
Static Detection of Security Vulnerabilities
in Scripting Languages

Yichen Xie Alex Aiken
Computer Science Department

Stanford University
Stanford, CA 94305

{yxie,aiken}@cs.stanford.edu

Abstract
We present a static analysis algorithm for detecting secu-
rity vulnerabilities in PHP, a popular server-side script-
ing language for building web applications. Our analysis
employs a novel three-tier architecture to capture infor-
mation at decreasing levels of granularity at the intra-
block, intraprocedural, and interprocedural level. This
architecture enables us to handle dynamic features of
scripting languages that have not been adequately ad-
dressed by previous techniques.

We demonstrate the effectiveness of our approach on
six popular open source PHP code bases, finding 105 pre-
viously unknown security vulnerabilities, most of which
we believe are remotely exploitable.

1 Introduction

Web-based applications have proliferated rapidly in re-
cent years and have become the de facto standard for de-
livering online services ranging from discussion forums
to security sensitive areas such as banking and retail-
ing. As such, security vulnerabilities in these applica-
tions represent an increasing threat to both the providers
and the users of such services. During the second half of
2004, Symantec cataloged 670 vulnerabilities affecting
web applications, an 81% increase over the same period
in 2003 [17]. This trend is likely to continue for the fore-
seeable future.

According to the same report, these vulnerabilities are
typically caused by programming errors in input valida-
tion and improper handling of submitted requests [17].
Since vulnerabilities are usually deeply embedded in the
program logic, traditional network-level defense (e.g.,
firewalls) does not offer adequate protection against such
attacks. Testing is also largely ineffective because attack-
ers typically use the least expected input to exploit these
vulnerabilities and compromise the system.

A natural alternative is to find these errors using static
analysis. This approach has been explored in Web-

SSARI [7] and by Minamide [10]. WebSSARI has been
used to find a number of security vulnerabilities in PHP
scripts, but has a large number of false positives and neg-
atives due to its intraprocedural type-based analysis. Mi-
namide’s system checks syntactic correctness of HTML
output from PHP scripts and does not seem to be effec-
tive for finding security vulnerabilities. The main mes-
sage of this paper is that analysis of scripting languages
need not be significantly more difficult than analysis
of conventional languages. While a scripting language
stresses different aspects of static analysis, an analysis
suitably designed to address the important aspects of
scripting languages can identify many serious vulnera-
bilities in scripts reliably and with a high degree of au-
tomation. Given the importance of scripting in real world
applications, we believe there is an opportunity for static
analysis to have a significant impact in this new domain.

In this paper, we apply static analysis to finding se-
curity vulnerabilities in PHP, a server-side scripting lan-
guage that has become one of the most widely adopted
platforms for developing web applications.1 Our goal is
a bug detection tool that automatically finds serious vul-
nerabilities with high confidence. This work, however,
does not aim to verify the absence of bugs.

This paper makes the following contributions:

• We present an interprocedural static analysis al-
gorithm for PHP. A language as dynamic as PHP
presents unique challenges for static analysis: lan-
guage constructs (e.g., include) that allow dynamic
inclusion of program code, variables whose types
change during execution, operations with semantics
that depend on the runtime types of the operands
(e.g., <), and pervasive use of hash tables and regu-
lar expression matching are just some features that
must be modeled well to produce useful results.

1Installed on over 23 million Internet domains [14], and is ranked
fourth on the TIOBE programming community index [18].

1
Security ’06: 15th USENIX Security SymposiumUSENIX Association 179

To faithfully model program behavior in such a lan-
guage, we use a three-tier analysis that captures
information at decreasing levels of granularity at
the intrablock, intraprocedural, and interprocedural
levels. This architecture allows the analysis to be
precise where it matters the most–at the intrablock
and, to a lesser extent, the intraprocedural levels–
and use agressive abstraction at the natural abstrac-
tion boundary along function calls to achieve scal-
ability. We use symbolic execution to model dy-
namic features inside basic blocks and use block
summaries to hide that complexity from intra- and
inter-procedural analysis. We believe the same tech-
niques can be applied easily to other scripting lan-
guages (e.g., Perl).

• We show how to use our static analysis algorithm
to find SQL injection vulnerabilities. Once config-
ured, the analysis is fully automatic. Although we
focus on SQL injections in this work, the same tech-
niques can be applied to detecting other vulnerabil-
ities such as cross site scripting (XSS) and code in-
jection in web applications.

• We experimentally validate our approach by im-
plementing the analysis algorithm and running it
on six popular web applications written in PHP,
finding 105 previously unknown security vulnera-
bilities. We analyzed two reported vulnerabilities
in PHP-fusion, a mature, widely deployed content
management system, and construct exploits for both
that allow an attacker to control or damage the sys-
tem.2

The rest of the paper is organized as follows. We start
with a brief introduction to PHP and show examples of
SQL vulnerabilities in web application code (Section 2).
We then present our analysis algorithm and show how we
use it to find SQL injection vulnerabilities (Section 3).
Section 4 describes the implementation, experimental re-
sults, and two case studies of exploitable vulnerabilities
in PHP-fusion. Section 5 discusses related work and Sec-
tion 6 concludes.

2 Background

This section briefly introduces the PHP language and
shows examples of SQL injection vulnerabilities in PHP.

PHP was created a decade ago by Rasmus Lerdorf
as a simple set of Perl scripts for tracking accesses to
his online resume. It has since evolved into one of the
most popular server-side scripting languages for build-
ing web applications. According to a recent Security

2Both vulnerabilities have been reported to and fix ed by the PHP-
fusion developers.

Space survey, PHP is installed on 44.6% of Apache web
servers [16], adopted by millions of developers, and used
or supported by Yahoo, IBM, Oracle, and SAP, among
others [14].

Although the PHP language has undergone two major
re-designs over the past decade, it retains a Perl-like syn-
tax and dynamic (interpreted) nature, which contributes
to its most frequently claimed advantage of being simple
and flexible.

PHP has a suite of programming constructs and spe-
cial operations that ease web development. We give three
examples:

1. Natural integration with SQL: PHP provides
nearly native support for database operations. For
example, using inline variables in strings, most SQL
queries can be concisely expressed with a simple
function call

$rows=mysql query("UPDATE users SET
pass=‘$pass’ WHERE userid=‘$userid’");

Contrast this code with Java, where a database
is typically accessed through prepared statements:
one creates a statement template and fills in the val-
ues (along with their types) using bind variables:

PreparedStatement s = con.prepareStatement
("UPDATE users SET pass = ?
WHERE userid = ?");

s.setString(1, pass); s.setInt(2, userid);
int rows = s.executeUpdate();

2. Dynamic types and implicit casting to and from
strings: PHP, like other scripting languages, has
extensive support for string operations and auto-
matic conversions between strings and other types.
These features are handy for web applications be-
cause strings serve as the common medium between
the browser, the web server, and the database back-
end. For example, we can convert a number into a
string without an explicit cast:

if ($userid < 0) exit;
$query = "SELECT * from users

WHERE userid = ‘$userid’";

3. Variable scoping and the environment: PHP has
a number of mechanisms that minimize redundancy
when accessing values from the execution environ-
ment. For example, HTTP get and post requests are
automatically imported into the global name space
as hash tables $ GET and $ POST. To access the
“name” field of a submitted form, one can simply
use $ GET[‘name’] directly in the program.

If this still sounds like too much typing, PHP pro-
vides an extract operation that automatically im-
ports all key-value pairs of a hash table into the
current scope. In the example above, one can

2
Security ’06: 15th USENIX Security Symposium USENIX Association180

use extract(GET, EXTR OVERWRITE) to import
data submitted using the HTTP getmethod. To ac-
cess the $name field, one now simply types $name,
which is preferred by some to $ GET[‘name’].

However, these conveniences come with security im-
plications:

1. SQL injection made easy: Bind variables in Java
have the benefit of assuring the programmer that
any data passed into an SQL query remains data.
The same cannot be said for the PHP example
where malformed data from a malicious attacker
may change the meaning of an SQL statement and
cause unintended operations to the database. These
are commonly called SQL injection attacks.

In the example above (case 1), suppose $userid is
controlled by the attacker and has value

’ OR ‘1’ = ‘1

The query string becomes

UPDATE users SET pass=’...’
WHERE userid=’’ OR ’1’=’1’

which has the effect of updating the password for
all users in the database.

2. Unexpected conversions: Consider the following
code:

if ($userid == 0) echo $userid;

One would expect that if the program prints any-
thing, it should be “0”. Unfortunately, PHP implic-
itly casts string values into numbers before com-
paring them with an integer. Non-numerical values
(e.g., “abc”) convert to 0 without complaint, so the
code above can print anything other than a non-zero
number. We can imagine a potential SQL injection
vulnerability if $userid is subsequently used to con-
struct an SQL query as in the previous case.

3. Uninitialized variables under user control: In
PHP, uninitialized variables default to null. Some
programs rely on this fact for correct behavior; con-
sider the following code:

1 extract($ GET, EXTR OVERWRITE);
2 for ($i=0;$i<=7;$i++)
3 $new pass .= chr(rand(97, 122)); // append one char
4 mysql query("UPDATE ... $new_pass ...");

This program generates a random password and in-
serts it into the database. However, due to the
extract operation on line 1, a malicious user can in-
troduce an arbitrary initial value for $new pass by
adding an unexpected new pass field into the sub-
mitted HTTP form data.

CFG := build control flow graph(AST);
foreach (basic block b in CFG)

summaries[b] := simulate block(b);
return make function summary(CFG, summaries);

Figure 1: Pseudo-code for the analysis of a function.

3 Analysis

Given a PHP source file, our tool carries out static anal-
ysis in the following steps:

• We parse the PHP source into abstract syntax trees
(ASTs). Our parser is based on the standard open-
source implementation of PHP 5.0.5 [13]. Each
PHP source file contains a main section (referred to
as the main function hereafter although it is not part
of any function definition) and zero or more user-
defined functions. We store the user-defined func-
tions in the environment and start the analysis from
the main function.

• The analysis of a single function is summarized in
Figure 1. For each function in the program, the anal-
ysis performs a standard conversion from the ab-
stract syntax tree (AST) of the function body into
a control flow graph (CFG). The nodes of the CFG
are basic blocks: maximal single entry, single exit
sequences of statements. The edges of the CFG are
the jump relationships between blocks. For con-
ditional jumps, the corresponding CFG edge is la-
beled with the branch predicate.

• Each basic block is simulated using symbolic exe-
cution. The goal is to understand the collective ef-
fects of statements in a block on the global state of
the program and summarize their effects into a con-
cise block summary (which describes, among other
things, the set of variables that must be sanitized3

before entering the block). We describe the simula-
tion algorithm in Section 3.1.

• After computing a summary for each basic block,
we use a standard reachability analysis to com-
bine block summaries into a function summary.
The function summary describes the pre- and post-
conditions of a function (e.g., the set of sanitized in-
put variables after calling the current function). We
discuss this step in Section 3.2.

• During the analysis of a function, we might en-
counter calls to other user-defined functions. We
discuss modeling function calls, and the order in
which functions are analyzed, in Section 3.3.

3Sanitization is an operation that ensures that user input can be
safely used in an SQL query (e.g., no unescaped quotes or spaces).

3
Security ’06: 15th USENIX Security SymposiumUSENIX Association 181

function simulate block(BasicBlock b) : BlockSummary
{

state := init simulation state();
foreach (Statement s in b) {

state := simulate(s, state);
if (state.has returned | | state.has exited)

break;
}
summary := make block summary(state);
return summary;
}

Figure 2: Pseudo-code for intra-block simulation.

3.1 Simulating Basic Blocks

3.1.1 Outline

Figure 2 gives pseudo-code outlining the symbolic simu-
lation process. Recall each basic block contains a linear
sequence of statements with no jumps or jump targets
in the middle. The simulation starts in an initial state,
which maps each variable x to a symbolic initial value
x0. It processes each statement in the block in order,
updating the simulator state to reflect the effect of that
statement. The simulation continues until it encounters
any of the following:

1. the end of the block;

2. a return statement. In this case, the current block is
marked as a return block, and the simulator evalu-
ates and records the return value;

3. an exit statement. In this case the current block is
marked as an exit block;

4. a call to a user-defined function that exits the pro-
gram. This condition is automatically determined
using the function summary of the callee (see Sec-
tions 3.2 and 3.3).

Note that in the last case execution of the program
has also terminated and therefore we remove any ensu-
ing statements and outgoing CFG edges from the current
block.

After a basic block is simulated, we use information
contained in the final state of the simulator to summarize
the effect of the block into a block summary, which we
store for use during the intraprocedural analysis (see Sec-
tion 3.2). The state itself is discarded after simulation.

The following subsections describe the simulation
process in detail. We start with a definition of the subset
of PHP that we model (§3.1.2) and discuss the represen-
tation of the simulation state and program values (§3.1.3,
§3.1.4) during symbolic execution. Using the value rep-
resentation, we describe how the analyzer simulates ex-
pressions (§3.1.5) and statements (§3.1.6). Finally, we

Type (τ) ::= str | bool | int | >
Const (c) ::= string | int | true | false | null

L-val (lv) ::= x | Arg#i | lv[e]
Expr (e) ::= c | lv | e binop e | unop e | (τ)e
Stmt (S) ::= lv ← e | lv ← f(e1, . . . , en)

| return e | exit | include e

binop ∈ {+,−, concat,==, ! =, <, >, . . .}
unop ∈ {−,¬}

Figure 3: Language Definition

describe how we represent and infer block summaries
(§3.1.7).

3.1.2 Language

Figure 3 gives the definition of a small imperative lan-
guage that captures a subset of PHP constructs that we
believe is relevant to SQL injection vulnerabilities. Like
PHP, the language is dynamically typed. We model three
basic types of PHP values: strings, booleans and inte-
gers. In addition, we introduce a special > type to de-
scribe objects whose static types are undetermined (e.g.,
input parameters).4

Expressions can be constants, l-values, unary and bi-
nary operations, and type casts. The definition of l-
values is worth mentioning because in addition to vari-
ables and function parameters, we include a named sub-
script operation to give limited support to the array and
hash table accesses used extensively in PHP programs.

A statement can be an assignment, function call, re-
turn, exit, or include. The first four statement types re-
quire no further explanation. The include statement is
a commonly used feature unique to scripting languages,
which allows programmers to dynamically insert code
into the program. In our language, include evaluates
its string argument, and executes the program file des-
ignated by the string as if it is inserted at that program
point (e.g., it shares the same scope). We describe how
we simulate such behavior in Section 3.1.6.

3.1.3 State

Figure 4(a) gives the definition of values and states dur-
ing simulation. The simulation state maps memory loca-
tions to their value representations, where a memory lo-
cation is either a program variable (e.g. x), or an entry in
a hash table accessed via another location (e.g. x[key]).
Note the definition of locations is recursive, so multi-
level hash dereferences are supported in our algorithm.

4In general, in a dynamically typed language, a more precise static
approximation in this case would be a sum (aka. soft typing) [1, 20].
We have not found it necessary to use type sums in this work.

4
Security ’06: 15th USENIX Security Symposium USENIX Association182

Value Representation

Loc (l) ::= x | l[string] | l[>]
Init-Values (o) ::= l0
Segment (β) ::= string | contains(σ) | o | ⊥

String (s) ::= 〈β1, . . . , βn〉
Boolean (b) ::= true | false | untaint(σ0, σ1)
Loc-set(σ) ::= {l1, . . . , ln}
Integer (i) ::= k

Value (v) ::= s | b | i | o | >

Simulation State

State (Γ) : Loc → Value

(a) Value representation and simulation state.

Locations

Γ ` x
Lv

⇒ x
var

Γ ` Arg#n
Lv

⇒ Arg#n
arg

Γ ` e
E

⇒ l

Γ ` e′
E

⇒ v′ v′′ = cast(v′, str)

Γ ` e[e′]
Lv

⇒

{

l[α] if v′′ = 〈“α”〉
l[>] otherwise

dim

(b) L-values.

Expressions

Type casts:

cast(k, bool) =

{

true if k 6= 0
false otherwise

cast(true, str) = 〈“1”〉

cast(false, str) = 〈〉

cast(v = 〈β1, . . . , βn〉, bool)

=

{

true if (v 6= 〈“0”〉) ∧
∨

n

i=1
¬is empty(βi)

false if (v = 〈“0”〉) ∨
∧

n

i=1
is empty(βi)

> otherwise
. . .

Evaluation Rules:

Γ ` lv
Lv

⇒ l

Γ ` lv
E

⇒ Γ(l)
L-val

Γ ` e1

E

⇒ v1 cast(v1, str) = 〈β1, . . . , βn〉

Γ ` e2

E

⇒ v2 cast(v2, str) = 〈βn+1, . . . , βm〉

Γ ` e1 concat e2

E

⇒ 〈β1, . . . , βm〉
concat

Γ ` e
E

⇒ v cast(v, bool) = v′

Γ ` ¬e
E

⇒

true if v′ = false

false if v′ = true

untaint(σ1, σ0) if v′ = untaint(σ0, σ1)
> otherwise

not

(c) Expressions.

Figure 4: Intrablock simulation algorithm.

On entry to the function, each location l is implicitly
initialized to a symbolic initial value l0, which makes up
the initial state of the simulation. The values we rep-
resent in the state can be classified into three categories
based on type:

Strings: Strings are the most fundamental type in many
scripting languages, and precision in modeling strings
directly determines analysis precision. Strings are typ-
ically constructed through concatenation. For example,
user inputs (via HTTP get and postmethods) are often
concatenated with a pre-constructed skeleton to form an
SQL query. Similarly, results from the query can be con-
catenated with HTML templates to form output. Model-
ing concatenation well enables an analysis to better un-
derstand information flow in a script. Thus, our string
representations is based on concatenation. String val-
ues are represented as an ordered concatenation of string
segments, which can be one of the following: a string
constant, the initial value of a memory location on entry
to the current block (l0), or a string that contains initial
values of zero or more elements from a set of memory
locations (contains(σ)). We use the last representation to
model return values from function calls, which may non-
deterministically contain a combination of global vari-
ables and input parameters. For example, in

1 function f($a, $b) {
2 if (. . .) return $a;
3 else return $b;
4 }
5 $ret = f($x.$y, $z);

we represent the return value on line 5 as
contains({x, y, z}) to model the fact that it may con-
tain any element in the set as a sub-string.

The string representation described above has the fol-
lowing benefits:

First, we get automatic constant folding for strings
within the current block, which is often useful for re-
solving hash keys and distinguishing between hash ref-
erences (e.g., in $key = “key”; return $hash[$key];).

Second, we can track how the contents of one input
variable flow into another by finding occurrences of ini-
tial values of the former in the final representation of the
latter. For example, in: $a = $a . $b, the final represen-
tation of $a is 〈a0, b0〉. We know that if either $a or $b

contains unsanitized user input on entry to the current
block, so does $a upon exit.

Finally, interprocedural dataflow is possible by track-
ing function return values based on function summaries
using contains(σ). We describe this aspect in more detail
in Section 3.3.

Booleans: In PHP, a common way to perform input val-
idation is to call a function that returns true or false de-
pending on whether the input is well-formed or not. For
example, the following code sanitizes $userid:

Security ’06: 15th USENIX Security SymposiumUSENIX Association 183

$ok = is safe($userid);
if (!$ok) exit;

The value of Boolean variable $ok after the call is
undetermined, but it is correlated with the safety of
$userid. This motivates untaint(σ0, σ1) as a represen-
tation for such Booleans: σ0 (resp. σ1) represents the
set of validated l-values when the Boolean is false (resp.
true). In the example above, $ok has representation
untaint({}, {userid}).

Besides untaint, representation for Booleans also in-
clude constants (true and false) and unknown (>).

Integers: Integer operations are less emphasized in our
simulation. We track integer constants and binary and
unary operations between them. We also support type
casts from integers to Boolean and string values.

3.1.4 Locations and L-values

In the language definition in Figure 3, hash references
may be aliased through assignments and l-values may
contain hash accesses with non-constant keys. The same
l-value may refer to different memory locations depend-
ing on the value of both the host and the key, and there-
fore, l-values are not suitable as memory locations in the
simulation state.

Figure 4(b) gives the rules we use to resolve l-values
into memory locations. The var and arg rules map each
program variable and function argument to a memory lo-
cation identified by its name, and the dim rule resolves
hash accesses by first evaluating the hash table to a loca-
tion and then appending the key to form the location for
the hash entry.

These rules are designed to work in the presence of
simple aliases. Consider the following program:

1 $hash = $ POST;
2 $key = ’userid’;
3 $userid = $hash[$key];

The program first creates an alias ($hash) to hash ta-
ble $ POST and then accesses the userid entry using that
alias. On entry to the block, the initial state maps every
location to its initial value:

Γ = {hash⇒ hash0, key⇒ key0, POST⇒ POST0,

POST[userid]⇒ POST[userid]0}

According to the var rule, each variable maps to its own
unique location. After the first two assignments, the state
is:

Γ = {hash⇒ POST0, key⇒ 〈‘userid’〉, . . .}

We use the dim rule to resolve $hash[$key] on line 3:
$hash evaluates to POST0, and $key evaluates to con-
stant string ’userid’. Therefore, the l-value $hash[$key]

evaluates to location POST[userid], and thus the analysis
assigns the desired value POST[userid]0 to $userid.

3.1.5 Expressions

We perform abstract evaluation of expressions based on
the value representation described above. Because PHP
is a dynamically typed language, operands are implicitly
cast to appropriate types for operations in an expression.
Figure 4(c) gives a representative sample of cast rules
simulating cast operations in PHP. For example, Boolean
value true, when used in a string context, evaluates to
“1”. false, on the other hand, is converted to the empty
string instead of “0”. In cases where exact representation
is not possible, the result of the cast is unknown (>).

Figure 4(c) also gives three representative rules for
evaluating expressions. The first rule handles l-values,
and the result is obtained by first resolving the l-value
into a memory location, and then looking up the location
in the evaluation context (recall that Γ(l) = l0 on entry
to the block).

The second rule models string concatenation. We first
cast the value of both operands to string values, and the
result is the concatenation of both.

The final rule handles Boolean negation. The in-
teresting case involves untaint values. Recall that
untaint(σ0, σ1) denotes an unknown Boolean value that
is false (resp. true) if l-values in the set σ0 (resp. σ1)
are sanitized. Given this definition, the negation of
untaint(σ0, σ1) is untaint(σ1, σ0).

The analysis of an expression is > if we cannot deter-
mine a more precise representation, which is a potential
source of false negatives.

3.1.6 Statements

We model assignments, function calls, return, exit, and
include statements in the program. The assignment rule
resolves the left-hand side to a memory location l, and
evaluates the right-hand side to a value v. The updated
simulation state after the assignment maps l to the new
value v:

Γ ` lv
Lv

⇒ l Γ ` e
E

⇒ v

Γ ` lv ← e
S

⇒ Γ[l 7→ v]
assignment

Function calls are similar. The return value of a function
call f(e1, . . . , en) is modeled using either contains(σ)
(if f returns a string) or untaint(σ0, σ1) (if f returns a
Boolean) depending on the inferred summary for f . We
defer discussion of the function summaries and the re-
turn value representation to Sections 3.2 and 3.3. For the
purpose of this section, we use the uninterpreted value
f(v1, . . . , vn) as a place holder for the actual representa-
tion of the return value:

Γ ` lv
Lv

⇒ l Γ ` e1

E

⇒ v1 . . . Γ ` en

E

⇒ vn

Γ ` lv ← f(e1, . . . , en)
S

⇒ Γ[l 7→ f(v1, . . . , vn)]
fun

In addition to the return value, certain functions have
pre- and post-conditions depending on the operation they

6
Security ’06: 15th USENIX Security Symposium USENIX Association184

perform. Pre- and post-conditions are inferred and stored
in the callee’s summary, which we describe in detail in
Sections 3.2 and 3.3. Here we show two examples to
illustrate their effects:
1 function validate($x) {
2 if (!is numeric($x)) exit;
3 return;
4 }
5 function my query($q) {
6 global $db;
7 mysql db query($db, $q);
8 }
9 validate($a.$b);

10 my query("SELECT...WHERE a = ’$a’ AND c = ’$c’");

The validate function tests whether the argument is a
number (and thus safe) and aborts if it is not. There-
fore, line 9 sanitizes both $a and $b. We record this fact
by inspecting the value representation of the actual pa-
rameter (in this case 〈a0, b0〉), and remembering the set
of non-constant segments that are sanitized.

The second function my query uses its argument as a
database query string by calling mysql db query. To pre-
vent SQL injection attacks, any user input must be sani-
tized before it becomes part of the first parameter. Again,
we enforce this requirement by inspecting the value rep-
resentation of the actual parameter. We record any un-
sanitized non-constant segments (in this case $c, since $a

is sanitized on line 9) and require they be sanitized as
part of the pre-condition for the current block.

Sequences of assignments and function calls are sim-
ulated by using the output environment of the previous
statement as the input environment of the current state-
ment:

Γ ` s1

S

⇒ Γ′ Γ′ ` s2

S

⇒ Γ′′

Γ ` (s1; s2)
S

⇒ Γ′′

seq

The final simulation state is the output state of the final
statement.

The return and exit statements terminate control flow5

and require special treatment. For a return, we evalu-
ate the return value and use it in calculating the function
summary. In case of an exit statement, we mark the cur-
rent block as an exit block.

Finally, include statements are a commonly used fea-
ture unique to scripting languages allowing programmers
to dynamically insert code and function definitions from
another script. In PHP, the included code inherits the
variable scope at the point of the include statement. It
may introduce new variables and function definitions,
and change or sanitize existing variables before the next
statement in the block is executed.

We process include statements by first parsing the in-
cluded file, and adding any new function definitions to
the environment. We then splice the control flow graph of

5So do function calls that exits the program, in which case we re-
move any ensuing statements and outgoing edges from the current CFG
block. See Section 3.3.

the included main function at the current program point
by a) removing the include statement, b) breaking the
current basic block into two at that point, c) linking the
first half of the current block to the start of the main
function, and all return blocks (those containing a return
statement) in the included CFG to the second half, and d)
replacing the return statements in the included script with
assignments to reflect the fact that control flow resumes
in the current script.

3.1.7 Block summary

The final step for the symbolic simulator is to charac-
terize the behavior of a CFG block into a concise sum-
mary. A block summary is represented as a six-tuple
〈E,D,F , T ,R,U〉:

• Error set (E): the set of input variables that must be
sanitized before entering the current block. These
are accumulated during simulation of function calls
that require sanitized input.

• Definitions (D): the set of memory locations de-
fined in the current block. For example, in

$a = $a.$b; $c = 123;

we have D = {a, c}.

• Value flow (F): the set of pairs of locations (l1, l2)
where the string value of l1 on entry becomes a sub-
string of l2 on exit. In the example above, F =
{(a, a), (b, a)}.

• Termination predicate (T): true if the current
block contains an exit statement, or if it calls a func-
tion that causes the program to terminate.

• Return value (R): records the representation for
the return value if any, undefined otherwise. Note
that if the current block has no successors, either R
has a value or T is true.

• Untaint set (U): for each successor of the current
CFG block, we compute the set of locations that
are sanitized if execution continues onto that block.
Sanitization can occur via function calls, casting to
safe types (e.g., int, etc), regular expression match-
ing, and other tests. The untaint set for different
successors might differ depending on the value of
branch predicates. We show an example below.

validate($a);
$b = (int) $c;
if (is numeric($d))

. . .

As mentioned earlier, validate exits if $a is unsafe.
Casting to integer also returns a safe result. There-
fore, the untaint set is {a, b, d} for the true branch,
and {a, b} for the false branch.

7
Security ’06: 15th USENIX Security SymposiumUSENIX Association 185

3.2 Intraprocedural Analysis

Based on block summaries computed in the previous
step, the intraprocedural analysis computes the follow-
ing summary 〈E,R,S,X〉 for each function:

1. Error set (E): the set of memory locations (vari-
ables, parameters, and hash accesses) whose value
may flow into a database query, and therefore must
be sanitized before invoking the current function.
For the main function, the error set must not in-
clude any user-defined variables (e.g. $ GET[‘...’]
or $ POST[‘...’])—the analysis emits an error mes-
sage for each such violation.

We compute E by a backwards reachability analy-
sis that propagates the error set of each block (using
the E ,D,F , and U components in the block sum-
maries) to the start block of the function.

2. Return set (R): the set of parameters or global
variables whose value may be a substring of the re-
turn value of the function. R is only computed for
functions that may return string values. For exam-
ple, in the following code, the return set includes
both function arguments and the global variable $ta-

ble (i.e., R = {table, Arg#1, Arg#2}).

function make query($user, $pass) {
global $table;
return "SELECT * from $table ".
"where user = $user and pass = $pass";

}

We compute the function return set by using a for-
ward reachability analysis that expresses each re-
turn value (recorded in the block summaries as R)
as a set of function parameters and global variables.

3. Sanitized values (S): the set of parameters or
global variables that are sanitized on function exit.
We compute the set by using a forward reachability
analysis to determine the set of sanitized inputs at
each return block, and we take the intersection of
those sets to arrive at the final result.

If the current function returns a Boolean value as its
result, we distinguish the sanitized value set when
the result is true versus when it is false (mirror-
ing the untaint representation for Boolean values
above). The following example motivates this dis-
tinction:

function is valid($x) {
if (is numeric($x)) return true;
return false;

}

The parameter is sanitized if the function returns
true, and the return value is likely to be used by

the caller to determine the validity of user input. In
the example above,

S = (false ⇒ {}, true ⇒ {Arg#1})

For comparison, the validate function defined previ-
ously has S = (∗ ⇒ {Arg#1}). In the next section,
we describe how we make use of this information in
the caller.

4. Program Exit (X): a Boolean which indicates
whether the current function terminates program ex-
ecution on all paths. Note that control flow can
leave a function either by returning to the caller or
by terminating the program. We compute the exit
predicate by enumerating over all CFG blocks that
have no successors, and identify them as either re-
turn blocks or exit blocks (the T and R component
in the block summary). If there are no return blocks
in the CFG, the current function is an exit function.

The dataflow algorithms used in deriving these facts
are fairly standard fix-point computations. We omit the
details for brevity.

3.3 Interprocedural Analysis

This section describes how we conduct interprocedural
analysis using summaries computed in the previous step.
Assuming f has summary 〈E,R,S,X〉, we process a
function call f(e1, . . . , en) during intrablock simulation
as follows:

1. Pre-conditions: We use the error set (E) in the
function summary to identify the set of parameters
and global variables that must be sanitized before
calling this function. We substitute actual parame-
ters for formal parameters in E and record any un-
sanitized non-constant segments of strings in the er-
ror set as the sanitization pre-condition for the cur-
rent block.

2. Exit condition: If the callee is marked as an exit
function (i.e., X is true), we remove any statements
that follow the call and delete all outgoing edges
from the current block. We further mark the current
block as an exit block.

3. Post-conditions: If the function unconditionally
sanitizes a set of input parameters and global vari-
ables, we mark this set of values as safe in the sim-
ulation state after substituting actual parameters for
formal parameters.

If sanitization is conditional on the return value
(e.g., the is valid function defined above), we record
the intersection of its two component sets as being

8
Security ’06: 15th USENIX Security Symposium USENIX Association186

unconditionally sanitized (i.e., σ0∩σ1 if the untaint
set is (false ⇒ σ0, true ⇒ σ1)).

4. Return value: If the function returns a Boolean
value and it conditionally sanitizes a set of input pa-
rameters and global variables, we use the untaint

representation to model that correlation:

Γ ` lv
Lv

⇒ l Γ ` e1

E

⇒ v1 . . . Γ ` en

E

⇒ vn

Summary(f) = 〈E ,R,S ,X〉
S = (false⇒ σ0, true⇒ σ1) σ∗ = σ0 ∩ σ1

σ′

0 = substv̄(σ0 − σ∗) σ′

1 = substv̄(σ1 − σ∗)

Γ ` lv ← f(e1, . . . , en)
S

⇒ Γ[l 7→ untaint(σ′

0, σ
′

1)]

In the rule above, substv̄(σ) substitutes actual pa-
rameters (vi) for formal parameters in σ.

If the callee returns a string value, we use the return
set component of the function summary (R) to de-
termine the set of input parameters and global vari-
ables that might become a substring of the return
value:

Γ ` lv
Lv

⇒ l Γ ` e1

E

⇒ v1 . . . Γ ` en

E

⇒ vn

Summary(f) = 〈E ,R,S ,X〉 σ′ = substv̄(R)

Γ ` lv ← f(e1, . . . , en)
S

⇒ Γ[l 7→ contains(σ′)]

Since we require the summary information of a func-
tion before we can analyze its callers, the order in which
functions are analyzed is important. Due to the dynamic
nature of PHP (e.g., include statements), we analyze
functions on demand—a function f is analyzed and sum-
marized when we first encounter a call to f . The sum-
mary is then memoized to avoid redundant analysis. Ef-
fectively, our algorithm analyzes the source codebase in
topological order based on the static function call graph.
If we encounter a cycle during the analysis, the current
implementation uses a dummy “no-op” summary as a
model for the second invocation (i.e., we do not compute
fix points for recursive functions). In theory, this is a po-
tential source of false negatives, which can be removed
by adding a simple iterative algorithm that handles re-
cursion. However, practically, such an algorithm may be
unnecessary given the rare occurrence of recursive calls
in PHP programs.

4 Experimental Results

The analysis described in Section 3 has been imple-
mented as two separate parts: a frontend based on the
open source PHP 5.0.5 distribution that parses the source
files into abstract syntax trees and a backend written in
OCaml [8] that reads the ASTs into memory and car-
ries out the analysis. This separation ensures maximum
compatibility while minimizing dependence on the PHP
implementation.

The decision to use different levels of abstraction in
the intrablock, intraprocedural, and interprocedural lev-
els enabled us to fine tune the amount of information we
retain at one level independent of the algorithm used in
another and allowed us to quickly build a usable tool.
The checker is largely automatic and requires little hu-
man intervention for use. We seed the checker with a
small set of query functions (e.g. mysql query) and saniti-
zation operations (e.g. is numeric). The checker infers the
rest automatically.

Regular expression matching presents a challenge to
automation. Regular expressions are used for a variety
of purposes including, but not limited to, input valida-
tion. Some regular expressions match well-formed input
while others detect malformed input; assuming one way
or the other results in either false positives or false neg-
atives. Our solution is to maintain a database of previ-
ously seen regular expressions and their effects, if any.
Previously unseen regular expressions are assumed by
default to have no sanitization effects, so as not to miss
any errors due to incorrect judgment. To make it easy
for the user to specify the sanitization effects of regular
expressions, the checker has an interactive mode where
the user is prompted when the analysis encounters a pre-
viously unseen regular expression and the user’s answers
are recorded for future reference.6 Having the user de-
clare the role of regular expressions has the real poten-
tial to introduce errors into the analysis; however, prac-
tically, we found this approach to be very effective and
it helped us find at least two vulnerabilities caused by
overly lenient regular expressions being used for sani-
tization.7 Our tool collected information for 49 regular
expressions from the user over all our experiments (the
user replies with one keystroke for each inquiry), so the
burden on the user is minimal.

The checker detects errors by using information from
the summary of the main function—the checker marks
all variables that are required to be sanitized on entry
as potential security vulnerabilities. From the checker’s
perspective, these variables are defined in the environ-
ment and used to construct SQL queries without being
sanitized. In reality, however, these variables are either
defined by the runtime environment or by some language
constructs that the checker does not fully understand
(e.g., the extract operation in PHP which we describe
in a case study below). The tool emits an error mes-

6Here we assume that a regular expression used to sanitize input in
one context will have the same effect in another, which, based on our
experience, is the common case. Our implementation now provides
paranoid users with a special switch that ignores recorded answers and
repeatedly ask the user the same question over and over if so desired.

7For example, Utopia News Pro misused “[0-9]+” to validate
some user input. This regular expression only checks that the string
contains a number, instead of ensuring that the input is actually a num-
ber. The correct regular expression in this case is “̂ [0-9]+$”.

9
Security ’06: 15th USENIX Security SymposiumUSENIX Association 187

Application (KLOC) Err Msgs Bugs (FP) Warn
News Pro (6.5) 8 8 (0) 8
myBloggie (9.2) 16 16 (0) 23
PHP Webthings (38.3) 20 20 (0) 6
DCP Portal (121) 39 39 (0) 55
e107 (126) 16 16 (0) 23
Total 99 99 (0) 115

Table 1: Summary of experiments. LOC statistics in-
clude embedded HTML, and thus is a rough estimate
of code complexity. Err Msgs: number of reported er-
rors. Bugs: number of confirmed bugs from error re-
ports. FP: number of false positives. Warn: number of
unique warning messages for variables of unresolved ori-
gin (uninspected).

sage if the variable is known to be controlled by the user
(e.g. $ GET[‘. . .’], $ POST[‘. . .’], $ COOKIE[‘. . .’],
etc). For others, the checker emits a warning.

We conducted our experiments on the latest ver-
sions of six open source PHP code bases: e107
0.7, Utopia News Pro 1.1.4, mybloggie
2.1.3beta, DCP Portal v6.1.1, PHP
Webthings 1.4patched, and PHP fusion
6.00.204. Table 1 summarizes our findings for the
first five. The analysis terminates within seconds for
each script examined (which may dynamically include

other source files). Our checker emitted a total of 99
error messages for the first five applications, where
unsanitized user input (from $ GET, $ POST, etc) may
flow into SQL queries. We manually inspected the
error reports and believe all 99 represent real vulnera-
bilities.8 We have notified the developers about these
errors and will publish security advisories once the
errors have been fixed. We have not inspected warning
messages—unsanitized variables of unresolved origin
(e.g. from database queries, configuration files, etc) that
are subsequently used in SQL queries due to the high
likelihood of false positives.

PHP-fusion is different from the other five code bases
because it does not directly access HTTP form data from
input hash tables such as $ GET and $ POST. Instead it
uses the extract operation to automatically import such
information into the current variable scope. We describe
our findings for PHP-fusion in the following subsection.

4.1 Case Study: Two Exploitable SQL In-
jection Attacks in PHP-fusion

In this section, we show two case studies of exploitable
SQL injection vulnerabilities in PHP-fusion detected by

8Information about the results, along with the source codebases, are
available online at:

http://glide.stanford.edu/yichen/research/ .

our tool. PHP-fusion is an open-source content manage-
ment system (CMS) built on PHP and MySQL. Exclud-
ing locale specific customization modules, it consists of
over 16,000 lines of PHP code and has a wide user-base
because of its speed, customizability and rich features.
Browsing through the code, it is obvious that the author
programmed with security in mind and has taken extra
care in sanitizing input before use in query strings.

Our experiments were conducted on the then latest
6.00.204 version of the software. Unlike other code
bases we have examined, PHP-fusion uses the extract

operation to import user input into the current scope. As
an example, extract($ POST, EXTR OVERWRITE) has
the effect of introducing one variable for each key in the
$ POST hash table into the current scope, and assigning
the value of $ POST[key] to that variable. This feature re-
duces typing, but introduces confusion for the checker
and security vulnerabilities into the software—both of
the exploits we constructed involve use of uninitialized
variables whose values can be manipulated by the user
because of the extract operation.

Since PHP-fusion does not directly read user input
from input hashes such as $ GETor $ POST, there are no
direct error messages generated by our tool. Instead we
inspect warnings (recall the discussion about errors and
warnings above), which correspond to security sensitive
variables whose definition is unresolved by the checker
(e.g., introduced via the extract operation, or read from
configuration files).

We ran our checker on all top level scripts in PHP-
fusion. The tool generated 22 unique warnings, a ma-
jority of which relate to configuration variables that are
used in the construction of a large number of queries.9

After filtering those out, 7 warnings in 4 different files
remain.

We believe all but one of the 7 warnings may result in
exploitable security vulnerabilities. The lone false posi-
tive arises from an unanticipated sanitization:

/* php-files/lostpassword.php */
if (!preg match("/ˆ[0-9a-z]{32}$/", $account))

$error = 1;
if (!$error) { /* database access using $account */ }
if ($error) redirect("index.php");

Instead of terminating the program immediately based
on the result from preg match, the program sets the $error

flag to true and delays error handling, which is in general
not a good practice. This idiom can be handled by adding
slightly more information in the block summary.

We investigated the first two of the remaining warn-
ings for potential exploits and confirmed that both are
indeed exploitable on a test installation. Unsurprisingly

9Database configuration variables such as $db prefix accounted for
3 false positives, and information derived from the database queries and
configuration settings (e.g. locale settings) caused the remaining 12.

1

Security ’06: 15th USENIX Security Symposium USENIX Association188

both errors are made possible because of the extract op-
eration. We explain these two errors in detail below.

1) Vulnerability in script for recovering lost pass-
word. This is a remotely exploitable vulnerability that
allows any registered user to elevate his privileges via a
carefully constructed URL. We show the relevant code
below:

1 /* php-files/lostpassword.php */
2 for ($i=0;$i<=7;$i++)
3 $new pass .= chr(rand(97, 122));
4 . . .
5 $result = dbquery("UPDATE ".$db prefix."users
6 SET user_password=md5(’$new_pass’)
7 WHERE user_id=’".$data[’user_id’]."’");

Our tool issued a warning for $new pass, which is unini-
tialized on entry and thus defaults to the empty string
during normal execution. The script proceeds to add
seven randomly generated letters to $new pass (lines 2-
3), and uses that as the new password for the user (lines
5-7). The SQL request under normal execution takes the
following form:

UPDATE users SET user password=md5(’???????’)
WHERE user id=’userid’

However, a malicious user can simply add a new pass

field to his HTTP request by appending, for example, the
following string to the URL for the password reminder
site:
&new pass=abc%27%29%2cuser level=%27103%27%2cuser aim=%28%27

The extract operation described above will magically in-
troduce $new pass in the current variable scope with the
following initial value:

abc′), user level =′ 103′, user aim = (′

The SQL request is now constructed as:
UPDATE users SET user password=md5(’abc’),

user level=’103’, user aim=(’???????’)
WHERE user id=’userid’

Here the password is set to “abc”, and the user privilege
is elevated to 103, which means “Super Administrator.”
The newly promoted user is now free to manipulate any
content on the website.

2) Vulnerability in the messaging sub-system. This
vulnerability exploits another use of potentially unini-
tialized variable $result where message id in the messag-
ing sub system. We show the relevant code in Figure 5.

Our tool warns about unsanitized use of $re-

sult where message id. On normal input, the program
initializes $result where message id using a cascading if
statement. As shown in the code, the author is very care-
ful about sanitizing values that are used to construct $re-

sult where message id. However, the cascading sequence
of if statements does not have a default branch. And
therefore, $result where message id might be uninitialized
on malformed input. We exploit this fact, and append

&request where message id=1=1/*

The query string submitted on line 11-13 thus becomes:

1 if (isset($msg view)) {
2 if (!isNum($msg view)) fallback("messages.php");
3 $result where message id="message_id=".$msg view;
4 } elseif (isset($msg reply)) {
5 if (!isNum($msg reply)) fallback("messages.php");
6 $result where message id="message_id=".$msg reply;
7 }
8 . . . /* ˜100 lines later */ . . .
9 } elseif (isset($ POST[’btn_delete’]) | |

10 isset($msg delete)) { // delete message
11 $result = dbquery("DELETE FROM ".$db prefix.
12 "messages WHERE ".$result where message id. // BUG
13 " AND ".$result where message to);

Figure 5: An exploitable vulnerability in PHP-fusion
6.00.204.

DELETE FROM messages WHERE 1=1 /* AND . . .

Whatever follows “/*” is treated as comments in MySQL
and thus ignored. The result is loss of all private mes-
sages in the system. Due to the complex control and data
flow, this error is unlikely to be discovered via code re-
view or testing.

We reported both exploits to the author of PHP-fusion,
who immediately fixed these vulnerabilities and released
a new version of the software.

5 Related Work

5.1 Static techniques

WebSSARI is a type-based analyzer for PHP [7]. It uses
a simple intraprocedural tainting analysis to find cases
where user controlled values flow into functions that re-
quire trusted input (i.e. sensitive functions). The analysis
relies on three user written “prelude” files to provide in-
formation regarding: 1) the set of all sensitive functions–
those require sanitized input; 2) the set of all untainting
operations; and 3) the set of untrusted input variables.
Incomplete specification results in both substantial num-
bers of false positives and false negatives.

WebSSARI has several key limitations that restrict the
precision and analysis power of the tool:

1. WebSSARI uses an intraprocedural algorithm and
thus only models information flow that does not
cross function boundaries.

Large PHP codebases typically define a number of
application specific subroutines handling common
operations (e.g., query string construction, authen-
tication, sanitization, etc) using a small number of
system library functions (e.g., mysql query). Our
algorithm is able to automatically infer information
flow and pre- and post-conditions for such user-
defined functions whereas WebSSARI relies on the

1
Security ’06: 15th USENIX Security SymposiumUSENIX Association 189

user to specify the constraints of each, a significant
burden that needs to be repeated for each source
codebase examined. Examples in Section 3.3 repre-
sent some common forms of user-defined functions
that WebSSARI is not able to model without anno-
tations.

To show how much interprocedural analysis im-
proves the accuracy of our analysis, we turned off
function summaries and repeated our experiment
on News Pro, the smallest of the five codebases.
This time, the analysis generated 19 error messages
(as opposed to 8 with interprocedural analysis).
Upon inspection, all 11 extra reports are false posi-
tives due to user-defined sanitization operations.

2. WebSSARI does not seem to model conditional
branches, which represent one of the most common
forms of sanitization in the scripts we have ana-
lyzed. For example, we believe it will report a false
warning on the following code:

if (!is numeric($ GET[’x’]))
exit;

mysql query(‘‘. . . $ GET[’x’] . . .’’);

Furthermore, interprocedural conditional sanitiza-
tion (see the example in Section 3.1.6) is also fairly
common in codebases.

3. WebSSARI uses an algorithm based on static types
that does not specifically model dynamic features
in scripts. For example, dynamic typing may in-
troduce subtle errors that WebSSARI misses. The
include statement, used extensively in PHP scripts,
dynamically inserts code to the program which may
contain, induce, or prevent errors.

We are unable to directly compare the experimental
results due to the fact that neither the bug reports nor the
WebSSARI tool are available publicly. Nor are we able
to compare false positive rates since WebSSARI reports
per-file statistics which may underestimate the false pos-
itive ratio. A file with 100 false positives and 1 real bug
is considered to be “vulnerable” and therefore does not
contribute to the false positive rate computed in [7].

Livshits and Lam [9] develop a static detector for secu-
rity vulnerabilities (e.g., SQL injection, cross site script-
ing, etc) in Java applications. The algorithm uses a BDD-
based context-sensitive pointer analysis [19] to find po-
tential flow from untrusted sources (e.g., user input) to
trusting sinks (e.g., SQL queries). One limitation of this
analysis is that it does not model control flow in the pro-
gram and therefore may misflag sanitized input that sub-
sequently flows into SQL queries. Sanitization with con-
ditional branching is common in PHP programs, so tech-
niques that ignore control flow are likely to cause large
numbers of false positives on such code bases.

Other tainting analysis that are proven effective on C
code include CQual [4], MECA [21], and MC [6, 2].
Collectively they have found hundreds of previously un-
known security errors in the Linux kernel.

Christensen et. al. [3] develop a string analysis that ap-
proximates string values in a Java program using a con-
text free grammar. The result is widened into a regular
language and checked against a specification of expected
output to determine syntactic correctness. However, syn-
tactic correctness does not entail safety, and therefore it
is unclear how to adapt this work to the detection of SQL
injection vulnerabilities. Minamide [10] extends the ap-
proach and construct a string analyzer for PHP, citing
SQL injection detection as a possible application. How-
ever, the analyzer models a small set of string operations
in PHP (e.g., concatenation, string matching and replace-
ment) and ignores more complex features such as dy-
namic typing, casting, and predicates. Furthermore, the
framework only seems to model sanitization with string
replacement, which represents a small subset of all san-
itization in real code. Therefore, accurately pinpointing
injection attacks remains challenging.

Gould et. al. [5] combines string analysis with type
checking to ensure not only syntactic correctness but also
type correctness for SQL queries constructed by Java
programs. However, type correctness does not imply
safety, which is the focus of our analysis.

5.2 Dynamic Techniques

Scott and Sharp [15] propose an application-level fire-
wall to centralize sanitization of client input. Firewall
products are also commercially available from compa-
nies such as NetContinuum, Imperva, Watchfire, etc.
Some of these firewalls detect and guard against pre-
viously known attack patterns, while others maintain a
white list of valid inputs. The main limitation here is that
the former is susceptible to both false positives and false
negatives, and the latter is reliant on correct specifica-
tions, which are difficult to come by.

The Perl taint mode [12] enables a set of special secu-
rity checks during execution in an unsafe environment. It
prevents the use of untrusted data (e.g., all command line
arguments, environment variables, data read from files,
etc) in operations that require trusted input (e.g., any
command that invokes a sub-shell). Nguyen-Tuong [11]
proposes a taint mode for PHP, which, unlike the Perl
taint mode, not define sanitizing operations. Instead, it
tracks each character in the user input individually, and
employs a set of heuristics to determine whether a query
is safe when it contains fragments of user input. For ex-
ample, among others, it detects an injection if an opera-
tor symbol (e.g., “(”, “)”, “%”, etc) is marked as tainted.
This approach is susceptible to both false positives and

1
Security ’06: 15th USENIX Security Symposium USENIX Association190

false negatives. Note that static analyses are also sus-
ceptible to both false positives and false negatives. The
key distinction is that in static analyses, inaccuracies are
resolved at compile time instead of at runtime, which is
much less forgiving.

6 Conclusion

We have presented a static analysis algorithm for detect-
ing security vulnerabilities in PHP. Our analysis employs
a novel three-tier architecture that enables us to handle
dynamic features unique to scripting languages such as
dynamic typing and code inclusion. We demonstrate
the effectiveness of our approach by running our tool
on six popular open source PHP code bases and finding
105 previously unknown security vulnerabilities, most of
which we believe are remotely exploitable.

Acknowledgement

This research is supported in part by NSF grants
SA4899-10808PG, CCF-0430378, and an IBM Ph.D.
fellowship. We would like to thank our shepherd An-
drew Myers and the anonymous reviewers for their help-
ful comments and feedback.

References

[1] A. Aiken, E. Wimmers, and T. Lakshman. Soft typ-
ing with conditional types. In Proceedings of the
21st Annual Symposium on Principles of Program-
ming Languages, 1994.

[2] K. Ashcraft and D. Engler. Using programmer-
written compiler extensions to catch security holes.
In 2002 IEEE Symposium on Security and Privacy,
2002.

[3] A. Christensen, A. Moller, and M. Schwartzbach.
Precise analysis of string expressions. In Proceed-
ings of the 10th Static Analysis Symposium, 2003.

[4] J. S. Foster, T. Terauchi, and A. Aiken. Flow-
sensitive type qualifiers. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12,
June 2002.

[5] C. Gould, Z. Su, and P. Devanbu. Static checking
of dynamically generated queries in database ap-
plications. In Proceedings of the 26th International
Conference on Software Engineering, 2004.

[6] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A
system and language for building system-specific,

static analyses. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Lan-
guage Design and Implementation, Berlin, Ger-
many, June 2002.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In Proceed-
ings of the 13th International World Wide Web Con-
ference, 2004.

[8] X. Leroy, D. Doligez, J. Garrigue, and J. Vouil-
lon. The Objective Caml system. Soft-
ware and documentation available on the web,
http://caml.inria.fr.

[9] V. Livshits and M. Lam. Finding security vulner-
abilities in Java applications with static analysis.
In Proceedings of the 14th Usenix Security Sympo-
sium, 2005.

[10] Y. Minamide. Approximation of dynamically gen-
erated web pages. In Proceedings of the 14th Inter-
national World Wide Web Conference, 2005.

[11] A. Nguyen-Tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically harden-
ing web applications using precise tainting. In Pro-
ceedings of the 20th International Information Se-
curity Conference, 2005.

[12] Perl documentation: Perlsec. http://search.
cpan.org/dist/perl/pod/perlsec.pod.

[13] PHP: Hypertext Preprocessor. http://www.php.
net.

[14] PHP usage statistics. http://www.php.net/
usage.php.

[15] D. Scott and R. Sharp. Abstracting application-
level web security. In Proceedings of the 11th In-
ternational World Wide Web Conference, 2002.

[16] Security space apache module survey (Oct 2005).
http://www.securityspace.com/s survey/
data/man.200510/apachemods.html.

[17] Symantec Internet security threat report: Vol. VII.
Technical report, Symantec Inc., Mar. 2005.

[18] TIOBE programming community index for
November 2005.
http://www.tiobe.com/tpci.htm.

[19] J. Whaley and M. Lam. Cloning-based context-
sensitive pointer alias analysis using binary de-
cision diagrams. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Lan-
guage Design and Implementation, 2004.

1
Security ’06: 15th USENIX Security SymposiumUSENIX Association 191

[20] A. Wright and R. Cartwright. A practical soft type
system for Scheme. ACM Trans. Prog. Lang. Syst.,
19(1):87–152, Jan. 1997.

[21] J. Yang, T. Kremenek, Y. Xie, and D. Engler.
MECA: an extensible, expressive system and lan-
guage for statically checking security properties. In
Proceedings of the 10th Conference on Computer
and Communications Security, 2003.

1
Security ’06: 15th USENIX Security Symposium USENIX Association192

