other recent surveys about securing storage systems

are by Sivathanu et al. [31] and Kher and Kimand [18].

9 Conclusion

We have proposed two new integrity constructions,

RAND-EINT and COMP-EINT, that authenticate file

blocks in a cryptographic file system using only a con-

stant amount of trusted storage per file. Our construc-

tions exploit the typical low entropy of block contents

and sequentiality of file block writes to reduce the addi-

tional costs of integrity protection. We have evaluated

the performance of the new constructions relative to the

widely used Merkle tree algorithm, using files from a

standard Linux distribution and NFS traces collected at

Harvard university. Our experimental evaluation demon-

strates that the performance of the new algorithms is

greatly affected by file block contents and file access

patterns. For workloads with majority low-entropy file

blocks, the new algorithms improve upon Merkle trees

with respect to all the four metrics considered.
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